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Improved Inhalation Therapies of Brittle Powders 
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Supervisor: Robert O. Williams III 

 
Advancements in pulmonary drug delivery technologies have improved the use of 

dry powder inhalation therapy to treat respiratory and systemic diseases. Despite 

remarkable improvements in the development of dry powder inhaler devices (DPIs) and 

formulations in the last few years, an optimized DPI system has yet to be developed. In 

this work, we hypothesize that Thin Film Freezing (TFF) is a suitable technology to 

improve inhalation therapies to treat lung and systemic malignancies due to its ability to 

produce brittle powder with optimal aerodynamic properties. Also, we developed a 

performance verification test (PVT) for the Next Generation Cascade Impactor (NGI), 

which is one of the most important in vitro characterization methods to test inhalation. 

In the first study, we used TFF technology to produce amorphous and brittle 

particles of rapamycin, and compared the in vivo behavior by the pharmacokinetic 

profiles, to its crystalline counterpart when delivered to the lungs of rats via inhalation. It 

was found that TFF rapamycin presented higher in vivo systemic bioavailability than the 

crystalline formulation. Subsequently, we investigated the use of TFF technology to 

produce triple fixed dose therapy using formoterol fumarate, tiotropium bromide and 

budesonide as therapeutic drugs. We investigated applications of this technology to 
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powder properties and in vitro aerosol performance with respect to single and 

combination therapy. As a result, the brittle TFF powders presented superior properties 

than the physical mixture of micronized crystalline powders, such as excellent particle 

distribution homogeneity after in vitro aerosolization. Lastly, we developed a PVT for the 

NGI that may be applicable to other cascade impactors, by investigating the use of a 

standardized pressurized metered dose inhaler (pMDI) with the NGI. Two standardized 

formulations were developed. Formulations were analyzed for repeatability and 

robustness, and found not to demonstrate significant differences in plate deposition using 

a single NGI apparatus. Variable conditions were introduced to the NGI to mimic 

operator and equipment failure. Introduction of the variable conditions to the NGI was 

found to significantly adjust the deposition patterns of the standardized formulations, 

suggesting that their use as a PVT could be useful and that further investigation is 

warranted. 
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Chapter 1: Introduction 

Abstract 

The pulmonary route of administration is used to treat respiratory and systemic 

diseases and has gained increasing importance in the field of drug delivery due to its 

unique advantages including a larger surface area, avoidance of first pass metabolism, the 

potential for local and systemic administration. In light of some remarkable 

improvements in the development of dry powder inhaler (DPI) devices and formulations 

over the last few years, there continues to be a need for further optimized DPI 

systems. Recently, researchers have focused on finding ways to enhance dry powder 

inhalation therapy by improving the physicochemical characteristics of the powder 

formulation and the device performance. The aim of this manuscript is to review the most 

recent advances in dry powder inhaler technology. Accordingly, we provide a review of 

the most recent reported improvements in DPI design, mechanisms of powder dispersion, 

dry powder composition and delivery, and characterization methods for DPI products. 
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1.1 DRY POWDER INHALATION FOR PULMONARY DELIVERY: RECENT ADVANCES AND 
CONTINUING CHALLENGES 

Advancements in pulmonary drug delivery technologies have boosted the use of 

dry powder inhalation therapy to treat respiratory and systemic diseases. Despite 

remarkable improvements in the development of dry powder inhaler devices (DPIs) and 

formulations in the last few years, an optimized DPI (dry powder inhaler) system has yet 

to be developed (1). The efficacy of inhaled therapy using a dry powder is dependent on 

at least four variables: the physicochemical properties of the formulation components, the 

design of the device, the mechanism of powder dispersion and the patient inhalation 

maneuver (2)(3). In order to travel through the respiratory system and reach the lungs, 

powder particles administered by DPIs should have an aerodynamic diameter on the 

range of 1-5 µm which are termed respirable particles (4). However, at such a small size 

the particles exhibit high adhesive and cohesive interparticulate forces and tend to 

agglomerate. Hence, fluidization and dispersion of the micronized particles before they 

enter the respiratory airways is extremely important. The principal forces involved in 

powder dispersion from a DPI are frictional, drag, lift, and inertial forces (5). For 

decades, coarse carrier particles (e.g., lactose) have been blended with the micronized 

drug to reduce these interparticulate forces and enhance powder flowability (6). Different 

DPI designs and carrier physicochemical properties will influence the aerodynamic 

behavior of the formulation. Aerodynamic detachment forces (i.e., the interaction of the 

flow stream with the drug particles attached to the carrier’s surface) and mechanical 

detachment forces (i.e., the detachment due to collisions between the carrier-drug 

particles and the walls of the device) are some of the mechanisms responsible for the 

detachment of drugs from carrier particles (7). While bulk blended powder has shown 

improved flowability, interparticulate forces such as electrostatic, capillary, van der 
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Waals and mechanical interlocking still exist and influence powder aerosolization 

behavior (8)(9)(10).  

 Incomplete powder de-agglomeration upon inhalation results in poor generation 

of respirable particles and inhaled therapy performance (11). Therefore, optimization of 

the device-powder formulation system to generate respirable drug particles within an 

appropriate particle size range and consistent delivered dose is essential.  

Recently, researchers have focused on finding ways to enhance dry powder 

inhalation therapy by improving the physicochemical characteristics of the powder 

formulation and device performance. The aim of this paper is to review the most recent 

advances in dry powder inhaler technology. Accordingly, we provide a review of the 

most recent reported improvements in DPI device designs and mechanisms of powder 

dispersion, dry powder formulations and delivery, and characterization methods for DPI 

products. 

 

1.2.DRY POWDER INHALER DEVICES 

1.2.1. Overview 

Dry powder inhalation products are comprised of a drug formulation and a device. 

The generation of respirable aerosolized particles is dependent on the powder formulation 

properties and the characteristics of the inhaler device such as the metering dose system 

and the mechanism of powder dispersion during inhalation (12). DPIs are generally 

grouped into three categories based on the dose metering system: single-unit dose, multi-

unit dose and multi-dose reservoir. The single-unit dose inhaler is the most widely 

utilized type of DPI which requires the patient to load the device with a hard capsule 

containing micronized powder formulation prior to inhalation (13). The Spinhaler® and 
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Rotahaler® (GlaxoSmithKline, Research Triangle Park, North Carolina, USA) are two 

common examples of this dose metering system. The capsule must be ruptured before the 

inhalation maneuver and the patient is then required to clean the remains of the broken 

capsule shell prior to loading the next dose into the device. These single-unit dose 

devices are also available as disposable systems for patient convenience which are 

supplied pre-loaded with one dose of the appropriate formulation and can be discarded 

after use. Several disposable devices are under development or in clinical trials (e.g. 

CricketTM (Mannkind Corporation, Valencia, CA, USA), however only one inhaler 

device, TwinCaps® (Hovione, New Jersey, USA) has been approved in Japan, so far. The 

TwinCaps® provides not just one but two doses of drug formulation (14). The other two 

categories of devices are classified as multi-dose devices. The multi-unit dose devices are 

available with multiple pre-metered doses stored in a sealed protective packaging (e.g. 

blisters, disks, cartridges or dimpled tapes), and the multi-dose reservoir has the 

micronized powder formulation stored in a reservoir system. In this reservoir system, 

individual doses are metered and dispensed by a built in mechanism under gravity 

(13)(15). The Turbuhaler®, for example, is loaded with up to 200 doses each of which is 

metered by the patient when the grip part of the device is twisted(16). Several devices 

have been developed in an attempt to improve the precision of dose metering systems as 

well as increase formulation stability. For instance, the Clickhaler®, another type of 

multi-dose device, has the formulation stored in a reservoir, which rapidly fills the 

dimpled metering cones when the device is actuated. Moreover, different dimple sizes on 

the surface of the cone allows the patient to meter different dose sizes (17)(18). 

As mentioned previously, aerosolization of powder formulation within the DPI 

depends on the physicochemical properties of the powder, the design of the device and 

the mechanism of powder dispersion. According to the type of powder dispersion 
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mechanism, dry powder inhalers may be classified as passive or active devices. Passive 

devices rely solely on the energy generated by patient inspiratory flow rates to fluidize 

and disperse the powder. The advantage of using the breath-actuated devices is that the 

dose delivery no longer requires coordination with patient inhalation. However, these 

type of devices may present different airflow resistances requiring different levels of 

inspiratory effort from patients with respiratory diseases, such as asthma and chronic 

obstructive pulmonary disease (COPD) (19). Devices with low airflow resistance 

generate a low-pressure drop inside the device and may require less inspiratory effort. 

However, high airflow rates are usually necessary to efficiently de-agglomerate the 

powder. High resistance devices are more efficient for dispersion of dry powders, but 

also require more respiratory effort from the patient due to the high-pressure drop created 

inside the device and hence may not be suitable for patients with aggravated and severe 

pulmonary conditions (20)(21). Most of the novel DPI devices under development use 

the Air Classifier Technology (ACT) as a mechanism of powder dispersion(5). The high 

efficiency of this mechanism is based on the formation of a cyclone within the device. 

More specifically, a multi-channel classifier generates tangential airflow upon inhalation, 

which forms the cyclone within the cyclone chamber. Additionally, centrifugal energy 

delays the passage of large particles which increases the time for small particle 

detachment (22). The Novolizer® (Viatris, GmbH & Co. KG, Frankfurt, Germany) was 

recently reported to use the aforementioned ACT as its powder dispersion mechanism 

(23)(24). 

Active DPI devices, in most cases, possess an integrated power source dispersion 

unit to aerosolize the powder with compressed air. Thus, coordination between device 

actuation and patient breath is usually required. This system is suitable for children and 

patients in advanced disease states since device performance is less dependent on the 
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patient’s inspiratory capacity (25)(26). Active devices are usually more complex and 

sophisticated than passive devices. A recent development is the breath-activated 

AspirairTM (Vectura, Chippenham, Wiltshire, UK) active device, which utilizes 

compressed air as its energy source. The patient manually activates a low torque, 

corkscrew-type manual pump, which compresses the air immediately before the 

inhalation maneuver. When released inside the air chamber the air creates a vortex to 

disperse the powder formulation(27). Another example of an active device is the 

MicroDose inhaler (MicroDose Technologies, Inc., Monmouth Junction, NJ). Upon 

inhalation, the electronic device, which has a built-in sensor, detects the inspiratory 

airflow and automatically activates a piezo-electric vibrator. The piezo converts electrical 

energy into mechanical motion to de-aggregate the drug powder packaged in aluminum 

blisters. The piezo-electric vibrator creates air pressure jets, which withdraw the powder 

from the blister. The efficiency of the inhaler is not dependent on patient inhalation effort 

(28). While the active devices have been demonstrated to be very efficient to fluidize and 

disperse dry powder independently of the patient airflow rate, a significant challenge for 

the development of these devices is to produce a portable device with a built-in energy 

source at a low price Therefore, passive devices are still more popular than the active 

devices due to low costs and simplicity of use, despite the final performance being 

dependent on patient airflow rate and potential inconsistent dosing (29). 

 

1.2.2. Recent Innovations in Dry Powder Inhaler Technology 

While numerous dry powder inhaler devices have been developed and marketed, 

there is still a lag in creating a device that meets the requirements of an ideal DPI. 

Computational fluid dynamics (CFD) is a well-established tool that has been used by 
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researchers to predict and understand more about the impact of different properties of 

inhaler design and airflow on inhaler dispersion performance (30). CFD has demonstrated 

that small changes in inhaler design can cause a significant variation on DPI 

performance. Coates et.al. reported that increasing the airflow rate through the 

Aerohaler® device significantly enhances the powder dispersion mechanism by increasing 

air turbulence and particle-device collision velocities. However, a disadvantage of 

increasing the airflow and particle dispersion is the subsequent increase in particle 

deposition on the throat and decrease of drug particles delivered to the lungs (31).  

In a search for the ideal DPI technology, various devices are under development, 

undergoing clinical trials or have recently been marketed. There have been many 

innovations in the development of devices but unfortunately very limited information is 

provided or published. Some of these innovations are summarized below. 

Elkira/Bretaris® Genuair®. A next generation multidose reservoir device and 

breath actuated dry powder inhaler, has been modified and optimized from the 

Novolizer® inhaler. It was approved for marketing in Europe in 2012 by the European 

Medicines Agengy as Elkira/Bretaris® Genuair® and by the Food and Drug 

Administration in the United States as Tudorza Pressair™ for the delivery of aclidinium 

bromide. Genuair® (Laboratorios Almirall, SA, Barcelona, Spain) has a multidose 

cartridge loaded with 200 metered doses of the medication for one month of therapy 

therefore does not require refilling by the patient. It is simple to use and has a visual 

(green and red window) and acoustic (audible click) feedback mechanism to indicate 

successful inhalation. Upon inhalation, airflow enters the device and generates a cyclone 

inside the mouthpiece and cyclone unit under medium airflow resistance. The powder is 

dispersed into fine particles and delivered to the patient within the first 2 liters of 

inhalation at a wide range of airflow rates. Data from undergoing clinical trials have 
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show that the delivery of aclidinium bromide by Genuair® has been highly accepted by 

patients although a potential disadvantage of the inhaler is the moderate to low lung 

deposition of approximately 30% of the dose (32)(33)(34). 

NEXThaler®. The NEXTTM or NEXThaler® dry powder inhaler (Chiesi 

Pharmaceutici, Parma, Italy) is also a medium-resistance multi-dose device, which uses a 

cyclone mechanism for powder dispersion localized in the mouthpiece. The powdered 

formulation is stored in a reservoir with a metering dose opening at the bottom. The 

device automatically loads the dose when the cap is opened and reloads it when the 

device is closed. The NEXThaler® device contains a tangential air inlet connected to a 

vortex chamber that allows high air velocity and shear force generation within the device. 

Under a certain airflow rate, a breath-actuated mechanism activates the dosing group 

allowing the dose to be taken, and the dose counter to subtract only after an effective 

release of the therapeutic dose (29)(35).  The NEXThaler® was approved in Europe in 

2013 and is now undergoing phase 2 clinical trials in the United States testing a 

combination therapy of formoterol and beclometasone dipropionate for asthmatic 

patients.  

MedTone®. This is a compact and breath-powered device composed of a housing 

with an air inlet, a valve that controls the airflow, a mixing section where the single-use 

cartridges are loaded with the formulation to be inserted and a mouthpiece (36). A 

passive de-agglomeration mechanism disperses the powder. The air stream enters the 

device through two inlets, passing through the cartridge, forming a cyclonic flow, which 

picks up, fluidizes and de-agglomerates the medicament powder in the cartridge before 

delivery to the patient respiratory system. A disadvantage of the device is the need to 

unload and reload the same cartridge immediately after the use for the second inhalation 

maneuver (37). MedTone® (MannKind Corporation, Valencia, CA, USA) was developed 
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for use in combination with the AFREZZA® Inhalation Powder, an ultra rapid-acting 

Technosphere® insulin dry powder (described later in this chapter). The inhaler is 

undergoing phase 3 clinical trials in the United States for the treatment of type 1 and 2 

diabetes mellitus.  

3M Conix™. The new 3M Conix™ dry powder inhaler (3M Drug Delivery 

Systems, St. Paul, MN, USA) uses a reverse flow cyclone technology for efficient 

deagglomeration and aerosolization of the powder formulation. As the patient inhales, the 

airflow entering the device creates a high velocity vortex which reverses the airflow 

when it hits the bottom generating the energy required for deagglomeration of the 

micronized drug powder from the carrier through particle-particle and particle-wall 

collisions as well as particle shearing. The vortex de-aggregates the powder releasing the 

small drug particles and trapping the largest particles at the bottom of the cone avoiding 

oropharynx deposition. It is available as a disposable, reloadable and multidose design. 

3M Conix™ presented a higher level of fine particle fraction (FPF) albuterol sulphate 

when compared to the Accuhaler™ device (GlaxoSmthKline, Brentford, UK) (1)(38).  

3MTM Taper. Two novel technologies have been combined for the development 

of the 3MTM Taper DPI (3M Drug Delivery Systems, St. Paul, MN, USA). The excipient-

free powdered formulation is stored inside the dimples present on the microstructured 

carrier tape allowing delivery of up to 120 pre-metered doses. The number and volume of 

dimples existing in the tape length that are presented to the dosing zone determines the 

dose. The dimples are only filled with micronized drug and are held in place by cohesive 

forces and delivered at time of inhalation. An impactor is released upon inhalation that 

strikes the tape and releases the inhalation powder into the airstream undergoing 

deagglomeration due to the high airflow shear force. The device also has an audible and 

visual feedback mechanism to indicate correct usage (39)(40). Adamis Pharmaceutical 
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Corporation has recently acquired the license to 3MTM Taper DPI technology that is 

currently in the development phase.  

Breezhaler®. This device is a capsule based dry powder inhaler with low airflow 

resistance (0.07 cm H2O½/L/min) developed to deliver glycopyrronium bromide for the 

treatment of patients with COPD. It is a redesign of the Novartis Aerolizer® device, with 

similar characteristics and peak inspiratory flow rate. However, it requires less effort 

from the patient to load the device and pierce the capsule. Similar to the Genuair® device, 

Seebri Breezhaler® (Novartis Pharma AG, Basel, Switzerland) has an acoustic feedback 

mechanism (whirring sound) to indicate adequate inspiratory effort. Moreover, the use of 

transparent capsules allows the patient to visually check that the capsule has emptied 

(41)(42)(43). Breezhaler® was shown to have a higher overall preference by COPD 

patients when compared to the Handhaler® device (44). Breezhaler® was launched in the 

US under the brand name ArcaptaTM NeohalerTM, in Japan under the brand name Onbrez® 

Inhalation Capsules and it has recently been approved in Europe under the name Seebri® 

Breezhaler®. In 2013, the European and Japanese regulatory authorities approved the use 

of Ultibro® Breezhaler®, a fixed-dose combination of indacaterol and glycopyrronium to 

treat COPD patients. 

Cricket™ and Dreamboat™. MannKind Corporation has also developed two 

other high resistance dry powder inhaler devices to dispense powdered insulin that work 

in a similar way. When the patient inhales, Cricket™ (single use) and Dreamboat™ (re-

usable) inhalers form two airflow inlet streams that converge into one. The first stream 

fluidizes and carries the Technosphere® inhalation powder from the reservoir into the 

second by-pass inlet stream. At the intersection where the two streams meet each other, 

the turbulence and shear force is high enough to break up and disperse the particles for 

inhalation. Due to the high resistance design, both inhalers efficiently disperse the dry 
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powder formulations at low airflow rates. As mentioned previously, high resistance 

devices require enormous effort from the patient to inhale the powder (45)(46)(47)(48). 

Cricket™ is a single-use device, which is meant to be discarded after use by the patient. 

The devices are currently in phase 1 clinical trials. 

Swinghaler®. The Swinghaler® (PT. Otusuka Indonesia, Jakarta, Indonesia), 

another type of multiuse reservoir device, has recently been developed to facilitate a 

patient’s use during inhalation. The dose is metered by a “swing back system” that 

prevents double dosing. Further research is required to confirm the robustness of this type 

of mechanism as a means of drug delivery (49)(50).   

A novel active and multi-dose dry powder inhaler (DPI) was recently developed 

to deliver small doses of pure drug formulation. The device holds a multi-dose disk 

loaded with 12-64 metered doses that has been filled with the drug powder by a rotating 

fluidized bed powder dispensing device (51)(52). The disk is placed between the air 

tubule and compress chamber. The powder fluidizing mechanism is generated by two 

airflow designs generated from an exterior source of gas, which disperse the 

agglomerates of powder into fine particle fractions. The primary airflow creates a 

positive pressure inside the sealed chamber and passes through the drug pocket, carrying 

the powder along the air tubule. The second airflow creates additional shear flow above 

the drug pocket (53). In vivo studies have shown a high lung deposition of about 57% of 

the aerosolized dose. 

 

1.3.NEW DEVELOPMENTS IN DPI FORMULATIONS AND DELIVERY  

The efficacy of dry powder inhalation therapy is dependent not only on the design 

of the device, but also on a more efficient powder formulation with enhanced 



 12

aerosolization properties. Traditionally, most DPI formulations are either comprised of 

only micronized drug particles or a blend of drug and carrier particles prepared in dry 

powder form. As previously discussed, cohesion and adhesion interparticulate interaction 

forces play a significant role in the generation of the fine particle fraction, which is the 

fraction of the dose that is most likely delivered to the lungs with particle sizes between 1 

and 5 µm (4). Interparticulate interaction forces are directly influenced by particle size 

distribution, particle density, morphology, surface roughness, surface energy, carrier 

material, carrier flow, and the presence of fine particle excipients amongst other 

properties (54)(55). Therefore, any modification of the physicochemical and/or surface 

properties of powders can significantly affect drug dispersion and DPI performance, and 

consequently enhance or worsen therapeutic outcome. 

 

1.3.1. Particle surface modification 

New technologies to improve carrier particle flowability and detachment from the 

drug have been developed through the modification of particle size, shape and/or surface 

properties to increase particle respirable fraction. Pollen-shaped hydroxyapatite (HA) 

carrier particles were synthetized with geometric diameters ranging from 21.1 to 48.6 µm 

and effective densities ranging from 0.21 to 0.41 g/cm3. Carr’s compressibility index and 

angle of slide confirmed the better flowability of HA particles when compared to the 

conventional lactose carrier. The pollen-shaped surface of HA particles reduced the 

particle-particle, particle-surface interactions and aggregation that is usually seen with 

conventional lactose and increased the final FPF when compared to lactose (56)(57). 

