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ABSTRACT

The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play
some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear
at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive
destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic
effects due to the Spruit–Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive
star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing
effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can
move models of given zero-age main sequence mass across “boundaries” from degenerate CO cores to degenerate
O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the
physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with
the observed “initial” rotation rates of pulsars. The MRI analysis suggests that localized fields ∼1012 G may exist
at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M� model, we find that
the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even
blue supergiant supernova progenitors that would not be standard SN IIP.

Key words: instabilities – magnetohydrodynamics (MHD) – stars: magnetic fields – stars: neutron –
stars: rotation – supernovae: general

1. INTRODUCTION

One of the major unsolved problems of stellar evolution is
the effect of differential rotation on the magnetic field structure
of stars and the feedback of that magnetic field on the stellar
structure and evolution. The role of rotation in stars is well-
studied if not fully understood (Von Zeipel 1924; Goldreich
& Schubert 1967; Fricke 1969; Tassoul 1978; Endal & Sofia
1981; Maeder 2009; Maeder & Meynet 2014). Some of that
work includes the effects of magnetic fields (Maeder 2009 and
references therein), but this remains a major challenge requiring
fully three-dimensional (3D) studies. Even the status of the solar
rotation and magnetic field remains a major issue (Christensen-
Dalsgaard et al. 1996; Howe 2009). The late stages of stellar
evolution where direct relevant observations are scarce is even
more of a challenge. The actual amount of angular momentum
and magnetic field of the iron core has obvious implications for
the creation of new born neutron stars and for black holes.

Spruit (1999, 2002) presented various magnetic instabilities
that could be involved in stellar evolution and prescriptions
for treating them, including the Tayler instability (Tayler 1973)
and the magnetorotational instability (MRI; Velikhov 1959;
Chandrasekhar 1960; Acheson 1978; Balbus & Hawley 1991,
1998). Spruit emphasized the nature and role of the Tayler
instability in which a toroidal field could be perturbed, twisted,
and sheared to produce a radial field. This is a pinch-type
instability of a toroidal magnetic field in differentially rotating
stellar radiative zones that is predicted to result in large-scale
fluid motion in the star. Spruit gave a prescription for the
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equilibrium field structure, in particular the ratio of the radial
and toroidal fields, and for the magnetic viscosity that would
result from the drag associated with the radial component of the
field interacting with shear in the star. We refer to these effects
collectively as the Spruit–Tayler (ST) mechanism. Heger et al.
(2005; see also Maeder & Meynet 2004; Petrovic et al. 2005;
Cantiello et al. 2007; Suijs et al. 2008; Paxton et al. 2011, 2013;
Brott et al. 2011; Ekström et al. 2012; Chatzopoulos & Wheeler
2012; Yoon et al. 2012) incorporated the ST magnetic viscosity
prescription in a one-dimensional stellar evolution code that had
previously been used to explore the effect on angular momentum
transport of a wide variety of classical fluid instabilities (Heger
et al. 2000). Heger et al. (2005) concluded that the ST magnetic
viscosity would tend to damp the rotation rate of the iron core
that formed in the final stages of evolution of massive stars by a
factor of 30–50 compared to computations that did not account
for magnetic torques and that more massive stars would have
more rapidly rotating iron cores. A variety of issues concerning
the ST mechanism remain open. We return to that topic in
Section 4.

Although the MRI has been thoroughly explored in the
context of accretion disks, it also applies to quasi-spherical
objects, e.g., stars (Balbus & Hawley 1994). The MRI is widely
considered to play some role in core collapse (Akiyama et al.
2003; Masada et al. 2006, 2007; Obergaulinger et al. 2009;
Sawai & Yamada 2014), but its role in stellar evolution has been
substantially neglected. This is in part because a threshold shear
is required to trigger the MRI and the MRI tends to be stabilized
by strong thermal and composition gradients (Maeder 2009).
On the other hand, models of rotating massive stars naturally
develop strong shear at composition boundaries, and the MRI
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is subject to triply diffusive destabilizing effects in radiative
regions (Acheson 1978; Menou et al. 2004). The MRI grows
exponentially rapidly when unstable and can be active in the
Sun (Parfrey & Menou 2007; Masada 2011; Kagan & Wheeler
2014). We argue here that the MRI should also be considered in
the context of the evolution of massive stars.

Heger et al. (2005) neglect the MRI, but the resulting
models tend to give very strong radial gradients in the angular
velocity in the final stages of the evolution (see Figures 2
and 3 in Heger et al. for the corresponding specific angular
momentum gradient distributions). These sharp gradients arise
at the composition boundaries of the “onion-skin” layers that
are also the boundaries between (possibly extinct) convective
cores and outer radiative layers that may once themselves have
been involved in convective burning. These sharp boundaries
are stabilized against Kelvin–Helmholtz instabilities by the
associated composition gradients, but they may be unstable to
interface dynamos (Brun et al. 2005) or the MRI. One question
is whether or not such sharp gradients in angular velocity would
have developed in the first place had the MRI been considered
as the star evolved on and after the main sequence.

Where in the geometry various instabilities occur is a major
issue. As noted by Spruit (1999), the Tayler instability disap-
pears on the equator and shows its most characteristic behavior
near the rotation axis. The MRI may be most active near the
equator in radiative shearing regions where the shear is strong
and weaker at the poles, but in the tachocline and convective
envelope of the Sun the MRI tends to be suppressed at low lati-
tudes (Parfrey & Menou 2007; Masada 2011; Kagan & Wheeler
2014). In the following, we will neglect these considerations due
to the restrictions of a spherically symmetric evolution code, but
return to them in Section 4.

In Section 2 we present the instability criterion for the MRI,
the resulting expressions for viscosity and diffusion coefficients
that transport angular momentum and mix compositions, and
our treatment of the growth and saturation of the magnetic field.
Section 3 describes our use of the MESA code and gives our
results, and Section 4 presents a discussion and conclusions.

2. PHYSICAL PROPERTIES OF THE ST
AND MRI MECHANISMS

We first define a number of terms that will be employed
in the subsequent discussion. The angular velocity is Ω and
q = d ln Ω/d ln r is the radial shear. The Alfvén frequency
is ωA. Assuming the toroidal field to dominate, the Alfvén
frequency and Alfvén velocity are

ωA = vA

r
= Bφ√

4πρr
. (1)

The terms NT and Nμ are the thermal and composition compo-
nents of the Brunt–Väisälä frequency,

N2
T = gδ

Hp

(∇ad − ∇rad) , (2)

and

N2
μ = gφ

∣∣∣∣∂ ln μ

∂r

∣∣∣∣ , (3)

where ∇ad and ∇rad are the adiabatic and radiative gradients,
HP is the pressure scale height, g is the local gravity, μ is
the mean molecular weight, δ = − (∂ ln ρ/∂ ln T )P,μ, and

φ = (∂ ln ρ/∂ ln μ)P,T . Here ρ, T, and P are the local density,
temperature and pressure, respectively. The thermal diffusivity
is dominated by radiative transport, and is given by

κ = 16σT 3

3κRρ2cP

, (4)

where γ is the ratio of specific heats and κR is the radiative
opacity. The magnetic resistivity, η, is given by

η ≈ 5.2 × 1011 ln Λ
T 3/2

cm2 s−1, (5)

(Spitzer 2006) where ln Λ is the Coulomb logarithm

ln Λ ≈
{

−17.4 + 1.5 ln T − 0.5 ln ρ T < 1.1 × 105 K

−12.7 + ln T − 0.5 ln ρ T > 1.1 × 105 K
(6)

after translating into cgs units. In the current work, we assume
the thermal viscosity is negligible compared to κ and η (Menou
et al. 2004).

2.1. Instability and Growth Rate

The appropriate expressions for the instability criteria have
terms that depend on radial and on lateral gradients. The latter
cannot be captured in a one-dimensional code like MESA, so we
address only the spherical radial components of the instability
criteria.

2.1.1. ST Instability

For the ST instability, a minimum initial magnetic field is
required for growth. In our calculations of the ST dynamo
process, we assume that this minimum field is present. In
order for the overall ST dynamo process to work, however,
a significant shear is required to overcome the effects of both
thermal and compositional buoyancy. Following Spruit (2002),
the shear condition for the ST process to operate may be
expressed in our notation as

|q| > qmin ≡
(

Nlim

Ω

)3/2 ( η

r2Ω

)1/4
, (7)

where
N2

lim =
(η

κ

)
max(N2

T , 0) + max(N2
μ, 0). (8)

Note that the sign of the shear is not important for the ST
dynamo. This is because the only effect of the shear in the ST
dynamo process is in winding up the poloidal field produced by
the ST instability, and the field winding process depends only
on the magnitude of the shear, not its sign.

