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Abstract 

 

The Mitral Valve Computational Anatomy and Geometry Analysis 

 

Amir Hossein Khalighi, M.S.E 

The University of Texas at Austin, 2015 

 

Supervisor:  Michael S. Sacks 

 

We present a novel methodology to characterize and quantify the Mitral Valve 

(MV) geometry and physical attributes in a multi-resolution framework. A multi-scale 

decomposition was implemented to model the MV geometry by using superquadric shape 

primitives and spectral reconstruction of the finer-scale geometric details. Superquadrics 

provide a basis to normalize the size and approximate a basic model of the MV geometry. 

The point-wise difference between the original geometry and the superquadric model 

denotes the finer-scale geometric details, which can be modeled as a scalar attribute for the 

MV model development. The additive decomposition of the basic MV geometry from 

geometric details (attributes) allows recovering the actual geometry by superposition of the 

superquadric approximation and the finer-details model. We implemented a lasso 

optimization algorithm to perform spectral analysis and develop the Fourier reconstruction 

of the geometric details. The spectral modeling enabled us to resample the geometric 

details or use spectral filters in order to adjust the spatial resolution in the model 

reconstruction. It also provides the basis to control the level of detail in the final model 

reconstruction by applying low-pass filters in the frequency domain. The higher-order 



 vii 

attributes such as internal fiber architecture can be integrated with the geometric models 

using the same framework. We applied our pipeline to create models of three ovine MVs 

based on computed-tomography 3D images with micrometer resolution. We were able to 

quantify the MV leaflet geometry, reconstruct models with custom level of geometric 

details, and develop medial representation of the MV leaflet structure. The results show 

that our methodology for geometry analysis provides a basis for assessing patient-specific 

geometries and facilitates developing population-averaged models. Ultimately, this 

approach allows building personalized image-based computational models for medical 

device design and surgical treatment simulations. 
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Chapter 1:  Introduction 

The Mitral Valve (MV) is the bi-leaflet heart valve separating the left atrium and 

left ventricle that regulates blood flow direction during cardiac cycles. The MV complex 

is comprised of anterior and posterior leaflets, annulus, chordae tendineae, and papillary 

muscles (PM). The geometry of MV leaflets is unique as it is the only heart valve with the 

natural dual-flap structure, (Figure 1). 

 

Figure 1: The view of the heart from the base with atria removed shows the MV’s location 

and different structure compared to other heart valves (Schematic picture 

from the web) 

The physiological role of the MV is highly dependent on the interconnected relation 

of the MV constituent parts (Madesis et al., 2014).  The MV leaflets are tethered to the left 

ventricle through chordal structure, which protrude from two PMs on the ventricular 
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endocardium and insert into the leaflets at multiple locations. The geometry of the MV has 

a critical impact on the valve’s competence. The MV leaflets cover the left atrioventricular 

orifice during systole to prevent regurgitation of oxygenated blood back to the left atrium. 

During the diastole, the leaflets relax and allow the blood coming back from the lungs and 

through the atrium to fill the left ventricular chamber (Figure 2). Deviations from this 

required behavior lead to mild-to-severe valvular insufficiencies and even further 

complications like stroke (Sutton & Weyman, 2002). 

 

Figure 2: The physiologic role of the MV is two-fold: (1) allowing oxygenated blood 

coming from the lungs to pass the left atrium and fill the left ventricle during 

cardiac diastole, (2) preventing the blood regurgitation back to the left atrium 

during cardiac systole, when the left ventricle contracts and pumps the blood 

to the entire body (Schematic picture from the web). 

Most MV complications are characterized by deviations from the native shape and 

non-homeostatic configurations of the MV with respect to the heart wall (Schueler et al., 

2014), (Neema, 2013), (Benjamin, Smith, & Grayburn, 2014). Mitral Valve Regurgitation 
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(MVR) is the most prevalent valvular heart disease, which some predict to become an 

epidemic issue as the population grows and ages (d'Arcy, Prendergast, Chambers, Ray, & 

Bridgewater, 2011) . MVR occurs when the valve leaflets fail to fully cover the MV orifice 

area and blood leaks to the left atrium during systole, (Pedrazzini, Faletra, Vassalli, 

Demertzis, & Moccetti, 2010). The causes of MVR can be either primary (myxomatous 

degeneration and rheumatic fever) or secondary (ischemic left ventricular remodeling), 

(Enriquez-Sarano, Akins, & Vahanian, 2009).  

There is still no definitely effective treatment to fix a leaking MV, with the heart 

valve replacement and repair being the common approaches (Kheradvar et al., 2015), 

(Acker et al., 2014). Mitral annuloplasty is currently the most-practiced MV repair 

technique, which is based on restoring the optimal size and shape of the MV annulus (A. 

F. Carpentier et al., 1995).  In the annuloplasty procedure, a ring is sutured on the MV 

orifice near the MV annulus region to shrink the orifice size so that the s coapt completely.  

However, in spite of intense research on this problem, there is still no clear evidence on the 

optimal annuloplasty procedure (Bothe, Miller, & Doenst, 2013). Furthermore, patient-

specific MV geometry has been shown to affect the repair durability and effectiveness 

(Salgo et al., 2002), while repair technique planning remain mostly qualitative.  

It is believed that the complex MV structure and tissue remodeling play a 

significant role on the valvular response to repair (Flameng, Meuris, Herijgers, & 

Herregods, 2008). Isolating the effect of each factor to study the valvular response is not 

feasible in the in vitro and animal studies. On the other hand, computational simulations of 

heart valve behavior have proven to be promising tools to enhance our understanding of 

the valvular mechanisms and response to pathological alterations (Chandran, 2010). 

However, due to the complexity of MV behavior, the computational models are still 

struggling to account for all the underlying features that impact the MV behavior.  The 
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state-of-the-art MV computational models suffer from three major approximations that 

affect the fidelity of simulations: 

First, most performed MV studies have relied on suboptimally reconstructed or 

simplified geometries (Hammer, Perrin, Pedro, & Howe, 2008), (V. Prot, Skallerud, 

Sommer, & Holzapfel, 2010). This problem is generally inevitable since even most 

advanced imaging techniques cannot fully resolve the complete MV apparatus in vivo. 

Consequently, many MV computational simulations have relied on post-mortem in vitro 

measurements to build geometric models of the MV (K. S. Kunzelman et al., 1993), (V 

Prot, R Haaverstad, & B Skallerud, 2009), (Khalighi et al., 2015), (Drach et al., 2015). 

However, excising the valve from the body causes deviations in the shape and structure, 

which are mostly intractable and further affect the reliability of simulations (Amini et al., 

2012). Moreover, postmortem data acquisition is obviously impractical for developing 

personalized human models and performing patient-specific simulations for treatment 

planning.  

Secondly, it has been shown that the MV multi-layered structure and fiber 

architecture play a significant role in the valvular mechanical behavior (Lee et al., 2015). 

However, incorporating this information in the modeling is by no means trivial. The data 

on geometry, material properties and internal structure are collected using different 

modalities and assimilating them is prone to mapping degeneracies and interpolation 

errors. Thus, patient-specific modeling requires new approaches to faithfully predict the 

structural information and material properties of the heart valve tissue.  

Finally, the MV behavior and response to repair is driven by physical and 

physiological phenomena occurring from organ-level to cellular-level scales. The current 

MV computational models are not capable of effectively linking the cellular level 

undertakings and the organ level response. Multi-scale modeling of the MV to account for 
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tissue remodeling requires computational models that facilitate incorporating the MV 

structural attributes from various scales. However, the current geometric models of the MV 

used for finite element simulations cannot effectively link different scales of the MV 

structure.   

Therefore, there is an urgent need for the development of computational models of 

the MV geometry that provide high anatomical accuracy, structural information, and 

connection to the valvular physiology. Such computational models can provide the means 

to perform high-fidelity simulations for the population as well personalized modeling. 

Furthermore, structurally-informed models of the MV facilitate the simulation of diseased 

states and thus can lead to new treatment design. 

In the current study we have developed a pipeline to quantitatively characterize the 

MV geometry, build personalized models with adjustable level of detail, and integrate the 

MV geometry with its structural attributes. Moreover, our framework allows the study of 

inter-subject variations and facilitates developing a population-averaged model by 

providing a correspondence between MVs. To the best of our knowledge, this is the first 

rigorous study on the development of attribute-rich computational models of the MV. 

 

RESEARCH OBJECTIVES 

The main objective of the current study was to develop a pipeline to analyze the 

MV leaflet geometry and establish the framework to incorporate attributes into the MV 

computational models. In this thesis document, we have extensively reviewed our 

methodology and discussed our results for the study of 3 ovine MVs. The notable research 

objectives are summarized as below: 

1. Acquire the MV geometry with high-fidelity in an in vitro setup 
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2. Develop an image processing pipeline to analyze micro-CT images of the MV  

3. Co-register different MV geometries with respect to anatomical landmarks such as 

Anterolateral and Posteromedial commissures  

4. Establish a multi-resolution framework to the study the MV geometry and physical 

attributes 

5. Develop an algorithm to incorporate the MV structural attributes into 

computational models with high fidelity  

6. Build a medial representation of the MV geometry suitable for finite element 

modeling 

  

THESIS OUTLINE 

This document is organized in five chapters following the format of an extended 

journal publication. After the introduction, the literature on the MV geometric models is 

reviewed. In the third chapter, we have thoroughly described our methodology to acquire 

experimental data, build geometrical representations of the MV, and analyze the MV 

geometry using our novel multi-resolution framework. In chapter four, the results of our 

pipeline implementation and analysis of three datasets are provided. In the fifth and final 

chapter, we have summarized the conclusions of our study and some recommendations for 

future research directions. 
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Chapter 2:  Literature Review 

In this chapter we review the geometric models used to perform computational 

simulations of the MV biomechanical behavior. The information required for the in silico 

study of the MV as mechanical  system has three general components: (1) a constitutive 

relation that relates the kinematics and dynamics, (2) a physical domain with defined 

material properties, and (3) proper boundary conditions that drive the response. All these 

three factors greatly impact the predicative power of computational methods to simulate 

the behavior of a mechanical system. However, we believe that the MV geometry has been 

overlooked in the previous studies in spite of its fundamental role and impact on the 

modeling. 