Similarly, Shen et al. reported a new approach to fabricate inhalable spore-like particles. 

First, a high gravity controlled precipitation (HGCP) method was used to prepare hollow 
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spore-like nanoparticles. Then, a nanosuspension was prepared with these particles using 

insulin as a model drug, which was spray dried to generate particles with uniform size 

and controlled morphology. After aerosolization, the formulation presented higher FPF 

(80%) and smaller MMAD values at different dosages than Exubera® (33%)(58). The 

improved performance of this formulation may be directly related to the reduction of 

adhesive and cohesive forces and consequently, powder agglomeration. Mechanofusion 

or mechanical dry coating has been widely investigated for the surface modification of 

dry powders (59)(60). It has been reported that powders mechano-fused with magnesium 

stearate yield modified physicochemical properties that significantly improved powder 

aerosolization. Such improvement in aerosolization was related to the surface 

modification of the particles and reduction of powder intrinsic cohesion (61). Improving 

the formulation by means of using another coating technology has been reported. A 

carrier-free l-leucine coated micronized salbutamol sulphate powder formulation was 

prepared by physical vapour deposition (PVD) (62). The study reports that the FPF of 

coated particles resulted in 47% of the aerosolized dose, which is 3-4 times higher than 

other micronized particles using the same DPI device (Easyhaler®). Furthermore, the 

emitted dose and fine particle fraction decreased with increasing surface roughness (63). 

The use of magnesium stearate and l-leucine as coating materials has also improved the 

aerosolization performance of salbutamol sulfate from mixtures with polycaprolactone 

microspheres. When the microspheres were coated with salbutamol sulfate, the in vitro 

powder performance was very low with FPF 0%. On the other hand, when the 

microspheres were precoated with magnesium stearate and l-leucine, the FPF values 

increased to about 11%. The presence of both materials reduced the strong adhesion 

between drug and carrier( 64). 
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1.3.2. Particle Engineering Technology for Pulmonary Delivery 

Advances in the field of particle engineering technology have enabled the 

development of dry powder inhaler systems with high drug aerosolization efficiency and 

more accurate pulmonary dosing. Particle engineering has enabled the development of 

carrier-free powder formulations, the delivery of nanoparticles encapsulated into 

biodegradable carriers, fixed-dose combination dosing among others. The aerodynamic 

diameter (da) dictates how the aerosol particles will deposit in the respiratory system. The 

aerodynamic diameter is defined as the diameter of a sphere of unit density with 

equivalent terminal setting velocity, while still travelling in the air, as the particle in 

study, as shown in Equation 1 (65)(9): 

 

 

Where daer is the aerodynamic diameter, dg the geometric diameter, ρp the particle 

density, ρ0 the unit density (usually from water), X is the shape factor. Particles with 

aerodynamic diameter sizes between 1 and 5 µm are most likely able to deposit deep in 

the lungs (4). Researchers have used particle-engineering technologies to alter 

physicochemical properties of particles, such as reduction of particle size and/or density, 

modification of particle shape and surface characteristics, and creation of new 

polymorphism or amorphous forms in order to enhance particle aerodynamic properties 

increasing lung deposition and solubility.  

Milling is one of the oldest and most common particle processing techniques used 

in the pharmaceutical industry. Different processes may be used such as dried or wet 

pearl-ball milling, jet milling or high-pressure homogenization. Only the most recent 

Equation 1 
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advancements are reviewed in this chapter. The different milling processes will not be 

reviewed and the reader is referred to several articles (66)(67)(68). 

 

1.3.2.1. Spray drying  

Spray drying has been established as a standard technique to produce engineered 

dry powders. This technique has enabled the development of many types of particles and 

remains a well reported topic nowadays. In the spray drying process, a drug and excipient 

solution is sprayed through nozzles into a drying chamber where a hot air cyclone 

evaporates the solvent. The particles are carried out by the hot air and are collected in a 

cyclone vessel. Particle size and shape are determined by the formulation and process 

parameters such as the concentration of the feed solution and the size of the droplets, 

which is controlled by the atomization. Several atomizers are available for use with spray 

drying and the final choice depends on the desired particle properties. The most popular 

atomizers used by the industry are rotary atomizers, pressure nozzles, two-fluid nozzles 

and ultrasonic atomizers (69)(70). Folded shells and porous low-density particles are 

characteristics of powders produced by spray drying. The low-density characteristic 

allows the delivery of drug aerosol particles with large volumes, improved aerodynamic 

properties and enhanced lower respiratory tract deposition. The PulmoSpheres™ process 

produces particles that are formed through the atomization of a submicron oil-in-water 

emulsion stabilized by phospholipid, producing light porous particles with improved 

aerodynamic properties (71). In 2013, the US Food and Drug Administration (FDA) 

approved TOBI® Podhaler™ (Tobramycin Inhalation Powder or TIP) for the management 

of cystic fibrosis. Novartis TIP is prepared using the hollow PulmoSphere™ technology.  
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Recently, spray drying has been widely used for the pulmonary delivery of 

proteins such as insulin (72), peptides (73) and virus dry powder formulations. 

Bacteriophages, viruses that infect and kill bacteria, have successfully been produced by 

spray drying when used at low-temperature. Bacteriophages are spray dried with an 

inactive excipient such as lactose, trehalose or leucine that work as a bulk agent and 

protectant agent during the process (74). The spray dried phages exhibit enhanced 

aerosolization performance with minimal reduction in activity (75).  

 Spray dried polymeric microcarrier systems prepared with biodegradable and 

biocompatible polymers such as poly (DL-lactide-coglycolide acid) (PLGA) have 

enabled the development of several engineered particles loaded with drug micro and 

nanoparticles for lung delivery (76)(77). Spray drying has been shown to be a suitable 

process for processing nanosuspension of polymer-encapsulated nanoparticles such as 

small interfering RNA (siRNA), into a more stable dry powder formulation. The 

nanosuspension is spray dried with sugar excipients to enhance stability and aerodynamic 

properties (78)(79)(80).  

Spray drying is suitable to produce polymorphic powders with different surface 

structures. Aerosolization properties of a novel excipient-free dry powder formulation of 

rifampicin were drastically improved by the polymorphic transformation of its crystalline 

form I structure into a flake-like crystal hydrate. Rifampicin dihydrate was prepared by 

the recrystallization of rifampicin in an anhydrous ethanol solution followed by the spray 

drying technique. It was reported that after DPI aerosolization, the formulation exhibited 

a low MMAD value of 2.2 µm and an high FPF (68%) which was due to the decreased 

tendency of powder agglomeration of the thin flaky structures (81). New polymorphic 

and amorphous forms were also produced for glycine(82), mannitol (83)(84) and 

trehalose (85). 
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Spray drying technology has been explored to produce cocrystals. Cocrystal 

formation of two or more molecules might be an alternative to overcome poor 

physicochemical properties of molecules such as solubility and stability (86). Recently, 

cocrystals of theophylline and urea were prepared by spray drying techniques for 

inhalation delivery. The use of different process parameters produced highly crystalline 

cocrystals with different particle properties, such as size and surface energy (87)(88).  

 

1.3.2.2. Spray-freezing methods 

The pharmaceutical industry and academia have been investigating the use of 

spray freeze-drying technology (SFD) for over a decade now. In SFD an aqueous drug 

solution is sprayed into a cold vapor over a cryogenic liquid to form droplets. The 

droplets are then lyophilized generating nano- and micronized powder with good 

flowability. (89)(89). The time required for the droplets to freeze and the air-liquid 

interface formed on the surface of the droplets may result in broad particle size 

distribution and protein aggregation (90). To overcome this problem a new technology 

was developed named spray freezing in liquid (SFL). In this process, the solution is 

sprayed directly into liquid nitrogen by an insufflated nozzle at a faster speed compared 

to SFD. This process produces amorphous powder with a high surface area and low-

density exhibiting good flowability(91)(92). 

 Recently, the thermal ink-jet spray freeze-drying technique has also been studied 

for the preparation of engineered inhalable drug particles. This technique consists of the 

atomization of an aqueous drug solution by a modified printer (Hewlett-Packard) into 

liquid nitrogen followed by freeze-drying. Mueannoom et al. reported that porous 

particles could be attained when prepared from solutions of salbutamol sulphate with 



 18

concentrations up to 15% w/v after spray-freeze drying.  However, particles prepared 

from 5% w/v salbutamol solutions presented the best strength and aerodynamic 

properties. When compared with the commercial micronized formulation, which contains 

the drug blended with lactose, the spray-freeze dried formulation produced lower 

percentage FPF values and MMAD above 5 µm.(93) Spherical, highly porous excipient-

free particles were also a result of this technology(94). While this process seems to be 

suitable to prepare inhalable particles, further optimization studies are necessary to 

enhance powder dispersion and aerodynamic properties. 

 

1.3.2.3. Thin film Freezing 

The thin film freezing (TFF) technique has been used to enhance drug powder 

properties and make it suitable for pulmonary delivery. In this process, a drug solution 

containing a stabilizer excipient with high glass transition temperature is rapidly frozen 

onto a rotating cryogenic substract in a drop wise manner. The frozen disks are collected 

and freeze dried for solvent removal (95). The engineered particles generated from this 

process form a low density brittle matrix of powder that are easily dispersed when 

aerosolized from a DPI device presenting great aerodynamic properties (96). The quench 

cooling process avoids nucleation and crystallization and usually generates amorphous 

particles. This technology may be an alternative to preparing formulations using 

thermally labile and poorly water-soluble actives. Recently, Beinborn and coworkers 

reported that particles prepared from a voriconazole solution without the stabilizing 

excipients using this technique were microstructures and presented crystalline low-

density properties. On the other hand, powder prepared from a drug solution with 

stabilizing excipients resulted in nanostructured and amorphous low-density aggregate 



 19

particles (97). Additional in vivo studies in mice showed that the microstructure 

crystalline formulation presented a better aerodynamic performance than the 

nanostructured amorphous formulation, which had the highest lung deposition and 

slowest dissolution rate.(98)  

 

1.3.2.4. Sono-crystallization 

In this procedure, ultrasound waves are applied during the anti-solvent 

crystallization process of the drug solution to control the precipitation. The ultrasound 

induces nucleation and crystallization increasing reproducibility and particle size 

uniformity(99). Process variables such as high sonication amplitude, time, concentration 

and temperature influenced particle size distribution. Fine elongated crystal-shaped 

salbutamol sulphate particles were successfully prepared by sonocrystallization(100). The 

powder formulation prepared with these fine elongated crystal particles showed favored 

aerosolization performance when compared to the spray dried formulation and 

micronized formulation (101).  

 

1.3.2.5. Fixed-Dose Drug Combination  

Combination therapy has been used for many years for the management of COPD 

patients. The Global Initiative for chronic obstructive lung disease recommends the use 

of a combination of bronchodilators with different mechanisms and duration of action 

therapy to increase the degree of bronchodilation while decreasing side effects. The main 

objective is to improve quality of life by preventing disease progression, exacerbation 

and providing symptomatic relieve (102). The first dual combination therapy comprising 

an inhaled corticosteroid (ICS) and a long-acting beta agonist (LABA) together in one 
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inhaler was marketed a decade ago by GlaxosmithKline as Seretide/Advair Diskus® 

(103). Advair containing fluticasone propionate (ICS) with salmeterol xinafoate (LABA) 

proved more effective in reducing the effects of asthma and COPD when used in 

combination than when used individually(104). Additionally, it has been hypothesized 

that the success of Advair can be attributed to the synergistic action of fluticasone and 

sameterol, when both drugs co-deposit at the target cells (105). When dual therapy is not 

enough to control exacerbation and breathlessness, the use of a third component such as a 

long acting muscarinic antagonist is advised (103)(106).  

Formulations of fixed-dose drug combinations must ensure powder homogeneity 

and delivery of a uniform dose to the patients particularly when the ratio of each drug 

present in the formulation significantly differs. In an attempt to reach these requirements 

and achieve co-deposition of drugs in the lungs, particle engineering has been used in 

place of a simple blending of micronized drugs with coarse carrier particles. Pearl 

Therapeutics (California, US) has used spray-drying process to prepare a triple fixed-dose 

combination formulation. First, an emulsion of DSPC (1,2-distearoyl-sn-glycero-3-

phosphocholine) and anhydrous calcium chloride are spray dried to form porous 

microparticles. Subsequently, the porous particles and micronized glycopyrrolate, 

formoterol fumarate and mometasone furoate were co-suspended in 1,1,1,2-

tetrafluorothane (HFA 134a) propellant. The drug microparticles irreversibly adhere to 

the porous particle surfaces forming a stable suspension with equivalency in dose 

delivered for each drug (107). Another attempt to prepare a homogeneous formulation of 

a triple fixed-dose combination was reported by Price et al. The solution atomization and 

crystallization method (SAX™) is a sonocrystallization method that involves the 

formation of drug concentrated droplets followed by treatment with ultrasound waves to 

create cavitation bubbles for fast nucleation and crystallization. This process produced a 
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powder formulation with good dose delivery homogeneity and reasonable aerodynamic 

properties (108).  

 

1.3.3. Nanoparticles and Biodegradable Polymeric Nanocarriers 

Nanoparticles for pulmonary delivery have been extensively investigated. The use 

of nanoparticles may enhance lung deposition of drugs, increase drug dissolution velocity 

due to the decrease of particle size, as described by Noyes-Whitney equation. Moreover, 

pulmonary epithelial cell internalization of nanoparticles of less than 0.5 ȝm is at least 

10-times more than particles in the micron size range between 1 and 3 ȝm(109). 

Additionally, nanoparticle systems may prolong drug release, enable cell specific targeted 

drug delivery or modified biological distribution of drugs(110). An efficient 

nanoparticulate drug delivery system should ensure high drug loading capacity in order to 

reduce the quantity of polymer load required for administration. However, lung delivery 

of nanoparticles is unviable due to the high particle-particle interactions and low lung 

deposition, a consequence of the low-inertia of the particles. Thus, to improve pulmonary 

deposition, nanoparticles are, in most cases, encapsulated in different excipients. Several 

technologies have been used to produce nanoparticles for pulmonary delivery, e.g. wet 

milling(111), spray drying(77), double emulsion followed by spray drying(112), 

nanoparticle flocculation(113), supercritical fluid extraction(114) and ionotropic 

generation followed by spray drying(115).  

In order to increase therapeutic potency of salbutamol sulphate, a nanoparticle 

formulation was prepared using a liquid anti-solvent method followed by spray drying 

and blending with a lactose carrier. In vitro tests have shown a 13.9% increase in 

generation of respirable fraction of the nano-formulation when compared to the 
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micronized salbutamol blend formulation. In vivo studies in healthy human volunteers 

also reported enhanced total lung deposition by about 2-3 fold and lower oropharyngeal 

depositions (25.3 ± 4.5%) with nano-salbutamol formulation compared to the micronized 

formulation (58.4 ± 6.1%). confirming its suitability for inhalation delivery.(116)  

Biodegradable polymeric nanocarriers prolong the retention time of drugs in the 

lungs and may reduce alveolar macrophage uptake.(117) Several polymers have been 

utilized for the development of pulmonary formulations. The polymers must be 

biodegradable and biocompatible to ensure patient safety and minimal toxicity(118). 

Poly(lactic-co-glycolic acid) (PLGA) has been extensively investigated as a nanocarrier 

for drug delivery systems intended for oral and intravenous administration(119)(120). 

Studies suggest that PLGA is safe for inhalation therapy(121). For example, Dailey et al. 

suggest that, at the same particle size, biodegradable PLGA nanocarriers may produce 

less inflammatory response in vivo than non-biodegradable polystyrene particles. 

However, the use of PLGA may not be recommended for therapies that require frequent 

dosing due to the slow rate of biodegradation (weeks to months) and the high potential 

for lung accumulation(117).  

 

1.3.4. Controlled Release of Drugs for Lung Delivery 

Dry powder formulations with controlled release profiles would allow for once 

daily delivery of drugs and greatly improve patient compliance. The development of a 

drug formulation with controlled release is difficult due to the efficient pulmonary 

clearance pathways, such as mucociliary and macrophage clearance, rapid absorption into 

the systemic circulation and safety of slow release excipients when delivered to the 

lungs(2). Therefore, an effective controlled release pulmonary drug delivery system has 
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yet to be developed. This field has been explored mainly for the delivery of antibiotics 

and insulin formulations. Nanoparticles have also been investigated for the sustained 

delivery of antibiotics to the lungs. The local treatment of pulmonary infections using 

inhaled antibiotics is highly promising once the infection is located in the endobronchial 

space(122). The efficacy of the treatment is dependent on drug targeting to the site of 

infection and on the concentration of drug deposited in the lungs. The high dose of 

antibiotics necessary to treat lung infections and kill the bacteria makes lung delivery of 

antibiotics more suitable than oral or intravenous delivery resulting in reduced side 

effects(122).  

In order to prolong treatment activity, the use of polymeric materials such as 

(D,L)-poly(lactic glycolic acid) (PLGA), chitosan, poly(ethylene glycol) (PEGs)  and 

different type of particles such as liposomes and small crystalline particles have been 

investigated(123). Dry powder rifampicin porous nanoparticle-aggregate particles 

(PNAP) were prepared by encapsulating rifampicin in PLGA nanoparticles using a 

solvent evaporation technique followed by spray drying.  In vitro and in vivo data showed 

an initial burst in release of rifampicin in the first minutes followed by the release of the 

remaining drug in the next six to eight hours(124). Using an adaptation of spray drying, 

biodegradable poly(D,L-lactide-co-glycolide (PLGA) nano-spray dried particles were 

prepared and successfully achieved drug release of 8 hours(77). The incoming liquid feed 

is atomized by a vibrating-mesh actuated by a piezoelectric element into a drying 

chamber. The generated nano-sized particles are collected by an electrostatic particle 

collector due to the highly charged characteristics(125).This new spray-drying 

technology generates homogeneous solid nanoparticles with high formulation yields. 

Recently, a dry powder formulation using PLGA nanoparticles for tobramycin inhalation 

was investigated. Tobramycin was embedded in PLGA nanoparticles by a modified 
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emulsion/solvent diffusion technique. The tobramycin PLGA nanoparticles were then 

embedded in lactose microcarrier by spray drying improving powder flow. Afterwards, 

hydrophilic polymers, e.g. alginate and chitosan were added to the nanoparticles 

enhancing drug entrapment within nanoparticles with release up to a month and 

improving size and surface properties of final particles, respectively(76). Voriconazole-

containing PLGA porous nanoparticles (VNPs) were prepared using a multiple-

emulsification technique. The porous particles contained 30% (w/w) drug loading, 

enhanced aerodynamic properties compared to the non-porous particles. When 

administered to rodents, 20% of porous VNPs are released in the initial 2 hours by 

controlled release for 15 days(126). As a side note, the use of inhaled mannitol has been 

investigated as an excipient in co-spray-dried formulations with antibiotics. Mannitol 

may increase the osmotic pressure of the lung fluids, reducing mucous viscosity and 

increasing mucus clearance of patients with pulmonary infection.(127) Moreover, 

combination of co-spray dried antibiotics formulations have shown increased therapeutic 

effects and stability compared to single spray dried formulations.(128)  

Swellable microparticles used as drug carriers for controlled pulmonary delivery 

have also been reported recently(129). Smyth et al. developed a novel biodegradable 

carrier for pulmonary sustained drug delivery. Poly(ethylene glycol) grafted onto N-

phthaloyl chitosan (PEG-g-NPHCs) was synthesized and self-assembled into 

nanoparticles and encapsulated in swellable sodium alginate hydrogel microspheres via 

spray drying and ionotropic crosslinking in an aqueous solution. In vitro studies showed 

that the prepared microspheres had aerodynamic diameters between 1.02 and 2.63 µm 

and an enhanced FPF of 31.52%. Additionally, an in vitro sustained release profile was 

confirmed by the microparticle swelling that started after less than 2 minutes and 

enzymatic degradation that occurred within the first 2 hours(115). To enhance 
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aerodynamic properties and control drug release, highly porous large PLGA 

microparticles was developed. PLGA microparticles were produced by a double-

emulsion method and ammonium bicarbonate, an effervescent pore forming agent, and 

added to the internal aqueous phase. Ammonium bicarbonate decomposes into ammonia 

and carbon dioxide creating the porous structures in the microparticles. The large porous 

microparticles (10 – 20 ȝm in diameter) presented high encapsulation efficiency of 

doxorubicin (~100%), good aerodynamic properties with FPF of ~ 32% and ability to 

avoid phagocytosis by macrophages(130).  

Even though the development of a sustained drug release profile has been 

successfully reported, further studies are necessary to demonstrate the drug release profile 

in vivo and to evaluate the biologic compatibility of the new delivery system.  