2.1.2. MRI Instability

Following Balbus & Hawley (1991, 1998); Akiyama et al.
(2003); Menou et al. (2004); and (Kagan & Wheeler 2014),
we can write the local instability criterion for the MRI in
typical conditions in stars where the magnetic diffusivity η is
significantly smaller than the thermal diffusivity κ as(η

κ

)
N2

T + N2
μ + 2qΩ2 < 0. (9)

In the absence of the Brunt–Väisälä terms in Equation (9),
the instability criterion for the MRI is simply 2qΩ2 < 0; that
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is, the system is unstable when q < 0, i.e., the angular ve-
locity decreases outward. The component of the Brunt–Väisälä
frequency associated with composition gradients, N2

μ, is nearly
always a stabilizing term in stars since the molecular weight
almost always decreases monotonically outward. An exception
arises in Section 3.2 where we find a composition inversion
with silicon overlying oxygen in the model with zero-age main
sequence (ZAMS) mass of 11 M�. The thermal component of
the Brunt–Väisälä frequency varies with the stellar structure. In
convective regions, N2

T is negative and the convective overturn
promotes the MRI. In radiative regions, N2

T is positive and this
term will then tend to oppose the MRI instability. The ther-
mal buoyancy term is, however, diminished by diffusive effects.
For small-scale perturbations, perturbed fluid elements reach
thermal equilibrium with the surroundings more quickly, thus
reducing thermal buoyancy and the associated stabilizing in-
fluence. The magnetic diffusivity will tend to promote stability
because the tendency to amplify the field will diminish. Note
that the latter is a very subtle effect, since that is the only indi-
rect effect of the magnetic field. As long as the magnetic field
is weak compared to the effects of rotation, ωA 	 Ω, the insta-
bility criterion of Equation (9) does not depend on the strength
of the magnetic field, one of the special properties of the MRI
(Balbus & Hawley 1998).

Note that that the precise definition of the “reduced” NT
depends on the particular instability. In the derivation of the
MRI presented in Kagan & Wheeler (2014), the term that we
adopt in Equation (9), N2

T ,reduced = (η/κ)N2
T , corresponds to the

instability criterion for the diffusive small-scale MRI. Menou
et al. (2004) present other instability criteria for which the
appropriate reduced value is different. Although it is reasonable
in the ambiance we explore in which η 	 κ , our expression
would give unrealistically high estimates for the effects of
buoyancy if η 
 κ , giving NT,reduced 
 NT .

While the growth rate in the ST mechanism depends on the
field strength in a manner that leads to predictions of the ratio
of the resulting radial and toroidal field (Section 2.3), the MRI
is different in a fundamental way. If the field strength is below
saturation, the growth rate of the MRI depends only on the shear,
not on the strength of the magnetic field. In regions unstable to
the MRI, the field should grow exponentially rapidly at the rate
qΩ. The growth rate for the MRI is likely to be much more
rapid than that for the ST instability if the initial conditions
correspond to a weak magnetic field, ωA 	 Ω.

2.2. Viscosity and Diffusion Coefficients

In MESA, all instabilities (including ST; Eddington–Sweet,
ES (meridional circulation); Goldrich–Schubert–Fricke, GSF)
and the MRI are treated as diffusive processes that diffuse
angular momentum or species (mixing). The net viscosity, ν, is
assumed to be the linear sum of the viscous diffusion coefficients
νi , corresponding to estimates of the diffusion coefficient for
each individual process, i. Whether or not the diffusive effects
associated with these various instabilities can truly be added in
this simple linear way deserves deeper consideration, but that
is beyond the scope of this work. Following Spruit (2002), the
azimuthal stress, S, generated by the field produced by either ST
or MRI can be related to an effective magnetic viscosity, νmag, by

S = BrBφ

4π
= ρqΩνmag. (10)

This viscosity is explicitly an “effective magnetic viscosity” that
is determined by the global magnetic structure of the star and

very specifically is not in any way related to the microphysics
of “molecular viscosity” in the star.

2.2.1. ST Viscosity

For the ST process, the magnetic field components are first
constrained by various physical arguments. The resulting pre-
scriptions for Br and Bφ are then incorporated in Equation (10) to
evaluate the effective viscosity (Spruit 1999, 2002). The strength
of the magnetic field components can be cast in a form in which
the ST viscosity, νmag,ST, is treated as a variable (Section 2.3.1).

Our calculations for the magnetic viscosity, νmag,ST, corre-
sponding to the ST mechanism are identical to those in Heger
et al. (2005) that are incorporated in MESA. The form of the
equation for the effective ST viscosity depends on the signs of
N2

T and N2
μ and the strength of thermal diffusion, κ . In radia-

tive regions, where both N2
T and N2

μ are positive, we apply the
effective viscosity calculated in Equations (34)–(37) of Spruit
(2002). In semiconvective regions where N2

T < 0 and N2
μ > 0,

we apply Equations (6)–(9) of Heger et al. (2005). In thermo-
haline regions where N2

T > 0 and N2
μ < 0, we apply Equation

(36) of Spruit (2002), which corresponds to his “Case 1.”

2.2.2. MRI Viscosity

Dimensionally, B ∼ qΩr
√

4πρ for the MRI (Section 2.3.2).
Assuming the toroidal field to dominate, we can obtain a formal
expression for the magnetic viscosity corresponding to the MRI
by substituting this expression into Equation (10):

νmag,MRI = BrBφ

4πρ|q|Ω =
(

Br

Bφ

)
|q|Ωr2, (11)

where the absolute value sign is used to ensure that ν is positive.
We have not defined precisely what we mean by Br and Bφ in
this context. We return to this expression in Section 2.3.2.

To estimate the viscosity corresponding to the MRI, we have
recourse to shearing-box simulations. In accretion disks, the ro-
tation is supersonic and the field produced by the MRI is limited
to be less than the value corresponding to equipartition with
the local gas pressure, ρ(ωAr)2 ∼ Pgas. Because the compo-
nents of the magnetic field are turbulent, temporal and spatial
averaging of simulation data is needed to obtain an accurate
estimate of field components and their products. The normal-
ized total magnetic pressure in a simulation can be expressed
as < B2 > /(8πP0), where P0 is the maximum magnetic pres-
sure that can be produced by the MRI at saturation. We adopt
P0 = Pgas. If the radiation pressure, Prad, is significant, this ex-
pression should be replaced with P0 = Pgas +Prad to produce the
correct normalization (Shi et al. 2010). In the calculations here,
the gas pressure and degeneracy pressure typically exceed the
radiation pressure by factors of at least several in the inner core.
The addition of rotation and mixing tends to increase Pgas/Prad.
We have neglected Prad in our estimate of α in the current con-
text. We argue that the corresponding normalization in the sub-
sonic shearing conditions relevant to stars is P0 = ρ(qΩr)2. We
then assume that the appropriately normalized magnetic field
components are the same in both accretion disks and in stars.

A stress efficiency parameter, α, can then be defined as

α ≡ S

P0
= < BrBφ >

4πP0
, (12)

where < BrBφ > is a suitable spatial and temporal average
of the product of the field components. As just argued, the
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normalization is P0 = Pgas for an accretion disk and P0 =
ρ(qΩr)2 for stars. We assume that the normalized parameter α
is the same in both disks and stars.

In local shearing-box simulations, the typical value of α is
in the range 0.01 to 0.05 (Hawley et al. 2011 and references
therein). Global simulations may produce slightly larger values
of α, perhaps as large as 0.1 (Hawley et al. 2011). We adopt
α = 0.02 as representative. Using the right hand side of
Equation (10) and the definition of α in the left hand side of
Equation (12) yields an effective viscosity for the MRI of

νMRI = 0.02|q|Ωr2. (13)

We apply Equation (13) for all values of N2
T and N2

μ

without modification as long as the instability criterion (9) is
satisfied. The issue of how the MRI works in semiconvective or
thermohaline regions requires further work that is beyond the
scope of this paper. The prescription for viscosity is not modified
in semiconvective or thermohaline regions in the current work.

