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The Role of Aging T-cells in Prostate Cancer Development 

 

Alejandra De Angulo Soriano, Ph.D. 
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Supervisor:  Linda A. deGraffenried 

 
  Age is the single greatest factor associated with increased risk for prostate 

cancer development. Evidence implicates progressive age-related immune dysfunction 

with increased prostate cancer incidence. The aged T cell response is characterized by 

increased production of pro-inflammatory cytokines, which could significantly 

contribute to prostate tumorigenesis through induction of key pro-survival factors.  The 

objective of these studies was to determine how age-related changes in T-lymphocyte 

function contribute to prostate tumorigenesis. The hypothesis that age-related changes 

in T-lymphocyte function to a pro-inflammatory phenotype promote prostate cancer 

development was tested using the glycerol-3-phosphate acyltransferase-1 (GPAT-1) 

knock-out mouse, which mimics many of the characteristics of an aged immune system.  

T cells from old (24-month) mice and aging-mimic T cell GPAT-1-/- mice generate more 

pro-inflammatory cytokines than T-lymphocytes from wild type mice. These cytokines 

turn on inflammatory pathways that stimulate proliferation, tissue disruption, and 

tumor growth. Initial studies showed that secreted factors from aging and T cell aging-
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mimic GPAT-1-/- mice produce circulating factors that induce pro-inflammatory 

pathways in prostate cells, most notably the nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB). Additionally, results from recent experiments demonstrate 

that serum from the GPAT-1 -/- mice induce protein expression of downstream targets of 

NF-κB in the prostate, most notably factors that induce macrophage infiltration and key 

pro-survival proteins. Furthermore, my experimental results suggest that the increased 

production of interleukin 17 (IL-17) by aged T cells play a role in the induction of pro-

inflammatory pathways in the prostate. Based on these findings additional studies were 

design to determine if the increased production of pro-inflammatory cytokines by aging 

T-lymphocytes contributes to a more malignant phenotype in the prostate. Finally, the 

inter-relationship between an aging immune system and the aging tissues in the body 

was explored. Findings from these studies provide evidence that the dysregulation of 

cytokine production seen in aged T cells may directly contribute to the increased risk for 

prostate cancer in the elderly. This new perspective regarding the role of the aging 

immune system in cancer development opens new avenues for development of 

potential preventive interventions and screening biomarkers. 
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Chapter 1:  Introduction 

1.2 Aging, Immunity, and Prostate Cancer Risk 

Prostate cancer risk is strongly age dependent, rarely appearing before age  40  

and typically affecting men around 70 years of age [1]. This association with age 

suggests that prostate cancer results from accumulation of genetic damage, perhaps 

due to oxidative stress or other endogenous or exogenous factors. During aging, there is 

a progressive accumulation of DNA damage and oxidative stress in most tissues, and this 

plays an important role in age-related tumorigenesis [2, 3]. In addition, there are 

significant changes in immune response regulation that accompany the aging process. 

These include increased pro-inflammatory cytokine production, as well as a decrease in 

appropriate immune surveillance. The importance of the immune system in preventing 

tumorigenesis has been supported by numerous research studies as well as 

epidemiological evidence [4]. Aging has multiple effects on the development, function 

and turnover of immune cells. In fact, aging is associated with low number of naïve T 

cells, decreased diversity and functionality of CD4+ and CD8+ T cells and inability to 

respond appropriately to antigens [5, 6]. Additionally, aging is associated with a low-

grade chronic inflammation. Inflammation is critical for fighting infections in the elderly; 

a chronic low-grade inflammation is deleterious and highly correlated with prostate 

cancer risk [7, 8].  
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The retention of inflammatory responses in the elderly accompanied with the 

absence of counterbalancing and beneficial effects highly enhance the likelihood of 

developing prostate cancer.  

1.2 Inflammation and Prostate Carcinogenesis 

Chronic inflammation is believed to play a pathogenic role in age-related 

diseases, including prostate cancer. The role of inflammation in prostate cancer 

tumorigenesis has been well established.  Most lesions that contain inflammatory 

infiltrates are associated with prostatic atrophy [7, 9].  

Additionally, several key molecular pathways involved in prostate carcinogenesis 

have been associated with chronic or acute prostatic inflammation. Pro-inflammatory 

cytokines activate key transcription factors such as, nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB ) or signal transducer and activator of transcription 

3 (STAT3), in prostate epithelial cells. NF-κB and STAT3 control numerous pro-

tumorigenic process, including survival, proliferation, growth, angiogenesis, and 

invasion.  As part of a positive feedback loop, NF-κB and STAT3 induce production of 

additional chemokines that attract inflammatory cells to the prostate and help sustain 

an inflammatory environment [10].  

Prostatic tissue normally contains endogenous immune cells, including T and B 

lymphocytes and macrophages. However, aging prostate tissue contains increased 
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inflammatory infiltrates. Aging prostate tissue has an increased number of macrophages 

and leukocytes. Studies by Steiner et al. demonstrated that most T cell in older prostate 

tissue expressed CD4+ T cells; however non-inflamed younger prostate tissues expressed 

mostly CD8+ T cells [11, 12]. Furthermore, Steiner et al. showed that activated T cells in 

chronically inflamed prostate tissue express high levels of IL-17 [13]. These diverse 

inflammatory infiltrates in the prostate communicate with each other by means of 

direct contact and cytokine production, and control prostate tumor initiation and 

promotion 

Inflammation can contribute to prostate tumor initiation through increase in 

mutation rates, genomic instability and epigenetic modifications. Inflammation 

enhances the production of growth factors and cytokines that enhance the proliferation 

of mutated cells. Additionally, p53 mutations, caused by oxidative damage, were found 

in both cancer cells and inflamed epithelium, suggesting that chronic inflammation 

causes genomic mutations [14, 15]. Other findings, implicate that inflammation 

influences epigenetic mechanisms, including microRNA-based silencing and DNA 

methylation. One study demonstrated that inflammation plays a role in epigenetic 

reprogramming through regulation Jmjd3 which is encoded by a NF-kB target gene [16]. 

The connection between inflammations and prostate tumor initiation is not a one way 

street, studies have shown that DNA damage can lead to inflammation and thereby 

promote prostate tumorigenesis [16]. 
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Aged related inflammation can affect every aspect of prostate tumor 

development and progression, via multiple mechanisms. Controlling inflammatory 

status may allow successful prevention and control of prostate tumorigenesis. 

1.3 Mouse Model of Aging T-lymphocytes 

1.3.1 The Mouse as a Model Organism in Human Aging Research 

Aging is commonly defined as the accumulation of diverse deleterious changes 

occurring in cells and tissues. Aging is characterized by decrease in physiological 

capacity, reduced ability to respond adaptively to environmental stimuli and increased 

vulnerability to disease [17].  

Using humans as subjects in aging research is complicated due to ethical issues, 

long life span, environmental influences, and various other limiting factors. Therefore, 

various animal models have been developed to study the biology of aging [17, 18]. 

Animal models used to investigate the human biology of aging and age-related diseases 

should mimic the biological changes that occur in humans while controlling for genetic 

background, diet, environmental changes and health status. Non-mammalian models, 

such as worms and fruit flies, have some advantages and have been useful in the study 

of aging-related genes. However, in order to understand the complexity of aging in 

humans, mammalian model organisms are indispensable. Primates should be ideal in 

that respect, but ethical issues and long life span make studies with primates 
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complicated. On the contrary, mice are good models for studying human aging. Not only 

can they be genetically modified but longitudinal studies are easy to conduct on mice 

because of their short life span [18]. 

1.3.2 Current Mice Models for Aging Research 

Animal models use to study accelerated aging, aging biology and aging related 

diseases are generally grouped into four classes: experimentally induced models, gene-

modified models, selection models, and spontaneous models. Researchers interested in 

the mechanisms of normal aging have to be prudent in their choice of animal models 

because early diseases leading to reduced life spans usually result from certain defects 

unrelated to mechanisms associated with normal aging. It can be difficult to distinguish 

between accelerated aging due to acceleration of the normal aging process and 

accelerated aging due to the manifestation of pathologies.  

One model that has been used to study accelerated aging is the thymectomized 

lab mouse. When male mice are thymectomized their mean life span is reduced [19]. 

The reduced life span is thought to be due to accelerated aging of the immune system 

that involves a decline in spleen cell responsiveness to T cell mitogens [20]. Thymectomy 

reduces the number of peripheral CD4+ T cells and affects the CD4+ T cell population by 

changing it to a memory phenotype and removing their self-renewability. The 

thymectomized mice model can be useful for studying the effects of age related decline 
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in thymus function. The function of the thymus is known to decline in adults.  In the 

elderly the thymus is barely identifiable, consisting mostly of fatty tissue [19, 21]. The 

thymectomized model of accelerated aging presents some limitations. First of all, the 

complete lack of a functional thymus is not representative of actual aging. Because 

despite the thymus involution that comes with age, the thymus continues its endocrine 

function. Additionally, Smolarchuk et al. found that thymectomized lab mice could 

generate T cells without contribution from the thoracic thymus. However, these mice 

had increased proportions of effector memory T cells and Regulatory T cells (Treg) 

phenotype cells, increased serum IgG1/2b, and increased frequency of  T cells 

expressing IFN-γ, IL-17 or IL-10 [22]. Other studies have demonstrated that mice that 

received a thoracic thymectomy developed autoimmune gastritis [23]. Together the 

data from thymectomized lab mice suggests that this is not the best model for aging 

research.  

Other mouse models for aging research are the klotho mouse model and the 

Senescence-accelerated mouse model (SAM). The klotho mouse model was generated 

by inserting a mutated transgene that disrupt the klotho gene locus. Klotho mice display 

various phenotypes resembling premature aging. Mice homozygous for the transgene 

show arteriosclerosis, osteoporosis, age-related skin changes, short lifespan and 

infertility, and growth retardation. The klotho gene encodes a membrane protein that 

shares a sequence similarity with the β-glucosidase enzymes and is expressed mainly in 
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the kidney and the brain.  The klotho mice model is useful to study molecular-genetic 

mechanisms of both premature aging and accelerated aging. However, some common 

phenotypes seen in natural human aging are not present in klotho mice [24]. 

Additionally, klotho mice develop dramatic physiological changes that are not present in 

normal aging. Therefore, klotho mice are better suited as model for human progeroid 

syndrome rather than normal human aging. 

The senescence-accelerated mouse (SAM) consists of fourteen senescence-

prone inbred strains (SAMP) and four senescence-resistant inbred strains (SAMR). The 

manifestation of senescence in SAMP does not occur in the developmental stage, but it 

occurs in an accelerated manner following normal development, though there is no 

evidence of growth retardation, malformation, limb palsy, or other neurological signs, 

such as tremors and convulsions. The life span of SAMP is about 40 percent shorter than 

that of SAMR. Thus, accelerated senescence is considered to be a characteristic feature 

common to all SAMP mice. Both SAMP and SAMR strains manifest various aging related 

phenotypes, which are often characteristic enough to differentiate the strains. These 

phenotypes include impaired immune response, hyperinflation of the lungs, hearing 

impairment, deficits in learning and memory, cataracts, alveolar bone loss, degenerative 

joint disease, abnormality of circadian rhythms, emotional disorders, and brain atrophy 

[25, 26].  
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Senescence-accelerated mice (SAM) and their substrains have been developed 

for the study of human aging and are known to exhibit aging phenotypes. The pitfall of 

SAM mice as model for aging research is that the different aging phenotypes associated 

with SAM are distributed among the various SAM substrains and multiple gene 

mutations are implicated in causing the phenotypes observed in the SAM mouse model 

[24]. 
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1.3.3 The glycerol-3-phosphate acyltransferase-1 (GPAT-1) knock-out mouse of T-

lymphocyte aging 

 Glycerol-3-phosphotate acetyltransferases are rate limiting enzymes of 

triacylglycerol biosynthesis.  There are four homologous isoforms of glycerol-3-

phosphate acyltransferase (GPAT), each the product of a separate gene that catalyzes 

the synthesis of lysophosphatidic acid from glycerol-3-phosphate and long-chain acyl-

CoA. GPAT-1 and 2 are found in the mitochondria and GPAT-3 and 4 are found in the 

micirosome [27]. GPAT-1 influences biological membrane composition which can have a 

profound effect on T cell function. While other tissues express both GPAT-1 and GPAT-2 

on the mitochondria membrane, GPAT-1 is the only mitochondrial isoform expressed in 

T-lymphocytes [28].  

The GPAT-1 knock-out mouse provides an unprecedented opportunity to 

investigate the effects of an aging T-lymphocyte population in the absence of other age 

related complications. Since GPAT-1 is the only mitochondrial isoform expressed in T-

lymphocytes, GPAT-1 -/- mice display only minimal phenotype in other tissues.  GPAT-1 

catalytic activity is significantly down-regulated in aged rat-liver and T-lymphocytes, 

suggesting that impairment of the GPAT-1 mediated lipid biosynthetic pathway is a 

physiologically relevant event in the natural course of aging [29].  
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GPAT-1-/- mice T-lymphocytes possess multiple hallmarks of aging.  Without 

GPAT-1, T cell proliferation is inhibited and activation induced apoptosis is increased. 

Importantly, consistent with an immune-senescent phenotype, TH1 cytokine secretion is 

reduce in stimulated splenic T cells form GPAT-1-/- mice [30]. Additionally, T-lymphocytes 

from the GPAT-1-/- mouse up-regulate the production and secretion of pro-inflammatory 

cytokines [30, 31].  

The GPAT-1-/- is the only animal model to mimic the membrane lipid and 

functional phenotype changes of an aged T cell with no other pathological conditions. 

Investigations on how specific aspects of the aging process contribute to prostate 

tumorigenesis are extremely difficult due to the multiple morbidities associated with 

aging. The GPAT-1 -/- mouse model provides an opportunity to investigate how T cell 

aging contributes to prostate cancer development. 

1.4 Aging T-lymphocytes, Interlukin-17 and Prostate Tumorigenesis 

It has been widely accepted that aging is characterized by a pro-inflammatory 

imbalance of TH1/TH2 cells [6].  A third subset of T helper cells, TH17, has been 

implicated in the development of chronic inflammation in the elderly.  Schmitt et al. 

demonstrated that, on a basal resting level, TH17 cells were at a significantly increased 

level in older individuals. Other groups have also demonstrated that the proportion of 

TH17 cells was garter in aged mice both in naïve and memory cell populations [32]. Some 
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investigators suggest that elevation of IL-1β and IL6 and reduction of IL-2 expression in 

aged mice promote TH17 differentiation [33, 34].  