 

1.3.5. Macromolecules for Pulmonary Delivery 

Pulmonary delivery of dry powder formulations to treat local and systemic 

diseases of patients is convenient since invasive procedures and supervision by a health 

provider are not required. Pulmonary delivery may be a good alternative as a non-

invasive route of administration of peptides and proteins, due to their vulnerability to 

intestinal enzymes, first pass metabolism and poor membrane permeability(131). The 

biologic activity of a protein is highly dependent on its secondary, tertiary and quaternary 

structures, which are held together by weak physical interactions such as electrostatic and 

Van der Waals forces. Proteins may easily undergo conformational changes and lose 

biological activity. Therefore, the formulation of proteins for therapeutic use with good 

physical and chemical stability may be challenging. Exubera® (Pfizer, New York, 

NY/Nektar Therapeutics, San Carlos, CA) was the first dry powder inhaled insulin 
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product approved by the Food and Drug Administration (FDA) in 2006. However, one 

year later (2007), the product was phased out due to low acceptance by patients and 

health care providers, and a reported increase incidence of lung cancer in ex-smoker 

patients(26). AFREZZA® (MannKind Corporation, Valencia, CA, USA), currently under 

FDA review for approval, is a drug-device product consisting of pre-metered ultra rapid 

human insulin that will be used as an inhalation treatment for diabetes mellitus type 1 and 

type 2. (132) AFREZZA® uses Technosphere® technology to deliver insulin as an 

inhalation powder. Technosphere® is a drug carrier product formed by fumaryl 

diketopiperazine (FDKP), which can self-assemble into microparticles with size 

diameters of 2 to 5 µm and dried by lyophilization. The porous microparticles formed 

have large surface areas in which peptides and proteins can be later adsorbed to. The 

formulation was prepared to be delivered using the MedTone£ DPI (MannKind 

Corporation).(45) 

Al Qadi et al. developed a microencapsulated insulin-loaded chitosan 

nanoparticles by ionotropic gelation for lung delivery. The nanoparticles were co-spray 

dried afterwards with mannitol to enhance aerodynamic properties. In vivo studies in rats 

and the monitoring of plasmatic glucose levels after dosing have shown that 

microencapsulated insulin-loaded chitosan nanoparticles induced a more pronounced and 

prolonged hypoglycemic effect compared to the controls(72). Spray drying and spray 

freeze-drying are suitable processes to prepare dried protein formulations. However, in 

both processes, the protein formulations are subject to cold or hot shear stresses, which 

may degrade the product. Recently, enhanced stability of protein formulations when glass 

forming agents, such as sugars, are included has been reported.(133)  

Insulin dry powder formulation has also been developed as large porous PLGA 

particles, loaded with insulin, and prepared by a double emulsion technique using 
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hydroxypropyl-ȕ-cyclodextrin (HPȕCD). HPȕCD was used as an osmotic agent to create 

an osmotic pressure between the internal and the external aqueous phases of the 

emulsion, which does not modify protein integrity(134). The large porous particles 

successfully presented good aerodynamic properties and prolonged hypoglycemic 

effect(135). 

Dry powder pulmonary vaccine delivery has also gained attention lately. 

However, more studies are required showing formulation improvements, clinical efficacy 

and safety before the first formulation gets approved and becomes commercially 

available on the market(136). Recent studies have shown some promising results in this 

field. ISCOMATRIXTM, a saponin-based adjuvant, has been successfully used for 

pulmonary delivery.(137)(138) The deep lung administration of the vaccine formulation 

was able to induce both a mucosal and systemic immune response.(139) Antigens, such 

as, polysaccharides, proteins and peptides are usually unstable in liquid formulations and 

achieve low absorption and uptake across epithelial barriers. Therefore, antigens and 

proteins should be formulated with excipients that protect them from degradation and 

enhance absorption rate. A protein formulation of spray-dried IgG1 using mannitol as the 

stabilizer agent achieved high levels of stability. Additionally, a 20% concentration of 

mannitol allowed for the best stabilizing capability. The study also reported that it was 

necessary to reduce the solids content of the formulation to 2.5% to improve aerodynamic 

properties.(140) Chitosan (a cationic polysaccharide) has also been shown to exhibit 

absorption enhancement and immunoadjuvant properties when formulated with antigens, 

peptides and proteins(141). Calcitonin has been formulated for pulmonary delivery by an 

ionic gelation technique with a derivative of glycol chitosan named glycol chitosan 

thioglycolic acid (GCS-TGA). The calcitonin-loaded GCS-TGA demonstrated high 

permeation characteristics and a prolonged and pronounced hypocalcemic effect(142). 



 28

Small interfering RNAs (siRNAs) are an efficient therapy against viral infections 

and respiratory disorders, such as cystic fibrosis and respiratory syncytial virus. Because 

siRNAs are quickly degraded by nucleases, local administration via pulmonary delivery 

may be suitable. Therefore, formulations for lung delivery should protect siRNAs from 

degradation by nucleases, enhance intracellular uptake, prolong local deposition by 

avoidance of macrophage clearance and present non-toxicity (143). siRNA has been 

successfully formulated with nanocarriers using chitosan(144), oligofectamine (145), and 

PEGylated polyethylenimine (PEG-PEI)(146) for pulmonary and intranasal delivery. In 

order to reach the lungs, siRNA was loaded into PLGA nanoparticles using a spray 

drying process. To enhance aerosolization properties, the nanoparticles were further 

dispersed in different sugar excipients like trehalose, lactose and mannitol. The 

optimization of the spray drying process generated microparticles with up to 50% (w/w) 

nanoparticle inclusion with suitable aerodynamic properties and minimal degradation of 

the siRNA(78). 

 

1.4.CHARACTERIZATION METHODS OF DRY POWDER INHALER FORMULATIONS 

The United State Pharmacopeia (USP) General Chapter <601> Aerosols, Nasal 

Sprays, Metered-Dose Inhalers, and Dry Powder Inhalers and the United States Food and 

Drug Administration draft guidance – Metered Dose Inhaler (MDI) and Dry Powder 

Inhaler (DPI) Drug Products require dry powder inhalers to meet specific standard test 

methods: 

 

• Delivered-Dose Uniformity 

• Aerodynamic Size Distribution 
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Delivered-Dose Uniformity: The USP describes standard test methods and 

apparatus specifications, which should be used to determine the values for both methods 

(147)(148). The first test determines the uniformity of the drug delivered per dose. At 

least 9 out of the 10 actuated doses should fall between 75% to 125% of the specific 

targetted dose. The USP apparatus is used for testing at an airflow rate, which will 

generate a pressure drop inside the device of 4 kPa. The test flow duration, in seconds, is 

determined by: 

     T = 240/Qout 

where Qout is the volume of air passing through the air flowmeter. The test should 

be performed for sufficient time so that 4 liters of air are withdrawn through the device at 

the test flow rate Qout. Dose consistency with low variability rates should be achieved 

besides variation of patient’s inspiratory flow rate (149). 

Aerodynamic Particle Size Distribution: Particle size distribution is one of the 

most important pharmaceutical characteristics of DPIs. More specifically, the 

aerodynamic particle size distribution (APSD) of the aerosol leaving the inhaler is used to 

determine its performance. The USP recommends the use of a cascade impactor (CI) to 

assess the APSD of the emitted dose of inhalation formulations. The CI fractionates and 

collects drug particles by aerodynamic diameter through a series of collection plates 

(stages) enabling the formulator to measure the aerodynamic particle size distribution of 

the drug and to quantify the mass of drug deposited in each stage (147). The USP 

describes several types of apparatus used to measure APSD for inhalation aerosols, 

including multi-stage liquid impinge (MSLI), Anderson cascade impactor and the most 

recently introduced, next generation cascade impactor (NGI). Each has its own design 

specifications and different nominal stage cut-off diameters and therefore, APSD data 
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from different impactors should not be compared (150). Aerodynamic particle size 

distribution and the mass balance (drug deposited throughout the apparatus, inhaler and 

accessories) should be reported. Moreover, when a log-normal distribution is obtained, 

the mass median aerodynamic diameter (MMAD) and the geometric standard deviation 

(GSD) should be determined (147). Many factors may affect accuracy and robustness of 

the cascade impaction measurement including particle bounce, re-entrainment and wall 

losses (151). The use of a greasy material to coat the collection plates has been suggested 

to reduce variability of cascade impactor measurements (152). 

The laser diffraction technique has been widely used for the measuring, at real 

time, of particle size distribution aerosolized from DPI. The test is relatively easy to 

perform and can quickly generate and process the data results (153). However, the 

technique measures the geometric instead of aerodynamic size of the particles and the 

effect of particle non-sphericity is not taken into consideration (154). Many studies have 

compared the laser diffraction measurements of inhalation formulations with the data 

obtained from cascade impactors (155). Overall, the studies report that laser diffraction is 

a reliable method to use for studying particle size distribution of dry powder aerosol 

formulations (156). 

Since efficient dry powder inhalation therapy depends on both device and 

formulation aerosolization ability, complete knowledge and understanding of the 

physicochemical properties of the particles and aerodynamic behavior are essential for 

the development of an ideal DPI formulation (157).  

Scanning Electron Microscopy: Microscopic evaluation of powders is 

commonly used to characterize particle morphology, size and shape of DPI formulations. 

In addition, it can also be used to detect the presence of large particles and agglomerates 

of drug and carriers due to its enhanced resolution (158). Many studies have reported the 
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use of Scanning Electron Microscopy (SEM) technique to investigate the properties of 

engineered particles produced by a variety of techniques such as spray-drying (159) and 

spray-freeze drying (160). Characterization of lactose surface roughness, morphology and 

size have also been extensively studied (161)(162)(163). 

Atomic Force Microscopy (AFM): AFM is a useful tool for the investigation of 

the adhesive properties of dry powder formulations using pico-newton resolution, which 

measures interactions between particles in a variety of controlled environmental 

conditions (164). It provides information on surface reactivity, surface energy and on 

interaction forces involved in binary drug systems such as carriers and drugs used in the 

process of DPI development (165)(166). 

Inverse Gas Chromatography (IGC): This technique is useful for the 

investigation of particle surface energy and the adhesive properties between dry powder 

particles. In this method, inert polar and nonpolar gases are eluted in a constant flow 

through a column packed with the solid analyte. Interactions between the gaseous probe 

molecules and the stationary phase determines the retention volume, which is used to 

determine the free energy of adsorption and other thermodynamic surface parameters (8). 

IGC analysis can be performed under different environmental conditions and do not 

require pre-treatment of the particles, which make it a suitable method for powder surface 

characterization (167)(168)(169). Accordingly, specific surface areas of carrier and drug 

particles may be determined via nitrogen adsorption using the Brunauer, Emmett, and 

Teller (BET) gas adsorption method (60)(7). 

Dissolution Method: There is no standardized test method to characterize the 

dissolution properties of the emitted dose of inhalation formulations. Although a few 

dissolution methods have been developed in the last decade, none have yet been 

approved. Dry powder formulation has been added directly to an apparatus II dissolution 
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tester (paddle method) as reported by Asada et al (170). In another study, the powdered 

formulation was wrapped up by glass fiber filters and placed in a basket dissolution 

apparatus to prevent powder from escaping to the medium (171). Recently, Yoen-Ju et al. 

developed a membrane-containing cassette that is connected to the collection plates of the 

NGI. After aerosolization of the formulation in the cascade impactor, a polycarbonate 

membrane is placed on the top of the cassettes which is then placed in the dissolution 

vessels of a commercially available dissolution apparatus containing 100 mL of 

simulated lung fluid (SLF) and modified simulated lung fluid (mSLF) (172). 

 

1.5.CONCLUSION 

Recent advancements in DPI systems have significantly contributed to the 

improvement of DPI therapy efficacy by enhancing formulation aerosolization and drug 

bioavailability. Additionally, DPIs have been shown to be an excellent system to deliver 

drugs such as antibiotics. Particle engineering technologies have played an important role 

in the development of optimized powder formulations by enhancing stability properties. 

Different techniques have also shown to enhance particle physicochemical properties and 

thus, formulation dispersion. Moreover, engineered particle formulations usually require 

reduced amounts of excipient/carriers that may induce adverse events. Most of the new 

DPI technologies that are commercially approved or are under investigation are passive 

devices even though extensive research still continues for active device development. 

Although several novel DPI-formulation systems have been recently approved or are 

under clinical trial investigations, more improvements are still required in order to 

increase patient compliance and therapy efficiency as well as reduce adverse therapy 

events and production costs.  
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Chapter 2: Research Outline 

 

2.1.OVERALL OBJECTIVES 

The primary objective of the work presented in this dissertation was to investigate 

the use of a novel technology named Thin Film Freezing (TFF) to produce dry powder 

formulation with enhanced characteristics for inhalation therapy. The characteristics of 

the brittle dry powder produced by TFF were investigated and its suitability to be 

delivered to the lungs. Moreover, it was developed a performance verification test (PVT) 

for the Next Generation Cascade Impactor (NGI), which is one of the most important in 

vitro characterization methods to test inhalation products. 

 

2.2.SUPPORTING OBJECTIVES 

 

2.2.1. Characterization and Pharmacokinetics Comparison Analysis of Crystalline 
versus Amorphous Rapamycin Dry Powder via Pulmonary Administration in 
Rats 

Rapamycin (Sirolimus, RAPA) is a carboxylic lactone-lactam macrolide 

antibiotic with antifungal activity and great immunosuppressive and antitumor properties. 

Numerous noted side effects, such as nephrotoxicity, eyelid edema and hyperlipedemia, 

have impeded its use in treatment for a prolonged time. Recently, RAPA has been 

investigated for treating women diagnosed with lymphangioleiomyomatosis (LAM), a 

progressive, cystic lung disease associated with inappropriate activation of mammalian 

target of rapamycin (mTOR) signaling, which regulates cellular growth and 

lymphangiogenesis. TFF technology was used to produce amorphous and brittle particles 
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of rapamycin for inhalation therapy. The powder formulation was prepared using lactose 

as a stabilizing agent for the unstable amorphous form of rapamycin. It is known that 

polymorphic and amorphous forms of poorly water-soluble drugs have been developed to 

enhance local and/or systemic bioavailability when delivered via pulmonary route. Also, 

a crystalline counterpart formulation of rapamycin was prepared by wet ball milling using 

coarse lactose as a carrier and bulk agent. The goal of this investigation, presented in 

Chapter 3, was to assess and compare the in vivo behavior and pharmacokinetic profiles 

of crystalline and amorphous rapamycin when delivered to the lungs of rats via 

inhalation. An estimated dose at which mice were to be exposed to was calculated for 

each formulation to be delivered. 

 

2.2.2. Inhaled Therapies of Fixed-dose Combinations Prepared by Thin Film 
Freezing 

The use of a combination of bronchodilators with different mechanisms and 

durations of action may increase the degree of bronchodilation in a patient with chronic 

obstructive pulmonary disease (COPD) whilst decreasing side effects experienced. 

Furthermore, concentrating the use of multiple medicines in one inhaler may improve 

patient compliance. When exacerbation or breathlessness persists in patients taking long-

acting ȕ2-agonists (LABA) and inhaled corticosteroids (ICS) dual combination, the use 

of a triple inhalation therapy of LABA, ICS and long-acting muscarinic antagonist 

(LAMA) would be advised. It has also been hypothesized that the success of fixed combo 

formulations can be attributed to the synergistic action of the drugs when co-deposited at 

the target cells. 

The aim of this study was to investigate the use of TFF technology to produce 

triple fixed dose therapy using formoterol fumarate (LABA), tiotropium bromide 
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(LAMA) and budesonide (ICS) as therapeutic drugs. Thin Film Freezing (TFF) has 

shown to be a suitable particle engineering method to produce brittle powder matrices for 

pulmonary delivery. The rapid freezing of drug solution onto a cryogenic surface 

prevents segregation and heterogeneity of the solutes. We investigated applications of 

this technology to powder properties and in vitro aerosol performance with respect to 

single and combination therapy. The aerosol performance of TFF powder combination 

was compared to the physical mixture of micronized crystalline powders prepared using 

jet milling process. It is known that one of most challenges in formulating a fixed dose 

combination lies in the ability to achieve dose uniformity and co-deposition in a powder 

blend of two or more actives with coarse carrier particles. Therefore particle engineering 

may be a good alternative to produce a fixed dose therapy in powder form where all 

drugs are present within a single particle, resulting in improved content uniformity, co-

deposition and co-location of drugs at the target of action.  

 

2.2.3. Development of a Verification Performance Test for Cascade Impactor  

Cascade impactors (CIs) are used as the standard test method for assessing the 

performance of therapeutic aerosols. It is widely known that variation in the cascade 

impactor data can occur over time, due to improper cleaning resulting in erosion, 

corrosion and/or occlusion of the nozzles or even a poorly implemented standard 

operational procedure (SOP). As such the impactor manufacturers and the United States 

Pharmacopeia (USP) recommend that routine mensuration of the test apparatus should be 

implemented. In most cases, the apparatus is sent back to the manufacture for cleaning 

and mensuration. The goal of this investigation was to develop a standard performance 

verification test (PVT) could be used in house to provide routine validation of impactor 
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apparatus. We investigated the use of a standardized pressurized metered dose inhaler 

(pMDI) with the NGI. Two standardized formulations were developed. Formulations 

were analyzed for repeatability and robustness. Variable conditions were introduced to 

the NGI to mimic operator and equipment failure. 
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Chapter 3: Characterization and pharmacokinetics comparison analysis 
of crystalline versus amorphous rapamycin dry powder via pulmonary 

administration in rats 

 
Abstract 

The pharmacokinetics of inhaled rapamycin (RAPA) is compared for amorphous 

versus crystalline dry powder formulations. The amorphous formulation of RAPA and 

lactose (RapaLac) was prepared by thin film freezing (TFF) using lactose as the 

stabilizing agent in the weight ratio 1:1. The crystalline formulation was prepared by wet 

ball milling RAPA and lactose and posteriorly blending the mixture with coarse lactose 

(micronized RAPA/micronized lactose/coarse lactose = 0.5:0.5:19). While both powders 

presented good aerosolization performance for lung delivery, TFF formulation exhibited 

better in vitro aerodynamic properties than the crystalline physical mixture. Single-dose 

24 hours pharmacokinetic studies were conducted in Sprague-Dawley rats following 

inhalation of the aerosol mist in a nose-only inhalation exposure system. Lung deposition 

was higher for the crystalline group than for the TFF group. Despite higher pulmonary 

levels of drug that were found for the crystalline group, the systemic circulation (AUC0-

24) was higher for the amorphous group (23 ng·h/mL) than for crystalline group (16.0 

ng·h/mL) based on a two-compartmental analysis. Lung level profiles suggest that TTF 

powder stays in the lung for the same period of time as the crystalline powder but it 

presented higher in vivo systemic bioavailability due to its greater surface area and 

increased FPF at a more distal part of the lung. 
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3.1 INTRODUCTION 

Rapamycin (Sirolimus, RAPA) is a carboxylic lactone-lactam macrolide 

antibiotic with antifungal activity and great immunosuppressive and antitumor properties 

(1). RAPA has been used both with and without cyclosporine in order to prevent organ 

rejection in patients after kidney transplant and as an alternative immunosuppressant for 

lung transplantation (2). Numerous noted side effects, such as hypertension, 

hyperlipedemia and nephrotoxicity, have impeded its use in treatment for a prolonged 

time (3). Recently, systemic RAPA has been investigated for treating women diagnosed 

with pulmonary involvement with lymphangioleiomyomatosis (LAM). LAM is a 

progressive, cystic lung disease associated with inappropriate activation of mammalian 

target of rapamycin (mTOR) signaling, which regulates cellular growth and 

lymphangiogenesis. In 2011, the Multicenter International LAM Efficacy of Sirolimus 

(MILES) Trial was performed.  This double-blind, placebo-controlled trial showed 

promising results in phases 1 and 2, where oral doses of RAPA successfully inhibited 

mTOR and stabilized lung function in patients with moderate to severe LAM (4)(5). 

Unfortunately, the disease progressed when rapamycin was discontinued and the 

systemic toxicities were felt to be too significant for long term use in young females.  

RAPA is currently approved for prophylaxis of rejection for kidney allograft 

patients and it is only commercially available for oral administration (e.g. Rapamune®) 

due to its poor water solubility (2.6 ȝg/mL) (6). The oral bioavailability of RAPA from 

Rapamune® oral solution is approximately 14% (7)(8). The oral bioavailability was 

reportedly improved to about 27% reducing the particle size (9)(10). Therefore, because 

of the relatively low oral bioavailability, a higher dose of RAPA is given to the patient in 

order to reach the desired drug therapeutic window (7)(11). Such high dosages may be 

the cause of various adverse effects. To further improve RAPA solubility, numerous oral 
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formulations have been developed e.g. solid dispersion nanoparticles using a supercritical 

antisolvent process (12), liposomes (13) and solid dispersion and complexation with 

hydrophilic excipients (14).  

 To our knowledge, rapamycin has never been used to treat systemic or local 

diseases via pulmonary inhalation. Pulmonary drug delivery is a non-invasive route of 

administration which presents several advantages such as avoidance of first pass 

metabolism and large mucosal surface area for drug absorption; a characteristic which 

allows this method to be an ideal candidate in applications involving local and systemic 

administration (15).  