We have considered other physical conditions and associated
prescriptions for the effective viscosity of the MRI. Spruit (1999)
gives a prescription for the viscosity associated with the MRI
(his Equation (31)):

νMRI ∼ 0.2|q|κ
(

Ω
NT

)2

. (14)

Spruit notes that this viscosity may be relatively small, but that
his conclusion is preliminary pending numerical simulations of
the nonlinear development. This prescription was based on the
assumption that conditions are held very near those correspond-
ing to the onset of the linear instability. It is not clear to us
that the system under consideration will maintain this marginal
condition. We have, rather, invoked estimates corresponding
to something like saturation as revealed by simulations. We
have, however, run one 15 M� model (Section 3.3) with the
prescription of Equation (14) and find that the viscosity can
be comparable to, or even exceed, the prescription we adopt in
Equation (13).

Another concern is that the instability criterion, Equation (9),
specifically invokes the destabilizing effect of thermal diffusion.
The question arises as to whether or not the effectiveness
of the MRI in providing a viscosity is also limited by the
constraint of significant thermal diffusion. Since the growth
time of the magnetic field is given by the shear, the Maxwell
stress is of order the Reynolds stress, S ∼ ρ�r�φσ 2, where
�r and �φ are characteristic length scales in the radial and
azimuthal directions and σ ∼ qΩ. If to maintain the growth
of the MRI, the length scales are restricted to be sufficiently
small that thermal diffusion is active, then the effective stress
and associated viscosity might be also limited. Suppose, for
example, that �φ ∼ r (or a pressure scale height), but that �r

is restricted by the condition of effective thermal diffusivity.
The latter could be expressed by writing k2κ ∼ N where k
is the wavenumber of the maximally destabilized mode and N
is the Brunt–Väisälä frequency. The constraint on the length
scale can thus be expressed as �r ∼ √

κ/N and the stress as
S ∼ ρq2Ω2r

√
κ/N . The associated viscosity would then be

ν ∼ |q|Ωr
√

κ/N, (15)

smaller than we adopted in Equation (13) by a factor of roughly√
κ/N/r . We have been somewhat loose in this discussion with

the exact nature of the Brunt–Väisälä frequency, N. The relevant
choice would seem to be the thermal component, NT , since this
sets the relevant buoyancy timescale and, in the absence of
thermal destablizing effects, dominates the composition term.
Conditions for which N2

T < 0 will be convective and the
effective convective dynamic viscosity would then dominate
other effects. We have adopted the prescription of Equation (15)
in a model of a 15 M� star (Section 3.3) in regions that are
unstable to the MRI and for which N2

T > 0 with no other
magnetic effects. We find, as expected, that the viscous mixing
and transport effects of the MRI are rather small.

Given instability according to Equation (9), the ques-
tion becomes whether the prescription of Equation (13) or
Equation (15) best describes the effective viscosity as the field
grows toward saturation. In unstable conditions, there will be a
most rapidly growing mode of wave number, kmrgvA ∼ Ω with
a corresponding length scale

�mrg ∼ vA

Ω
∼ ρ−1/2 B

Ω
, (16)

neglecting factors of order unity. Suppose the MRI sets in with
a small ambient field such that �mrg < �r ∼ √

κ/N . The field
will then grow until these two length scales are comparable,
corresponding to a field strength of order

B ∼
(κρ

N

)1/2
Ω. (17)

It is not clear that this condition will suppress further field
growth with this characteristic wave number, and even if it does,
there will be perturbation due to MRI turbulence that will be of
larger wave number and smaller length scale that can continue to
grow in an unstable environment, albeit at a slower rate. Similar
perspectives pertain even if the most rapidly growing mode has a
characterstic length larger than the thermal diffusive length scale
even at the onset of instability. As long as some mode grows on a
timescale that is short compared to the evolutionary times in the
star, it seems that the field should continue to grow in strength,
and that the only natural limit is that of saturation with vA ∼ qΩ.
This is basically the condition that underlies Equation (13).

In possibly analogous situations, double-diffusive instabili-
ties that might yield sufficient perturbations to provide a torque
are rendered ineffective because of associated small-scale tur-
bulence that prevents effective radial coupling in the shear flow
(Denissenkov 2010). Even at saturation, this might affect the
effective viscosity of the MRI. For the reasons described here,
we have presented results using Equation (13) for the MRI
viscosity based on extant numerical MRI simulations but rec-
ognize that there are issues of physics here that require greater
study.

2.2.3. ST and MRI Diffusion Coefficients

We now discuss the species mixing produced by each insta-
bility. The net diffusion coefficient for mixing, D, is determined
by linearly adding the diffusion coefficients Di corresponding
to each process weighted by an efficiency factor fc,i which
we discuss later in this section. For all of the hydrodynamic
instabilities, νi = Di . For the ST mechanism, the mixing is
produced by the effective magnetic resistivity rather than the ef-
fective magnetic viscosity and again depends on the signs of N2

T

and N2
μ and the strength of thermal diffusion, κ . Our prescrip-

tions are identical to those in Heger et al. (2005) that have been
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incorporated in MESA. In radiative regions, we apply the effec-
tive resistivity given by Equations (41)–(43) of Spruit (2002).
In semiconvective regions, we apply Equations (6)–(9) of Heger
et al. (2005). In thermohaline regions, we apply Equation (43)
of Spruit (2002), which corresponds to his “Case 1.”

In the rubric of the MRI, the quantities DMRI and νMRI,
are expected to be about the same amplitude, at least under
conditions of marginal stability (Maeder 2009). Models of
the turbulent mixing associated with the MRI give a range
of values of the ratio DMRI/νMRI. The presence of an initial
vertical magnetic field may decrease DMRI relative to νMRI
(Johansen et al. 2006), but the radial diffusion coefficient
remains within a factor of three of ν (Armitage 2011). In the
present work we thus take DMRI = νMRI from Equation (13) in
radiative, semiconvective, and thermohaline regions. We note
that the model with ZAMS mass of 11 M� forms composition
inversions that might trigger thermohaline instability, but we do
not consider that in this paper.

There are various efficiency factors related to the mixing
process. Following Heger et al. (2000), in MESA fc is taken
to be unity for convection and semi-convection and is taken to
be a constant, fc = 1/30, for the other processes. A second
parameter, fμ = 0.05, is used to weight the μ-gradients in
the individual terms. Heger et al. (2000) calibrated fc and
fμ by comparing observed surface abundances of nitrogen in
lower mass, solar type stars with model results based only on
hydrodynamic instabilities. It is not completely clear that this
calibration also applies to higher mass stars and when invoking
magnetic instabilities, but this value has also been used in
other studies invoking the ST instability and comparison with
surface nitrogen abundances in more massive stars (Brott et al.
2011; Ekström et al. 2012; Yoon et al. 2012). We adopt it for
the ST mechanism on the grounds of consistency with other,
similar work.

In contrast, there is direct evidence from MRI simulations, as
described above, that the mixing and diffusion coefficients are
nearly equal. Due to the small scale length of the most rapidly
growing MRI modes, adding radial stratification that would be
present in stars but is not present in those simulations might then
make little difference to the results. Given these considerations,
the large range in DMRI, the large value of DMRI when the MRI
is active, and the intrinsic uncertainties in the formulation and
implementation of the mixing of species, we set the condition
fc,MRI = 1.0, but adopt fμ,MRI = 0.05. We ran one of our
fiducial models of ZAMS mass of 15 M� with fc,MRI = 1/30,
the coefficient adopted for the ST mechanism. There were small
quantitative but no qualitative differences compared to the model
with fc,MRI = 1.0. The most distinct difference was that the
model with fc,MRI = 1/30 showed a more ragged composition
distribution compared to the smoother distributions found with
fc,MRI = 1.0.

The mixing and diffusion associated with the MRI proceed
on similar timescales of order

τmri ∼
(

�2

Dmri

)
∼

(
Dmri

v2

)
, (18)

where � and v are characteristic length and velocity scales for the
mixing. For the MRI, the length scale of the mixing is plausibly
less than the pressure scale height, Hp and, because both ST
and the MRI are magnetic effects, the characteristic velocity
associated with either of them is likely to be restricted to v < vA.
With these limits and with Equation (13), Equation (18) can be

recast in the form

τmri �
H 2

p

0.02|q|Ωr2
= 1000 s

H 2
p,9

D15
, (19)

where Hp,9 is the pressure scale height in units of 109 cm
and D15 is the diffusion coefficient in units of 1015 cm2 s−1,
a characteristic value when the MRI is active. The mixing is
thus potentially very rapid. The MESA time steps are of order
100 years at the end of core helium burning in the 15 M�
model, so they are long compared to the diffusion timescale
given in Equation (19). Our treatment of MRI mixing thus
considers it to be “instantaneous” in that phase, analogous
to assuming “instantaneous” mixing by convection in fully
efficient convective regions in a more traditional context. By
the onset of core collapse in that model, the MESA time steps
decline to be of an order of 1 s. The MRI mixing might thus be
resolved in that limit. The mixing may change the structure
in a way that mutes the mixing by altering the gradient in
angular velocity. This is a complex problem. In this work we
have not attempted to specifically resolve the variations of the
angular momentum per unit mass, the angular velocity and
the composition profile on the short timescales indicated by
Equation (19) nor to determine how these functions vary as
parameters are altered. Rather we have chosen to show discrete
intermediate stages and the final core mass and composition
structure as integral measures of all these complex effects. We
leave more detailed studies for future work.

