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Abstract 

 

Experimental Demonstration and Improvement of Chemical EOR 

Techniques in Heavy Oils 

 

Robert Patton Fortenberry, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  Gary A. Pope 

 

Heavy oil resources are huge and are currently produced largely with steam-driven 

technology. The purpose of this research was to evaluate an alternative to steam flooding 

in heavy oils: chemical EOR.  

Acidic components abundant in heavy crude oils can be converted to soaps at high 

pH with alkali, reducing the interfacial tension (IFT) between oil and water to ultra-low 

levels. In an attempt to harness this property, engineers developed alkaline and alkaline-

polymer (AP) flooding EOR processes, which met limited success. The primary problem 

with AP flooding was the soap is usually too hydrophobic, its optimum salinity is low and 

the ultra-low IFT salinity range narrow (Nelson 1983). Adding a hydrophilic co-surfactant 

to the process solved the problem, and is known as ASP flooding. AP floods also form 

persistent, unpredictable and often highly viscous emulsions, which result in high pressure 

gradients and low injection rates. Addition of co-solvents such as a light alcohol (typically 

1 wt %) improves the performance of AP floods; researchers at the University of Texas at 

Austin have coined the term ACP (Alkaline Co-solvent Polymer) for this new process. 
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ACP has significant advantages relative to other chemical flooding modes in recovering 

heavy oils. It is less costly than using surfactant, and has none of the design challenges 

associated with surfactant.  It shows the benefit of nearly 100% displacement sweep 

efficiency in core floods when properly implemented, as heavy oils tend to produce 

significant IFT-reducing soaps  (Nelson, Lawson, Thigpen, & Stegemeier, 1984). The use 

of polymer for mobility control ensures good sweep efficiency is also achieved.   

Since heavy oils can be extremely viscous at reservoir temperature, moderate 

reservoir heating to reduce oil viscosity is beneficial. In a series of core flood experiments, 

moderately elevated temperatures (25-75°C) were used in evaluating ACP flooding in 

heavy oils. The experiments used only small amounts of inexpensive co-solvents while 

recovering >90% of remaining heavy oil in a core, without need for any surfactant. The 

most successful experiments showed that a small increase in temperature (25°) can have 

very positive impacts on core flood performance. These results are very encouraging for 

heavy oil recovery with chemical EOR. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

With 90 million barrels of oil consumed worldwide daily, conventional oil reserves 

are being drawn down rapidly. New sources of hydrocarbon are required to supplement the 

decline of traditionally produced light crudes with low viscosity. Alternative sources of 

hydrocarbon energy include coal, shale production of oil and gas, heavy oils and oil shale. 

This work is concerned with the production of heavy oils, which is normally defined as oil 

having API gravity < 20o. This arbitrary definition encompasses oils that are relatively 

mobile and light to completely immobile bitumens, which can be heavier than water. 

Heavy oils have been traditionally produced initially with primary production 

followed by waterflood, hot water flood, steam flood, cyclic steam (CCS), or steam assisted 

gravity drainage (SAGD). The primary premise of this work is that enhanced recovery of 

heavy oils with chemicals deserves evaluation along with more traditional waterflood and 

thermal recovery techniques. 

1.2 MICELLAR-POLYMER FLOODING IN HEAVY OILS 

Traditional primary and waterflood recovery techniques in reservoirs leave 

significant fractions of oil in the reservoir unrecovered. Even the thermal processes 

described above will abandon significant fractions of oil as residual; this residual oil is held 

immobile by capillary forces. The ratio of these trapping capillary to viscous forces which 

mobilize oil is defined in the dimensionless capillary number as (Lake, 1989): 

 

𝑁𝑐 =  
|𝑘 ∗ ∇Φ|

𝛾
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Equation defining capillary number as ratio of mobilizing viscous force (numerator) and 

capillary force (denominator) 

Where 𝑘 is the permeability tensor, ∇Φ the potential gradient (gravitational and 

pressure forces) and 𝛾 the interfacial tension (IFT) between two fluids. This simplified 

force balance will be addressed in more detail in 0.  In order to mobilize significant amounts 

of residual oil, the capillary number needs to be increased by four orders of magnitude, 

which is only practically achievable by decreasing the IFT term. 