TH17 cells are characterized by producing pro-inflammatory cytokines IL-17, IL-21 

and IL-22. IL-17 is a pro-inflammatory cytokine that is involved in recruiting 

inflammatory cells and induction of pro-inflammatory mediators [35]. As a pro-

inflammatory cytokine, IL-17 has been implicated in a number of diseases including 

rheumatoid arthritis, asthmatic airways, allergic skin immune responses and the 

inflammatory process associated with strokes [36]. Additionally, IL-17 is produce by 

tumor infiltrating lymphocytes, and increases tumorigenicity in a number of cancers. IL-

17 has also been implicated in tumor vascularization of cervix and ovarian cancer [13]. 

IL-17 exerts its effects through a family of receptors comprised of five members (IL17-

RA, RB, RC, RD and RE). The roles of IL-17RD and IL-17RE are not clear, while IL-17B, 

IL17C and IL-17D are currently poorly studied with regards to their biological functions 

and receptors. IL-17RA forms a receptor heterodimer with IL-17RC. The receptor 

heterodimer is the preferred form by IL-17 ligands. When IL-17 binds to IL-17RA/C it 

activates NF-κB and MAPK signaling pathways [37] . 

 The contribution of IL-17 to prostate cancer has been reported by various 

investigators [11, 13, 38-45]. Isoforms of the IL-17 receptor have been detecte in certain 

prostate cancers [44].  Moreover, IL-17A expression is increase in 58% of prostate 

cancer biopsies and IL-17RA and IL-17RC receptors are expressed in aggressive forms of 
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prostate cancer [13]. It has also been reported that TH17 cell number is increased in 

prostate cancer [45] and a higher percentage of TH17 in the blood is correlated with a 

poorer outcome [38]. Recently, Zhang et al. also reported that IL-17 promotes the 

formation and growth of prostate adenocarcinoma in a mouse model of autochthonous 

prostate cancer and that IL-17 promotes development of castration resistant prostate 

cancer [42, 43]. Taken together the current knowledge indicates that there is a potential 

link between increased IL-17 expression in the elderly and prostate cancer development 

and progression. 

1.5 Aging, Interlukin-6 and Prostate Tumorigenesis. 

 IL-6 is the most prominent cytokine that is shared across age-related 

pathologies having a strong chronic inflammatory component. There is strong evidence 

that IL-6 serum concentration increases with age [46-49].  Maggio et al. reported that IL-

6 mean values ranged from 1.4 pg/ml (men) and 1.1 pg/ml (women) in the 65–74 years 

age group to 3.5 pg/ml (men) and 2.1 pg/ml (women) in persons 85 years and older, and 

that the age trend is partially independent of major confounders [48]. Age-related 

increments in IL-6 are not explained by differential prevalence of IL-6 gene 

polymorphisms [50]. The etiology of chronically elevated IL-6 in older adults is likely 

multifactorial, with increased presence of disease states, declines in estrogen and 
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testosterone levels and changes in the immune system function and regulation all 

contributing to increases in IL-6 levels. 

 IL-6 expression is mainly modulated by the nuclear NF-κB. A number of different 

stimuli, including cytokines, infections, and toxins, induce IL-6 expression. The binding of 

IL-6 to its receptor activates two distinct signaling pathways: The Janus tyrosine family 

kinase (JAK)-signal transducer and activator of transcription (STAT) pathway and the 

extracellular signal-regulated kinase 1 and 2 (ERK1/2)-mitogen activated protein kinase 

(MAPK) pathway [51, 52]. The physiological role of IL-6 is to initiate and coordinate 

acute phase response, but there is strong evidence indicating that IL-6 also plays a 

central role in the pathogenesis of chronic disease.  

In cancer, IL-6 is a growth/survival factor for a variety of tumor types. In prostate 

cancer, activation of STAT3 by IL-6 is correlated with increase proliferation, decreased 

apoptotic potential, regulation of epithelial-mesenchymal transition (EMT) and 

activation of androgen receptor genes [53].  An extensive literature suggests that IL-6 

plays a critical role in prostate cancer initiation and progression [15, 39, 41, 53-57].  

Overall, the retention of strong inflammatory responses accompanied with the 

absence of counterbalancing and beneficial effects of the immune system highly 

enhance the likelihood of developing prostate cancer in the elderly. A better 

understanding of the regulation and role of IL-6 and IL-17 in aging-related prostate 

cancer is required to develop effective therapeutic and prevention treatments. 
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1.6 Dissertation Objectives      

  Epidemiological studies suggest that after 50 years of age, men experience a 

progressively heightened risk of being diagnosed with prostate cancer with each 

subsequent year of life. This is due to several factors, including an increased duration of 

carcinogenesis, accumulation of DNA damage and an increased susceptibility of aging 

cells to environmental carcinogens. Another important mechanistic link between aging 

and prostate cancer is reduced immune function. As the immune system is strongly 

implicated in modulating systemic inflammation, and because the phenotypic 

functionality of immune-regulatory cells changes with age, immune dysfunction may 

actively promote prostate carcinogenesis in the elderly.  

The objective of these studies was to determine how age-related changes in T-

lymphocyte function contribute to prostate tumorigenesis. We hypothesized that age 

related changes in T-lymphocyte function, towards a pro-inflammatory phenotype may 

promote prostate cancer development. The rationale behind our hypothesis was largely 

based on preliminary data suggesting that, consistent with an aged phenotype, T-

lymphocytes from the GPAT-1-/- mouse up-regulate the production and secretion of pro-

inflammatory cytokines. Many of the pro-inflammatory cytokines produced by aged T-

lymphocytes have been implicated in the promotion of prostate tumorigenesis, 

primarily through the induction of other pro-inflammatory pathways and the activation 

of transcription factors like NF-κB. 
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Given that preliminary data indicated that T-lymphocytes from aging mimic 

GPAT-1 -/- mice secrete high levels of IL-17, a key cytokine known to promote 

carcinogenesis, and that transcription factors like NF-κB are critical for both 

inflammation and tumor growth, we tested the role of IL-17 in GPAT-1-/--induced NF-κB 

activity.  

After we had established that the aged T-cell response is in part characterized by 

increased production of cytokines that induce pro-inflammatory pathways in prostate 

cells, the next objective of my study was to determine if the increased production of 

pro-inflammatory cytokines by aging T-lymphocytes contributes to a more malignant 

phenotype in the prostate.  

Given the prominent role of IL-6 in age-related pathologies with a chronic 

inflammatory component, it was also important to further understand the role of 

circulating levels of IL-6 in age-related prostate tumorigenesis.  

This study is one of the first to explore the relationship between aging T-

lymphocytes and prostate tumorigenesis. The research presented in this dissertation is 

highly relevant because the potential identification of pathways and biomarkers could 

help develop effective treatments for prostate cancer. 
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Chapter 2:  Age-related Alterations in T-lymphocytes Modulate Key Pathways in 

Prostate Tumorigenesis 

2.1 Introduction  

Age is the single greatest factor associated with increased risk for prostate 

cancer development [1].  Epidemiological studies suggest that after the fifth decade of 

life, men experience a progressively heightened risk of being diagnosed with prostate 

cancer with each subsequent year of life until the age of 85 [58]. While localized events 

within the tissue microenvironment over time may influence prostate carcinogenesis, 

the contribution that cytokines impart on tumor initiation and development has been 

underexplored. As the immune system is strongly implicated in modulating systemic 

inflammation, and because the repertoire and phenotypic functionality of immune-

regulatory cells changes with age, immune dysfunction may actively promote prostate 

carcinogenesis. To date, the limitation in delineating the precise contribution of aged 

immune cells to prostate cancer initiation has been a lack of appropriate models that 

recapitulate normal aging [30].  

Recently we have developed a novel mouse model of accelerated T-lymphocyte 

aging, the glycerol-3-phosphate acyltransferase-1 (GPAT-1) knock-out mouse, in which 

young T lymphocytes possess multiple hallmarks of aging [28, 29, 59]. The GPAT-1 

knock-out mouse provides an unprecedented opportunity to investigate the effects of  
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an aging T-lymphocyte population on prostate cancer development in the 

absence of other age related complications.  GPAT-1 is an integral mitochondrial outer 

membrane protein that initiates the first and rate limiting step in de novo phospholipid 

and triacylglycerol biosynthesis [30].  GPAT-1 is one of four known isoforms (two on the 

mitochondria and two on the endoplasmic reticulum) and is the only mitochondrial 

isoform expressed in T-lymphocytes.  Only a minimal phenotype is found in other 

tissues, which express both GPAT-1 and GPAT-2 on the mitochondrial membrane [28]. 

We have shown that GPAT-1 catalytic activity is significantly down-regulated in aged rat-

liver and T-lymphocytes, suggesting that impairment of the GPAT-1 mediated lipid 

biosynthetic pathway is a physiologically relevant event in the natural course of aging 

[29, 59]. Consistent with an aged phenotype, T-lymphocytes from the GPAT-1-/- mouse 

up-regulate the production and secretion of pro-inflammatory cytokines [30]. Many of 

the pro-inflammatory cytokines produced by aged T-lymphocytes have been implicated 

in the promotion of prostate tumorigenesis, primarily through the induction of other 

pro-inflammatory pathways and by driving the activation of transcription factors such as 

NF-κB.  Analogous engagement of these pathways is recapitulated in GPAT-1-/- T-

lymphocytes, strongly suggesting that the aged immune system plays a critical role in 

promoting prostate carcinogenesis.   

NF-κB, a key mediator of gene transcription during the immune response, 

becomes deregulated during carcinogenesis.  NF-κB-mediated gene transcription drives 
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the expression of key survival factors that suppress apoptosis, promote cellular 

proliferation, and incite the inflammatory response [60]. The current emphasis in cancer 

immunology is to elucidate the biological pathways by which immune cells enhance 

inflammation to promote tumor development and progression.  

We demonstrated that secreted cytokines from GPAT-1-/- T-lymphocytes closely 

mimic the cytokine array profile observed in normal aged T-lymphocytes.  Treatment of 

normal, non-transformed or prostate cancer cells with serum derived from the GPAT-1-/- 

mice induced NF-κB transcriptional activity and nuclear localization.  Aging and aging-

mimic GPAT-1-/- T-lymphocytes secrete factors which, when compared to young wild-

type T-lymphocytes, differentially induce NF-κB activation and promote cellular 

proliferation in prostate epithelial cells.  These data strongly suggest that the aging 

immune system is not a passive component to tumorigenesis, but may actively promote 

initiation and progression through induction of inflammatory pathways. 

2.2   Materials and methods       

2.2.1      Murine Models of an Aging Immune System 

C57BL/6 GPAT-1 +/- mice were obtained from Dr. Rosalind Coleman (University 

of North Carolina at Chapel Hill) and bred in our animal facilities to obtain homozygous 

knock-outs.  Mice were fed a commercial chow diet (Prolab Rat/Mouse/Hamster 2000) 

provided by the animal facility.  Offspring were numbered to monitor sex differences or 
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differences between litters. Aged (+22 months) C57BL/6 mice were purchased from the 

National Institute for Aging. Mice were housed on a 12:12-h light-dark cycle and had 

free access to commercial chow food and water.   

2.2.2 T-lymphocyte isolation and stimulation  

Splenic T-lymphocytes were isolated from young (6 month) wild-type (WT), 

young (6 month) GPAT-1 KO, and old (22 month) WT mice using negative selection 

(Miltenyi magnetic microbeads and antibody T-lymphocyte specific antibody 

combinations) as per the manufacturer's instructions, yielding a 95% pure splenic T-

lymphocyte population.  Isolation by negative selection prevents perturbation of the T-

lymphocyte's receptor during the isolation procedure, as occurs with isolation via 

positive selection-lymphocytes were stimulated at 37°C in pre-warmed complete RPMI 

1640 culture media (10% heat-inactivated fetal bovine serum plus 100 U/ml penicillin, 

100 µg/ml streptomycin, 10 µM 2-mercaptoethanol, and 100 mM L-glutamine) with 

either 10 µg/ml plate-bound anti-CD3 and 1 µg/ml anti-CD28 or no stimulation as we 

have previously described (4). Anti-CD3 and CD28 antibodies are routinely used as 

polyclonal mitogens to mimic the in vivo T-cell response.  After 24 hours of stimulation, 

the T-lymphocyte culture supernatant (conditioned media) was collected and used in 

subsequent experiments.  All animal procedures used were approved by the University 

of Texas Animal Use and Care Committee. 
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2.2.3 Cell Lines 

The LNCaP and PC-3 cell lines were purchased from the American Type Culture 

Collection (Rockville, MD) and grown in RPMI-1640 containing penicillin and 

streptomycin, supplemented with 10% fetal bovine serum (FBS) in a 5% (v/v) CO2 

humidified incubator at 37°C. The immortalized non-transformed RWPE-1 prostate 

epithelial cell line was purchased from American Type Culture Collection and grown in 

Keratinocyte Serum Free Medium (K-SFM) supplemented with bovine pituitary extract 

(BPE) and human recombinant epidermal growth factor (EGF) in a 5% (v/v) CO2 

humidified incubator at 37°C. The PrEC-human normal prostate epithelial cell line was 

purchased from Lonza (Basel, Switzerland) and grown in PrEGM Prostate Epithelial Cell 

Growth Medium containing a growth factor and cytokine-supplemented SingleQuots kit. 

2.2.4 Cytokine Array 

Conditioned media from splenic T-lymphocytes from wild-type young (6 week), 

old (22 months) and young GPAT-1-/- (6 week) mice were obtained by stimulating 

isolated T-cells with either 10 µg/ml plate-bound anti-CD3 and 1 µg/ml anti-CD28 in 

NaHCO3 or 10 nM phorbol myristate acetate (PMA) and 1 µM ionomycin.  The cytokine 

profiles were performed using R&D Systems Mouse Cytokine Array, Panel A (R&D 

Systems Minneapolis, MN, USA) according to the manufacture’s recommendations. 
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2.2.5 Dual Luciferase assay 

LNCaP and RWPE-1 cells seeded in 6-well plates were grown to 60–80% 

confluence for transfection. 1μg NF-kB luciferase reporter plasmid (Stratagene, La Jolla, 

CA) and 20ng of control Renilla reporter plasmid were concurrently transfected together 

using FuGENE 6 (Roche, Valencia, CA, USA) transfection reagent, according to 

manufacturer’s protocol. At 24 hr post-transfection, 10% sera or T-lymphocyte 

conditioned media was added directly to the cells.  At 48 hr post-transfection, samples 

were harvested, washed in cold 1x PBS and lysed with 500μl of passive lysis buffer 

(Promega, Madison, WI, USA). 25 μl of cell extract was used in triplicate on white 96 

well plates to measure NF-kB luciferase activity according to the dual-luciferase reporter 

assay system protocol (Promega).  The NF-kB firefly luciferase activity was standardized 

to Renilla luciferase activity and represented as standardized luciferase units (SLU). 

