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Current hydraulic fracturing practice in unconventional resource development 

typically involves multiple fracturing stages, each consisting of the simultaneous creation 

of several fractures from a horizontal well. A large mass of proppant, often millions of 

pounds per well, is injected with the fluid to provide post-closure conductivity. Despite 

the large quantity of proppant used and its critical importance to well productivity, simple 

models are often applied to determine its placement in fractures. Propped or effective 

fracture lengths indicated by modeling may be 100 to 300% larger than the lengths 

inferred from production data. A common assumption is that the average proppant 

velocity due to pressure driven flow is equal to the average carrier fluid velocity, while 

the settling velocity calculation uses Stokes’ law. To more accurately determine the 

placement of proppant in a fracture, it is necessary to rigorously account for many effects 

not included in the above assumptions. 

In this study, the motion of particles flowing with a fluid between fracture walls 

has been simulated using a coupled computational fluid dynamics and discrete element 

method (CFD-DEM) that rigorously accounts for both aspects of the problem. These 

simulations determine individual particle trajectories as particle to particle and particle to 

wall collisions occur and include the effect of fluid flow. The results show that the 

proppant concentration and the ratio of proppant diameter to fracture width govern the 
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relative velocity of proppant and fluid. Proppant settling velocity has been examined for 

small fracture widths to delineate the effect of several independent variables, including 

concentration. Simulations demonstrate that larger concentration increases the average 

settling velocity, in apparent contrast with the available literature, which indicates that 

increased concentration reduces settling velocity. However, the observed increase in 

settling velocity is due to the absence of displacement driven counter current fluid flow. 

In a hydraulic fracture, counter current fluid flow is expected but its magnitude may be 

different to that produced by the advance of a step change concentration front, as occurs 

in experiments reported in the available literature. This demonstrates that proppant 

settling in a hydraulic fracture is more complex than usually considered. 

A proppant transport model, developed from the results of the direct numerical 

simulations and existing correlations for particle settling velocity, has been incorporated 

into a fully three-dimensional hydraulic fracturing simulator. This simulator couples 

fracture geomechanics with fluid flow and proppant transport considerations to enable the 

fracture geometry and proppant distribution to be determined rigorously. Injection rate, 

which is an engineering fracture design parameter, has been varied to show the effect on 

proppant placement. This allows for an understanding of the relative importance of 

different aspects of proppant transport and optimization of the treatment to a particular 

application. 

The presence of natural fractures in unconventional reservoirs can significantly 

contribute to well productivity. As proppant is transported along a hydraulic fracture, the 

presence of a dilated natural fracture forms a fluid accepting branch and may result in 

proppant entry. The proportion of proppant transported into a branch at steady state has 

been determined using the CFD-DEM approach and is presented via a dimensionless 

‘particle transport coefficient’ through normalization by the proportion of fluid flowing 
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into the branch. Reynolds number at the inlet, branch aperture and the angle of 

orientation between the main slot and branch, particle size and concentration each affect 

the transport coefficient. A very different physical process, which controls particle 

transport into a branch under certain conditions, is the formation of a stable particle 

bridge preventing subsequent particle transport into the branch. This phenomenon was 

observed in several simulation cases. 

The complete set of equations for a three-dimensional formulation of rectangular 

displacement discontinuity elements has been used to determine the width distribution of 

a hydraulic fracture and dilated natural fracture. The widths have been determined for 

several combinations of stress anisotropy, net pressure, hydraulic fracture height and 

length. The effect of the length, height and orientation of the natural fracture and the 

elastic moduli of the rock have also been examined. Of the cases examined, many show 

that natural fracture dilation does not occur. Further, of those cases where dilation is 

apparent, the proppant transport efficiency corresponding to the natural fracture width is 

significantly less than one and in many cases zero due to size exclusion. The natural 

fracture location and orientation do not significantly affect its width, while its length and 

the elastic moduli of the rock substantially change its width. 



 ix 

Table of Contents 

List of Tables ....................................................................................................... xiii	
  

List of Figures ...................................................................................................... xiv	
  

Chapter 1:  Introduction .......................................................................................... 1	
  
1.1 Context of the Study ................................................................................ 1	
  

1.1.1 Recent U.S. Unconventional Oil and Gas Production ................. 1	
  
1.1.2 Global Unconventional Oil and Gas Resources ........................... 2	
  

1.2 Key Technologies .................................................................................... 3	
  
1.3 Hydraulic Fracturing Techniques ............................................................ 4	
  
1.4 Research Objectives ................................................................................. 6	
  
1.5 Structure of the Dissertation .................................................................... 7	
  

Chapter 2:  Coupled Computational Fluid Dynamics and Discrete Element Method 
Simulation ...................................................................................................... 9	
  
2.1 Introduction .............................................................................................. 9	
  
2.2 CFD Simulation ..................................................................................... 11	
  
2.3 DEM Simulation .................................................................................... 13	
  
2.4 Coupling CFD and DEM Simulations ................................................... 15	
  
2.5 Implementation and Simulation Considerations .................................... 17	
  

2.5.1 Method Implementation ............................................................. 17	
  
2.5.2 Simulation Considerations ......................................................... 18	
  

2.5.2.1 Time Step for DEM Simulation ..................................... 18	
  
2.5.2.2 Time Step for CFD Simulation ...................................... 18	
  
2.5.2.3 CFD Simulation Mesh ................................................... 20	
  

2.6 Lubrication Forces ................................................................................. 21	
  

Chapter 3: Pressure Driven Flow of Non-Dilute Suspensions in Slots ................ 22	
  
3.1 Introduction ............................................................................................ 22	
  
3.2 Verification ............................................................................................ 26	
  

3.2.1 Verification Overview ............................................................... 26	
  



 x 
 

3.2.2 Simulation Domain and Boundary Conditions .......................... 26	
  
3.2.3 Verification Simulation Results ................................................. 29	
  

3.3 Single Particle Slot Poiseuille Flow Simulations ................................... 32	
  
3.3.1 Single Particle Slot Poiseulle Flow Simulation Overview ........ 32	
  
3.3.2 Single Particle Slot Poiseuille Flow Simulation Results ........... 33	
  

3.4 Multiple-Particle Uniform Flow Simulations ........................................ 38	
  
3.4.1 Multiple-Particle Uniform Flow Simulation Overview ............. 38	
  
3.4.2 Multiple-Particle Uniform Flow Boundary Conditions ............. 38	
  
3.4.3 Multiple-Particle Uniform Flow Results ................................... 39	
  

3.5 Analytical Slot Poiseuille Flow Model .................................................. 41	
  
3.5.1 Analytical Slot Poiseuille Flow Model Overview ..................... 41	
  
3.5.2 Analytical Slot Poiseuille Flow Model Derivation .................... 42	
  
3.5.3 Analytical Slot Poiseuille Flow Model Results ......................... 44	
  

3.6. Multiple-Particle Slot Poiseuille Flow Simulations .............................. 46	
  
3.6.1 Multiple-Particle Slot Poiseuille Flow Overview ...................... 46	
  
3.6.2 Multiple-Particle Slot Poiseuille Flow Results .......................... 47	
  

3.7 Conclusions ............................................................................................ 57	
  

Chapter 4: Settling of Non-Dilute Suspensions in Open Slots ............................. 59	
  
4.1 Introduction ............................................................................................ 59	
  
4.2 Application to Particle Settling .............................................................. 63	
  

4.2.1 Simulation Domain and Boundary Conditions .......................... 63	
  
4.2.2 Verification ................................................................................ 65	
  
4.2.3 Data Analysis ............................................................................. 67	
  

4.3 Results .................................................................................................... 69	
  
4.3.1 Effect of Concentration and Slot Width ..................................... 69	
  
4.3.2 Effect of Particle Size ................................................................ 71	
  
4.3.3 Effect of Particle Density ........................................................... 74	
  
4.3.4 Effect of Newtonian Fluid Viscosity ......................................... 75	
  

4.4 Conclusions ............................................................................................ 75	
  



 xi 

Chapter 5: Effective Propped Fracture Length ..................................................... 78	
  
5.1 Introduction ............................................................................................ 78	
  
5.2 Hydraulic Fracture Simulation Approach .............................................. 80	
  

5.2.1 Incorporation of CFD-DEM Correlations .................................. 80	
  
5.2.2 Mathematical Problem Definition .............................................. 80	
  
5.2.3 Fracture Mechanics and Propagation Criteria ............................ 81	
  
5.2.4 Fluid and Proppant Transport .................................................... 82	
  

5.3. Results ................................................................................................... 83	
  
5.3.1 Results Overview ....................................................................... 83	
  
5.3.2 Simulation Cases ........................................................................ 84	
  
5.3.3 Final Proppant Distribution ........................................................ 86	
  

5.3.3.1 Final Proppant Distribution with Injection at 25bbl/min 86	
  
5.3.3.2 Final Proppant Distribution with Injection at 15bbl/min 88	
  

5.4 Conclusions ............................................................................................ 89	
  

Chapter 6: Particle Transport of Non-Dilute Suspensions in Branched Slots ...... 91	
  
6.1 Introduction ............................................................................................ 91	
  
6.2 Application to Flow in a Branched Slot ................................................. 93	
  

6.2.1 Simulation Domain and Boundary Conditions .......................... 93	
  
6.2.2 Data Analysis ............................................................................. 98	
  
6.2.3 Domain Size, Grid Refinement, Time Step Considerations and 

Particle Seeding ......................................................................... 98	
  
6.3 Results .................................................................................................. 104	
  

6.3.1 Effect of Branch Width ............................................................ 104	
  
6.3.2 Particle Jamming ...................................................................... 107	
  
6.3.3 Peak Particle Transport Coefficient ......................................... 109	
  
6.3.4 Effect of Branch Orientation .................................................... 112	
  
6.3.5 Effect of Reynolds Number ..................................................... 114	
  
6.3.6 Effect of Fluid Rheology ......................................................... 117	
  
6.3.7 Effect of Particle Concentration, Size and Density ................. 120	
  

6.4 Conclusions .......................................................................................... 123	
  



 xii 

Chapter 7: Width of Dilated Natural Fractures ................................................... 125	
  
7.1 Introduction .......................................................................................... 125	
  
7.2 Displacement Discontinuity Simulation .............................................. 127	
  

7.2.1 Formulation .............................................................................. 127	
  
7.2.2 Verification .............................................................................. 130	
  
7.2.3 Application to a Dilated Natural Fracture ................................ 131	
  

7.3 Results .................................................................................................. 132	
  
7.3.1 Results Overview ..................................................................... 132	
  
7.3.2 Effect of Stress Anisotropy and Net Pressure .......................... 134	
  
7.3.3 Effect of Fracture Height ......................................................... 135	
  
7.3.4 Effect of Fracture Length ......................................................... 136	
  
7.3.5 Effect of Natural Fracture Location and Orientation ............... 138	
  
7.3.6 Effect of Elastic Moduli ........................................................... 139	
  

7.4 Implications for Proppant Transport .................................................... 139	
  
7.5 Conclusions .......................................................................................... 140	
  

Chapter 8: Conclusions and Future Work ........................................................... 141	
  
8.1 Conclusions .......................................................................................... 141	
  
8.2 Future Work ......................................................................................... 143	
  

Appendix A: Numerical Expense ....................................................................... 145	
  

Appendix B: Numerical Artifact ......................................................................... 147	
  

Nomenclature ...................................................................................................... 150	
  

References ........................................................................................................... 156	
  



 xiii 

List of Tables 

Table 5.1. Hydraulic fracture simulation parameters. ........................................... 85	
  

Table 6.1. Branched slot simulation parameters. ................................................ 102	
  



 xiv 

List of Figures 

Figure 1.1.	
   Top: U.S. tight oil production from 2002 to 2016. Bottom: U.S. shale 

gas production from 2002 to 2016. (EIA Shale in the United States 

http://www.eia.gov/energy_in_brief/article/shale_in_the_united_states.cf

m#tightoil) .......................................................................................... 2	
  

Figure 1.2.	
   Top: Total hydraulic fracturing records and use of sand reported. 

Bottom: Fluid type reported for each hydraulic fracturing record. 

(Gallegos and Varela (2015)). ............................................................ 5	
  

Figure 2.1. CFD-DEM simulation domain, adapted from Hager et al. (2012). .... 16	
  

Figure 3.1. Simulation domain. ............................................................................. 27	
  

Figure 3.2. Particle velocity transient for a particle positioned at the wall and center of 

the slot. ............................................................................................. 31	
  

Figure 3.3. CFD-DEM verification results compared to those from Staben et al. 

(2003). .............................................................................................. 31	
  

Figure 3.4. Particle velocity normalized by the modified average fluid velocity versus 

particle diameter to slot width ratio. Top left: Reynolds number. Top 

right: Newtonian fluid viscosity. Bottom left: Particle size. Bottom right: 

Fluid loss through the walls. ............................................................ 34	
  

Figure 3.5. Left: Particle velocity normalized by the modified average fluid velocity 

versus particle diameter to slot width ratio. Right: Particle velocity 

normalized by the modified maximum fluid velocity versus particle 

diameter to slot width ratio. ............................................................. 37	
  



 xv 

Figure 3.6. Left: Average particle velocity normalized by the average fluid velocity 

versus concentration. Right: Average particle velocity normalized by the 

modified average fluid velocity versus concentration. .................... 40	
  

Figure 3.7. Average particle velocity normalized by the average fluid velocity versus 

particle diameter to slot width ratio for several values of average 

concentration. ................................................................................... 45	
  

Figure 3.8. Particle velocity normalized by modified average fluid velocity versus 

dimensionless slot position at four points in time, including the initial 

condition. ......................................................................................... 48	
  

Figure 3.9. Concentration versus dimensionless slot position at four points in time, 

including the initial condition. ......................................................... 49	
  

Figure 3.10. Average particle velocity normalized by modified average fluid velocity 

versus particle diameter to slot width ratio for three sets of initial particle 

seeding. ............................................................................................ 50	
  

Figure 3.11. Left: Average particle velocity normalized by the average fluid velocity 

versus particle diameter to slot width ratio. Right: Average particle 

velocity normalized by the modified average fluid velocity versus 

particle diameter to slot width ratio. ................................................ 51	
  

Figure 3.12. Average particle velocity normalized by the average fluid velocity versus 

particle diameter to slot width ratio from Staben et al. (2003). The 

dashed curve is from asymptotic theory, the dot-dashed line is the first 

order correction and the solid curve is from the full numerical 

calculations of Staben et al. (2003). ................................................. 52	
  



 xvi 

Figure 3.13. The average particle velocity normalized by the modified average fluid 

velocity versus particle diameter to slot width ratio. Top left: Reynolds 

number. Top right: Newtonian fluid viscosity. Bottom left: Particle 

diameter. Bottom right: Fluid loss through the walls. ..................... 54	
  

Figure 3.14. Average particle velocity normalized by the modified average fluid 

velocity versus particle diameter to slot width ratio for different fluid 

rheology. .......................................................................................... 56	
  

Figure 3.15. Average particle velocity normalized by the modified average fluid 

velocity versus particle diameter to slot width ratio. Left: Particle elastic 

moduli. Right: Particle density. ....................................................... 57	
  

Figure 4.1. Simulation domain. ............................................................................. 63	
  

Figure 4.2. CFD-DEM verification results compared to those from Ganatos et al. 

(1980). .............................................................................................. 66	
  

Figure 4.3. Average particle settling velocity and average of the z component of the 

fluid velocity for fluid surrounding the particles versus time. ......... 68	
  

Figure 4.4. Left: Average particle settling velocity versus particle diameter to slot 

width ratio. Right: Average particle settling velocity versus 

concentration. ................................................................................... 69	
  

Figure 4.5. Average of z component of fluid velocity surrounding the particles versus 

concentration. ................................................................................... 71	
  

Figure 4.6. Left: Average particle settling velocity versus particle diameter to slot 

width ratio. Right: Average dimensionless force coefficient (from (4.4)) 

versus particle diameter to slot width ratio. ..................................... 72	
  

Figure 4.7. Average dimensionless force coefficient (from Stokes’ law (4.2)) versus 

particle diameter to slot width ratio. ................................................ 73	
  



 xvii 

Figure 4.8. Left: Average particle settling velocity versus particle diameter to slot 

width ratio. Right: Average dimensionless force coefficient (from 

Stokes’ law (4.2)) versus particle diameter to slot width ratio. ....... 74	
  

Figure 4.9. Left: Average particle settling velocity versus particle diameter to slot 

width ratio. Right: Average dimensionless force coefficient (from (4.4)) 

versus particle diameter to slot width ratio. ..................................... 75	
  

Figure 5.1. Simulation domain, fracture front and the perforated interval along the 

wellbore, adapted from Ribiero and Sharma (2013). ....................... 81	
  

Figure 5.2. Left: Minimum horizontal stress profile versus depth. Right: Proppant 

loading versus time. ......................................................................... 84	
  

Figure 5.3. Final proppant distribution with injection at 25bbl/min. Top left: Stokes 

settling. Top right: Corrected Stokes setting. Bottom left: Stokes settling 

and CFD-DEM correlation h(c, d/W). Bottom right: Corrected Stokes 

settling and CFD-DEM correlation h(c, d/W). ................................. 86	
  

Figure 5.4. Final average propped fracture width versus length with injection at 

25bbl/min. ........................................................................................ 87	
  

Figure 5.5. Final proppant distribution with injection at 15bbl/min. Top left: Stokes 

settling. Top right: Corrected Stokes setting. Bottom left: Stokes settling 

and CFD-DEM correlation h(c, d/W). Bottom right: Corrected Stokes 

settling and CFD-DEM correlation h(c, d/W). ................................. 88	
  

Figure 5.6. Final average propped fracture width versus length with injection at 

15bbl/min. ........................................................................................ 89	
  

Figure 6.1. Simulation domain. ............................................................................. 94	
  

Figure 6.2. Cumulative mass recorded at each counter versus time. .................... 98	
  



 xviii 

Figure 6.3. Particle transport coefficient versus the fraction of fluid flowing into the 

branch for different particle seeds and grids. ................................. 102	
  

Figure 6.4. Particle transport coefficient versus particle diameter to branch width 

ratio. Left: Fraction of fluid flowing into the branch between 0.2 and 

0.05, Right: Fraction of fluid flowing into the branch between 0.05 and 

0.005. .............................................................................................. 105	
  

Figure 6.5. Proportion of fluid flowing into the branch at zero particle transport 

coefficient versus particle diameter to branch width ratio. ............ 107	
  

Figure 6.6. Particle locations and velocities. Top to bottom shows three states of the 

system as it evolves with time. Left: Particle location (x and y 

coordinate) in the main branch. The main slot walls and branch are 

shown as a thick solid line. Right: Particle location in the y coordinate 

direction versus x component of velocity. ..................................... 108	
  

Figure 6.7. Particle velocities in the x and y coordinate directions at counter 1. The 

two top panes are at a fraction of fluid flowing into the branch of 0.2, 

while the two bottom panes are at 0.05. Left: Particle x velocity versus y 

coordinate location. Right: Particle y velocity versus y coordinate 

location. .......................................................................................... 111	
  

Figure 6.8. Particle transport coefficient versus the fraction of fluid flowing into the 

branch for branch orientation equal to 60, 90 and 120o. ................ 113	
  

Figure 6.9. Proportion of fluid flowing into the branch at zero particle transport 

coefficient versus branch orientation. ............................................ 114	
  

Figure 6.10. Particle transport coefficient versus average fluid velocity in the branch 

for Reynolds numbers of 1000, 2000, 4000 and 8000. .................. 115	
  



 xix 

Figure 6.11. Average fluid velocity in the branch at zero particle transport coefficient 

versus slot flow Reynolds number. ................................................ 117	
  

Figure 6.12. Particle transport coefficient versus average fluid velocity in the branch 

for different Newtonian fluid viscosity and Reynolds number. ..... 118	
  

Figure 6.13. Particle transport coefficient versus average fluid velocity in the branch 

for a Newtonian and a shear-thinning power-law fluid. ................ 119	
  

Figure 6.14. Particle transport coefficient versus the fraction of fluid flowing into the 

branch for concentration equal to 5 and 15% by volume. ............. 121	
  

Figure 6.15. Particle transport coefficient versus the fraction of fluid flowing into the 

branch for particle diameter equal to 0.0004 and 0.001m. ............ 122	
  

Figure 6.16. Particle transport coefficient versus the fraction of fluid flowing into the 

branch for particle density equal to 2650 and 3600kg/m3. ............. 123	
  

Figure 7.1. Rectangular displacement discontinuity element. ............................ 128	
  

Figure 7.2. Analytical and displacement discontinuity solutions to the width of a 

constant pressure fracture. ............................................................. 131	
  

Figure 7.3. Geometry of a hydraulic fracture and dilated natural fracture. ........ 132	
  

Figure 7.4. Left: Width variation with height for a natural fracture. Right: Width 

variation with height for a hydraulic fracture. ............................... 133	
  

Figure 7.5. Left: Width versus fluid pressure for a natural fracture. Right: Width 

versus fluid pressure for a hydraulic fracture. ............................... 134	
  

Figure 7.6. Left: Width versus fracture height for a natural fracture. Right: Width 

versus fracture height for a hydraulic fracture. .............................. 135	
  

Figure 7.7. Left: Width versus maximum horizontal stress for full and partial height 

natural fractures. Right: Width versus maximum horizontal stress for a 

hydraulic fracture. .......................................................................... 136	
  



 xx 
 

Figure 7.8. Left: Width versus total hydraulic fracture length for a natural fracture. 

Right: Width versus total hydraulic fracture length for a hydraulic 

fracture. .......................................................................................... 137	
  

Figure 7.9. Left: Width versus natural fracture length for a natural fracture. Right: 

Width versus natural fracture length for a hydraulic fracture. ....... 137	
  

Figure 7.10. Left: Width versus position of the natural fracture for a natural fracture. 

Right: Width versus position of the natural fracture for a hydraulic 

fracture. .......................................................................................... 138	
  

Figure 7.11. Left: Width versus natural fracture orientation for a natural fracture. 

Right: Width versus natural fracture orientation for a hydraulic fracture.

 ........................................................................................................ 139	
  

Figure A1. Left: Run time versus particle diameter to slot width ratio. Right: Run 

time versus number of particles. .................................................... 145	
  

Figure A2. Left: Quantity of simulation data produced versus proportion of fluid 

flowing into the branch. Right: Number of particles counted by counter 

1 versus proportion of fluid flowing into the branch. .................... 146	
  

Figure B1. Left: Particle velocity transient for a particle to slot width ratio of 0.1. 

Right: Particle velocity transient for a particle to slot width ratio of 0.95.

 ........................................................................................................ 147	
  

Figure B2. Particle velocity transient for a particle diameter to slot width ratio of 

0.95. ................................................................................................ 148	
  

Figure B3. Particle velocity normalized by the modified average fluid velocity versus 

particle diameter to slot width ratio. Particle located at the center of the 

slot in both the small and large length domains. ............................ 149	
  



 1 

Chapter 1:  Introduction 

 

The proppant mass included in hydraulic fracture treatments has increased 

substantially as well stimulation practices have been optimized for unconventional 

resource development. The increased fracturing activity associated with an increase in 

production of tight oil and shale gas, primarily in the U.S., can benefit from an improved 

understanding of proppant transport. 

1.1 CONTEXT OF THE STUDY 

1.1.1 Recent U.S. Unconventional Oil and Gas Production 

Production of tight oil and shale gas has increased dramatically in the U.S. over 

the past decade. The U.S. Energy Information Administration (EIA) has collated state 

administrative production data and provided estimates based on each shale play, shown in 

Figure 1.1.  
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Figure 1.1. Top: U.S. tight oil production from 2002 to 2016. Bottom: U.S. shale gas 
production from 2002 to 2016. (EIA Shale in the United States 
http://www.eia.gov/energy_in_brief/article/shale_in_the_united_states.cfm#
tightoil) 

Recent decreases in the oil price have resulted in a decrease in production of tight 

oil from the peak observed in 2015, through to the latest data shown in Figure 1.1, which 

is for 2016. However, at approximately 4.25 million barrels per day, more than 45% of 

the current U.S. total daily crude oil production of 9.179 million barrels per day (as of 

January 2016) is supplied by tight oil (EIA Crude Oil Production Data 

http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_m.htm). Similarly, of the 

91.135 billion cubic feet of natural gas produced per day in the U.S. (as of January 2016), 

43 billion is produced from shale (EIA Natural Gas Production Data 

http://www.eia.gov/dnav/ng/ng_prod_sum_a_EPG0_FGW_mmcfpd_m.htm), which 

represents a 47% share. 

1.1.2 Global Unconventional Oil and Gas Resources 

While recent production growth of tight oil and shale gas has been the largest in 

the U.S., there are significant unconventional oil and gas resources across the world. The 

EIA has compiled estimates of unproved technically recoverable shale gas and tight oil 
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resources (EIA Technically Recoverable Shale Oil and Shale Gas Resources 

https://www.eia.gov/analysis/studies/worldshalegas/archive/2013/pdf/fullreport_2013.pdf

). While such estimates are always subject to considerable revision, they indicate that 

China, Argentina, Algeria, U.S. and Canada have the largest resources of shale gas, of 

1115.2, 801.5, 706.9, 622.5 and 572.9 trillion cubic feet respectively. The U.S., Russia, 

China, Argentina and Libya are believed to have the most significant shale oil resources 

at 78.2, 74.6, 32.2, 27.0 and 26.1 billion barrels respectively. Clearly, the resource base is 

significant and there is potential for increased production worldwide when and where 

economic conditions prove favorable. 

1.2 KEY TECHNOLOGIES 

One significant characteristic of formations holding unconventional oil and gas is 

very low permeability. As a result, a large area of wellbore contact with the reservoir 

must be created in order to attain economic production rates. This objective is achieved 

through horizontal drilling and multi-stage hydraulic fracturing. Horizontal drilling 

involves controlled diversion of the drillstring from its initial vertical trajectory by means 

of a motor or rotary steerable system. The inclination of the wellbore is increased over 

the build section to target and then follow the productive interval for, typically, thousands 

of feet. A fluid mixture is subsequently pumped at high pressure into the wellbore, with 

the goal of initiating and extending several hydraulic fractures simultaneously during 

each stage. To provide conductivity of the created fractures, proppant is added at various 

concentrations over the course of injection, which typically lasts for tens of minutes. 

Firstly, a volume of proppant-free fluid in injected to initiate the hydraulic fractures and 

ensure sufficient width for subsequent entry of proppant. Secondly, proppant-laden fluid 
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at steadily increasing concentration is injected. Finally, more proppant-free fluid is 

injected to displace remaining proppant from the wellbore. 