Surface active molecules that contain both hydrophilic and hydrophobic groups are 

suitable for lowering the IFT between water and oil to the drastic extent needed to mobilize 

the residual oil. There are natural and manmade species of these molecules; manmade 

molecules are called surfactants, while natural surfactants derived from the crude itself are 

soaps. These soaps form via deprotonation of carboxylic acids and saponification of esters 

found in crude oils in high pH (10 and above) environments (Jennings, 1975). A significant 

advantage in micellar-polymer flooding in heavy oils is their predisposition to forming 

large amounts of such soaps; their presence can diminish or eliminate the need for more 

expensive manmade surfactants in a chemical flood. 

Heavy oils have other potential advantages as targets for EOR processes. A study 

of 120 clastic heavy-oil reservoirs showed they had high average permeability (1500 mD), 

porosity (30%), and initial oil saturation (60-80%) (Lu X. , 2010). The high permeability 

value is particularly important; these viscous oils require high viscosity injection fluids to 

ensure proper mobility control in the reservoir is achieved. Without high permeability, 

injection of significant amounts of viscous polymer along with a chemical slug may not be 

practical. 
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As the particular oils used in this study are extremely viscous at reservoir 

temperature (5,000-30,000 cP), reservoir heating was assumed to be needed. Initial 

experiments were conducted at 100 °C and the temperature was steadily dropped as a 

control variable to find the limitation of the technology. A second important aspect was 

minimizing use of costly surfactant and polymers in these chemical floods. For a coreflood 

to be considered a technical success, it needed to demonstrate not only high tertiary oil 

recovery, but recovery at a sustainable pressure drop in the field and with a feasible amount 

of chemical injected. 
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Chapter 2: Heavy Oil Recovery 

2.1 RESOURCE SUMMARY 

The world resource base of heavy oils (<20o) API has been estimated to be as much 

as 70% of all non-gas petroleum types. This corresponds to a resource endowment of ~ 3.5 

trillion barrels of oil. Of this, approximately 15% of the world total is between 10-20o API 

and has reservoir viscosity < 20,000 cP (Dusseault M. , 2001); these particular oils were 

the subject of investigation in this work.  If only 10% of the heavy oil and bitumen in 

Canada were produced, it would amount to reserves the size of Saudi Arabia’s (Energy 

Information Agency, 2012).  

2.2 GEOCHEMISTRY AND SARA ANALYSIS 

Heavy oils have much lower saturates fractions relative to conventional oils, and 

are enriched in aromatics, resins and asphaltenes. A quantitative analysis of these four 

components is called SARA analysis, and is used to help in understanding chemistry of the 

oils. The saturates fraction includes all alkanes, saturated cyclic groups and branched 

groups, and is fully non-polar. Aromatics contain one or more aromatic ring structures, and 

have slightly polar character. Resins contain polar constituents, but are still fully soluble in 

pure pentane. Asphaltenes are similar to resins, but are more polar and insoluble in pentane 

(Fuhr, Holloway, & Reichert, 1986).  Enrichment in aromatics, resins and asphaltenes 

increase the viscosity of a crude oil (Dusseault M. , 2001).  

These oils are rich in heteroatoms (oxygen, nitrogen, sulfur, vanadium, nickel), 

which helps explain their more polar character. These heteroatoms are concentrated in the 

large asphaltene molecules (Asomaning, 1997). 

Heavy oils also tend to be very reactive with alkali, due to a moderate correlation 

between increasing acid number with decrease in API gravity (Fan & Buckley, 2007). 
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Though the relationship remains obscure, high acid number crudes do generally show 

lower IFT at high pH than low acid number crudes (Buckley & Fan, 2007). This 

relationship is not reflected in all datasets, for example in a study of 10 Saskatchewan 

pipeline oils (Parker & Chung, 1986). Inconsistency in measurement techniques is 

mentioned in virtually every work involving heavy oil and acid number, and is a major 

obstacle in comparing data between researchers. 

2.3 ORIGIN 

Typical heavy oils once were chemically similar to conventional oils; the process 

of kerogen deposition and maturation has been demonstrated in many heavy oil reservoirs. 

It was primarily after maturation that several secondary factors contributed to the 

sometimes extreme increase in viscosity found in heavy oils. This process has been 

confirmed by units of altered and unaltered crudes in close proximity of the Mannville unit 

in Alberta (Deroo, 1979). 