The reconstruction and modeling of MV geometry is generally obtained by imaging 

the valve to acquire precise information about its complex morphology. The preferred 

environment for collecting these images is in vivo, since it provides the most 

physiologically realistic information and can be leveraged to develop patient-specific 

models. However, the fine geometric features, namely the MV chordal structure, are only 

resolvable through in vitro imaging. Three main imaging modalities used to acquire MV 

structure are (1) ultrasound, (2) Magnetic Resonance (MR), and (3) Computed 

Tomography (CT). Here, we discuss the geometric models of the MV that have been 

developed in the previous studies.  

We classify the geometric models used in the previous works on MV computational 

modeling in two general groups: simplified models, in vivo models. For simplified models, 

a combination of in vitro measurements on post-mortem tissue and simple measurements 

on the in vivo images have been used to develop a simplified geometric model. The in vivo 

models has relied mostly on the geometric information extracted from the clinical medical 
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images to better capture the actual geometry of the MV inside the heart. Most recently, the 

atlas-based models of the MV based on in vivo ultrasound imaging have been extensively 

pursued due to the improved reliability and efficiency. In the rest of this chapter we have 

reviewed some notable examples of each class of MV geometric models. 

  

SIMPLIFIED GEOMETRIC MODELS 

Kunzelman et al. (K. Kunzelman et al., 1993) developed the first 3D finite element 

model of the MV. They included the regional thickness variations, collagen fiber 

architecture, and anisotropic material properties in their computational model. In terms of 

geometry, they performed their simulation on a simple symmetric model that was 

developed based on in vitro physical measurements. 

Prot et al. (V. Prot, R. Haaverstad, & B. Skallerud, 2009) (V Prot & Skallerud, 

2009) performed measurements on post-mortem porcine tissue to acquire geometric 

dimensions of the MV. They assumed the MV leaflets to be planar with constant unit 

thickness through the entire structure. To simplify their model, they excluded the 

commissural regions from the leaflet structure and considered the MV annulus to be flat 

and symmetric.  

Votta et al. (Votta et al., 2008) extracted the annular profile from ultrasound images 

and included the unsymmetrical saddle shape of the annulus. To construct the leaflet 

structure, they extruded the leaflet profile along axis normal to annular plane and then tilted 

the generated surface to acquire a surface model that qualitatively matches the 

echocardiography images. To build their shell model for simulation, they assumed the 

anterior and posterior leaflets to have the constant thickness of 1.32mm and 1.26mm. 
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Maisano et al. (Maisano et al., 2005) used the same in vitro measurements reported 

in the litrature (Kunzelman, Cochran, Verrier, & Eberhart, 1994) to develop a geometric 

representation of the MV. They assumed a flat circular profile for the annulus and 

generated a symmetric shape for the MV leaflets to simulate the healthy state of the MV. 

Then, they modified their dimensions and repeated the simulations on D-shaped and dog-

bone-shaped annular profiles to simulate the surgically modified MVs. They considered 

the uniform thickness of 0.8 mm for all of the cases that they studied. 

 Skallerud et al. (Skallerud, Prot, & Nordrum, 2011) used a 3D ultrasound imaging 

technique to measure the shape of the MV annulus and extracted the leaflet geometry from 

post-mortem tissue. They simplified the annulus geometry as a non-planar ellipse, which 

had a relatively small eccentricity according to their in vivo measurements. They idealized 

the leaflet geometry with symmetric outlines and assumed constant unit thickness for the 

entire leaflet structure.  

 

IN VIVO GEOMETRIC MODELS 

Lim et al. (Lim, Yeo, & Duran, 2005) used CAD software packages to construct a 

MV geometric model based on the end-diastole coordinates of 12 transceiver crystals 

implanted on the MV annulus. For the leaflet structure, they fitted a spline surface to the 

annulus and free edge crystals. They assumed a constant average thickness of 1.26 mm for 

the leaflet in spite of the variations in thickness from 0.5 mm in the leaflet belly to 2 mm 

in the trigons. They used their model to simulate the stress distributions in the MV leaflets 

under physiologic loading. 

Stevanella et al. (Stevanella et al., 2011) developed a patient-specific model of the 

MV based on end-diastolic images acquired using cardiac magnetic resonance. They fitted 
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spline curves to the outlines of the annulus and free edges in these images. Then, they used 

these boundary curves to define the leaflet surface. For the thickness, they applied a 

regional thickness map based on the values acquired from post mortem tissue reported in 

the literature. Using this geometry modeling method, finite element models were developed 

for a healthy and a regurgitant MV to study their mechanistic response. 

Wang and Sun (Wang & Sun, 2013) based their analysis on the patient-specific 

multi-slice CT images to capture the full MV structure. They extracted a discretized 

representation of the MV leaflets with regional thickness values using image segmentation. 

This enabled them to develop an anatomically consistent leaflet structure as well as a 

kidney-shaped annulus with non-zero out-of-plane saddle height for their studies. 

Choi et al. (A. Choi, Rim, Mun, & Kim, 2014) developed a patient-specific model 

of a MV with annular dilation based on 3D Trans-Esophageal Echocardiography (TEE) 

imaging. After image segmentation, they fitted NURBS surfaces to the 3D leaflet structure 

and annulus geometry. They simulated the MV ring annuloplasty procedure by imposing 

an annuloplasty ring on their model and modifying the geometry. 

Pouch et al. (Pouch, Yushkevich, et al., 2012) developed a deformable template for 

the MV leaflet structure that allows semi-automatic segmentation of in vivo TEE images 

to acquire MV geometric models. In another study, Pouch and colleagues (Pouch, Xu, et 

al., 2012) demonstrated the capability of their methodology to build patient-specific 

geometric representations of the MV, suitable for finite element analysis, based on medial 

representation of the MV. Witschey et al. (Witschey et al., 2014) used the same framework 

to successfully develop quantitative virtual models of the MV under normal, ischemic, and 

myxomatous conditions to potentially guide surgical therapy. 
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Chapter 3:  Materials and Methods 

A. DATA ACQUISITION 

A.1. Materials and Methods 

We used in vitro micro-computed tomography (micro-CT) to provide high-

resolution 3D images of ovine Mitral Valve (MV) geometry. The following details the 

process and technique used to obtain the 3D images from micro-CT using the Georgia Tech 

Cylindrical Left Heart Simulator (CLHS) (Rabbah, Saikrishnan, & Yoganathan, 2013), 

(Figure 3) 

 

Figure 3: The Georgia Tech Cylindrical Left Heart Simulator (CLHS) was used to mimic 

the in vivo configuration of the MV inside the left ventricle of the heart. This 

experimental setup allows acquiring high-fidelity information on the MV 

geometry and mechanical behavior. 

 

A.1.a. Heart Selection  

We procured fresh (never frozen) hybrid Dorset ovine hearts from an abattoir 

(Superior Farms, California). MVs were sized using a clinical annular sizer set, and only 
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valves with commissure-to-commissure size of 26 mm were used for this study, as valves 

of this size were compatible with the loop hardware. Additionally, we inspected the 

papillary muscles (PMs) and the valves with either type I or type II PMs (Berdajs, Lajos, 

& Turina, 2005) were used. As the final criterion, we used valves with an anterior leaflet 

length of 20±1mm. We then carefully excised the MV and the sub-valvular apparatus from 

the heart. 

 

A.1.b. Valve Preparation 

After excision, the mitral annulus was sutured to a rigid plate using a ford 

interlocking stitch just above the natural hinge line. Physiological landmarks (left and right 

trigone, anterior annular horn, A2/P2 line) were aligned with their corresponding geometric 

landmarks on the annular plate. The rigid plate separates the atrial and ventricular chambers 

of the CLHS (Figure 4), and has an idealized annular orifice to which each valve was 

sutured. Then, we affixed the PMs to two rods, mounted to ball in socket joints to control 

their position. 
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Figure 4: The adjustable annulus holder allows for the modification of the annular area and 

saddle height to simulate the healthy, dilated, and repaired MV 

configurations. The healthy state was acquired by preserving the normal 

configuration of the MV annulus. For the diseased state, the saddle height was 

reduced and the orifice was dilated. Finally, the annulus was tightened to 

simulate the restrictive MV annuloplasty procedure. 

A.1.c. Experimental Setup 

After mounting the MV to the CLHS, we inserted the chamber into a pulse 

duplicator system, which uses a pulsatile pump and a series of lumped compliance and 

resistance elements to mimic physiological pressure and flow waveforms. The pump 

timing and data acquisition was controlled with a custom LabVIEW control interface 

(National Instruments, TX, USA). Standard hemodynamics were then reached in the 

system (5 liters per minute, heart rate of 70 beats per minute, peak transvalvular pressure 

of 120 mmHg). We used a clinical echocardiography unit (Philips Healthcare, MA, USA) 

to monitor clinically relevant healthy mitral closure parameters while PMs were adjusted 

to their control positions. We adjusted the PMs to achieve minimal regurgitation, eliminate 

leaflet tenting or prolapse, minimize chordal tethering, and ensured that the anterior leaflet 

occupied two thirds of the A2/P2 distance. These locations were recorded by a custom 

system to measure the pitch, yaw and radius of each PM controlling rod (Figure 5). Such 
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control over PM positions enables us to simulate LV remodeling in secondary MR by 

relocating PMs. 

 

Figure 5: (A) and (B) show our system to measure the pitch and yaw angles for the two 

rods attached to the papillary muscle heads. These rods were positioned for 

each valve according to the hemodynamic metrics of the MV output to 

simulate the healthy and remodeled left ventricle wall. 

A.1.d. Annulus adjustments 

We studied the valve under healthy, diseased, and surgically modified 

configurations by adjusting the saddle shape of the annulus to simulate each configuration 

(Table 1). To control the annulus shape, we designed and implemented a custom adjustable 

plate to replicate the changes in annular geometry observed in chronic ischemic LV 

remodeling. Shown in Figure 4, the posterior aspect of the annulus is split into five 

segments, which move radially in and out of the mitral orifice on plastic worm screws. This 

replicates the annular distension and dilatation seen in ischemic LV remodeling (Gorman, 

Jackson, Enomoto, & Gorman, 2004), (Gorman III, Ryan, & Gorman, 2006), (Vergnat et 

al., 2011). Additionally, the anterior aspect of the annulus is fabricated from flexible PETG 
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sheet that is fixed at the anterior horn. Wedges at either commissure travel on worm screws, 

which we adjust to simulate the geometry of the MV under different conditions.  