Polymorphic and amorphous forms of poorly water-soluble drugs have been 

developed to enhance local and/or systemic bioavailability when delivered via the 

pulmonary route. Wei et al. compared the bioavailability of amorphous versus crystalline 

itraconazole nanoparticles via pulmonary administration in rats. After inhalation of the 

same dose of nebulized itraconazole dispersions, the Cmax of the nanocrystalline 

dispersion was 50 ng/ml at 2.7 hours with an AUC0-24 of 662 ng h/mL.  The Cmax of 

amorphous dispersion was 180 ng/mL at 4 hours and AUC0-24 of 2543 ng h/mL, in 

systemic circulation. The authors relate the significantly higher systemic bioavailability 

value of the amorphous system to the increased supersaturated environment, which would 

result in an increased drug permeation (16). Despite these findings, in another study, the 

administration of amorphous voriconazole nanoparticles to the lungs of mice did not 

present enhanced systemic bioavailability when compared to the crystalline counterpart. 

Beinborn et al. associate these results to the prolonged residence time of crystalline 

voriconazole in the lungs when compared to the amorphous system (17).  

The aim of this study is to assess and compare the in vivo behavior and 

pharmacokinetic profiles of crystalline and amorphous rapamycin when delivered to the 
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lungs of rats via inhalation. We hypothesize that the solubility enhancement of 

amorphous rapamycin in the lung fluids will increase in vivo systemic bioavailability. 

Techniques used in this study include thin film freezing technology (TFF) in order to 

produce amorphous rapamycin respirable powder and wet ball milling to prepare the 

crystalline rapamycin powder. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Materials 

Rapamycin (Sirolimus) was purchased from Tecoland Corporation (Irvine, 

California) and lactose monohydrate (lactose, Lactohale® LH 200) was kindly donated by 

Friesland Foods Domo (Zwolle, Netherlands). High performance liquid chromatography 

(HPLC) grade acetonitrile and methanol were purchased from Fisher Scientific (Fair 

Lawn, NJ). Water was purified by reverse osmosis (MilliQ, Millipore, France). 

 

3.2.2 Formulation preparation 

Thin Film Freezing technology was used for the preparation of amorphous and 

low density dry powder (18). In brief, a cosolvent mixture of acetonitrile and water (3:2) 

was used to dissolve rapamycin and lactose in the ratio of 1 to 1. To investigate the 

influence of solid loading on TFF powder aerosolization, two formulations were prepared 

with different final solid loading concentrations: 0.40% and 0.75% (w/v). The solution 

was rapidly frozen on a cryogenically cooled (-80°C) stainless steel surface by thin film 

freezing. The frozen films were collected in a container filled with liquid nitrogen to 

avoid melting. The frozen formulation was transferred to a -70°C freezer until the liquid 
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nitrogen was completely evaporated, and then transferred to a VirTis Advantage 

Lyophilizer (VirTis Company Inc., Gardiner, NY) for solvent removal. Formulation was 

lyophilized over 24 h at -40°C at a pressure of 400 mTorr. The temperature was gradually 

increased to 25°C over 24 h with a pressure less than 200 mTorr, and kept at 25°C for 24 

h.  

For comparison purposes, the equivalent crystalline physical mixture of 

rapamycin and lactose in the same weight ratio as described previously was prepared. 

First, micronized rapamycin and lactose were prepared using wet ball milling in a 

ceramic jar with zirconia grinding media (1/2” radius end cylinder) (US Stoneware, East 

Palestine, OH). Five grams of rapamycin powder was added to 25 mL of purified water 

and milled at 100 rpm at 20°C for 48 hours. Likewise, lactose was dispersed in 

acetonitrile and ball milled at 100 rpm at 20°C for 48 hours. The obtained slurry collected 

from the ceramic jar and from triple rinsing of milling media was frozen at -80 °C and 

then lyophilized using a VirTis Advantage Lyophilizer (VirTis Company Inc., Gardiner, 

NY) for solvent removal. The dry powder products were stored in a desiccator under 

vacuum at room temperature until further use. After particle size reduction, lactose 

monohydrate and rapamycin were sieved through a 100 ȝm and 45ȝm mesh. Equivalent 

amounts of micronized lactose and rapamycin were accurately weighed and mixed using 

the geometric dilution technique. The mixed powder was then mixed with coarse lactose 

LH200 in the ratio 1 to 19, again using geometric dilution technique. The final mixture 

was then transferred to a stainless steel mixing vessel. The vessel was placed in a Turbula 

Blender T2F (Bachofen, Switzerland) and mixing was carried out for 20 min at 48 

revolutions per minute (rpm).  
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3.2.3 Particle size analysis 

Measurements of particle size distributions of rapamycin and lactose, before and 

after wet ball milling, were performed by laser diffraction (HELOS, Sympatec GmbH, 

Clausthal-Zellerfelg, Germany). A small amount of bulk lactose was dispersed in 10 mL 

0.01% tween 80 mineral oil and a small amount of rapamycin was dispersed in 10 mL 

0.01% tween 80 in deionized water.  The samples were sonicated for 5 minutes and 

diluted with enough solvent to produce light obscuration in the range of 10–20%. Results 

are presented as D(x) and span, where X is the cumulative percentile of particles under the 

referred size (e.g. D(50) corresponds to the median diameter of the particles). Span is a 

measurement of particle size distribution calculated as [(D(90) – D(10)]/D(50). The sizes 

reported are average values taken from at least 3 measurements. 

 

3.2.4 Scanning Electron Microscopy (SEM) 

Analysis of powder morphologies and estimation of particle size of all samples 

were performed using SEM. Samples were placed on carbon tape and coated with 

gold/palladium (60/40) for 20 seconds under argon atmosphere using a Cressington 

Sputter Coater 208 HR (Cressington Scientific Instruments, Watford, England). The SEM 

images were captured using a SmartSEM® graphical user interface software in a Carl 

Zeiss Supra® 40VP (Carl Zeiss, Oberkochen, Germany) operated under vacuum, at a 

working distance of 19 mm and at 5 kV of Electron High Tension (EHT).  

 

3.2.5 Brunauer-Emmet-Teller (BET) specific surface area (SSA) 

Powder porosity was determined through the measurement of the specific surface 

area (SSA) using a Monosorb MS-22 rapid surface area analyzer (Quantachrome 

Instruments, Boynton Beach, Florida). The instrument uses a modified BET equation for 
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SSA determination. Samples were degassed in a Thermoflow™ Degasser for at least 2 

hours at 25°C using 30% nitrogen in helium as the desorbate gas. 

 

3.2.6 Thermal analysis  

Thermal properties and the degree of crystallinity of the powders were analyzed 

using a 2920 modulated differential scanning calorimetry (mDSC) (TA Instruments, New 

Castle, DE) equipped with a refrigerated cooling system. Dry nitrogen was used as the 

purge gas through the mDSC cell at a flow rate of 40 mL/min. Sample weights varying 

between 3 and 8 mg were placed into open aluminum pans and hermetically sealed (kit 

0219-0041, Perkin-Elmer Instruments, Norwalk, CT). Experiments were performed at a 

heating rate of 10°C/min and modulation temperature amplitude of 1°C/min, in the range 

of 20 to 300°C. The data was analyzed using TA Universal Analysis 2000 software (TA 

Instruments, New Castle, DE). 

Powders were analyzed for residual moisture content using Mettler Toledo 

TGA/DSC 1 - Thermogravimetric Analyser (Mettler-Todedo, Columbus, OH) operated at 

a ramp rate of 10°C/min from a temperature of 40 to 350°C.  Samples were prepared by 

weighing powders in a crucible. The sample weights varied between 5 and 8 mg.  

Crucibles were covered with a lid to avoid evaporation of any solvent residue by 

air/nitrogen gas present in the equipment chamber. 

 

3.2.7 Powder X-ray diffraction (PXRD) 

Crystallinity properties of bulk rapamycin and lactose, wet ball milled powders 

and TFF formulations were investigated using a Philips Model 1710 X-ray diffractometer 

(Philips Electronic Instruments Inc. Mahwah, NJ) with primary monochromated radiation 
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(CuK. Į1, Ȝ = 1.54056 Å) emitting at an accelerating voltage of 40 kV and 30 mA. The 

samples were placed into a stage and scanned for diffraction patterns from 5° to 35° on 

the 2-theta scale at a step size of 0.03°/second and a dwell time of 2 seconds.  

 

3.2.8 In vitro aerosol performance 

The Next Generation Pharmaceutical Impactor (NGI) (MSP Corporation, 

Shoreview, MN) was used to determine the aerodynamic properties of the TFF-

amorphous and crystalline physical mixture formulations of rapamycin. Cascade 

impactor was assembled and operated in accordance to the USP General Chapter <601> 

Aerosol, Nasal Spray, Metered-dose Inhalers and Dry Powder Inhalers (19). The samples 

were filled into size 3 HPMC capsules and aerosolized using a Handihaler® device. 

Measurements were performed for 4.4 seconds at a pressure drop of 4kPa across the 

device corresponding to a flow rate of 54 L/min through the device which was calibrated 

using a TSI mass flowmeter (Model 4000, TSI Inc., St. Paul, MN). The NGI collection 

plates were coated with 1% (v/v) silicone oil in hexane to prevent particle bounce, 

fracture and reentrainment. After aerosolization, samples were collected using known 

volumes of diluent and analyzed by high performance liquid chromatography (HPLC).  

Total emitted dose (TED) was calculated as the percentage of drug emitted from 

the DPI. Fine particle fraction (FPF) was calculated as the percentage of loaded drug 

aerosol smaller than 5 ȝm. Mass median aerodynamic diameter (MMAD) and geometric 

standard deviation (GSD) were calculated based on the dose deposited on stages 1through 

MOC.  
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3.2.9 Chromatographic assays 

High performance liquid chromatography method was modified from a previous 

report (20). In vitro samples of rapamycin were quantified using a Dionex 3000 HPLC 

system equipped with UV detector set at 278 nm wavelength. A 90 ȝL injection volume 

was injected into a Waters Symmetry C18, 5 ȝm guard column connected to a Waters 

Symmetry C8 3.5 ȝm 75 x 4.6 mm reversed-phase column (Waters Corp., Milford, MA). 

The column temperature was maintained at 50°C. The mobile phase consisted of 1360 

mL deionized water, 1200 mL methanol, and 1440 mL acetonitrile (34:40:36) running at 

flow rate of 1 mL/min. Rapamycin exists in two isomeric forms in solution, a lactone and 

lactam form and both forms show equivalent therapeutic activity. The retention time is 

approximately 21 minutes for lactone (major isomer peak) and 27 minutes for lactam 

(minor isomer) (21). The quantification of rapamycin present in the samples is the result 

of the summation of both peak areas. All samples were kept at 4°C and protected from 

light until time of analysis due to the instability of rapamycin in solution (20).  

 

3.2.10 In vivo pulmonary dosing of rats 

The protocol for the animal study was approved by the Institutional Animal Care 

and Use Committee (IACUC) at the University of Texas at Austin, Austin, TX. Jugular 

vein pre-catheterized and non-catheterized Sprague-Dawley rats weighting between 225–

275 grams were purchased from Charles River Laboratories (Wilmington, MA). Animals 

were housed two per cage, subjected to 12 h /12 h light and darkness cycles with access 

to food and water ad libitum. A nose-only inhalation exposure system (NOIES) equipped 

with a compressor and brush generator capable of dosing 24 rats at a time was used (CH 

Technologies (USA) Inc., Westwood, NJ, USA). Prior to dosing, animals were 

individually acclimated for 30 minutes per day for four days in restraint tubes. Catheters 
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were flushed two times before the study with heparinized normal saline. Animals were 

divided in 2 groups for dosing of TFF and physical mixture (i.e., crystalline) 

formulations, and each group was comprised of 4 jugular vein pre-catheterized rats for 

blood sample collection and 12 non-catheterized rats for collection of bronchoalveolar 

lavage (BAL) fluid and lung harvesting. Rapamycin formulations were loaded into a feed 

cylinder connected to a rotating brush generator. At an airflow rate of 33 L/min, animals 

in the TFF group were dosed for 5 minutes and animals in the physical mixture group 

were dosed for 10 minutes. Times of exposures were determined according to equation 1 

below. Following dosing, animals were placed back into their respective cages. A series 

of 0.3 mL blood samples were collected following exposure to the powder aerosol 

through the jugular vein catheters at 0.25, 1, 2, 4, 8, 12 and 24 hours post dosing and 

transferred into pre-heparinized micro-centrifuge tubes. The volume of blood withdrawn 

from rats was replaced with same volume of warmed sterile saline solution. To 

investigate the amount of drug deposited in the lower respiratory tract, the lining of the 

respiratory tract was washed for collection of fluids (i.e., bronchoalveolar lavage). The 

trachea was cannulized and 3 mL of saline solution was inserted and removed twice from 

the lungs for proper washing. The lungs were subsequently harvested. Three non-

catheterized rats in each dosing group were sacrificed at 0.25, 1, 4, 12 and 24 hour. Rats 

used for blood sample collection were sacrificed after the 24 hours time point and BAL 

was performed and lung tissues were harvested. All samples were transferred to 

centrifuge tubes and immediately transferred to -80°C freezer. 

3.2.11 Estimated Dose 

To estimate the dose inhaled by the rats during this study, the following equation 

was used: 
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Where C is the measured drug concentration in air (mg L-1), RMV is the species-

specific respiratory minute volume or the volume of air inhaled in one minute (Lmin-1), 

and D is the duration of exposure (min). To determine the portion of the delivered dose 

that was deposited in the lungs, the percent deposition in relationship to the particle size 

distribution was estimated based on rodent dosimetry findings reported by Kuehl et al. 

(22).  

 

3.2.12 Blood, BAL and lung analysis 

Quantification of rapamycin in blood, lung tissue and bronchoalveolar lavage 

(BAL) solution samples were performed according to previous published procedures with 

modifications (23)(24)(25). Samples were analyzed using a HPLC system consisted of a 

Shimadzu SCL-10A Controller, LC-10AD pump with a FCV-10AL mixing chamber, 

SIL-10AD autosampler, and an AB Sciex API 3200 tandem mass spectrometer with 

turbo ion spray.  The analytical column was a Grace Alltima C18 (4.6 x 150 mm, 5 µ) 

purchased from Alltech (Deerfield, IL) and was maintained at 60°C during the 

chromatographic runs using a Shimadzu CTO-10A column oven.  Mobile phase A 

contained 10 mM ammonium formate and 0.1% formic acid dissolved in HPLC grade 

methanol.  Mobile phase B contained 10 mM ammonium formate and 0.1% formic acid 

dissolved in 90% HPLC grade methanol.  The flow rate of the mobile phase was 0.5 

ml/min.  RAPA was eluted with a step gradient.  The column was equilibrated with 100% 

mobile phase B. At 6.10 minutes after time of injection, the system was switched to 

100% mobile phase A.  Finally, at 15.1 minutes the system was switched back to 100% 

mobile phase B in preparation for the next injection.  The RAPA transition was detected 

Equation 1 
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at 931.6 Da (precursor ion) and the daughter ion was detected at 864.5 Da. Ascomycin 

(ASCO) was detected at 809.574 Da and the daughter ion was 756.34 Da.  

Quantification of rapamycin in rat whole blood: RAPA was quantified in 

uncoagulated rat blood (EDTA). Briefly, 100 µL of calibrator and unknown whole blood 

samples were mixed with 10 µL of 0.5 µg/mL ASCO (internal standard), and 300 µL of a 

solution containing 0.1% formic acid and 10 mM ammonium formate dissolved in 95% 

HPLC grade methanol. The samples were vortexed vigorously for 2 min, and then 

centrifuged at 15,000 g for 5 min at 23°C. Subsequent centrifugations were performed 

under the same conditions. Supernatants were transferred to 1.5 ml microfilterfuge tubes 

and spun at 15,000 g for 1 minute and then 40 µL of the final extracts were injected into 

the LC/MS/MS. The ratio of the peak area of RAPA to that of the internal standard 

ASCO (response ratio) for each unknown sample was compared against a linear 

regression of calibrator response ratios at 0, 1.25, 3.13, 6.25, 12.5, 50, and 100 ng/mL to 

quantify RAPA. The concentration of RAPA was expressed as ng/mL whole blood. 

Quantification of rapamycin in rat lung tissue: RAPA was quantified in rat lung tissue 

according to the following protocol. The lungs weighed an average of 1.8 grams. Briefly, 

100 mg of calibrator, control, and unknown tissue samples were mixed by sonication 

(three 5 sec bursts) with 10 µL of 0.5 µg/mL ASCO (internal standard) and 300 µL of a 

solution containing 0.1% formic acid and 10 mM ammonium formate dissolved in 95% 

HPLC grade methanol. After sonication, the samples were vortexed vigorously for 2 min, 

and then centrifuged at 15,000 g for 5 min at 23°C (subsequent centrifugations were 

performed under the same conditions). Supernatants were transferred to 1.5 mL 

microfilterfuge tubes and spun at 15,000 g for 1 minute and then 40 µL of the final 

extracts were injected into the LC/MS/MS. The ratio of the peak area of RAPA to that of 

the internal standard ASCO (response ratio) for each unknown sample was compared 
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against a linear regression of calibrator response ratios at 0, 1.56, 3.13, 6.25, 12.5, 50, and 

100 µg/g to quantify RAPA. The concentration of RAPA was expressed as µg/g of tissue.  

Quantification of rapamycin in BAL solutions: RAPA was quantified in BAL 

solutions according to the following protocol. Briefly, 100 µL of calibrator, control, and 

unknown samples were mixed by vortexing with 10 µL of 0.5 µg/mL ASCO (internal 

standard) and 200 µL of a solution containing 0.1% formic acid and 10 mM ammonium 

formate dissolved in 95% HPLC grade methanol for 2 min. After vortexing, the samples 

were transferred to 1.5 ml microfilterfuge tubes and then centrifuged at 15,000 g for 1 

min at 23°C.  Filtrates were transferred to autosampler tubes and 40 µL of the final 

extracts were injected into the LC/MS/MS. The ratio of the peak area of RAPA to that of 

the internal standard ASCO (response ratio) for each unknown sample was compared 

against a linear regression of calibrator response ratios at 0, 2.5, 10, 40, 160, 640, and 

2560 ng/mL to quantify RAPA. The concentration of RAPA was expressed as ng 

RAPA/mL BAL solution. 

 

3.2.13 Pharmacokinetics and statistical analysis 

The data is expressed as mean ± standard deviation (SD). Pharmacokinetic 

parameters were determined using a two compartmental analysis with assistance from 

Phoenix® WinNonlin® 5.3 (Pharsight, St. Louis, MO). The average data at each time 

point for lung, BAL and blood data were modeled simultaneously in a single model.  

 

3.3 RESULTS AND DISCUSSION 
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3.3.1 Preformulation considerations 

Rapamycin, a hydrophobic drug, is soluble in most organic solvents but is 

practically insoluble in water (2.6 ȝg/mL) and in approved parenteral excipients, e.g. 

ethanol and tween 80 (6). Thus, rapamycin has only been commercialized in solution 

containing polysorbate 80, phosphatidylcholine, propylene glycol, mono-and di-

glycerides, ethanol, soy fatty acids and ascorbyl plamitate and tablet oral dosage forms, 

which have a very low bioavailability of approximately 14 to 20%, respectively (7). In 

this study, thin film freezing technology (TFF) was used to increase bioavailability of 

rapamycin and produce powder capable of aerosolization. TFF was first developed to 

increase water solubility of lipophilic drug molecules and subsequently enhance 

bioavailability of BSC class II drugs such as itraconazole and danazol (26)(16).  In 

addition to improving drug solubility, TFF has also been shown to produce low-density 

brittle matrix powders capable of aerosolization and delivery to the airway (27). The use 

of excipients with high glass transition temperature (Tg) enables the formation of the 

amorphous form of the compounds by TFF and prevents recrystallization. Lactose 

monohydrate, one of the US Food and Drug Administration (FDA)-approved sugar 

carriers and excipient for delivery to the lungs, has a Tg of about 102°C (28). Lactose 

plays an important role as excipient to improve stability of lyophilized formulations and 

as carrier in most DPI formulations to enhance powder aerosolization behavior (29)(30). 

In this TFF formulation, however, lactose does not act as a carrier, but as a matrix 

excipient to enable aerosolization by brittle fracture. Water and acetonitrile were used 

during manufacture as a co-solvent system to allow dissolution of the poorly water-

soluble rapamycin as well as hydrophilic lactose monohydrate. Overhoff et al. found that 

acetonitrile is a suitable organic solvent to be used with TFF technology due to its good 

heat transfer properties, which results in fast cooling rates and high supersaturation and 
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nucleation rates. Furthermore, acetonitrile is miscible in water, has a freezing point of -

45°C, density of 1.42 g/mL, and viscosity of 0.36 cP at 20°C (31). Due to the low 

viscosity and low freezing point properties of acetonitrile, the time of droplet spreading 

on the cryogenic surface is faster than its freezing time with subsequent fast freezing. 

These characteristics allow the formation of thin and homogeneous frozen disks with 

uniform particle sizes. The final powder presents high surface area and potentially fast 

dissolution rates (18). 