1.3 HYDRAULIC FRACTURING TECHNIQUES 

Hydraulic fracturing has been used to increase well productivity for many 

decades. However, the fluid and proppant volumes and types used have changed 

significantly over time, as treatments have been adapted and optimized for particular 

reservoirs. Data compiled by IHS Energy and analyzed by Gallegos and Varela (2015) 

show that between 1953 and 1999 the average fluid volume used in horizontal gas wells 

was 6,026 barrels. For the period 2000 to 2010, the average for this well type was 71,654 

barrels, an increase of more than ten fold. There was a smaller increase in the average 

fluid volume used to hydraulically fracture horizontal oil wells, nonetheless more than 

twice the volume has been applied, on average, in the more recent period. Figure 1.2 

shows hydraulic fracturing records from Gallegos and Varela (2015). 
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Figure 1.2. Top: Total hydraulic fracturing records and use of sand reported. Bottom: 
Fluid type reported for each hydraulic fracturing record. (Gallegos and 
Varela (2015)). 

Gallegos and Varela (2015) report than proppant has been used in 84% of 

hydraulic fracturing treatments between 1947 and 2010, determined from the data 

presented in the top pane of Figure 1.2. Of the treatments where proppant was included, 

99% of these used sand with only 1% consisting of engineered materials such as ceramic 

or resin coated materials. Over the course of optimizing hydraulic fracturing treatments 

for unconventional reservoirs, the average mass of proppant used has increased. One 

example, provided by Beckwith (2011), is applications in the Bakken formation, where it 



 6 

was reported that 300,000lbs per well was typically used in the early 2000s and that 3 to 

5 million pounds per well were used at the time of writing. As an approximate, fluid and 

proppant volumes have increased together. 

The bottom pane of Figure 1.2 presents a breakdown of the fluid type used, with 

water being the most common until recently, when slickwater and ‘fluid’ became the 

most common. Obviously ‘fluid’ is a poor description, however it is assumed that this 

category covers primarily water based fluids. Slickwater is also a water-based fluid, 

though one with friction reducers added to reduce the pressure loss incurred during 

turbulent flow down the wellbore. These three categories do not make mention of 

additives that significantly increase viscosity, such as cross-linked gels, and may 

reasonably be described as low viscosity Newtonian fluids. 

1.4 RESEARCH OBJECTIVES 

The primary objective of this research is the accurate quantification of proppant 

transport in simple and complex hydraulic fracture networks. Numerical simulation has 

been used to determine transport at the granular scale and full fracture scale. Specifically, 

the work consists of: 

i. Application of a three-dimensional, coupled computational fluid dynamics 

and discrete element (CFD-DEM) code to quantify the relative phase 

velocities for pressure driven particle transport. 

ii. Use of the CFD-DEM code to study particle settling. 

iii. Improvement of an existing single planar hydraulic fracturing simulator, 

UTEFRAC-3D, which couples slurry flow and solid mechanics 

considerations, by inclusion of the results from step i). 
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iv. Application of the CFD-DEM code to determine particle transport in a 

branched fracture. 

v. Development of a multiple fracture simulator using a three-dimensional 

displacement discontinuity formulation. Subsequent examination of 

natural fracture dilation using the simulator. Discussion of results with 

respect to those found in step iv). 

1.5 STRUCTURE OF THE DISSERTATION 

The work has been divided into the following chapters: 

Chapter 2 presents the formulation of a three-dimensional CFD-DEM code used 

in much of this research. The equations solved in each representation of the system are 

provided. Further, a discussion of simulation considerations including dynamic mesh 

refinement is provided. 

Chapter 3 covers application of the CFD-DEM code to the problem of pressure 

driven particle transport with fluid flow between parallel walls. Results are presented as a 

function of the independent variables of interest. 

Chapter 4 details use of the CFD-DEM code to study particle settling in a fluid 

between parallel walls. The results are normalized as appropriate and the dependency 

upon the independent variables of interest examined. 

Chapter 5 includes the improvement of UTEFRAC-3D to include a new model for 

proppant transport, based on the results of Chapter 3. The impact of this model upon 

propped fracture lengths, when compared to existing models, is determined. 

Chapter 6 examines particle transport into a branched fracture by means of the 

CFD-DEM code. The results are presented by means of the dimensionless transport 

efficiency, which depends upon many independent variables. 
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Chapter 7 presents the development of a three-dimensional multiple fracture 

model. The equations solved and application to the dilation of a natural fracture are 

included, as are the results as a function of the independent variables considered. 

Chapter 8 draws conclusions from the work and provides directions for future 

study.  
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Chapter 2:  Coupled Computational Fluid Dynamics and Discrete 
Element Method Simulation 

 

A completely general theoretical analysis of the motion of solid bodies in a fluid 

consists of determining the velocity and pressure across the fluid domain by solution of 

conservation of mass and momentum for the fluid and calculating the forces and torques 

exerted by the fluid on the solid bodies and their resultant motion. The boundary 

conditions applied to the fluid domain and the constitutive equation used for the fluid 

rheology allows any arbitrary fluid flow to be analyzed, including those in laminar and 

turbulent flow regimes. Multiple solid bodies can be included, with the contact forces 

arising due to collisions between them and any solid domain boundaries calculated 

rigorously. As a result, these methods can be applied to a broad range of practical 

applications. 

2.1 INTRODUCTION 

The general approach may be solved numerically by several different methods. 

One of the earliest applications of this type of simulation was that of Hu et al. (1992), 

where a finite-element solution was employed. The simplified problem solved was that of 

the motion of two cylinders settling in a quiescent incompressible Newtonian fluid in a 

rectangular domain. Despite the simplification of the physical system to two dimensions, 

Hu et al. (1992) successfully qualitatively reproduced the scenario of ‘drafting, kissing 

and tumbling’ observed in physical experiments concerning spheres falling through a 

fluid conducted by Fortes et al. (1987). 

Feng et al. (1994) applied the approach of Hu et al. (1992) to the motion of solid 

cylinders in two dimensional slot Poiseuille flow. They determined the equilibrium 
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position of the cylinders in the slot, where the sum of lateral forces is zero. They also 

demonstrated that the equilibrium position is shifted closer to the wall for a larger 

Reynolds number. Yang et al. (2005) determined the lift force, slip velocities and 

equilibrium position of a solid spherical particle in tube Poiseuille flow. They validated 

their solution by comparison to the migration trajectories recorded in physical 

experiments conducted by Karnis et al. (1966). The work demonstrated that the 

equilibrium position in the slot moves closer to the wall with increasing Reynolds 

number, qualitatively in agreement with the results of the two dimensional simulations of 

Feng et al. (1994), despite the different geometry examined. 

It should be noted that all the studies included above solve the fluid flow field 

around each individual solid body, a numerically expensive process. Adopting the 

terminology used by Shirgaonkar et al. (2009) in the development of a method to 

calculate the force imposed by a fluid on an immersed body, this method is ‘fully 

resolved’. Previous work, such as that of Hu et al. (1992), refers to this approach as 

‘direct numerical simulation’ (DNS). However, this work includes turbulence modeling 

which introduces a context where DNS is used to specify solution of the flow field at a 

scale sufficient to capture the smallest fluctuations, which is not undertaken in this 

research. As a result the term ‘fully resolved’ is used in lieu of ‘direct’. The fully resolved 

approach is distinctly different to the commonly used ‘unresolved’ approach in that the 

latter utilizes drag (and other) force models for the solid-fluid coupling, where in the 

former it arises from the solution. The unresolved approach is suitable for larger systems 

of particles where the domain geometry is on a much larger scale than the particles. 

Recent work using reduced order force models has investigated particle transport with 

turbulent fluid flow and been applied to bed load transport and saltation. See Duran et al. 

(2012) and Maurin et al. (2015) for examples of this approach. Since this research 
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includes simulation cases where the particle diameter is only slightly smaller than the 

wall spacing, resolution of the fluid flow around particles is necessary for accurate 

calculation of particle transport. As such, a fully resolved computational fluid dynamics 

and discrete element method (CFD-DEM) approach has been applied. 

The open source CFD library OpenFoam was used to solve the time-varying 

governing equations for the fluid in a Cartesian coordinate system using a finite-volume 

spatial discretization approach on an Eulerian grid, see Weller et al. (1998). The particle 

motion was solved using a Lagrangian approach with LIGGGHTs, an open source DEM 

software package, see Kloss et al. (2012). The coupling between the CFD and DEM 

solutions was achieved through the fluid force acting on each particle, through a method 

proposed by Shirgaonkar et al. (2009) and implemented by Hager et al. (2011) using an 

immersed boundary approach. The details of this approach are presented below. 

2.2 CFD SIMULATION 

OpenFoam (Open Source Field Operation and Manipulation) was used to solve 

the velocity and pressure of the fluid across the domain. The mass and momentum 

conservation equations, respectively, which govern the flow of any incompressible fluid 

are: 
∇⋅u f = 0     (2.1) 

and 

ρ f
∂u f

∂t
+ ρ fu f ⋅∇u f = −∇p+∇⋅τ

    (2.2)
 

where uf is the fluid velocity vector (m/s), ρf is the fluid density (kg/m3), t is time (s), p is 

the pressure (Pa) and τ is the deviatoric stress tensor (Pa). It should be noted that the 

momentum conservation equation, (2.2), does not include the body force term from 

which the hydrostatic pressure gradient arises. The hydrostatic pressure gradient, in turn, 
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produces the buoyancy force on an immersed particle. While the body force term is 

omitted, the fluid-particle force that arises as a result is included rigorously in the DEM 

simulation, as discussed below. The deviatoric stress tensor is given by: 
τ =ηe     (2.3) 

where e is the strain rate tensor (1/s), given by: 
e =∇u f + ∇u f( )

T

    (2.4) 

and η is the dynamic viscosity (Pa-s), which for a Newtonian fluid is independent of e 

and assumed constant for this work. Fluids with different rheological properties, 

following Newtonian and shear thinning Power-law behavior, were included in the study. 

For a Power-law fluid η is not constant but defined by the function: 
η =ηcγ

n
    (2.5) 

where ηc is the fluid consistency index (Pa-sn), γ is the shear rate (1/s) and n is the fluid 

behavior index. For a shear-dominated flow, such as the applications studied in this work, 

the shear rate is a function of IIe, the second invariant of the rate of strain tensor given by: 
γ = IIe     (2.6) 

IIe =
1
2
tr e2( )− tr e( )( )

2"
#$

%
&'     (2.7)

 

In the case of turbulent flow, the above conservation equations can be used for the 

resolution of fluid flow down to the smallest length scale through the use of very fine 

spatial discretization, the DNS approach, see texts such as Versteeg and Malalasekera 

(1998). However, the DNS of turbulent flow structures is computationally very expensive 

and impractical for this application where considerable numerical expense is already 

incurred. There are many models available for modeling turbulent flow, allowing for sub 

grid scale physics to be effectively captured, see texts such as Wilcox (1997). One of the 

most widely used models is the k – ε model, which is used in this work and requires the 
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solution of two additional conservation equations for turbulence kinetic energy and its 

dissipation, respectively, see Jones and Launder (1972). 

2.3 DEM SIMULATION 

Cundall and Strack (1979) originally introduced the discrete element method 

(DEM). Significant theoretical developments related to contact physics and advances in 

parallel computing have been made since the original work. The latter allows for efficient 

application to large-scale engineering problems, while the former is reviewed 

comprehensively in Zhu et al. (2007) and will not be included in detail in this work. 

The DEM procedure involves determining the sum of forces and torques on each 

individual particle in the system. Subsequently, integration of Newton’s second law of 

motion twice with respect to time allows for solution of the velocity and position of the 

particle. The equations of motion may be expressed as follows: 

mi
d2 xi
d t2

= Fi total
(2.8)

 

Ii
d2 θi
d t2

=Mi total
 (2.9) 

where mi is the mass of particle i (kg), xi = (xi, yi, zi) is the coordinates its center of gravity 

(m) and Fi total is the total force acting upon the particle (N). Considering rotation, Ii is the 

moment of inertia (kg-m2), θ i is the angular position (rad) and Mi total is the total 

moment acting on the particle (N-m). In the case of a granular only simulation, the total 

force acting on a particle is due to contact forces, due to both particle to particle 

collisions and particle to wall collisions. In this particular application, in addition to the 

contact forces calculated, the only non-contact force present is that exerted by the fluid 

surrounding the particles. 
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Particles are modeled as elastically isotropic homogeneous spheres, neglecting 

surface roughness. Hertz (1882) developed a non-linear force-displacement law for the 

normal component of contact between such spheres, while later Mindlin and Derieswicz 

(1953) provided a solution for the tangential component. The DEM code used, 

LIGGGHTs (‘LAMMPS Improved for General Granular and Granular Heat Transfer 

Simulations’) is based on LAMMPS (‘Large Atomic and Molecular Massively Parallel 

Simulator’). This code includes an implementation of these models with sliding assumed 

to occur if the tangential component of the inter-particle force exceeds the Coulomb 

frictional force. Combining normal and tangential components, the inter-particle force 

can be written as: 
Fij = knδnij −γnΔupnij( )+ ktδtij −γ tΔuptij( )     (2.10) 

where Fij is the inter-particle force (N), k is the spring coefficient (N/m), δ is the overlap 

(m), γ is the damping coefficient (N-s/m) and Δup is the relative speed (m/s). Symbols nij 

and tij are used to denote unit vectors in the normal and tangential directions considering 

a Langrangian coordinate system. The subscripts n and t are used to denote the normal 

and tangential directions. Finally, subscript ij is applied to the interaction of particle i 

with particle j. The same law applies for collisions between particles and walls, where the 

wall is assumed to have an infinite mass and size. For more detail on the calculation of 

the spring and damping coefficients from the particle material properties, see Kloss et al. 

(2012). 

There are additional non-contact forces applied to each particle as a result of the 

body force acting (gravity) and due to immersion in a fluid, either static or dynamic. 

These forces are discussed in the following section. 
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2.4 COUPLING CFD AND DEM SIMULATIONS 

Determining the buoyant force on a particle immersed in a compressible fluid 

requires integration of the hydrostatic pressure distribution across its surface. As noted 

above, the form of the Navier-Stokes equation applied does not produce a hydrostatic 

pressure distribution. However, for an incompressible fluid, the buoyant force is given 

simply by the weight of displaced fluid. The gravitational force on a particle is its weight. 

The difference between these two forces is rigorously given by: 

FArchimedes =
1
6
πd3 ρp − ρ f( )g     (2.11) 

where FArchimedes is the difference in forces from gravity and buoyancy (N). In addition to 

this force, which arises in both static and dynamic fluids, fluid motion leads to an 

additional pressure and viscous force applied to each particle. 

Shirgaonkar et al. (2009) proposed an algorithm to solve the motion of rigid or 

flexible bodies immersed in a fluid. This algorithm treats the solid phase as subject to the 

governing equations of the fluid phase with an additional constraint imposed, similarly to 

the approach adopted by Patankar et al. (2000) for rigid bodies. The complete rigid body 

constraint is: 
u p point = u p+ω × r     (2.12) 

where up point (m/s) is the velocity of a point on the particle at position vector r (m) with 

respect to the particle centroid, while up (m/s) and ω (rad/s) are the translational and 

angular velocities of the particle, respectively. The interface conditions between the fluid 

and each solid particle are given by: 
u f = u p   and  trΓs =σ ⋅n   on  Γs     (2.13) 

where tr (Pa) is the traction, σ  (Pa) is the stress tensor and n is the outward normal unit 

vector to the surface Γs. The stress tensor for an elastic fluid is: 
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if 
else 

σ = −pI+τ     (2.14) 

There is a surface Γs for each particle in the entire domain Ω (fluid and solid 

particles), with Ωs denoting the solid domain, which is shown shaded grey in Figure 2.1. 

 

Figure 2.1. CFD-DEM simulation domain, adapted from Hager et al. (2012). 

The second interface condition (provided in (2.13)), combined with the rigid body 

constraint, which requires the deformation rate tensor to be zero in each solid domain, 

produces a stress field in the solid domain. The implementation of Hager et al. (2011) 

uses a volumetric integration of the stress field across each discrete particle to determine 

the fluid to particle force applied. This is as follows: 
α x, y, z, t( )dV = α x, y, z, t( )ξ x, y, z, t( )dV

Ω

∫
Ωs

∫
    (2.15)

 

where the function ξ  is a scalar marker function that takes the value of unity across the 

solid domain and zero in the fluid domain. Hence: 

ξ = 1
0

!
"
#           x, y, z( ) ∈ Ωs     (2.16) 

Finally: 
α = −∇p+ν∇2u p point     (2.17) 

The specific implementation used in this work uses a simplification of the rigid 

body constraint, which neglects the rotational component: 
u p point = u p     (2.18) 

Ωs
Γs

Ω
Ω
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This limits application of the method to cases where particle rotation is not crucial 

to the accuracy of the calculations. For example, the case of dilute concentration at 

sufficiently large Reynolds number to observe lateral migration to the Segre and 

Silberberg equilibrium position may not be captured accurately. However, particle 

rotation is assumed to be less important to the application of interest to this study, those 

of cases of non-dilute concentration. 

2.5 IMPLEMENTATION AND SIMULATION CONSIDERATIONS 

2.5.1 Method Implementation 

The implementation of the method is detailed in Goniva et al. (2011) and Hager et 

al. (2011). It consists of the following steps: 

i. Calculation of the particle positions and velocities by the DEM solver. 

ii. An initial solution of the velocity and pressure of the fluid across the 

entire domain by the CFD solver, neglecting the presence of solid 

particles. 

iii. Imposition of the particle velocities from the DEM solver upon portions of 

the domain covered by the solids in the CFD representation of the system. 

iv. Calculation of the fluid force upon each particle. 

v. Correction of the initial fluid velocity and pressure solution by the CFD 

solver to satisfy a ‘divergence free’ condition (the divergence free 

condition is a consequence of the conservation of mass for an 

incompressible fluid, see (2.1)). 

vi. Repeat from step i). 

The two codes, OpenFoam and LIGGGHTs, are run independently with a 

particular coupling interval at which time the required data exchange is completed. 
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2.5.2 Simulation Considerations 

2.5.2.1 Time Step for DEM Simulation 

The time step required for numerical stability of the DEM solver is smaller than 

that of the CFD solver. There are two criteria necessary for DEM simulation stability, use 

of a time step smaller than both the Raleigh and Hertz times. Both criteria are functions 

of particle size and elastic moduli, while the former also depends upon density and the 

latter includes a relative velocity term. Precisely how much smaller than the two criteria 

the time step needs to be for stability is a function of coordination number, see 

O’Sullivan and Bray (2004). Due to the nature of the applications of interest, a priori 

knowledge of the particle positions and hence the coordination number is both 

unavailable and dynamic and as such a conservative value of 0.2 has been used in this 

work. For the majority of simulations, with a particle diameter of 0.0004m, the DEM 

time step used was 3x10-8s. Simulations with larger particle sizes of 0.00055, 0.0007 and 

0.001m diameter enabled use of a larger time steps, 4x10-8, 5x10-8 and 7x10-8s, 

respectively. The simulations of particles with larger elastic moduli required a smaller 

time step of 2x10-8s. 

2.5.2.2 Time Step for CFD Simulation 

The Courant number, a measure of the magnitude of the local fluid velocity 

relative to the size of the grid-block for a particular time step, is the relevant criteria for 

CFD simulation stability. Considering a fluid flow only simulation, a Courant number 

limit of approximately 0.5 is common practice. In the case of the coupled simulation 

approach used in this research, a coupling interval is required. This determines a 

particular number of smaller DEM time steps taken before a larger CFD time step is 

made. In the absence of a rigorous method of selecting an appropriate coupling interval, a 
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trial and error approach has been adopted. A result of the smaller DEM time step and the 

necessary coupling interval selected is that the CFD time step used produces a Courant 

number much smaller than 0.5. 

Due to the considerable numerical expense of the method and constraints upon 

run times, a large coupling interval is necessary to produce sufficient simulation data for 

non-dilute cases. For example, simulation of a system with many particles using a 

coupling interval of only one or two would not reach steady state before the run time 

limit set for the hardware used. The run time required for several simulation cases is 

included in Appendix A. Confirmation that the accuracy of the calculations is maintained 

with a large coupling interval was investigated by means of less computationally 

expensive single particle cases in slot Poiseuille flow. The smallest slot width considered 

in the study presented in Chapters 3, 4 and 6 requires a particle diameter to slot width 

ratio of 0.95. This geometry was used to make two comparisons of the calculated 

translational velocity of a single particle in the center of a slot at Reynolds numbers of 

one and one thousand, which place the flow in the creeping and laminar flow regimes, 

respectively. The results determined from comparing simulations using coupling intervals 

of one and 20 were found to be in agreement to ~2%. For the majority of simulations 

presented in Chapter 3, the coupling interval used was 20. The exception is cases with a 

particle diameter to slot width ratio of 0.1, for which a coupling interval of 40 was used. 

This is by necessity given the relatively large number of particles simulated in these 

cases, but acceptable given the smaller fluid and particle velocities apparent. The expense 

of a relatively large domain used in the simulation cases examined in Chapter 4 and the 

large amount of simulation data required for analysis of the cases presented in Chapter 6 

required use of a coupling interval of 100 for the majority of cases. The exception is the 

simulation cases at larger Reynolds number presented in Chapter 6, where a smaller 



 20 

coupling interval was necessary. A coupling interval of 60 was used for a Reynolds 

number of 4000 and a coupling interval of 30 or 40 (as necessary for stability) for the 

Reynolds number of 8000 cases. 

The coupled approach is explicit in that step iii) uses the particle velocities from 

the previous time step to complete the fluid to particle force on each particle and solution 

of the fluid flow field, steps iv) and v). The approach has been successfully verified by 

comparison to analytical solutions, as discussed in Chapters 3 and 4. 

2.5.2.3 CFD Simulation Mesh 

Domains of relatively simple geometry, rectangular boxes, have been used for the 

studies presented in Chapter 3 and Chapter 4. For the study of particle transport in slot 

Poiseuille flow, the x and z coordinate directions (both not cross-slot directions) as 

defined in Chapter 3, use a less refined original static mesh used when compared to the 

cross-slot direction. The width of the grid-blocks used is half the particle diameter. For 

slot Poiseuille flow, across the slot there is zero pressure gradient but large velocity 

gradients, especially close to the walls. For cases with a larger slot width and hence 

smaller velocity gradients, a mesh of grid-blocks of width half the particle diameter has 

been used, the same as used in the other two coordinate directions. For cases with a 

smaller slot width, grid-blocks with a width less than half a particle diameter have been 

used to adequately resolve the velocity profile. In addition to these considerations for the 

original static mesh, dynamic mesh refinement has been used for greater resolution of 

particles and the fluid flow around them, while using less computational resources in 

regions of the domain where a fine mesh is not required. Two refinement steps, each of 

which split a grid-block in two in each of the three Cartesian coordinate directions has 

been employed. The same grid has been used for the particle settling study presented in 
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Chapter 4, with the exception of the grid blocks used in the x coordinate direction, where 

three grid blocks per particle diameter was used in place of two. The grid used for the 

study of particle transport in a branched slot, presented in Chapter 6, uses a more 

sophisticated grid, which is discussed in detail in that chapter. 

2.6 LUBRICATION FORCES 

The force upon each particle resulting from the surrounding fluid flow and the 

forces arising from particle to particle and particle to wall collisions are all captured by 

the method as detailed above. However, simulation approaches such as this may produce 

an error in the calculation of the force exerted by the fluid on a particle just prior to a 

collision. This is a result of the thin film of fluid between particles and the grid used for 

the CFD simulation. One approach to improving the accuracy of these simulations, 

without refining the grid, is to use a lubrication force correction for particles within a 

particular proximity. Lambert et al. (2013) implemented such a solution two particles in 

squeezing motion, finding that it was not required for shearing motion. Since the 

dominant motion of particles in this work is with flow parallel to walls, resulting in 

shearing motion, a lubrication correction has not been applied in this work. It is 

interesting to note that Lambert et al. (2013) conducted simulations over a range of 

volumetric concentration from 7.8% to 24%, with and without lubrication corrections 

applied, finding that the results showed no appreciable difference. A similar 

concentration range for multi-particle simulations has been considered in this work, 5% 

to 25%, suggesting that neglecting a lubrication correction is acceptable.  
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Chapter 3: Pressure Driven Flow of Non-Dilute Suspensions in Slots 

 

The simulation approach detailed in Chapter 2 has been used to complete a 

comprehensive study of the transport of spherical solid particles with pressure driven 

fluid flow in a slot. The average velocity of particles has been determined relative to the 

average velocity of fluid. 

3.1 INTRODUCTION 

In general, transport of solid particles with fluid flow results from the 

macroscopic pressure gradient driving flow and the density difference between the 

particles and the surrounding fluid, in the case of non-neutrally buoyant particles. The 

fully developed velocity profile across a slot that arises from the pressure driven laminar 

flow of a Newtonian fluid between two parallel plates follows a parabolic expression, 

termed slot Poiseuille flow in this research. Flow in a tube of circular cross-section is 

referred to as tube Poiseuille flow to denote the difference in geometry. When particles 

are introduced into slot or tube Poiseuille flows, many similarities exist in the motion 

observed and as such the literature pertaining to both is reviewed here. To the authors’ 

knowledge, there is not a reduced order model available for the cross-slot average 

velocity of particles transported in slot Poiseuille flow at non-dilute concentration and 

moderate Reynolds number, which is a range of considerable practical interest in 

engineering applications. However, a solution to the cross-slot average particle velocity 

can be constructed from i) the particle concentration distribution and ii) the particle 

velocity in the direction of flow as a function of position in the slot. A solution of this 

type clearly requires knowledge of both these functions. 
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Segre and Silberberg (1962) published early research into the particle 

concentration distribution in tube Poiseuille flow. They were the first to observe particles 

accumulating at a lateral position of approximately 0.6 tube radii. This is the result of 

equilibrium of lateral forces at this position, often termed the ‘tubular pinch’ effect. Their 

experiments were conducted at dilute concentrations (the maximum tested was 

approximately one percent by volume) and at a maximum Reynolds number of 520. The 

tubular pinch effect was most clearly defined when the Reynolds number was less than 

30. At larger Reynolds number, a wider distribution of particles was observed. The 

authors also note that while the results were shown to be concentration independent 

within the dilute range examined, concentration dependence would be expected to arise 

with increased concentration. For example, when there is a larger concentration present, 

it is simply not possible for all particles to be accommodated at 0.6 tube radii. 