 

Table 1: The annulus adjustment to simulate the healthy, Ischemic Mitral Regurgitation 

(IMR) and repaired valve by annuloplasty    

Geometric Metrics Healthy IMR 
Restrictive 

Annuloplasty 

Anterior-Posterior distance (mm) 24 mm 30 mm 24 mm 

Inter-Commissural distance (mm) 30 mm 33 mm 30 mm 

Annular height-commissural width ratio 15% 0% (flat) 0% (flat) 

 

A.2. Micro-CT Imaging 

A.2.a. Valve Instrumentation 

Prior to micro-CT imaging, we attached sand and clay beads on the valve leaflet 

surface in a dense grid layout. This technique has been previously described (Pierce et al., 

2015), and allows for deformation tracking of the MV across micro-CT scans under 

different loading configurations. Moreover, these markers can be used to validate the 

biomechanical simulations of the valve behavior (Lee et al., 2015). 

 

A.2.b. Imaging Specifications 

To acquire high-resolution MV images, we used a Siemens Inveon micro-CT 

scanner (Siemens Medical Solutions USA Inc., PA, USA), with settings optimized for soft 

tissue imaging (Table 2), We collected ten separate data sets, but then selected the best five 

ones for our studies [APPENDIX A]. The Imaging time per valve was approximately 7 
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minutes; the resulting volumes were comprised of 43.29-micron voxels with isotropic 

resolution. 

 

Table 2: The soft tissue imaging adjustment 

Voltage Current Integration Time Projection Count  

80 kV 500 µA 650 ms 180 Radial 

 

A.2.c. Systolic Configuration 

Directly following the application of beads, we imaged the MV under simulated 

low and high loading. We used a compressor with an in-line humidifier to apply static 

pressure to the closed MV, mimicking a systolic configuration. Humidity in the CLHS 

chamber was kept at roughly 100% during scanning. Two systolic scans at 30 mmHg and 

100mmHg were taken of the MV in each geometric configuration (healthy, diseased, and 

repaired), yielding a total of six systolic micro-CT scans per valve. 

 

A.2.d. Tissue Fixation 

It is significantly challenging to capture the diastolic geometry since diastole is a 

naturally dynamic state. We realized that the small features and details in the chordal tree 

would bunch together when the chamber was drained of saline during the micro-CT 

imaging. This can be attributed to the low stiffness of the MV leaflet and chordal tissue. 

Additionally, the thin sections of leaflet would fold in on themselves, yielding a diastolic 
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image where the leaflet area was under-represented, and the chordal details were missing 

(Figure 6). 

 

 

Figure 6: (A) and (B) show the difference in unfixed and fixed soft tissue imaging. Imaging 

the MV in vitro to acquire high-resolution geometry is non-trivial due to the 

tissue clamping on itself in the relaxed state. This requires simulating the 

normal open state of the valve dynamically and fixing the tissue under that 

condition. Then, the fine structure like the chordal tree branching and leaflet 

details would be fully resolved in the images. 

To counteract the cohesive and adhesive forces of residual water on the MV, we 

used the stiffening effect of glutaraldehyde to fix the tissue (Vesely & Boughner, 1989). 

After imaging the MV in its systolic state (with fresh tissue), we dripped a solution of 0.5% 

glutaraldehyde over the valve for two hours in a vertical fixation loop (Figure 7). This 

simultaneously unfurls and spreads the valve features while stiffening the tissue for the 

final diastolic imaging stage. After performing fixation for two hours, we imaged the MV 

in the unloaded state under the healthy, diseased and repaired configurations. 
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Figure 7: the soft tissue fixation in relaxed state. The open state of the MV was simulated 

and captured by a uniform flow of a fixative chemical in the CLHS. 
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B. DATA PROCESSING 

We loaded the DICOM images into the ScanIP software suite (Simpleware Ltd., 

Exeter, UK) to process the images and create geometric representations. Each DICOM 

dataset consists of 3 stacks of 2D images, which are co-registered orthogonally. Each 3D 

image is a 32-bit gray-scale map that correlates to the X-ray absorption values as it traces 

through the tissue. The voxel size is 43.29 micron and the dataset contains 1024 images in 

each direction. Prior to image processing, we examined each 3D image stack in the ScanIP 

software suite to ensure that the dataset is usable, (APPENDIX A). Next, we filtered the 

images and segmented the structure from the image background. We then used the 

morphological filters to improve the segmentation results and finally create 3-D mesh 

representations of the valve geometry. These steps are described in the rest of this section. 

 

B.1. Image Denoising 

We used a two-step procedure to filter artifacts polluting the images, using a median 

filter and a non-linear anisotropic diffusion based filter. First, we applied an isotropic 

median filter to remove the salt-and-pepper noise. Next, we applied an anisotropic 

diffusion filter to treat the signal diffraction and attenuation artifacts (You, Xu, 

Tannenbaum, & Kaveh, 1996). Diffusion-based filters redistribute the intensity values 

inside the domain of an image by solving a transient diffusion equation (Weickert, 1998). 

We selected the curvature flow type from the diffusion-based filters described in the 

literature (Malladi & Sethian, 1995). [We discuss this choice in more detail in APPENDIX 

B.] Applying a median and a curvature-flow filter successively, we achieved an image 

quality sufficient for image segmentation.  
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B.2. Image Segmentation 

We used a thresholding method to segment the filtered images. In this method, two 

limit values are chosen to define the intensity interval that corresponds to the structure of 

interest in an image. Our desired structures in each image were the valve tissue and the 

physical markers. To guide the thresholding procedure, we used multiple sample locations 

and the histogram of image intensity values. The output of the segmentation procedure is 

a binary map that denotes the desired structure by one and unoccupied regions by zero. 

These maps are often called label fields or binary masks in the image processing literature 

(Sezgin, 2004). Using the thresholding method to identify valve tissue and extract the 

markers, we constructed two 3-D binary masks per valve.  

 

B.3. Morphological Filtering  

Even though we denoised the images prior to segmentation, the binary masks were 

still polluted in some regions. The main polluting artifacts are due to (1) instrumenting the 

valve with sand/clay markers and (2) imaging the valve in an in vitro setup. We have 

discussed the morphological filtering procedure we applied to enhance the quality of binary 

mask in APPENDIX C. By finishing this step, we acquired the 3-D binary-field 

representations suitable for geometric analysis. 

 

B.4. Geometry Construction  

To model the valve surface geometry, we required a boundary representation (B-

rep) of the valve in place of 3-D binary masks. The binary field or voxel representation 

consists of a classification function from 3-D Cartesian space to {0,1}. This type of shape 

representation is simple and efficient in terms of required memory. Nevertheless, it lacks 
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any information on the topology or boundary locations. To convert volumetric binary field 

representations to polygonal meshes, marching cubes is a commonly used algorithm 

(Lorensen & Cline, 1987). We used the marching cube algorithm implemented in the 

ScanIP software suite to create a triangulated surface representation of the geometry for 

each valve. The mesh files were then imported in Zbrush sculpting software (Pixologic 

Inc., CA, USA) for manual morphological labeling. 

 

B.5. Morphological Labeling  

We labeled the geometric representation of each valve to extract the leaflet 

structure, chordae tendineae, and the papillary muscles. The MV constituent parts have 

relatively similar densities (close to 1 m3/kg). Consequently, the MV annulus, leaflets, and 

chordal structure have an identical range of intensity values in the micro-CT images. This 

makes it impossible to use multi-threshold segmentation to label these parts in the images. 

Also, the valves were sutured on an annulus holder, which we needed to outline and remove 

from the images, (Figure 8). 
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Figure 8: (A) shows the 3-D segmented image of the MV mounted on the annulus holder. 

The fiducial markers placed on valve annulus enabled us to outline the 

annulus holder and remove it by Boolean operation to acquire the MV 

geometry (B).   

To manually label the valve constituents and detach the holder, we used the ZBrush 

sculpting software package (Pixologic Inc., CA, USA). The process was guided by the 

multi-perspective photos of the valve that we acquired from the in vitro setup. Ultimately, 

we labeled the papillary muscle heads, chordae tendineae, and leaflets in the segmented 

MV geometries (Figure 9). 

 

(A) (B)
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Figure 9: The MV constituent parts are labeled. (A) shows the 3-D geometry of the entire 

MV with leaflets (red), chordae tendineae (blue), and papillary muscles 

(yellow). (B) shows the fiducial markers that we placed on the valve to track 

the displacement of the MV in order to validate biomechanical simulations. 

In this study, we focused on the study of MV leaflet structure shown in (C). 

We are currently working on the computational anatomy of chordae tendineae 

shown in (D).    

(A) (B)

Chordae Tendineae

with transition zonesLeaflet Structure

Fidicual Markers

(C) (D)
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C. GEOMETRY MODELING 

C.1. General Considerations 

The object registration requires a considerable care in geometry modeling and the 

study of shape variations among a population. In our study, the registration of different 

MVs to the same coordinate system is essential for inter-subject analysis and developing a 

population-averaged model. We used a generalized form of superquadric shape primitives 

to register various MV geometries. In our pipeline, we optimized a parameter set per valve 

that defines a superquadric surface that captures the gross geometry of the MV (Figure 10). 

Consequently, this optimization registered the MV geometries in our population to a 

superquadric parametric space that provides a correspondence among valves. Based on this 

novel use of superquadrics, we co-registered our MV geometries and established an 

objective framework to analyze them. 

Before we describe our pipeline, we note that the multi-resolution framework for 

geometry processing is closely related to the use of wavelets for mesh analysis (Lounsbery, 

DeRose, & Warren, 1997). In the current study, we have pursued a similar approach and 

developed a processing pipeline that allows controlling the level of detail in the final 

geometry reconstruction (Eck et al., 1995). However, we replaced the “base mesh” with a 

parametric shape primitive (superquadrics) and the “wavelet coefficients” with discrete 

harmonic (Fourier) basis functions. This novel approach enabled us to parameterize the 

complex MV geometry, quantify the fine-scale geometric features, and also build a 

correspondence between various MVs. We discuss our modeling pipeline in extensive 

detail in the rest of this section. 
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Figure 10: (A) demonstrates a schematic representation of the MV apparatus (Adapted 

from (A. Carpentier, Adams, & Filsoufi, 2011). (B) Indicates that the general 

shape of the MV leaflets can be captured by a parametric surface 

reconstructed with a relatively small number of parameters. 