 

3.3.2 Physicochemical properties of formulations 

 

3.3.2.1 Particle size and morphology of formulations 

In order to effectively compare the TFF formulation of rapamycin and lactose 

(1:1) to a traditional micronized formulation, both rapamycin and lactose needed to be 

milled into respirable particles and blended with carrier lactose. Particle size analyses by 

laser diffraction and scanning electron microscopic images of lactose and rapamycin 

showed that the particles are unsuitable for pulmonary delivery as presented in bulk 

material. SEM image of lactose displays an irregular shape and broad particle size 

distribution, varying from 5 to 160 ȝm as shown in Figure 3.1. Accordingly, laser 

diffraction analyzes demonstrate a D50 of 39.78 ȝm and span values of 2.43, which 

confirms the broad particle size distribution. Specific surface area measurement (SSA) of 

lactose shows a small surface area value of 0.34 m2/g (Table 3.1), typical for larger 

particle sizes. Bulk rapamycin also presented irregular shape surface morphologies 

(Figure 3.1) and broad particle size distribution with D50 value of 28 ȝm and span value 

of 2.21.  The SSA value of 0.57 m2/g was slightly greater than lactose.  
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The use of wet ball milling technique for 48 hours was efficient and considerably 

reduced the particle size of bulk rapamycin and lactose and consequently increased 

specific surface area. Micronized rapamycin presented a D50 value of 5.22 ȝm and SSA 

value of 14.29 m2/g while lactose presented a D50 value of 6.41 ȝm and SSA value of 

10.76 m2/g (Table 3.1). Even though laser diffraction results of wet ball milled powders 

showed D50 values greater than the values suitable for lung delivery, SEM images of both 

powders revealed particles in the sub-micron range exhibiting irregular to round-shaped 

morphologies (Figures. 3.1c and 3.1d).  While the particle size measured of both milled 

powders was slightly larger than desirable for pulmonary delivery, it was adequate to 

insure delivery in the animal exposure study designed. SEM images of the physical 

mixture of micronized rapamycin and lactose with coarse lactose are shown in Fig. 3.2a 

and 3.2b. The images show micronized powders adhered to the coarse lactose surfaces, 

which may improve powder dispersion and aerosolization at the time of inhalation. 

SSA measurements of TFF powder formulations show a significant increase in 

surface area due to the low density powder matrix formed after lyophilization of the 

frozen discs (Table 3.1). The increase in surface area was greater for the RapaLac_0.40% 

than for the RapaLac_0.75% formulation, which was prepared from the most diluted drug 

solution. The difference in powder density is confirmed in the SEM images (Fig. 3.2c and 

3.2d). With approximately half the solids compared to the 0.75% formulation and the 

same bulk volume, the 0.40% formulation would be expected to have a higher surface 

area.  

 

3.3.2.2 Crystalline state of powders and moisture content 

The PXRD patterns of all samples are shown in Figure 3.3. Bulk lactose exhibits 

high intensity peaks (2Ĭ) at 16.04, 19.10 and 19.25, indicating its crystalline structure, 
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which is similar to the data reported elsewhere (32). Crystallinity state of lactose is also 

evident by the two characteristic endothermic peaks at 151.7°C and 218.5°C shown in 

Figure 3.4. The first endothermic peak is due to dehydration and the second peak 

represents the melting point of monohydrate Į-lactose form (33). Bulk rapamycin 

exhibits high intensity peaks at 5.15, 9.80, 14.87, 15.65, 19.61, 20.03 and 22.22 degrees 

of 2Ĭ.  The endothermic peak of rapamycin was found to be 192.16°C close to the 

temperature range of 187 to 193°C reported previously (12). Wet ball milled rapamycin 

and lactose also exhibit the characteristic PXRD patterns of bulk powders but with 

smaller intensities. The reduction of peak intensity and broadening seen on the PXRD 

patterns are indications of crystallinity loss due to the use of high-energy input process to 

reduce particle size. The milling process disrupts the crystal structure on the particle 

surface and creates amorphous domains (34). The DSC profile of wet milled lactose 

confirms its crystallinity state with endothermic peaks at 136.4 and 220.9°C. The peaks 

present less intensity and a small shift, which may be related to the loss of crystallinity of 

the powder. Moreover, the first endothermic peak characteristic of dehydration is almost 

nonexistent, most likely due to dehydration caused by the lyophilization cycle. Even 

though the milling process generated some amorphous domains on the rapamycin and 

lactose particles, the powders were predominantly crystalline. Wet ball milled rapamycin 

also presented a smaller endothermic peak at 178.1°C possibly due to the presence of 

amorphous domains in the crystalline powder, as shown in Figure 3.4. 

The PXRD patterns of both TFF formulations show a broad and diffused halo 

pattern with an absence of crystalline peaks. Such findings suggest that the formulations 

are in the amorphous state. Unfortunately, the PXRD technique has a 10% limit of 

detection for amorphous materials and a more sensitive technique would be necessary to 

investigate for the presence of any crystal lattice in the formulations (35). However, 
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further investigation with mDSC of RapaLac_0.40% and RapaLac_0.75% indicate that 

both formulations exist in the amorphous form as shown in Figure 3.4. Both TFF 

formulations presented a recrystallization peak at the temperature range of 188 to 192°C 

and a single endothermic melting peak at the temperature range of 215 to 216°C. The first 

peak indicates the recrystallization of the formulations in the glassy state and the second 

peak indicates further melting of crystals. 

Thermogravimetric analyses of the bulk powders and TFF formulations were used 

to determine the residual moisture content present in the samples. The thermogram 

profile of rapamycin (Figure 3.5) exhibits initial decomposition at temperature of 

approximately 195°C. Alternatively, lactose monohydrate exhibits an initial 5% weight 

loss at temperature ranging from 100 to 155°C, which indicates dehydration of the 

molecules. The decomposition temperature was found to be about 220°C. Thermogram 

profiles of RapaLac_0.40% and RapaLac_0.75% were similar and indicate that both 

formulations exhibit minimal solvent evaporation of only 3.2% through temperatures 

ranging from 45 to 110°C. Indeed, the actual moisture content of TFF formulations might 

be smaller than the values found in this study as the powders were exposed to the 

environment during sample preparation and may have absorbed some ambient moisture. 

Furthermore, thermal decomposition of the formulations started at temperatures of about 

180°C. The results indicate that the lyophilization cycles were suitable to prepare 

formulations in accordance with the standard limits of less than 5% moisture content 

(36). It is important to maintain a low moisture content in order to reduce chemical 

degradation of the active compound and to reduce physical instability of the formulation 

(30). 
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3.3.3 In vitro aerosol performance 

The next generation cascade impactor (NGI) is a standardized apparatus 

recommended by the pharmacopeia for assessing the aerosol aerodynamic particle size 

distribution from a dry powder inhaler.(37) The cascade impactor attempts to predict how 

an aerosol will deposit in the airways during inhalation. Only aerosol particles with 

aerodynamic size smaller than 5 ȝm may deposit in the lower airways.(38) The 

aerodynamic properties of the crystalline physical mixture and the TFF formulations 

were investigated using the NGI. The aerosol properties of the coarse blend and TFF 

formulations are shown in Table 3.2. RapaLac physical mixture had the smallest TED, 

78.92%, and the smallest FPF, 36.79%, when compared to the TED and FPF values of 

RapaLac_0.40% and RapaLac_0.75% (97.14 and 72.11%, and 94.71 and 61.29%, 

respectively). The superior performance of the TFF powder formulation is likely due to 

the ease in fracturing of the brittle powder matrix resulting in low density aerosolized 

particles. Additionally, low interparticulate adhesion due reduction of electrostatic and 

van der Walls forces may contribute to improved performance. Surprisingly, the MMAD 

of the physical mixture was smaller (1.81 ȝm) than the MMAD values of the 

RapaLac_0.40% and RapaLac_0.75% (2.1 and 2.43 ȝm, respectively). However, the 

GSD value, which indicates the magnitude of dispersity from the particle size 

distribution, is greater for the physical mixture (4.26) than for the RapaLac_0.40% and 

RapaLac_0.75% (2.25 and 2.76 ȝm, respectively). GSD results suggest that the TFF 

formulations have a narrower aerodynamic particle size distribution than the physical 

mixture formulation.  

The influence of solid loading concentration on aerosolization performance of 

TFF RAPA formulation was investigated in this study. As described before, TFF powder 

generated from more diluted solutions (RapaLac_0.40%) yielded a less dense powder 
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matrix with greater specific surface area. Apparently, these characteristics also have 

influence on the aerosolization performance of the formulations (Figure 3.6). Even 

though both TFF powders presented better aerosolization performance compared to the 

milled formulation, TFF powder prepared from the 0.40% (w/v) solid loading solution 

exhibited better results using the dry powder inhaler device by generating greater FPF 

values with smaller MMAD and GSD values than the least porous powder (Table 3.2). 

Therefore, amorphous RapaLac_0.40% powder and crystalline RapaLac physical mixture 

were chosen for in vivo studies. 

 

3.3.4 Pharmacokinetics of inhaled amorphous TFF RapaLac and crystalline 
RapaLac physical mixture  

3.3.4.1 Determination of Delivered Dose 

Therapeutic dose necessary to prevent lung allograft rejection in rats when 

administered orally is approximately 2.5 mg/kg/day (39)(40)(41). When given orally, the 

bioavailability of rapamycin in rats is less than 4% and only approximately 2.05% of this 

dose is distributed to the lungs which is the equivalent of around 410 ng of rapamycin 

(42). In this study, a dose of approximately 19.3 ȝg of amorphous TFF powder and 32.7 

ȝg of crystalline powder was estimated to be delivered to the rats. The dose was 

calculated by drawing a set flow (1.5 liter/min) through a filter for a set duration during 

the exposure. Of the delivered dose, the amount of lung deposition was predicted based 

on findings from a SPECT/CT imaging deposition study(22).  Particle size distribution 

was determined during animal exposures using a Mercer cascade impactor. Data from 

Mercer impaction was applied to the particle size/deposition correlation demonstrated by 

Kuehl et al. to determine rapamycin lung deposition of 1.0 ȝg and 1.5 ȝg for TFF and 

crystalline formulations respectively.  
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The first time point (15 minutes) was considered for the determination of the 

actual amount of rapamycin delivered to rats as follows (Eq. 2): 

 

 

 

Where m0T is the total amount delivered and m0BAL, m0lung and m0blood are the 

amounts of rapamycin found in the BAL, lung and blood samples at the first time point, 

respectively. From equation 2, the following equation can be derived: 

 

 

Where C0BAL is the concentration of rapamycin in BAL sample at the first time 

point; VBAL is the volume of saline collected from the BAL procedure (5 mL); C0lung is the 

concentration of rapamycin in the lung sample at the first time point; Wlung is the lung 

weight; C0blood is the concentration of rapamycin in the blood sample at the first time 

point; and Vblood is the blood volume of rats based on rat weight according to equation 4 

from Lee et al (43):  

 

 

 

Where Wrat is the body weight of the rats. According to this estimation, the total 

amounts of lung deposition were 332.7 ng and 2749.1 ng for TFF and physical mixture, 

respectively. These estimated amounts were used as the dose for each treatment group for 

the discussion of the pharmacokinetics parameters.  

 

Equation 2 

Equation 3 

Equation 4 
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3.3.4.2 Pharmacokinetics Evaluation  

During dosing, the aerosol particles inhaled by the animals that are smaller than 5 

ȝm are more likely to be deposited in the deep lungs. The rate of absorption of drug into 

the systemic circulation depends on the particle physical state and its physicochemical 

properties. When deposited in the solid state, drug particles have to dissolve into the 

epithelial lining fluid prior to absorption into the lung tissue (44). Rapamycin is a highly 

lipophilic drug, with logP value greater than 5 and a molecular weight (MW) of 914.2 

g/mol (45). Based on the findings from Patton and co-workers, absorption of a molecule 

with such physicochemical properties (logP and MW) through the respiratory tract and 

into systemic circulation can be expected within a few minutes (46). 

The amount of drug per gram of lung tissue found in the BAL samples was less 

than that found in the lung tissue (Figure 3.7). For the two-compartmental analysis, these 

amounts were combined. Table 3.3 shows the PK parameters derived from this model. To 

facilitate data comparison, pharmacokinetic parameters of the pulmonary tract and blood 

were reported as per microgram of drug deposited. 

The initial concentration found in the pulmonary tract (C0) was much higher for 

the crystalline group (1529.1 ng/g) than for the TFF group (165.9 ng/g) as shown in 

Table 3.3. The higher initial concentration found for the crystalline group is due to the 

higher initial dose deposition in the lungs and the faster systemic absorption of the TFF 

powder. Accordingly, the total amount of drug present in pulmonary tract (AUC0-24) was 

7560.6 ng·h/g and 731.1 ng·h/g for the crystalline and TFF groups, respectively. Once in 

the interstitial tissue, drug molecules are absorbed into the systemic circulation. Despite 

higher pulmonary tract levels of drug that were found for the crystalline group, the 

extension to absorption in the blood or the area under the curve over 24 hours (AUC0-24) 

was higher for the amorphous group (23 ng·h/mL) than for crystalline group (16.0 



 81

ng·h/mL), as shown in Table 3.3. Figure 3.8 shows that, for a normalized dose (per µg) 

delivered, the initial concentration of rapamycin in the blood from the TFF arm is about 

five times greater than that of the crystalline group, suggesting a faster absorption rate of 

the TFF formulation. This finding is confirmed by the k12/k21 ratios: 2:1 and 1:1 for the 

TFF and the crystalline formulations, respectively. Dissolution is the rate-limiting step 

for the crystalline group and results in high BAL levels, reduced absorption from the lung 

fluid and systemic bioavailability. Moreover, lung level profiles at 12-24 hours suggest 

that TTF powder stays in the lung for the same period of time as the crystalline powder 

but with more surface area and based on increased FPF at a more distal part of the lung. 

The fast rate of absorption of rapamycin from the lungs into the blood is confirmed by the 

fact that Cmax values of both groups were found at the first time point as seen in Figure 

3.8 (46). 

Many mechanisms are responsible for the elimination of drug from the pulmonary 

tract (47). Once deposited in the lungs, drugs may be eliminated by mucociliary or cough 

clearance, alveolar macrophages and by drug metabolism in the mucus or lung tissue 

(cytochrome P450 enzymes). Slowly dissolving drug, in the size ranging from 1.5 to 3 

ȝm, deposited in the alveolar region are more susceptible to being phagocytized by 

alveolar macrophages(48)(49). Crystalline rapamycin is kinetically more stable and has 

less surface area when compared to the amorphous TFF formulation.  This likely results 

in a slower dissolution rate in lung fluids and renders the particles more vulnerable to 

macrophage clearance. TFF rapamycin, on the other hand, is a more thermodynamically 

unstable amorphous material, which may present increased solubility and hence a faster 

dissolution rate than its crystalline counterpart (50). The enhanced solubility will create a 

supersaturated environment directly influencing bioavailability (51). As explained above, 

as a lipophilic molecule, rapamycin is absorbed rapidly once dissolved in biological fluid. 
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Due to the increase in solubility, amorphous rapamycin is similar to giving rapamycin in 

a nebulized solution. Therefore, the slow decline of crystalline rapamycin levels in the 

pulmonary tract points to a slower dissolution/absorption from lung fluid.  

 

3.4 CONCLUSION 

An amorphous formulation of rapamycin was successfully prepared by Thin Film 

Freezing technology and compared to its crystalline physical mixture counterpart. The 

low-density brittle dry powder rapamycin formulation exhibit enhanced in vitro 

aerodynamic properties than the physical mixture formulation. Following single dose 

administration in rats, amorphous TFF rapamycin formulation presented higher in vivo 

systemic bioavailability than its crystalline counterpart. The slow dissolution rate of the 

crystalline formulation reduced absorption from the lung fluid and reduced systemic 

bioavailability. Moreover, lung level profiles at 12-24 hours suggest that TTF powder 

stays in the lung for the same period of time as the crystalline powder but with more 

surface area and based on increased FPF at a more distal part of the lung. 
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3.5 TABLES 

�
�

�

Table 3.1 – Particle size distribution and specific surface area of bulk lactose 
monohydrate and rapamycin as received from supplier, wet ball-milled 
lactose and rapamycin and amorphous TFF powders RapaLac_0.75% and 
RapaLac_0.40%. 
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Table 3.2 – Next generation cascade impactor results of RapaLac physical mixture, TFF 
RapaLac_0.40% and RapaLac_0.75% formulations aerosolized using the 
Handihaler™ device at an airflow rate of 54 L/min for 4.4 seconds. 
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Table 3.3 – Pharmacokinetic parameters for blood and pulmonary tract (lungs and BAL) rapamycin concentration in rats after 
single-dose inhalation of amorphous RapaLac_0.40% and crystalline RapaLac physical mixture.  

BAL + Lung Blood BAL + Lung Blood
C0 165.9 ng/g 0 ng/mL 1529.1 ng/g 0 ng/mL

Cmax - 3.375 ng/mL - 4.920 ng/mL
tmax - 0.25h - 0.25h

AUC0-24 731.1 ng·h/g 23.0 ng·h/mL 7560.6 ng·h/g 16.0 ng·h/mL

AUCblood to AUCBAL+Lung ratio
k10 (h-1)
k12 (h-1)
k21 (h-1)
Kel (h-1)

0.750.78

0.031 0.002
0.240.24

0.02 0.02
0.740.39

Pharmacokinetics Parameters
TFF Crystalline
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3.6 FIGURES 

 

 

Figure 3.1 – SEM images of (a) lactose monohydrate, (b) rapamycin, (c) wet milled lactose, and (d) wet milled rapamycin.

c
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Figure 3.2 – SEM images of (a) RapaLac physical mixture (b) RapaLac physical mixture at higher magnification (c) 
RapaLac_0.40% (w/v) and (d) RapaLac_0.75% (w/v).
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Figure 3.3 – Powder X-ray patterns of bulk lactose monohydrate, wet ball milled lactose monohydrate, bulk rapamycin, wet 
ball milled rapamycin, TFF RapaLac_0.40% (w/v) and TFF RapaLac_0.75% (w/v). 
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Figure 3.4 – Modulated DSC profiles of bulk lactose monohydrate, bulk rapamycin, wet ball milled lactose monohydrate, wet 
ball milled rapamycin, RapaLac_0.75% and RapaLac_0.40%. 
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Figure 3.5 – Thermogravimetric analyzes of rapamycin and lactose monohydrate powders as received from supplier, 
RapaLac_0.75% and RapaLac_0.40%. 
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Figure 3.6 – Percent deposition of RapaLac formulations on a NGI showing physical mixture RapaLac in solid dark bars, 
RapaLac_0.75% in striped bars and RapaLac_0.40% in dotted bars. 
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Figure 3.7 – Bronchoalveolar lavage (BAL) and lung concentration of deposited rapamycin in rats after a single-dose 
administration of crystalline RapaLac physical mixture and amorphous RapaLac_0.40%. Data are presented as 
mean ± SD, n = 3, and normalized to ng of rapamycin per gram of lung tissue per microgram of dose. 
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Figure 3.8 – Total whole blood concentration of rapamycin per microgram of dose deposited in the lungs of rats after a single-
dose administration of amorphous RapaLac_0.40% and crystalline RapaLac physical mixture. Data are presented 
as mean ± SD, n = 3. 
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Chapter 4: Inhaled Therapies of Fixed-dose Combinations Prepared by 
Thin Film Freezing 

Abstract 

The use of Thin Film Freezing technology (TFF) to produce a triple fixed dose 

therapy with enhanced aerosol properties was investigated. Formoterol fumarate 

(LABA), tiotropium bromide (LAMA) and budesonide (ICS) were used as therapeutic 

drugs and lactose monohydrate and mannitol were used as sugar excipients. We 

investigated applications of this technology to powder properties and in vitro aerosol 

performance with respect to single and combination therapy. The aerosol performance of 

TFF powder combination was compared to the physical mixture of micronized crystalline 

powders prepared using jet milling process. TFF powder prepared with lactose produced 

amorphous, low-density matrix with greater specific surface area than mannitol powder 

forming few hydrogen bonding interactions. TFF powder prepared with mannitol 

produced crystalline, low-density matrix with strong hydrogen bonding interactions. As a 

result, the brittle TFF powders presented superior properties than the physical mixture of 

micronized crystalline powders, such as excellent particle distribution homogeneity after 

in vitro aerosolization. 
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4.1 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease 

characterized by a slow progressive development of airflow limitation that is not fully 

reversible (1). Currently, the therapies available to treat COPD are efficient in managing 

the progress of the disease and reducing the severity and frequency of exacerbations (2). 

However, to date, none of the existing medications for COPD are capable of eradicating 

the disease. Asthma, another example of airways inflammatory disease, is characterized 

by excessive sensitivity of the lungs or airways to various environmental triggers (3). 

Unlike COPD, asthma reactions are reversible and in most cases, controlled by the use of 

medication (4). 