2.3. Magnetic Fields

2.3.1. ST Saturation Fields

In the range of length scales bounded below by magnetic
diffusion and above by stratification, Spruit (2002) argued that
the growth rate for the ST mechanism is ω2

A/Ω. The condition
for field saturation for the ST mechanism is that the growth
rate is balanced by magnetic diffusion. Because the growth rate
depends on the field strength, prescriptions can be written for
the toroidal and radial field strengths that depend on the rotation,
the shear, the buoyancy terms, and the thermal diffusivity. Spruit
(2002) gives prescriptions for the radial and toroidal fields
corresponding to the ST mechanism in the limits where the
thermal diffusion can be ignored and where it dominates. In the
former case, the appropriate expressions are

Bφ ≈ (4πρ)1/2 qrΩ2

NT

(20)

and

Br ≈ Bφq

(
Ω
NT

)2

. (21)

An effective magnetic ST viscosity, νmag,ST can then be
computed from the field components (Section 2.2.1). As a
computational convenience, Heger et al. (2005) give a general
prescription for the ST magnetic field components in terms of
νmag,ST in their Equations (11) and (12) as

B4
φ = 16π2ρ2νmag,STq2Ω3r2, (22)

B4
r = 16π2ρ2ν3

mag,STq2Ωr−2. (23)
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We use this prescription to calculate the magnetic field from the
effective viscosity. The ratio of the squares of the magnetic field
componenets is then given by

B2
r

B2
φ

= νST

r2Ω
. (24)

This ratio is always much smaller than unity, so the toroidal field
produced by the ST mechanism is dominant and the resulting
magnetic viscosity relatively modest.

2.3.2. MRI Saturation Fields

For the subsonic flow conditions present within a star, the
saturation field for the MRI can be estimated to order of
magnitude by using the saturation condition ωA ∼ qΩ (Balbus
& Hawley 1998; Vishniac 2009). Assuming that the toroidal
field dominates, we therefore have

Bφ ∼ qΩr
√

4πρ. (25)

A somewhat more precise estimate of the toroidal field
strength and an estimate of the radial field for the MRI can
be based on numerical simulations of accretion disks. To avoid
cancellations during the averaging, we make the identifications
Br =√

〈B2
r 〉 and Bφ =√

〈B2
φ〉, where the brackets represent

temporal and spatial averaging (Section 2.2.2). In shearing-

box accretion disk simulations, Bφ
2
/(8πP0) ≈ 0.08 (Hawley

et al. 2011 and references therein), where the normalization is
P0 = Pgas for an accretion disk and P0 = ρ(qΩr)2 for stars
(Section 2.2.2). The ratio of the squares of the two components

from simulations is Br
2
/Bφ

2 ≈ 0.1. Global simulations indicate

a somewhat larger value, Br
2
/Bφ

2 ≈ 0.2 (Hawley et al.
2013), but in the absence of a converged estimate from such
simulations we use shearing-box estimates for the magnetic
field for consistency. A possible concern is that the saturation
field of the MRI and the resulting shear might have a strong
dependence on the wavenumbers of the unstable modes (Davis
et al. 2010, but see Vishniac 2009).

Using the above values, we adopt an estimate for the toroidal
field of

Bφ ≈ 0.40 qΩr
√

4πρ (26)

and an estimate of the radial field of

Br ≈ 0.32 Bφ ≈ 0.13 qΩr
√

4πρ. (27)

Note that in this prescription for the MRI, the ratio of the radial
to toroidal field, ≈0.3, is constant and much larger than the
corresponding ratio for the ST mechanism. This has implications
for the corresponding magnetic viscosity (Section 2.2.2).

Unlike the prescription for the magnetic viscosity of the
ST mechanism, our assignment of the magnetic viscosity of
the MRI based on simulations does not require a prescription
for the ratio of Br to Bφ , nor vice versa; nevertheless, these
factors are generically related. Using Equation (26) for Bφ and
Equation (27) for Br in Equation (10) yields an effective value
of α = 0.05, a formal discrepancy of a factor of 2.5 with respect
to the value we adopt for α in Equation (13). We ascribe this
discrepancy to differences in the averaging procedure in the
numerical simulations, such that < BrBφ >
= BrBφ . There
is probably some cancellation of opposite signs of Br and Bφ

at different locations in the calculation of the stress that are not
reflected in calculating the mean squared components. The value

of νMRI that we adopt in Equation (13) roughly corresponds to
(Br/Bφ)2 = 0.1. Comparison to the corresponding ratio for the
ST mechanism from Equation (24), shows that where it is active,
the MRI has a much larger effective magnetic viscosity than the
ST mechanism.

3. RESULTS

In the present work, we have used the stellar evolution code
MESA, version 5456 (Paxton et al. 2011; 2013) to evolve
models of massive stars. Standard mass loss rate prescriptions
appropriate for massive stars were employed (de Jager et al.
1988; Vink et al. 2001). The effects of rotation on mass loss
are treated using the approximation presented in Heger et al.
(2000). For cases approaching the critical angular frequency,
the mass loss rate is limited by the thermal timescale following
the prescription of Yoon et al. (2010). We used the Helmholtz
equation of state (Timmes & Swesty 2000) that includes the
contributions from e++ e− pairs and the “approx21” nuclear
reaction network (Timmes 1999).

Rotation in MESA is treated using the prescriptions of Heger
et al. (2000) and Heger et al. (2005) that include many relevant
hydrodynamical instabilities that affect the mixing of chemical
species and angular momentum transport (ES meridional cir-
culation, the dynamical and secular shear instabilities, and the
Solberg–Hoiland and GSF instabilities). MESA has also the ca-
pability of including the effects of magnetic fields on angular
momentum transport and mixing of species based on the ST
prescriptions from Spruit (1999) and Spruit (2002). MESA
calculates the ratio η/κ . This calculation is done taking ac-
count of appropriate prescriptions for degenerate matter. Typi-
cal values in the central regions of our massive star models are
η/κ ≈ 10−12, so the muting of buoyancy stability is appreciable.

We explored the effects of the MRI for a range of ZAMS
masses, 7, 11, 15, and 20 M�, all at solar metallicity. In the
cases discussed below, “depletion” is defined as a central mass
fraction of the relevant element becoming less than 10−4. All the
models were run incorporating the default treatment in MESA
for convection, semi-convection, dynamical and secular shear
instabilities, ES circulation, and the Solberg–Hoiland and GSF
instabilities. We found that the ES circulation dominated the
non-magnetic, rotationally induced processes. In the plots given
below, we present only the diffusive and mixing effects of the
ES circulation.

The model with 7 M� was run with only the MRI magnetic
physics. The other three ZAMS masses were run for the five
cases, with no rotation (“no-rot” models), rotation with all
the standard mixing and diffusive instablities but no magnetic
mixing or diffusion effects (“rot-none” models), rotation with
the standard effects plus the ST prescription for mixing of
species and transport of angular momentum (“rot-st” models),
rotation with the standard effects plus the MRI prescription for
mixing of species and transport of angular momentum (“rot-
MRI” models), and rotation with the standard effects plus both
ST and MRI prescriptions activated (“rot-mrist” models). Note
that while the two magnetic effects interact in the simulation,
they are invoked with separate prescriptions, viscosities, and
diffusion coefficients, rather than being treated as fundamentally
related in terms of common linear instability and subsequent
growth of the instability.

For each ZAMS mass, we elect an initial surface equatorial
velocity of 206 km s−1 (Heger et al. 2005). For the model
with ZAMS mass of 15 M�, this represents one of the MESA
test problems that has been verified and benchmarked against
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Figure 1. Distribution with respect to mass of the specific angular momentum in the model with ZAMS mass of 7 M� at the end of hydrogen burning, at the end of
helium burning, and in the final model with a degenerate O/Ne core for the model with MRI, but not ST, active.

other codes. This initial value of the velocity represents a
characteristic rotation velocity for massive stars and has been
used as a fiducial value by many authors (Heger et al. 2000, 2005;
Brott et al. 2011). In the future, a more thorough study would
involve a variation of this parameter, but for this preliminary
study we adopt this single representative value.