C.2. Multi-resolution Framework 

We developed a pipeline to analyze the MV shape and quantify physical attributes 

such as geometric features in a multi-resolution framework. In our analysis, we decompose 

the image-based geometry of the MV into two models: (1) a basic parametric model that 

approximates the general MV shape, and (2) high-resolution discrete maps that capture the 

details of the MV surface. For the first model, we used superquadrics, which are powerful 

shape primitives, to describe the MV geometry with a few physically meaningful 

parameters (Jaklic, Leonardis, & Solina, 2013). For the second part, we relied on spectral 

approaches, which enabled us to reconstruct the MV atrial and ventricular surface details 

and control the spatial resolution in the final model reconstruction. In this work we have 

only studied the MV surface details, which basically form a scalar attribute. This 

framework can be directly applied to incorporate higher-order attributes like tensor 

representations of the internal fiber architecture into MV computational models.  
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C.3. Parametric Approximation (Superquadric Model) 

C.3.a. Overview 

In this section, we briefly survey the properties of superquadric shapes and our 

approach to modeling the MV geometry with superquadric surfaces. Superquadrics are a 

generalization of quadric surfaces such as spheres, ellipses, and hyperbolas introduced by 

Barr ((Barr, 1981)). These surfaces have been used extensively to model man-made 

geometries (Terzopoulos & Metaxas, 1990). Some studies have shown that superquadrics 

can also be successfully used to model anatomical geometries, such as the left ventricle of 

the heart (Bardinet, Cohen, & Ayache, 1996). We refer the reader to a review of the 

properties in Appendix D. 

We computed a superquadric model for each studied MV by solving a non-linear 

least square optimization problem. There are several cost functions suggested in the 

literature for fitting superquadric surfaces (Solina & Bajcsy, 1990). However, they are 

suited for modeling shapes that are topologically equivalent to a sphere while the MV 

geometry has a genus-1 topology (Figure 11). Thus, we designed a novel objective function 

to capture the complex geometry of the MV using superquadric models. Our objective 

function is based on the generalized superquadric formulation that allows shape registration 

along with searching for the best shape description (Jaklic et al., 2013). We modified the 

general superquadric formulation and fixed the z-axis since our geometries were registered 

to a unique vertical axis in the imaging setup:  
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Figure 11: The MV leaflet structure is topologically analogous to a torus. This means that 

the MV leaflet structure is considered to be from the family of geometrical 

objects that have one hole (genus-1). Panel (A) shows the 3-D view of the 

MV leaflets and a torus. Panel (B) shows the same shapes from top view.  

In equation (1), the parameters a1, a2, and a3 adjust the size of the superquadric 

shape along x, y, and z directions, respectively. The parameters ε1 and ε2 are often called 

squareness parameters and regulate the curvature of the superquadric surface in xy-plane 

and long z-axis. As it might be interpreted from the form of the equation, the three 

parameters x0, y0, and z0 are the coordinates of the coordinate system origin. Finally, the 

parameter θ adjusts the pose of the superquadric shape about the z-axis. The implicit 

equation that defines the superquadric, equation (1), is directly proportional to the signed 

radial distance with respect to the superquadric surface; it is negative for the points inside 
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the superquadric shape and positive for the points outside of it. Therefore, it is often called 

the superquadric inside-outside function and is used to compute superquadric models since 

it provides a measure of how close a superquadric model is to an input geometry. 

 

C.3.b. Objective Function 

We used three main components to devise our objective function suitable for 

capturing the MV geometry using a superquadric model: 
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To design an objective function for computing superquadric shapes, we used the 

inside-outside function, equation (1), as the core element of the objective function to assure 

the proximity of the input geometry and the computed superquadrics. The value of inside-

outside function is directly proportional to radial distance from the superquadric surface, 

(Figure 12). 
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Figure 12: the superquadric inside-outside function evaluated at an arbitrary point of the 3-

D space is directly proportional to the 
0

/
s

r r ratio for that point. Consequently, 

the deviation of this function from 1 can be used in the design of an objective 

function to compute superquadric models, (Schematic adapted from (Jaklic et 

al., 2013)). 

Next, we penalized the proximity factor, equation (2), by multiplication with a size 

factor, equation (3), and a curvature factor, equation (4), to develop our objective function, 

equation (5). The curvature penalty component controls the convexity of the superquadrics 

surface (Figure 13). This specific way for penalizing the inside-outside function allows 

modeling hourglass geometries through least square minimization. Specifically, the 

curvature penalty term enables the objective function to search for structures of revolution 

around z-axis effectively. 
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Figure 13: Curvature penalization allows capturing the MV hourglass geometry. (A) shows 

a representative superquadric model that would be computed without 

imposing the curvature criterion. (B) indicates how the curvature factor 

modifies the shape of a superquadric model. (C) represents a superquadric 

model analog to the MV leaflet geometry that is resolved by introducing 

curvature penalty. 

C.3.c. Optimization Algorithm 

We used a trust region algorithm with Levenberg-Marquardt-Fletcher (LMF) 

method as its core to optimize our objective function and compute superquadric models. 

Our objective function, equation (5), is highly non-linear and non-convex. This makes the 

optimization problem ill conditioned and often computationally intractable. We verified 

the accuracy of our solution by scanning the solution space of the optimization problem. 

However, the objective function has 9 parameters which makes the visualization of the 

convex behavior of the optimization problem impractical. Here we have included the 

contour plots of the objective function for changing shape parameters (Figure 14) and the 

annular dimensions (Figure 15). The behavior of the objective function suggests that our 

optimization algorithm converges to an identical family of superquadric shapes. 
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Figure 14: The behavior of objective function with respect to shape parameters is 

demonstrated. The high density of iso-contours in plot (A) depicts the highly 

non-linear behavior of the objective function. Plot (B) shows the convex 

solution neighborhood in the optimization problem. 

 

Figure 15: The objective function R is plotted versus the superquadric parameters a1 and 

a2, which denote the size of superquadric model in x and y directions 

respectively. This behavior suggests convexity of the objective function with 

respect to these parameters. 

(A) (B)
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The LMF method approximates the non-linear objective function with a quadratic 

model, which is considered to be a valid model over a restricted region (the trust region), 

(Yuan, 2000). Next, the LMF method solves for the optimal point in that region through a 

combination of vanilla gradient decent and Newton-Gauss methods (Moré, 1978). 

Iteratively, the trust region is updated and a new approximation of the objective function 

is used until an acceptable optimal point is obtained. In our case, the objective function 

resembles quadratic functions in behavior since it is based on the superquadrics inside-

outside function. Consequently, the quadratic approximation of the objective function and 

the use of LMF method led to a consistent numerical scheme. 

 

C.3.d. Optimization Constraints 

We defined semi-empirical bounds to constrain the parameter set in our 

optimization problem. To make the shape physically valid, the size parameters a1, a2, and 

a3 were set to be positive values. We chose the [0, ] interval, instead of [0, 2 ] , as the 

search space for the angle parameter θ due to the rotational symmetry in the superquadrics 

shape. For the origin location x0, y0, and z0, we imposed the search space to be along the z-

axis by enforcing x0 and y0 to be zero. This imposed our a priori knowledge that the valves 

are registered to a global z-axis in the imaging setup. For the shape parameters, we set them 

to be positive to avoid degenerate shapes. Setting the objective function and the inequality 

constraints, we solved the optimization problem in MATLAB (Mathworks, MA, USA) 

with the convergence criterion summarized in Table (Table 3).  
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Table 3: Optimization setting in MATLAB for the trust-region-reflective algorithm 

Function Loop 

Max Iterations 

Outer Loop Max 

Iterations 

Function Change 

Tolerance  

Step-size Change 

Tolerance  

1000 1000 1×10-15 1×10-13 

C.4. Geometry Partitioning 

We subdivided each MV mesh into two separate parts denoting the atrial and 

ventricular sides of the valve geometry. The mesh partitioning was required to outline two 

distinct meshes so the geometric features of each side could be modeled separately. 

However, this task becomes non-trivial as the standard curvature-based partitioning 

algorithms (Mangan & Whitaker, 1999) encounter issues for the study of MV geometry 

(Figure 16). 

 

 

Figure 16: Curvature-based mesh partitioning for MV geometry cannot classify the mesh 

triangles into atrial and ventricular sides effectively. (A) shows the 

normalized mean curvature evaluated at the MV mesh vertices. In (B) we 

have shown the result of curvature-based mesh partitioning from two views. 

Although we expect to categorize the mesh triangles in atrial and ventricular 

groups, the curvature-based methods results in multiple clusters. This happens 

due to the fact that the MV surface has many bumps and creases that cause 

issues for defining decision boundaries to delineate the atrial and ventricular 

sides. 

1

-1

Normalized Mean Curvature 3-D view Top view

(A) (B)
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We used the superquadric model of the geometry as the basis to partition the mesh 

and define the atrial and ventricular side meshes. The superquadric model approximates 

the size, ellipticity of the MV annulus, and the curvature of the leaflets through the factors 

that we imposed on the objective function. This suggests a correspondence between the 

MV mesh representation and its superquadric model. Through the fitting process, we 

ensured that the computed superquadric and the input geometry are aligned. Consequently, 

we approximated the corresponding location for the MV mesh on the superquadric surface 

by orthogonally projecting the mesh on the superquadric surface. This projection was 

implemented as an iterative bisection algorithm (Figure 17). We then classified the mesh 

triangles based on the relative orientation of their surface normals and their corresponding 

outward normals on the superquadric model. In general, the angle between the two normals 

is acute for ventricular triangles and obtuse for atrial triangles. This then enabled us to 

classify the triangles in input into two groups denoting the atrial and ventricular sides of 

the MV. 
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Figure 17: Iterative bisection algorithm to project a point cloud on the superquadric surface. 

Since we designed the projection algorithm using the superquadrics inside-

outside function, the projection works well in spite of the non-convex 

superquadric surface. 

To review, we have discussed the computation of the superquadric model and 

decomposing the input geometry into the atrial and ventricular parts. The set of vertices 
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that are shared between these two partitions denote the annulus and the free edge, which 

geometrically define the boundaries of the MV medial model. In the following section, we 

discuss the details of our novel framework for modeling the geometric details that 

superquadric models cannot capture. Although we have focused on the surface details here, 

we want to underscore that any other attribute can be modeled and assimilated with the 

MV geometric models using this framework. 