According to the Global initiative for chronic obstructive lung disease, the use of 

a combination of bronchodilators with different mechanisms and durations of action may 

increase the degree of bronchodilation in a patient whilst decreasing side effects 

experienced. Furthermore, concentrating the use of multiple medicines in one inhaler 

may improve patient compliance (5). The most common forms of combination therapies 

involve the use of two active bronchodilators such as short-acting ȕ2-agonists (SABA) 

and anticholinergic/long-acting muscarinic antagonist (LAMA) or long-acting ȕ2-

agonists (LABA) and inhaled corticosteroids (ICS) in one inhaler. When exacerbation or 

breathlessness persists in patients taking LABA/ICS dual combination, the use of a triple 

inhalation therapy of LABA, LAMA and ICS would be advised (6)(7)(8). A significant 

example was seen in 2001, when GlaxoSmithKline (United Kingdom) launched 

Seretide/Advair Diskus®, a product which combines ICS and LABA. The result of 

fluticasone propionate (ICS) with salmeterol xinafoate (LABA) proved more effecting in 

reducing the effects of asthma and COPD when used in combination than when used 

individually. Additionally, it has been hypothesized that the success of Advair can be 
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attributed to the synergistic action of fluticasone and sameterol, when both drugs co-

deposit at the target cells (9). Another example of fixed combination therapy is 

Symbicort® launched by Astrazeneca in 2007. This product involves the amalgamation of 

budesonide (ICS) and formoterol fumarate dehydrate (LABA) which offers 12 hours 

symptom relief for asthmatic patients, a significant improvement on previous therapies 

(10)  

Tiotropium bromide (LAMA) has only been approved for the treatment of COPD. 

However in 2013, a phase III clinical trial named PrimoTinA-asthma conducted by 

Boehringer Ingelheeim, reported the safety and efficacy of the use of tiotropium bromide 

to treat patients with asthma. Moreover, the use of tiotropium bromide (LAMA) has 

yielded positive results in asthmatic patients already using ICS and LABA therapy. 

One of most challenges in formulating a fixed dose combination lies in the ability 

to achieve dose uniformity and co-deposition in a powder blend of two or more actives 

with coarse carrier particles. Additional difficulties are encountered when blending drugs 

that are prepared from mechanically milled micronized particles due to the 

interparticulate forces and formation of amorphous domains. Adi et al. reported the 

successful formulation and co-deposition of a triple therapy drug formulation. No 

significant difference was found between the drugs in the cascade impactor stage 

depositions (11). However, the triple therapy was formulated as a solution based 

pressurized metered dose inhaler (pMDI), where all three drugs were dissolved in the 

propellant. Solution pMDIs are not a suitable technique for the preparation of a wide 

variety of drugs that are insoluble in the solvent (usually ethanol) and/or the propellant. 

Likewise, the presence of multiple drugs in solution, most probably, will present stability 

issues. Therefore, particle engineering may be a good alternative to produce a fixed dose 

therapy in powder form where all drugs are present within a single particle, resulting in 
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improved content uniformity, co-deposition and co-location of drugs at the target of 

action. This increases the potential of synergistic action. Price et al. reported the use of a 

sonocrystallization particle engineering method (SAX™) to produce crystalline 

spheroidal particles of two drugs. This technology has shown to efficiently deliver each 

component with co-deposition of the particles within the cascade impactor. Even though 

this technology is considered an efficient means to produce fixed dose formulations, the 

process of production process may be over engineered due to the number of steps and 

complex equipment required (10). Formulation of triple fixed-dose combination has also 

been developed by Pearl Therapeutics (California, US). An emulsion of DSPC (1,2-

distearoyl-sn-glycero-3-phosphocholine) and anhydrous calcium chloride are prepared 

and spray dried to form porous microparticles. Sequentially, the porous microparticles are 

mixed with micronized drugs, which are then cosuspended in 1,1,1,2-tetrafluorothane 

(HFA 134a) propellant. The drug microparticles irreversibly adheres to the porous 

particle surfaces forming a stable suspension with equivalency in dose delivered for each 

drug (12). The creation of cocrystals comprising 2 or 3 drugs in the same crystal lattice 

having the same properties seems to be a good alternative produce fixed-dose 

combination formulation. However, the production of cocrystals is difficult and requires 

micronization and blending with a coarse carrier (13)(14).  

Thin Film Freezing (TFF) has shown to be a suitable particle engineering method 

to produce brittle powder matrices for pulmonary delivery (15). The rapid freezing of 

drug solution onto a cryogenic surface prevents segregation and heterogeneity of the 

solutes. When freezing is complete, the formulation is lyophilized and generates a low-

density matrix powder, which is easily aerosolized and dispersible at the time of 

inhalation(15). The aim of this study is to investigate the use of TFF technology to 

produce triple fixed dose therapy using formoterol fumarate (LABA), tiotropium bromide 
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(LAMA) and budesonide (ICS) as therapeutic drugs. We investigated powder properties 

and in-vitro aerosol performance with respect to single and combination therapies. 

 

4.2 MATERIALS AND METHOD 

4.2.1 Materials 

Budesonide, formoterol fumarate and tiotropium bromide were purchased from 

Chemieliva Pharmaceutical Co. (Chongqing, China). D-(+)-Mannitol was purchased 

from Acrǀs Organics (Geel, Belgium) and lactose monohydrate (Lactohale® LH 200) 

was kindly donated by Friesland Foods Domo (Zwolle, Netherlands). High performance 

liquid chromatography (HPLC) grade acetonitrile was purchased from Fisher Scientific 

(Fair Lawn, NJ) and perchloric acid 8% w/v aqueous was purchased from Ricca 

Chemicals (Arlington, TX). Water was purified by reverse osmosis (MilliQ, Millipore, 

France). 

�

4.2.2 Formulation Preparation 

Thin Film Freezing technology was used for the preparation of low-density dry 

powder as described elsewhere (16). Triple combo formulations were prepared using the 

weight ratio of 1:2:35.5 for formoterol, tiotropium and budesonide, respectively. The 

ratio chosen was based on the typical doses used to treat COPD patients, according to the 

Global initiative for chronic Obstructive Lung Disease (GOLD), Inc. The following 

mixtures were prepared by dissolving the components in a co-solvent mixture of three 

parts of acetonitrile and two parts of water: budesonide/tiotropium/formoterol and 

mannitol (BTF_Man), budesonide and mannitol (Bud_Man), tiotropium and mannitol 

(Tio_Man), formoterol and mannitol (For_Man), budesonide/tiotropium/formoterol and 
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lactose (BTF_Lac), budesonide and lactose (Bud_Lac), tiotropium and lactose (Tio_Lac), 

formoterol and lactose (For_Lac). The ratio of drug(s) to sugar excipient was 1 to 1 and 

the final solid loading concentration was 0.50% (w/v).  

Solutions were rapidly frozen on a cryogenically cooled (-80°C) stainless steel 

surface using the thin film freezing apparatus. The frozen disks were collected in a 

container filled with liquid nitrogen to avoid melting. The frozen formulations were 

transferred to a -70°C freezer until complete evaporation of the liquid nitrogen and then 

transferred to a VirTis Advantage Lyophilizer (VirTis Company Inc., Gardiner, NY) for 

solvent removal. Formulations were lyophilized over 24 h at -40°C at pressure of 400 

mTorr, temperature was gradually ramped to 25°C over 24 h with pressure less than 200 

mTorr, and kept at 25°C for 24 h.     

For comparison purposes, the equivalent physical mixtures of 

budesonide/tiotropium bromide/formoterol fumarate and mannitol (BTF_Man_PM) and 

budesonide/tiotropium bromide/formoterol fumarate and lactose (BTF_Lac_PM) were 

prepared using the same weight ratio as described previously. The actives were 

micronized using a fluid energy laboratory jet-o-miser (Fluid Energy, Telford, PA) with 

pusher pressure set at 80 psi and the gridding pressures set at 100 psi. Precise amounts of 

micronized powders were weighed and mixed using the geometric dilution technique and 

then transferred to a stainless steel vessel. The vessel was placed in a Turbula mixer 

(Glen greston Ltd., Middx, UK) and mixing was carried out for 20 min at 45 revolutions 

per minute (rpm). Formulations were sieved through 100 and 45 ȝm mesh size before and 

after mixing.  
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4.2.3 Thermal analysis 

The TA Instruments modulated Differential Scanning Calorimeter (mDSC 2920) 

(New Castle, DE), equipped with a refrigerated cooling system, was used to analyse the 

thermal properties and the degree of crystallinity of the powders. Dry nitrogen was used 

as the purge gas for the mDSC cell at a flow rate of 40 mL/min. Sample weights of 4 to 

10 mg were placed into open aluminum pans and hermetically sealed (kit 0219-0041, 

Perkin-Elmer Instruments, Norwalk, CT). Experiments were carried out in the range of 

10 to 350°C at a heating rate of 10°C/min and modulation temperature amplitude of 

1°C/min. Data was analyzed using TA Universal Analysis 2000 software (TA 

Instruments, New Castle, DE). 

 

4.2.4 Powder X-ray diffraction (PXRD) 

Crystallinity properties of the dried powders of raw actives as purchased as well 

as the jet milled and TFF powder formulations were investigated using a Philips 1710 X-

ray diffractometer (Philips Electronic Instruments Inc. Mahwah, NJ). Measurements were 

taken from 5° to 35° on the 2-theta scale at a step size of 0.03°/s and a dwell time of 5s. 

 

4.2.5 Particle size analyses 

Measurement of particle size distributions of budesonide, tiotropium bromide and 

formoterol fumarate before and after jet milling were measured by laser diffraction 

(HELOS, Sympatec GmbH, Clausthal-Zellerfelg, Germany).  A small amount of 

formoterol fumarate and Tiotropium bromide were separately dispersed in 10 mL 0.01% 

tween 80 mineral oil and a small amount of budesonide was dispersed in 10 mL 0.01% 

tween 80 in deionized water.  The samples were sonicated for 5 minutes and diluted with 

enough solvent to produce light obscuration in the range of 15–20%. The sizes reported 



 108

are average values of at least 3 measurements. The results are presented as D(x) and span, 

where X is the cumulative percentile of particles under the referred size (e.g. D(50) 

corresponds to the median diameter of the particles). Span is a measurement of particle 

size distribution calculated as [(D(90) – D(10)]/D(50).  

 

4.2.6 Scanning Electron Microscopy (SEM) 

Powder morphologies and estimation of particle sizes were determined using a 

SEM. Samples were placed on carbon tape and coated with gold/palladium (60/40) for 20 

seconds under high vacuum using a Cressington 208 Benchtop Sputter Coater (Watford, 

England). The SEM images were captured using a SmartSEM® graphical user interface 

software in a Carl Zeiss Supra® 40VP (Carl Zeiss, Oberkochen, Germany) operated under 

vacuum, at a working distance of 19 mm and at 5 kV of Electron High Tension (EHT).  

 

4.2.7 Brunauer-Emmett-Teller (BET) specific surface area (SSA) analysis 

Powder porosity was determined through the measurement of the specific surface 

area (SSA) using a Monosorb MS-22 rapid surface area analyzer (Quantachrome 

Instruments, Boynton Beach, Florida). The instrument uses a modified BET equation for 

SSA determination. Samples were degassed in a Thermoflow™ Degasser for at least 2 

hours at 25°C using 30% nitrogen in helium as the desorbate gas. 

 

4.2.8 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectroscopy was used to characterize chemical interactions and/or 

amorphous and crystalline polymorphs of each sample. FTIR scans of dry samples were 

collected on a Nicolet IR100 spectrometer (Thermo Fisher Scientific, Pittsburgh, PA) 
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equipped with a Deuteriated tri-glyceride sulfate (dTGS) detector. KBr disc method was 

used with approximately 1% (w/w) sample loading. A total of 32 scans were accumulated 

at a resolution of 4 cm-1 in the region of 4000 to 600 cm-1.  

 

4.2.9 In vitro aerosol performance 

Aerodynamic particle size distribution and deposition homogeneity were 

evaluated by the Next Generation Cascade Impactor (NGI) (MSP Corporation, 

Shoreview, MN) using a Handihaler® device attached to the induction port by a 

mouthpiece adaptor made of silicon.  The cascade impactor was assembled and operated 

in accordance to the USP General Chapter <601> Aerosol, Nasal Spray, Metered-dose 

Inhalers and Dry Powder Inhalers. The device was run for 4.4 seconds at a pressure drop 

of 4kPa across the device corresponding to a flow rate of 54 L/min, which was calibrated 

using a TSI mass flowmeter (Model 4000, TSI Inc., St. Paul, MN). The NGI collection 

plates were coated with 1% (v/v) silicone oil in hexane to prevent particle bounce, 

fracture and reentrainment. Three capsules were fired in sequence into the NGI and the 

experiments were performed in triplicate for each formulation under investigation. After 

aerosolization, samples were collected using known volumes of diluent and analyzed by 

high performance liquid chromatography (HPLC).  

Emitted dose (ED) was calculated as the percentage of drug emitted from the DPI. 

Fine particle fraction (FPF) was calculated as the sum of assayed dose deposited on 

stages 2 through micro-orifice collector (MOC) corresponding to particles with and 

aerodynamic diameter � 4.46 ȝm. Mass median aerodynamic diameter (MMAD) was 

calculated via regression of a log-probability plot of cumulative percent versus cut-off 

diameter and geometric standard deviation (GSD) was calculated as the square root of the 

84th/16th percentile.  
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4.2.10 HPLC assay 

Chemical analyses of all drugs were performed using a Dionex 3000 HPLC 

system equipped with UV detector set at 230 nm wavelength. A 20 ȝL injection volume 

was injected into a Inertisil C8 5 ȝm 150 x 4.6 mm reversed-phase column (Thermo 

Fisher Scientific, Waltham, MA) maintained at 26°C. Gradient elution was used and the 

mobile phase consisted of a 0.2 % v/v perchloric acid solution as solvent-A and 

acetonitrile as solvent-B, running at a flow rate of 1.2 mL/min and run time of 10 

minutes, as described elsewhere(17). The method was tested with regard to variability, 

recovery, linearity, detection limit and range, and shown to be suitable for this study. 

 

4.2.11 Statistical analysis 

The data is expressed as a mean ± standard deviation (SD). Statistical analyses 

were performed using NCSS/PASS software Dawson edition. Significant differences 

between formulations and between the percentage distributions of all three drugs on the 

NGI stages were analyzed using One-way ANOVA (p < 0.05). 

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 Particle size and morphology of formulations 

Particle size analyzes by laser diffraction and scanning electron microscopy 

images of the bulk drug and excipient powders showed that the sizes of the particles are 

not suitable for lung delivery. SEM images of budesonide and tiotropium display 

irregular shape with D50 values of 22.11 ± 16.92 and 5.14 ± 0.03 ȝm respectively and 



 111

broad particle size distributions confirmed by the large span values of 2.31 and 2.14 

(Table 4.1 and Figures 4.1a and 4.1b). Formoterol, on the other hand, displays a plate-like 

shape with D50 values of 6.27 ± 0.97 ȝm and greater span value of 7.75 (Table 4.1 and 

Figure 4.1c). In addition, specific surface area measurements (SSA) gave small surface 

area values of 3.05 ± 0.21 m2/g for budesonide, 2.08 ± 0.13 m2/g for tiotropium and 2.97 

± 0.05 m2/g for formoterol indicating that the bulk powders contain large particles.  

Coarse lactose and mannitol were used as carriers to enhance powder dispersion 

at time of aerosolization. SEM images of both powders show irregular shape with D50 

values of 39.78 ± 1.32 ȝm for lactose and 52.70 ± 0.59 ȝm for mannitol. Although the 

particle sizes of lactose and mannitol were bigger than those of the raw drugs, 

nevertheless, the particle size distributions were similar with span values of 2.43 and 

1.80, respectively (Table 4.1 and Figures 4.1d and 4.1e). 

In order to prepare the triple combo physical mixture formulations for comparison 

purposes with the TFF formulations, particle size reduction of the three drug powders 

was necessary. Laser diffraction results indicate that the size reduction process was only 

significant for bulk budesonide powder with D50 values of 3.40 ± 0.09 ȝm and broad 

particle size distribution with span value of 2.58. Interestingly, the SSA of bulk 

budesonide decreased to 2.75 ± 0.13 m2/g regardless of the reduction in particle size 

(Table 4.1). This could be due to aggregation of the micron size particles, which can be 

caused by cohesive forces generated during the uncontrolled milling process resulting in 

electrostatically charged particles with heterogeneous shapes as shown Figure 4.2a. Laser 

diffraction results of tiotropium and formoterol show a slight reduction in particle size 

after milling process with D50 values of 4.65 ± 0.04 and 4.51 ± 0.02 ȝm, respectively. 

Moreover, particle size distribution of tiotropium shows a small reduction with span 

value of 2.0 where as formoterol showed a significant reduction in particle size range 
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with span value of 1.96 (Table 4.1). SEM images of tiotropium and formoterol show 

agglomerated micronized powders with irregular shapes and the SSA results confirm the 

reduction in particle sizes with increased values to 2.86 ± 0.11 and 5.08 ± 0.26 m2/g, 

respectively (Figures 4.2b and 4.2c). SEM images of the physical mixture of micronized 

drugs with coarse lactose and coarse mannitol are shown in Figures 4.2d and 4.2e. The 

images show micronized drug powders adhered to the coarse lactose and mannitol 

surfaces, which may improve powder dispersion and aerosolization at the time of 

inhalation. Due to the mixture with coarse lactose and mannitol, the physical mixture 

formulations produced small SSA values of 0.43 ± 0.05 and 0.32 ± 0.03 m2/g (Table 4.1).  

SSA measurements of TFF powder formulations show a significant increase in 

surface area due to the highly porous cake powder formed after lyophilization of the 

frozen discs (Table 4.1). Tiotropium formulations produced the least porous cakes with 

SSA values of 38.79 ± 0.81 m2/g for Tio_Man and 48.90 ± 2.42 m2/g for Tio_Lac. The 

SSA values for budesonide were much higher than those of the tiotropium formulations 

with values of 46.97 ± 2.22 m2/g for Bud_Man and 90.39 ± 6.15 m2/g for Bud_Lac. 

Formoterol formulations, however, presented the greatest SSA values of 64.14 ± 0.68 

m2/g for For_Man and 193.86 ± 10.63 m2/g for For_Lac. The triple combo formulations 

also produced large SSA values of 54.55 ± 1.10 m2/g for BTF_Man and 81.31 ± 1.71 

m2/g for BTF_Lac. These are very similar to the SSA values of budesonide formulations, 

as the triple combo has a high percentage of formulations (Table 4.1). The difference in 

powder density and porosity can be seen in the SEM images. Powder formulations with 

greater SSA values also show a more porous cake structure as shown in Figures 4.3 and 

4.4. 
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4.3.2 Crystallinity evaluation 

 

4.3.2.1 Budesonide 

Budesonide was supplied as a micronized powder. PXRD pattern of budesonide 

exhibit high intensity peaks at 11.81°, 15.2°, 15.77°, 18.14° and 22.46° of 2Ĭ, indicating 

its crystalline structure, which is in accordance with data reported by Tajber et al, as 

shown in Figure 4.9c (18). The mDSC profile of bulk budesonide powder shows a single 

endothermic melting peak at 251.4°C (Figure 4.5) similar to the data reported by Velaga 

et al. confirming its crystalline properties(19). After jet milling process, micronized 

budesonide powder remained crystalline as shown by mDSC peak profile (Figure 4.5) 

and PXRD pattern (Figure 4.9c). The mDSC profile shows a slight shift of the 

endothermic melting peak with peak maxima at 252.6°C. Accordingly, PXRD pattern 

shows a reduction in the peak intensities but the sample remains mostly crystalline. The 

observed shift of endotherm peak and the reduction of the PXRD peak intensities may be 

a result of a change in the crystalline structure of the powder at the time of comminution. 

The milling process disrupts the crystal structure on the particle surface and creates 

amorphous domains (20). 

Thin film freezing (TFF) of budesonide formulation prepared with mannitol 

yielded partially crystalline powders, as confirmed by the mDSC (Figure 4.6) and PXRD 

(Figure 4.8f) results. The PXRD pattern of Bud_Man shows peaks with small intensities 

characterizing a partially crystalline formulation. From the mDSC profile, Bud_Man 

exhibit one exothermic recrystallization peak at 126.2°C and two endothermic melting 

peaks, one at 167.4°C, corresponding to the melting point of mannitol and the second at 

242.3°C corresponding to the melting of budesonide. These results confirm the partially 

amorphous nature of the Bud_Man formulation. Kim et al. investigated the 
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physicochemical characteristics of mannitol after lyophilization and reported that 

lyophilized mannitol yields a partially crystalline powder as a consequence of the low 

glass transition temperature of the pure amorphous powder, which is observed at 13°C. 

The study also reports that the relative concentration of crystalline mannitol in the 

formulation should be above 30% (w/w) in order to be detected by PXRD (15). 

Regarding the PXRD pattern of TFF Bud_Lac formulation, shown in Figure 4.8j, 

broad and diffuse halos were present with an absence of the characteristic crystalline 

peaks, indicating an amorphous structure. Figure 4.7 shows the modulated DSC 

thermogram which indicates two recrystallization events, in which the first peak may 

represent the recrystallization of lactose at 131.4°C, and the second peak may represent 

the recrystallization of budesonide at 180.2°C. The recrystallization events confirm that 

an amorphous structure is formed by the ultra rapid freezing process. Two endothermic 

melting peaks are also observed, which may correspond to the melting of lactose at 

212.8°C and budesonide at 245.7°C. The two exothermic and endothermic peaks may 

indicate the formation of a solid dispersion system and a posterior phase separation of 

budesonide and lactose at the time of analysis (16). 