Altobelli et al. (1991) conducted physical experiments investigating large 

concentrations of solid spheres, up to 39% by volume fraction, transported by tube 

Poiseuille flow. Nuclear resonance magnetic imaging was used to determine the particle 

concentration and fluid velocity distribution. The experiments exhibited a greater 

concentration of particles at the center of the tube and a ‘blunted’ fluid velocity profile 

was observed, whereby the maximum fluid velocity relative to the cross-slot average was 

reduced with increasing particle concentration. Koh et al. (1994) conducted experiments 

examining the fluid velocity profile and particle concentration distribution in a 

rectangular slot using laser-Doppler anemometry, considering particle concentrations up 

to 30% at very small Reynolds number. Similarly to Altobelli et al. (1991), a greater 

particle concentration at the center of the slot and a blunted fluid velocity profile was 

evident. A significant observation made was that when comparing experiments at a 

particle concentration of 30% to that of 10%, there was a sharp reduction in the 
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maximum particle velocity. A significant slip velocity exists between the particles and 

the fluid, which increases with increasing particle concentration. 

Ho and Leal (1974) presented a theoretical study of lateral migration effects for a 

single solid sphere in slot Poiseuille flow, which produce the concentration distribution 

recorded by Segre and Silberberg (1962). They also include a solution to the particle 

velocity in the direction of flow as a function of position in the slot. Their solution used 

an approximate treatment, the method of reflections. The authors note that the solution 

presented is accurate when the particle is not located in close proximity to a wall. When 

the slot width is not significantly larger than the particle diameter, a particle is necessarily 

in close proximity to a wall. In this case it follows that the method is less accurate. 

Another restriction of the method is that it applies only at small Reynolds number. With 

these restrictions, they determined the equilibrium position in the slot, which was in 

agreement with the experimental results of Segre and Silberberg (1962), despite the 

difference in geometry between a slot and a tube. The translational and rotational slip 

velocities were also provided, which demonstrates that the particle velocity lags the 

undisturbed fluid velocity at all positions in the slot. It should be noted that this slip 

velocity is not the same as the concentration effect reported by Koh et al. (1994), as it is 

apparent for a single particle in slot Poiseuille flow. That is, there are two separate 

mechanisms by which particles are transported more slowly than the surrounding fluid. 

Ho and Leal (1974) also demonstrated that the center of the slot is an unstable 

equilibrium position. 

Staben et al. (2003) utilized a boundary-integral algorithm to examine the particle 

velocity in the direction of flow as a function of position in the slot and wall spacing for a 

single neutrally buoyant sphere in slot Poiseuille flow. Jones (2004) applied a Fourier 

transform technique to the same problem. The approaches of both Staben et al. (2003) 
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and Jones (2004) provide highly accurate results for larger particle diameter to slot width 

ratios and for a particle in close proximity to the wall. As such, these solutions overcome 

the limitations of the solution provided by Ho and Leal (1974). Staben et al. (2003) and 

Jones (2004) demonstrate that the particle velocity is always lower than the local 

undisturbed fluid velocity and is a function of wall spacing. 

As noted above, the cross-slot average velocity for particle transport by slot 

Poiseuille flow can be determined from i) the particle concentration distribution and ii) 

the particle velocity in the direction of flow as a function of position in the slot. Physical 

experiments have demonstrated the existence of equilibrium positions at which dilute 

concentrations of particles accumulate and non-uniform concentration distributions in the 

case of large particle concentration. These studies present data for tubes across a wide 

range of Reynolds numbers and for slots at small Reynolds number. The single particle 

velocity in the direction of flow has been determined theoretically and shown to lag the 

local undisturbed fluid velocity at all positions in the slot and wall spacing. Physical 

experiments have shown that the particle velocity in slot Poiseuille flow exhibits strong 

concentration dependence. The particle velocity results for both a single particle and 

concentrated flows were obtained at very small Reynolds number. 

Data on both the particle concentration distribution and particle velocity in the 

direction of flow for slot Poiseuille flow is unavailable for moderate Reynolds number 

and non-dilute concentration. This study presents the cross-slot average particle velocity 

for spheres in slot Poiseuille flow as determined by numerical simulation. Similarly to the 

general approach pioneered by Hu et al. (1992), the motion of solid bodies in a fluid are 

calculated via the forces exerted by the surrounding fluid, for which the velocity and 

pressure across the fluid domain is determined from conservation of mass and momentum 

for the fluid, subject to appropriate boundary and initial conditions. Cases with different 
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fluid rheology and at different Reynolds number have been examined. An extension of 

slot Poiseuille flow to include the effect of fluid loss through porous walls has been 

included. Further, simulations with different solid particle material properties and size 

have been conducted. 

3.2 VERIFICATION 

3.2.1 Verification Overview 

Verification of the method for the application of interest has been completed by 

comparison to the results of Staben et al. (2003) for the translational velocity of a single 

particle in low Reynolds number slot Poiseuille flow. Staben et al. (2003) provided 

results for a single particle transported at several different positions in slots of various 

widths. Considering the symmetry of the flow field about the centerline, the two limits of 

particle position in the slot, next to a wall and at the center, have been used for 

comparison. Since the Reynolds number is low, lateral migration is negligible and the 

simplification made in imposing the particle velocity on the CFD representation of the 

system without inclusion of the rotational component is acceptable. Of course, limiting 

comparison to single particle cases does not enable verification of the macroscopic 

properties of a multi-particle system, such as the concentration distribution. However, it 

does confirm that the resolution of the fluid force upon each particle is sufficiently 

accurate, including any effect of the numerical parameters used. 

3.2.2 Simulation Domain and Boundary Conditions 

Due to the considerable numerical expense of the method and constraints upon 

run times, a small domain is necessary. The simulation domain used is shown in Figure 

3.1. 
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Figure 3.1. Simulation domain. 

The CFD and DEM domains share the same boundaries in the y and z coordinate 

directions. In the x coordinate direction the DEM domain boundaries are two particle 

diameters inside the CFD domain boundaries. This was found to reduce a small ‘step’ in 

translational velocity evident as a particle leaves the outlet of the DEM domain and re-

enters the inlet. This numerical artifact is a consequence of the boundary conditions 

imposed, which themselves are necessary to produce the required flow field. At the low 

Reynolds number of the simulations used for verification, the particle was found to reach 

a steady state before leaving the domain once and this concern was not an issue. 

However, for larger Reynolds number cases, particles recirculate before reaching steady 

state. Nonetheless, this effect was shown to be negligible in terms of particle transport. A 
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detailed discussion of the numerical artifact and domain size is provided in Appendix B. 

The length of the domain, L, is 9 particle diameters, d. The width, W, takes a particular 

value to produce the required particle diameter to slot width ratio for each case. The 

height, H, is 6 particle diameters. As a result, the range in volume of the DEM domain is 

~31.6d3 to 300d3, corresponding to d/W equal to 0.95 and 0.1 respectively. Only 3 

particles provide a volumetric concentration of 5% in the smallest domain, whereas 143 

particles are required to provide 25% concentration in the largest domain.  

The boundary conditions applied to the CFD domain are as follows: 

At the CFD inlet: fully developed slot Poiseuille flow 

uf x y( ) = uf xmax 1−
y − B
B

"

#
$

%

&
'

1/n+1(
)
*

+*

,
-
*

.*
      uf y = 0       uf z = 0       ∂p

∂x
= 0

    (3.1) 
where uf x, uf y and uf z (m/s) are the scalar components of the fluid velocity vector and B is 

half the slot width. Since the solution provided by Staben et al. (2003) is for a Newtonian 

fluid, the verification simulations also use a Newtonian fluid, for which the fluid behavior 

index, n, is one. The expression for uf x has been obtained analytically from conservation 

of momentum considerations for a power-law fluid. This is necessary for extension of the 

research to cases of shear thinning fluids, which are included in this work. 

At the CFD outlet: constant pressure 
∂uf x
∂x

= 0
     

∂uf y
∂x

= 0
     

∂uf z
∂x

= 0
     

p = 0     (3.2) 

At both the CFD front and back boundaries: no slip condition 

uf x = 0      uf y = 0      uf z = 0      
∂p
∂x

= 0
    (3.3)

 

At the CFD top and bottom boundaries: cyclic pairing 
uf x z=0

= uf x z=H      
uf y z=0

= uf y z=H      
uf z z=0 = uf z z=H      

p
z=0
= p

z=H     (3.4)
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The cyclic pairing used for the top and bottom boundaries represents an infinitely 

tall slot. 

The boundary conditions applied to the DEM domain are as follows: 

At the DEM inlet and outlet boundaries: periodic pairing, each particle that leaves 

the domain at the DEM outlet re-enters the domain at the DEM inlet with the same up. 

At the DEM front and back boundaries: walls 

At the DEM top and bottom boundaries: periodic pairing 

3.2.3 Verification Simulation Results 

Two simulations, one at each of the limits of particle position in a slot, were run 

for each of ten different particle diameter to slot width ratios. The appropriate Reynolds 

number for slot Poiseuille flow of a power-law fluid, based on a characteristic length of 

the hydraulic diameter, is: 

Res =
2W( )n uf x 1− c( )"
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*
+
n

ηc
    (3.5)

 

where Res is the slot flow Reynolds number, c is the concentration and ηc (Pa-sn) is the 

fluid consistency index. The factor of (1-c) appears as a result of using the same fluid 

velocity boundary condition at the inlet for simulation cases at several different 

concentrations, with the product of <uf x>(1-c) termed the modified average fluid velocity 

(m/s). The above expression is considerably simplified in the case of a Newtonian fluid. 

Staben et al. (2003) presented results for low Reynolds number, although the precise 

range of validity for their results was not provided. The verification simulations have 

been conducted at a Reynolds number of one. To significantly reduce the transient 

portion of the simulation, the initial conditions for the fluid domain were that of fully 
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developed slot Poiseuille flow. This involves application of the following velocity 

distribution across the domain: 

uf x y( ) = uf xmax 1−
y − B
B
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The analytically derived pressure distribution is also applied across the domain as 

an initial condition: 

p x( ) = ηcL
Bρ f
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In each of the twenty cases, a single particle was initialized at an x location half a 

particle diameter inside the DEM inlet boundary and with an x component of particle 

velocity equal to the average fluid velocity. The y position specified was half a particle 

diameter from the CFD front boundary for the case of a particle at the wall and at the 

center of the slot for the other limit of position cases. Finally, the z position was at the 

center of the height of the domain. Both the y and z components of velocity were zero. By 

initializing the simulation with a particle at the average fluid velocity, a transient is 

observed whereby the particle accelerates or decelerates to a steady state. This allowed 

for confirmation that the simulation had been run for a sufficient period of time to reach 

steady state. The velocity transients for a particle in the center and at the wall of the slot, 

for a case with the diameter to slot width ratio of 0.1, is shown in Figure 3.2. Note that 

the simulation data presented is the result of two separate simulations, each with a single 

particle present. 
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Figure 3.2. Particle velocity transient for a particle positioned at the wall and center of the 
slot. 

For each case, the steady state velocity was determined and is shown in Figure 

3.3, normalized by the modified average fluid velocity. 

 

Figure 3.3. CFD-DEM verification results compared to those from Staben et al. (2003). 

The expression for uf x(y) provided in (3.6) demonstrates that the fully developed 

fluid velocity profile across a slot for a Newtonian fluid in the laminar flow regime 

results in a parabolic distribution. The maximum fluid velocity is 3/2 times greater than 

the average fluid velocity. For d/W equal to 0.1, a particle in the middle of a slot 

translates at very slightly less than the local fluid velocity, 3/2 times the average, from the 
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results of Staben et al. (2003). As a result, the particle velocity normalized by the average 

fluid velocity presented in Figure 3.3 is approximately 3/2 in this case. 

Across the range of d/W and particle position in the slot, the comparison between 

the CFD-DEM results and those from Staben et al. (2003) demonstrates good agreement. 

This indicates the suitability of this method to the problem of solid spheres transported by 

slot Poiseuille flow. It should also be noted that across the range of particle diameter to 

slot width ratio and across the two limits of particle position in the slot, the results of both 

Staben et al. (2003) and this study show that particles always translate at less than the 

local fluid velocity. 

3.3 SINGLE PARTICLE SLOT POISEUILLE FLOW SIMULATIONS 

3.3.1 Single Particle Slot Poiseulle Flow Simulation Overview 

The following results were obtained from simulations with the same domain and 

boundary and initial condition types used for the verification simulations. The Reynolds 

number was larger in all cases due to larger average fluid velocities, though still within 

the laminar flow regime region. Since the average fluid velocities were much greater, 

using the same small domain resulted in the particle making many passes through the 

domain for a simulation of the same duration. This enables the average particle velocity 

to be calculated via a counter placed in the middle of the domain in the y-z plane. The 

average particle velocity is determined from: 

upx =
m
•

cAρp     (3.8)
 

where m
•

 (kg/s) is the particle mass rate, A (m2) is the area of the counter, WxH, and  ρp  

(kg/m3) is the particle density. The particle mass rate was determined from the gradient of 
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a linear trend fitted to the cumulative mass versus time simulation data via a process of 

least squares regression. 

For a single particle moving in the center of the slot, the cross-slot location used 

for all simulation results presented in this section, there is no lateral migration and zero 

rotation. This position in the slot is one of unstable equilibrium. Since there is zero 

rotation, the simplification made by imposing the particle velocity on the CFD 

representation of the system without the rotational component is not a concern. The effect 

of Reynolds number, fluid rheology, particle size and fluid loss through the walls were 

examined. Particle density and modulus may affect the results of multiple particle 

systems where particle to particle and particle to wall collisions occur. However, for the 

single particle cases at steady state examined here, these variables do not alter the results 

in any way. 

3.3.2 Single Particle Slot Poiseuille Flow Simulation Results 

Simulations have been completed to determine the effect of Reynolds number, 

Newtonian fluid viscosity, particle size and fluid loss through the walls. The results of 

these simulations are shown in Figure 3.4. 
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Figure 3.4. Particle velocity normalized by the modified average fluid velocity versus 
particle diameter to slot width ratio. Top left: Reynolds number. Top right: 
Newtonian fluid viscosity. Bottom left: Particle size. Bottom right: Fluid 
loss through the walls. 

The top left pane of Figure 3.4 shows the results of simulations at different 

Reynolds numbers. Larger average fluid velocities were used for the larger Reynolds 

number cases, with all other variables remaining constant. The normalized particle 

translation velocity for cases with Reynolds number of 1000 and 2000 are very similar, 

though they diverge from the validated results at a Reynolds number of one. There is an 

inertial effect evident for large ratios of particle diameter to slot width. The normalized 

particle translation velocity is larger when the Reynolds number is larger. This shows that 
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the wall retardation effect on the slip velocity is reduced with increasing Reynolds 

number. Nonetheless, the particle velocity remains smaller than the local fluid velocity. 

Simulation results with different Newtonian fluid viscosity, 0.0002Pa-s and 

0.001Pa-s, are shown in the top right pane of Figure 3.4. All of these simulations were 

conducted at a Reynolds number of 1000, requiring smaller average fluid velocities to be 

specified for the smaller Newtonian viscosity cases. These two sets of results are virtually 

identical, indicating that the Newtonian viscosity does not change the solution when cast 

in dimensionless terms. That is, the appropriate dimensionless group for the problem is 

the Reynolds number. The bottom left pane of Figure 3.4 shows the results of simulations 

with a particle diameter of 0.0004m and 0.001m. To make comparisons at the same ratio 

of particle diameter to slot width, the domain is proportionally larger in each coordinate 

direction. With a larger characteristic length, a smaller average fluid velocity was 

specified in each case to produce a Reynolds number of 1000. As for the comparison at a 

different Newtonian fluid viscosity, the comparison for a different particle diameter 

produces very similar results. This further confirms that the Reynolds number can be 

used to describe the problem in dimensionless terms. 

The bottom right pane of Figure 3.4 examines the effect of fluid loss through the 

slot walls upon a particle in the middle of the slot. The simulations with fluid loss are 

identical to those without fluid loss except for the modification of the CFD boundary 

conditions applied on the front and back. A constant fluid velocity leaving the domain 

perpendicular to the face has been applied as follows:  
uf y y=0

= −a
     

uf y y=W
= a

    (3.9)
 

An analytical solution to slot Poiseuille flow in the presence of fluid loss through 

porous walls was provided by Berman (1953). Since the flow field remains symmetric in 



 36 

the presence of fluid loss perpendicular to the walls, a particle placed at the center does 

not have a net lateral drag force applied by the fluid flow. Thus, the only effect expected 

would be due to the fluid deceleration along the slot. This is a very small effect for the 

fluid loss velocities apparent in most engineering applications, where the average fluid 

velocity is significantly greater than the fluid loss velocity. In this particular case, the 

average fluid velocity in the x coordinate direction is 0.125m/s, more than four orders of 

magnitude greater than the fluid loss velocity. If a particle is placed off center, it will 

experience an additional lateral drag force that would change the equilibrium position in 

the slot. Asmolov (1999) has determined the existence of several transport regimes for 

dilute particle transport in slot Poiseuille flow with fluid loss through the walls. This 

particular problem has not been examined in this study since particle rotation, critical to 

the equilibrium position of a single particle in Poiseuille flow, has not been included in 

the implementation used. 

The results shown in Figure 3.4 demonstrate that the Reynolds number is the 

appropriate dimensionless group to reduce the problem of a single particle translating at 

the center of a slot in Poiseuille flow. A set of simulations has been conducted with a 

shear-thinning power-law fluid with ηc  of 0.1Pa-s and n of 0.2, with the results shown in 

Figure 3.5. 
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Figure 3.5. Left: Particle velocity normalized by the modified average fluid velocity 
versus particle diameter to slot width ratio. Right: Particle velocity 
normalized by the modified maximum fluid velocity versus particle 
diameter to slot width ratio. 

Examining the results shown in Figure 3.5, there is a very different trend apparent 

between the simulation results with Newtonian and shear-thinning power-law fluids. It 

should be noted that the relationship between the maximum and average fluid velocity for 

a power-law fluid in Poiseille flow in the absence of particles is given by: 

uf xmax =
1 n+ 2
1 n+1

uf x
    (3.10)

 

The function of n takes a value of 3 2  for a Newtonian fluid and 1.17 for a 

power-law fluid with n of 0.2, the case studied here. Examining the left pane of Figure 

3.5 and comparing cases with a particle diameter to slot width ratio of 0.1, the particle 

translates at close to the local fluid velocity, which is the maximum fluid velocity, for 

both the Newtonian and shear-thinning power-law fluids. The right pane, using a particle 

translation velocity normalized by the maximum fluid velocity, shows this most clearly 

as the values for both fluid types is very close to one. The much more ‘blunt’ fluid 

velocity profile across the slot for the power-law fluid exposes more of the particle to a 

surrounding fluid velocity close to the maximum fluid velocity. The effect of this is 
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apparent when examining larger particle diameter to slot width ratios, where is a greater 

degree of wall retardation evident for the Newtonian fluid compared to the shear-thinning 

power law fluid. 

3.4 MULTIPLE-PARTICLE UNIFORM FLOW SIMULATIONS 

3.4.1 Multiple-Particle Uniform Flow Simulation Overview 

The following results were obtained from simulations in which particles move in 

a domain with uniform fluid flow and which represents infinite extent. The effect of two 

variables, concentration and Reynolds number, upon particle transport velocity is 

examined. These simulations allow particle motion with fluid flow to be studied in the 

absence of the complexity of slot Poiseuille flow. This is achieved with cyclic boundary 

conditions in both the y and z directions and a uniform velocity applied at the CFD inlet. 

The domain size is the same as shown in Figure 3.1, with W equal to 6 times the particle 

diameter and the same as H. 

3.4.2 Multiple-Particle Uniform Flow Boundary Conditions 

The boundary conditions applied to the CFD domain are as follows: 

At the CFD inlet: uniform flow 

uf x y( ) = b      uf y = 0      uf z = 0      ∂p
∂x

= 0
    (3.11) 

where b (m/s) is a constant. 

At the CFD outlet: constant pressure 
∂uf x
∂x

= 0
     

∂uf y
∂x

= 0
     

∂uf z
∂x

= 0      p = 0     (3.12) 

At both the CFD front and back boundaries: cyclic pairing 
uf x y=0

= uf x y=W      
uf y y=0

= uf y y=W      
uf z y=0

= uf z y=W      
p

y=0
= p

y=W     (3.13)
 

At the CFD top and bottom boundaries: cyclic pairing 
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uf x z=0
= uf x z=H      

uf y z=0
= uf y z=H      

uf z z=0 = uf z z=H      
p
z=0
= p

z=H     (3.14)
 

The boundary conditions applied to the DEM domain are as follows: 

At the DEM inlet and outlet boundaries: periodic pairing, each particle that leaves 

the domain at the DEM outlet re-enters the domain at the DEM inlet with the same up. 

At the DEM front and back boundaries: periodic pairing  

At the DEM top and bottom boundaries: periodic pairing 

3.4.3 Multiple-Particle Uniform Flow Results 

Simulations cases were run at six different values of concentration, between dilute 

and 25%, each at four values of particle Reynolds number, Rep. The particle Reynolds 

number uses a characteristic length of the particle diameter and for a Newtonian fluid is 

given by: 

Rep =
d uf x 1− c( )ρ f

µ     (3.15)
 

The largest value of Rep considered was 4000, which places these cases in the 

turbulent flow regime region. The k – ε model was used in these cases. Similarly to the 

approach taken for the verification and single particle slot Poiseuille flow simulations, the 

initial conditions for the fluid domain were those of fully developed flow to reduce the 

transient portion of the simulation. In this case, the solution for fully developed flow was 

found numerically by running a CFD only simulation for a sufficient period of time to 

ensure the flow field solution had reached steady state. The DEM domain was initially 

seeded with a particular number of particles to provide the selected concentration. The 

initial particle positions were determined with each coordinate value selected from a 

uniform distribution bounded by limits one particle radius inside the DEM simulation 

domain boundary. The positions drawn from the uniform distribution were rejected if 



 40 

they produced overlapping particle positions. This eliminated large and non-physical 

repulsion velocities upon initialization. The DEM boundary conditions used produce a 

constant concentration for the duration of the simulation. The initial particle velocities 

were set to the uniform fluid velocity at the inlet, b. The average particle velocity was 

determined by use of a counter in the y-z plane as detailed above for the single particle 

simulations. 

 

Figure 3.6. Left: Average particle velocity normalized by the average fluid velocity 
versus concentration. Right: Average particle velocity normalized by the 
modified average fluid velocity versus concentration. 

The simulation results shown in the left pane of Figure 3.6 show that the average 

particle velocity, normalized by the average fluid velocity, is reduced with increasing 

concentration. The trend is very close to linear, which is evident when the same results 

are normalized by the modified average fluid velocity and once more plotted against 

concentration. This is shown in the right pane of Figure 3.6, and demonstrates that the 

average particle translation velocity is very close to the modified average fluid velocity. 

By definition, the average fluid phase velocity is larger than the modified average fluid 

velocity by a factor of 1/(1-c). Another way of stating this result is that there is a 

significant slip velocity between the particles and the fluid, which increases linearly with 
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increasing concentration. There is a minor effect attributable to Reynolds number for 

small concentration and large Reynolds number, whereby the normalized average particle 

velocity is reduced slightly. The results of Koch and Hill (2001) for particles in uniform 

flow demonstrate that concentration is the primary variable upon which the drag force 

depends. They note that Reynolds number has a second order effect. These effects upon 

the drag force exerted on each particle in uniform flow produce the slip velocities 

observed in this work. Remarkably, the results may be well described by a very simple 

relation: 
upx

uf x 1− c( )
=1

    (3.16)
 

3.5 ANALYTICAL SLOT POISEUILLE FLOW MODEL 

3.5.1 Analytical Slot Poiseuille Flow Model Overview 

The results of Staben et al. (2003) show that a single particle translates at less 

than the local fluid velocity for all positions in a slot of all particle diameter to slot width 

ratio considered. The single particle results contained in this research demonstrate that 

while the slip velocity is reduced with increasing Reynolds number for a single particle at 

the center of a slot, the particle nonetheless translates at less than the local fluid velocity. 

The simulation results examining particles in uniform flow showed that particle transport 

occurs at the modified average velocity of the fluid. Equivalently, the particle translation 

velocity is reduced through multiplication by a factor of (1-c) times the fluid phase 

velocity. Clearly this factor is always less than one and the particles translate at a velocity 

less than the fluid, that is, there is a slip velocity apparent even in the absence of the 

complexity of slot Poiseuille flow. 
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The analytical solution presented here neglects the wall retardation effect on the 

slip velocity as demonstrated by Staben et al. and in this work for a single particle at 

larger Reynolds number. The particle translation velocity dependency upon concentration 

determined in the simulations of uniform flow has been implemented as the only 

mechanism causing a slip velocity. Isolation of this single effect for the particle slip 

velocity allows a detailed examination of the average transport properties. The accuracy 

of this approximate solution is greater for smaller particle diameter to slot width ratios, 

since the wall retardation effect upon the slip velocity is reduced in the case of greater 

wall spacing. 

3.5.2 Analytical Slot Poiseuille Flow Model Derivation 

The cross-slot average particle velocity in slot Poiseuille flow can be constructed 

from i) the particle concentration distribution and ii) the particle velocity in the direction 

of flow as a function of position in the slot. By definition and with no simplification, this 

is given by: 

upx =

c y( )upx y( )dy
d 2

B

∫

c y( )dy
d 2

B

∫
    (3.17)

 

from symmetry and using the physical limit for a particle center at one particle radius 

from the slot wall as the lower limit of the integral. While the definition is provided 

without simplification, the two functions needed for solution by this approach do require 

reduced forms. 

The first function required is the concentration distribution, c(y). The exact form 

is unknown and to the authors’ knowledge unavailable in the existing literature. 