2.2.6 Immunofluorescence  

LNCaP and RWPE-1 cells were cultured directly on an 8-chamber glass Lab Tek™ 

II Chamber Slide System in a density of 1 x 104 cells per chamber.  Cells were exposed to 

10% sera, conditioned media, or serum free media.  Control cells were cultured in 

complete (10% FBS) RPMI or serum free RPMI.  After recovery, slides were fixed in 4% 

paraformaldehyde/PBS, blocked in aldehyde blocking solution (100 mM glycine/PBS) 

and permeabilized in a 0.1% Trition X-100/PBS solution at room temperature for 5 min.  
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To determine localization of NF-κB, cells were probed with rabbit anti-p65 (Santa Cruz; 

sc-372).  FITC and/or Cy3-conjugated donkey anti-rabbit secondary antibodies (Jackson 

ImmunoResearch Laboratories) allowed fluorescent detection of primary antibodies on 

a Zeiss Axiovert 40 inverted microscope.  Cells were counterstained, with 200 ng/ml 

DAPI, for detection of cellular nuclei. Images of control and experimental cells were 

acquired under identical exposure conditions in three independent experiments to 

ensure reproducibility [61] . 

2.2.7 Western blot analysis 

Western blot analysis was performed as previously described [61].  Briefly, 

prostate cells were serum-treated directly or with conditioned media from stimulated T-

lymphocytes, harvested and lysed in Laemmli lysis buffer for SDS-polyacrylamide gel 

electrophoresis and probed with: rabbit anti-BCL-Xl, rabbit anti-MCL-1, rabbit anti-

GAPDH  (all Cell Signaling, Boston, MA, USA), rabbit anti-actin (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), rabbit anti-Cyclin D1 (Millipore, Billerica, MA).  

Luminescent signal was detected on a Syngene imaging system and quantitative 

densitometric analysis measured using GeneTools. 
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2.2.8 Statistics  

Values are presented as mean ± standard error of the mean (SEM).  For the 

Western blot analyses and luciferase assays, means were compared across treatment 

groups using Student's t-test and p ≤ 0.05 was considered statistically significant. 

2.3 Results 

2.3.1 Aging mimic GPAT-1 -/- T-lymphocytes have a pro-inflammatory cytokine profile  

Previously we have demonstrated that GPAT-1 regulates proliferation and 

cytokine production in T-lymphocytes [30].  Without GPAT-1 TH1 (IL-2 and IFN-gamma) 

cytokine secretion is reduced and TH2 (IL-4 and IL-10) cytokine secretion is increased 

[30].  To further characterize and compare the relative cytokine expression profile from 

T-lymphocytes of young GPAT-1-/- (KO) mice to those derived from young and old (>22 

month) wild-type (WT) mice, we utilized a cytokine immunoarray which is capable of 

simultaneously detecting different cytokines and chemokines.  Consistent with our 

previous observation, GPAT-1-/- T-lymphocytes resembled the inflammatory phenotype 

that is characteristic of aged murine T-lymphocytes (Fig 2.1).  While many of the 

cytokines and chemokines were at similar levels among the three groups (IL-1α and IL-

1β, for example), the knock-out and old mice trended together, such as with MIP-1α and 

β, RANTES, IL-3 and I-309.  Of note, compared to that found in the WT young mice, 

levels of IL-17 were 12-and 8-fold higher in the GPAT-1-/- (KO) and old mice, respectively.  
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Intriguingly, while IL-6 levels were 12-fold higher in the old mice, the levels were 

comparable between the WT and KO mice, suggesting that any observed phenotype 

with the KO is independent from IL-6 activity. 
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Figure 2.1 Aging mimic GPAT-1 -/- T-lymphocytes have a pro-inflammatory cytokine 
profile.  

Secreted cytokine immunoarray profile of isolated and anti-CD3/CD-28 stimulated 
splenic T-lymphocytes derived from wild type (WT, black bars), old (light gray bars) and 
GPAT-1−/− (KO, dark gray bars) mice. After stimulation, T-lymphocytes were cultured in 
serum free media for 24 hr. Factors secreted into the serum free media (conditioned 
media) were incubated on the immunoarray to detect relative expression of indicated 
cytokines and chemokines. Levels were standardized relative to negative control. 
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2.3.2 GPAT-1-/- and old wild type T-lymphocytes secrete factors that induce NF-B 

activity 

NF-B is a transcription factor that modulates the expression of many genes 

associated with inflammatory processes, cell adhesion, differentiation, proliferation, 

angiogenesis and apoptosis.  Dysregulation of NF-B has been implicated as a leading 

cause in the development of many diseases, including cancer [62-65].  In the prostate, 

upregulation of NF-κB is associated with increased inflammation, prostate 

carcinogenesis, progression to hormone independence and increased metastatic 

potential [66-68].  Therefore, to determine if circulating factors in the sera from aged or 

GPAT-1 -/- mice induce NF-κB activity in non-transformed prostate epithelial and 

prostate cancer cells, we exposed these cell lines to 10% sera from WT young, old or 

young GPAT-1-/- (KO) mice. An NF-B luciferase reporter assay was used to measure NF-

κB transcription activity (Fig 2.2).  Exposure to either sera from old mice or GPAT-1 KO 

sera resulted in a significant increase in NF-κB activity in the PC-3 (50% and 100%, 

respectively) and LNCaP (75% and 400%, respectively) prostate cancer cell lines 

compared to sera from the young WT mice (P<0.05) (Fig 2.2A), suggesting that 

circulating factors in the sera of GPAT-1-/- mice mimic those in the aged mice in 

promoting NF-κB transcriptional activity.  The same trend between the WT and KO mice 

was observed in the primary and non-transformed prostate cell lines PReC and RWPE-1 

respectively (Fig 2.2B).  These data indicate that circulating factors associated with an 
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aging T-cell induce activation of NF-κB, a critical step in prostate cancer initiation, not 

only in cancer cells but also in non-cancer cells. 
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Figure 2.2 Effect of circulating factors in the sera from the aged wild type and aging-
mimic young GPAT-1 -/- mice on NF-κB transcriptional activity.  
 
Dual-Luciferase assay was used to measure NF-kB transcriptional activity in response to 
10% FBS or sera from young wild-type, old or GPAT-1 -/- mice in A) PC3 and LNCaP 
prostate cancer cells or B) non-cancerous PrEC and RWPE-1 prostate epithelial cells. 
Presented is the combined average of three independent experiments and bars 
representing the standard error of the mean. Means with different letters are 
significantly different (p <0.05). 



43 
 

2.3.3 Circulating factors in the sera from mice with an aged immune system induce 

nuclear translocation of NF-B  

NF-B is a heterodimeric complex consisting of the p50 and p65 subunits.  When 

bound by I-B, NF-B is excluded from the nucleus and remains in the inactive state.  

Engagement of membrane based receptors initiates activation of the I-B kinase (IKK) 

complex which phosphorylates I-kB at two key serine residues, targeting it for 

proteasomal degradation through the ubiquitin ligase pathway.  The liberated NF-B 

complex is then free to translocate into the nucleus, and bind to NF-B response 

elements, thereby modulating gene expression [69].  To determine the effect of sera 

from GPAT-1-/- (KO), young WT or old mice on the subcellular localization of NF-B, 

immunofluorescence was used to visualize changes in p65 subcellular 

compartmentalization.  As seen in Figure 2.3, sera from the young GPAT-1-/- mice (iii and 

iv) induced translocation of p65 into the nucleus in both the LNCaP cancer cell line (Fig 

2.3A) and non-cancerous RWPE-1 cell line (Fig 2.3B), while the sera from WT young mice 

(i and ii) primarily showed cytosolic (inactive p65) staining.  Importantly, results with the 

old WT mice (v and vi) in the LNCaP and RWPE-1 cells correlate with those obtained 

with the young GPAT-1-/- mice, strongly supporting the results obtained with the 

luciferase reporter studies.  
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Figure 2.3 Alteration of NF-kB subcellular localization induced by circulating factors in 
the sera from aged and young GPAT-1-/- mice.  
 

Immunofluorescence was used to visualize NF-B localization (red) A) in LNCaP cells or 
B) non-cancerous RWPE-1 prostate epithelial cells exposed to sera from WT young (i), 
GPAT -/- (KO) (iii), old WT (V) mice. (ii), (iv) and (vi) are the images merged with the DAPI 
stain (blue), indicating cellular nuclei. Presented is a representative of three 
independent experiments. 
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2.3.4 Factors secreted from aging T-lymphocytes induce NF-kB transcriptional activity 

Based on our observation that circulating factors from the sera of GPAT-1-/- mice 

induced NF-B activation similar to that of old mice, we sought to determine whether 

factors originating from the T-lymphocytes alone were impacting NF-B activity.  Splenic 

T-lymphocytes were isolated from the respective mice then stimulated with or without 

anti-CD3/CD28 antibodies. After 24 hours stimulation, conditioned media from the T-

lymphocytes was collected. The conditioned media from the stimulated and 

unstimulated T-lymphocytes was then used to culture primary non-transformed (RWPE-

1) and prostate cancer (LNCaP) cell lines and NF-κB activity measured as in Figure 2 (Fig 

2.4).  Factors secreted into the conditioned media from GPAT-1-/- and old wild type T-

lymphocytes induced a 3-fold and 2-fold induction of NF-κB, respectively, in the LNCaP 

cell line compared to those in the conditioned media from a young WT mice (p < 0.05) 

(Fig 2.4A) and more than 7-fold higher in the RWPE-1 cells exposed to conditioned 

media from GPAT-1-/-  when compared to those exposed to conditioned from wild type 

young mice (p< 0.05) (Fig 2.4B). Notably, results with the old WT mice in the in RWPE-1 

cells (Fig 2.4B) correlate with those obtained with the young GPAT-1-/- mice. This 

suggests that the aged and GPAT-1-/- T-lymphocytes directly modulate NF-B activity in 

prostate epithelial and prostate cancer cells.  

Additionally, fluorescence microscopy was performed to visualize p65 subcellular 

localization in response to exposure to the conditioned media. As seen in Figure 2.5A, 
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LNCaP cells display evidence of nuclear translocation of NF-κB in response to 

conditioned media from stimulated T-lymphocytes from young GPAT-1-/- (Fig 2.5v) and 

old wild-type mice (Fig 2.5Avi).  Similar results were obtained with the non-cancerous 

RWPE-1 cells (Fig 2.5B). Nuclear translocation of NF-κB correlates with the strong 

induction of NF-κB transcriptional activity that was observed when LNCaP prostate 

cancer cells were exposed to conditioned media from stimulated aged wild type T-

lymphocytes. 
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Figure 2.4 Effect of isolated splenic T-lymphocyte-secreted factors from WT or young  

GPAT-1 -/- mice on NF-B transcriptional activity 

 LNCaP prostate cells (A) and RWPE-1 non-transformed prostate epithelial cells (B)were 
used. Dual-Luciferase assay was used to measure NF-kB transcriptional activity in 
response to conditioned media (CM) generated from anti-CD3 plus CD-28 stimulated 
cultured splenic T-lymphocytes from either young GPAT- -/-  (KO), young wild-type (WT) 
or old wild type mice. Means with different letters are significantly different (p <0.05). 
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Figure 2.5 Nuclear localization of NF-kB induced by factors secreted from stimulated 
aged T-lymphocytes.  

Immunofluorescence was used to visualize NF-kB localization (red) A) in LNCaP cell or B) 
non-cancerous RWPE-1 prostate epithelial cells  in response to exposure to conditioned 
media generated from unstimulated (upper panel) and stimulated (lowerpanel) 
Tlymphocytes isolated from wild-type (WT Young) (i) and (iv), GPAT -/- (KO) (ii) and (v) 
and wild-type old (Old) (iii) AND (vi) mice. DAPI staining (blue) indicates cellular nuclei 
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2.3.5 Factors secreted by aging T-lymphocytes upregulate the expression of key 

downstream targets of NF- B 

NF-kB regulates the transcription of several genes involved in the suppression of 

cell death, proliferation and tumor promotion [38]. BCL-xL is one of the key downstream 

gene targets of NF-kB that promotes survival [70]. MCL-1, an important target gene of 

NF-kB, is an anti-apoptotic factor implicated in the survival of prostate cancer cells [70].  

In addition to the regulatory role it plays in apoptosis, NF-κB is also capable of 

promoting cell cycle progression by modulating the expression of cell cycle specific 

genes, including cyclin D1[71]. Recent studies suggest that NF-κB-induced cyclin D1 

expression is a key contributing element in mammary breast carcinogenesis [71-73] .  

Immunoblot analysis (Fig 2.6) shows that expression levels of key NF-κB genes (MCL-1, 

Cyclin D1, BCL-xL) are upregulated in LNCaP cells (30%, 40% and 10% ) and RWPE-1 cells 

(15%, 35% and 60%, respectively) exposed to KO sera compared to levels observed with 

exposure to WT sera after treatment for 48 hours with 10% sera or conditioned media 

from the young GPAT-1-/- mice. Based on our observation that circulating factors from 

the sera of GPAT-1-/- mice induced activation of important targets of NF-κB, we sought 

to determine whether factors specifically originating from the T-lymphocytes impact 

regulation of key downstream targets of NF-κB. Splenic T-lymphocytes were isolated 

from the respective mice then stimulated with or without anti-CD3/CD28 antibodies. 

After 24 hours stimulation, conditioned media from the T-lymphocytes was collected. 
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The conditioned media from the stimulated and unstimulated T-lymphocytes was then 

used to culture primary non-transformed (RWPE-1) and prostate cancer (LNCaP) cell 

lines and western blot analysis was used to measure expression levels of key NF-κB 

genes. Factors secreted into the conditioned media from GPAT-1-/- mice up-regulate the 

expression of MCL-1, Cyclin D1 and BCL-xL in the LNCaP cells by 20%, 60% and 70% and 

by 80%, 66% and 50%, respectively in RWPE-1 cells by compared to those in the 

conditioned media from a young WT mice. Importantly, factors secreted into 

conditioned media from old WT T-lymphocytes also upregulated key NF-κB genes in 

similar ways that the conditioned media from the young GPAT-1-/- mice does (Fig 2.7).  
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Figure 2.6 Increased expression of gene targets of NF-κB in response to circulating 
factors secreted from aged-mimic T-lymphocytes.  
 