In regions where the MRI is active, the value of log DMRI
varies substantially. When log DMRI is low, the MRI is only
marginally unstable at this specific place and time. Other pro-
cesses, mainly meridional circulation and regular convection,
dominate mixing in the regions where log DMRI 9–12. Only at
values close to log DMRI ∼15–20 is the MRI prominent thanks
to the strong shear, especially at core boundaries.

The model with 7 M� was chosen to explore whether or not
the MRI might change the boundary between degenerate CO
and ONeMg core evolution. The model with 11 M� falls in a
range where the evolution is very sensitive to ZAMS mass and
treatment of physics, is associated with electron-capture core
collapse in classic treatments (Miyaji et al. 1980), and may
fall in the range for which searches have identified red-giant
progenitors (Smartt 2009). The models with 15 and 20 M� are
in the range where iron-core collapse occurs and perhaps at
the upper end of explosions for which red-giant progenitors
are clearly identified. We adopted the 15 M� model as our
fiducial model and explore its nature in somewhat more depth
in Section 3.3.

Examination of these models shows that while the MRI is
suppressed in the earliest stages of the evolution, the instability
criterion of Equation (9) is satisfied in portions of the structure
at more advanced stages. In the absence of the effects of the
ST instability, the MRI alone can result in some mixing and
homogenization of the structure and some transport of angular
momentum that is different from the standard treatment, given

the prescriptions we have adopted here. One result is that the
MRI, in the absence of ST effects, yields a somewhat smaller
iron core than the basic non-rotating model. Without ST effects,
the MRI in conjunction with standard processes can lead to
rather small rotation rates of the iron core.

3.1. 7 M� Model

We did not investigate the model with ZAMS mass of 7 M�
in the detail of the more massive models, but only investigated
a model with the MRI magnetic physics. This model evolved
to form a degenerate core of intermediate mass elements with a
central density of 3 × 107 g cm−3 and a central temperature of
3 × 108 K, at which point the evolution was artificially halted.
The final temperature profile showed a temperature inversion
due to neutrino losses. Figure 1 gives the distribution of the
angular momentum per unit mass, j, at the phase of hydrogen
depletion, at the phase of helium depletion, and in the final
model. The steep drop in j at about 2.7 M� at helium depletion
and at 1.2 M� in the final model are due to the viscous action
of the MRI. The inner core is not spun down drastically in the
final model and the angular momentum in the outer envelope is
rather modest.

For the final model of 7 M�, Figure 2 gives the composi-
tion distribution (upper left), the distribution of the angular ve-
locity, Ω, (upper right), the diffusion coefficients correspond-
ing to thermal convection (“conv”), ES circulation, and the
MRI (lower left) and the components of the MRI instability
criterion,(η/κ)N2

T , N2
μ and 2|q|Ω2 (lower right). Note that the

suppressed thermal component of the Brunt–Väisälä frequency
is generally negligible throughout the inner core. This com-
ponent is negative in the outer convective envelope and hence
not plotted, but would slightly promote the MRI there in the
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Figure 2. Distribution with respect to mass in the final model of ZAMS mass of 7 M� of the composition (upper left), the angular velocity, Ω (upper right), the
components of the diffusion coefficient (lower left), and the components of the MRI instability criterion (lower right) for the model with MRI, but not ST, active.

presence of any shear. In the core, the destabilizing component,
2qΩ2, frequently dominates over the stabilizing term, N2

μ. The
activity of the MRI in terms of its dominance of the diffusion
coefficients in the inner core is clear. That core is in nearly solid
body rotation in the model (upper right panel of Figure 2).

Of greatest interest is the final composition distribution. In
this model, the core was composed essentially half each by
mass of oxygen and neon. The carbon was nearly burned away,
with a mass fraction of substantially less than 0.01 through most
of the core. The magnesium mass fraction was about 0.05. In this
model with an active MRI, the final core more closely resembles
that expected to undergo electron-capture induced core collapse
than degenerate carbon ignition with subsequent deflagration
and detonation. In practice, such a star, if single, is likely to
lose its hydrogen envelope to form a planetary nebula, but if
such a star were in a binary system it might undergo a later
evolution driven by mass accretion. The question of whether or
not the small remaining carbon would affect the evolution is a
very interesting one we postpone for later investigation.

3.2. 11 M� Model

The models with ZAMS mass of 11 M� fall in a range that
is notoriously sensitive to treatment of input physics. All these
models ran very slowly toward the end, and none were run
to a truly final end point. The models were artifically halted
when the evolution became unacceptably slow, an unfortunately
subjective criterion. The result was that models with different
parameters were run to somewhat different stages, making
the intercomparison of models cumbersome. The models were
stopped at the following densities in units of 106 g cm−3 and
times in units of 107 yr: non-rotating, 64, 1.936; rotating but no

magnetic effects, 1.5, 1.965; ST only, 1.6, 1.978, MRI only, 49,
2.309; ST and MRI, 203, 2.085.

Figure 3 shows the density and temperature structures at these
epochs. The decreased core temperatures reveal the effect of
neutrino cooling. The models with no rotation and with MRI
magnetic effects only give similar density profiles but somewhat
different core temperatures. The models with rotation with no
magnetic effects and those with ST only show very similar
density and temperature profiles, perhaps because they were
both halted at rather lower densities and earlier times. The model
with both ST and MRI essentially finished core oxygen burning
and gave the most extreme core densities and temperatures and
the smallest inner, cooler core. It is not clear why this model
was able to proceed further in its evolution, but the extra mixing
apparently allowed the model to more smoothly converge for a
longer time.

Figure 4 shows the “final” respective distributions of angular
momentum per unit mass for the 11 M� models. The model with
MRI magnetic effects alone does not yield the strong spin-down
of the core compared to other effects, but does show a spin-
down of the matter just beyond the core (refer to Figure 1). This
model has an envelope with relatively small angular momentum,
suggesting that the core has not transferred angular momentum
outward as have the other models. It appears that the presence
of the MRI, but not ST, is inhibiting the outward angular
momentum transport that characterizes even the model with
only the generic transport effects in the upper left panel. The
model with both ST and MRI does yield a slowly rotating core
after oxygen burning.

Figure 5 shows the final composition profiles for the 11 M�
models with no rotation, rotation but with the magnetic effects
suppressed, with ST only, with MRI only, and with both ST
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Figure 3. Radial distributions of density and temperature for the “final” models corresponding to ZAMS mass of 11 M� for the cases with no rotation (black line),
rotation but no magnetic effects (red line), ST but not MRI (green line), MRI but not ST (blue line), and with both ST and MRI active (orange line). These models
were halted artificially, see the text.
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Table 1
15 M� Models

Model Final Mass Final Fe Mass Final Eq. Vel. Final Fe Eq. Vel.
M� M� km s−1 km s−1

No MRI, no ST 12.7 1.29 0.07 620
ST only 14.3 1.28 206 ∼0
MRI only 13.2 1.22 0.12 270
Both ST and MRI 14.3 1.34 0.10 21

and MRI implemented. The non-rotating model developed a
neutrino-cooled ONe core, but with an overlying silicon-rich
layer in which oxygen and sulfur had equivalent abundances
after shell burning there. This structure may be unstable to
thermohaline mixing (Mocák et al. 2011). The model with
rotation but no magnetic effects resembled that with ST alone,
both of which produced cores of oxygen and neon with an
overlying layer of carbon and oxygen. The model with MRI
alone produced a very oxygen-rich core with rather small traces
of magnesium and other elements. The model with both ST
and MRI enabled produced a nearly homogeneous Si/S core
with oxygen nearly burned out and iron growing in abundance.
For both the MRI model and the model with both ST and
MRI, the core interior to the helium mantle has a mass of
1.5 M�, significantly above the Chandrasekhar limit for a mean
molecular weight per electron of 2. These models cannot support
a degenerate core and seem destined to proceed to collapse of
some sort, most likely to iron-core collapse.

This mass range merits much further detailed study, but the
suggestion is that magnetic effects can promote the formation of
an iron core in a mass range that would otherwise be predicted to
lead to O/Ne/Mg cores and electron-capture-induced collapse.

3.3. 15 M� Model

We adopted the model with ZAMS mass of 15 M� as our
fiducial model and present here a more detailed exposition of
its properties. All 15 M� models proceeded through the end of
core Si burning, defined when Xcenter,Si < 10−4 (Heger et al.