However, a limit can be placed upon its maximum value and its form can be 



 43 

approximated from simple considerations as follows. An upper limit can be determined 

from random close packing considerations, which results in a value of approximately 

63% by volume, see Song et al. (2008). This limit is subsequently denoted as cmax. The 

simplest approximation for the form of c(y) is a uniform distribution. However, contrary 

to this simplifying assumption, concentration peaks at positions of equilibrium of lateral 

forces are expected to form. Specific values at these peaks and their location for slot 

Poiseuille flow are not available in the literature for the Reynolds number and 

concentration range of interest. Nonetheless, across the full spectrum of Reynolds 

number, the centerline is an unstable equilibrium position due to zero net lateral 

migration force. Since the centerline is always a position where a concentration peak is 

expected, a triangular distribution provides the simplest deviation from a uniform 

distribution and has been used for comparison purposes. For the average concentration, g, 

the concentration distributions are given by: 
c y( ) = g     (3.18)

 
which is a uniform distribution, and: 

c y( ) = 2g
B− d 2
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    (3.19) 

which is a triangular distribution, both of which are valid between the half slot limits of: 
d
2
≤ c(y) ≤ B

    (3.20) 
The second function required is the particle translation velocity as a function of 

position in the slot, up x (y). The particle velocity relative to the average fluid velocity 

determined from the uniform flow simulations is assumed to hold for slot Poiseuille flow 

on a local basis. That is, an extension is made by assuming that the velocity of particles at 

a particular position in the slot can be determined from the local fluid velocity and the 
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local concentration. This assumption leads to the following expression for particles 

flowing in a Newtonian fluid across a range of concentration: 

upx y( ) = uf xmax −
y2

B2
+
2y
B

"

#
$

%

&
' 1− c y( )() *+

    (3.21)
 

which is a result of the velocity profile for fully developed slot Poiseuille flow, derived 

from conservation of momentum considerations. This form is valid over the half slot 

limits provided above. It should be noted that this assumes that the fluid velocity profile 

remains unchanged by the addition of particles. Experimental research by Altobelli et al. 

(1991) and Koh et al. (1999) shows that the velocity profile is ‘blunted’ by the presence 

of particles, a secondary effect which is neglected in this analysis. 

3.5.3 Analytical Slot Poiseuille Flow Model Results 

The integral used to determine the average cross-slot particle velocity, provided 

above, has been evaluated for two example cases, that of uniform and triangular particle 

concentration distribution. The results of the integrals are: 
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for a uniform concentration distribution and: 
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(3.23) 

for a triangular concentration distribution. Examining the limits of a very large wall 

spacing relative to the particle diameter, d << W, the average particle velocity equals a 

factor of (1-c) multiplied by average fluid velocity for a uniform particle concentration. 
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The two expressions provided above have been evaluated for a range of d/w and g, 

normalized by the average fluid velocity, with the results presented in Figure 3.7. The 

largest value of g considered is 30%, which leads to a peak in concentration at the center 

of the slot for the triangular distribution of 60%, which is less than but close to the upper 

limit cmax. 

 

Figure 3.7. Average particle velocity normalized by the average fluid velocity versus 
particle diameter to slot width ratio for several values of average 
concentration. 

The results in Figure 3.7 illustrate that for dilute average concentration, 1%, 

distributed uniformly or with a triangular peak, the analytical model predicts an average 

particle velocity greater than that of the fluid. This is a result of two mechanisms. Firstly, 

the local particle velocity is very close to the local fluid velocity since the concentration 

dependent slip velocity is negligible. Secondly, the particle is excluded from the slower 

moving fluid closer than half its diameter from the walls due to its size. The average 

particle velocity for a triangular distribution is greater as more particles are located in a 

region of larger local fluid velocity at the center of the slot. 

For an average concentration of 15%, the average particle velocity is reduced 

substantially for both concentration distributions considered, relative to that for dilute 
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concentration. There is less difference between the average particle velocity predicted for 

the uniform and triangular distributions. While more particles are present in a region of 

larger local fluid velocity for the triangular particle distribution, this effect is substantially 

offset by the local concentration reducing their velocity relative to that of the fluid. The 

average particle velocity for a uniform distribution is significantly less than the average 

fluid velocity, while these two quantities are approximately equal for the triangular 

concentration distribution. 

Considering an average concentration of 30%, the average particle velocity 

relative to the average fluid velocity for both concentration distributions is close to the 

same and substantially reduced compared to the 15% and dilute concentration cases. This 

is a quite remarkable result since the reduction in local particle velocity resulting from 

increased particle concentration at the center of the slot almost completely offsets the 

effect of larger local fluid velocity. 

3.6. MULTIPLE-PARTICLE SLOT POISEUILLE FLOW SIMULATIONS 

3.6.1 Multiple-Particle Slot Poiseuille Flow Overview 

This research has demonstrated two separate mechanisms responsible for particles 

translating at less than the surrounding fluid velocity. The first is the observation that a 

single particle in slot Poiseuille flow exhibits a slip velocity relative to the local fluid 

velocity. The second is a concentration effect whereby the average particle velocity is 

reduced by a factor of (1-c) compared to the average fluid velocity in uniform flow. The 

following simulations of multiple particles in slot Poiseuille flow enable examination of 

the effects of both these mechanisms simultaneously. 

The same domain, boundary condition type and initial conditions used for the 

verification and single particle slot Poiseuille flow simulations have been used for 
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simulations at non-dilute particle concentrations. As for the multiple particle uniform 

flow simulations, large and non-physical particle repulsion velocities have been avoided 

upon initialization by the particle seeding approach used. This involves determining 

initial particle positions with each coordinate value selected from a uniform distribution 

bounded by limits one particle radius inside the DEM simulation domain boundary and 

rejecting overlapping positions. The modified average fluid velocity was used as the 

initial velocity for all particles and the boundary conditions used produce a constant 

concentration for the duration of the simulation. 

The effect of particle concentration, Reynolds number, Newtonian fluid viscosity, 

particle size and fluid loss through the walls was examined. The effect of shear-thinning 

power-law fluid rheology, as well as particle properties including density and elastic 

moduli upon the dimensionless particle velocity were also studied. 

3.6.2 Multiple-Particle Slot Poiseuille Flow Results 

In each simulation case, particles have been seeded with a velocity equal to the 

modified average fluid velocity. It takes only a small period of time for particles to 

accelerate or decelerate according to their position in the slot. An example of this 

response is provided in Figure 3.8, which shows the x component of velocity for each 

particle at several points in time, for a particular simulation case. 
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Figure 3.8. Particle velocity normalized by modified average fluid velocity versus 
dimensionless slot position at four points in time, including the initial 
condition. 

 The velocity of each particle for a simulation case at Res equal to 1000, c equal to 

15% and d/W equal to 0.1 is shown in Figure 3.8. The top left pane shows the initial 

condition, while the remaining panes show the progression with time. It is apparent that 

from 0.02s on, the x component of velocity of the individual particles is similar. The 

concentration distribution from the simulation case presented in Figure 3.8 is shown in 

Figure 3.9. 
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Figure 3.9. Concentration versus dimensionless slot position at four points in time, 
including the initial condition. 

The progression of the concentration distribution with time is shown in Figure 

3.9, with the concentration calculated based upon the particles present in each of 9 bins of 

finite size. The initial condition is an approximately uniform distribution. As the 

simulation progresses, there is an increase in concentration near both walls, a reduction in 

concentration in between each of the two walls and the center of the slot and finally a 

constant concentration at the center of the slot. 

The precise center of the slot is an unstable equilibrium position. In the center 

region, lateral forces are smaller than closer to the walls, producing no net migration over 

the period of time for which simulation data is available. The increase in concentration 

near the walls may be due to neglecting the lift force from particle rotation, leaving the 

inertial lift related to shear slip and lift caused by the velocity profile curvature 

unbalanced. 

The individual particle velocity response, shown in Figure 3.8, occurs more 

quickly than the more gradual changes in the concentration distribution, shown in Figure 

3.9. It is not possible to determine the steady state concentration distribution in the 

absence of the lift force from particle rotation. Therefore the implementation used 
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(specifically the simplification made when imposing the particle velocity on the CFD 

representation of the system without the rotation component) limits application to that of 

a concentration distribution similar to the initial condition, in this case, an approximately 

uniform distribution. 

Three sets of simulations, each with a different initial seeding produced from the 

same method as described above is presented. Each set of simulations consists of a range 

of particle to slot width ratios and were at Res equal to 1000 and c equal to 15%. The 

results of these simulations are presented in Figure 3.10. 

 

Figure 3.10. Average particle velocity normalized by modified average fluid velocity 
versus particle diameter to slot width ratio for three sets of initial particle 
seeding. 

The result of each of the three simulations at each value of d/W are presented in 

Figure 3.10 with the minimum, middle and maximum value determined shown. This 

demonstrates that there is a range in the results from simulations with different seeds. Of 

course, particles could have been seeded with a precisely uniform distribution, for 

example, using positions on a square grid as one possible approach. However, it is highly 

unlikely that any practical application would yield such a concentration distribution so 

this approach was not used. The scatter in the results provides a guide to the repeatability 
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of the subsequent results shown. Simulation results from sets of cases at five different 

particle concentrations from 5% to 25% are shown in Figure 3.11. 

 

Figure 3.11. Left: Average particle velocity normalized by the average fluid velocity 
versus particle diameter to slot width ratio. Right: Average particle velocity 
normalized by the modified average fluid velocity versus particle diameter 
to slot width ratio. 

The results shown in the left pane of Figure 3.11 demonstrate that concentration 

dependence, similar to that for particles in uniform flow, is present for particles in slot 

Poiseuille flow. That is, particles present at larger concentration are transported at lower 

velocity. Examining the results for larger ratios of particle diameter to slot width, there is 

a peak in the results at d/W of 0.8 for all concentrations examined. When the average 

particle velocity is normalized by the modified average fluid velocity, shown in the right 

pane of Figure 3.11, the result is close to a value of one for d/W of 0.4 and smaller. The 

scatter present is of similar magnitude to that observed in Figure 3.10 and thereby 

difficult to distinguish from that due to the seeding used. The relationship proposed for 

particles in uniform flow may be applied to slot Poiseuille flow as a good approximation 

for this range of d/W. 
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There is very little data available in the literature for comparison to these two 

observations. Staben et al. (2003) extended the results of their single particle simulations 

in slot Poiseuille flow at low Reynolds number to a uniform dilute concentration, 

presenting the average particle velocity normalized by the average fluid velocity for a 

range of particle diameter to slot width. The results are reproduced in Figure 3.12 for 

comparison. 

 

Figure 3.12. Average particle velocity normalized by the average fluid velocity versus 
particle diameter to slot width ratio from Staben et al. (2003). The dashed 
curve is from asymptotic theory, the dot-dashed line is the first order 
correction and the solid curve is from the full numerical calculations of 
Staben et al. (2003). 

This work presents results at larger Reynolds number and non-dilute 

concentration and as such agreement between the two results should not be expected. In 

fact, a Reynolds number effect whereby a single particle translates at a larger 

dimensionless velocity at the center of the slot for larger Reynolds number was identified 

in this work (results are shown in the top left pane of Figure 3.4). As anticipated, the 

results of Staben et al. (2003) are different to the results in this research. For the range of 

d/W 0.4 and smaller, the results of Staben et al. (2003) are larger than those in this work, 

while over most of the range of d/W larger than 0.4 they are smaller. For d/W of 0.4 and 
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smaller, it appears that the concentration effect governs the normalized average particle 

velocity and the wall retardation effects are much less important. For larger d/W, greater 

than 0.4, there are two mechanisms which determine the results. 

Excluding the simulations conducted for verification purposes, all results are from 

simulations conducted at a Reynolds number three orders of magnitude higher than the 

valid range for those of Staben et al. (2003). As there is a demonstrated effect of fluid 

inertia reducing the slip velocity of a single particle, a similar effect may be apparent in 

multiple particle cases also. 

Lateral migration does not occur for a single particle at low Reynolds number. 

When multiple particles are present and transported with a fluid at larger Reynolds 

number, there is considerable lateral movement as they undergo collisions with each 

other and walls. While a particle being transported by the faster moving fluid in the 

center of the slot will slow down somewhat as it moves to a region of slower moving 

fluid near either of the walls, it may well still be travelling faster than a single particle 

translating at that position in the slot would be. The latter is the result from which Staben 

et al. (2003) correctly makes their calculation for dilute concentration, but this approach 

cannot be rigorously applied to the larger non-dilute cases examined here. 

A second comparison between these results can be made to the experiments of 

Koh et al. (1994). Their results demonstrated a significant reduction in particle velocity 

when comparing experimental results at particle concentrations of 30% and 10%. 

Quantitative particle velocity data were not provided and the experiments were conducted 

at very small Reynolds number. Despite these caveats, qualitative agreement with the 

results of this work is noted. 
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Results from simulations examining the effect of the following variables, 

Reynolds number, Newtonian fluid viscosity, particle size and fluid loss through the 

walls are presented in Figure 3.13. 

 

Figure 3.13. The average particle velocity normalized by the modified average fluid 
velocity versus particle diameter to slot width ratio. Top left: Reynolds 
number. Top right: Newtonian fluid viscosity. Bottom left: Particle 
diameter. Bottom right: Fluid loss through the walls. 

All the results presented in Figure 3.13 demonstrate the same trend observed in 

the right pane of Figure 3.11. There is not a systematic difference between results at a 

Reynolds number of 1000 and 2000, shown in the top left pane. The single particle 

results shown in the top left pane of Figure 3.4 showed a very small Reynolds number 
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effect between results at 1000 and 2000 (though there was a significant effect when 

compared to results for a Reynolds number of one). There is an absence of a systematic 

trend in the results due to each independent variable examined and simply scatter of a 

similar magnitude to the random seeding effect. 

The top right and bottom left panes of Figure 3.13 show that there is not a 

systematic difference in the simulation results from cases with a Newtonian fluid 

viscosity of 0.0002Pa-s and 0.001Pa-s nor a particle size of 0.0004m and 0.001m. In each 

of these cases the Reynolds number is the same, 1000, and demonstrates clearly that this 

dimensionless group is appropriate for reducing the results to dimensionless terms, as 

was the case for the single particle results. The results shown in the bottom right pane 

demonstrate that there is not a systematic difference in the normalized average particle 

velocity due to fluid loss through the walls. The fluid loss velocities apparent in most 

engineering applications are much smaller than the average fluid velocity. In the case 

shown in the bottom right pane, the average fluid velocity in the x coordinate direction is 

0.125m/s, more than four orders of magnitude greater than the fluid loss velocity. A set of 

simulations has been conducted with a shear-thinning power-law fluid with ηc  of 0.1Pa-s 

and n of 0.2, with the results shown in Figure 3.14. 
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Figure 3.14. Average particle velocity normalized by the modified average fluid velocity 
versus particle diameter to slot width ratio for different fluid rheology. 

Examining the results shown in Figure 3.14, there is a difference in the trend 

apparent between the simulation results with Newtonian and shear-thinning power-law 

fluids. The power-law fluid cases show a much ‘flatter’ trend without the characteristic 

peak at the d/W value of 0.8 observed for the Newtonian fluid. As for the single particle 

cases, this result is a product of the much more ‘blunt’ fluid velocity profile across the 

slot for the power-law fluid. Finally, a set of simulations has been conducted with a 

particle Young’s modulus of 324GPa and a Poisson’s ratio of 0.25, to compare to 99GPa 

and 0.06, representative of the elastic moduli of a typical high-density ceramic and quartz 

sand, respectively. A particle density of 3600kg/m3 and 2650kg/m3 comparison has also 

been completed to reflect typical values for these two materials. 
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Figure 3.15. Average particle velocity normalized by the modified average fluid velocity 
versus particle diameter to slot width ratio. Left: Particle elastic moduli. 
Right: Particle density. 

Figure 3.15 demonstrates that the particle elastic moduli and the particle density 

do not systematically alter the average dimensionless particle velocity.  

3.7 CONCLUSIONS 

The fully resolved simulation approach used in this work has been validated for 

the specific application of interest, determining the velocity of particles transported in 

slot Poiseuille flow. This verification was completed by comparison to a solution from 

the literature for a single particle translating at the two limits of particle position in a low 

Reynolds number flow, next to the wall and in the center of the slot. The two sets of 

results are in good agreement and demonstrate that a particle always translates more 

slowly than the undisturbed local fluid velocity. There is always a slip velocity between 

the particle and the fluid on a local basis. The effect of inertia at larger Reynolds number 

was shown to reduce the particle slip velocity for a particle translating in the center of a 

slot for large values of particle diameter to slot width, that is, in narrow slots. Examining 

simulation results from a particle in a shear-thinning power-law fluid, there is less wall 
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retardation as a result of the more blunt velocity profile compared to that observed for a 

Newtonian fluid. 

Using a suitable set of boundary conditions to produce uniform flow in a 

representation of an infinite domain, the effect of particle concentration upon the average 

translation velocity was shown to be significant. Increasing particle concentration reduces 

translation velocity in a linear manner. This result was used in the development of a 

simplified analytical model for the cross-slot average particle translation velocity. The 

analytical model was evaluated for two different concentration distributions and at 

several concentrations across a range of particle diameter to slot width ratio. Remarkably, 

the dimensionless average particle velocity was shown to be relatively insensitive to the 

concentration distribution at larger concentrations, due to competing effects related to the 

local fluid velocity and particle concentration. 

Finally, results from simulations of multiple particles in slot Poiseuille flow were 

presented. These demonstrated that the average particle velocity was reduced with 

increased concentration, as shown for particles in uniform flow. In addition, there was 

found to be a peak in the dimensionless average particle velocity at a particle diameter to 

slot width ratio of 0.8 for a Newtonian fluid. There was a significantly less pronounced 

peak for a shear-thinning power-law fluid. 
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Chapter 4: Settling of Non-Dilute Suspensions in Open Slots 

 

The steady state settling velocity of particles at non-dilute concentrations in a 

fluid filled open slot has been quantified through application of the simulation approach 

detailed in Chapter 2. In addition, the resultant average fluid velocity surrounding the 

particles has been examined. 

4.1 INTRODUCTION 

A disperse phase, distributed in a second continuous phase, is transported as a 

result of the difference between the gravity and buoyancy forces arising from the density 

difference between the two phases. If the densities of the two phases are equal, the 

disperse phase is described as neutrally buoyant and there is zero net force acting upon it. 

If the disperse phase is less dense, for example gas bubbles in a liquid, it will rise. 

Conversely, if the disperse phase is more dense, for example solid particles in a liquid, 

settling (also referred to as sedimentation) occurs. For a disperse phase rising or settling, 

a velocity dependent drag force opposes the motion of each bubble or particle and the 

equilibrium of forces results in a steady state or ‘terminal’ velocity. This transport 

mechanism is distinctly different from flow of the continuous phase due to a macroscopic 

pressure gradient, which also affects transport of the disperse phase. In many industrial 

applications the two transport mechanisms act simultaneously. 

The particle diameter (m), d, is the characteristic length used for the calculation of 

the dimensionless particle Reynolds number, Rep, which is given by: 

Rep =
dupρ f

µ     (4.1)
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where up is the particle velocity (m/s), ρf is the fluid density (kg/m3) and µ is the fluid 

dynamic viscosity (Pa-s). Stokes (1851) published one of the earliest theoretical studies 

of particle settling. An analytical solution to the terminal velocity of a single rigid sphere 

falling through an infinite volume of a Newtonian viscous fluid, at Rep << 1, was 

developed from equilibrium of the gravitational, buoyancy and form and friction drag 

forces acting. The eponymous solution provided by Stokes is given by: 

uStokes =
d 2 ρp − ρ f( )g

18µ     (4.2)
 

where uStokes is the Stokes’ settling velocity (m/s), ρp is the particle density (kg/m3) and g 

is acceleration due to gravity (m/s2). As noted above, Stokes’ law is valid for a particle at 

terminal velocity in an infinite fluid domain. When an immersed particle is in a dilute 

suspension in an infinite volume of fluid, this solution provides an accurate calculation of 

its terminal velocity. However, when the fluid domain is bounded at the same scale as the 

particle size, this key assumption used in the development of Stokes’ law is no longer 

valid and the velocity predicted is not accurate. 

Ganatos et al. (1980) provided a solution to one such case which includes the 

effect of a spatially constrained fluid domain geometry whose size is comparable to the 

particle size (for a particle settling between two planar walls forming a slot). The form of 

the solution given is that of a dimensionless force coefficient, Ft, which quantifies the 

reduction in settling velocity due to both the spacing of the walls and the position of the 

particle between the walls, compared to the velocity predicted by Stokes’ law. Both 

smaller wall spacing and closer proximity to a wall, for a given wall spacing, produce 

larger reductions in the terminal velocity of a particle. The solution is as shown: 

uGanatos =
d 2 ρp − ρ f( )g

18Ftµ     (4.3)
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where uGanatos is the modified Stokes’ settling velocity (m/s). The other assumptions made 

in the development of Stokes’ law, that of creeping flow and the particle falling in a 

Newtonian fluid, also apply to this solution. In many applications, Rep is larger than one 

and the flow cannot be described by the solutions for creeping flow, such as those 

provided by Stokes (1851) or Ganatos et al. (1980). In these flow regimes, inertial effects 

are important and can be accounted for through empirical friction factor solutions for the 

drag force, such as those available in Bird et al. (2007). The friction factor, f, provided by 

Bird et al. (2007) for a sphere in motion at Rep < 6000 is given by: 

f = 24
Re p

+ 0.5407
!

"
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$

%
&&

2

    (4.4) 

All terminal settling velocity solutions discussed above are applicable only to a 

single particle settling. When multiple particles are present in a closed system, the 

settling velocity is reduced relative to that of a single particle. This reduction in settling 

velocity is often quantified by a modification to a single particle settling solution based 

on an empirical function of volumetric particle concentration, c. A commonly used 

‘hindered settling’ correlation is that of Richardson and Zaki (1954). Other correlations, 

each developed for a specific application, are available. See Peker and Helvaci (2008) for 

a comprehensive review of such correlations. 
uRichardsonand Zaki = ut 1− c( )s     (4.5) 

where uRichardson and Zaki is the settling velocity (m/s) predicted by Richardson and Zaki 

(1954), ut is the settling velocity of a single particle under the same conditions and s is an 

empirical function of d, the fluid domain geometry and Rep. Use of hindered settling 

correlations is entirely appropriate if they are applied to systems with geometry similar to 

that used in their development. For example, Richardson and Zaki (1954) developed the 

correlation above from physical experiments where a concentrated suspension settled in a 
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closed tube and as a result it can be applied to similar systems with an appropriate value 

of s. However, this correlation cannot be used accurately in the case of particles settling 

between the planar walls of a slot, as the domain geometry is different. 

The motion of spherical solid particles settling in a fluid between the two planar 

walls of a slot is solved directly in this research. The forces exerted by the fluid on each 

of the particles is determined directly and used to calculate their trajectories. As the 

particles move, the boundary of the fluid domain surrounding the particles is altered and 

the velocity and pressure throughout the domain is calculated. This simulation approach 

was pioneered by Hu et al. (1992), where a finite element formulation was applied to the 

study of two-dimensional cylinders settling in a quiescent incompressible Newtonian 

fluid within a rectangular domain. While a two-dimensional implementation is clearly a 

significant simplification, Hu et al. (1992) successfully qualitatively reproduced 

‘drafting, kissing and tumbling’ which was observed in physical experiments where 

spheres settled in a fluid, the details of which are available in Fortes et al. (1987). 

Johnson and Tezduyar (1996) used a similar finite element solution to create a fully 

three-dimensional implementation and studied two to five spherical particles settling in a 

tube, also successfully reproducing the scenario of ‘drafting, kissing and tumbling’. The 

same authors later extended the application of their approach to approximately 100 

spheres settling in a tube, with both mono-disperse and poly-disperse cases examined, as 

reported in Johnson and Tezduyar (1997). Each of these contributions have been 

validated and are useful for their specific application. However, as is the case with the 

correlations developed by Richardson and Zaki (1954), they are not directly applicable to 

particles settling in a slot, as the geometry of the system is different. 

In this study, non-dilute suspensions of particles settling in a slot with closely 

spaced walls have been simulated, allowing the average settling velocity to be quantified. 
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The effect of slot wall spacing, volumetric particle concentration, Newtonian fluid 

viscosity, particle size and particle density have each been examined. 

4.2 APPLICATION TO PARTICLE SETTLING 

4.2.1 Simulation Domain and Boundary Conditions 

A sufficiently tall domain is required to allow particles to attain a steady state 

settling velocity. However, run time constraints and the computational expense of the 

method necessitate as small a domain as possible to allow for an adequate quantity of 

simulation data to be produced for subsequent analysis. The simulation domain is shown 

in Figure 4.1, drawn approximately to scale except for height, which has been 

compressed for practical reasons. 

 

Figure 4.1. Simulation domain. 

0.25d 
5d 

W 

60d 

back boundary 

top boundary 

bottom boundary 

front boundary 

x 
z 

y 

DEM 
wall 

left 
boundary 

0.25d 

right 
boundary 

DEM 
wall 

2d 

20d 

d 

up z 

initial 
region 



 64 

 

The wall spacing in the y coordinate direction, W, is selected based on the particle 

diameter and the ratio d/W required for each simulation case, between 0.5 and 0.95 

inclusive. The height of the domain in the z coordinate direction, 60d, is large enough for 

particles to attain terminal settling velocity prior to reaching the bottom of the simulation 

domain. The initial region is 20d in height and 4.5d in length. As a result, the range in 

volume of the DEM domain is ~94.7d3 to 180d3, corresponding to d/W equal to 0.95 and 

0.5 respectively. Only 9 particles are required to provide a volumetric concentration of 

5% in the smallest domain, whereas 52 particles provide 15% concentration in the largest 

domain. 

The initial and boundary conditions applied to the CFD domain are as follows: 

Both the pressure and velocity fields are set to zero across the fluid domain 

initially 

At the left and right boundaries: cyclic pairing 
uf x x=0

= uf x x=5d      
uf y x=0

= uf y x=5d      
uf z x=0

= uf z x=5d      
p

x=0
= p

x=5d     (4.6)
 

where uf x, uf y and uf z (m/s) are the scalar components of the fluid velocity vector. 

Cyclic pairing is used for the boundaries perpendicular to the x coordinate direction to 

represent a domain infinite in extent in this direction. 

At both the front and back boundaries: no slip condition 

uf x = 0      uf y = 0      uf z = 0      
∂p
∂x

= 0
    (4.7) 

No slip boundaries perpendicular to the y coordinate direction represent the two 

planar walls of the slot. 

At the top and bottom boundaries: constant pressure 
∂uf x
∂x

= 0
     

∂uf y
∂x

= 0
     

∂uf z
∂x

= 0
     

p = 0     (4.8) 
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Equal and constant pressure boundaries perpendicular to the z coordinate direction 

ensures that no bulk fluid flow is imposed upon the system in this direction. 

The setup used within the DEM domain is as follows: 

Sufficient particles needed to provide a specified volumetric concentration within 

the initial region (shown in grey in Figure 4.1) are seeded upon initialization at random 

non-overlapping positions. 

Walls have been placed one quarter of a particle diameter inside the left and right 

boundaries. In the absence of these walls, particles in very close proximity to the cyclic 

boundary were found to not reach a steady state settling velocity, whereas they did at all 

other x coordinate positions provided that they were initially at a sufficient height (z 

coordinate) in the domain. This is a numerical artifact produced by the CFD 

representation of particles interacting with the boundary condition imposed. The walls 

placed inside the domain avoid this numerical artifact at the expense of introducing 

additional particle to wall collisions not related to modeling the physical system. 