Immunoblot detection of MCL-1, Cyclin D1 and BCL-1-xL expression levels in LNCaP (A) 
and RWPE-1 (B) cells after exposure to 10% sera from young wild-type (WT) or GPAT-1-/- 

(KO) mice. Actin was used as a loading control. Graphs indicate the combined average 
relative densitometry values for three independent experiments, with bars indicating 
the SEM.  
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Figure 2.7 Increased expression of gene targets of NF-κB in response to circulating 
factors secreted from aged-mimic T-lymphocytes.  
 
Immunoblot detection of MCL-1, Cyclin D1 and BCL-xL expression levels in LNCaP (A) 
and RWPE-1 (B) cells after exposure to 10% conditioned media from stimulated wild-
type (WT) T-lymphocytes (+), unstimulated wild-type (WT) T-lymphocytes (-) or 
stimulated (+) and unstimulated (-) GPAT-/- (KO) T-cells. Actin was used as a loading 
control. Graphs indicate the combined average relative densitometry values for three 
independent experiments, with bars indicating the SEM.  
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2.4 Discussion     

The most established risk factors for prostate cancer development include age, 

race/ethnicity, and family history [58]. Longitudinal studies of aging men have revealed 

incidence curves indicating that prostate cancer risk begins to rise sharply after age 55 

and peaks at age 70–74 [1].  Postmortem and histopathologic analysis of human 

prostate specimens provides further evidence of the link between aging and prostate 

cancer incidence [1, 74]. One widely accepted explanation for this association is that the 

slow growth characteristics observed within the prostatic tissue prolongs the time for 

acquired mutations to manifest [75] . To date, many studies have focused on 

distinguishing aggressive from indolent disease, or identifying prognostic biomarkers 

predictive of clinical outcome and survival; however, few studies have investigated the 

potential contribution that the normal aged immune system may have in the 

development of prostatic disease.  While it is well established that age-related changes 

in immune surveillance and response occur, including loss of appropriate T-lymphocyte 

function and immunosenescence, this dysregulation has not yet been correlated with 

development of prostate cancer.  In this investigation, we provide the first evidence that 

age-related T-lymphocyte dysfunction may promote prostate cancer cell survival 

through induction of NF-κB.  
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Pro-inflammatory cytokines can initiate and potentiate the activation of NF-κB, a 

nuclear transcription factor frequently dysregulated in cancer [9, 76].  NF-κB activity in 

turn up-regulates expression of pro-survival factors and cytokines such as survivin and 

interleukins 2, 6, 8 and 9 [77]. Building upon our previous studies demonstrating a 

critical role for NF-κB in prostate cancer cell survival [61], we sought to determine if one 

mechanism by which an aging immune system might contribute to prostate cancer 

initiation and progression is through induction of NF-κB.  Intriguingly, circulating factors 

in the old WT and young GPAT-1-/- mouse sera both induced NF-κB transcriptional 

activity in the PC-3 and LNCaP prostate cancer cell lines, while the young WT mouse sera 

displayed no significant effect, suggesting that the age-specific shift in T lymphocyte 

function may be partly responsible for the increased NF-κB activity. Further, we 

observed a greater than 3-fold induction of NF-κB transcriptional activity in primary and 

immortalized, non-transformed (PrEC and RWPE-1) cells respectively, indicating that 

induction of NF-κB activity by elevated cytokines is not restricted to cancer cells.  This is 

especially important since age is a risk factor for the development of prostate cancer, 

which occurs through transformation of normal epithelial cells. 

The GPAT-1-/- model appears to strongly mimic the phenotypic changes observed 

in the aging immune system, particularly as it relates to T-cell function.  T-lymphocytes 

from young GPAT-1-/- demonstrate reduced IL-2 production and subsequent 

proliferation, altered cytokine production, increased membrane cholesterol to 
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phospholipid ratio and increased activation-induced apoptosis. Additionally, our data 

indicate that T-lymphocytes from GPAT-1-/- mice also closely mimic aged T cells in 

secreted levels of key cytokines and chemokines known to promote tumorigenesis such 

as IL-17, RANTES (CCL5) and I-309 [42, 78, 79].  Intriguingly, while secreted IL-6 levels 

were elevated in the T-cells from the old mice, T-cells from the GPAT-1 -/- mice did not 

demonstrate significantly higher levels compared to the aged-matched wild type mice, 

suggesting that the observed induction of NF-κB activity was independent of IL-6 

activity, possibly through IL-17.  

These data have important implications for our current understanding of the 

contribution of the immune system to prostate cancer development.  Rather than being 

merely a passive component to disease development, our data strongly support the 

concept that the aging immune system actively promotes cancer onset and progression, 

possibly through induction of chronic inflammation in the microenvironment resulting in 

upregulation of pathways leading to neoplastic changes, as has been proposed by 

Sfanos and De Marzo [80].  This change in perspective regarding the role of the aging 

immune system in cancer development opens new avenues for development of 

potential preventive interventions and screening biomarkers, and the results of our 

study suggest a focus on T cell-induced pathways.      
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Chapter 3: Age-related Increase in IL-17 Activates Pro-inflammatory Signaling in 

Prostate Cells 

 3.1 Introduction  

Prostate cancer is mainly a disease of older men [81]. This is due to several 

factors, including an increased duration of carcinogenesis, accumulation of DNA damage 

and an increased susceptibility of aging cells to environmental carcinogens [2]. Another 

mechanism important to the link between aging and prostate cancer is reduced immune 

function in the elderly. Qualitative and quantitative changes in immune response, 

including profound changes in T cell function, are part of the aging process. Age-related 

alterations to T cell immunity include decreased T cell differentiation and increased pro-

inflammatory cytokine secretion [82]. Age is positively correlated with increased 

circulating levels of many pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), 

tumor necrosis factors alpha (TNFα), interleukin-6 (IL-6) and interleukin-17 (IL-17) [83] .  

The inflammatory process is highly implicated in the pathogenesis of many 

common and severe age-related diseases, including prostate cancer [84]. Numerous 

studies have shown considerable evidence for inflammatory conditions being involved 

in the initiation and progression of prostate cancer [80, 85-87]. Furthermore, a large 

number of reports have specifically linked IL-17 to prostate cancer, with IL-17A 

expression increased in more than 50% of prostate cancers [13, 45, 88]. It has also been 
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demonstrated that two IL-17 receptors (IL-17RA and IL-17RC) are expressed in prostate 

cancer [88], and T helper 17 (TH17) cell number is increased in prostate cancer patients 

[45]. Recently, Zhang et al. reported that IL-17 promotes the formation and growth of 

prostate adenocarcinoma in a mouse model of autochthonous prostate cancer [42]. 

Taken together, the present literature suggests a strong link between IL-17 activity and 

prostate cancer development. However, little is known regarding the role of aged 

related increase in circulating IL-17 and regulation of pro-tumorigenic pathways in 

prostate epithelial cells.  

We showed that, for the most part, the T cell cytokine profile of the aging-mimic 

T cell GPAT-/- (AM) mice mirrored that observed in aged wild-type (OLD) mice, including 

higher expression levels of IL-17.  In order to dissect the relationship between aging T 

cells, IL-17 and pro-tumorigenic signaling in prostate cells, we used the young (6 month 

old) glycerol-3-phosphate acyltransferase-1 knock-out KO mouse, which T cells closely 

mimics the immune system of an aged (>22 month old) mouse. Serum and splenic T-

lymphocytes from young (6 month old) wild-type (WT), AM and wild-type old (OLD) 

mice were collected to test the contribution of IL-17 in modulating key signaling 

pathways in prostate tumorigenesis. 
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3.2 Materials and Methods  

3.2.1 Murine Models of an Aging Immune System 

C57BL/6 GPAT-1 +/- mice were obtained from Dr. Rosalind Coleman (University 

of North Carolina at Chapel Hill) and bred in our animal facilities to obtain homozygous 

knock-outs. Mice were fed a commercial chow diet (Prolab Rat/Mouse/Hamster 2000) 

provided by the animal facility. Offspring were numbered to monitor sex differences or 

differences between litters.  Aged (>22 month old) C57BL/6 mice were purchased from 

the National Institute for Aging. Mice were housed on a 12:12-h light-dark cycle and had 

ad libitum access to food and water.   

3.2.2 T-lymphocyte isolation and stimulation  

Splenic T-lymphocytes were isolated from 6 month old WT and KO, and 22 

month old (OLD) wild-type mice using negative selection (Miltenyi magnetic microbeads 

and antibody T-lymphocyte specific antibody combinations) as per the manufacturer's 

instructions, yielding a 95% pure splenic T-lymphocyte population. Isolation by negative 

selection prevents perturbation of the T-lymphocyte's receptor during the isolation 

procedure, as occurs with isolation via positive selection. Lymphocytes were stimulated 

at 37°C in pre-warmed complete RPMI-1640 culture media (10% heat-inactivated fetal 

bovine serum (FBS) plus 100 U/ml penicillin, 100 µg/ml streptomycin, 10 µM 2-

mercaptoethanol, and 100 mM L-glutamine) with either 10 µg/ml plate-bound anti-CD3 
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and 1 µg/ml anti-CD28 or no stimulation. Anti-CD3 and CD28 antibodies are routinely 

used as polyclonal mitogens to mimic the in vivo T cell response. After 24 hours of 

stimulation, the T lymphocyte culture supernatant (conditioned media) was collected 

and used in subsequent experiments.  All animal procedures were approved by the 

University of Texas Institutional Animal Care and Use Committee. 

3.2.3 Cells and Cell Culture  

The LNCaP prostate cancer cell line was purchased from ATCC (Rockville, MD) 

and grown in RPMI-1640 containing 1% penicillin and streptomycin, supplemented with 

10% FBS in a 5% (v/v) CO2 humidified incubator at 37°C.  The immortalized non-

transformed RWPE-1 prostate epithelial cell line was purchased from ATCC and grown in 

Keratinocyte Serum Free Medium (K-SFM) supplemented with bovine pituitary extract 

(BPE) and human recombinant epidermal growth factor (EGF) in a 5% (v/v) CO2 

humidified incubator at 37°C. The IL-17R shRNA clones (designated shIL-17R1 and shIL-

17R2) were generated by transfecting cells with the IL-17R shRNA Plasmid (h) sc-40037 

(Santa Cruz Biotechnologies, Santa Cruz, CA), using FuGENE HD transfection reagent 

(Roche, Basel, Switzerland) per manufacturer's instructions. Control LNCaP and RWPE-1 

cells (designated shControl) were generated by stably transfecting negative-control 

shRNA plasmids: Control Plasmid-B sc-108065 and Control Plasmid-C sc-108066 (Santa 

Cruz Biotechnologies, Santa Cruz, CA).  Puromycin antibiotic (Santa Cruz 
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Biotechnologies, Santa Cruz, CA) was used to stably select transfected cells. All cells 

were maintained in selective RPMI-1640 or K-SFM media containing 4 µg/ml puromycin. 

RT-PCR was performed to monitor IL-17R gene expression knock-down using the IL-17R 

(h)-PR primer (Santa Cruz Biotechnologies, Santa Cruz, CA). In addition western blot 

analysis was used to confirm knock-down of the IL-17R gene. Antibodies against IL-17R 

antibody (Santa Cruz Biotechnologies, Santa Cruz, CA) and phospho- and total-STAT3 

(Cell Signaling) were used. 

3.2.4 Dual Luciferase assay 

LNCaP and RWPE-1 shIL-17R1, shIL-17R2, and shControl cells were seeded in 6-

well plates and grown to 60–80% confluence for transfection. 1μg NF-B luciferase 

reporter plasmid (Stratagene, La Jolla, CA) and 20ng of control Renilla reporter plasmid 

were concurrently transfected using FuGENE HD (Roche, Basel, Switzerland) transfection 

reagent, according to manufacturer’s protocol. 24 hr post-transfection, 5% sera or T-

lymphocyte conditioned media was added directly to the cells. 48 hr post-transfection, 

samples were harvested, washed in cold 1x PBS and lysed with 500μl of passive lysis 

buffer (Promega, Madison, WI,).  NF-κB luciferase activity was measured according to 

the dual-luciferase reporter assay system protocol (Promega, Madison, WI).  The NF-κB 

luciferase activity was standardized to Renilla luciferase activity. 



61 
 

3.3.5 Western blot analysis 

Prostate shIL-17R and shControl cells were exposed for 48 hours to sera or 

conditioned media from stimulated T-lymphocytes, then harvested and lysed in Laemmli 

lysis buffer for SDS-polyacrylamide gel electrophoresis. The lysates were probed with 

the following antibodies: VCAM, FAS, cAIP2 (all Cell Signaling, Boston, MA), cyclin D1 

(Millipore, Billerica, MA), and actin (Santa Cruz Biotechnology, Santa Cruz, CA).  

Luminescent signal was detected on a Syngene (Frederick, MD) imaging system and 

quantitative densitometric analysis measured using GeneTools. 

3.2.6 RT-qPCR 

Prostate Cancer LNCaP cells were exposed to sera for 48 hours. Total RNA was 

isolated with the QIAGEN (Valencia, CA) RNA extraction system according to the 

manufacturer’s instructions and transcribed into complementary DNA (cDNA). Gene 

expression of 84 genes from the QIAGEN NF-κB Signaling Targets RT² Profiler PCR Array 

(Valencia, CA) was quantified by QIAGEN SYBR green real-time PCR on an Eppendorf 

instrument (Santa Clara, CA). Nonspecific signals caused by primer dimers were 

excluded by dissociation curve analysis and use of non-template controls. To normalize 

for loaded cDNA, actin was used as an endogenous control. 



62 
 

3.2.7 MTT Cell Proliferation Assay 

Cells were seeded in at a density of 8 × 103 in 96-well plates. After 24 hours of 

growth in 10% FBS media, the cells were exposed experimental conditions for 96 hours. 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT reagent in PBS 

(5 mg/ml) was then added to each well to a final concentration of 0.5 mg/ml. After 

three hours of incubation in a CO2 humidified incubator at 37°C, the MTT containing 

media was removed and 200 ul dimethyl sulfoxide (DMSO) was added. Absorbance was 

read at 570 nm on a FLUOstar Omega Spectrometer (BMG Labtech, Offenberg, 

Germany). Relative cell proliferation was calculated by dividing each absorbance value 

by the absorbance for shControl cells grown in young WT sera or CM. 