2005). The 15 M� models were halted by the flag in MESA
indicating the onset of the phase of dynamical collapse of the
iron core. In each model, the outer edge of the iron core is
defined by the condition XFe = 0.5. Table 1 gives for each of
the four assumptions concerning rotating models the final mass
of the model, the final mass of the iron core, the final equatorial
velocity of the outer edge of the model, and the final equatorial
velocity at the edge of the iron core.

Figure 6 gives the density, temperature, pressure, and mean
molecular weight distributions as a function of radius in the
15 M� models at the end of the calculation. The differences in
the models with no rotation, rotation effects but no magnetic
effects, ST only, MRI only, and with both ST and MRI invoked
are rather small. The most noticeable differences are in the
composition distribution that results from the different degrees
of mixing.

Figure 7 gives the distributions of angular velocity, Ω, and
the equatorial velocity at the end of the simulation of the 15 M�
models for the cases with no magnetic effects, for ST only, for
MRI only, and for both ST and MRI prescriptions invoked. For
the model with only the magnetic effects of the ST mechanism,
the iron core has been rendered nearly irrotational. There is
still some remnant angular momentum, but it is very small, in
agreement with the results of Heger et al. (2005).

Figure 8 gives the distributions of the estimated magnetic
fields for the model of 15 M� just prior to core collapse for
the model where only the ST is active using Equations (22)
and (23) and for the model where only the MRI is active using
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of 15 M� for the cases with no magnetic effects (solid line), ST only (dashed line), MRI only (dotted line), and with both ST and MRI active (dot-dash line).

Equations (26) and (27). The prescription for the ST fields
yields modest toroidal field strength, ∼108 to 109 G and a radial
component that is typically a factor of ∼104 times smaller than
the toroidal component. Both of these factors contribute to a
rather modest magnetic viscosity (Equation (10)). Although it
is sparsely distributed, the peak toroidal field is much larger for

the MRI, ∼1012 to 1013 G, and the radial field is a significant
fraction of the toroidal field (0.32 in this work). These factors
contribute to a larger magnetic viscosity for the MRI when it
is active. While the volume occupied by the field is restricted,
the MRI analysis suggests that strong, localized fields may exist
at the boundary of the iron core at the point of collapse. These
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fields might play a role in the collapse process. In practice,
these ST and MRI mechanisms may apply in different geometric
locations in a given realistic 3D model at a given time, and may
leave behind fossil magnetic fields in regions that revert from
instability to stability. We return to these points in Section 4.

Figure 9 presents the MRI diffusion coefficient and the
angular velocity at the end of hydrogen burning, helium burning,
oxygen burning, silicon burning, and at the onset of core collapse
for the 15 M� model with only the magnetic effects of the
MRI. At the end of core helium burning, locations A–C in
panel two on the right denote regions where shear triggers the
MRI. Sufficiently steep gradients in Ω can overcome strong
composition buoyancy stability, but shallower gradients in Ω
suffice where the composition gradient is less steep, specifically
in regions where a lighter composition has nearly merged into
a heavier one.

Figure 10 shows the distribution of the three components
that contribute to the instability criterion for the MRI from
Equation (9) at the end of core helium burning for the 15 M�
model with only the magnetic effects of the MRI. The terms
are (η/κ)N2

T (black line), N2
μ (red line), and 2qΩ2 (green line).

The first two terms are stabilizing terms (except in convective
regions where the first term is a driving term); the third term
is the driving term for the MRI. Because the condition of MRI
instability is so sensitive to gradients, the results are sensitive
to the finite differencing associated with zoning. To mute this
artificial effect, we have binned the values of the three terms in
Figure 10 with a running top-hat average over 10 zones. The
result shows that while the stability is sensitive to zone by zone
variation, the overall effect is reasonably robust.

Figure 10 shows that the first, thermal buoyancy term is es-
sentially negligible throughout the structure at the phase illus-

trated since the coefficient (η/κ) is so small. The competition
to drive the MRI is between the composition buoyancy stabiliz-
ing term and the shear driving term. Comparing locations A–C
in Figures 9 and 10 shows the sensitivity of the MRI to local
conditions. Region A from about 4 to 5 M� is all unstable. The
strong composition gradient at 4.05 M� is still not quite enough
to stabilize the structure. Region B has only a mild shear, but the
composition gradient is correspondingly weaker and this whole
extended region from about 2 to 4 M� is unstable; the shear
term dominates the buoyancy term throughout region B. Region
C corresponds to the innermost small steep rise in Ω in Figure 9.
Despite the increase in shear, inspection of Figure 10 shows that
the buoyancy dominates there and the small region right at a
mass of 2.03 M� is stable, but that the structure is unstable on
both sides of that spike in structure. Interior to 1.1 M�, the shear
is very small and the structure is stable.

Figure 11 shows the final respective distributions of angular
momentum per unit mass for the 15 M� models with no rotation,
rotation but with the magnetics effects suppressed, with ST only,
with MRI only, and with both ST and MRI implemented. The top
two panels show that for these cases there is very little change
in the angular momentum distribution after oxygen burning; the
lines for post-oxygen burning, post-silicon burning, and the final
model are basically indistinguishable. The models with MRI
only and ST plus MRI show that there is some evolution from
oxygen burning to silicon burning to core collapse, specifically
induced by the MRI.

Figure 12 shows the distribution just prior to core collapse of
the composition, the angular velocity, the diffusion coefficients,
and the components of the MRI instability criterion for the
15 M� model with the MRI, but not ST, active. The upper left
panel shows composition (from H to Fe), the upper right panel
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Figure 12. Distribution with respect to mass in the model with ZAMS mass of 15 M� of the final distributions of composition (upper left), angular velocity (upper
right), diffusion coefficients (lower left) and the components of the MRI instability criterion (lower right) for the model with the MRI, but not ST, active.

shows the profile of the angular velocity, Ω, the lower left panel
shows the logarithm of the diffusion coefficients (for mixing)
for the various processes and the lower right panel shows a
comparison of the three terms of the radial MRI instability
criterion of Equation (9). Note that the very center is iron rich.

This model has proceeded up to the brink of iron-core collapse.
Figure 13 gives the same distributions for the model with the ST,
but not MRI, active and Figure 14 when both the MRI and ST
are active. The model with ST only has smaller angular velocity
in the center than the model with MRI only and essentially
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Figure 14. Distribution with respect to mass in the model with ZAMS mass of 15 M� of the final distributions of composition (upper left), angular velocity (upper
right), diffusion coefficients (lower left) and the components of the MRI instability criterion (lower right) for the model with both ST and MRI active.

negligible rotation beyond that. The model with both MRI and
ST active has a very similar final angular profile, but there are
quantitative differences in all the distributions.

The rapid jumps by orders of magnitude in the diffusion
coefficients and in the thermal buoyancy, NT , seen in the
models are “real” and caused by rapid change in the shear
and the composition at boundaries. There is a question as
to whether or not these features are adequately resolved in
our calculations. We have done some resolution studies in

the 15 M� model by altering the parameter delta_mesh_coeff
in MESA that controls the spatial zoning resolution. The
original value was 0.5. We both increased and decreased
the resolution, with values of 0.25 and 0.7 and found no
perceptible difference in the resulting angular velocity profiles
at the onset of core collapse. We then tried a value of 0.1
both with and without our MRI prescriptions. At such high
resolution, about 30,000 zones, the code crashed before even
getting through core helium burning. The computation of
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Figure 15. Distribution with respect to mass in the model with ZAMS mass of 20 M� of the angular momentum per unit mass at the end of hydrogen burning,
helium burning, oxygen burning, silicon burning, and at the onset of core collapse for the cases with rotation but no magnetic effects (upper left), ST but not MRI
(upper right), MRI but not ST (lower left), and with both ST and MRI active (lower right).

derivatives becomes unstable. Future studies should investigate
these jumps in the diffusion coefficients more carefully at
higher resolution, perhaps by isolating the regions of strong
gradients in a dedicated simulation rather than attempting a
“whole star” approach as we have done here. The true physical
structure is surely multidimensional, requiring appropriately
higher resolution to resolve. We note that while this issue arises
in the context of the MRI, it also probably pertains to ST and
other magnetic effects that are inherently multidimensional and
worthy of more careful study.

3.4. 20 M� Model

The models corresponding to ZAMs mass of 20 M� also
proceeded up to the brink of iron-core collapse. Figure 15
shows the final respective distributions of angular momentum
per unit mass. As for Figure 11, the MRI alone or in tandem with
the ST process affects the evolution of the angular momentum
distribution from oxygen burning to silicon burning to the final
onset of collapse in a way that ST alone does not. Note in the
lower right panel that with both the ST and MRI active, there is
a substantial increase in the angular momentum in the vicinity
of what had been the outer edge of the helium core at around
6 M�. As illustrated below, this is because the combined effect
of the two mechanisms homogenizes the outer structure.