Nonetheless, particles do interact at a distance via the flow field around each one across 

the cyclic paired left and right boundaries.  

Walls are also placed at the front and back boundaries to represent the walls of the 

slot. 

4.2.2 Verification 

The reduction in settling velocity compared to Stokes’ law calculated by Ganatos 

et al. (1980) for a single particle settling between two planar walls of a slot has been used 

to validate the simulation approach described above. Ganatos et al. (1980) provided Ft as 

a function of both the spacing of the walls and the position of the particle between the 

walls. A continuous solution is provided in graphical form between 1.1 radii from a wall 
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to the center of the slot. These two limits of particle position have been used for 

comparison, for each of three separations between the walls. 

A single particle with diameter of 0.0004m and density of 2650kg/m3 was placed 

at the center of the simulation domain in the x coordinate direction. A position at either 

the center or 1.1 radii from a wall in the y coordinate direction and at the top of the initial 

region was used for each simulation case, with the particle initially at rest. The slot walls 

were spaced such that d/W was equal to 0.5, 0.67 or 0.8, for a total of six cases. The 

Newtonian fluid properties used for all cases were ρf of 1000kg/m3 and µ of 0.1Pa-s. The 

settling velocity predicted by Stokes’ law (4.2) places the flow regime within Rep << 1. 

The results of the simulations are shown in Figure 4.2. 

 

Figure 4.2. CFD-DEM verification results compared to those from Ganatos et al. (1980). 

For each simulation case, the x and y components of the velocity of the particle 

were negligible for the duration of the simulation, while the z component demonstrated 

acceleration from rest to steady state. The terminal velocity, along with d, ρp, ρf and µ, 

were used to calculate Ft by rearrangement of (4.3). These results presented in Figure 4.2 

shows reasonable agreement with the solution from Ganatos et al. (1980), illustrating the 

suitability of the method to particles settling in a slot. The percentage difference between 
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Ft was no greater than 12% in each case considered and in most cases much less. 

Through the process of developing the simulation case setup, it was found that a larger 

domain size in the x coordinate reduced the difference between the simulation result and 

the solution of Ganatos et al. (1980). A domain size of 5d was selected as a trade off 

between increased accuracy and the production of less simulation data for a given run 

time. 

4.2.3 Data Analysis 

For the non-dilute simulation cases examined, particles are initialized in the initial 

region. Subsequently, the position and velocity of each particle is calculated by the DEM 

code at each time step. For practical analysis purposes (due to the small time steps 

required for DEM simulation), the simulation data has been recorded at a prescribed 

multiple of time steps, 100. The mean of the z component of velocity of each particle, <up 

z>, has been calculated for each recorded state of the system. That is, an average over all 

particles has been determined, allowing the progression of the system towards steady 

state to be observed as the particles settle. 

As discussed above, particles are initially placed at a specified volumetric 

concentration in the initial region. During settling, differences in settling velocity 

between individual particles, due to proximity to the slot walls and other particles, are 

sufficiently small that there remains a region of the domain with approximately the same 

volumetric concentration as initially specified. Of course, the location of this region 

moves down with time as the particles settle. This results in two volumes of fluid with no 

particles present, one above and one below the particle region. The particles ‘drag’ fluid 

with them as they settle, which is quantified in several cases. This calculation has been 

made indirectly from the average of the z component of the fluid velocity at the top 
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boundary, uf z z=60d
, modified for the particle region. Conservation of mass and the 

boundary conditions imposed on the left, right, front and back require the mass rate of the 

fluid to be constant with height in z. This allows <uf z> to be determined in the particle 

region simply by consideration of the value of c, as shown: 

uf z =
uf z z=60d

1− c     (4.9)
 

An example of the averages taken from the simulation data produced for a case 

with c equal to 0.15 and d/W equal to 0.80 is shown in Figure 4.3. 

   

Figure 4.3. Average particle settling velocity and average of the z component of the fluid 
velocity for fluid surrounding the particles versus time. 

Both the average particle and average fluid velocities shown in Figure 4.3 

demonstrate that the system reaches steady state at approximately 0.06s. Since the 

simulation includes a relatively small number of particles, just 32 in this particular case, 

there is some variation in <up z> from 0.06s onwards as collisions occur and particles 

interact hydro-dynamically as they settle. There is little variation in <uf z> surrounding the 

particles from 0.06s on. In subsequent analysis, a time average from steady state to 

completion of the simulation is presented for both average velocities. 
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4.3 RESULTS 

4.3.1 Effect of Concentration and Slot Width 

The effect of volumetric particle concentration and slot width upon the particle 

settling velocity has been examined. The particle diameter and density specified are 

0.0004m and 2650kg/m3, respectively, while the Newtonian fluid viscosity is 0.001Pa-s 

and fluid density 1000kg/m3. Assuming that the fluid is unbounded for the purposes of 

estimating the particle settling velocity, by the friction factor solution of Bird et al. 

(2007), (4.4), the particle Reynolds number is outside of the creeping flow regime. 

Simulations with concentration from 0.05 to 0.25 and particle diameter to slot width from 

0.5 to 0.95 have been completed and the results are presented in Figure 4.4. 

 

Figure 4.4. Left: Average particle settling velocity versus particle diameter to slot width 
ratio. Right: Average particle settling velocity versus concentration. 

The left pane of Figure 4.4 presents the average particle settling velocity versus 

d/W and demonstrates that larger d/W, which corresponds to smaller W, reduces the 

average particle settling velocity for all c. While the results of Ganatos et al. (1980) are 
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for a single particle settling at a particular position in a slot and within a creeping flow 

regime, there is qualitative agreement between these results. 

The right pane of Figure 4.4 shows the same settling velocity plotted versus c. It 

is apparent that in most cases there is a small increase in the average particle settling 

velocity with larger c. Correlations of the type presented in Richardson and Zaki (1954), 

(4.5), predict a decrease in particle settling velocity with larger c. As discussed, the 

geometry of this system is different to that used by Richardson and Zaki (1954), however 

qualitative agreement may be expected if the same boundary conditions were applied. 

Critically, the boundary conditions applied in these simulations are different. Equal 

pressure conditions have been applied at the top and bottom of the fluid domain in this 

study. This allows fluid ‘dragged’ along by the particles to flow out of the bottom of the 

domain, while new fluid is drawn in at the top of the domain. This is the only mechanism 

by which fluid is transported. In contrast, correlations such as (4.5) are typically 

developed from experiments where a front of particles settles in a liquid within a closed 

container. In such a system, some fluid is dragged by the particles as is the case of the 

simulations presented here, but there is also a net fluid flow upwards (in the opposite 

direction of particles settling) required by conservation of mass considerations. This 

results in a reduction of the average particle settling velocity. The relationship between 

the two average velocities, for each the particles and the fluid, is given by: 
c upz + 1− c( ) uf z = 0     (4.10) 

Counter current fluid flow occurs in a hydraulic fracture, but its magnitude may 

be different to that produced by the advance of a step change concentration front evident 

in laboratory experiments. The <uf z> surrounding the particles from the simulation cases 

presented in Figure 4.4 is included in Figure 4.5. 
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Figure 4.5. Average of z component of fluid velocity surrounding the particles versus 
concentration. 

The simulation data shown in Figure 4.5 demonstrates that <uf z> surrounding the 

particles is larger for larger c, approximating a linear trend. Cases with smaller d/W 

(which corresponds to a larger W), were found to result in larger <uf z> surrounding the 

particles. If each particle drags along approximately the same volume of fluid, a linear 

trend with c is expected. The same assumption leads to the conclusion that larger slot 

width, in which particles settle faster, produces larger fluid velocity as observed in the 

simulation results. 

4.3.2 Effect of Particle Size 

The average particle settling velocity has been determined for different particle 

sizes and slot widths. The particle diameters examined are 0.0004, 0.00055 and 0.0007m, 

while the slot widths specified result in particle diameter to slot width ratios in the range 

of 0.5 to 0.95. For all cases, the concentration equals 0.15 and the particle density is 

2650kg/m3, while the Newtonian fluid viscosity and density are 0.001Pa-s and 

1000kg/m3, respectively. The results are presented in Figure 4.6. 
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Figure 4.6. Left: Average particle settling velocity versus particle diameter to slot width 
ratio. Right: Average dimensionless force coefficient (from (4.4)) versus 
particle diameter to slot width ratio. 

The results shown in the left pane of Figure 4.6 demonstrate that larger d results 

in larger <up z>, which is the trend expected from inspection of the available formulae for 

particle settling velocity. For all d, larger d/W reduces <up z>. This result is qualitatively 

in agreement with the results of Ganatos et al. (1980), as are the results shown in the left 

pane of Figure 4.4. Note that while simulations have been completed across the range of 

d/W noted above, steady state <up z> was not attained for larger d and smaller d/W cases 

and as a result these simulation results are not reported. 

The single particle settling velocity calculated from the friction factor solution of 

Bird et al. (2007), (4.4), has been used to normalize <up z> for each of the simulation 

cases. The resultant quantity is termed the average dimensionless force coefficient, <Ft 

B>, and is presented in the right pane of Figure 4.6. This quantity is similar to that 

presented by Ganatos et al. (1980) for a single particle in creeping flow at a specific 

position in a slot. However, in this case the dimensionless force coefficient is an average 

across all particles in the system, which are at a variety of positions in the slot and Rep is 

outside the creeping flow regime. This normalization is shown to ‘collapse’ the 
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simulation results at d/W of 0.6 and 0.7 for d equal to 0.0004 and 0.00055m. For larger 

d/W, for which simulation results are available for all d, there is separation in the values 

of <Ft> for different d. This is the result of the wall spacing reducing <up z> sufficiently 

that the inertial effect resulting from the dependency upon d does not follow that 

correlated by the solution of Bird et al. (2007). Normalization has also been completed 

using Stokes’ law with the results shown in Figure 4.7. 

 

Figure 4.7. Average dimensionless force coefficient (from Stokes’ law (4.2)) versus 
particle diameter to slot width ratio. 

Figure 4.7 indicates that normalization by Stokes’ law, producing a dimensionless 

force coefficient denoted <Ft S>, produces a better ‘collapse’ of the simulation data for 

d/W of 0.9 and 0.95. This is at the expense of the ‘collapse’ of results for smaller d/W. 

Even for d/W of 0.9 and 0.95, there is a difference between results for d equal to 0.001m 

and for results at the other two values of d examined. It is apparent that small wall 

spacing reduces particle settling velocity by increasing the drag force sufficiently that it 

becomes approximately proportional to d2 (see Stokes’ law (4.2)). It should be noted that 

these simulations are all still outside the creeping flow regime with Rep in the range ~7 to 

~28 and it is only the dependency upon the function of d predicted by Stokes’ law which 

reduces the results effectively. 
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4.3.3 Effect of Particle Density 

The effect of particle density and slot width upon the particle settling velocity has 

been examined. The particle densities considered are 2650, 3125 and 3600kg/m3. The 

slots widths, concentration and fluid properties are the same as those used for the 

simulation cases discussed in prior sections. 

 

Figure 4.8. Left: Average particle settling velocity versus particle diameter to slot width 
ratio. Right: Average dimensionless force coefficient (from Stokes’ law 
(4.2)) versus particle diameter to slot width ratio. 

The left pane of Figure 4.8 shows that larger ρp and smaller d/W results in larger 

<up z>, which is as expected considering the available literature. Both average 

dimensionless force coefficients previously defined, <Ft B> and <Ft S>, have been 

determined and the simulation results collapse better using <Ft S>, as shown in the right 

pane. As per the simulation results shown in Figure 4.7, the results presented in the right 

pane of Figure 4.8 are for <up z> outside the creeping flow regime, it is only the 

dependency upon the function of d predicted by Stokes’ law which reduces the results 

effectively. 
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4.3.4 Effect of Newtonian Fluid Viscosity 

The average particle settling velocity has been determined for different 

Newtonian fluid viscosity and slot width. Viscosity of 0.0008, 0.001 and 0.0012Pa-s has 

been specified for three sets of simulation cases. The particle size and slots width ratios, 

particle concentration and density are the same as those used for the simulation cases 

discussed in prior sections. 

 

Figure 4.9. Left: Average particle settling velocity versus particle diameter to slot width 
ratio. Right: Average dimensionless force coefficient (from (4.4)) versus 
particle diameter to slot width ratio. 

The results presented in the left pane of Figure 4.9 demonstrate that smaller µ and 

d/W both result in larger <up z>, as expected considering the available literature. Once 

more, both average dimensionless force coefficients previously defined, <Ft B> and <Ft 

S>, have been determined and the simulation results collapse better using <Ft B>, as 

shown in the right pane. 

4.4 CONCLUSIONS 

A comprehensive numerical simulation approach, which includes resolution of the 

fluid flow around particles and determination of their motion on an individual basis, has 

been applied to determine the steady state average particle settling velocity at non-dilute 
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concentration in a slot. Prior to this application, verification of the approach was 

completed through single particle settling simulations in slots of three different widths 

and at two positions, the results of which compared well to an accepted solution available 

in the literature for the terminal velocity. 

Smaller slot width reduces the average particle settling velocity for all cases 

examined. Larger concentration was shown to increase the average settling velocity, in 

apparent contrast to the trend predicted by many correlations available in the literature. 

This is due to the absence of counter current fluid flow due to the boundary conditions 

imposed upon the simulation domain. Typical correlations available in the literature have 

been developed from laboratory scale closed systems where fluid must flow upwards in 

the space between particles as a result of downward movement of a step change in the 

particle concentration. In a hydraulic fracture, counter current fluid flow is expected but 

its magnitude may be different to that produced by the advance of a step change 

concentration front. This demonstrates that proppant settling in a hydraulic fracture is 

more complex than usually considered. Larger concentration and slot width increase the 

fluid velocity downwards in between the settling particles following approximately linear 

trends. 

Larger particle diameter increases the average particle settling velocity, through 

interaction with the effect of the slot width produces results that cannot easily be reduced 

by means of the unbounded particle settling velocity calculated at just one Reynolds 

number. The dependency of average particle settling velocity upon particle diameter 

changes with slot width. Over the range of independent variables considered, the 

difference between the particle and fluid densities approximately linearly increases the 

average settling velocity. This is the same dependency as predicted by Stokes’ law, 

although it should be noted that particles settle outside the creeping flow regime in all 
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simulation cases considered (with the exception of the verification cases). Larger 

Newtonian viscosity reduces the average particle settling velocity, approximating the 

dependency predicted by a friction factor solution for particle settling. 
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Chapter 5: Effective Propped Fracture Length1 

 

Chapter 3 quantified the relative average velocity of proppant and fluid in 

pressure driven slot flow using the simulation approach detailed in Chapter 2. A 

correlation has been fitted to these results, allowing their application in a macro scale 

proppant transport model. The settling velocities calculated in Chapter 4 are available 

over a small range of slot width and have not been used in the development of the 

transport model, as doing so would require considerable extrapolation. To complete the 

proppant transport model, a settling velocity correlation proposed by Liu (2006) has been 

applied. Inclusion of the transport model in UTEFRAC-3D has enabled calculation of 

effective propped fracture length. 

5.1 INTRODUCTION 

Liu (2006) proposed an approximate solution to proppant settling velocity in a 

hydraulic fracture. This involves modifying uStokes (4.2) by the use of independent 

functions to account for inertial, concentration and wall effects. The inertial correction 

used is provided in an explicit form, which removes the need for iteration required by 

friction factor solutions such as that available in Bird et al. (2007), (4.4). The 

concentration correction used is a polynomial fitted to the empirical correlations of Nolte 

(1988), Daneshy (1978), Richardson and Zaki (1954) and Maude and Whitmore (1958). 

Finally, the wall spacing correction formulated by Liu (2006) is based on the solution of 

Lorentz (1907) for a sphere translating near a wall. The corrected settling velocity (m/s), 

usettling, is given by: 
                                                
1 Many results reported in this chapter were first published in the following: 
Blyton, C. A. J., Gala, D. P. and M. M. Sharma, 2015. A Comprehensive Study of Proppant Transport in a 
Hydraulic Fracture. SPE 174973, presented at the Annual Technical Conference and Exhibition, Houston, 
Texas, USA, 28-30 September.  
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usettling = uStokes
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where m is a unit converstion constant, c is the volumetric particle concentration and W is 

the width of the hydraulic fracture (m). 

A continuous piecewise function has been fitted to the CFD-DEM simulation 

results from Chapter 3, providing the relative average velocity of proppant and fluid in 

pressure driven slot flow. At particle diameter to slot width ratios equal to or smaller than 

0.4, a linear function with a constant value of (1-c) has been used. For d/W greater than 

0.4 and less than or equal to 0.95, the product of (1-c) and a cubic polynomial was fitted, 

for the dependency upon c and d/W respectively. For d/W equal to 1, that is, for a particle 

diameter the same size as the slot width, it is expected that the particle would jam and as 

the dimensionless velocity would be zero. Simulations were not conducted for d/W 

greater than 0.95 and therefore the exact behavior of the dimensionless velocity in this 

range is not known. As such, the simplest trend possible has been fitted, a linear function 

for d/W, multiplied by (1-c) for the concentration dependence. The complete correlation 

fitted is given by: 
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5.2 HYDRAULIC FRACTURE SIMULATION APPROACH 

5.2.1 Incorporation of CFD-DEM Correlations  

The correlation developed above for proppant transport in pressure driven slot 

flow can be incorporated into any hydraulic fracturing simulator. This section provides a 

brief discussion of how this has been done in a three dimensional planar hydraulic 

fracturing simulator that couples fracture mechanics with fluid and proppant transport, 

UTEFRAC-3D. The constitutive equations shown below are based on the appropriate 

assumptions for an incompressible, isothermal, single phase and single component carrier 

fluid. The code has additional functionality for modeling compressible fluids and 

compositional effects, which are necessary for modeling gases and foams. This capability 

has not been used in this study as the CFD-DEM simulation results are for a single 

incompressible carrier fluid phase. A detailed description of the Galerkin method based 

finite element discretization of the differential equations and solution algorithm is 

available in Ribeiro and Sharma (2013). 

5.2.2 Mathematical Problem Definition 

The fracture is assumed to be planar, vertical and symmetric with respect to the 

wellbore (bi-wing) and propagating in a purely elastic medium. Both height and length 

growth are permitted, with the capability to include horizontal layers with different 

elastic moduli and minimum horizontal stress. The fracture width is negligible compared 

to fracture height and length and thus slurry flow through fracture is modeled as two 

dimensional in the x-z plane between parallel porous walls. 
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Figure 5.1. Simulation domain, fracture front and the perforated interval along the 
wellbore, adapted from Ribiero and Sharma (2013). 

The illustration of the fracture domain in Figure 5.1 shows the simulation domain, 

Ω, the fracture front, ∂Ωfront, and the portion of the boundary where the injection of slurry 

is imposed, the perforated interval, ∂Ωperf, which forms an important boundary condition. 

To model a fracture in a horizontal well, the perforated interval is small. The slurry flows 

over the entire fracture domain with vector components in the x direction and z direction. 

A typical distribution of proppant is shown, whereby settling has produced a large 

concentration in the bottom portion of the fracture. Hence the propped fracture length is 

often much smaller than the created fracture length. 

5.2.3 Fracture Mechanics and Propagation Criteria 

The opening equation for a tensile Mode-I planar fracture in an isotropic, 

homogenous, three-dimensional elastic medium is a boundary integral equation. This is 

provided in Kossecka (1971), as shown below: 
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This equation relates the net fluid pressure in the fracture (Pa), -p+σh min, to the 

fracture width in the y coordinate direction (m), W, both of which vary across the fracture 

domain. G is the shear modulus (Pa) and ν is the Poisson’s ratio of the reservoir rock. 

The stress intensity factor (Pa-m0.5), KI, is given by: 

KI =
G

4 1−ν( )
2π
rtip
W

    (5.5) 

where rtip is the distance to the fracture tip (m). The fracture propagation (m), Δd, is 

governed by the difference between the stress intensity factor and rock toughness as 

established by Mastrojannis et al. (1979): 
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where KIC is the rock toughness (Pa-m0.5). 

5.2.4 Fluid and Proppant Transport 

The overall conservation of mass of fluid and proppant is given by: 
∂ ρsW( )
∂t

+∇• ρsW us
! "!!

( )+ ρ f qL = 0
    (5.7)

 

where ρs and us
! "!!

 are the slurry density (kg/m3) and average slurry velocity (m/s) 

respectively and qL is the fluid leak-off (m/s) calculated from Carter’s leak-off 

coefficient. More detail covering Carter’s leak-off model is available in Howard and Fast 

(1957). Slurry properties apply to the carrier fluid and proppant together, that is, a 

continuum assumption is employed. The slurry velocity is related to the pressure gradient 

by the solution to the incompressible Navier-Stokes equation for a power law fluid 

flowing between two infinite plates. Using correlations for the rheological properties of a 

proppant-laden slurry developed by Shah (1993), based upon experiments, the transport 

of slurry can be accurately modeled. Shah (1993) determined that both the flow 
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consistency index (Pa-sn) and the flow behavior index were functions of proppant 

concentration. Incorporation of the Navier-Stokes result in the above conservation of 

mass statement forms the pressure equation. The pressure equation is solved coupled to 

the fracture opening equation to yield the average slurry velocity, pressure and width 

across the fracture domain, among other variables. 

The slurry density and slurry mass flux are given by: 
ρs = 1− c( )ρ f + cρp     (5.8) 
and 
ρs us
! "!!

= 1− c( )ρ f uf
! "!!!

+ cρp up
! "!!!

    (5.9) 
The relative average velocity of the two phases, proppant and fluid, due to 

convection is given by the CFD-DEM derived correlation h(c, d/W). These each may 

have vector components in the x and z coordinate directions. There is an additional vector 

component in z coordinate direction for the proppant phase due to settling, given by the 

model suggested by Liu (2006). Rearrangement of the definition of slurry mass flux, h(c, 

d/W) and usettling allows for solution of the average proppant velocity. With up
! "!!!

 known, 

the continuity equation for proppant can be solved to determine its distribution across the 

fracture domain. The continuity equation for proppant is given by: 
∂ ρpcW( )

∂t
+∇• ρpcW up

! "!!!
( ) = 0

    (5.10)
 

5.3. RESULTS 

5.3.1 Results Overview 

The fracturing simulator described in the previous section, improved by 

incorporation of the CFD-DEM derived correlation for proppant transport with flow, can 

be used to design fracture treatments. For a given application, defined by the in-situ stress 
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profile, rock elastic moduli and toughness, along with leak-off properties of the reservoir, 

the treatment can be optimized. For two typical cases, the effect of several factors 

affecting proppant transport has been evaluated separately. That is, for each case a 

comparison has been made between the proppant distribution predicted by Stokes settling 

alone, corrected Stokes settling, Stokes settling with the CFD-DEM derived correlation 

for flow and finally corrected Stokes settling with the CFD-DEM derived correlation for 

flow. 

5.3.2 Simulation Cases 

A large barrier stress contrast limits height growth and was used in all hydraulic 

fracture simulation cases. The minimum horizontal stress profile and the proppant 

schedule used are shown below. 

 

Figure 5.2. Left: Minimum horizontal stress profile versus depth. Right: Proppant loading 
versus time. 

Table 5.1 includes all necessary inputs required by the hydraulic fracture 

simulator described above. Where only one value for an independent variable is included, 

it was used for all simulations. 
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Independent variable Value (SI units) Value (field units) 
Shear modulus, G 
(Young’s modulus) 

11.03 (GPa) 
27.58 (GPa) 

1.6 (MMpsi) 
4 (MMpsi) 

Poisson’s ratio, ν 0.25 
rock toughness, KIC 1.099MPa-m0.5 1000psi-in0.5 
height 60.96m 200ft 
proppant diameter, d 0.0003 40/70 mesh proppant 
proppant density, ρp 2650kg/m3 165 lbm/ft3 
fluid density, ρf 1000kg/m3 62.4 lbm/ft3 
fluid rheology, µ 0.001Pa-s 1cP slickwater 
injection rate (bi-wing, 
hence half into single 
fracture) 

0.03975, 0.06625m3/s 15, 25bbl/min 

leak-off, CL 3.935x10-6m/s0.5 0.0001ft/min0.5 

Table 5.1. Hydraulic fracture simulation parameters. 

The specified injection rate per bi-wing fracture is representative of one quarter of 

a typical overall stimulation injection rate, reflecting common practice to simultaneously 

stimulate four clusters. The two overall injection rates modeled are 100 and 60bbl/min. 

40/70 proppant was included as per the schedule in Figure 5.2. Slickwater fluid rheology 

is well characterized by a Newtonian fluid with a viscosity of 1cP. The value used for 

Carter’s leak-off coefficient was 0.0001ft/min0.5 in all cases. 
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5.3.3 Final Proppant Distribution 

5.3.3.1 Final Proppant Distribution with Injection at 25bbl/min 

 

Figure 5.3. Final proppant distribution with injection at 25bbl/min. Top left: Stokes 
settling. Top right: Corrected Stokes setting. Bottom left: Stokes settling and 
CFD-DEM correlation h(c, d/W). Bottom right: Corrected Stokes settling 
and CFD-DEM correlation h(c, d/W). 

The proppant distribution at the end of pumping for a case with an injection rate 

of 25bbl/min into one bi-wing fracture is shown in Figure 5.3. Comparing first the top 

left and top right panes, it is apparent that the effective (or propped) fracture length is 

smaller if the Stokes settling velocity is assumed versus the Stokes settling velocity 

corrected with the correlation proposed by Liu (2006). Comparing the effective fracture 
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length with the CFD-DEM correlation applied versus not applying it, using corrected 

Stokes settling as shown in the top right and bottom right panes, the effective fracture 

lengths are significantly reduced. If Stokes settling is assumed as shown in the top left 

and bottom left panes, there is less reduction in the effective fracture length due to the 

inclusion of the CFD-DEM correlation. However, this is a less accurate settling model as 

the proppant settles at a particle Reynolds number outside of the Stokes regime. For 

clarity, the propped width of each fracture, averaged over its height, is presented in 

Figure 5.4. 

 

Figure 5.4. Final average propped fracture width versus length with injection at 
25bbl/min. 

The average propped width of the fracture versus length shown in Figure 5.4 

indicates that the effective fracture length is reduced by inclusion of the CFD-DEM 

correlation, whether the settling is assumed to follow Stokes’ law with or without the 

correction proposed by Liu (2006). 
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5.3.3.2 Final Proppant Distribution with Injection at 15bbl/min 

 

Figure 5.5. Final proppant distribution with injection at 15bbl/min. Top left: Stokes 
settling. Top right: Corrected Stokes setting. Bottom left: Stokes settling and 
CFD-DEM correlation h(c, d/W). Bottom right: Corrected Stokes settling 
and CFD-DEM correlation h(c, d/W). 