3.2.8 Statistics  

Values are presented as mean ± standard error of the mean (SEM).  For the 

Western blot analyses, MTT assays and Luciferase assays, means were compared across 

treatment groups using Student's t-test and one-way ANOVA Multiple Comparison was 

used for comparing more than two conditions. P≤0.05 was considered statistically 

significant 
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 3.3 Results  

3.3.1 IL-17 in the sera from Aging Mimic mice induces NF-B activity in prostate 

epithelial cells  

NF-κB is a transcription factor that modulates the expression of many genes 

associated with inflammatory processes, cell adhesion, differentiation, proliferation, 

angiogenesis and apoptosis. In the prostate, upregulation of NF-κB is associated with 

increased inflammation, prostate carcinogenesis and increased metastatic potential 

[63]. We determined that circulating factors in the sera from OLD or AM mice induce 

NF-κB activity in non-transformed RWPE-1 prostate epithelial and LNCaP prostate 

cancer cells (Fig.2.2). To confirm that IL-17 in the sera from AM mice was in part 

responsible for the observed activation of NF-κB in prostate epithelial cells, shRNA was 

used to knock down the IL-17 receptor (IL-17R) in RWPE-1 and LNCaP cells and make 

stable IL-17R knock-down clones (shIL-17R1 and shIL-17R2). Clones of RWPE-1 and 

LNCaP cells transfected with a control shRNA (shControl) were also generated to serve 

as the negative control for comparison. IL-17R knock-down was confirmed by western 

blot analysis of IL-17R protein expression levels (Fig 3.1A), and qPCR determination of IL-

17R mRNA levels (Fig 3.1B).  

To further characterize our IL-17R shRNA clones, we assessed whether IL-17R 

knock-down in human prostate cells inhibits the activation STAT3, its downstream 

target. In the absence of IL-17R, IL-17-induced STAT3 activity was diminished by 3- and 
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6-fold in RWPE-1 cells and LNCaP cells respectively. However, addition of interleukin-6 

(IL-6), which has been shown to activate STAT3, did not diminish STAT3 activity in the IL-

17R shRNA clones, demonstrating the specificity of the knock-down (Fig 3.2). 

 Next, the IL-17R shRNA clones were exposed to sera from WT, AM or OLD mice 

and an NF-B luciferase reporter assay was used to measure NF-κB transcriptional 

activity (Fig 3.3). In chapter 2, I established that exposure to sera from KO versus young 

WT mice results in a significant increase in NF-κB activity in LNCaP and RWPE-1 cells (Fig 

2.1). Importantly, in the absence of IL-17R (shIL-17R1 and shIL-17R2), NF-κB activity was 

significantly diminished by 47% in LNCaP cells exposed to sera from AM mice (Fig 3.3A). 

In the absence of IL-17R (shIL-17R1 and shIL-17R2) OLD sera was still able to promote 

NF-κB activity. Sera form OLD mice have additional cytokines that could be promoting 

NF-κB activity in the absence of IL-17. A similar trend was observed in the RWPE-1 cell 

shIL-17R clones, where NF-κB activity was reduced by 50% when IL-17R was absent in 

the cells exposed to sera from AM mice (Fig 3.3B). Exposure to sera from OLD versus 

young WT mice increases NF-κB activity in RWPE-1 cells by 1.5-fold. In the absence of IL-

17R (shIL-17R1 and shIL-17R2), NF-κB activity was significantly diminished by 20% in 

RWPE-1 cells exposed to sera from AM mice. Taken together, these data indicate that 

the aged-T cell-related up-regulation of IL-17 can promote NF-κB activation in prostate 

cancer cells as well as in non-cancerous prostate epithelial cells.  

 



65 
 

 

0

0.2

0.4

0.6

0.8

1

1.2

shControl shIL-17R1 shIL-17R2

IL
-1

7
R

 m
R

N
A

 le
ve

ls

b

a

b

B

A LNCaP RWPE-1

0

0.2

0.4

0.6

0.8

1

shControl shIL-17R1 shIL-17R2

IL
-1

7
R

 m
R

N
A

 le
ve

ls
 a

b
b

IL-17R

Actin

0

20

40

60

80

100

120

shControl shIL-17R1 shIL-17R2

R
e

la
ti

ve
 I

L1
-7

R
  p

ro
te

in
  

Le
ve

ls
 

c

0

20

40

60

80

100

120

shControl shIL-17R1 shIL-17R2

R
e

la
ti

ve
 I

L-
1

7
R

 p
ro

te
in

 
le

ve
ls

b

a

b

a

b

 

 

Figure 3.1 IL-17R expression in human prostate cells. 

 IL-17R protein expression levels  were determined by western blot analysis (A) in LNCaP  
prostate cancer cells transfected with IL-17R shRNA (designated shIL-17R1 and shIL-
17R2) or control shRNA  (shControl) (left)  and RWPE-1 prostate epithelial cells 
transfected with IL-17R shRNA or control shRNA (right). Graphs indicate the average 
relative densitometry values from three independent experiments. IL-17R mRNA levels 
was determined by qPCR (B). Different letters indicate statistically significant differences 
(p<0.05) 
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Figure 3.2 Expression levels of pSTAT3 in response to IL-17R knock-down.  

Protein expression levels of pSTAT3, relative to tSTAT3, were detected by immunoblot in 
LNCaP (left) and RWPE-1 (right) cells transfected with IL-17R shRNA (shIL-17R1 and shIL-
17R2) or control shRNA (shControl) after exposure to 100ng/ml IL-17 or IL-6.  Graphs 
indicate the combined average relative densitometry values from three independent 
experiments, with different letters indicating statistically significant differences 
(p<0.05). 
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Figure 3.3 NF-κB transcriptional activity is stimulated by IL-17 in the sera of Aging 
Mimic mice.  
 
NF-κB transcriptional activity was measured by dual luciferase assay in response to sera 
from young wild-type (WT), old wild-type (OLD) or Aging Mimic GPAT -1 -/- (AM) in 
LNCaP (A) or RWPE-1 (B) cells transfected with IL-17R shRNA (shIL-17R1 and shIL-17R2) 
or control shRNA (shControl). Presented is the average of three independent 
experiments standardized to WT shControl. Different letters indicate statistically 
significantly differences (p<0.05).  
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3.3.2 IL-17 secreted from aging T-lymphocytes induce NF-B transcriptional activity 

Based on our observation that IL-17 in the sera of AM mice induced NF-κB 

activation we sought to determine whether IL-17 originating from the T-lymphocytes 

alone was impacting NF-κB activity.  Splenic T-lymphocytes isolated from young WT and 

AM mice as well as old mice were stimulated with anti-CD3/CD28 antibodies, and 

conditioned media (CM) from the T-lymphocytes was collected after 24 hours. NF-B 

activity was then measured in RWPE-1 and LNCaP cell IL-17R shRNA clones (shIL-17R1 

and shIL17-R2) and control shRNA clones (shControl) following exposure to this CM (Fig 

3.4). LNCaP shIL-17R2 clone exposed to AM or Old T-lymphocyte CM induced almost 

50% less NF-κB activity as compared to the LNCaP shControl clones under the same 

treatment conditions (Fig 3.4A). RWPE-1 shIL-17R2 clones also exhibited around 20% 

less NF-B activity in comparison to RWPE-1 shControl clones after exposure to AM T-

lymphocyte CM (Fig 3.4B).  This suggests that IL-17 secreted from the AM –or OLD T-

lymphocytes directly modulates NF-κB activity in prostate cells. 
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Figure 3.4 IL-17 secreted by isolated splenic T-lymphocytes from wild-type, aging-
mimic or old mice induces NF-κB transcriptional activity.  

Conditioned media (CM) was generated from anti-CD3 plus CD-28 stimulated splenic T-
lymphocytes from young Aging Mimic (AM), young  wild-type (WT) or old wild-type mice 
(OLD). Dual luciferase assay was then used to measure NF-κB transcriptional activity in 
LNCaP (A) or RWPE-1 (B) cells expressing IL-17R shRNA (shIL-17R1 and shIL-17R2) or 
Control shRNA (shControl) following exposure to this CM. Presented is the average of 
three independent experiments standardized to WT shControl. Different letters indicate 
statistically significantly differences (p <0.05).  
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3.3.3 IL-17 secreted by aging T-lymphocytes regulates the expression of key 

downstream targets of NF-κB 

  NF-κB PCR arrays were used to demonstrate the impact of circulating factors in 

the AM versus WT mouse sera on NF-κB target gene expression in LNCaP cells (Fig 3.5A). 

NF-кB regulates the transcription of several genes involved in tumor promotion. 

Notably, several NF-κB target genes involved in the suppression of cell death, promotion 

of inflammatory processes and regulation cell adhesion were upregulated by the sera 

from the AM mouse (Table 3.1). Baculoviral IAP repeat-containing protein 3 (cIAP2), a 

key gene NF-κB target gene that promotes survival of prostate cancer cells by interfering 

with the activation of caspases [89], was upregulated in LNCaP cells exposed to sera 

from the AM mouse (Fig 3.5B). In prostate cancer, increased expression of cIAP2 has 

been found in biopsy specimens from all stages of the disease, suggesting an important 

role in development and progression [90]. In addition to the regulatory role it plays in 

apoptosis, NF-κB is also capable of promoting cell cycle progression by modulating the 

expression of cell cycle specific genes, including cyclin D1 [71, 91] . Cyclin D1 gene 

expression was also upregulated in LNCaP cells exposed to sera from AM mouse (Fig 

3.5B). Various studies have suggested that NF-κB-induced cyclin D1 expression is a key 

contributor in prostate carcinogenesis [71-73, 91] . NF-κB also regulates the expression 

of vascular cell adhesion protein 1 (VCAM-1), an important mediator of cell adhesion in 

many tumors, including prostate carcinomas [92]. Certain tumor cells can use VCAM-1 
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to adhere to the endothelium and recruit monocytes, aiding tumor growth [92-94]. 

Exposure to sera from AM mouse up-regulated the expression of VCAM-1 in LNCaP cells 

(Fig 3.5B). FAS gene expression was also up-regulated in LNCaP cells exposed to sera 

from AM mice. FAS is a type-II transmembrane protein that belongs to the tumor 

necrosis factor (TNF) family. Binding of FAS to its receptor induces apoptosis.  

Immunoblot analysis (Fig 3.6) confirmed that expression levels of key NF-κB 

genes (VCAM-1 and cIAP2) were upregulated in LNCaP cells (by 9% and 40%, 

respectively) when exposed to AM versus WT mouse sera. In contrast, the pro-apoptotic 

protein FAS was downregulated by 29% after treatment with AM mouse sera. A similar 

trend was observed when sera from OLD mice were exposed to LNCaP cells. 

Immunoblot analysis (Fig 3.6) showed that expression levels VCAM-1 and cIAP2 were 

upregulated in LNCaP cells (by 29% and 66%, respectively) when exposed to OLD versus 

WT mouse sera. Exposure to sera from AM, WT or OLD mice did not have a significant 

effect on regulation of Cyclin D1 protein levels in LNCaP cells. Based on our previous 

observation that IL-17 in the AM mouse sera induces NF-κB activation, we examined 

whether IL-17R knock-down impacts the expression of key NF-κB target genes. Our 

results showed that IL-17R knock-down in LNCaP cells decreased expression levels of 

VCAM-1 and cIAP2 (by 26% and 53%, respectively) following exposure to AM mouse 

sera. Knocking-down IL-17R in LNCaP cells did not modulate VCAM-1 expression in 

LNCaP cells exposed to sera from OLD mice. However, IL-17R knock-down in LNCaP cells 
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decreased expression levels of cIAP2 by 66% following exposure to OLD mouse sera. 

Interestingly, FAS expression levels were increased by 8% in LNCaP cell IL-17R shRNA 

clones (shIL-17R1 and shIL17-R2) exposed to OLD mouse sera (Fig 3.6B). Our results 

showed that expression levels of key NF-κB genes (VCAM-1 and cIAP2) were also 

upregulated in RWPE-1 cells (by 28% and 19%, respectively) when exposed to AM versus 

WT mouse sera (Fig 3.7). IL-17R knock-down in RWPE-1 cells decreased expression 

levels of VCAM-1 and cIAP2 (by 75% and 73%, respectively) following exposure to AM 

mouse sera (Fig 3.7). FAS was down-regulated in RWPE-1 cell by 63% after treatment 

with AM mouse sera. IL-17R knock-down in RWPE-1 cells increased expression levels of 

FAS by 57% following exposure to AM mouse sera. A similar trend was observed when 

RWPE-1 cells were exposed to sera form OLD mice. However, IL-17R knock-down in 

RWPE-1 cells did not decrease the expression levels of VCAM-1 after exposure to sera 

from OLD mice (Fig 3.7). Taken together, our results suggest that IL-17 in the sera from 

AM mice is playing an important role in the regulation of key NF-κB target genes 

involved in prostate tumorigenesis. 
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Figure 3.5 Sera from aging-mimic mice up-regulates the expression of key downstream 
targets of NF-κB.  
 
NF-κB PCR arrays revealed NF-κB gene targets that are differentially regulated in LNCaP 
cells in response to circulating factors in the sera from Aging Mimic (AM) versus wild-
type (WT) mice. The relative expression level for each gene in the two samples is plotted 
against each other in the scatter plot (A). Graphs show the relative mRNA levels of key 
NF-kB gene targets (IAP2, CyclinD1, VCAM-1 and FAS) (B) 
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Table 3.1 Sera from Aging Mimic mice differentially regulates the expression of 
downstream targets of NF-κB 

 
Gene Name Fold Up or Down regulation (AM/WT) 

ADM -1.04 
AGT 4.72 
AKT1 12.64 
ALDH3A2 89.26 
BCL2A1 2.31 
BCL2L1 1.87 
BIRC2 1.29 
BIRC3 7.46 
C3 5.17 
CCL11 N/A 
CCL2 8.40 
CCL22 -1.87 
CCL5 7.26 
CCND1 6.23 
CCR5 -1.16 
CD40 1.54 
CD69 -1.67 
CD80 -1.21 
CD83 2.14 
CDKN1A -1.44 
CFB 6.45 
CSF1 4.32 
CSF2 -2.10 
CSF2RB 1.85 
CSF3 -1.03 
CXCL1 N/A 
CXCL10 -7.46 
CXCL2 1.80 
CXCL9 -1.54 
EGFR 1.95 
EGR2 -24.93 
F3 -1.01 
F8 2.25 
FAS 3.92 
FASLG -1.30 
IL1RN 12.64 
ICAM1 5.24 
IFNB1 N/A 
INFNG -3.32 
IL12B -1.62 
IL15 3.39 
IL1A -1.11 
IL1B 8.69 
IL1R2 -1.93 
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IL2 1.22 
IL2RA N/A 
IL4 1.68 
IL6 N/A 
IL8 340.14 
INS 1.31 
IRF1 8.17 
LTA -1.74 
LTB 18.13 
MAP2K6 -2.01 
MMP9 -1.54 
MYC -2.41 
MYD88 1.43 
NCOA3 1.48 
NFKB1 6.50 
NFKB2 4.29 
NFKBIA 29.45 
NQO1 -1.49 
NR4A2 4.86 
PDGFB 1.54 
PLAU -1.27 
PTGS2 -2.07 
REL 2.11 
RELA 2.69 
RELB 16.56 
SELE 2.75 
SELP 1.38 
SNAP25 -1.11 
SOD2 7.31 
STAT1 1.06 
STAT3 2.33 
STAT5B 1.97 
TNF 15.03 
TNFRSF1B 3.32 
TNFSF10 1.27 
TP53 2.27 
TRAF2 4.41 
VCAM1 41.36 
XIAP 2.20 
B2M -1.15 
HPRT1 3.46 
RPL13A -1.21 
GAPDH -1.56 
ACTB -1.60 

Table 3.1 Effects of sera from aging-mimic mice on the expression of downstream 

targets of NF-B. LNCaP cells were exposed to sera from Aging Mimic (AM) or wild-type 

(WT) mice and the transcription of downstream targets of NF-B was analyzed by qPCR. 
The table shows fold-change differences between the AM and WT samples in expression 
of 86 different NF-κB target genes. Statistically significant difference are indicated in 
bold (p<0.05). 
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Figure 3.6 Effects of IL-17 in the sera from aging-mimic mice on expression of key 
downstream targets of NF-κB.  
 