Figure 16 gives the distributions of angular velocity, Ω, and
the equatorial velocity for the models with ZAMS mass of
20 M� with rotation but with the magnetic effects suppressed,
with ST but not MRI, with MRI but not ST, and with both ST and
MRI implemented. The MRI alone can result in considerable
spin-down of the inner core compared to a rotating model with
no magnetic effects, in contrast to the models for MRI only in
the 7 and 11 M� models. The dash-dotted lines correspond to the
case where both ST and MRI are active. The angular momentum

per unit mass is constant beyond ∼3 M�, a consequence of the
mixing of the helium core and the outer envelope.

Figure 17 shows the distribution just prior to core collapse of
the 20 M� models of the composition, the angular velocity, the
diffusion coefficients, and the components of the MRI instability
criterion for the model with the MRI, but not ST active. Figure 18
gives the same distributions for the model with the ST, but not
MRI, active and Figure 19 when both the MRI and ST are
active. The iron core is of about the same mass in all three
magnetic models, but the oxygen core is somewhat larger in the
model with ST only, ∼3.8 M� versus ∼3.2 M� for the other
two models. In Figures 17–19, the center of the iron core spins
slightly slower for the model with the MRI only than for that
with ST only, but slower yet for the model with both magnetic
effects. In these final models, the MRI is not active in the inner
core, as may be seen by inspection of the lower panels of the
figures that give the diffusion coefficients and the contributions
to the MRI.

The helium core is about 6 M� for both the models with
MRI only and ST only, but for the model with both effects, the
H/He envelope extends down to the oxygen-rich layers at about
3 M�. With both mechanisms active, the helium shell has been
mixed entirely out into the envelope. This is consistent with the
anomolous distributions of j and Ω noted in Figures 15 and 16.
The envelope of this mixed model has a helium abundance
of ∼50% by mass. As a result of the helium enrichment,
the model has become a yellow supergiant with a radius of
1.1×1013 cm and an effective temperature of 7900 K at the point
of collapse. Because the envelope of this model has contracted,
it is also radiative. This can be seen in the lower left panel of
Figure 19, where the convective region ends at about 11 M�.
Beyond that, the radiative envelope is mostly dominated by ES
mixing, but the model yields narrow regions where the MRI
dominates.
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Figure 16. Distributions of angular velocity (left) and rotation velocity on the equator (right) at the end of the calculation of the rotating model of 20 M� for the cases
with no magnetic effects (solid line), ST but no MRI (dashed line), MRI but no ST (dotted line), and with both ST and MRI active (dot-dash line).
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Figure 17. Distribution with respect to mass in the model with ZAMS mass of 20 M� of the final distributions of composition (upper left), angular velocity
(upper right), diffusion coefficients (lower right) and the components of the MRI instability criterion (lower right) for the model with the MRI, but not ST, active.

That we only see this complete homogenization of j and
composition in the 20 M� model is probably because this
more massive model is more dominated by radiation pressure,
bringing it closer to the condition of neutral stability and
hence more prone to mixing. It would not be wise to take
this result too literally, but it suggests that more massive stars

would be even more susceptible to such homogenization, and
that enhanced mixing could yield a population of yellow or
even blue supergiant supernova progenitors with helium-rich
envelopes. Possible implications for the paucity of SN IIP
at M � 17 M� (Smartt 2009) and for SN 1987A have not
escaped us.
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Figure 18. Distribution with respect to mass in the model with ZAMS mass of 20 M� of the final distributions of composition (upper left), angular velocity
(upper right), diffusion coefficients (lower right) and the thermal and composition components of the Brunt–Väisälä frequency (lower right) for the model with ST,
but not MRI, active.
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Figure 19. Distribution with respect to mass in the model with ZAMS mass of 20 M� of the final distributions of composition (upper left), angular velocity
(upper right), diffusion coefficients (lower right) and the components of the MRI instability criterion (lower right) for the model with both ST and MRI active.

4. DISCUSSION AND CONCLUSIONS

We have used the MESA stellar evolution code to compute
rotating stellar models with magnetic effects due to the ST
mechanism and the MRI, separately and together, in a sample of
massive star models. We find that the MRI can be active in the
post-main sequence stages of massive star evolution, slowing
core rotation and leading to mixing effects that are not captured
in models that neglect the MRI. The MRI tends not to be active

in the cores of the models at the onset of core collapse, but the
structure of those cores can be affected by the activity of the
MRI in previous stages of the evolution.

We find that the MRI is activated throughout the intermediate
stages of the evolution of massive stars as regions arise where
there is sufficient shear to overwhelm the stabilizing effects
of buoyancy stability. The shear tends to be strongest at
composition boundaries where the stabilizing effects are also
strong. There are also extended regions where both the buoyancy

18



The Astrophysical Journal, 799:85 (21pp), 2015 January 20 Wheeler, Kagan, & Chatzopoulos

and the shear are mild; nevertheless, the shear is sufficient
to enable the MRI. The issue of when and where the MRI
is triggered is thus a subtle quantitative one. The activity of
the MRI may depend rather sensitively on issues such as the
convective instability criterion, semi-convection, and overshoot.
Once the instability sets in, its effects can spread more broadly
beyond the regions of immediate instability, leaving changes in
the density, temperature, and composition structure.

The MRI acting alone can slow the rotation of the inner core
in general agreement with the observed “initial” rotation rates of
pulsars. In our models, when the ST and MRI mechanisms are
both invoked, the final rotation more closely resembles models
with ST alone than with MRI alone. The dominance of ST over
MRI when they are both active is presumably due to ST being
active over larger spatial extent and being less intermittent than
MRI. This issue is worth more careful future study. The MRI can
also serve as an effective mechanism for the mixing of different
composition layers. Plots of the mean molecular weight, μ,
show that models with the MRI or with both MRI and ST active
tend to produce smoother composition profiles in the inner core
than ST acting alone.

The magnetorotational effects can move a model from the
regime of degenerate C/O cores to the regime of degenerate
cores of O/Ne/Mg, and hence shift the final evolution from
thermonuclear explosion to core collapse by electron capture
instability. Similar statements apply to models that form O/
Ne/Mg cores in standard non-rotating, non-magnetic evolution.
Magnetorotational effects can move a model from the regime of
degenerate O/Ne/Mg to the iron-core regime. This is especially
interesting because work identifying progenitors shows that the
progenitors of SN ii arise from rather low mass stars �8 M�.
Magnetic effects may thus shift the fundamental physics of core
collapse in low-mass models. We have only touched on this
topic in this exporatory work that sought to establish the proof-
of-principle. This subject clearly merits deeper study.

There is a growing understanding that models may be more
easy to explode if they are more “compact,” that is, when the
density gradient is larger at the edge of the core (O’Connor & Ott
2011; Ugliano et al. 2012). There are suggestions here that the
MRI leads to more compact structure (Figure 6). The likelihood
that burning proceeds on a convective timescale leading to
intermittent, chaotic burning (Arnett & Meakin 2011; Couch
& Ott 2013) may also affect field generation in the late stages.
These are both topics worthy of deeper study.

As convective cores contract and begin to spin up and rotate
more rapidly than outer radiative layers, the MRI will come
into play, growing seed fields exponentially rapidly to MRI
saturation limits consistent with the thermal and composition
gradients that contribute to the local Brunt–Väisälä frequency.
Our results suggest that the MRI could already play some role
during hydrogen burning and becomes broadly active by the
end of core helium burning. If the MRI provides the effective
torque and effective viscosity that we estimate, then angular
momentum will be advected outward, leading to more slowly
rotating, but magnetized, inner cores.

There are many magnetorotational issues in stellar evolution,
the proper exploration of which remains beyond the state of
the art. As Spruit (2002) emphasized, magnetic instabilities are
characteristically strongly anisotropic. It is an important first
step to include magnetic viscosity effects in spherical “shellular”
calculations as done in other work and as we do here, but the
physics of these instabilities ultimately requires investigation in
full 3D MHD simulations.