A case using an injection rate of 15bbl/min into one bi-wing fracture was 

simulated with the proppant distribution at the end of pumping shown in Figure 5.5. 

Comparing the effect of application of the CFD-DEM derived correlation, while 

assuming the more accurate corrected Stokes settling model as shown in the top right and 

bottom right panes, there is a small reduction in the effective fracture length due to the 

CFD-DEM correlation. The reduction in the effective fracture length is less than for the 
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case with injection at 25bbl/min as convection plays a smaller part in the overall transport 

of proppant with injection at 15bbl/min. For clarity, the propped width of each fracture, 

averaged over its height, is presented in Figure 5.6. 

 

Figure 5.6. Final average propped fracture width versus length with injection at 
15bbl/min. 

The small reduction in the effective fracture length due to inclusion of the CFD-

DEM correlation is apparent on examination of the results shown in Figure 5.6. 

5.4 CONCLUSIONS 

The CFD-DEM simulation results clearly demonstrate that the average proppant 

velocity is generally lower than the average fluid phase velocity. The relative velocity of 

the two phases is a linearly proportional function of the volumetric concentration of 

proppant. There is an exception to this for low proppant concentrations at large ratios of 

proppant diameter to slot width, though it is uncommon for this to be case in hydraulic 

fracturing applications. 

The CFD-DEM results have been incorporated in UTEFRAC-3D via a simple 

correlation. The reduced proppant velocity with increased concentration leads to a 

reduction in propped fracture lengths compared to predictions made with simplified 
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proppant transport assumptions commonly used in industry. The reduction in length is 

greater for larger injection rates as transport by convection is the more significant 

transport mechanism in these cases. The improvement of the proppant transport 

calculation made in UTEFRAC-3D allows for more accurate engineering optimization of 

fracture treatments, with predictions closer to typical results available from history 

matching field data. 
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Chapter 6: Particle Transport of Non-Dilute Suspensions in Branched 
Slots 

 

The simulation approach detailed in Chapter 2 has been applied to the transport of 

particles in a branched slot. The proportion of particles transported into the branch has 

been determined for a wide variety of domain geometry and proportion of fluid flowing 

into the branch, among other relevant factors. 

6.1 INTRODUCTION 

A hydraulic fracture is typically assumed to propagate perpendicular to the 

minimum horizontal stress in a homogeneous reservoir where both horizontal stresses are 

smaller than the vertical stress. However, rock deviates from this simplifying assumption 

of homogeneity to various degrees. Discontinuities in rock include natural (pre-existing) 

fractures, amongst many others across various scales. Interaction between a propagating 

hydraulic fracture and natural fractures has been extensively studied through physical 

experiments. Early laboratory scale experimental work by Lamont and Jessen (1963) and 

Daneshy (1974) examined the propagation of a hydraulic fracture in a sample of rock 

containing a natural fracture. Lamont and Jessen (1963) found that the natural fracture 

was bypassed by the hydraulic fracture in all cases considered, while Daneshy (1974) 

identified some cases where the hydraulic fracture was arrested. The cases in which the 

hydraulic fracture was arrested were attributed to the relative scale of the two fractures. 

Blanton (1986) conducted similar experiments and identified the angle of approach 

between the hydraulic and natural fracture and the differential stress as the primary 

controlling factors for propagation behavior. Small angle of approach, 30o, and low 

differential stress tended to result in diversion of the hydraulic fracture along the natural 
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fracture. Conversely, larger angles of approach, 60o and 90o, resulted in no diversion of 

the hydraulic fracture from propagating perpendicular to the minimum horizontal stress, 

if the differential stress was sufficiently large. Blanton (1986) proposed criteria allowing 

the conditions under which diversion occurs to be identified. Warpinski and Teufel 

(1987) conducted both laboratory and field scale experiments. The latter were examined 

by excavation of the hydraulically fractured rock. Observations of rock after hydraulic 

fracturing demonstrated multi-stranded fracture propagation. The results of laboratory 

experiments demonstrated similar trends to those reported by Blanton (1986) in terms of 

propagation behavior as a function of angle of approach and differential stress. 

Experimental studies of hydraulic and natural fracture interaction illustrate that 

there are a wide range of conditions under which a hydraulic fracture is not diverted by 

the presence of a natural fracture. However, the natural fracture may subsequently dilate 

and accept fluid. This results in an intersection that, at a small scale, may be considered a 

branched slot. This leads to many branches in the fracture network into which particles 

may be transported. However, the proportion of particles entering each branch is not 

necessarily the same as the proportion of fluid. The particle transport efficiency for 

particles exiting a wellbore casing into perforations (small holes in the well casing), was 

determined experimentally by Haynes and Gray (1974). They found particles to be 

transported more efficiently with increasing flow rate, decreasing particle size and 

concentration. A similar study by Gruesbeck and Collins (1982) showed the particle 

concentration to be unimportant, in contrast to the results of Haynes and Gray (1974). 

Gruesbeck and Collins (1982) found particles to be transported in smaller proportion than 

the proportion of fluid accepted by the perforations for lower viscosity fluids. In addition, 

particles were found to form bridges in cases where the perforation was only a small 

multiple, two or three, of the particle diameter. 
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While there is no reason to doubt the validity of the results of the two 

experimental particle transport studies, the geometry and scale of the system examined is 

very different to that expected at a hydraulic and natural fracture intersection. In this case 

the fractures have a small width, in some cases approaching the size of the particles 

transported through them. In contrast, a wellbore is much larger. As such, the results 

above cannot be directly applied to the problem of interest in this research. 

This study directly solves the motion of spherical solid particles in a fluid. This is 

achieved through calculation of the velocity and pressure across the fluid domain 

surrounding the particles. Subsequently, the forces exerted by the fluid on the particles is 

determined directly and used to calculate their trajectories. While the numerical approach 

used in this research is different, this general simulation approach was pioneered by Hu et 

al. (1992) and subsequently applied by Feng et al. (1994), to study two-dimensional 

cylinders settling and moving in Poiseille flow, respectively. Yang et al. (2005) applied a 

similar approach to study a three-dimensional spherical particle in tube Poiseuille flow. 

This approach has not previously been applied to the problem of interest in this research, 

that of suspension flow in bifurcating slots. Simulation cases have been run to determine 

the proportion of particles entering a branch of various aperture and orientation, subject 

to a range of slot flow Reynolds number at the inlet and proportion of fluid entering the 

branch. The effect of fluid rheology, particle concentration, size and density has also been 

quantified. 

6.2 APPLICATION TO FLOW IN A BRANCHED SLOT 

6.2.1 Simulation Domain and Boundary Conditions 

A schematic of the simulation domain is shown in Figure 6.1. 
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Figure 6.1. Simulation domain. 

The coupled CFD-DEM approach involves two representations of the physical 

system and as such the relevant equations are each solved across two separate domains, 

which are not necessarily coincident. In this study, the CFD and DEM domains share the 

same planar boundaries in the z coordinate direction (out of the page), with a height, H, 

of 2 particle diameters, d. However, in the x and y coordinate directions the DEM domain 

is larger than the CFM domain due to a requirement of the DEM code used, which 

specifies a minimum domain volume. This is a practical requirement rather than one 

driven by the physical system modeled. The x and y boundaries of the CFD domain are 

shown in Figure 6.1 and consist of a main slot and branch set at a particular angle to the 

main slot, θ. The main slot and branch can take different widths, W1 and W2, respectively. 
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The simulation approach applied involves considerable numerical expense and run time 

constraints require a small domain to allow for production of sufficient simulation data. 

As such, the lengths of each portion of the slot from the intersection are relatively small 

multiples of d. While the DEM domain is larger than the CFD domain, the particles are 

restricted to move within a subset of the CFD domain by walls and the insertion and 

deletion approach used, as detailed below. 

The boundary conditions applied to the CFD domain are as follows: 

At the CFD inlet and outlet 1: fully developed slot flow. 

In the laminar flow regime this condition is slot Poiseuille flow, with the scalar 

components of the fluid velocity vector and the pressure specified by 

uf x y( ) = 1− β( )∗uf xmax 1−
y − B
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   (6.1) 
where β is the proportion of fluid flowing into the branch and is within the range 

0 ≤ β ≤1 , uf x max is the maximum value of the x component of the fluid velocity, B is half 

the main slot width, n is the fluid behavior index. The expression for uf x has been 

obtained analytically from conservation of momentum considerations for a power-law 

fluid. This is necessary for extension of the research to cases of shear thinning fluids, 

which are included in this work. With reference to the boundary condition expression 

above, β is always zero at the inlet and greater than zero at outlet 1. 

In the turbulent flow regime, the time average velocity profile across a slot is 

commonly described by a logarithmic law, see standard texts such as Pope (2000). The 

expression for uf x with y within the range 0 < y ≤ B  is provided below. 

uf x y( ) = uτ
κ
ln y

B
!

"
#

$

%
&+uf xmax

    
uf y = 0       uf z = 0       ∂p

∂x
= 0

    (6.2) 



 96 

where κ is the von Karman constant, assumed to be 0.41 and uτ is the friction velocity 

(m/s). For y within the range B < y ≤ 2B  a similar expression is used to produce a 

symmetric velocity profile. This expression is often termed the ‘velocity defect law’ as 

the logarithmic term defines the difference between the local time average velocity and 

the maximum time average velocity, which occurs at the center of the slot. The other two 

scalar components of the time average velocity, uf y and uf z, are the same as for slot 

Poiseuille flow and equal to zero. Similarly, the pressure gradient in the direction of flow 

is zero. The friction velocity is also required to satisfy: 
uf xmax
uτ
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κ
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where B1 is a constant assumed to take the value of 5.2. The notation used in the available 

literature often uses B for this particular constant, however in this context B is used for 

the main slot half width. Re0 is the Reynolds number calculated in terms of the maximum 

time average fluid velocity and a characteristic length of B. 

Since the shape of the velocity profile is a function of Reynolds number, the 

expression applied at the CFD inlet cannot simply be multiplied by (1-β) as done for 

laminar flow at outlet 1 but a separate calculation of uf x max and uτ is required.
 At the CFD outlet 2: constant pressure 

∂uf x
∂x

= 0
     

∂uf y
∂x

= 0
     

∂uf z
∂x

= 0
     

p = 0     (6.4) 

At all the CFD sides: no slip condition 

uf x = 0      uf y = 0      uf z = 0      
∂p
∂x

= 0
    (6.5)

 

At the planar CFD boundaries in z: cyclic pairing 
uf x z=0

= uf x z=H      
uf y z=0

= uf y z=H      
uf z z=0 = uf z z=H      

p
z=0
= p

z=H     (6.6)
 

This boundary condition, cyclic pairing, represents an infinitely tall domain. 
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The setup used within the DEM domain is as follows: 

There is an insert region (shown in grey in Figure 6.1), a volume into which 

particles are introduced at random non-overlapping positions to satisfy a specified insert 

mass rate (kg/s), m
•

insert . This is determined from: 

m
•

insert = uf x 1− c( )cAρp     (6.7)
 

where <uf x>(1-c) (m/s) is the modified average fluid velocity in the main branch prior to 

the intersection, c is the volumetric particle concentration required, A (m2) is the cross 

sectional area of the main branch, W1×H, and ρp (kg/m3) is the particle density. Each 

particle is inserted with the x component of its velocity initially equal to the modified 

average fluid velocity in the main branch prior to the intersection, while the other two 

velocity components, in the y and z coordinate directions, are zero. In addition to the 

particles continuously inserted into the domain, there is initially one particle placed at the 

center of the main slot prior to the intersection. This is done so that the DEM code does 

not produce an error on determining that there are zero particles in the system initially 

and is not related to modeling the physical system.  

In this work, a counter is defined by four points in the Cartesian coordinate 

system with two placed on either side of the slot at each wall, forming a rectangular 

shape on a plane normal to the slot walls. The counter records the cumulative number and 

mass of particles passing though it. There are three counters placed in the simulation 

domain, one prior to the branch, one after the branch and one in the branch. Counter 2 

and counter 3 delete particles that have passed through them. 

Walls are placed as shown in Figure 6.1. 

Periodic pairing is used at the top and bottom of the DEM domain. 
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6.2.2 Data Analysis 

An example of the cumulative mass of particles recorded passing through each 

counter is presented in Figure 6.2. 

 

Figure 6.2. Cumulative mass recorded at each counter versus time. 

From the simulation data recorded by each counter, a dimensionless quantity 

termed the ‘particle transport coefficient’, PTC, has been calculated. This quantity is 

defined as the proportion of particles transported into the branch normalized by the 

proportion of fluid flowing into the branch, given by: 

PTC =
m3

•

m1
•

1
β

    (6.8)
 

where m
•

3  and m
•

1  are the mass rates (kg/s) determined from the cumulative mass 

recorded by counter 3 and counter 1, respectively. Each mass rate has been determined 

using a linear trend fitted by a process of least squares regression to the simulation data 

from the time at which the first particle arrives at counter 3. 

6.2.3 Domain Size, Grid Refinement, Time Step Considerations and Particle Seeding 

As noted above, the method is computationally expensive. This necessitates 

efficient design of the simulation setup to enable production of sufficient data within run 
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time constraints. Small domain size and sparing refinement of the CFD grid achieves this 

aim. While the domain needs to small enough to enable enough simulation data to be 

produced, certain minimum requirements need to be met. One such requirement is that 

the translational velocity of each particle is a close approximation to steady state, given 

its particular position in the slot, prior to arrival at the branch. This requires the length of 

the main slot between the insert region and the branch to be greater than a certain value. 

Particles inserted closest to the branch travel only 2.5d before arriving at the branch. To 

determine if this is sufficient, two checks were made. The first check required 

determining the velocity transient of a single particle accelerating from an initial x 

velocity equal to the average fluid velocity (the initial condition used for all particles 

inserted) at the center of a slot in Poiseuille flow, using the simulation approach detailed 

above. This velocity transient reveals that the particle reaches approximately 90% of the 

steady state velocity after translating 2.5d. It is important to note that this is the smallest 

distance a particle translates from the insert region to the branch, particles can travel up to 

5d if inserted at the furthest location within the insert region, doing so more closely 

approximates steady state. That is, the most inaccurate translation velocity obtained for 

particles in the middle of the slot is only 10% from the true steady state value.  The 

second check involved the construction of a simulation domain where the minimum 

distance particles travel is 8.5d from the insert region to the branch, with all other 

dimensions and parameters remaining the same. Comparison of the transport coefficient 

determined from the two simulation domains agreed within 10%. The larger simulation 

domain case produced approximately half the simulation data as the smaller domain, 

which is a significant drawback for accurate calculation of the transport coefficient for 

smaller values of the proportion of fluid flowing into the branch, as discussed in detail 
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below. Since reasonable agreement between the results was found, the smaller domain 

has been used for all subsequent simulations. 

The original static CFD grid used consists of ten grid blocks across both the main 

slot and the branch. This provides sufficient resolution of the flow field in the absence of 

particles. Using such a grid for the branch results in a very refined mesh in the x 

coordinate direction across the intersection of the main slot for cases with a small branch 

width. Since such refinement is numerically expense and not required in the main slot 

prior to and after the branch, grading has been applied with a cell-to-cell expansion ratio 

of greater than 0.8 in all cases, following standard CFD practice. The main slot is ten 

particle diameters wide for all simulations, resulting in CFD grid blocks of one particle 

diameter in length. This is a relatively coarse grid for this particular simulation approach, 

which requires adequate resolution of the flow field surrounding particles. Two steps of 

dynamic mesh refinement have been used to provide greater resolution of particles and 

the fluid flow around them. Each refinement step splits a grid-block in two in each 

Cartesian coordinate direction. The end result is four grid blocks per particle across the 

slot, a ratio demonstrated to provide reasonable accuracy when applied to a particle 

settling as described in Hager et al. (2011). Grid blocks are one third of a particle 

diameter in length in the z coordinate direction. Discussion of adequacy of the grid used 

is provided below. 

A coupling interval between the two codes, OpenFoam and LIGGGHTs, allows a 

predetermined number of smaller DEM time steps to be taken prior to the CFD solver 

solution of the fluid flow. Since a rigorous criteria for selection of an appropriate 

coupling interval is not available in the literature, a process of trial and error has been 

used. In general, simulation cases at larger slot flow Reynolds number at the inlet require 

a smaller coupling interval. Each code does have its own stability criteria. For the DEM 
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solver, these are the Raleigh time and Hertz time. For the CFD solver this is the Courant 

number, a measure of the magnitude of the local fluid velocity relative to the size of the 

grid-block for a particular time step, is the relevant criteria for CFD simulation stability. 

All of these considerations were satisfied through the simulation parameters used. 

The appropriate slot flow Reynolds number, Res, for a power-law fluid, based on a 

characteristic length of the hydraulic diameter and specified at the main branch prior to 

the intersection, is: 

Res =
2W( )n uf x 1− c( )"

#
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8n−1 3n +1
4n

&
'
(

)
*
+
n

ηc
      (6.9)

 

The factor of (1-c) appears as a result of using the same fluid velocity boundary 

condition at the inlet for simulation cases at several different concentrations. The above 

expression is considerably simplified in the case of a Newtonian fluid. 

Particles are inserted into the domain in the insert region. Doing so requires 

specifying a ‘seed’, a number used to determine the sequence of particle insertion 

positions. A comparison was made between three sets of simulations, for which all 

parameters are the same except for the particle insertion seed used. The parameters are 

given in Table 6.1. 
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Parameter  
d/W1 0.1 
d/W2 0.2 
θ (degrees) 60 
d (m) 0.0004 
c 0.15 
Res 1000 
β 0.2, 0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005 
µ (Pa-s) 0.001 
ρf (kg/m3) 1000 
ρp (kg/m3) 2650 

Table 6.1. Branched slot simulation parameters. 

The proportion of fluid flowing into the branch has been varied and takes a value 

between 0.2 and 0.005 for each of the eight simulation cases. The result of running each 

of the cases is presented in terms of the particle transport coefficient, in Figure 6.3. 

 

Figure 6.3. Particle transport coefficient versus the fraction of fluid flowing into the 
branch for different particle seeds and grids. 

The error bar plot shown in Figure 6.3 shows the smallest, middle and largest 

value of PTC determined from the three simulation cases, each run with a different seed 

but otherwise identical parameters. The length of the error bar, representing the range of 

PTC, generally becomes larger with smaller β. The reason for this is as follows. While 
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the domain size, CFD grid and coupling interval have each been selected to provide as 

much simulation data as possible, only approximately 0.5s is produced given the run time 

constraints and the parameters listed in Table 6.1. Over the course of ~0.5s, 

approximately 1000 particles are seeded in the insert region. For PTC in the range 0.2 to 

0.02, it takes between approximately 10% and 30% of the 0.5s of the simulation duration 

for particles to arrive at counter 3. For β of 0.02, the maximum and minimum total 

number of particles transported into the branch is 15 and 8 particles, respectively. In 

contrast, for β of 0.2, there are 179 and 163 particles in total corresponding to the 

maximum and minimum totals. While the range in the total number of particles is in fact 

larger for β of 0.2 compared to that for β of 0.02, there are substantially more particles 

over which to calculate the average mass rate. Nonetheless, as long as the range in the 

estimate of PTC is understood, there is value in reporting it for small values of β. 

However, so few particles arrived during the cases for which β is 0.01 that a meaningful 

average was not possible. In these cases the PTC was not reported. Finally, while even 

fewer particles arrived for the cases with β of 0.005 than the β of 0.01 cases, these have 

been reported as a PTC of zero since the one or two particles corresponds to a PTC of 

less than 0.5. Throughout this research such a small number of particles arriving at 

counter 3 will be reported as a PTC of zero and a note made as to whether this is the 

result of zero particles actually observed or simply so few that the PTC value if 

calculated would be less than 0.5. 

The same set of eight simulation cases, for which the parameters are shown in 

Table 1, have been run with a refined grid. This grid uses twenty grid blocks across the 

main slot in place of the ten used for the standard grid. Using such a grid produces only 

approximately 0.2s of data versus the ~0.5s produced using the standard grid. This is the 

motivation for using a relatively coarse grid as standard. As a result, it is only possible to 
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report PTC from simulations with β in the range 0.2 to 0.03. For β of 0.02 and smaller 

there are too few particles recorded from which a meaningful average can be determined 

but also too little simulation data to be able to justifiably report a PTC of zero following 

the criteria detailed above. From the PTC results available, the trend observed is the same 

as that for the standard grid, a peak in PTC corresponding to β of 0.04. The PTC values 

do not always fall within the error bars, though they should not be expected too as these 

are a simple measure of the range observed in three simulations and not true measures of 

the variation in the population. A comparison between the standard and refined grid was 

also made with a volumetric concentration of 0.05, in place of c equal to 0.15 used for the 

simulation results presented in Figure 6.3, since this parameter results in significantly 

more simulation data produced. While approximately a factor of three times the 

simulation data is available from these simulations, the mass rate is reduced by 

approximately one third and as a result the same limitation in terms of a small cumulative 

number of particles recorded is evident. More detail on the total number of particles 

counted is available in Appendix A. 

6.3 RESULTS 

6.3.1 Effect of Branch Width 

The simulation approach adopted and the setup developed for application to a 

branched slot has been detailed above. The effect of domain geometry upon PTC has first 

been examined through simulations with different branch widths, W2, selected such that 

d/W2 is between 0.2 and 0.95. The values of the other parameters are identical to those 

included in Table 6.1. The simulation data has been processed and the results are 

presented in Figure 6.4. 
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Figure 6.4. Particle transport coefficient versus particle diameter to branch width ratio. 
Left: Fraction of fluid flowing into the branch between 0.2 and 0.05, Right: 
Fraction of fluid flowing into the branch between 0.05 and 0.005. 

While simulation cases have been run with β equal to 0.04, the results are very 

similar to those at β equal to 0.05 and as such have been omitted for clarity of 

presentation in Figure 6.4. There are several cases for which PTC is greater than one. A 

dashed line is shown at PTC equal to one in this figure to aid identification of these cases. 

The results shown in Figure 6.4 demonstrate that PTC varies as both a function of d/W2 

and β. Examining the left pane, for d/W2 equal to 0.6 and larger, when β is equal to 0.2 

and 0.1, a small number of particles were recorded at counter 3, followed by the 

formation of a stable particle bridge which prevented further particle transport. In each of 

these six cases the branch remained ‘jammed’ for the remainder of the simulation and as 

such the value of PTC reported is zero. With a small amount of simulation data available 

in each case, ~0.5s, the formation of a particle bridge within this time may be considered 

an instantaneously jammed state and PTC is zero for practical purposes. The remaining 

simulation results presented in the left pane did not exhibit particle jamming. There is an 

increase in PTC with decreasing β over the range considered (β between 0.2 and 0.05). 

The values of PTC are reasonably flat across the range of d/W2 considered, with a slight 
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decrease in PTC with increasing d/W2 in most cases. That is, smaller W2 results in smaller 

PTC. 

The results presented in the right pane of Figure 6.4 contrast with the results 

presented in the left pane, with PTC decreasing as β decreases over the range presented 

(β between 0.05 and 0.005). Considering the results in both panes of Figure 6.4 together 

demonstrates that there is a peak in the particle transport coefficient when the proportion 

of fluid flowing into the branch is approximately equal to 0.05. 

Decreasing PTC with increasing d/W2 is observed and is more pronounced with 

smaller β. No more than 5 particles were observed in the results of simulations with β 

equal to 0.02 and d/W2 equal to 0.6, 0.8 and 0.95. The calculated PTC for these cases is in 

the range 0.1 to 0.2, but considering the uncertainty in the calculation associated with 

such small numbers of particles, these have not been reported in Figure 6.4. A similar 

result is found for β equal to 0.01 and d/W2 equal to 0.2 and 0.3 and these are also not 

reported. All simulations with β equal to 0.005 demonstrated a PTC of zero, with zero or 

at most one particle recorded at counter 3. Larger d/W2 is equivalent to smaller W2 for a 

given d, thus a smaller branch width has been observed to reduce PTC in most available 

comparisons. 

The value of β at which PTC equals zero, β0, has been plotted versus d/W2 and is 

shown in Figure 6.5. 
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Figure 6.5. Proportion of fluid flowing into the branch at zero particle transport 
coefficient versus particle diameter to branch width ratio. 

The results shown in Figure 6.5 demonstrate that PTC is zero for both large and 

small β. For β equal to 0.1 and 0.2, jamming is the mechanism responsible, while for β of 

0.005 and 0.001, particles simply bypass the secondary branch and are transported with 

flow along the main branch in a continuous manner. 

6.3.2 Particle Jamming 

As noted above, the formation of stable particle bridges preventing subsequent 

particle transport into the branch was observed in 6 simulations. For these cases, the 

value of β was equal to 0.2 and 0.1 and d/W2 was equal to 0.6, 0.8 and 0.95. The location 

and buildup of particles for the simulation case with value of β equal to 0.2 and d/W2 

equal to 0.8 is examined in Figure 6.6. 
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Figure 6.6. Particle locations and velocities. Top to bottom shows three states of the 
system as it evolves with time. Left: Particle location (x and y coordinate) in 
the main branch. The main slot walls and branch are shown as a thick solid 
line. Right: Particle location in the y coordinate direction versus x 
component of velocity. 

The top two panes of Figure 6.6 show the state of the simulated system at 0.079s, 

which is directly after counter 3 registered the last particle transported into the branch. 

That is, the first jammed state of the system. There are a total of 50 particles present at 

this time, with the magnitude of the x component of velocity of each of 4 particles less 

than 10-4m/s, shown as filled circles in the left pane. This velocity, 10-4m/s, has been used 
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as an indicator of jammed particles. While this is an arbitrary criterion, at this time in the 

evolution of the system, particles transported at greater velocities are each travelling at 

least one order of magnitude faster, as shown in the right pane. The 4 jammed particles 

are deposited in the main branch at the inlet to the secondary branch and not in the 

secondary branch itself. 

The middle panes show the evolution of the system at 0.1s. At this time 7 

particles are jammed, including the original 4 which were jammed at 0.079s. At this time, 

two layers of particles have been deposited in the y coordinate direction. There are a total 

of 67 particles in the system, which is more than at 0.079s, as insertion has continued at 

the same rate whilst accumulation has also occurred since this time. The particle velocity 

distribution at 0.1s shown in the right pane exhibits a larger maximum velocity and less 

symmetry than at 0.079s resulting from the larger fluid velocity now present in 

unjammed portion of the main branch. 