 

C.5. Modeling Geometric Details (Harmonic Reconstruction) 

C.5.a. Geometry Decomposition 

We used an additive decomposition of the original geometry to construct a model 

that recovers the geometric details of the MV. In our framework, we used superquadric 

shape primitives to approximate the geometry of the MV and register it with a global 

coordinate system. However, the superquadrics provide only a basic surface representation 

for the 3-D geometry of the MV (Figure 18). 

Although this might be sufficient for the purpose of most biomechanical 

simulations, our focus was to develop a pipeline to quantify the MV physical attributes and 

integrate them with the parametric representation (Figure 19). The geometric details of the 

MV surface are the simplest kind of attributes, which are required to build a medial 

representation of the MV geometry. Thus, we considered the superquadric model to be 

only a first-order approximation of the MV geometry (Figure 20).  
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Figure 18: the MV leaflet geometry, Panel (A), can be approximated with a superquadric 

surface fit shown in Panel (B). The superquadric fit provides an estimation of 

the MV size and shape. However, by definition, it cannot capture the regional 

thickness and features of the MV leaflet surface.   

 

Figure 19: In our framework, we considered the superquadric model to be a first-order 

approximation of the 3-D MV geometry. For the purpose of most 

biomechanical simulations the superquadric surface fit can be used, shown in 

(B), to build a 3-D basic model of the input geometry, shown in (A).  

(A) (B)

(A) (B)



 38 

 

 

Figure 20: the superquadric approximation of the MV leaflets structure provides a basic 

parametric model for the valve geometry. (A) shows a representative MV 

geometry and a superquadric model that approximates the MV shape; (B) to 

(E) illustrate generating a cross sectional view of the MV leaflet structure and 

its superquadric model. (F) indicates the fact that a superquadric model only 

provides a basic approximation of the MV geometry. It also illustrates the 

degree to which the 3-D geometry of the MV might be different from its 

superquadric model. 

To reconstruct the MV geometry with high fidelity, the superquadric approximation 

needs to be enriched by incorporating geometric details. We calculated the point-wise 

distance between the input geometry in our pipeline and the superquadric model to capture 

the fine features of the MV surface. This is similar to the bump mapping technique, which 

is a standard tool in computer graphics to simulate geometries with sophisticated surface 

details (Blinn, 1978). In our framework, we calculated the signed L2 distance between the 

superquadric model and the input geometry to define the deviation fields that denote the 

(A) (B) (C)

(D) (E) (F)
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MV surface details (Figure 21). This distance field model the fine geometric features of the 

valve surface that the superquadric model cannot capture. 

 

 

Figure 21: to capture the MV geometric details, we evaluated the deviation of MV atrial 

and ventricular sides from the computed superquadric model of the MV 

leaflets. White and yellow arrows refer to the normal distance of the MV atrial 

and ventricular sides from the superquadric model respectively. To 

reconstruct the MV geometry with high accuracy, we modeled these normal 

distances as scalar fields defined on the parametric domain of the 

superquadric surface. 

There are two deviation fields per valve denoting the geometric details, which 

correspond to the atrial and ventricular sides of the MV leaflets. To define each field, we 

first projected the corresponding mesh orthogonally onto the superquadric model using our 

iterative bisection method (Figure 17). This enabled us to build a correspondence between 

the input geometry and the parametric superquadric model, (Figure 22). 
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Figure 22: the procedure to define the domain of the MV geometric details is illustrated. 

The MV surface features can be quantified as deviation fields that consist of 

the L2 distance between the input geometry and the superquadric model. Plot 

(A) illustrates the location of our cross sectional view. Plots (B) shows a 

highlighted region on the input mesh. The same projection of this highlighted 

region on the superquadric model is shown in (C). The point-wise distance 

between the input mesh and the projected one denotes the geometric details 

of the MV surface. 

Then, we parameterized the projected mesh according to the parametric 

representation of the superquadrics model:  

1

1

2

2

1

1

3 3

1

2 2

1

1 1

sgn

tan

sin

sgn

sgn

z z

a a

y y

a a

x x

a a


















     
     

    
   
   

   
   
   
    

 (6) 

In equation (6), the input Cartesian coordinates of the MV mesh after projection on 

the superquadric surface (x, y, z), are transformed to the parametric domain of the 

superquadrics surface (η, ω). This parametrization is in fact a conformal map from the 3-
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D Cartesian space, onto the 2-D periodic domain of the superquadric surface. An intuitive 

way to visualize this parametrization is to consider it as unfolding of the MV mesh 

projected on the superquadrics, on a 2D plane (Figure 23). 

 

 

Figure 23: (A-B) Representative MV mesh projected on the superquadric model, with 

periodic boundary highlighted in blue. (C) Plot of the MV mesh projected on 

its parametric space. This mapping 3-D Cartesian space to the 2-D parametric 

domain of the superquadrics allowed us to reconstruct the geometric details 

of the MV surface in a way that can be integrated with the superquadric 

model. The MV geometry occupies a narrow region in the parametric domain 

so it has been shown on a section of the space (-π/4<η<0). 
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Ultimately, the projection and subsequent parametrization enabled us to model the 

geometric details as a scalar function defined on the 2-D surface of the valve’s superquadric 

model. The conformal property of the superquadric parameterization allows performing a 

harmonic spectral analysis to reconstruct the geometric details of the MV surface in the 

superquadric domain. This conformal property is required to pull back the reconstruction 

on the 2-D parametric domain onto the 3-D surface of the superquadric model. More 

importantly, this property of the superquadrics allows us to model higher-order attributes 

like vector fields using the same framework. Namely, the fiber architecture information 

acquired by light scattering techniques (Sacks, Smith, & Hiester, 1997) can be assimilated 

with the geometric representation of the MV using our modeling framework. In the 

following section, we discuss our framework to reconstruct the MV geometric details 

defined as a scalar attribute that denotes deviation of actual MV surface from the 

superquadric model. 

 

C.5.b. Spectral Analysis 

C.5.b.i. Overview 

We used spectral analysis to describe the deviation of the superquadric model from 

the actual MV geometry. Specifically, the residual fields between the superquadric model 

and the two MV surfaces were reconstructed as a sum of Fourier basis functions defined 

by 
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In equation (6), f represents the scalar function modeling the MV geometric details 

and F is its Fourier transform. The exponential term, equation (7), is in fact the Euler 

representation of Fourier basis function. In this formulation, the MV attributes are modeled 

in the frequency domain and then reconstructed back in the spatial domain and imposed on 

the superquadric model. This approach has three main advantages as discussed below. 

First, we wanted to add the geometric details to the parametric superquadric model 

of the valve and reconstruct the surface geometry with high fidelity. Thus, we needed to 

register the deviation fields to the same parametric domain as the superquadric model. The 

deviation values prior to spectral analysis are merely a discrete sampling of the residual 

field, since deviation values are only defined at the MV mesh vertices (Figure 24). Through 

equation (6), however, we arrive at a continuously defined representation of the residual 

field, which allows us to approximate the actual MV surface geometry at any coordinate 

pair (η, ω).  

Second, the reconstruction enables us to define the deviation fields independent of 

their mesh domain and gridding. This facilitates averaging the atrial and ventricular 

deviation fields to construct a medial representation of the valve geometry. The medial 

representation with local thickness is essential to simulate the MV using shell or solid 

elements. Moreover, the spectral reconstruction allows resampling the deviation fields with 

an adjustable resolution. Accordingly, our pipeline provides a framework to reconstruct 

MV computational models with any desired discretization required for sensitivity analysis.   

Last and most notably, the reconstruction using Fourier basis functions allows 

averaging the geometric details for different valves. This lends itself directly to developing 

an average model for the MV geometry enriched with average physical attributes. Applying 

the spectral reconstruction on multiple valves facilitates proper registration between 

different valves, which is the key and most challenging step in averaging properties.  
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Figure 24, the irregular domain for the MV geometric details is illustrated from 2 views. 

To model the MV surface bumps and creases, we were required to reconstruct 

the pointwise distance between the input geometry and the superquadric 

model. However, since the input geometry is defined as a triangulated surface, 

the distance maps denoting the atrial and ventricular surface details are 

defined on domains with non-uniform structures. 

While these features are very appealing, performing spectral reconstruction of the 

fields defined on triangulated meshes is still nontrivial for two reasons: (1) the non-uniform 

structure of the tessellated mesh representation, (2) the free-form shape of the domain 

boundaries. In the rest of this section we discuss our method to overcome these challenges 

and reconstruct the MV geometric details. 

 

C.5.b.ii. Non-uniform data structure 

The standard Fast Fourier Transform (FFT) algorithms are not applicable to 

perform spectral analysis when the data is sampled irregularly (Marvasti, 2012). 

Essentially, the FFT algorithms require the input data to be tabulated on a Cartesian grid. 

In our case, the scalar fields denoting the geometric details and other attributes are defined 

on unstructured meshes. Consequently, none of the standard FFT implementations could 
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be used. Thus, we used a Non-Uniform Fast Fourier Transform (NUFFT) to perform a 

spectral reconstruction of the MV surface details. 

To perform spectral analysis, we used an NUFFT algorithm that first oversamples 

the data on a Cartesian grid using truncated Gaussian kernels and then applies a standard 

FFT (Greengard & Lee, 2004). This approach is a subset of NUFFT algorithms that are 

known as gridding algorithms. It has been shown that the effect of Gaussian kernels to 

interpolate the data on a regular grid can be removed using the convolution theorem. Using 

this approach to perform Fourier analysis does not introduce interpolation errors if the data 

is uniformly distributed for interpolation over a rectangular domain (one 2-D period). 

However, because MV attributes like geometric details are defined over irregular domains, 

the NUFFT algorithm fails unless the shape of the domain is accounted for. In the following 

section, we have discussed our approach to account for the special shape of the MV 

boundaries that introduce errors in the NUFFT algorithm. [We have performed a survey of 

the available NUFFT algorithms that can be found in APPENDIX F]. 