 

4.3.2.2 Tiotropium Bromide 

The PXRD pattern of tiotropium bromide exhibits crystalline high intensity peaks 

at 5.81°, 16.13°, 19.79°, and 26.6° of 2Ĭ (Figure 4.9e). The crystallinity of this sample is 

confirmed by the mDSC profile of the bulk tiotropium powder, which exhibits a single 

endothermic melting peak at 219.0°C (Figure 4.5). Micronized tiotropium powder 

obtained by jet milling remained crystalline, indicated by the absence of an exothermic 

recrystallization peak and the presence of an endothermic melting peak at 219.3°C in the 

mDSC profile (Figure 4.5). However, the PXRD pattern shows a significant decrease in 
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the intensity of crystalline peak diffractions, probably as a result of the loss of powder 

crystallinity and the formation of amorphous domains (14). 

The TFF Tio_Man formulation, which was prepared with mannitol as a stabilizing 

sugar, has also shown to be partially crystalline, as observed on the PXRD by less intense 

crystalline peak diffractions which are similar to those of tiotropium and mannitol (Figure 

4.8g). The partial crystallinity of Tio_Man is confirmed by an exothermic 

recrystallization peak at 134.3°C followed by an endothermic melting peak at 158.8°C 

(Figure 4.6). Remarkably, only a single recrystallization and melting peak were present. 

The PXRD pattern of the TFF Tio_Lac formulation is shown in Figure 4.8l. Similar to 

Bud_Lac, the Tio_Lac powder exhibits broad and diffuse halos with an absence of the 

characteristic crystalline peaks indicating an amorphous structure. The amorphous form 

of the powder is confirmed by the mDSC thermogram (Figure 4.7). The thermogram 

profile shows an exothermic recrystallization event at 67.9°C, and two endothermic 

melting peaks at 119.7°C most likely due to lactose and at 189.2°C most likely a result of 

tiotropium. 

 

4.3.2.3 Formoterol Fumarate 

The PXRD pattern of formoterol fumarate is shown in Figure 4.9g where 

crystalline high intensity peaks can be seen at 5.75°, 15.29°, 16.10°, 18.38°, 19.76° and 

26.60° of 2Ĭ. The PXRD pattern indicates that the material analyzed is a dihydrate 

polymorph of formoterol fumarate, as reported by Tajber et al. and Jarring et al. (12)(17). 

A modulated DSC heat flow thermogram of formoterol shows two endothermic melting 

peaks occurring at 118.2°C and at 143.54°C, as shown in Figure 4.5. When analyzed by 

mDSC reverse heat flow, the thermogram of formoterol fumarate displays three 

endotherm peaks at 111.4, 123.1 and 139.1°C (data not shown). Tajber et al. have also 
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investigated the thermodynamic properties of formoterol fumarate and reported the 

findings of three melting peaks. The first and largest peak occurred at approximately 

122°C which was anticipated as a dehydration event. The last two peaks appeared at 

approximately 130°C and 150°C. The PXRD pattern of jet milled formoterol shows that 

the material has remained mostly in the crystalline form with peak diffractions presenting 

only a slight reduction in intensity as seen in Figure 4.9h. The mDSC profile confirms the 

crystalline state of the micronized material showing the first peak at 118.3°C and the 

second peak at 142.3°C (Figure 4.5). 

The TFF For_Man powder, when subjected to PXRD analysis, displayed small 

peak diffractions indicating the presence of crystalline structures (Figure 4.8h). The 

crystallinity of the material is also confirmed by the presence of a single endothermic 

melting peak at 161.2°C, which may be related to the melting of mannitol. The melting 

peak of formoterol was not observed which suggests that the material was in the 

amorphous state (Figure 4.6). The mDSC reverse heat thermogram analysis of TFF 

For_Lac powder exhibits a recrystallization peak at 152.9°C and a following melting 

peak at 163.8°C (data not shown). The mDSC heat flow thermogram shows a melting 

peak at 158.4°C as well as a peak at 67.19°C that could represent the glass transition 

temperature of the formulation (Figure 4.7). PXRD confirms the amorphous 

characteristics of the powder exhibiting a halo pattern with absence of crystalline peaks 

(Figure 4.8m). 

 

4.3.3 Triple drug combinations 

Much like the TFF single drug formulations, the PXRD pattern of TFF BTF_Man 

has shown to be crystalline exhibiting small intensity diffraction peaks (Figure 4.8i). The 

mDSC thermogram of BTF_Man powder exhibits an exothermic recrystallization peak at 
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141.2°C followed by two endothermic peaks. The first and largest peak occurred at 

165.4°C, most likely corresponding to the melting of mannitol and the second peak 

occurred at 236.5°C possibly representing the melting of budesonide (Figure 4.6). 

Furthermore, the TFF BTF_Lac powder displayed broad and diffuse haloes with an 

absence of the characteristic crystalline peaks, indicating an amorphous structure. The 

mDSC thermogram profile is characteristic of an amorphous formulation showing two 

exothermic recrystallization peaks at 130.9 and 170.0°C. This was followed by two 

endothermic melting peaks at 207.2°C, which may be related to the melting of lactose, 

and at 245.7°C, which corresponds to the melting of budesonide. It was hypothesized that 

the lactose and budesonide peaks would be more evident in the characterization of the 

triple combo formulations due to the largest amount of these materials in the formulation. 

 

4.3.4 Analysis of the samples by FTIR 

The IR frequencies of OH stretching vibrations are affected by hydrogen bonding 

of these groups.  However, in this study, the OH stretching region of the binary- and 

tertiary mixtures of drugs is dominated by the broad envelopes due to the effects of 

thermal excitation on these vibrational modes for lactose and mannitol.  As such, it is 

impossible to determine if there are shifts due to hydrogen bonding interactions in this 

region of the spectra.  In contrast, the carbonyl-stretching region of the IR spectra 

provides some insight in to possible hydrogen bonding interactions of these functional 

groups of the drugs.  In the case of tiotropium bromide, there is a significant 20 cm-1 shift 

in the frequency of the ester carbonyl stretch in the binary Tio_Lac formulation from 

1749 to 1729 cm-1. A smaller shift of carbonyl of about 15cm-1 is observed in the binary 

Tio_Man formulation from 1749 to 1734. These shifts are commensurate with hydrogen 

bonding interactions, which result in decreases in carbonyl stretching frequency, as 
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shown in Figure 4.10. In addition to the apparently stronger hydrogen-bonding 

interaction between tiotropium and lactose as evidenced by this carbonyl stretching 

frequency shift, further evidence for interaction comes from analysis of the lower 

frequency region of the IR spectra. The most pronounced feature in this region is the 

apparent absence of the lactose ~900-870 cm-1 bands in the Tio_Lac formulation.  These 

bands are resolved in raw lactose, but appear as a single broad band in TFF-processes 

lactose.  In the binary mixture, these bands may possibly be shifted to ~860 cm-1; 

although a 860 cm-1 band also appears in the spectrum for tiotropium alone, it is much 

less intense that the band from the binary formulation. Because this region of the IR 

spectrum consists of transitions with substantial coupling, it is impossible to make a 

definitive assignment for the origin of this band, and thus to the nature of the interaction 

that gives rise to its spectral change. However, in light of the evidence for tiotropium 

carbonyl hydrogen bonding, it is likely that this change is due to hydrogen bonding 

interactions with lactose (Figure 4.10).  

The IR spectra of the binary For_Lac and Bud_Lac formulations show more 

modest shifts in the carbonyl region.  In the case of formoterol, the carbonyl-stretching 

band at 1687 cm-1 shifts slightly to 1660 cm-1, accompanied by a marked decrease in 

intensity. The saturated ketone carbonyl-stretching band of budesonide moves slightly 

from 1722 cm-1 to 1712 cm-1 in the binary formulation. Similarly, the dienone carbonyl 

also shifts slightly, from 1666 cm-1 to 1650 cm-1, in the binary formulation. These shifts 

indicate that there is minimal hydrogen bonding to these carbonyl groups in the binary 

formulation. 

The IR spectrum of the BTF_Lac formulation is dominated by the major 

component budesonide and shows little change in carbonyl stretch peak positions relative 

to the corresponding binary drug-lactose formulation.  
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In the case of the formulations with mannitol, a slightly different picture emerges 

from analysis of the IR spectra. In binary drug-mannitol mixtures, there are only slight 

changes in the carbonyl stretching bands when compared to spectra of the drugs alone, as 

seen in Figure 4.11. For example, the tiotropium carbonyl band shifts from 1749 to 1734 

cm-1, the formoterol formamide carbonyl band shifts from 1687 to 1664 cm-1, but the 

budesonide saturated ketone carbonyl band remains unchanged at 1723 cm-1. In contrast, 

in the ternary formulation, the saturated ketone carbonyl band for budesonide is even 

further shifted to lower frequency than in the case of the binary mixture, from 1717 to 

1710 cm-1. In contrast, the dienone carbonyl band for budesonide remains unchanged 

from the binary mixture. Together, these IR band shifts indicate that there is a significant 

hydrogen bond interaction involving budesonide in the ternary mixture in mannitol, in 

contrast to the case of the lactose ternary mixture, for which there is little evidence of 

interactions. 

The IR spectrum for the physical mixture formulation prepared with lactose 

(BTF_Lac_PM) is dominated by the bands for formoterol, despite the fact that this is the 

least component by weight in the formulation. It is hypothesized that this result may be 

due to the low content uniformity of the powder formulation, which may have produced a 

KBr disk also not uniform. As a result, the portion of the KBr disk that was in the beam 

of the FTIR had mostly formoterol generating a spectrum similar to the spectrum of 

formoterol.  In contrast, the physical mixture with mannitol has the carbonyl bands 

unchanged from the raw drugs as it was expected. A summary of the FTIR spectrum 

changes showing the stretching frequency shifts for the carbonyl groups of all TFF 

formulations is presented in Table 4.2. 
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4.3.5 In vitro aerosol performance of formulations and deposition homogeneity on 
the NGI 

Aerodynamic particle size distribution of TFF formulations and physical mixtures 

were assessed using the NGI at 54 L/min and a Handihaler® dry powder inhaler device. 

Particle size distribution of the triple combo powder formulation prepared with lactose 

(BTF_Lac) is shown in Figure 4.12a. Importantly, analyses of the percentage stage-by-

stage distribution of all three drugs present in the formulation were not statistically 

different. Thin film freezing powders are prepared from a diluted drug solution, which 

are rapidly frozen and freeze dried straight after (10). The resultant cake powder is 

homogenous and porous, which is easily dispersible under an inhalation air stream. 

Therefore, the results were in accordance with the hypothesis that each component of the 

formulation would be homogeneously distributed throughout the lyophilized cake and 

consequently homogenously dispersed at time of aerosolization. A small difference in 

values was noticed in the percentage FPF for all three components, which were 31.65 ± 

10.25, 26.18± 0.67 and 33.08 ± 9.19% for formoterol, tiotropium and budesonide, 

respectively, as seen in Table 4.3.  

Aerodynamic particle size distribution of the triple combo formulation prepared 

with mannitol (BTF_Man) is shown in Figure 4.12b. As expected, the percentage stage-

by-stage powder depositions of the three drugs present in the formulation were not 

statistically different. The distribution similarity is also seen in the percentage FPF values 

of 52.95 ± 3.91, 52.96 ± 3.48 and 53.60 ± 2.89% for formoterol, tiotropium and 

budesonide, respectively (Table 4.3). Interestingly, BTF_Man formulation presented the 

greatest percentage FPF, regardless the higher specific surface area (SSA) and porosity of 

BTF_Lac formulation. The inferior performance of BTF_Lac may be related to water 

sorption to the particle surfaces, which function as plasticizer on amorphous powder. The 

plasticizing effect may reduce powder fracture at time of aerosolization and increase 
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particle density due to collapse of the cake structure. This phenomenon may also be the 

reason why the stage-by-stage percentage depositions of all three drugs for the BTF_Lac 

powder were not as homogenously distributed as the percentage depositions of the 

BTF_Man. Therefore, it is recommended that when preparing TFF formulations with 

lactose, the powder should be manipulated under a controlled low humidity environment. 

As expected, the emitted doses of the two TFF triple combo formulations were above 

90% due to the fact that the brittle cake powders are easily dispersible and emitted from 

the dry powder inhaler and capsule(15).  

When aerosolized individually, the stage distribution and aerosol performance of 

each TFF formulation prepared with a single drug was statistically different. The 

difference is particularly significant for stage 1 where the amount of tiotropium deposited 

was almost double the amount of formoterol and budesonide for lactose and mannitol 

formulations, as seen in Figure 4.13a and 4.13b. The difference in aerosol performance 

among the single drug TFF formulations is also confirmed by the FPF values as shown in 

Table 4.4. The percentage FPF for formoterol, tiotropium and budesonide formulations 

(For_Lac, Tio_Lac and Bud_Lac) prepared with lactose were 55.51 ± 5.79, 22.56 ± 5.75 

and 58.67 ± 4.28%, respectively. Also, percentage FPF deposition of formoterol, 

tiotropium and budesonide prepared with mannitol (For_Man, Tio_Man and Bud_Man) 

were 58.32 ± 5.99, 37.45 ± 0.71 and 64.62 ± 1.28%, respectively, showing a very 

significant difference. Single drugs prepared with mannitol presented greater percentage 

FPF than formulations prepared with lactose. This phenomenon is in accordance with the 

hypothesis that hygroscopic lactose formulations are susceptible to water sorption to the 

powder surfaces and posterior collapse of the lyophilized cake structure. It is important to 

notice that TFF formulations prepared with tiotropium presented the smallest FPF and 

SSA values, which may be related to the powder physicochemical characteristics. Thus, 
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tiotropium may be responsible for the low aerosolization performance and FPF values 

generated by the triple combo formulations. These results imply that when patients are 

treated with multiple administrations of single drug formulations they may not benefit 

from co-deposition of drugs in the lungs and from a potential synergistic action(21)(22). 

Similarly to the triple combo TFF formulations, high percentage values of emitted doses 

from the inhalers were seen for all single drug formulations, which is a characteristic of 

the TFF powders (Table 4.4) 

The difference in stage distribution and aerosol performance of the triple combo 

formulations prepared by physically blending the jet milled drug powders with coarse 

lactose or mannitol (BTF_Lac_PM and BTF_Man_PM) particles also were investigated. 

The stage-by-stage powder depositions of the BTF_Man_PM formulation were 

significantly different as shown in Figure. 4.14b. The three drugs presented a very 

different percentage deposition from each other with a high percentage of powder being 

deposited in the induction port. Although the percentage deposition of all three drugs on 

the cascade impactor stages were significantly different, the percentage FPF for all three 

drugs of the BTF_Man_PM formulation were similar presenting values of 26.36 ± 03.84, 

28.65 ± 0.30 and 25.80 ± 1.96% for formoterol, tiotropium and budesonide, respectively 

(Table 4.3). Additionally, the percentage emitted dose values reduced from above 90% to 

approximately 70 to 80% for BTF_Man_PM and BTF_Lac_PM due to the high amount 

of powder remaining in the capsules after aerosolization of both formulations, as shown 

in Table 4.3. The lower emitted dose and higher neck deposition of the physical mixture 

formulations may contribute to variable dosing with potential for under or overdosing 

specially if the powder mixture is comprised of potent drugs(5)(23). 

Surprisingly, the stage-by-stage powder depositions of the BTF_Lac_PM 

formulation were not statistically different as shown in Figure 4.14a. The BTF_Lac_PM 
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also showed low aerosolization performance presenting percentage FPF values of 28.64 ± 

3.89, 25.22 ± 3.56 and 25.05 ± 5.82% for formoterol, tiotropium and budesonide, 

respectively. However, deposition through stages 3 to 5, where particle sizes between 1-3 

ȝm deposit and have the highest probability to reach the deep lungs, is more 

homogeneous for the TFF formulations than for the BTF_Lac_PM. Also, the difference 

of powder aerosolization performance between the physical mixtures prepared with 

lactose and mannitol suggests the lack of robustness of the preparation process. The low 

aerosol performance of the physical mixture formulations may be related to the size and 

surface properties of the particles. As discussed previously, mechanical comminution 

produces electrostatically charged particles, which, in most cases, become agglomerated 

due to their cohesive and adhesive behavior. These strong interparticulate forces require a 

much higher shearing force inside the inhaler to deagglomerate and disperse the particles 

at the time of aerosolization. Consequently, aerosolization of physical mixture 

formulations usually generates incomplete powder dispersion and variations in aerosol 

performance which may influence pulmonary drug delivery (24)(25).  

 

4.4 CONCLUSION 

Thin film freezing technology demonstrated to be suitable to prepare a triple drug 

combination formulation. The triple combo drug formulations produced with TFF 

technology presented superior properties than the physical mixture of micronized 

powders exhibiting good particle distribution homogeneity after in vitro aerosolization. 

TFF formulations prepared with lactose were amorphous while mannitol formulation 

powders were crystalline. The crystallinity of the powders seems to not influence the 

aerodynamic properties of the formulations. The hygroscopic characteristic of lactose 
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formulations may be the responsible for the inferior aerodynamic properties of lactose 

formulation due to possible water sorption onto lactose particles.  

Future research should investigate the effect of formulation and process variables 

on the particle structure, aerodynamic properties and chemical and physical stability of 

the systems. 

 



 125

4.5 TABLES 

 

�

Table 4.1 – Particle size distribution and specific surface area of bulk drugs and excipients, jet milled drugs and TFF 
formulations. 
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�

Table 4.2 – Summary of the FTIR spectrum changes showing the stretching frequency shifts for the carbonyl groups of all TFF 
formulations. 
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�

Table 4.3 – Emitted dose and fine particle fraction for each drug from all triple combo 
formulations. 

�
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�

Table 4.4 – Emitted dose and percentage fine particle fraction of all single drug 
formulations.  
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4.6 FIGURES 

 

 

Figure 4.1 – SEM images of (a) budesonide, (b) tiotropium bromide and (c) formoterol 
fumarate at magnification of 10.0k, (d) mannitol and (e) lactose 
monohydrate (1.0k).  
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Figure 4.2 – SEM images of (a) jet milled budesonide (b) jet milled tiotropium (c) jet 
milled formoterol and the physical mixtures (d) BTF_Lac_PM (e) 
BTF_Man_PM (5.0k). 
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Figure 4.3 – SEM images of TFF formulations (a) Bud_Lac, (b) Bud_Man, (c) Tio_Lac, 
and (d) Tio_Man at magnification 1.0k.  
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Figure 4.4 – SEM images of TFF formulations (a) For_Lac, (b) For_Man, (c) BTF_Lac, 
and (d) BTF_Man at magnification 1.0k. 
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�

Figure 4.5 – Modulated DSC heat flow thermograms of unprocessed lactose monohydrate, mannitol, budesonide, tiotropium 
and formoterol, physical mixture formulation of jet milled budesonide, tiotropium and formoterol with mannitol 
(BTF_Man) and with lactose (BTF_Lac), and jet milled tiotropium, formoterol and budesonide. 
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�

Figure 4.6 – Modulated DSC heat flow thermograms of unprocessed lactose monohydrate, mannitol, budesonide, formoterol 
and tiotropium, TFF formulations of Bud_Man, For_Man, Tio_Man and BTF_Man. 



 135

�

Figure 4.7 – Modulated DSC heat flow thermograms of unprocessed lactose monohydrate, mannitol, budesonide, formoterol 
and tiotropium, TFF formulations of BTF_Lac, Bud_Lac, For_Lac, and Tio_Lac. 
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�

Figure 4.8 –Powder x-ray pattern of (a) mannitol, (b) lactose monohydrate, (c) budesonide, (d) tiotropium, (e) formoterol, (f) 
Bud_Man, (g) Tio_Man, (h) For_Man, (i) BTF_Man, (j) Bud_Lac, (l) Tio_Lac, (m) For_Lac and (n) BTF_Lac. 
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�

Figure 4.9 – Powder x-ray pattern of (a) lactose monohydrate, (b) mannitol, (c) budesonide, (d) jet milled budesonide, (e) 
tiotropium, (f) jet milled tiotropium, (g) formoterol, and (h) jet milled formoterol. 
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�

Figure 4.10 – FTIR scans of TFF formoterol_lactose, TFF budesonide_lactose, TFF tiotropium_lactose, physical mixture of 
triple drug combination, TFF triple drug combination, formoterol, budesonide, tiotropium, TFF lactose and 
lactose.  
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�

Figure 4.11 – FTIR scans of TFF formoterol_mannitol, TFF budesonide_ mannitol, TFF tiotropium_ mannitol, TFF triple drug 
combination, formoterol, budesonide, tiotropium, physical mixture of triple drug combination, TFF mannitol and 
mannitol. 
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�

Figure 4.12a – Aerodynamic particle size distribution of TFF triple combo BTF_Lac 
formulations deposited on a next generation cascade impactor. 

�

Figure 4.12b – Aerodynamic particle size distribution of TFF triple combo BTF_Man 
formulations deposited on a next generation cascade impactor. 
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�

Figure 4.13a – Aerodynamic particle size distribution of TFF single drug formulations 
For_Lac, Tio_Lac and Bud_Lac, deposited on a next generation cascade 
impactor. 