The state of the system at 0.15s is shown in the bottom panes. A total of 17 

particles are jammed, out of a total of 63. The particle bridge includes the 7 jammed at 

0.1s and new additions to the particle bridges, which are both longer in the x coordinate 

direction and three layers thick in the y coordinate direction. As a result there has been a 

further increase in the maximum particle velocity in the unjammed portion of the branch 

due to larger fluid velocity. 

6.3.3 Peak Particle Transport Coefficient 

The results presented in Figure 6.4 demonstrate that there is a peak in PTC for β 

equal to 0.05. The peak value of PTC is greater than one and as large as approximately 

1.4, when considering the results shown in Figure 6.4. This is a result of the distribution 

of particle velocities across the main slot prior to the intersection and the difference in 
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lateral fluid to particle forces acting to transport particles into the branch for different 

values of β. 

This result was examined in particle scale detail by analysis of two simulations 

with different values of β, 0.2 and 0.05. The values of the other parameters are identical 

to those presented in Table 6.1, except for the Newtonian fluid viscosity (Pa-s), µ, of 

0.0005Pa-s and Res of 2000. The calculated values of PTC are 1.0 and 1.3 for β equal to 

0.2 and 0.05, respectively. For each simulation, the position and velocity of 200 particles 

passing through counter 1 (located in the main slot immediately prior to the intersection 

as shown in Figure 1) were compared with the final position of each particle, determined 

by whether or not it arrived at counter 3 (located in the branch). The results are presented 

in Figure 6.7. 
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Figure 6.7. Particle velocities in the x and y coordinate directions at counter 1. The two 
top panes are at a fraction of fluid flowing into the branch of 0.2, while the 
two bottom panes are at 0.05. Left: Particle x velocity versus y coordinate 
location. Right: Particle y velocity versus y coordinate location. 

Analysis of only approximately 0.1s of the available data was necessary in each 

case to determine the position and velocity of 200 particles and the results are presented 

in Figure 6.7. As each simulation produced approximately 0.5s of data, 0.1s of data 

represents a sub-set of that available. Particle tracking showed that 41 and 14 particles 

were transported into the branch for β equal to 0.2 and 0.05 respectively. A calculation of 

PTC based on this sub-set of the simulation data results in values of 1.0 and 1.4, which 

are similar results to 1.0 and 1.3 as determined from analysis of the complete data set. 
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This indicates that the analysis of 200 particles is adequately representative of the 

complete simulation. 

Examining the two left panes of Figure 6.7 illustrates that, with one exception, 

only particles transported next to the main slot wall on the same side as the branch are 

transported into the branch. For the case with β equal to 0.2, only one particle out of 41 

transported into the branch is observed at a lateral position on the opposite side of the 

main slot on entering the intersection. With particles transported into the branch primarily 

drawn from lateral positions closest to the branch side of the main slot, PTC can be 

viewed as a direct function of the limit of lateral position in the main slot for which 

particles are transported into the branch. 

Considering the case with β equal to 0.05, the particles transported into the branch 

are, on average, moving with lower velocity in the x coordinate direction on entering the 

intersection than those in the case with β equal to 0.2, as a result of the particle velocity 

distribution across the main slot. However, in the case with β equal to 0.2, the lateral 

forces applied to the particles are expected to be greater. Competition between these 

factors ultimately determines the limit of lateral position particles can be drawn from and 

consequently the resulting value of PTC. 

The results shown in the right panes of Figure 6.7 demonstrates that for the case 

with β equal to 0.2, particles are travelling at larger average velocity in the y coordinate 

direction than the case with β equal to 0.05. This is a consequence of the larger lateral 

forces expected from the fluid acting on the particles in this case. 

6.3.4 Effect of Branch Orientation 

The second study of the effect of domain geometry is an examination of PTC with 

different orientation of the branch, θ. The values of the other parameters are identical to 
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those included in Table 6.1. The simulation data has been processed and the results are 

presented in Figure 6.8. 

 

Figure 6.8. Particle transport coefficient versus the fraction of fluid flowing into the 
branch for branch orientation equal to 60, 90 and 120o. 

The results shown in Figure 6.8 demonstrate that for β in the range 0.2 to 0.05, 

there is little difference in the value of PTC as a function of θ. However, for β equal to 

0.04 and smaller, PTC is reduced for cases with larger θ. The value of β for which PTC is 

zero is larger for larger θ. Defining an effective branch width along the main slot as the 

distance between the branch walls in the x coordinate direction, this quantity takes the 

same value for θ equal to 60 and 120o. As a result, reduced PTC for θ equal to 120o 

compared to 60o must be attributed to reduced lateral forces arising from the fluid flow in 

the intersection. For θ equal to 90o, there is a smaller effective branch width along the 

main slot and different fluid flow in the intersection, which together result in the 

observed smaller PTC compared to θ equal to 60o. For three cases, θ and β equal to 60o 

and 0.01, 90o and 0.02, 120o and 0.03, there was at most 7 particles counted by counter 3. 

These have not been reported in Figure 6.7 due to the uncertainty associated with taking 
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averages over such small numbers of particles. For all simulations shown in Figure 6.8 

with PTC reported as zero, at most one particle was recorded at counter 3. 

The value of β0 has been plotted versus θ and is shown in Figure 6.9. 

 

Figure 6.9. Proportion of fluid flowing into the branch at zero particle transport 
coefficient versus branch orientation. 

The results shown in Figure 6.9 demonstrate that β0 is larger for larger θ. 

6.3.5 Effect of Reynolds Number 

The effect of Res upon PTC has been examined through the analysis of four sets 

of simulation runs. The value of Res used for each set was 1000, 2000, 4000 and 8000. 

The values of the other parameters are identical to those presented in Table 6.1 and the 

results are presented in Figure 6.10. 
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Figure 6.10. Particle transport coefficient versus average fluid velocity in the branch for 
Reynolds numbers of 1000, 2000, 4000 and 8000. 

The simulation results presented in Figure 6.10 shows PTC versus the average 

fluid velocity in the direction of flow along the branch (m/s), <uf branch>, in the absence of 

particles in the branch. This average has components in both the x and y coordinate 

directions due to the orientation of the branch. While the four sets of simulations have 

each been run with the same range of values of β, the results are presented in this manner 

to be able to compare PTC to the absolute quantity of fluid flowing into the branch. 

The sets of results at Res of 1000 and 2000 demonstrate similar PTC, considering 

the range expected as a result of seeding (indicated by the results presented in the error 

bar plot of Figure 6.3). There is a similar characteristic peak in PTC as discussed in detail 

above. There is a reduction in PTC observed with increasing Res, evident through 

comparison of the results in the laminar flow regime (as noted above, at Res equal to 1000 

and 2000 these are similar) to those in the turbulent flow regime at Res equal to 4000 and 

8000. This is the result of larger particle translation velocities in the main slot, where 

similar lateral forces arising from fluid flow into the branch have less time to act on each 

particle. The results for the turbulent flow cases show that PTC decreases monotonically 
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with decreasing <uf branch>, in contrast to the characteristic peak observed for cases in the 

laminar flow regime. The time-average fluid velocity profile across the main slot for the 

turbulent flow cases is much ‘flatter’ than that for laminar flow. While the time-average 

velocity profile for turbulent slot flow is Reynolds number dependent, in the range of Res 

of 4000 to 8000, the maximum fluid velocity is approximately 1.2 times the average fluid 

velocity. For comparison, this multiple is 3/2 for laminar flow. The difference in the fluid 

velocity profile results in a smaller distribution of particle translation velocities, 

producing the observed difference in the trend of PTC. Finally, it is observed that the 

value of <uf branch> at which PTC is zero is considerably larger for larger Res. 

With the branch representing a dilated natural fracture and assuming no 

propagation, that is, the natural fracture does not become larger in areal extent, the fluid 

volume entering the natural fracture from the hydraulic fracture is equal to that lost to the 

reservoir rock and storage. Storage is volume change in the width distribution across the 

natural fracture. Change in width is related to change in fluid pressure, which typically 

occurs gradually during a hydraulic fracture treatment. As a result, storage can be 

reasonably neglected for this discussion, allowing the fluid volume lost to the reservoir 

rock to be equated to that entering the natural fracture. The fluid lost to an 

unconventional reservoir rock is very small due to its low permeability. It follows that in 

many cases it will be smaller than the value of <uf branch> at which PTC is zero, which 

means zero particles will be transported into the natural fracture. 

For two cases, Res and β equal to 1000 and 0.01, and 2000 and 0.005, at most 7 

particles were observed at counter 3. Results from these cases have not been reported in 

Figure 6.10 due to the uncertainty associated with taking averages over such small 

numbers of particles. For the simulation case at Res equal to 1000 shown in Figure 6.10, 

with PTC reported as zero, one particle was recorded at counter 3. With Res equal to 4000 
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and 8000, the results reported as zero shown in Figure 6.9 correspond to no more than 5 

particles recorded at counter 3. While cases with a similar number of particles observed 

at counter 3 for simulations at lower Reynolds number are not reported, in this case the 

total number of particles simulated is larger, approximately 1500 and 2000, compared to 

approximately 1000 for Res equal to 1000. This, in turn, corresponds to a smaller PTC of 

less than 0.2 and has been reported as zero. 

The value of <uf branch> at which PTC equals zero, <uf branch>0, has been plotted 

versus Res and is shown in Figure 6.11. 

 

Figure 6.11. Average fluid velocity in the branch at zero particle transport coefficient 
versus slot flow Reynolds number. 

The results shown in Figure 6.11 demonstrate that <uf branch>0 is larger for larger 

Res. 

6.3.6 Effect of Fluid Rheology 

The particle transport coefficient calculated from simulation data with a 

Newtonian fluid viscosity (Pa-s), µ, of 0.001 and 0.0005Pa-s and Res of 1000 and 2000 is 

presented in Figure 6.12. The values of the other parameters are identical to those 
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presented in Table 6.1, though fewer lower viscosity simulation cases across the range of 

β were conducted. 

 

Figure 6.12. Particle transport coefficient versus average fluid velocity in the branch for 
different Newtonian fluid viscosity and Reynolds number. 

Figure 6.12 shows the results of four sets of simulations, the first with µ equal to 

0.001Pa-s and Res equal to 1000, the second with µ equal to 0.001Pa-s and Res equal to 

2000, the third with µ equal to 0.0005Pa-s and Res equal to 1000 and finally the fourth 

with µ equal to 0.0005Pa-s and Res equal to 2000. There is very little difference observed 

in PTC between these four sets, put in the context of the uncertainty due to seeding as 

shown in Figure 6.3. The characteristic peak in PTC discussed in detail above is 

observed. 

For the cases with µ equal to 0.001Pa-s and Res equal to 1000 and 2000, the 

results reported are discussed in relation to the presentation in Figure 6.10, above. For 

two cases with µ equal to 0.0005Pa-s, Res equal to 1000 and 2000 and β equal to 0.03 and 

0.01 respectively, at most 4 particles were observed at counter 3. These results have not 

been reported in Figure 6.12 due to the uncertainty associated with taking averages over 

such small numbers of particles. For the simulation case with µ equal to 0.0005Pa-s, Res 
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equal to 1000 and β equal to 0.03, PTC was reported as zero with one particle was 

recorded at counter 3. 

The effect of a shear-thinning power-law fluid upon PTC was examined with 

simulation cases run with ηc  and n equal to 0.1Pa-s and 0.2, respectively. The results are 

shown in Figure 6.13. 

 

Figure 6.13. Particle transport coefficient versus average fluid velocity in the branch for a 
Newtonian and a shear-thinning power-law fluid. 

There are two observations to be made regarding the results presented in Figure 

6.13. The first is that PTC is smaller for the shear-thinning power-law fluid compared to 

the Newtonian fluid. Note that while Res is the same for the two sets of cases, the average 

fluid velocity for the shear-thinning power-law fluid is approximately 0.204m/s while it 

is 0.125m/s for the Newtonian fluid cases. However, to allow an appropriate comparison 

to be made, PTC is presented versus <uf branch> rather than β. Nonetheless, the smaller 

values of PTC reported cannot be attributed to the average fluid velocity since PTC for a 

Newtonian fluid at Res equal to 2000 (presented in Figure 6.12) are similar to those at 

1000. The Newtonian fluid cases at Res of 2000 have an average fluid velocity is 0.25m/s, 
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similar to that for the shear-thinning power law fluid cases at Res of 1000. The lower 

values of PTC observed appear to be due to fluid rheology alone. 

The second observation to be made is that results for the shear-thinning power-

law cases demonstrate that PTC decreases monotonically with decreasing <uf branch>. The 

characteristic peak for Newtonian fluid cases in the laminar flow regime is not evident for 

a shear-thinning power-law fluid. In fact, the trend is similar to those for a Newtonian 

fluid in the turbulent flow regime. The fluid velocity profile across the slot for a shear-

thinning power-law fluid is ‘flatter’ compared to that for a Newtonian fluid. The 

maximum fluid velocity is approximately 1.2 times the average fluid velocity for n equal 

to 0.2, compared to that for a Newtonian fluid where it is 3/2. While the time-average 

fluid velocity profile for a Newtonian fluid in turbulent flow is different to that of a shear-

thinning power-law fluid in laminar flow, they are both much ‘flatter’ than a Newtonian 

fluid in the laminar flow regime. In this context, the similarity in the trend of PTC versus 

<uf branch> for a shear-thinning power-law fluid in laminar flow and that for a Newtonian 

fluid in turbulent flow appears to be due to the assumed similar distribution of particle 

translation velocities. 

For the cases with µ equal to 0.001Pa-s and Res equal to 1000, the results reported 

are discussed in relation to the presentation in Figure 6.12, above. For the shear-thinning 

power-law fluid cases, at β equal to 0.02, there are only 7 particles recorded at counter 3 

and as such this result has not been reported. 

6.3.7 Effect of Particle Concentration, Size and Density 

 Several sets of simulations with different volumetric concentration, particle size 

and density have been analyzed with the results presented in Figure 6.14, Figure 6.15 and 
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Figure 6.16. In each case other parameters are identical to those listed in Table 6.1, 

except β, which was extended to 0.0025 for the 5% concentration cases. 

 

Figure 6.14. Particle transport coefficient versus the fraction of fluid flowing into the 
branch for concentration equal to 5 and 15% by volume. 

The results in Figure 6.14 indicate that there is a dependency of PTC upon 

concentration. Increasing concentration decreases PTC. For the 5% concentration cases, a 

β of 0.005 and 0.01 resulted in 3 and 6 particle counts at counter 3, respectively. These 

results were not reported. The case with β of 0.0025 resulted in one particle at counter 3 

and has been reported as PTC equal to zero. The value of β for which PTC is zero is 

smaller for the 5% concentration cases compared to the 15% concentration cases. 
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Figure 6.15. Particle transport coefficient versus the fraction of fluid flowing into the 
branch for particle diameter equal to 0.0004 and 0.001m. 

Most of the results at larger particle diameter, d, shown in Figure 6.15 

demonstrate similar values of PTC as those at smaller particle diameter. However, the 

value of β for which PTC is zero is larger for the larger particles. Note that the value of 

Res is the same, 1000, for both of these sets of simulations with d equal to 0.0004 and 

0.001m. The larger particle diameter and larger domain used for comparison, combined 

with the same fluid viscosity, necessitate a smaller average fluid velocity for the same 

Res. Nonetheless, the product of the average fluid velocity and slot width are the same 

between the simulations at d equal to 0.0004 and 0.001m. A β equal to 0.02 and 0.03 

resulted in 2 and 5 particle counts at counter 3, respectively, for the 0.001m diameter 

cases. These results were not reported. The case with β of 0.01 resulted in one particle at 

counter 3 and has been reported as PTC equal to zero. The value of β for which PTC is 

zero is larger for the 0.001m diameter cases compared to the 0.0004m diameter cases. 
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Figure 6.16. Particle transport coefficient versus the fraction of fluid flowing into the 
branch for particle density equal to 2650 and 3600kg/m3. 

Examining Figure 6.16, there is very little difference observed in PTC between 

the two sets of simulations with a particle density of 2650 and 3600kg/m3, put in the 

context of the variability due to seeding as shown in Figure 6.3. For β equal to 0.01, the 

3600kg/m3 density particle case recorded 2 particle counts at counter 3 and the result was 

not reported. For β equal to 0.005, the 3600kg/m3 density particle case recorded one 

particle count at counter 3 and PTC equal to zero was reported. 

6.4 CONCLUSIONS 

A rigorous numerical simulation approach for particle motion as a result of fluid 

flow, resolved CFD-DEM, has been validated for several applications including one very 

similar to that examined in this research. The approach has been applied to the transport 

of solid particles with fluid flow in a branched slot. A ‘particle transport coefficient’, 

PTC, has been defined by the proportion of particles transported into the branch at steady 

state, normalized by the proportion of fluid flowing into the branch. Cases of small 

branch width and large fluid proportion flowing into the branch have been shown to 

result in the formation of a stable particle bridge preventing subsequent particle transport 
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into the branch. This results in PTC being effectively zero. For the cases in which particle 

jamming was not evident, smaller branch aperture and larger angle of orientation between 

the main slot and branch generally result in smaller transport coefficient. There is also a 

reduction in PTC with larger Reynolds number at the inlet in most cases. There are two 

characteristic trends of PTC versus proportion of fluid flowing into the branch. A 

monotonic reduction in PTC with decreasing proportion of fluid flowing into the branch 

is the result of a ‘flatter’ fluid velocity profile across the main slot, whether due to 

turbulent flow of a Newtonian fluid or shear-thinning power-law fluid rheology in 

laminar flow. The other trend observed is characterized by a peak in PTC, at particular 

proportion of fluid, which is apparent for a Newtonian fluid in laminar flow. The fluid 

velocity profile in this case includes a larger difference between the maximum and 

average fluid velocity. Smaller particle size and concentration each result in a larger 

transport coefficient. Newtonian fluid viscosity and particle density do not affect PTC 

over the range of each examined. 
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Chapter 7: Width of Dilated Natural Fractures 

 

The width of a dilated natural fracture has been determined, assuming linear 

elastic rock behavior and constant fluid pressure, via the implementation of a three-

dimensional displacement discontinuity solution. Several cases of complex fracture 

geometry are examined, as is the effect of the in-situ stress state and fluid pressure. 

7.1 INTRODUCTION 

There are several methods available for determining the reservoir rock 

deformation that results from a hydraulic fracturing process. Confining the discussion to 

the solid mechanics problem, the media is typically assumed to be homogeneous, 

isotropic and linear elastic. Adopting this assumption, there are analytical solutions 

available for cases of particular geometry, such as the solution provided by Sneddon and 

Elliot (1946) for an infinitely long fracture subject to a prescribed distribution of internal 

fluid pressure. The functional dependence of fracture width upon constant net pressure, 

fracture height and elastic moduli derived by Sneddon and Elliot (1946) was used by 

Nordgren (1972) in the development of what became known as the ‘Perkins, Kern and 

Nordgren’ or ‘PKN’ fracture model. Since this model is based on the analytical solution 

for an infinitely long fracture, it is most accurate for fracture geometry where the length 

is much longer than the (constant) height. 

If the geometry of the fracture deviates significantly from the assumptions used to 

develop a particular analytical solution, it cannot be expected to be accurate. In these 

cases a numerical solution is typically used. The fracture width distribution across a 

planar fracture of arbitrary geometry is available from Kossecka (1971), in the form of a 

boundary integral equation. Solution of this equation by a finite element approach was 
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used by Gu (1987) to construct a fracture model. This approach allows for the width 

distribution of a fracture of any length and variable height to be accurately determined, 

overcoming the restrictions of the ‘PKN’ and other models based on analytical solutions 

for a particular geometry. 

Simultaneous propagation of multiple hydraulic fractures alters the surrounding 

stress field in a non-uniform manner. As a result, mixed mode fracture propagation may 

occur and produce non-planar fracture growth. In addition to this behavior, reservoir 

rocks deviate from the simplifying assumption of homogeneous, isotropic and linear 

elastic behavior due to the presence of discontinuities, including natural (pre-existing) 

fractures. The interaction between a propagating hydraulic fracture and natural fractures 

may result in non-planar fracture growth. Laboratory experiments by Lamont and Jessen 

(1963), Daneshy (1974) and Blanton (1986) examined the conditions under which 

diversion of a hydraulic fracture along a natural fracture plane produced non-planar 

growth. In the case of a hydraulic fracture bypassing a natural fracture, subsequent 

dilation may occur if the fluid pressure is sufficient. 

There are several numerical methods suitable for determining the width 

distribution of non-planar fractures. Each of these can be divided into one of two broad 

classes, domain methods and boundary methods. The finite volume method is an example 

of the former, while the displacement discontinuity method is an example of the latter. A 

key advantage of using the displacement discontinuity method over the finite volume 

method is that it reduces the system of equations required and hence reduces the time 

taken to complete the calculation. 

All displacement discontinuity methods utilize analytical solutions of the stresses 

induced by a displacement discontinuity over a finite line or area, for a solution in two or 

three dimensions respectively. Discretizing the boundary of a domain with a sufficient 
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number of elements allows the width distribution of a hydraulic fracture (planar or non-

planar) to be determined. The two-dimensional solution provided by Crouch (1976) can 

be used to calculate the width distribution of very large height fractures. However, 

without modification it is not suitable for fractures of limited height. Olson (2004) 

proposed an empirical correction factor to enable the two-dimensional solution to be used 

to model hydraulic fractures with finite height. There are several three-dimensional 

solutions available, each applicable to a displacement discontinuity element of a 

particular shape. Rongved (1957) and Salamon (1964) provided the solution for a 

rectangular area, which was extended by Shou (1993). A simplification of this solution 

was proposed by Wu and Olson (2014), to enable faster computation of hydraulic fracture 

geometry. A three dimensional solution for triangular displacement discontinuity 

elements is available in Kuriyama and Mizuta (1993). 

This research uses the complete set of equations for a three-dimensional 

formulation of rectangular displacement discontinuity elements to determine the width 

distribution of a hydraulic fracture and dilated natural fracture. The widths have been 

determined for several combinations of stress anisotropy, net pressure, hydraulic fracture 

height and length. The effect of the length, height and orientation of the natural fracture 

and the elastic moduli of the rock have also been examined. With a solution for the 

natural fracture width, its impact upon proppant transport is discussed. 

7.2 DISPLACEMENT DISCONTINUITY SIMULATION 

7.2.1 Formulation 

A single rectangular displacement discontinuity element is shown in Figure 7.1. 
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Figure 7.1. Rectangular displacement discontinuity element. 

 Figure 7.1 shows the three displacement discontinuity components, Di = (D1, D2, 

D3), for a rectangular element of length 2a and height 2b. The global coordinate system 

has Cartesian coordinate directions in X, Y and Z, while each element has a local 

Cartesian coordinate directions x1, x2 and x3. Each displacement discontinuity component 

is the difference between the displacement of the negative and positive sides of the 

element, as follows: 
Di = ui x1, x2, 0

−( )−ui x1, x2, 0+( )     (7.1) 

For a homogeneous, isotropic, linear elastic media infinite in extent, the analytical 

solution for each component of the stress tensor induced by the displacement 

discontinuity of a particular element, in the local coordinate system, is available in 

Rongved (1957) and is as follows: 
σ11 =

G
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σ 22 =
G

4π 1−ν( )
2ν I13 − x3I122[ ]D1 + 2I23 − x3I222[ ]D2 + I33 + 1− 2ν( ) I11 − x3I322"# $%D3{ }

 

σ 33 =
G

4π 1−ν( )
−x3I133[ ]D1 + −x3I233[ ]D2 + I33 − x3I333[ ]D3{ }

 
σ12 =

G
4π 1−ν( )

1−ν( ) I23 − x3I112"# $%D1 + 1−ν( ) I13 − x3I212"# $%D2 + − 1− 2ν( ) I12 − x3I312"# $%D3{ }

 

σ13 =
G

4π 1−ν( )
I33 +ν I22 − x3I113[ ]D1 + −ν I12 − x3I213[ ]D2 + −x3I313[ ]D3{ }

 
σ 23 =

G
4π 1−ν( )

−ν I21 − x3I123[ ]D1 + I33 +ν I11 − x3I223[ ]D2 + −x3I323[ ]D3{ }     (7.2) 

where G is the shear modulus (Pa) and ν is Poisson’s ratio. Iij and Iijk are the 

second and third partial derivatives (i = 1, 2 or 3 denotes the partial derivative with 

respect to x1, x2 and x3 respectively) of the following function: 

I x1, x2, x3( ) = 1

x1 −ζ1( )2 + x2 −ζ2( )2 + x32−a

a

∫
−b

b

∫ dζ1ζ2     (7.3) 

which after integrating twice yields: 

I x1, x2, x3( ) = x1 ln r + x2( )+ x2 ln r + x1( )− x3 tan−1 x1x2
rx3
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     (7.4) 

where 

r = x1
2
+ x2

2
+ x3

2
, x1 = x1 −ζ1  and x2 = x2 −ζ2     (7.5) 

Practical engineering problems require the solution of more than one element. 

Solving many elements simultaneously requires determining the influence each element 

in the system has on the normal and shear stresses of every element in the system. This is 

done through transformation of the contribution of each element to the stress tensor in the 

local coordinate system of that particular element. For a fluid filled fracture, the normal 
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stress on each element is equal the local fluid pressure, p, minus the far field stress 

normal to the plane of the element, the two shear stresses are each equal to zero. These 

boundary conditions are as follows: 
σ 33 = p−σ 33 remote  

σ13 = 0  

σ 23 = 0      (7.6) 

Through coordinate transformation of the analytical solution for the contribution 

each displacement discontinuity makes to the stress tensor, a matrix of influence 

coefficients, A, is determined for particular system geometry. The matrix A relates the 

stress boundary conditions, σboundary, to the displacement discontinuities, D. With the 

number of elements N, the influence coefficient matrix contains 9N2 entries, while the 

column vector of stresses at the boundary contains 3N entries. The matrix A is inverted 

for a solution of D due to σboundary. This system can be written as: 
AD =σ boundary     (7.7) 

7.2.2 Verification 

To examine the accuracy of the formulation, comparisons were made to the 

analytical solution for an infinitely long fracture at constant pressure available in 

Sneddon and Elliot (1946). This solution can be expressed as follows: 

W Z( ) =
1−ν( )
G

H 2 − 4Z 2( )
1 2
pnet

    (7.8) 

where W is the width of a fracture of height H with the origin of the coordinate 

system at the center of the fracture in terms of height. The fluid pressure minus the stress 

normal to the fracture is pnet. The maximum width, Wmax, occurs at the origin and hence: 

 Wmax =
1−ν( )
G

Hpnet
    (7.9)
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The displacement discontinuity method has been applied to a planar fracture of H 

equal to 10m and length L equal to 100m. The ratio of L/H is 10, which approximates an 

infinitely long fracture and enables comparison to the analytical solution of Sneddon and 

Elliot (1946). Results for G equal to 1.06x1010Pa, ν equal to 0.3 and pnet equal to 

3.447x106Pa are shown in Figure 7.2. 