 

C.5.b.iii. Free form boundaries 

The deviation fields denoting the MV geometric details have free-form top and 

bottom boundaries (Figure 23). These boundaries, corresponding to the MV annulus and 

free edge respectively, do not coincide with the top and bottom boundaries of the 

superquadric parametric domain, and thus hinder the direct applicability of NUFFT. The 

gridding step in the NUFFT algorithm oversamples the known function values on a 

periodic Cartesian grid. Because our deviation fields do not occupy the entire periodic 

domain (Figure 25A), interpolation for NUFFT results in zero-padding in subdomains 

where there are no data (Figure 25B). 
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Figure 25: The Gaussian gridding approach for NUFFT interpolates the data on a super-

sampled Cartesian grid shown in (A). For the MV attributes this results in 

zero-padding the data in subdomains of the parametric space where the MV 

domain is not defined, shown as grey in (B). Applying FFT for computing the 

Fourier transform of the interpolated function fails due to the discontinuity of 

data on the MV irregular boundaries, highlighted in (B). 

Applying FFT on the zero-padded data results in a Fourier analysis that is 

drastically different from the actual frequency content of the MV geometric details. This is 
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due to the Gibbs phenomenon (Gottlieb & Shu, 1997) polluting the entire spectrum with 

noise, which is a direct artifact of zero-padding the data and causing a discontinuity at the 

MV boundaries. Expanding the bandwidth to attenuate the Gibbs phenomenon causes two 

problems: (1) the computational cost of the 2-D Fourier analysis process increases 

quadratically with the number of frequencies; and (2) the reconstruction of the geometric 

details becomes impossible as a result of the high-frequency components polluting the 

power spectrum. 

The special shape of the MV boundaries can be modeled as a 2-D window (mask) 

function (Figure 26). In other words, we considered the zero-padded function in the 

NUFFT algorithm to be in fact the product of a periodic function and a window that is 1 

inside the MV physical boundaries and zero elsewhere. The rationale behind this 

multiplicative decomposition is to separate the scalar fields modeling the geometric 

features of the MV surface from the MV boundaries. 
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Figure 26: In Fourier reconstruction, we modeled the effect of MV boundaries as a mask 

shown here, multiplied by an underlying function that is defined over the 

entire parametric domain of superquadrics and denotes the MV geometric 

details. This function when sampled inside the MV parametric domain 

recovers the geometric details of the MV surface. 

The MV leaflets as a soft biological tissue have a smooth surface, without any sharp 

bumps or edges. Thus, assuming the function that models the MV surface geometric 

features to be smooth and essentially bandlimited is certainly valid. Following this, all the 

high-frequency pollution in the reconstruction of geometric details can be attributed to the 

spectral leakage caused by the effect of windowing (Bernstein, Fain, & Riederer, 2001), 

which in our case models the MV boundaries. We removed this effect by limiting the 

number of Fourier frequencies used to reconstruct the geometric details. Consequently, we 

were able to remove the spurious frequency components caused by the irregular boundaries 

and recover a clean spectrum. In other words, the pollution resulting from the free-form 

boundaries was resolved by imposing a sparsity constraint on the spectral analysis. Our 
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implementation of sparse NUFFT to reconstruct the MV geometric details is discussed in 

the following section.  

 

C.5.b.iv. Sparse Spectral Analysis  

To overcome the effect of irregular boundaries, we imposed a sparsity constraint 

on the NUFFT algorithm to reconstruct the MV geometric details. The sparsity constraint 

penalizes the number of Fourier frequencies in the spectral analysis. This constraint leads 

to attenuating the spurious noise polluting the spectrum, caused by the irregular boundaries 

and thus allows recovering a clean power spectrum using NUFFT. Our method can also be 

viewed as an implementation of a LASSO optimization formulation to find the Fourier 

transform (Tibshirani, 1996). In this perspective, the objectives are: (1) maximum match 

with the known function values (i.e. geometric details) in the spatial domain, and (2) 

maximum sparsity of the power spectrum in the spectral domain. Moreover, we imposed 

the frequency representation for the MV geometric details to be bandlimited and solved the 

optimization problem for the sparse spectral reconstruction using a proximal gradient 

method (Parikh & Boyd, 2013).  

Our iterative algorithm to perform spectral analysis is very straightforward and only 

requires repeating a few steps until the convergence criterion is satisfied (Figure 27). It 

should be noted that there are more efficient and sophisticated algorithms like the Nesterov 

scheme (Nesterov, 2005) to perform the Fourier transform constrained with the spectral 

sparsity criterion. However, we used a proximal gradient method due to its suitable 

convergence rate and low computational complexity of each iteration step. 

 



 50 

 

Figure 27: Our iterative approach for sparse spectral analysis is described. The algorithm 

requires setting a threshold for filtering the noise that is an artifact of irregular 

boundaries. The threshold was chosen empirically to be 1×10-4 for all valves.
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C.6. Geometry Reconstruction 

To reconstruct a detailed MV model, we superimposed the MV geometric details 

on the smooth superquadric approximation of the MV shape: 
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(9) 

 

In equation (8), the function r denotes location of either MV atrial or ventricular 

side and p  refers to the superquadric model of the full MV geometry. The parametric 

model of each side is reconstructed by deforming the superquadric surface p according to 

the geometric details function f. This superposition relation for geometry recovery follows 

directly from the additive decomposition of the input geometry. However, our framework 

reconstructs the MV geometric details on the entire parametric domain. Thus, we restricted 

the domain in the MV parametric reconstruction, equation (9), by projecting the annulus 

and free edge curves on the parametric domain and outlining the original MV boundaries. 
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C.7. Medial Representation 

The superquadric surface can only provide a basic model of the MV geometry that 

is different than the medial surface of the MV geometry, (Figure 28). In our framework, 

we modeled the deviation of the atrial and ventricular sides of the MV geometry from the 

superquadric surface by spectral analysis. The spectral reconstruction instantly provides 

the means to build a medial representation of the MV with regional thickness which is 

discussed as follows. In this document, we have extended the medial surface representation 

of the MV in the figures for better visualization while it is well noted that the medial 

representation does not intersect with the original geometry. 

 

 

Figure 28: The discrepancy between the medial surface and the superquadric model is 

shown. Plot (A) represents a cross sectional view of a MV geometry modeled 

by a superquadric surface. This cross section is shown in normal view in plot 

(B). The spectral analysis in our framework allows evaluating the medial 

surface based on the superquadric model. 
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C.7.a. Medial Surface 

To approximate the medial model of the MV geometry, we averaged the geometric 

models of the MV atrial and ventricular sides (Figure 29). This follows from the definition 

of the medial representation that the medial is the locus of points equidistant from the 

boundary contours (H. I. Choi, Choi, & Moon, 1997). The full medial representation 

consists of a medial surface and a thickness field that indicates the original boundaries. 

Acquiring the thickness field, however, requires more processing than the medial.  

 

 

Figure 29: The medial surface location can be approximated by averaging the distance of 

atrial and ventricular surfaces from the superquadric model.  

C.7.b Thickness Field 

We computed the MV’s local thickness by processing the distance of the atrial and 

ventricular sides of the MV from the superquadric model. By local thickness, we refer to 

the radius of the sphere centered on the medial that is tangent to shape boundaries (Figure 

30). Based on this definition, the thickness field is proportional to the difference in the 

distance of the MV sides from the superquadric surface. To acquire the local thickness 
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values, we evaluated the projection of the difference between the atrial and ventricular 

deviation from the superquadric model, (Figure 31). The parametric reconstruction of the 

valve geometry provides an efficient mathematical basis for the evaluation of MV regional 

thickness by subtracting the relative distance of atrial and ventricular surfaces from the 

superquadric model. 

 

Figure 30: The MV leaflet local thickness can be defined as the radius of the spheres that 

are centered at the medial surface and tangent to the atrial and ventricular 

boundaries.   
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Figure 31: The normal to the superquadric surface is not necessarily in the same direction 

as the normal to the medial surface, shown as angle θ. The thickness field 

computed by using spectral reconstruction of the geometric details needs to 

be projected on the normal to the medial surface. This is done by multiplying 

the reconstructed thickness fields by cos(θ) that is evaluated pointwise on the 

medial surface. 
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Chapter 4:  Results 

A. OVERVIEW 

This chapter is organized in three parts. First, we present the intermediate and final 

results of our pipeline to reconstruct the MV geometry. This provides a review of the whole 

pipeline, illustrated by results from modeling three MVs. Then, we review the construction 

medial model for a MV. Finally, we assess the accuracy of our modeling methodology and 

validate by comparing the input and reconstructed geometry for a MV. 

We implemented our pipeline in MATLAB (Mathworks, MA, USA) and automated 

some computationally intensive algorithms in C++ to achieve better numerical speed. 

Specifically, we developed new MATALB libraries for (1) NURBS-based geometry 

processing, (2) mesh and graph processing, and (3) differential mesh filtering. We also 

used open source NUFFT libraries developed in FORTRAN by Greengard and Lee 

(Greengard & Lee, 2004). 

 

B. MODELING PIPELINE    

In this work, we developed a novel pipeline to analyze the MV geometry in a multi-

resolution framework. Our methodology is based on additive decomposition of the original 

geometry into two models: (1) a superquadric fit that approximates the general shape of 

the MV, and (2) a spectral reconstruction of the fine-scale geometric details. This 

framework enabled us to build computational models of the MV geometry with an 

adjustable density of geometric details. In this section we review the result of each major 

step in our geometry-modeling pipeline.  
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B.1. Superquadric Models 

A unique superquadric surface was fitted for each studied valve, (Figure 32). The 

optimization procedure was carefully monitored to assure convergence to an identical 

neighborhood for the studied geometries. The agreement in the calculated values and 

convergence behavior suggests that our optimization algorithm has successfully found an 

identical family of superquadrics to model MV geometries. 

 

 

Figure 32 Computed superquadrics for three MVs are shown from two views in the Panels 

(A) and (B). For all the valves, the computed superquadric models are 

relatively similar and belong to the same family of superquadric shapes, 

shown in Panel (C). 
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These results indicate that using superquadrics to approximate the valve geometry 

has three main advantages. First, the fitting function finds the Euler angles for the MV 

shape and aligns the geometry with the principal directions. Second, by the optimization 

process, we find a global center for the superquadric model that registers the MV geometry 

with respect to the superquadric surface. Finally, superquadrics provide a reasonable 

approximation of the MV geometry that is sufficient for first-order simulations of the MV 

behavior. 

 

B.2. Attribute Modeling 

Our multi-resolution framework enabled us to enrich the parametric approximation 

of the MV geometry (superquadric model) with the MV surface features as the simplest 

class of MV attributes.  Here, we present the results of the algorithms in our pipeline to 

capture the MV geometric details, perform spectral analysis, and reconstruct MV geometric 

models with adjustable level-of-detail. 