�

�

Figure 4.13b – Aerodynamic particle size distribution of TFF single drug formulations 
For_Man, Tio_Man and Bud_Man, deposited on a next generation cascade 
impactor.
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Figure 4.14a – Aerodynamic particle size distribution of triple combo physical mixture 
BTF_Lac_PM formulations deposited on a next generation cascade 
impactor. 

�

Figure 4.14b – Aerodynamic particle size distribution of triple combo physical mixture 
BTF_Man_PM formulations deposited on a next generation cascade 
impactor.  
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Chapter 5: Development of a Performance Verification Test for 
Cascade Impactors 

 

Abstract 

Cascade impactors are used as the standard test method for assessing therapeutic 

aerosols. A Performance Verification Test (PVT) for cascade impactors was developed to 

investigate the use of a standardized pressurized Metered Dose Inhaler (pMDI) with the 

Next Generation Cascade Impactor. A suitable propellant (HFA-134a) was used in 

conjunction with an easily detectable marker compound, rhodamine B. By adjusting the 

composition of the pMDI formulation, various loadings across the impactor plates of the 

NGI could be achieved. Two standardized formulations were selected to be fired 

sequentially into the NGI, thereby optimizing the impactor plate coverage to maximize 

the potential for detecting deviations in MMAD, as well as Total Stage Deposition 

(TSD). Introduction of the variable conditions to the NGI was found to significantly 

adjust the deposition patterns of the standardized formulations (B and E4), suggesting 

that their use as a PVT could be useful and that further investigation is warranted. 
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5.1 INTRODUCTION 

The pulmonary route has been extensively explored for the delivery of drugs 

therapies. It possess numerous advantages for drug delivery, such as large alveolar 

surface area, avoidance of first pass metabolism, the potential for local and systemic 

administration (1). In order to enhance lung deposition, aerosol particles should be in the 

aerodynamic diameter range between 1-5 ȝm. Particles smaller than 1 ȝm will probably 

be exhaled from the lungs and particles above 5 ȝm will mostly deposit in the upper 

airways (2)(3). 

Cascade impactors (CIs) are used as the standard test method for assessing the 

performance of therapeutic aerosols. CIs fractionate the dose emitted from the inhaler 

device according to aerodynamic particle size distribution. The samples are collected and 

chemically quantified for determination of drug mass deposition onto the various 

impaction plates (4). The United States Pharmacopeia (USP) guidance is very clear on 

how a variety of different impactor/impinger systems should be used for a variety of 

delivery methods, such as pressurized metered dose inhaler (pMDI), nebulizer or dry 

powder inhaler (DPI) (5). Because of this the impaction test methods used have become 

the industry standard and are routinely used for batch validation as well as NDAs for new 

therapies. It is widely known that variation in the cascade impactor data can occur over 

time, due to improper cleaning resulting in erosion, corrosion and/or occlusion of the 

nozzles or even a poorly implemented standard operational procedure (SOP). These 

deteriorations may influence stage cut-off diameters and therefore, data integrity(6). As 

such the impactor manufacturers and the USP recommend that routine mensuration of the 

test apparatus should be implemented (depending of the frequency of use and 

formulations that are routinely being tested) (5). 
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Mensuration is a specialized process, which measures the critical properties of the 

jet dimensions, the jets spatial arrangements in relation to its collection surfaces and the 

airflow passing through them. In most cases, it requires the use of a Vibrating Orifice 

Aerosol Generator (VOAG) to generate a monodisperse droplet size in the size range 

from 0.6 to 20 ȝm that is impinged onto the various stages of the cascade impactor in 

question. The droplets are formed using oleic acid with a uranine fluorescent dye tracer 

for liquid particles of ammonium fluorescein for solid particles (7). However the VOAG 

is difficult to use for individual laboratories that do not routinely use it and the apparatus 

is generally quite expensive to purchase. So the only real option is to send the apparatus 

away for cleaning and mensuration (back to the original manufacturer). There are several 

reasons why this may be undesirable: (i) the apparatus will have a down time during this 

process; (ii) the cost of mensuration is high (especially to academic institutions and 

startup companies – particularly if full mensuration is not really needed); (iii) one or 

more secondary impactor system(s) may be needed for continued operation(8). 

It would be desirable if a standard performance verification test (PVT) could be 

used in house to provide routine validation of impactor apparatus. This PVT could be 

considered to be equivalent to PVTs that the USP indicates for other test apparatus such 

as the General Chapters: <711> Dissolution. The dissolution apparatus employs the use 

of standard dissolution test tablets to ensure that the dissolution test apparatus is being 

used effectively.  

The objective of this research is to develop a standardized performance 

verification test for in-house use to provide routine validation of cascade impactor 

apparatus. For that, a reference (non-commercial) standard system including device and 

formulation will be developed for the reproducible generation of aerosols.  
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Acetic acid (glacial) and rhodamine B were purchased from Thermo Fisher 

Scientific (Waltham, MA). Ethanol (200 proof) was purchased from Decon Labs, Inc. 

(King of Prussia, PA). 1,1,1,2-tetrafluoroethane (HFA-134a) propellant was kindly 

donated by Mexichem Fluor Inc. (St Gabriel, LA). Plastic coated glass bottles (20 mL 

volume) were generously donated by SGD-Pharma Group (Mers-les-Brains, France) and 

the metered-dose valves (50 µL) were donated from Aptar (Crystal Lake, IL). 

 

5.2.2 Formulation preparation  

5.2.2.1 Rhodamine B/ethanol/propellant formulations 

In order to maximize the coverage of the proposed PVT across the cascade 

impactor, a high polydispersity (i.e. a broad particle size distribution) was required. In 

order to obtain this two options were available: a single shot formulation with broad but 

uniform particle size distribution (PSD); or a two shot system with both a low mass 

median aerodynamic diameter (MMAD) and a high MMAD ranging from 0.6 and 3.5 

ȝm. Therefore, adjustments to the solubility and density of the propellant solutions were 

carried out for optimal deposition profiles.  

A series of solution pMDIs were prepared using Rhodamine B as a tracer dye, 

ethanol 200 proof as a co-solvent, and the propellant 1,1,1,2-tetrafluoroethane (HFA-

134a). First, a stock solution was prepared by dissolving rhodamine b in ethanol. 

Subsequently, an aliquot of this solution was transferred to a 20 mL plastic coated glass 

bottle, which was immediately crimped with metered-dose valves. The system was filled 

with the chosen volume of HFA-134a using an HFA filling machine (Pamasol model 

P2008, Switzerland). Table 5.1 shows the different types of formulations with their 
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respective compositions. After preparation, pMDIs were placed on a plate shaker for 24 

hours at 250 rpm.  Same 0.7 mm actuator was used for all pMDIs. All formulations were 

prepared in the same day and repeated in different days to test for system robustness.  

 

5.2.2.2 Rhodamine B/ethanol/propellant/adjuvant excipients formulations 

pMDI systems were prepared using several adjuvant excipients, e.g., poloxamer 

338, poloxamer 188 and polyethylene glycol 400. The excipients were employed at 

different concentrations giving different amount of nonvolatile content for each 

formulation. The series of solution pMDIs were prepared in the same way as described 

previously. However, additionally to the aliquot of rhodamine b and ethanol stock 

solution, an aliquot of the adjuvant excipients were also added to the plastic coated glass 

bottles and immediately crimped by the Pamasol machine. Table 5.2 shows the different 

types of formulations with their respective compositions. After preparation, pMDIs were 

placed on a plate shaker for 24 hours at 250 rpm.  Same 0.7 mm actuator was used for all 

pMDIs. All formulations were prepared in the same day and repeated in different days to 

test for system robustness.  

 

5.2.3 NGI operation procedure – normal use 

The aerodynamic particle size distributions (APSD) of the formulations were 

determined using the Next Generation Cascade Impactor (Copley Scientific, Nottingham, 

UK) and a United States Pharmacopeia (USP) induction port (neck). Cascade impactor 

(CI) was assembled and operated in accordance to the USP General Chapter <601> 

Aerosol, Nasal Spray, Metered-dose Inhalers and Dry Powder Inhalers (5). Each pMDI 

formulation was primed and then actuated twice with 10 seconds interval between 
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actuations before fired into the CI. The airflow rate through the system was calibrated at 

30 L/min using a TSI mass flowmeter (Model 4000, TSI Inc., St. Paul, MN) attached to 

the open end of the induction port. After aerosolization, samples were collected using 

known volumes of 0.1M acetic acid solution and ethanol (1:1) at pH 3.0 and assayed with 

UV-vis spectroscopy on the same day.  

The same experimental procedure was used on 3 different NGI systems to test the 

formulations for repeatability and reproducibility. The experiments were conducted in 3 

different laboratories. 

The NGI collection plates were coated with 1% (v/v) silicone oil in hexane to 

prevent particle bounce, fracture and reentrainment. Total stage deposition was calculated 

as the amount of drug deposited on the NGI stages. Mass median aerodynamic diameter 

(MMAD) and geometric standard deviation (GSD) were calculated based on the dose 

deposited on stages 1through MOC.  

 

5.2.4 NGI operation procedure for stress testing 

After selection of the optimized formulations, three cascade impactor stress 

testing was performed in the same NGI. The tests were performed to evaluate the impact 

on the APSD of the formulations when different parameters of the NGI system are 

altered. Also, the tests will determine the sensitivity of the formulations (standard 

reference material) to detect any abnormality present on the NGI apparatus. The selected 

formulations were tested and actuated once each with 10 seconds interval between 

actuations. Samples were recovered with 0.1M acetic acid solution and ethanol (1:1) at 

pH 3.0 and assayed with UV-vis spectroscopy at the same day. 
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5.2.4.1 Air leakage simulation of stage 3 of the NGI 

In order to simulate an unknown air leakage on the NGI system, we placed a 

damaged O-ring at stage 3 of the equipment body. Because of the air leakage in the 

system the airflow rate was recalibrated from 20 to 30 L/min. using a TSI mass 

flowmeter (Model 4000, TSI Inc., St. Paul, MN) attached to the open end of the induction 

port. 

 

5.2.4.2 Simulation of nozzle clogging at stage 4 

To test the impact of clogged nozzles on APSD of the formulations approximately 

1/3 of the stage 4 nozzles were blocked using a tape. The airflow rate was recalibrated to 

30 L/min. after obstruction of the nozzles. 

 

5.2.4.3 NGI analysis at low airflow rate 

The impact on APSD of pMDI formulations was also evaluated when the analyst 

use the equipment at lower airflow rate than 30L/min. Therefore, we recalibrated the 

system using a flowmeter to set the airflow rate at 25L/min. It is anticipated that the 

APSD of the formulations will shift to the right due to the increase of aerodynamic 

particle size distribution with decrease of the airflow rate. 

 

5.2.5 UV-vis spectroscopy 

Samples of rhodamine were quantified using the HP/Agilent 8453 UV-vis 

spectrophotometer with Chemstation equipped with UV detector set at 558 nm 

wavelength. 
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5.2.6 Statistical analysis 

The data is expressed as mean ± standard deviation (SD). Statistical analyses were 

performed using NCSS/PASS software Dawson edition. Student’s t tests and one-way 

ANOVA were conducted to analyze statistically significant differences in aerodynamic 

particle size distribution and cascade impactor deposition between formulations (p < 

0.05). 

 

5.3 RESULTS AND DISCUSSION 

 

5.3.1 Formulation design 

Rhodamine B was selected as the fluorescent marker due to its ease of detection 

(UV-vis detection), solubility in ethanol (15 mg/mL) and good stability in propellant 

system (9). Also, ethanol has been widely used as a co-solvent system in pMDI 

formulations (10). HFA-134a is an inert and well characterized propellant exhibiting 

many advantages e.g., non-toxicity, odor and taste free and chemical stability (11). There 

are several pros and cons to consider when choosing the correct pMDI formulation type 

such as solution or suspension as summarized in Table 5.3 (12)(11). While aerosolization 

performance of suspension pMDIs depends on proper re-suspension techniques and 

particle size distribution of suspended particles, the performance of a solution pMDI 

system is mainly determined by its non-volatile fraction and its influence on vapor 

pressure(13). For this study, a solution-based system was selected as there is the potential 

for less operator dependent error, since the re-suspension step of the formulation can lead 

to emitted dose variability.  
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5.3.2 Performance of formulations 

5.3.2.1 Rhodamine B/ethanol/propellant formulations 

Formulations A, F, B, B.1 and B.2 were prepared using different concentrations 

of rhodamine b, ethanol and propellant containing no adjuvant excipient. Rhodamine B 

precipitated inside the pMDI glass bottles of formulations A, F, B.1 and B.2 after 24 

hours. Only formulation B was able to maintain its solubilized state in HFA=134a. These 

results indicated that the highest levels of rhodamine b were set at 0.1% w/v in the 

presence of 10% (v/v) ethanol before reaching the saturation point. An MMAD of 1.12 

µm with a GSD of 2.2 was obtained, demonstrating a deposition toward the lower 

particle size plates of the NGI. The aerodynamic particle size distribution of this 

formulation is shown in Figure 5.1. 

 

5.3.2.2 Rhodamine B/ethanol/propellant formulations/adjuvant excipients 

All formulations prepared with adjuvant excipients are described in Table 5.2. 

The size of the aerosols is determined by the evaporation of the propellant and any other 

volatile component in the formulation followed by the shrinkage of the droplets. The 

inclusion of non-volatile components in HFA solution formulations for pMDIs greatly 

increases the particle size distribution of the aerosol by increasing the size of the droplets 

(9). Poloxamer 338 and poloxamer 188 were first dissolved in ethanol before filled into 

the pMDI bottles. The pMDI systems prepared with adjuvant excipients, ethanol 5% (v/v) 

and 0.1% (w/v) rhodamine b (formulations B.1, C.1, D.1, E.1) precipitated when filled 

with propellant. Precipitation was due to the low solubility of poloxamers 338 and 

poloxamers 188 in HFA 134a. To enhance the solubility of poloxamers, the concentration 

of ethanol was increased to 10% (v/v). After 24 hours, the final pMDI systems remained 

in the solution state (formulations C and D) and were analyzed for particle size 
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distribution. Due to the relatively high solubility of PEG 400 in HFA 134a of about 4% 

(w/w), all pMDI systems prepared with PEG at different concentrations (E, E.2, E.3 and 

E.4) remained in solution state and were analyzed for particle size distribution(10). The 

deposition profiles for these formulations are in shown in Figures 5.2a, 5.2b and 5.3a. 

From data shown for the deposition profiles of formulations C, D and E (Figure 

5.2) was found that the APSD mainly covers the center stages of the NGI (S3, S4 and 

S5). Moreover, the deposition for formulation E.2 is significantly low with most of the 

aerosol depositing on the external filter. The deposition of formulation E.3 and E.4 were 

skewed to the left of the NGI with significant deposition on stages S0, S1, S2 S3 and S4. 

Therefore, it was found that the development of a formulation with a broad particle size 

distribution and significant deposition on all stages of the NGI was not possible. So, two 

formulations were selected which would cover all stage depositions.  

From the data shown for the deposition profiles Formulation E4 was found to 

cover the lower value impaction plates that were not obtained with Formulation B. For 

E4 the MMAD was found to be 3.30 µm with a GSD of 2.5. The combined deposition of 

Formulations B and E4 is shown in Figure 5.3b. After selection, the formulations were 

prepared in different days and tested on NGI. The particle size distribution on the stages 

was compared using student’s t-test and was not statistically different indicating to be a 

robust system. The mass of aerosol deposited on the NGI stages when formulations are 

actuated in sequence on the NGI was not exactly the same as shown by the deposition of 

the formulations actuated individually. This could be due to particle bouncing on NGI 

and increased deposition on the induction port. 
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5.3.2.3 Inter impactor variability 

To test for the reproducibility of the PVT inter-impactor variability was evaluated 

in addition to intra-impactor variability. Three NGIs were tested and the mass deposition 

among them is shown in Figure 5.4. The data shows a similar pattern of particle 

distribution among the 3 NGIs, however there was some statistical difference between 

few stage depositions. The intermediate reproducibility found for aerosol deposition 

among the NGIs may be related to a small difference in NGI calibration (from supplier) 

and/or to difference between laboratory environments, such as temperature and humidity. 

Difference in environment temperature and humidity will influence the rate of 

evaporation and shrinkage of the aerosol droplets and consequently the final aerodynamic 

particle size distribution.  

 

5.3.3 NGI stress testing 

Figure 5.5 shows the APSD of formulations B and E.4 when NGI was set up at 

different parameters. The data shows a significant difference in the deposition pattern of 

the stress-tested formulations of B and E4 when compared to the standard deposition 

pattern as indicated by the control group (MMAD = 1.96 µm; GSD = 2.7; TSD = 15.4 

µg). 

The presence of the damaged o-ring on the NGI caused airflow leaking 

throughout the NGI stages. Therefore, during the initial calibration of the airflow rate it 

was necessary to increase significantly the vacuum pump pressure to regulate the flow 

back to 30 L/mim. The data obtained for the damaged o-ring deposition suggests that a 

slightly higher mass of drug is deposited on the stages (TSD = 23.1 µg). This could be 

indicative of the increased airflow through the NGI entraining more drugs on the aerosol 

and its faster evaporation. The faster evaporation decreased the amount of droplets 
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depositing on the induction port.  The subsequent MMAD is also higher at 2.16 with a 

GSD of 2.4, which could indicate a higher velocity of the increased airflow through the 

system leaning toward a higher MMAD. 

For the blockage of the Stage 4 jets a lower airflow rate through the NGI is 

expected. Indeed a TSD of 18.2 µg is observed. The mass of rhodamine b deposited on 

the stages S3 through EF is lower than that obtained when a damaged o-ring was 

observed, but it is still higher that that obtained for the control group. This is possibly due 

to the change in pressure and airflow rate through the stages due to the increased pressure 

on S4. A lower MMAD of 1.76 µm is seen with a GSD of 2.6, which is consistent with 

and overall lower air velocity through the impactor compared to the control group, 

resulting in a lower aerodynamic particle size since the optimal inertia of particles would 

not be achieved. 

A higher mass of drug is again deposited on the NGI stages when compared to the 

control group when the airflow through the NGI is reduced to 25 L/min (TSD value of 

19.7 µg). The reduction of airflow rate increases the stages cutoff resulting in lower 

particle inertia, consequently, shifting particle deposition to the high number stages the 

NGI. As expected, the MMAD values reduced to 1.70 µm with a GSD of 2.8. 

 

5.4 CONCLUSION 

Two standard reference formulations with broad aerodynamic particle size 

distribution were developed. The formulations showed good reproducibility and 

robustness. The NGI deposition of the formulations exhibited a slight difference among 

the three NGIs. Also, the formulations presented good sensitivity to changes in NGI 

apparatus parameters. The formulations showed to be suitable to be used as a standard 

reference material for the performance verification tests of the NGI apparatus. The APSD 
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of the standard reference material should be determined individually for each apparatus 

immediately after NGI calibration and/or mensuration. 
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5.5 TABLES 

 

�

Table 5.1 – Composition of the pMDI formulations (Rhodamine B/ethanol/propellant). 

�

Formulation Rhodamine b    
% (w/w)

Ethanol           
% (v/v)

HFA-134a       
% (w/v)

A 1 9.26% 89.74

F 0.5 9.26% 90.24

B 0.1 9.26% 90.64

B.1 0.1 4.80% 95.1

B.2 0.05 4.80% 95.15
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�

Table 5.2 – Composition of the pMDI formulations (Rhodamine B/ethanol/propellant/ adjuvant excipients). 
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�

Table 5.3 – General comparison of solution based and suspension based pMDIs. 

�

Solution Suspension

Particle size: Particle size:

• Non-volatile fraction • Suspended micronized particles 

• Vapor pressure Stability issues:

• Actuator design • Aggregation  

Stability issues: • Flocculation 

• High solubility of solutes Uniformity dependent on re-dispersion

• Propellant choice 

Uniformity dependent on high solubility
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5.6 FIGURES 

 

 

Figure 5.1 – Amount deposition of formulation B on a NGI. Data is presented as mean ± 
SD, n = 3. 
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Figure 5.2a – Amount deposition of formulation C, D and E on a NGI. Data is presented 
as mean ± SD, n = 3. 

 

Figure 5.2b – Amount deposition of formulation E.2 and E.3 on a NGI. Data is presented 
as mean ± SD, n = 3 .
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Figure 5.3a – Amount deposition of formulation E.4 on a NGI. Data is presented as mean 
± SD, n = 3. 

 

Figure 5.3b – Combined deposition of formulations B and E.4 on a NGI. Data is 
presented as mean ± SD, n = 3. 
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Figure 5.4. Amount deposition of formulations B and E.4 on NGI I, II and III. Data is 
presented as mean ± SD, n = 3. The symbol * means Į < 0.05 when 
compared to other groups individually and į means Į < 0.05 when compared 
to each other. 
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Figure 5.5 – Amount deposition of formulations B and E.4 on NGI I at different 
conditions: control, damaged o-ring, partial blockage of nozzles on stage 4, 
and reduction of airflow rate to 25 L/min. Data is presented as mean ± SD, n 
= 3. The symbol * means Į < 0.05 when compared to other groups 
individually and į means Į < 0.05 when compared to each other. 
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