 

Figure 7.2. Analytical and displacement discontinuity solutions to the width of a constant 
pressure fracture. 

 Several different numbers of elements have been used for discretization in the 

vertical direction using the displacement discontinuity method, 10, 20 and 40. The 

analytical solution W and D3 at the center of the fracture along its length were normalized 

by Wmax. Due to symmetry, only half of the solution is required to make a comparison, 

with Z normalized by H/2. There is good agreement demonstrated between the numerical 

results and the analytical solution, with better agreement apparent when more elements 

are used and closest to the center of the fracture in terms of height. 

7.2.3 Application to a Dilated Natural Fracture 

The simplified geometry of a hydraulic fracture and dilated natural fracture is 

shown in Figure 7.3. 
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Figure 7.3. Geometry of a hydraulic fracture and dilated natural fracture. 

For the application of interest in this research, determining the width distribution 

of a hydraulic and dilated natural fracture, a constant fluid pressure has been applied to 

each element used to create the simplified geometry shown above. Examining the results 

of the verification comparison, use of 20 elements in height provides sufficient accuracy 

without unnecessary computational expense. 

7.3 RESULTS 

7.3.1 Results Overview 

The width distribution of a hydraulic and dilated natural fracture has been 

determined for several cases of stress anisotropy and pressure. These allow for the 

conditions under which natural fracture dilation occurs to be determined. The geometry 

of the fracture, both in terms of the height and length of each fracture, were each varied 

systematically and a calculation of the widths made. The effect of natural fracture 

orientation and location was also examined, as was the elastic moduli of the rock. 
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The width distribution of a hydraulic fracture with both L1 and L2 equal to 76.2m 

and a natural fracture with L3 equal to 6.096m and oriented at 60o to the hydraulic fracture 

was calculated. Both H1 and H2 are equal to 60.96m. The elastic moduli G and ν were 

equal to 1.06x1010Pa and 0.25 respectively, while σhmin was equal to 1.379x107Pa with 

zero stress anisotropy present (σHmax = σhmin). The width variation with height for the 

hydraulic and natural fractures at the intersection is shown in Figure 7.4. The natural 

fracture widths are taken from the elements closest to the hydraulic fracture, while the 

hydraulic fracture widths are at X equal to L1-a. 

 

Figure 7.4. Left: Width variation with height for a natural fracture. Right: Width variation 
with height for a hydraulic fracture. 

Examining Figure 7.4, variation in width with height is apparent for both the 

hydraulic and natural fracture. The width distribution for the hydraulic fracture more 

closely approximates the analytical solution of Sneddon and Elliot (1946), while there is 

less variation for the natural fracture, which has a much smaller length. While there is 

zero stress anisotropy applied, the width of the natural fracture is much smaller than that 

of the hydraulic fracture due to the fracture geometry. For practical reasons, the width at 

the center of each fracture in terms of height is shown in subsequent figures, Whyd is the 

width of the hydraulic fracture and Wnat is the width of the natural fracture. 
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7.3.2 Effect of Stress Anisotropy and Net Pressure 

The same fracture geometry examined in Figure 7.4 has been used with several 

values of p and σHmax, with the simulation data presented in Figure 7.5. 

 

Figure 7.5. Left: Width versus fluid pressure for a natural fracture. Right: Width versus 
fluid pressure for a hydraulic fracture. 

In all cases Wnat is much smaller than Whyd and there is an increase in both with 

increasing p, as shown in Figure 7.5. For many cases of smaller p and larger σHmax, Wnat is 

negative. A dashed line is shown at Wnat equal to zero in this figure to aid identification of 

these cases. While the displacement discontinuity method allows for this unphysical 

solution, the physical interpretation to be drawn is that the natural fracture would not 

dilate for the given combination of geometry, pressure and remote stress. It should be 

noted that in all these cases, p is larger than σHmax and as a result it is entirely the 

influence of the hydraulic fracture on the surrounding stress field that produces this 

result. The entire displacement discontinuity solution is incorrect in cases where Wnat is 

negative, including the value of Whyd. Another observation is that the largest σHmax cases 

result in larger Whyd for a given p as there is less mechanical influence from the smaller 

Wnat. Considering a hydraulic fracture with no natural fractures present, σHmax has no 
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effect upon Whyd. These results clearly illustrate two mechanisms by which there is 

interaction between natural and hydraulic fractures. 

7.3.3 Effect of Fracture Height 

For p equal to 1.379x107Pa and 1.413x107Pa, several values of fracture height (H1 

= H2, H3 = 0) were simulated with all other variables taking the same values as above. 

The results are presented in Figure 7.6. 

 

Figure 7.6. Left: Width versus fracture height for a natural fracture. Right: Width versus 
fracture height for a hydraulic fracture. 

Wnat is smaller than Whyd and relatively insensitive to fracture height. Larger σHmax 

reduces Wnat but increases Whyd. Whyd is approximately linearly proportional to fracture 

height. The result of a case including a natural fracture of smaller height than the 

hydraulic fracture is presented in Figure 7.7. 
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Figure 7.7. Left: Width versus maximum horizontal stress for full and partial height 
natural fractures. Right: Width versus maximum horizontal stress for a 
hydraulic fracture. 

The results from a case with H1 equal to 60.96m, H2 equal to 30.48m and H3 equal 

to 15.24m are shown in Figure 7.7. There is only a small difference apparent comparing 

the simulation results for the half height fracture to the full height fracture. For a single 

infinitely long fracture, the width is proportional to the height, as indicated by the 

solution of Sneddon and Elliot (1946). While this simulation is of a fully three 

dimensional multi planar fracture, the width of the natural fracture is controlled by the 

smaller of its two dimensions, length and height. In this case, since L3 is smaller than H2, 

Wnat is relatively insensitive to H2. 

7.3.4 Effect of Fracture Length 

With all other variables taking the same values as above, simulations were run 

with L1 equal to 38.1m and 152.4m. For all cases L1 = L2. The results are presented in 

Figure 7.8. 
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Figure 7.8. Left: Width versus total hydraulic fracture length for a natural fracture. Right: 
Width versus total hydraulic fracture length for a hydraulic fracture. 

Wnat is relatively insensitive to the total hydraulic fracture length. Larger Wnat from 

smaller σHmax results in smaller Whyd. Cases with several natural fracture lengths have been 

simulated, with the results presented in Figure 7.9. 

 

Figure 7.9. Left: Width versus natural fracture length for a natural fracture. Right: Width 
versus natural fracture length for a hydraulic fracture. 

Wnat increases with larger L3. L3 is smaller than H2 and thereby controls the 

fracture width. Again larger Wnat from smaller σHmax results in smaller Whyd. 
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7.3.5 Effect of Natural Fracture Location and Orientation 

Several cases with different dimensionless natural fracture locations, L1/(L1+L2), 

have been simulated. The total hydraulic fracture length, L1+L2, is the same in all cases, 

as are the remaining variables. The simulation data is presented in Figure 7.10. 

 

Figure 7.10. Left: Width versus position of the natural fracture for a natural fracture. 
Right: Width versus position of the natural fracture for a hydraulic fracture. 

Wnat is relatively insensitive to the location of the natural fracture. There appears 

to be a significant difference in Whyd with the position of the natural fracture, though this 

may be more simply attributed to the change in width with the position along the length 

of the hydraulic fracture. The familiar result of larger Wnat from smaller σHmax resulting in 

smaller Whyd is also apparent. The orientation of the natural fracture, θ, has been set to 75o 

and 90o, with all other variables held constant, to allow for comparison shown in Figure 

7.11. 
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Figure 7.11. Left: Width versus natural fracture orientation for a natural fracture. Right: 
Width versus natural fracture orientation for a hydraulic fracture. 

Wnat is relatively insensitive to θ. The trend with smaller σHmax producing larger 

Wnat, which in turn results in smaller Whyd is again apparent. 

7.3.6 Effect of Elastic Moduli 

Examining the analytical expressions for the stresses induced by the displacement 

discontinuity of a rectangular element, the stresses are linearly proportional to G/(1-ν). 

As a result the fracture width is linearly proportional to the inverse of this quantity. 

7.4 IMPLICATIONS FOR PROPPANT TRANSPORT 

Chapter 6 is a detailed particle-scale study of proppant transport in a branched 

slot. One conclusion determined from that study is that the width of the branch, W2, 

affects the normalized proportion of proppant transported into the branch, PTC. Smaller 

W2 results in smaller PTC. Many cases examined in this chapter produce a dilated natural 

fracture width of approximately 0.0005m. Commonly used proppant with diameter, d, of 

0.00025m and 0.0004m, and a dilated natural fracture of such limited width results in a 

ratio d/Wnat of 0.5 and 0.8, respectively. The results shown in Figure 7.4 demonstrate that 

the PTC would be reduced by a factor larger than two for d/Wnat of 0.8 compared to 0.5, 
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for the proportion of fluid flowing into the branch, β, equal to 0.02. That is, a larger 

proportion of smaller proppant would be transported into a dilated natural fracture of the 

same width. It should be noted that there are many cases examined where the dilated 

natural fracture width is so small that common proppant sizes would be excluded simply 

based on size. 

7.5 CONCLUSIONS 

The three-dimensional displacement discontinuity method has been validated by 

comparison to the analytical solution for the width distribution of an infinitely long 

constant pressure fracture. With good agreement found, the method has been used to 

determine the width of a natural fracture dilated by a hydraulic fracture. In many cases of 

larger maximum horizontal stress, dilation does not occur. A reduction in width of the 

hydraulic fracture occurs as a result of natural fracture dilation. 

The height of each fracture and the location and orientation of the natural fracture 

do not significantly effect the width of the natural fracture. The length of the natural 

fracture and the elastic moduli, G/(1-ν), do alter the width of the natural fracture 

significantly. Larger natural fracture length produces a wider fracture while larger elastic 

moduli reduces the width. Most cases examined in this study would result in the proppant 

transport efficiency into a dilated natural fracture being significantly less than one and in 

many cases zero due to size exclusion. 
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Chapter 8: Conclusions and Future Work 

 

Through simulation, at both the particle scale and the fracture scale, aspects of 

proppant transport in simple and complex hydraulic fracture networks have been 

examined. At the small scale, the relative average velocity for proppant and fluid in a 

pressure driven flow, the settling velocity and the proportion of proppant transported into 

a branch have each been quantified. At the fracture scale, the proppant distribution in a 

single planar fracture has been determined using the relative proppant phase velocity 

determined at the small scale. The width of a dilated natural fracture has been 

determined, which is one significant factor controlling proppant entry. 

8.1 CONCLUSIONS 

The resolved CFD-DEM simulation approach (as detailed in Chapter 2) was used 

to determine the relative phase velocity of proppant and fluid in pressure driven slot flow. 

The results are presented in Chapter 3. To determine the suitability of the CFD-DEM 

approach to this application, verification was completed by means of comparison to the 

accepted solution for the translation velocity of a single particle in slot Poiseuille flow at 

low Reynolds number. Good agreement was found. Analysis of multiple-particle 

simulations demonstrated that the average particle velocity relative to the average fluid 

velocity was reduced with increased concentration. In addition, there was found to be a 

peak in the dimensionless average particle velocity at a particle diameter to slot width 

ratio of 0.8. 

The average particle settling velocity in an open slot was quantified by the CFD-

DEM approach and the results are presented in Chapter 4. The verification for this 

specific application was undertaken by comparison to the accepted solution for the 
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settling velocity of a single particle between two walls at low Reynolds number. The 

results of the comparison were favorable. In the absence of counter current fluid flow due 

to the boundary conditions imposed upon the simulation domain, the average particle 

settling velocity was demonstrated to increase with increasing concentration. The 

dependency upon particle size, density difference between the particles and the fluid and 

the viscosity each followed the qualitative trend predicted by Stokes’ law. 

The relative phase velocity of proppant and fluid in pressure driven slot flow 

(quantified in Chapter 3) was incorporated in UTEFRAC-3D via a correlation and 

presented in Chapter 5. Reduced proppant phase velocity with increased concentration 

leads to a reduction in propped fracture lengths. The reduction in length is greater for 

larger injection rates as transport by convection is a more significant transport mechanism 

than settling. This is one factor potentially responsible for the common discrepancy 

observed between propped fracture lengths predicted by simulation and those inferred 

from production history matching. 

Chapter 6 presented results from a study of the normalized proportion of particles 

transported into a slot bifurcation using the CFD-DEM approach. It was demonstrated 

that below a critical rate of fluid flow into the branch, no particles enter the branch. It was 

also demonstrated that, for particular geometry, there is a critical rate above which 

particles form stable bridges and prevent subsequent particle transport into the branch. In 

between these limits, the fluid split normalized proportion of particles transported can be 

larger or smaller than one. 

The three-dimensional displacement discontinuity method for rectangular 

elements has been employed to examine the width of a dilated natural fracture, with the 

results presented in Chapter 7. To confirm the accuracy of the approach, comparison to 

the analytical solution for the width distribution of an infinitely long constant pressure 



 143 

fracture was made. Good agreement was found. In many cases of larger maximum 

horizontal stress, natural fracture dilation does not occur. Further, where dilation does 

occur, most cases examined in this study would result in the particle transport efficiency 

being significantly less than one and in many cases zero due to size exclusion. 

8.2 FUTURE WORK 

The resolved CFD-DEM implementation used in this work has several 

limitations. One such limitation is omission of the rotational component of particle 

velocity in the CFD representation of the system. That is, the calculation of the particle 

velocity given by (2.12) is simplified to (2.18) by neglecting the second term. Inclusion 

of this term would remove one simplification and may improve the accuracy of the 

results. 

Another limitation, shared by all resolved CFD-DEM implementations, is the 

numerical expense of the method. Many simulation cases presented in this research, 

including all of the branched slot cases presented in Chapter 6, were run for 96 hours to 

produce sufficient data, see Appendix A for more detail. Several of these cases, in 

particular those with a small fraction of fluid flowing into the branch, would benefit from 

the production of more simulation data. More simulation data would reduce the range in 

the estimate of the particle transport coefficient (see Figure 6.3). While Lonestar 4 was 

used for the computation of all cases presented in this research, Lonestar 5 has since 

superseded it. Presumably this machine is faster, allowing for the production of more 

simulation data in the same amount of run time. 

A further limitation is simulation stability, which by trial and error was found to 

depend upon more than the requirements of each separate simulation approach. These 

requirements are the Courant number for CFD and the Hertz and Raleigh times for DEM. 
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The number of processors used for processing the decomposed domain was limited to 12 

or 24. Processors are available in multiples of 12 on Lonestar 4. Some cases would run 

successfully on 12 processors but fail on 24, while others would run on both. All cases 

tested failed to run successfully on 36 processors. Addressing the (as yet unknown) 

source of this issue would allow for much more efficient computation using a larger 

number of processors. 

A second limitation related to stability is the number and concentration of 

particles than can be successfully simulated. By trial and error, a practical limit on 

concentration of ~0.25 was determined. The total number of particles was limited to 

approximately 150. The amount of simulation data produced for a given run time is 

dramatically reduced by larger numbers of particles. This, in turn, limits application of 

resolved CFD-DEM to small domains. Early in this research, the simultaneous simulation 

of particles settling while transported by pressure driven flow was attempted. The method 

was found to be unsuitable for this application as the small domains required particle re-

circulation, which in turn caused a numerical artifact in the velocity of each particle as it 

moved from one boundary to the next. This artifact was found to be acceptable for 

determining the relative velocity of the proppant and fluid phases, as noted in Appendix 

B, but introduced unacceptable error for particle settling calculations. Unresolved CFD-

DEM may provide a suitable method to apply to this problem as orders of magnitude 

more particles can be simulated. 
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Appendix A: Numerical Expense 

The multiple-particle slot Poiseuille flow simulation cases presented in Chapter 3 

were each run for sufficient time to produce 0.1s of simulation data. As noted in Chapter 

2, a particle diameter of 0.0004m and a DEM time step of 3x10-8s have been used in the 

majority of simulations, including those for which the results are presented in Figure 

3.11. For these simulations, a coupling interval of 20 has been used for all cases except 

those with d/W equal to 0.1, for which a coupling interval of 40 was used. The run time 

required for each of these cases is presented in Figure A1. 

 

Figure A1. Left: Run time versus particle diameter to slot width ratio. Right: Run time 
versus number of particles. 

The results shown in the left pane of Figure A1 demonstrate that smaller particle 

diameter to slot width ratio cases typically require larger run times. For a particular 

concentration, more particles are required for a case with small particle diameter to slot 

width ratio as the width and hence volume of the domain is larger. For a given domain 

size, larger concentration cases require larger run times. The right pane of Figure A1 

shows that simulation cases with more particles require longer run times. For a particular 

number of particles, the run time required is larger for larger concentration. 
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The branched slot particle transport simulation cases presented in Chapter 6 were 

all run for 96 hours. A particle diameter of 0.0004m and a DEM time step of 3x10-8s have 

been used for simulation cases with results presented in Figure 6.13. A coupling interval 

of 100 has been used. The quantity of simulation data produced during this run time 

varies between simulation cases, as shown in Figure A2. 

 

Figure A2. Left: Quantity of simulation data produced versus proportion of fluid flowing 
into the branch. Right: Number of particles counted by counter 1 versus 
proportion of fluid flowing into the branch. 

The left pane of Figure A2 demonstrates a slight dependency in quantity of 

simulation data produced upon proportion of fluid flowing into the branch, with more 

produced for smaller β. Of all independent variables examined, the most significant 

factor determining how much simulation data is produced is the concentration. The 5% 

concentration cases produced more than three times the simulation data of the 15% cases. 

However, examining the number of particles counted by counter 1, which is located prior 

to the intersection, the total counted during the simulation is similar between cases of 

different concentration.  
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Appendix B: Numerical Artifact 

The particle translational velocity during several passes through the domain at the 

centerline is shown in Figure B1, for two cases, one with a particle diameter to slot width 

ratio of 0.1 and the other of 0.95. 

 

Figure B1. Left: Particle velocity transient for a particle to slot width ratio of 0.1. Right: 
Particle velocity transient for a particle to slot width ratio of 0.95. 

There are two observations to be made. Firstly, there is a transient period as the 

particle accelerates from the average fluid velocity, the initial condition used. However, 

this is small for d/W equal to 0.1 and negligible for d/W equal to 0.95. Secondly, there is a 

small ‘step’ in the velocity as the particle passes from the outlet and returns at the inlet as 

a result of the boundary conditions applied. This is evident for d/W equal to 0.1 during 

the transient period but not during the steady state portion of the response. For d/W equal 

to 0.95 it is apparent during both periods and appears as a ‘sawtooth’ profile. Placing the 

DEM boundaries in the x coordinate direction two particle diameters inside the CFD 

boundaries reduced this numerical artifact when compared to using coincident 

boundaries. Imposition of the required CFD boundary conditions to achieve slot 

Poiseuille flow, combined with the particle representation in the CFD simulation 

produces this effect. 
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Simulations with a larger domain were conducted to understand the effect of this 

artifact upon the results. A DEM domain of 10 particle diameters in length, where a 

length of 5 particle diameters was used for all other simulations, was constructed. The 

velocity transient for a particle translating in the longer domain is shown in Figure B2.  

 

Figure B2. Particle velocity transient for a particle diameter to slot width ratio of 0.95. 

Ten simulation cases were run across the range of d/W. The velocity transient for 

d/W equal to 0.95 is shown in Figure B2 to illustrate the case with the largest numerical 

artifact apparent. In the longer domain it is clear that particle does in fact reach a steady 

state for a significant portion of its translation through the slot. To enable reporting of 

translation velocity results without the numerical artifact, the average of the particle 

velocity was determined over the half of the domain furthest from the inlet, where the 

true steady state conditions are realized. These have been compared with simulation data 

from the smaller domain of 5d length. The comparison is presented in Figure B3. 
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Figure B3. Particle velocity normalized by the modified average fluid velocity versus 
particle diameter to slot width ratio. Particle located at the center of the slot 
in both the small and large length domains. 

Figure B3 shows that there is a small difference in the results from the two 

different domain sizes and different processing methods. The difference, although small, 

is largest for large d/W. For these cases, using a small domain and the mass counter 

processing method (which does not exclude the numerical artifact) results in a slightly 

larger particle velocity to be calculated, as would be expected from examination of the 

‘step’ increase in velocity as the particle recirculates. Nonetheless, the effect is small and 

as a result the small domain and simplified data processing method has been applied in 

this research. 
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Nomenclature 

 

A: influence coefficient matrix (Pa/m) 

a: constant velocity (m/s) 

B: slot half width (m) 

B1: constant 

b: constant velocity (m/s) 

CL: Carter leak-off coefficient (m/s0.5) 

c: volumetric solids concentration 

D: displacement discontinuity (m) 

D1: ride displacement discontinuity 1 (m) 

D2: ride displacement discontinuity 2 (m) 

D3: opening mode displacement discontinuity (m) 

d: particle diameter (m) 

Δd: fracture propagation (m) 

E: Young’s modulus (Pa) 

e: rate of strain tensor (1/s) 

FArchimedes: difference between gravity and buoyancy forces (N) 

Fij: inter-particle force between particles i and j in Lagrangian coordinate system (N) 

Fi total: total force acting on particle i (N) 

Ft: dimensionless force coefficient 

<Ft B>: average dimensionless force coefficient based on Bird et al. (2007) 

<Ft S>: average dimensionless force coefficient based on Stokes’ law 

f: friction factor 
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G: shear modulus (Pa) 

g: acceleration due to gravity (m/s2) 

H: domain height (m) 

H1: hydraulic fracture height (m) 

H2: natural fracture height (m) 

H3: natural fracture vertical offset (m) 

h: function ‘h’ 

Ii: moment of inertia (kg-m2) 

KI: Mode-I stress intensity factor (Pa-m0.5) 

KIC: rock toughness (Pa-m0.5) 

kn: normal spring coefficient (N/m) 

kt: tangential spring coefficient (N/m) 

L: domain length (m) 

L1: partial length of hydraulic fracture (m) 

L2: partial length of hydraulic fracture (m) 

L3: length of natural fracture (m) 

Mi total: total moment acting on particle i (N-m) 

m: unit conversion constant 

m
•

: average particle mass rate in the x direction (kg/s) 

m
•

1 : average particle mass rate at counter 1 (kg/s) 

m
•

2 : average particle mass rate at counter 2 (kg/s) 

m
•

3 : average particle mass rate at counter 3 (kg/s) 

m
•

insert : insert particle mass rate (kg/s) 

mi: mass of particle i (kg) 

n: fluid behavior index 
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nij: unit normal vector between particles i and j in Lagrangian coordinate system 

PTC: particle transport coefficient 

p: fluid pressure (Pa) 

pnet: net fluid pressure (Pa) 

qL: leak-off velocity (m/s) 

r: distance (m) 

r: position vector (m) 

rtip: distance to fracture tip (m) 

Re0: Reynolds number 

Rep: particle Reynolds number 

Res: slot flow Reynolds number 

s: exponent 

t: time (s) 

tij: unit tangential vector between particles i and j in Lagrangian coordinate system 

tr: traction (N) 

uf: fluid velocity vector (m/s) 

<uf branch>: average branch fluid velocity (m/s) 

<uf branch>0: average branch fluid velocity at which PTC equals zero (m/s) 

uf x: fluid velocity in x coordinate direction (m/s) 

uf x max: maximum fluid velocity in x coordinate direction (m/s) 

uf y: fluid velocity in y coordinate direction (m/s) 

uf z: fluid velocity in z coordinate direction (m/s) 

<uf x>: average fluid velocity in x coordinate direction (m/s) 

<uf z>: average fluid velocity in z coordinate direction (m/s) 
: average proppant phase velocity vector (m/s) up

! "!!!



 153 

up: particle velocity vector (m/s) 

up point: velocity of a point on a particle (m/s) 

up x: particle velocity in x coordinate direction (m/s) 

up z: particle velocity in z coordinate direction (m/s) 

<up x>: average proppant velocity in x coordinate direction (m/s) 

<up z>: average proppant velocity in z coordinate direction (m/s) 

Δup: relative speed (m/s) 
: average slurry velocity vector (m/s) 

uGanatos: modified Stokes’ settling velocity (m/s) 
uRichardsonand Zaki : settling velocity from Richardson and Zaki (1954) (m/s) 

uStokes: Stokes’ settling velocity (m/s) 

usettling: corrected Stokes’ settling velocity (m/s) 

uτ: friction velocity (m/s) 

W: domain width or hydraulic fracture width (m) 

W1: main slot width (m) 

W2: branch width (m) 

Wmax: natural fracture width at mid point in height (m) 

Wnat: maximum fracture width (m) 

Whyd: hydraulic fracture width at mid point in height (m) 

xi: coordinates of center of gravity of particle i (m) 

x1: coordinate direction 1 in element local coordinate system (m) 

x2: coordinate direction 2 in element local coordinate system (m) 

x3: coordinate direction 3 in element local coordinate system (m) 

α: stress per unit volume (Pa/m3) 

β: proportion of fluid diverted into branch 

us
! "!!!
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β0: proportion of fluid diverted into branch at which PTC equals zero 

γ: shear rate (1/s) 

γn: normal damping coefficient (N-s/m) 

γt: tangential damping coefficient (N-s/m) 

Γs: particle surface 

δ: overlap (m) 

δΩfront: fracture front 

δΩperf: perforated interval 

ζ1: dummy variable 1 

ζ2: dummy variable 2 

η: dynamic viscosity (Pa-s) 

ηc: fluid consistency index (Pa-sn) 

θ: branch orientation (deg) 

θi: angular position of particle i (rad) 

κ : von Karman constant 

µ: Newtonian viscosity (Pa-s) 

ν: Poisson’s ratio 

ξ: scalar marker function 

ρs: slurry density (kg/m3) 

ρf: fluid density (kg/m3) 

ρp: proppant density (kg/m3) 

σ: stress (Pa) 

σboundary: boundary stress (Pa) 

σh min: minimum horizontal stress (Pa) 

σH max: maximum horizontal stress (Pa) 
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τ: deviatoric stress tensor (Pa) 

Ω: domain 

Ωs: solid domain 

ω: angular velocity (rad/s) 
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