Biodegradation is considered the primary mechanism for viscosity increase in 

heavy oils. These shallow, extremely high permeability reservoirs were in contact with 

freshwater aquifers, which often would be cycled with surface water. Anaerobic bacteria 

exposed to the oil steadily consumed light alkanes in their metabolism, then move on to 

heavier alkanes and isoprenoids (olefins).  A secondary result of their metabolism is 

enrichment of multi-cyclic ring compounds (asphaltenes and resins, see below), 

corresponding to steroid-based organic molecules (Deroo, 1979).  

Other processes leading to heavy oil formation include migration of mobile 

components, which probably occurs over geologic timescales in such large and permeable 

formations.  Viscosity profiles in the Athabasca basin demonstrate this phenomenon; 

lowest in the reservoir are the densest oils most fully stripped of light hydrocarbons, while 
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the oils at the top of the formation are less viscous and relatively rich in light ends (Fustic, 

2006). Much of this migration probably results in total loss from the reservoir. 

Additionally, oxidation from surface waters consumes some light ends. 

Finally, the shallow depth of these reservoirs may prevent them from reaching true 

thermal maturity as crudes. Especially in shallower reservoirs, this can be shown to be the 

case (Deroo, 1979). 

2.4 CURRENT HEAVY OIL PRODUCTION SCHEMES 

Heavy oil production currently is produced via primary drainage, secondary 

recovery and EOR techniques (Alvarado, 2010). 

Primary Production and CHOPS 

Traditional primary production is quite poor in heavy oil reservoirs, essentially 

always below 15% recovery, and in Alberta typically 2%. In unconsolidated sand 

reservoirs, Cold Heavy Oil Production with Sand (CHOPS) has been demonstrated to be 

economic in Alberta since 2000. CHOPS schemes intentionally produce reservoir sands 

and significantly surpass primary recovery; the Alberta Energy Ministry reports up to 20% 

recovery is possible with CHOPS. The formation of wormholes is proposed as the primary 

recovery mechanism. This scheme has been described as alternately damaging and 

enhancing to the formation involved (Dusseault M. , 2002). 

Waterflood Performance 

Waterflood performance in heavy oils is complex and dependent on many factors. 

Of great import is mobility ratio between water and oil, the presence of mobile water at the 

start of waterflooding and zones of significant reservoir heterogeneity (thief zones or 

impermeable layers). In the extensive literature review undertaken by Kumar et. al. in 
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2005, waterflood recoveries in heavy oil are reported as low as 1% to 20% of OOIP 

(Kumar, 2008). Virtually all these projects were in Saskatchewan, and all produced 

significant water very early in the flood due to the adverse mobility ratio between the water 

and oil. Though lower viscosity oils tended to have better recovery, there was significant 

variation. Additionally, extremely poor waterflood performance is not usually reported, 

meaning waterflood recoveries published are better than average. 

Thermal EOR Techniques in Heavy Oils 

Current EOR techniques used to recover heavy oils are almost exclusively thermal. 

Cyclic Steam Stimulation (CSS aka huff-and-puff) involves injecting steam into a 

reservoir, shutting it in to allow it to heat the formation, and afterwards producing from the 

same well. CSS suffers from limited impact (only the near wellbore region is treated) and 

decreasing recovery with subsequent steam cycles, leading to low oil recovery factors 

(Shandrygin et. al., 2010). 

Steam flooding (or steam drives) involves injecting steam into a viscous oil 

reservoir to reduce oil viscosity and improve its mobility, displacing it to a production well. 

Steam drives are the most successful EOR method to date, with very high oil recoveries 

seen in some of the projects. However,  to be economical the technology is limited to 

shallow reservoirs with high permeability, porosity and thickness. 

Steam-Assisted Gravity Drainage (SAGD) is useful for producing extremely 

viscous oils and bitumens in-situ, and has found primary application in the Athabasca Basin 

in Alberta. Horizontal wells are drilled across the top and bottom of a formation. The upper 

well is flooded with steam, developing an upper steam chamber. The hot oil and water 

drain with gravity toward the lower horizontal. SAGD has proven to be economic in 

Alberta, where recoveries of over 50% OOIP have been reported (Dusseault M. , 2002). 
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Despite good performance, SAGD isn’t applicable in thin-pay layers and areas with low 

vertical permeability. Additionally, steam generation is quite expensive (Dusseault M. , 

2002). Alberta in 2009 produced 664,000 bbl./day of heavy oil using SAGD (Alberta 

Energy Ministry, 2009). 