Expression levels of cIAP2, VCAM-1, Cyclin D1 and FAS in LNCaP cells expressing IL-17R 
shRNA (shIL-17R1 and shIL-17R2) or Control shRNA (shControl)  were detected by 
immunoblot after exposure to sera from young wild-type (WT), old wild-type (OLD) or 
Aging Mimic (AM) mice (A). Graphs show the average relative densitometry values for 
three independent experiments. Different letters indicate statistically significant 
differences (p<0.05) (B) 
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Figure 3.7 Effects of IL-17 in the sera from aging-mimic mice on expression of key 
downstream targets of NF-κB.  
 
Expression levels of cIAP2, VCAM-1, Cyclin D1 and FAS in RWPE-1 cells expressing IL-17R 
shRNA (shIL-17R1 and shIL-17R2) or Control shRNA (shControl)  were detected by 
immunoblot after exposure to sera from  young wild-type (WT), 22-month old wild-type 
(OLD) or  Aging Mimic (AM) mice (A). Graphs show the average relative densitometry 
values for three independent experiments. Different letters indicate statistically 
significant differences (p<0.05) (B).  
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3.3.4 The aging-associated increase in T-lymphocyte IL-17 secretion moderately 

mediates prostate cancer cell proliferation  

After observing that IL-17 in the AM mouse sera regulates the transcription of 

several genes involved in proliferation and tumor promotion, we examined the effect of 

aging-associated circulating IL-17 on prostate cell proliferation. MTT assay was used to 

measure proliferation of the prostate cell lines. Exposure to AM mouse sera increased 

proliferation in LNCaP (Fig 3.8A) and RWPE-1 (Fig 3.8B) cells by 20% and 15%, 

respectively, in comparison to WT mouse sera.  However, AM mouse sera-induced 

proliferation was decreased by 40% in shIL-17R1, 20% in shIL-17R2 and 18% in shIL-

17R1, 13% in shIL-17R2 in LNCaP and RWPE-1 cells, respectively (Fig 3.8). Collectively, 

these results suggest that IL-17 in the AM mouse sera promotes prostate cancer cell 

proliferation, but has only minor effect on normal prostate epithelial cell proliferation.   

Based on our observation that IL-17 in the AM T-lymphocyte CM induced NF-κB 

activation (Fig 3.4), we also investigated whether IL-17 specifically originating from T-

lymphocytes promotes prostate cell proliferation. LNCaP and RWPE-1 cells transfected 

with IL-17R shRNA or control shRNA were exposed to CM from stimulated T-

lymphocytes from young WT and AM as well as old mice. AM and old CM stimulated 

greater proliferation in the shControl LNCaP cells in comparison to WT CM. This 

enhanced proliferation was slightly reduced by IL-17R knock-down in the LNCaP (Fig 

3.9A). In contrast, AM and old CM did not induce significantly greater proliferation in 
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the shControl RWPE-1 cells in comparison to WT CM, and IL-17R knock-down had no 

significant effect on RWPE-1 cell proliferation (Fig 3.9B).  Collectively, these results 

suggest that IL-17 originating from AM and Old mouse T-lymphocytes promotes the 

proliferation of prostate cancer cells, but not of non-transformed prostate epithelial 

cells. 
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Figure 3.8 Effect of IL-17 in the sera from Aging Mimic and wild-type mice on cellular 
proliferation.  

 
MTT assay was used to measure cell proliferation in response to sera from GPAT-1-/- 
Aging Mimic (AM), young wild-type (WT) or old wild-type (OLD) in LNCaP (A) and RWPE-
1 (B) cells expressing IL-17R shRNA (shIL17-R1 and shIL-17R2) or Control shRNA 
(shControl). Presented is the average of three independent experiments standardized to 
WT shControl. Different letters indicate statistically significant differences (p<0.05). 
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Figure 3.9 Effect of isolated splenic T-lymphocyte-secreted IL-17 from wild-type, Aging 
Mimic or old mice on cell proliferation.  
 
MTT assay was used to measure cell proliferation in response to conditioned media 
generated from anti-CD3 plus CD-28 stimulated splenic T-lymphocytes from either 
young GPAT-1 -/- Aging Mimic (AM), young wildtype (WT) or old wild-type (OLD) mice. 
Proliferation was assessed in LNCaP (A) and RWPE-1 (B) cells expressing IL-17R shRNA 
(shIL-17R1 and shIL-17R2) or Control shRNA (shControl). Presented is the average of 
three independent experiments standardized to WT shControl.. Different letters 
indicate significant differences (p<0.05).  
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3.4 Discussion 

One of the most significant risk factors for prostate cancer development is age 

[81]. One widely accepted explanation for the association between age and prostate 

cancer is the fact that prostate carcinogenesis is a characteristically long process [75] . 

Another possible mechanism responsible for prostate tumorigenesis in the elderly is 

aging-associated dysregulation of immune function.  To date, multiple studies have 

shown the importance of the immune system in preventing tumor formation [4, 95]. 

However, few studies have investigated the potential contribution of the retention of 

strong inflammatory responses to age-related prostate tumorigenesis. Retention of 

strong inflammatory responses with age, in the absence of counterbalancing and 

beneficial responses from the immune system, may dramatically enhance prostate 

tumorigenesis.  Inflammation is well established to be an amplificatory factor in prostate 

tumorigenesis [80]. Our data suggest that an aging immune system possibly promotes 

prostate cancer onset through induction of chronic inflammation, specifically via 

enhanced NF-κB signaling. In this chapter, I presented data showing the influence of one 

specific cytokine, IL-17, on age-related induction of pro-inflammatory pathways in 

prostate cells. Recent studies by other investigators have demonstrated that IL-17 

becomes dysregulated with age and that the proportion of IL-17 producing cells is 

higher in aged mice than in young ones [80]. Furthermore, various researchers have 

shown that IL-17 promotes the formation and growth of prostate cancer [43, 96, 97]. 
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Therefore, we hypothesized that age-related changes in IL-17 could potentially initiate 

prostate tumorigenesis through the activation of NF-κB [42, 98], which up-regulates the 

expression of pro-tumorigenic factors [42].   

Building upon our data that demonstrated that aging-related factors induce NF-

κB activity and its pro-survival downstream targets, we examined whether an aging 

immune system may contribute to the induction of pro-inflammatory pathways in the 

prostate thought the increased production of IL-17. Intriguingly, knocking down the IL-

17R in LNCaP prostate cancer cells exposed to sera from GPAT-1-/-Aging Mimic (AM) 

mice markedly diminished NF-κB transcriptional activity. This suggests that the aging-

related increase in IL-17 production may be partly responsible for the observed 

induction of NF-κB activity in prostate cancer cells exposed to AM sera. We also 

observed a significant reduction in NF-κB transcriptional activity in non-transformed 

RWPE-1 prostate epithelial cells transfected with IL-17R shRNA and exposed to AM 

mouse sera, indicating that this phenomenon is not restricted to cancer cells, and may 

play a role even during the very early stages of prostate carcinogenesis. We also 

examined the effect of sera from old mice on induction of NF-κB in the prostate. We 

found numerous similarities between the T cell aging-mimic and old mice in terms of 

regulation of NF-kB in prostate epithelial cells. Intriguingly, there were some key 

differences, which may reflect the more systemic events associated with the aging 

process as a whole and the inter-relationship between an aging immune system and the 
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aging tissues. The impact that the sera from old mice have on prostate cancer cells 

represents the actual aging process as a whole, not just the aging T cell population, as 

with our aging-mimic transgenic mice.   

One mechanism by which IL-17 may initiate prostate cancer progression is 

through the regulation of NF-κB target genes that control cancer cell proliferation and 

tumor growth. Our results show that knock-down of the IL-17R in prostate cells 

significantly reduces the aging-induced expression of two key NF-κB target genes, cIAP2 

and VCAM. Moreover, expression of the pro-apoptotic protein FAS is upregulated in 

prostate cancer cells lacking IL-17R. These results have important implications for our 

current understanding of IL-17’s contribution to induction of pro-tumorigenic pathways 

in the prostate, particularly given the changes in pro-inflammatory signaling found in 

non-transformed prostate epithelial cells exposed to AM mouse sera and T-lymphocyte 

CM. Furthermore, the observed increase in prostate cancer cell proliferation upon 

exposure to AM sera was significantly reduced when the IL-17 receptor was knocked 

down, demonstrating that the aging-related up-regulation of T-lymphocyte IL-17 

secretion may play a key role in prostate cancer progression.  

In summary, the present study provides evidence that the aging-associated 

increase in circulating IL-17 promotes pro-inflammatory signaling in prostate epithelial 

cells. T cells from our aging-mimic mice secrete elevated levels of IL-17, possibly due to 

an imbalance in the T Helper 17(TH17)/Regulatory T (Treg) cell ratio, commonly 
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associated with aging, making this an excellent model for the study of age-related 

changes in T-lymphocyte function [45]. The change toward a pro-inflammatory 

phenotype and increased production of IL-17 during aging may be actively promoting 

prostate cancer development via recruitment of inflammatory cells and induction of 

pro-inflammatory mediators.  

Better understanding of the immune dysfunction associated with aging will 

increase our ability to restore appropriate immune function and alleviate the burden of 

prostate cancer in the elderly. Future novel immunotherapies for prostate cancer could 

target the TH17/Treg imbalance associated with aging. Further investigation in this area 

is warranted.  
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Chapter 4: The Role of IL-17 and IL-6 in Aging related Prostate Tumorigenesis 

 4.1 Introduction  

Aging is positively correlated with increased circulating levels of many pro-

inflammatory cytokines such as interleukin-1 beta (IL-1β), tumor necrosis factors alpha 

(TNFα), interleukin-6 (IL-6) and interleukin-17 (IL-17) [83]. IL-6 is the most prominent 

cytokine shared across age-related pathologies having a strong chronic inflammatory 

component. There is strong evidence demonstrating that IL-6 serum concentration 

increases with age [46-49].  Maggio et al. reported that IL-6 mean values ranged from 

1.4 pg/ml (men) and 1.1 pg/ml (women) in the 65–74 years age group to 3.5 pg/ml 

(men) and 2.1 pg/ml (women) in persons 85 years and older, and that the age trend is 

partially independent of major confounders [48]. The etiology of chronically elevated IL-

6 in older adults is likely multifactorial, with increased presence of disease states, 

declines in estrogen and testosterone and changes on the immune system function and 

regulation, all contributing to IL-6 levels increase.  

In cancer, IL-6 is a growth/survival factor for a variety of tumor types. In prostate 

cancer, activation of STAT3 by IL-6 is correlated with increase proliferation, decreased 

apoptotic potential, regulation of epithelial-mesenchymal transition (EMT) and 

activation of androgen receptor genes [53].  A great number of reports have shown that 

elevated levels of circulating IL-6 are critical for prostate cancer development and 

progression [55, 56, 99, 100]. Human prostate cancer cell lines as well as clinical 
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prostate cancer specimens show constitutive expression of IL-6 and its receptor [101]. 

Studies have also demonstrated that IL-6 is elevated in sera of patients with castration 

resistant prostate cancer compared to normal controls, benign prostatic hyperplasia, 

and  localized prostate cancer [102]  

Tumorigenesis involves the acquisition of genetic and epigenetic changes that 

cause the aberrant loss or gain of functions by cellular proteins. The consequences 

include the ability of tumor cells to proliferate, resist apoptosis, demonstrate angiogenic 

potential, migrate, and invade, as well as the ability of these cells to evade immune 

surveillance. IL-6 can induce tumor initiation through activation of STAT3. Activated 

STAT3 has been linked to tumor initiation in part through the transcriptional regulation 

of critical target genes, including those for c-myc, c-fos, cyclin D1, matrix 

metalloproteinase 9 (MMP-9), MMP-2, vascular endothelial growth factor, Bcl-xL, Mcl-1, 

survivin, , as well as the epithelial-mesenchymal transition-related proteins – Snail, Slug   

and Twist [40, 103-105].  

Key features of early tumorigenesis include morphology changes, loss of cell 

contact inhibition and loss of cell polarity [106] . These early changes in cell morphology 

are widely associated with epithelial-mesenchymal transition (EMT), which also plays 

key roles in normal physiological processes such as embryogenesis, wound repair, and 

tissue remodeling [107-110]. The molecular hallmarks for EMT are down-regulation of 

epithelial markers, such as E-cadherin,, and up-regulation of mesenchymal markers  
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[109]. The induction of EMT can be triggered by transcription factors such as Snail, Slug, 

and Twist, which simultaneously repress the expression of genes that are required for 

the epithelial phenotype and induce the expression of genes required for mesenchymal 

properties [110]. The expression of these transcription factors is modulated by a 

number of signaling molecules, including STAT3 [111]. 

The objective of the following study was to better understand the connection 

between IL-6 and IL-17 in promoting prostate tumorigenesis. We previously 

demonstrated that IL-17 and IL-6 coming from aging T cells activate pro-inflammatory 

signaling in prostate epithelial cells, our next objective was to determine the role of IL-6 

and IL-17 in induction of age related prostate tumorigenesis. 