 

B.2.a. MV Geometry Partitioning 

We successfully applied our geometry partitioning algorithm to decompose the MV 

input geometry into atrial and ventricular surfaces (Figure 33). The partitioning results in 

two distinct meshes that represent two sides of the MV leaflet structure. Each side is then 

analyzed individually to fully capture the surface features of the MV geometry. Moreover, 

our partitioning algorithm automatically extracts curve representations for the annulus and 

the free edge (Figure 34).  
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Figure 33: Mesh partitioning results to extract the atrial (beige) and ventricular (maroon) 

side surfaces are shown.  

(2)

(3)

(1)

(Input Geometry) (Ventricular Side)(Atrial Side)
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Figure 34: The annulus and free edge for 3 valves are shown as blues curves from two 

views. Geometrically, these curves can be sued to approximate the boundaries 

of the MV medial surface.   

B.2.b. Spectral Analysis 

Here we present our results on the reconstruction of MV geometric details by a 

spectral analysis method. We emphasize that modeling higher-order attributes like the fiber 

architecture of the leaflets can be performed using the same framework. Moreover, our 

methodology allows to average the geometry, geometric details, and other physical 

attributes of the MV leaflet structure. However, in this research document, we have focused 

on developing the pipeline for simplest form of attributes to present the results on the 

feasibility of our approach. In this section, we have shown the analysis and reconstruction 

results for one of the valve that we studied. The same pipeline was applied on other valves 

to acquire the final geometry reconstruction. 

Prior to spectral analysis on the geometric details, we evaluated them by projecting 

the original mesh on the superquadric surface (Figure 36). In our methodology, we assumed 

(1) (2) (3)
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that the MV geometric details are regular enough so there exists a bijective projection from 

the input MV mesh on its superquadric fit. Otherwise, the mesh projection distorts the 

regions where the MV surface has folds or deviates from the superquadric model drastically 

(Figure 35). Thus, the geometric details in these regions cannot be reconstructed in our 

framework based on using superquadrics for parametrization. However, by spectral 

analysis, these regions are filtered out and do not distort the geometry reconstruction. 

 

 

Figure 35: The regions depicted by black arrows where the valve surface has folded on 

itself are not recoverable by our approach. Plot (A) shows one of our studied 

valves that has a few folds. In Plot (B) we have shown the region that our 

methodology considers as high-frequency noise and filters out in the spectral 

analysis.  

(B)(A)
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Figure 36: The two mappings required to model the geometric details of the MV leaflet is 

represented. The ventricular side is represented on the left and atrial on the 

right. The surface mesh (A) is normally projected on the superquadric fit to 

acquire (B). Shown in (C), the signed L2 distance between these two meshes 

in (A) and (B) indicates the deviation of MV actual surface from the 

superquadric model. Then, the deviation fields evaluated on 3D Cartesian 

meshes are projected on the superquadric parametric domain as shown in (D). 
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We reconstructed the geometric details of the MV surface with high accuracy using 

spectral analysis (Figure 37). It should be noted that the spectral reconstruction recovers a 

scalar function on the entire periodic domain of the superquadric surface (Figure 38) that, 

when restricted to the MV physical boundaries, represents the MV surface geometric 

details (Figure 39). It can be proved that the acquired reconstruction is a unique extension 

of the MV geometric details to the entire parametric domain of the superquadric surface 

according to the Sobolev embedding theorem (Arbogast & Bona, 1999). While it is 

understood that the geometric details of any given valve are only defined within that 

valve’s physical boundaries, the full field reconstruction makes it possible to average the 

geometry of multiple valves (having different boundaries). 
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Figure 37: The reconstruction of MV geometric details for one of the studied valves, is 

demonstrated. Panel (A) shows the reconstruction of ventricular and atrial 

sides on the left and right figures respectively. The reconstruction error for 

both sides is illustrated in Panel (B) in the same order. It should be noted that 

the reconstruction error is localized in the regions where the MV surface is 

folded on itself.  
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Figure 38: The reconstruction MV atrial and ventricular sides with the geometric details is 

illustrated. (A) shows the MV geometry input in the pipeline and its 

superquadric fit. In (B) the superquadric model is enriched with the geometric 

details to recover the fine features of the MV surface. Plot (C) shows the 

unique extension of the geometric details to the entire parametric domain 

which need to be restricted to the physical domain to recover the actual MV 

geometry.  

 

(A) (B) (C)
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Figure 39: The spectral modeling, by definition, reconstructs the geometric details on the 

entire superquadric surface as shown in (A).  Our parametric representation 

provides an explicit equation to reconstruct MV surfaces. Thus, we imposed 

the annulus and free edge, shown in (B) as boundaries for the parametric 

reconstruction. Plot (C) shows the reconstruction of MV atrial and ventricular 

surfaces. The result (C) shows the surfaces separate since the spectral analysis 

filters out the annulus and free edge regions due to their high curvature. To 

recover a closed representation NURBS parching can be used to stitch the two 

sides smoothly.  

B.2.c. Multi-resolution Reconstruction 

The sparse spectral analysis enabled us to characterize the geometric details of the 

MV in the frequency domain (Figure 40). The computed power spectrum is concentrated 

around the zero frequency showing that a low frequency ensemble is sufficient to 

reconstruct the MV geometric details with high fidelity. Furthermore, the power spectrum 

is fairly sparse, suggesting that a relatively small number of frequencies contain the 

deformation that is required to obtain the original geometry form the superquadric model. 

These results strongly suggest limited aliasing in the spectral analysis, which then allows 

filtering the MV geometric details in the spectral domain to control the level of details in 

the geometric model reconstruction. 

 

(A) (B) (C)
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Figure 40: the spectral representation of the MV geometric details for the ventricular side 

for one of the studied MVs is shown in decibel. Plot (A) illustrates that the 

frequency spectrum is sparse and mostly concentrated at low frequencies. The 

horizontal axis (n) represents the frequencies along ω and the vertical axis (m) 

denotes the frequencies along η directions, equation (6). The low-frequency 

ensemble which contains more than 99% of the power spectrum density is 

shown in plot (B). This result indicates that we can reconstruct the MV 

geometric details using a relatively small number of frequencies.  

The spectral modeling approach enabled us to control the level of geometric details 

in the final model reconstruction, which can be readily applied to other MV attributes. The 

results show that a superquadric surface can predict the MV general shape, which can then 

be enhanced to capture the surface details of the MV 3-D geometry using spectral methods. 

Other attributes like physical properties, multi-layered structure, or internal fiber 

architecture can be modeled using the same spectral approach to build attribute-rich 

computational models. This feature of our pipeline is extremely useful for performing finite 

element simulations of MV behavior since we can adjust the level of detail in the geometry 

as well as any other attribute reconstruction in developing computational models. 
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Figure 41: The results of multi-resolution reconstruction are shown for three MVs. Panel 

(A) shows the superquadric fits for three valves. This basic model was then 

morphed by adding the DC frequency to reconstruct the atrial and ventricular 

surfaces in (B). Integrating more frequencies in the reconstruction recovers 

more geometric details as shown in (C) and (D). The original geometry that 

is input to our pipeline is shown in (E). The hierarchical reconstruction 

performed by tuning the cut-off frequency in the spectral reconstruction of 

attributes can allow controlling the level of detail in attribute-rich model 

development. 
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B.2.d. Medial Model 

Building a medial representation for the MV geometry is challenging due to the 

genus-1 (toroidal) topology and the multitude of physical protrusions on the surface. 

However, our pipeline provides a stable approach to constructing a medial representation 

of the MV geometry. Our approach is based on averaging the distance of the atrial and 

ventricular meshes from the superquadrics model. The average distance approximates the 

location the medial with respect to the superquadric model. This is non-trivial as our 

geometries are defined on unstructured meshes with different connectivity patterns (mesh 

topologies). In our method, spectral reconstruction establishes a correspondence between 

the atrial and ventricular deviation fields (Figure 42A) and enables averaging them, (Figure 

42B). We also constructed the corresponding local thickness by taking the difference in 

location of atrial and ventricular sides, and projecting it along the normal medial surface 

normal, (Figure 42C). 

 

 

Figure 42: The medial representation of the MV leaflet structure is shown. (A) shows the 

reconstruction of the atrial and ventricular sides on the superquadrics 

parametric domain. In (B) these surfaces are averaged to acquire the location 

of medial surface. The complete medial representation of the MV restricted 

to the physical boundaries and with pointwise scalar fields is shown in (C). 

The thickness fields is an attribute of the MV physical structure that is 

essential for using shell models for finite element simulations of the MV 

biomechanical behavior.

(A) (B) (C)
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Chapter 5:  Discussion and Conclusions 

We presented a novel approach to process medical images into a high-resolution 

detailed geometric models of the MV leaflet. The methodology is independent of the 

imaging modality and requires only a limited set of parameters to quantify the geometry of 

the entire MV leaflet structure. In contrast to the existing geometric models of the MV, we 

performed a multi-resolution analysis of the MV leaflet, with major emphasis on consistent 

parameterization within an objective modeling framework. This approach allows us to 

perform accurate quantification and reconstruction of patient-specific geometric features, 

and ultimately to develop a complete population-averaged geometric model of the MV. 

Most notably, our framework provides the basis for reconstructing MV physical attributes 

and incorporating them in computational models.  

 

One of the novel features of the proposed model is the multi-resolution 

representation of geometry and the decoupling of general shape parameters (superquadric 

model) from the fine-scale features (spectral analysis). This approach is inspired by the 

idea of decoupling growth (volumetric changes) and adaptation/development (fine-scale 

tuning) of biological tissues. This decomposition ensures that quantification of inter-patient 

variations and development of population-averaged models unaffected by the dimensional 

variability between the individual MV specimens. Furthermore, by analyzing the fine-scale 

features in the spectral domain, we preserve the high-level of detail in the model along with 

the ability to adjust the level-of-detail in the reconstructed geometric model. 

 

We firmly believe that our framework will inspire an entirely new approach to 

building high-fidelity computational image-based models. It is important to note the 
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flexibility of the proposed approach that allows for gradually increasing the level of detail 

of patient-specific models based on in vivo imaging as the imaging technologies improve. 