A variety of issues remain open in the analysis of the ST
mechanism itself. Maeder & Meynet (2005) noted that it is
very difficult to understand how the ST instability interacts with
meridional circulation. Denissenkov & Pinsonneault (2007)
again explored the assumptions and formulation of the ST
mechanism. They examined the basic heuristic assumptions
in the model and questioned whether the dispersion relation
can be extrapolated to horizontal length scales of the order
of the radius of the star. They presented transport coefficients
for chemical mixing and angular momentum redistribution
by magnetic torques that were significantly different from
previous published values. Their magnetic viscosity was two
to three orders of magnitude smaller than that derived by Spruit
(2002). They found the magnetic angular momentum transport
by this mechanism to be sensitive to gradients in the mean
molecular weight. They note that solar models including only
this mechanism possess a rapidly rotating core, in contradiction
with helioseismic data. They conclude that the ST mechanism
may be important for envelope angular momentum transport,
but that some other process must be responsible for efficient
spin-down of stellar cores. More recently, Cantiello et al. (2014)
have noted that asteroseismology based on Kepler observations
suggests that the internal rotation rates of solar-type stars are too
low to match the predictions of current rotating models, even
those including the ST mechanism. The MRI is one candidate
to contribute to this extra dissipation.

Another issue is that the predicted field structure for the ST
mechanism has a radial field that is weaker than the toroidal field
by a factor of an order of 104. While one expects rotation about
an axis and associated shear to produce predominantly toroidal
field, this extreme ratio of toroidal to radial field is, to the best of
our knowledge, unprecedented in numerical simulations. As an
example, Braithwaite (2006) modeled the ST process and found
that the dynamo worked as predicted, but the resulting radial
field (cylindrical or spherical) was of order 20% of the toroidal
component (whereas Zahn et al. 2007 found an instability,
but no dynamo). In conditions where the background varies
sufficiently slowly, the equilibrium field structures found by
Braithwaite (2009, see also Mitchell et al. 2014) may also be
relevant. In those solutions characterized by a twisted torus and a
poloidal component, the radial component is again a substantial
fraction of the total field. Understanding the radial component
of the field is important because that is the component that
determines the magnetic torque and hence the effective magnetic
viscosity. Clearly, the effective magnetic viscosity will be
substantially larger if Br is a substantial, not a tiny, fraction
of Bφ .

Related issues plague the proper treatment of the MRI. In
our current models, we have used prescriptions for the ST
and MRI separately and together, but have not attempted to
understand the fundamental, perhaps nonlinear interaction of
these instabilities. The ST instability and the MRI may occur in
different regions of the star, the ST instability near the rotation
axis and the poles, the MRI perhaps at lower latitudes. In regions
where the two mechanisms may both operate, the MRI will
be more rapid, but then enhance the field to the saturation
limit where ωA ∼ Ω, at which point the stronger field will
also enhance the effective viscosity of the ST mechanism. We
do not capture this sort of interaction in the current models.
The full interplay of both of these instabilities with convection,
semiconvection, thermohaline instabilities, radiation pressure
other dynamo processes, and meriodional circulation in 3D is a
complex one that will be a challenge to explore.
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We have invoked here the local instability criterion for the
MRI (Equation (9)), but a proper analysis of the MRI instability
should be a global analysis as outlined by Pino & Mahajan
(2008). Global analyses can reveal that conditions that appear
locally unstable to the MRI are not, in fact, unstable, for instance
because the unstable wavelength will not fit into the finite radial
region of instability.

Because it is very difficult to resolve the most rapidly growing
modes of the MRI in core collapse, many MHD simulations
invoke very strong initial fields, ∼1012 G, so that compression
and wrapping effects mock up the final fields expected from the
MRI (Burrows et al. 2007; Mösta et al. 2014). If the pre-collapse
seed fields are more modest, this is not a proper procedure
since the MRI is expected to grow fields exponentially rapidly
on a post-collapse timescale, ∼Ω−1, much more rapid than the
collapse and wrapping timescales. In this context it is interesting
to note that our MRI models lead to fields at the boundary of
the iron core of ∼1012 G. These primarily toroidal fields may
exist only in thin layers with a distribution very different than
a dipole. The effect of such fields on magnetic core collapse is
clearly of great interest.

The effect of the MRI on the evolution preceeding core
collapse may have implications for a host of issues related to
neutron star formation, for instance the initial spins of pulsars
and the mechanism of the formation of magnetars. Our models
suggest rather slowly rotating iron cores, which cannot be ruled
out. This is because of the very interesting possibility raised
by Blondin et al. (2003) and Blondin & Mezzacappa (2007)
that collapse triggers the standing accretion shock instability,
SASI, and that in 3D, the SASI can lead to fairly rapidly
rotating neutron stars even in cases where the original iron
core has very small or no angular momentum. If the proto-
neutron star is spun up in this way, the MRI may again be
triggered as discussed by Akiyama et al. (2003); Obergaulinger
et al. (2009); Sawai & Yamada (2014) and others. The MRI
in concert with field compression and wrapping effects could
provide the magnetic fields of pulsars. The rotation that can be
induced by the SASI may not be enough yield a Rossby number
(the ratio of convective overturn time to rotational period) of
order unity and hence a vigorous α − Ω dynamo as invoked
by Duncan & Thompson (1992) to account for magnetar-level
fields, but the MRI may be able to do so under more modest spin
conditions.

The rotational profile at the time of core collapse is not the
only important ingredient in the problem of determining the
significance of the MRI. If the MRI does play a role in the final
evolution of rotating stars, it is not sufficient to invoke it at the
end of a calculation where steep gradients of angular velocity
are already built up; it must be applied from the beginning. The
magnetic field developed in earlier phases may linger even after
a given mass layer becomes stable to the MRI (or to ST). If,
in the prior evolution, there were a portion of the structure that
triggered the MRI, the field would rapidly grow to saturation. If
the rotational structure then flattens to small q because of the
effective magnetic viscosity, there might be a fossil rather large,
mostly toroidal, field left behind. The latter might then affect the
subsequent rotational evolution and the field in the progenitor
at the time of collapse. If that were the case, then one needs
to follow the whole evolution of the star, including fossil MRI
regions, to know the rotational and magnetic state at the time of
collapse.

A key question is then the timescale for magnetic field
dissipation. If the field decays only through the processes of

magnetic diffusivity, then the characteristic timescale can be
written, using Equation (5), as

τdiff ∼ �2

η
∼ H 2

p

η
∼ 1.3 × 1010yH 2

p,9T
3/2

8 , (28)

where T8 is the temperature in units of 108 K. This is a very
long time and if this were the relevant physics, the fossil fields
would be significant. If the field decays through reconnection,
perhaps a more likely circumstance, then the timescale could be
much shorter. The reconnection physics under the conditions of
interest is not known, but we can make an estimate based on a
simple model for resistive reconnection (Kulsrud 2005; Bellan
2006),

τreconn ∼ √
τdiffτA ∼ 100yH

3/2
p,9 T

3/4
8 ρ1/4B

−1/2
8 , (29)

where B8 is the field strength in units of 108 G. This implies
that for the fiducial conditions chosen in Equation (29) the
timescale could be short and the fossil fields would decay
quickly compared to an evolution timescale over most of the
evolution. This may not be the case late in the evolution when
the density is high, depending on the field strength. Fossil fields
might be important in the last several centuries of the life of a
massive star, when other complications in the evolution such as
burning on convective timescales are also likely to exist.

An area of great impact is the quest to understand the role
of stellar collapse in the formation of cosmic gamma-ray bursts
(GRBs). In particular, the results here suggest that slow rotation
is the rule and hence that “collapsar” models (Woosley 1993)
that require rather rapid rotation of a newly formed black hole
and its associated accretion disk could be problematic. As
outlined above, there might be a route to form magnetars, with
their potential role in the long, soft GRB phenomenon, if the
SASI generates original neutron star spin. Even this possibility
would raise a host of problems since not all collapse leads to
magnetars and the rate of birth of GRBs is substantially less
than that estimated for magnetars. Even if one contemplates a
magnetar origin for GRBs (Mazzali et al. 2014), the issue of
what stars undergo that particular, small probability event is far
from clear.

The major challenge that we believe this work reveals is that
the MRI may have important effects on the evolution of stars and
that to truly appreciate its effect, one-dimensional “shellular”
calculations of stellar evolution may not be adequate. The MRI,
and other instabilities, are anisotropic and non-axisymmetric.
They are likely to be triggered in complex patterns in the star
and to engender complex flow distributions.

If magnetorotational effects are active in the later stages of
stellar evolution, then the overall sign of the effect seems clear:
the interior of stars will rotate more slowly, perhaps much more
slowly, than rotating stellar evolution calculations in the absence
of magnetic effects would indicate. Ironically, this might mean
that legions of zero rotation or small rotation core-collapse
calculations are more pertinent than one might have thought.
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