4.2 Materials and Methods  

4.2.1 Murine Models of an Aging Immune System 

C57BL/6 GPAT-1 +/- mice were obtained from Dr. Rosalind Coleman (University 

of North Carolina at Chapel Hill) and bred in our animal facilities to obtain homozygous 

knock-outs. Mice were fed a commercial chow diet (Prolab Rat/Mouse/Hamster 2000) 

provided by the animal facility. Offspring were numbered to monitor sex differences or 

differences between litters. Aged (>22 month old) C57BL/6 mice were purchased from 

the National Institute for Aging. Mice were housed on a 12:12-h light-dark cycle and had 

ad libitum access to food and water.   
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4.2.2 Cells and Cell Culture  

The LNCaP prostate cancer cell line was purchased from ATCC (Rockville, MD) 

and grown in RPMI-1640 containing 1% penicillin and streptomycin, supplemented with 

10% FBS in a 5% (v/v) CO2 humidified incubator at 37°C. The immortalized non-

transformed RWPE-1 prostate epithelial cell line was purchased from ATCC and grown in 

Keratinocyte Serum Free Medium (K-SFM) supplemented with bovine pituitary extract 

(BPE) and human recombinant epidermal growth factor (EGF) in a 5% (v/v) CO2 

humidified incubator at 37°C. The IL-17R shRNA clones (designated shIL-17R1 and shIL-

17R2) were generated by transfecting cells with the IL-17R shRNA Plasmid (h) sc-40037 

(Santa Cruz Biotechnologies, Santa Cruz, CA), using FuGENE HD transfection reagent 

(Roche, Basel, Switzerland) per manufacturer's instructions. Control LNCaP and RWPE-1 

cells (designated shControl) were generated by stably transfecting negative-control 

shRNA plasmids: Control Plasmid-B sc-108065 and Control Plasmid-C sc-108066 (Santa 

Cruz Biotechnologies, Santa Cruz, CA).  Puromycin antibiotic (Santa Cruz 

Biotechnologies, Santa Cruz, CA) was used to stably select transfected cells. All cells 

were maintained in selective RPMI-1640 or K-SFM media containing 4 µg/ml puromycin. 

RT-PCR was performed to monitor IL-17R gene expression knock-down using the IL-17R 

(h)-PR primer (Santa Cruz Biotechnologies, Santa Cruz, CA). In addition western blot 

analysis was used to confirm knock-down of the IL-17R gene. Antibodies against IL-17R 
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antibody (Santa Cruz Biotechnologies, Santa Cruz, CA) and phospho- and total-STAT3 

(Cell Signaling) were used. 
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4.2.3 Wound Healing Assay 

Cells were seeded into 6-well flat-bottomed plates at a density of 5×105 cells per 

well and allowed to grow to 90% confluence. After aspirating the medium, the 

monolayer was scratched with a sterile 100 µl pipette tip to create a denuded zone 

(gap) of constant width. The scratched areas were photographed at 0, 12, 24 and 48  

hours after wounding using a phase-contrast microscopy. Cell migration was calculated 

as percentages of cell coverage to the initial cell-free zone. The values are the means of 

three independent experiments. 

4.2.4 Western blot analysis 

Prostate shIL-17R and shControl cells were exposed for 48 hours to sera or 

conditioned media from stimulated T-lymphocytes, then harvested and lysed in Laemmli 

lysis buffer for SDS-polyacrylamide gel electrophoresis. The lysates were probed with 

the following antibodies: pSTAT3, STAT3, E-cadherin, pSMAD2/3, VCAM, FAS, cAIP2 (all 

Cell Signaling, Boston, MA), cyclin D1 (Millipore, Billerica, MA), and cMYC, ICAM, 

Vimentin, Survivin and Actin (Santa Cruz Biotechnology, Santa Cruz, CA).  Luminescent 

signal was detected on a Syngene (Frederick, MD) imaging system and quantitative 

densitometric analysis measured using GeneTools. 
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4.2.5 RT-qPCR 

Prostate Cancer LNCaP cells were exposed to sera for 48 hours. Total RNA was isolated 

with the QIAGEN (Valencia, CA) RNA extraction system according to the manufacturer’s 

instructions and transcribed into complementary DNA (cDNA). Gene expression of 

Tenascin, Fibronectin and Intering β6 was measure using the respecting primers. 

Expression was quantified by QIAGEN SYBR green real-time PCR on an Eppendorf 

instrument (Santa Clara, CA). Nonspecific signals caused by primer dimers were 

excluded by dissociation curve analysis and use of non-template controls. To normalize 

for loaded cDNA, actin was used as an endogenous control.  

4.2.6 Statistics  

Values are presented as mean ± standard error of the mean (SEM).  For the 

Western blot analyses and Luciferase assays, means were compared across treatment 

groups using Student's t-test and one-way ANOVA Multiple Comparison was used for 

comparing more than two conditions. P≤0.05 was considered statistically significant 
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 4.3 Results  

4.3.1 IL-17 and IL-6 in the sera from old and aging mimic mice induce activation of 

STAT3 

Immunoblot analysis (Fig 4.1) confirmed that expression levels of phospho-

STAT3 and key STAT3 target genes were upregulated in LNCaP cells when exposed to 

AM and OLD versus WT mouse sera for 24 hours.  IL-17R knock-down in LNCaP cells 

decreased activation of STAT3 and expression of its gene targets following exposure to 

AM mouse sera. Knocking-down IL-17R in LNCaP cells does not modulate pSTAT3 

expression in LNCaP cells exposed to sera from OLD mice. However, IL-17R knock-down 

in LNCaP cells significantly decreased expression levels of pSTAT3 following exposure to 

OLD mouse sera plus IL-6 depleting antibody.  

Our results showed that expression levels of key STAT3 genes were also 

upregulated in RWPE-1 cells when exposed to OLD versus young WT mouse sera IL-17R 

knock-down in RWPE-1 cells decreased expression levels of pSTAT3 and its target genes 

following exposure to AM mouse sera (Fig 4.1). IL-17R knock-down in RWPE-1 cells did 

not decrease the expression levels of pSTAT3 after exposure to sera from OLD mice. 

However, when IL-6 was depleted from the sera from OLD mice, activation of STAT3 

diminished completely.  Overall these data suggests that IL-6 and IL-17 in the OLD and 

AM mice are essential for STAT3 activation in prostate epithelial cells.  
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Figure 4.1 Effects of IL-6 and IL-17 in the sera from OLD and AM mice on expression of 
key downstream targets of STAT3. 

Expression levels of pSTAT3, E-cadherin, ICAM-1, pSMAD2/3 and Vimetin LNCaP and 
RWPE cells expressing IL-17R shRNA (shIL-17R1 and shIL-17R2) or Control shRNA 
(shControl)  were detected by immunoblot after 24 hour exposure to sera from young 
wild-type (WT), old wild-type (OLD) or Aging Mimic (AM) mice or sera from old wild-type 
mice plus 10ug/ml IL-6 depleting antibody (O+IL6AB) (A). Graphs show the average 
relative densitometry values for three independent experiments. Different letters 
indicate statistically significant differences (p<0.05) (B). 
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4.3.2 Sera from old mice increase expression of the transcription factors Slug, Snail 

and Twist 

Transcription factors, such as Snail, Slug, and Twist, are pivotal activators of EMT 

[106]. Snail, Slug and Twist have been reported to mediate EMT, resulting in tumor 

progression, and poor survival in patients with prostate cancer. Several transcription 

factors have been reported to be involved in EMT via repression of E-cadherin, and 

some of these include Twist, Snail, and Slug [110, 112, 113].  Since Slug, Snail and Twist 

are important targets of STAT3 implicated in tumorigenesis , we focused our attention 

on these three proteins. 

After establishing that IL-6 and IL-17 in the sera from old and AM mice is 

important for activation of  STAT3 in prostate epithelial cells, we sought to determine 

whether this activation of STAT3 results in enhance expression of key regulators of 

prostate tumorigenesis.  We used qPCR to measure expression levels of Snail, Slug and 

Twist. Twist mRNA levels were upregulated in RWPE-1 non-transformed cells when 

exposed to OLD versus WT or AM mouse sera (Fig 4.2-4.3). Expression levels of Slug 

were upregulated in RWPE-1 non-transformed cells when exposed to OLD and AM 

versus WT sera. IL-17R knock-down in RWPE-1 cells significantly decreased expression of 

Twist (Fig 4.3) and Slug (Fig 4.2) following exposure to AM mouse sera. Knocking-down 

IL-17R in RWPE-1 cells moderately modulated expression of Slug (Fig 4.2) in RWPE-1 
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cells exposed to sera from OLD mice. However, IL-17R knock-down in RWPE-1 cells 

significantly decreased expression levels of Slug following exposure to OLD mouse sera 

plus IL-6 depleting antibody (Fig 4.2). 

Overall these data suggests that IL-6 and IL-17 in the sera from OLD and AM mice 

play important role on expression of proteins involved in tumor initiation.  
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Figure 4.2 Effects of IL-6 and IL-17 in the sera from OLD and AM mice on expression of 
Slug  

Slug mRNA levels in RWPE-1 cells expressing IL-17R shRNA (shIL-17R1 and shIL-17R2) or 
Control shRNA (shControl)  were detected by qPCR after exposure to sera from young 
wild-type (WT), old wild-type (OLD) or Aging Mimic (AM) or to sera from old wild-type 
mice plus 10ng/ml of IL-6 depleting antibody (OLD +IL6AB) (A). 
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Figure 4.3 Effects of IL-6 and IL-17 in the sera from OLD and AM mice on expression of 
Twist 

Twist mRNA levels in RWPE-1 cells expressing IL-17R shRNA (shIL-17R1 and shIL-17R2) or 
Control shRNA (shControl) were detected by qPCR after exposure to sera from young 
wild-type (WT), old wild-type (OLD) or Aging Mimic (AM) or to sera from old wild-type 
mice plus 10ng/ml of IL-6 depleting antibody (OLD +IL6AB) (A)  
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4.3.3 Prostate epithelial cell migration and invasion induced by sera from OLD and AM 
mice 

To determine whether the aging-associated induction of EMT could result in 

phenotypical changes in prostate epithelial cells, we assessed the impact of sera from 

OLD and AM mice on prostate epithelial cell migration (Fig 4.4) and prostate epithelial 

cell invasion (Fig 4.5). After 24 hour exposure to sera, we observed that sera from AM 

and OLD mice moderately increased migration of prostate epithelial cells. Furthermore, 

exposure to sera from AM mice increased prostate epithelial cell invasion by 1.8 fold 

(Fig 4.5).  A similar trend was seen when we examined the impact of exposure to OLD 

sera on prostate epithelial cell migration. OLD sera stimulated greater cell migration in 

comparison to WT sera. Overall, these preliminary results strongly suggest that aging-

associated circulating factors may promote early phenotypical chances related to 

prostate tumorigenesis. 
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Figure 4.4 Circulating Factors in the sera from AM and OLD mice promote migration of 
prostate epithelial cells 

Wound Healing  Assay was used to measure cell migration in response to sera from 
GPAT-1-/- Aging Mimic (AM), young wild-type (WT) or old wild-type (OLD) in LNCaP (A). 
Cells were exposed to sera for 24 hours and pictures were taken at   0, 12, 24 and 48 
hours after wounding. Bars represent cell coverage percentages.  
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Figure 4.5 Circulating Factors in the sera from AM mice promote invasion of prostate 
epithelial cells 

Cell invasion assay using 24- trans well plate was used to measure cell migration in 
response to sera from GPAT-1-/- Aging Mimic (AM) or young wild-type (WT) in LNCaP (A) 
cells. Presented is the average of three independent experiments standardized to WT. 
Different letters indicate significant differences (p<0.05). 
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4.4 Discussion 

One of the most significant risk factors for prostate cancer development is age 

[81]. One widely accepted explanation for the association between age and prostate 

cancer is the fact that prostate carcinogenesis is a characteristically long process [75] . 

Another possible mechanism responsible for prostate tumorigenesis in the elderly is 

aging-associated dysregulation of immune function. Aging is positively correlated with 

increased circulating levels of many pro-inflammatory cytokines such as interleukin-1 

beta (IL-1β), tumor necrosis factors alpha (TNFα), interleukin-6 (IL-6) and interleukin-17 

(IL-17) [83].  

Tumorigenesis involves the acquisition of genetic and epigenetic changes that 

cause the aberrant loss or gain of functions by cellular proteins. The consequences 

include the ability of tumor cells to proliferate, resist apoptosis, demonstrate angiogenic 

potential, migrate, and invade, as well as the ability of these cells to evade immune 

surveillance. IL-6 can induce tumor initiation through activation of STAT3. Activated 

STAT3 has been linked to tumor initiation in part through the transcriptional regulation 

of critical target genes involve in epithelial-mesenchymal transition [40, 103-105].  

Data presented in previous chapters demonstrated that IL-6 and IL-17 in the AM 

and OLD mice activate pro-inflammatory signaling in prostate epithelial cells that could 

lead to initiation of prostate tumorigenesis. In this chapter I presented data showing the 

influence of IL-6 and IL-17 on activating targets of STAT3 that induce aged related 
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tumorigenesis. The activation of STAT3 in combination with the previously observed 

activation of NF-κB could be crucial for mediation of tumor initiation in non-transformed 

prostate epithelial cells. Tumor initiation is a process in which normal cells acquire the 

first mutational hit that sends them on the tumorigenic track by providing growth and 

survival advantages over their neighbors [114, 115]. Various investigators have 

previously demonstrated that constitutively activation of STAT3 can transform 

immortalized fibroblasts and breast epithelial cells, in part as a consequence of 

increased cyclin D1 and MMP-9 expression [105]. However, the levels of neither of 

these targets were increased in non-transformed RWPE-1 cells expressing constitutively 

active STAT3 [104], suggesting that there are additional STAT3 targets which are 

important for tumor initiation rather than tumor progression.  

Azare et al. demonstrated that the introduction of an activating mutant form of 

STAT3 into non-tumorigenic RWPE-1 prostate epithelial cells resulted in tumorigenesis. 

Constitutively activated STAT3 decreased E-cadherin levels, increased numbers of 

lamellipodia and stress fibers, and enhanced migratory capacities, with an associated 

increase in the expression of EMT markers [104]. 