Also, our methodology can be readily applied to other heart valves, heart chambers, and 

many anatomical shapes to quantify and characterize their geometries. We believe that our 

approach provides a basis to assimilate the in vivo anatomically accurate information on 

the structure with high-resolution and attribute-rich in vitro models. This methodology will 

then lead to high-fidelity computational models for patient-specific modeling for use in 

surgical treatment simulations and medical device design.  
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APPENDIX A – micro-CT Data-sets 

We imaged the valves in vitro to acquire high-resolution information on their shape 

using micro-CT, which is not feasible in vivo. Excising tissue from the body and working 

with post-mortem tissue causes untraceable changes in shape. However, we relied on 

micro-CT to acquire high-resolution information on the structure. Imaging MV soft tissue 

in vitro using CT imaging modality is challenging because of four main issues. First, the 

tissue loses moisture and the resultant change in water content disturbs the shape, which 

causes more deviation from the actual in vivo geometry. Second, micro-CT imaging is 

based on density variations through the structure, while the whole MV has a relatively 

constant density. Third, we humidified the imaging chamber to prevent the tissue from 

drying and chordae tendineae from clamping on itself. If the humidity of the chamber 

exceeds the proper range, the images will be blurry since the whole chamber content will 

have a density close to 1 kg/m3. In such cases, the tissue boundary is not easy to delineate 

in the images. Moreover, we mounted the valves on a holder device to simulate the left 

ventricle of the heart (Rabbah et al., 2013). This external object will diffract the signal and 

blurs the tissue images. Sometimes this effect is noticeable and corrupts the 3D images. 

We inspected ten imaging data sets and selected five workable ones, which were least 

affected by the aforementioned issues. 
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APPENDIX B – Curvature Flow Filter 

The optimal choice of filters requires an understanding of their behavior so that the 

quality of the image can be enhanced while the distortion can be minimized. We sought to 

enhance the edge contrast in images in order to segment them and delineate shape 

boundaries with high fidelity. Isotropic filters are insensitive toward the feature edges in 

an image. Therefore, we used the curvature flow filter, an anisotropic filter with adaptive 

performance. In this filter, the diffusion flux is directly proportional to the local curvature 

in the image. This adaptivity causes the high-curvature regions to diffuse more quickly 

than the low-curvature ones. This behavior has two advantages: First, the areas polluted by 

noise are characterized by predominantly high curvatures. Thus, the curvature flow filter 

recovers the polluted regions in an image by a higher diffusion flux that attenuates noise. 

Second, the image edges have lower curvatures so this filter affects them minimally. As a 

result, the curvature flow filter enhances the contrast resolution of the image. Furthermore, 

we aimed to minimize the signal dropout and loss of geometric details in the images. The 

curvature flow filter enabled us to control the degree to which the filter affects an image. 

This type of filter has two input parameters: (1) the time step, and (2) the number of 

iterations. The time step should be small enough to satisfy the CFL stability condition in 

solving the transient diffusion equation (Weickert, 1998). The time step in processing n-

dimensional images needs to be less then 2-n, assuming unit size of the grid. The typical 

value used for 3-D images is 0.0625s. The curvature-flow diffusion equation is linear with 

respect to time. Consequently, using smaller time steps leads to the same results while 

being computationally more expensive. However, because smaller time steps allow a better 

control over the filtering process, we used the same time step value of 0.001s in our 
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processing. We also chose the number of iterations empirically for each image to improve 

the resolution while preserving the geometric details. 
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APPENDIX C – Morphological Filters 

We used a Dilation-Erosion filter to remove the marker artifacts from the voxel 

representation of each valve. The markers that we placed on the valve for shape registration 

distort the natural shape of the valve surface. This distortion emerges as a spurious bump 

map superimposed on the leaflet surface in the segmented images. An effective way to 

remove this bump map is by applying morphological filters. These filters are applied on 

the binary or gray scale images to modify the shape while accounting for the morphology 

of the features. We set the filter characteristics empirically to minimally disturb the 

geometry of the leaflet surface. 

After removing the marker artifacts, we also applied a connected components filter 

to remove islands in the 3-D binary fields. These regions were in fact clouds of fog caused 

by humidifying the imaging chamber. We rectified the binary masks by applying connected 

a components filter, which works by clustering the voxels and then discarding the 

unwanted ones. We selected one of the voxels corresponding to the valve structure as a 

seed. Then, the voxels that were not connected to the selected seed were removed by the 

filter.  
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APPENDIX D - Superquadrics 

Superquadrics are useful shape primitives as they have both implicit and explicit 

representations. The dual representation of superquadric shapes arises from the fact that 

they are the spherical product of two 2D curves (Jaklic et al., 2013). The implicit function, 

which is often called the inside-outside function, segments the whole 3-D space into 2 

regions with respect to the superquadric surface: (1) inside where it’s negative, and (2) 

outside where it’s positive. It also provides a measure of radial distance that any point in 

the space has from the superquadric surface. Thus, the implicit form facilitates computing 

a superquadrics model of an input point cloud through minimizing the corresponding 

values of the implicit function. The explicit representation provides a parameterization for 

the superquadric surface and allows reconstructing the superquadric geometry effectively 

and efficiently. This form is in fact a conformal mapping from the 2D periodic domain 

onto the superquadrics surface. The implicit and explicit forms of the superquadric make 

them powerful shapes primitives and practical tools to define a basis for modeling non-

standard geometries.  

We used a reduced form of the superquadrics inside-outside function since the z-

axis has been fixed for all the input geometries in our framework. The valves are mounted 

on a rigid holder, which is then positioned in a cylindrical imaging chamber. Thus, all the 

input image-based geometries are registered to the same z-axis a priori. We enforced the 

superquadric model that we computed to be aligned with this global z-axis by allowing the 

orientation to change only around z-axis. Subsequently, we used a modified inside-outside 

function with 9 parameters in our studies. 
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SUPERQUADRIC FITTING 

The superquadrics inside-outside function provides an efficient way to estimate the 

superquadric parameters (Solina & Bajcsy, 1990). To fit a superquadrics model to an input 

geometry, we search for the set of parameters that defines the shape with the minimum 

distance from that geometry. This requires minimizing a measure of distance between the 

input and the model. In the least squares method, the L2 distance between the input and the 

model is used as a measure of deviation: 

 

Step 1 Make a guess for the for shape parameter set 

Step 2 Project the point cloud on the shape defined by the current parameter set 

Step 3 Evaluate the distance between the input point cloud and the one projected on the 

shape. 

Step 4 If it’s higher than an acceptable tolerance, update the guess; go to Step 2. 

 

However, in most shape fittings, the projection step in the approach presented 

above is very costly because it is an iterative procedure by itself. The superquadrics inside-

outside function, evaluated at a point, is correlated to the relative distance of that point and 

the superquadrics. Thus, this function provides a measure of the discrepancy between the 

shape of the superquadrics model and the input point cloud. Based on this fact, Soline and 

Bajcsy proposed an objective function to estimate the superquadrics parameter set (Solina 

& Bajcsy, 1990). They penalized the inside-outside function with size parameters to 

minimize for the dimensions while searching for the shape that follows the input geometry. 

However, their objective function is not entirely suitable for modeling the MV geometry, 

(Figure 43). Thus, we followed their approach and devised a new objective function that 

approximates the shape of MV. 
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Figure 43: The standard objective function used to fit superquadric models fails to fit an 

acceptable model to the MV geometry. This is due to the fact that this 

objective function finds the closest model to the input geometry with elliptical 

topology. The MV geometry, however, is analogous to an hourglass shape. 
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APPENDIX E – Non-uniform Fourier Transform 

There are a variety of NUFFT algorithms developed to perform Fourier transform 

on the non-evenly sampled functions (Dutt & Rokhlin, 1993), (Beylkin, 1995), (Nguyen & 

Liu, 1999) (Fessler & Sutton, 2003), (Potts, Steidl, & Tasche, 2001), (Feichtinger, Gr, & 

Strohmer, 1995). Dutt and Rokhlin (Dutt & Rokhlin, 1993) classified the NUFFT 

algorithms in 3 types based on the domain with non-equispaced values. The type 1 NUFFT 

evaluates the Fourier transform for the function values that are irregularly spaced to integral 

frequencies.  Conversely, the type 2 NUFFT computes the function values on an irregular 

grid from integral frequencies. Lastly, the types 3 is the transformation from irregular 

samples function values to non-integral frequencies. 

In our case, we wanted to evaluate the Fourier transform of fields defined on 

unstructured meshes to the domain of integer-valued frequencies. This is required to build 

a universal correspondence between the attribute fields that model the physical and 

structural properties of different MVs. Thus, our case is classified as a type 1 NUFFT 

problem. The majority of NUFFT approaches first reformulate the problem that a standard 

FFT computation becomes applicable (Fessler & Sutton, 2003). The appeal toward FFT is 

due to the algorithm’s exponential convergence rate and optimal computational 

complexity. To reform the problem for the FFT application, many techniques interpolate 

the function on a regular grid. However, the interpolation step introduces approximation 

errors, which need to be compensated for. 

One approach to cancel out the effects of interpolation is to perform NUFFT 

iteratively and converge to a spectrum that is not distorted by interpolation (Strohmer, 

1997). The underlying assumption in this type of analysis is that the function to reconstruct 

is band-limited. This type of technique oversamples the function values on a Cartesian grid 
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and then applies a standard FFT. It is expected that the spectrum be localized on a compact 

support since the function is band-limited. This then leads to removing the interpolation 

errors through spectrum filtering since they emerge as pollution in the spectral domain. 

However, filtering the spectrum to remove interpolation noise also distorts the original 

frequency content of the function. Therefore, this procedure is repeated iteratively to 

incrementally remove the interpolation noise and converge toward the actual frequency 

content of the function. 

Another approach to circumvent the interpolation artifacts is to apply interpolation 

kernels that can then be directly removed by convolution theorem (Greengard & Lee, 

2004). The discrete function values can be reformulated as a series of delta functions 

multiplied by the underlying function. In this representation, the delta functions perform 

the sampling of the original function at scattered locations. Then, this formulation can be 

convolved with a kernel to interpolate the function values on a regular oversampled grid. 

According to the convolution theorem, the spectrum of two signals convolved in the spatial 

domain is the multiplication of their spectrums. Thus, applying FFT on the oversampled 

function results in the original spectrum of the function multiplied by the kernel’s Fourier 

transform. The original function spectrum is then recovered by deconvolving the effect of 

the interpolation kernel.  
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