In the study described in this chapter we focused our attention on the role of IL-

6 and IL-17, in the sera from OLD and AM mice, in inducing expression of STAT3 and its 

key downstream targets. We specifically focused on Slug, Snail and Twist, given their 

known roles in early stages of tumorigenesis [116, 117]. We demonstrated that IL-6 and 
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IL-17 in the sera from OLD and AM mice are essential for activating STAT3 in prostate 

epithelial cells. Our results showed that STAT3 activation by circulating factors in the 

sera from OLD and AM mice led to significant increases in the expression of Slug and 

Twist. Our findings strongly suggested that IL-6 and IL-17 in the sera from AM and OLD 

mice induced EMT through up-regulation of Slug and Twist, thereby favoring prostate 

epithelial cell migration and invasion. Furthermore, our in vitro experiments showed 

that stimulation with sera from OLD and AM mice could markedly increase migratory 

and invasive ability of prostate epithelial cells. Transcription factors, such as Snail, Slug, 

and Twist, are pivotal activators of EMT [110]. Despite lack of direct evidence, our 

findings strongly suggested that IL-6 and IL-17 in the sera from OLD and AM induced 

EMT through up-regulation of Slug and Twist, thereby favoring prostate epithelial cell 

migration and invasion.  

In summary, the present study provides evidence that the aging-associated 

increase in circulating IL-6 and IL-17 promotes activation of STAT3 signaling in prostate 

epithelial cells.  Previously we demonstrated that T cells from our aging-mimic mice 

secrete elevated levels of IL-17, which in turn activate NF-κB. STAT3 and NF-κB have 

crucial and integrated roles in inflammatory responses that promote prostate cancer 

development and growth [111]. The elevated levels of circulating IL-6 and increased 

production of IL-17 during aging may be actively promoting prostate cancer 

development via activation of NF-κB and STAT3. Here we showed preliminary evidence 
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that demonstrates that circulating factors in the sera from AM and OLD mice induce 

EMT, prostate epithelial cell migration and invasion, possibly via activation of the NF-κB 

and STAT3 pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

Chapter 5:  Concluding Remarks 

5.1 Conclusions 

The population of the United States is getting older, due not only to aging 

boomers but also to an increase in life expectancy [118]. An aging population means 

increased diagnosis of prostate cancer. In a society where life expectancy has increased, 

it is important to determine how aging is related to prostate cancer risk. The goal of my 

thesis was to better understand the mechanism by which age-related changes of the 

immune system may contribute to increased susceptibility to prostate cancer. The aging 

process affects the adaptive cell-mediated immune response while causing a shift to a 

more inflammatory cytokine profile. I hypothesize that the age-related shift in T-

lymphocyte cytokine profile is a significant contributing factor to the association 

between age and prostate tumorigenesis. 

To test my hypothesis I used the GPAT-1-/- mice model of aging T cells. The GPAT- 

-/- mouse serves as a novel model of accelerated T-lymphocyte aging since its T-

lymphocytes possess multiple hallmarks of aging [28-31, 59]. The GPAT-1-/- mouse 

provides a unique opportunity to investigate the effects of aging T-lymphocytes and 

inflammation on prostate cancer development in the absence of other age-related 

complications. Our data first demonstrated that T-lymphocytes from the GPAT-1-/- 

mouse up-regulate the production and secretion of pro-inflammatory cytokines. Many 

of the pro-inflammatory cytokines produced by aged T-lymphocytes have been 
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implicated in the promotion of prostate tumorigenesis, primarily through the induction 

of other pro-inflammatory pathways and the activation of transcription factors like 

nuclear factor-kappa B (NF-κB). Analogous engagement of these pathways is 

recapitulated in the GPAT-1-/- mice model, strongly suggesting that the aged immune 

system plays a critical role in promoting prostate carcinogenesis. To further characterize 

and compare the relative cytokine expression profile from T-lymphocytes from young 

GPAT-1-/- mice to those derived from young and old (>22 month) wild-type (WT) mice, a 

cytokine immunoarray was used. Consistent with our previous observation, the 

inflammatory phenotype of GPAT-1-/- T-lymphocytes resembled that which is 

characteristic of aged murine T-lymphocytes (Fig 2.1). While the three groups had 

similar levels of several of the cytokines and chemokines (IL-1α and IL-1β, for example), 

the knock-out and old mice trended together for many others, including MIP1α and β, 

RANTES, IL-3 and I-309. Of note, compared to that found in the wild-type young mice, 

levels of IL-17 were 12- and 8-fold higher in the GPAT-1 -/- and old mice, respectively. 

Levels of IL-6 were more than ten times higher in the old mice compared to the GPAT-1-

/- and WT mice, suggesting that in old mice the presence of aged cells and tissue induce 

the further secretion of IL-6. 

Cytokines secreted by aging T-lymphocytes can induce pro-inflammatory 

signaling that promotes activation of the NF-κB pathway, which has previously been 

shown to be critical for prostate cancer progression [62-66, 77]. Therefore, to determine 
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how cytokines from the aged and aging-mimic GPAT-1-/- T-lymphocytes affect NF-κB 

transcriptional activity, non-transformed prostate epithelial cells and prostate cancer 

cells were exposed to sera from young WT, old WT or young GPAT-1-/-  aging mimic mice 

(AM) (Fig 2.2), as well as to conditioned media from young WT, old WT or GPAT-1-/- 

splenic T-lymphocytes (Fig 2.3). Circulating factors in the old WT and young GPAT-1-/- 

mouse sera both induced significantly greater NF-κB transcriptional activity in the PC-3 

and LNCaP prostate cancer cell lines (Fig 2.2A) in comparison to the young WT mouse 

sera, suggesting that the age-specific shift in T-lymphocyte function may be partly 

responsible for the increased NF-κB activity. Further, we observed a greater than 3-fold 

induction of NF-κB transcriptional activity in the non-transformed prostate epithelial 

cells (PrEC and RWPE-1) after exposure to young GPAT-1-/- mouse sera (Fig 2.2B), 

indicating that induction of NF-κB activity by the age-related elevation in circulating 

cytokines is not restricted to cancer cells.  This age-related NF-κB induction in the non-

transformed epithelial cells could play a role in their transformation to prostate cancer 

cells, suggesting one mechanistic link to explain why age is a risk factor for the 

development of prostate cancer. In addition, we observed that factors secreted 

specifically by GPAT-1-/- and old WT T-lymphocytes also induced NF-κB in the LNCaP 

prostate cancer cells, as well as in the non-transformed RWPE-1 cells, suggesting that 

the aged and GPAT-1-/- T-lymphocytes directly modulate NF-B activity in prostate 

epithelial and prostate cancer cells. 
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Since the initial data indicated that T-lymphocytes from GPAT-1 -/- secrete high 

levels of IL-17, a key cytokine known to promote carcinogenesis, and that transcription 

factors like NF-κB are critical for both inflammation and tumor growth, we sought to 

determine the role of IL-17 in GPAT-1-/--induced NF-κB activity (Fig 3.3). shRNA was used 

to knockdown the receptor for IL-17 (IL-17R) in  prostate cancer cells (LNCaP) and non-

transformed prostate epithelial cells (RWPE-1).  NF-κB activation was assessed in the IL-

17R shRNA clones exposed to sera from the experimental and control mice. In the 

absence of IL-17R, there was a significant reduction in NF-κB transcriptional activity 

induce by old WT and GPAT-1-/- mouse, in both LNCaP and RWPE-1 cells (Fig 3.3). This 

data indicates that the increased secretion of IL-17 from the GPAT-1-/- T-lymphocytes is 

playing a crucial role in the activation of pro-inflammatory signaling in prostate cancer 

and normal epithelial cells.  

Since our data demonstrated that sera from old mice has high levels of IL-6, an 

important cytokine that promotes pro-oncogenic inflammatory pathways. We sought to 

determine the role of age related IL-6 and IL-17 expression in inducing pro-tumorigenic 

mediators in prostate epithelial cells. Our results demonstrate that increased production 

of IL-6 and IL-17 in the old mice induce the STAT3 signaling pathway. (Fig 4.1) IL-17 

coming from aging T-cells, in combination with elevated IL-6 levels, induces pro-

inflammatory pathways that promote prostate tumor initiation and progression. The 

elevated levels of circulating IL-6 and increased production of IL-17 during aging may be 
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actively promoting prostate cancer development via activation of NF-κB and STAT3. 

Preliminary evidence demonstrates that circulating factors in the sera from AM and OLD 

mice induce EMT, prostate epithelial cell migration and invasion, possibly via activation 

of the NF-κB and STAT3 pathways. 

In summary, the results from this thesis indicate that aged T cells produce 

circulating factors that induce pro-inflammatory pathways such as NF-κB and STAT3, 

leading to induction of factors that promote EMT changes, proliferation and further 

inflammation. Furthermore, results from these studies suggest that the increased 

production of IL-17 by aged T-cells in combination with aged-related increase in IL-6 

secretion induces pro-inflammatory pathways in prostate cells that in turn contribute to 

a more malignant phenotype in the prostate. 

This study has important implications for our current understanding of the 

contribution of the immune system to prostate cancer development. The data 

presented in this dissertation strongly supports the concept that the aging immune 

system actively promotes cancer development and progression, possibly due to the 

induction of chronic inflammation in the microenvironment that results in upregulation 

of pathways leading to neoplastic changes. This contribution to the understanding of the 

role of the aging immune system in cancer development opens new avenues for 

development of potential preventive interventions as well as screening biomarkers. 
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5.2 Future Directions 

In our second chapter we  used a cytokine array to characterize and compare the 

relative cytokine expression profile from T-lymphocytes of young GPAT-1-/- (AM) mice to 

those derived from young and >22 month old (OLD) and wild-type (WT) mice. We 

demonstrated that the AM T-lymphocytes as well as the OLD T-lymphocytes secrete 

increased amount of pro-inflammatory cytokines, such as IL-17, IL-6, MIP-1 and I-309 

(Fig 2.1). On chapter three and four we focused our attention on the role that IL-17 and 

IL-6 play in inducing prostate tumorigenesis. For future studies it is important to study 

the impact of MIP-1 and I-309 in prostate tumorigenesis. 

 MIP1α and β levels are 20-fold and 10-fold higher in the sera from OLD mice 

versus WT mice. MIP-1 proteins are major factors produced by macrophages after 

stimulation from bacterial infection. They are crucial for immune responses towards 

infection and inflammation. MIP-1 proteins also induce the synthesis and release of 

other pro-inflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-α from 

fibroblasts and macrophages [119]. Since these proteins are potent inducers of 

inflammation and they are highly elevated in AM and OLD mice, it is important for 

future studies to examine the role of MIPα and β in prostate cancer development. 

Knocking-down the receptor for IL-17R strongly diminished the activation of NF-κB and 

STAT3 by sera from OLD and AM mice, suggesting that IL-17 in the sera is mainly 

responsible for activating these pro-inflammatory pathways in prostate epithelial cells. 
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It is important to understand why MIP-1 is not playing such an important role in 

activating NF-κB in prostate epithelial cells.  It is also interesting to notice that I-309 

expression levels are 16- and 11 fold higher in the OLD and AM mice compared to the 

WT mice. I-309 is secreted by activated T cells and attracts monocytes, NK cells, and 

immature B cells. Since elevated amounts of I-309 in the sera from AM and OLD mice 

may further increase inflammation, it is important to investigate to role of I-309 in 

prostate cancer initiation and progression. 

For future studies is also imperative to understand the interaction between 

aging prostate epithelial cells and aging T cells. In order to understand the interaction 

between aging prostate epithelial cells and aging T cells in the prostate 

microenvironment, we first sought to determine the type of T cells that were infiltrating 

the prostate from AM and OLD mice. Preliminary results indicate that there are more 

TH17 T cells in the prostate from AM and OLD mice versus the WT mice (Appendix 1).  

We also did a series of preliminary in-vitro studies where we exposed T cells 

from human to conditioned media from senescent prostate epithelial and fibroblast 

cells and measured cytokine expression on the T cells. For these studies we used Jurkat 

T cells.  Jurkat cells are an immortalized line of human T cells that are used to study 

acute T cell signaling. Jurkat cells are also useful for T cell signaling studies because of 

their ability to produce interleukin 2. Our preliminary studies demonstrated that 

conditioned media from senescent prostate epithelial cells was able to regulate Jurkat T 
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cell IL-2 expression (Appendix 2). Suggesting that aged prostate cells can potentially 

affect the phenotype of T cells in the prostate microenvironment. 

We also studied the potential effect of condition media from aging T cells on 

recruitment of inflammatory cells to the prostate. Our results demonstrated that 

conditioned media from aging T cells induce monocyte recruitment to the prostate 

(Appendix 3). This data indicates that the enhanced cross-talk between the immune 

cells and the epithelial cells in an aging environment can mediate tumor-promoting 

inflammation. Additional studies need to be done to further characterize the interaction 

between aging prostate epithelial cells and the aging immune system.  

It is also important to further understand the mechanism by which aged T cells 

become dysregulated. Better understanding of the mechanisms by which the immune 

system deteriorates and contributes to prostate cancer development may lead to better 

interventions in the elderly. 
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Appendix 1:  AM and OLD mice have PIN lesions and increased levels of prostate-
infiltrating TH17 cells 
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Figure 5.1 T-cell aging mimic mice have PIN lesions and increased levels of prostate-
infiltrating TH17 cells.   

(A -C) CD4+ Immunohistochemistry staining of prostate tissue from AM, WT and OLD 
mice. (D-F) RORyt (TH17 marker) immunohistochemistry staining of prostate tissue from 
AM, WT and OLD mice. (G-I) T-bet (TH1 marker) immunohistochemistry staining of 
prostate tissue from AM, WT and OLD mice. Bar graph shows number of CD4+, TH1 
(Tbet) and TH17 (RORyt) T cells per 10x field. Pie graph shows the proportion of TH1 
versus TH17 cells in AM mice versus WT mice. 
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Appendix 2: Conditioned Media from Senescent Epithelial Cells Decreases T cell IL-2 
production 

 

Figure 5.2 IL-2 expression in human Jurkat T cells 

IL-2 mRNA levels in stimulated and unstimulated Jurkat T cells were detected by qPCR 
after exposure to conditioned media from senescent and wild-type prostate epithelial 
RWPE-1 cells. IL-2 expression levels were 2.5-fold lower in the stimulated Jurkat T cells 
exposed to conditioned media from senescent RWPE-1 cells versus cells exposed to 
conditioned media from wild-type RWPE-1 cells 
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Appendix 3: LNCaP cells treated with Conditioned Media from GPAT-1-/- T cells 

moderately induce recruitment of monocytes 
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Figure 5.3 LNCaP cells treated with Conditioned Media from GPAT-1-/- T cells 

moderately induce recruitment of monocytes. 
 
To determine if circulating factors coming from aging T-cells induce the production 
of specific proteins that recruit monocytes to the prostate, we prepared conditioned 
media by exposing LNCaP prostate cancer cells to sera from AM mice and preformed an 
invasion assay to see if agents released in the conditioned media attract monocytes to 
prostate cancer cells. The conditioned media from LNCaP cells exposed to sera from the 
GPAT-1 KO mice induced monocyte invasion by 37% as compared to control (WT). 
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