In-situ combustion is applicable to heavy oil production, but is currently not 

contributing significantly to rates. 

Mobility Ratio 

Fluid displacements of oil with water in porous medium are usefully defined by the 

concept of fluid mobility, defined as: 

Mf = 
𝑘̅𝑘𝑟𝑓

𝜇𝑓
   

Mf  is the mobility of the fluid, 

𝑘̅    is the single phase permeability (usually defined with respect to brine), 

𝑘𝑟𝑓 is the relative permeability of the fluid, 

𝜇𝑓   is the viscosity of the fluid, 

The ratio of displacing fluid mobility to displaced fluid mobility is called mobility ratio, 

Dake (1978) defined the shock-front mobility ratio where water displaces oil as: 

𝑀𝑠  =  
𝑘𝑜𝑖𝑙

𝜇𝑜𝑖𝑙 + ⁄
𝑘𝑤

𝜇𝑤  ⁄

𝑘𝑜𝑖𝑙
𝜇𝑜𝑖𝑙  ⁄

 , where 

𝑀𝑠  = Mobility of the shock front 

This definition is well suited for waterflood (Dake, 1978). The displaced phase 

(denominator) contains only oil, while the displacing phase includes water and oil. If the 

value of Ms is unity or below, the displacement is said to be viscously stable and will result 

in efficient sweep. If it is greater than one, the flood may exhibit instability in the form of 
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viscous fingering. The resulting water fingers propagate through the porous medium 

rapidly and early water breakthrough will be seen as a result (Kumar, 2008). 
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Chapter 3: Chemical EOR Literature Review 

This chapter will begin with a literature review in chemical EOR (CEOR). After 

the literature review, the specific flooding techniques will be explored individually in terms 

of physics and applicability to various geologies. 

3.1 LITERATURE REVIEW 

Trapping Number, Capillary Number and Desaturation of Residual Oil 

Waterflooding of oil reservoirs is known to abandon significant fractions of oil in 

the reservoir, even in well-contacted zones. This oil is described variously as ‘immobile’ 

or ‘residual’ oil. The presence of residual oil is required when application of immiscible 

two-phase flow theory is understood. A droplet of oil in a waterflood feels opposing forces; 

viscous forces of the displacing water phase to dislodge the droplet, and capillary forces 

which trap the droplet and are proportional to the interfacial tension between the water and 

oil. The ratio of the viscous force and gravitational force to the capillary force is known as 

the trapping number, defined below:  

 

𝑁𝑡 =  
|𝑘̿ .(∇Φ𝑙′ + 𝑔Δ𝜌∇D)|

𝛾𝑙𝑙′
    

Where Nt is the trapping number, k̿ is the permeability tensor, ∇Φl′is the potential 

gradient across fluid l′, gΔρ∇D is the buoyancy term accounting for the density difference 

between the fluids, and 𝜎𝑙𝑙′is the interfacial tension between the fluids of interest. It 

buoyant force is negligible compared to the pressure gradient force (often), trapping 

number is represented by capillary number, below. 
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𝑁𝑐 =  
|𝑘̿ .(∇Φ𝑙′)|

𝛾𝑙𝑙′
 

The figure 3.1 below demonstrates that trapping number controls this residual 

saturation, i.e. as the trapping number increases and viscous forces dominate capillary ones, 

residual oil trapped in pores will be mobilized and oil saturation will decrease. Note that 

there is no throughput term, so no amount of increasing throughput will increase oil 

production at a given trapping number (Lake, 1989). 

 

 Figure 3.1 Capillary Desaturation in Sandstones, from Pope et. al. 2000 

In a typical reservoir environment with pressure gradients around 1 psi/ft, the 

capillary/trapping number is approximately 10-8 (Pope et. a. 2000, Kamath et. al. 2001). In 
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order to reduce residual oil saturation to near-zero values, the IFT must be reduced by four 

orders of magnitude. While increasing pressure drop in a lab core flood can desaturate more 

oil, the pressure gradient limitations of a reservoir prevent this. Decreasing the IFT between 

the oil and water is therefore the only practical way to achieve trapping numbers high 

enough to desaturate oil (Lake, 1989; Stegemeier, 1977). This can be achieved via the use 

of highly-surface active chemicals called surfactants. 

Surfactant Basics 

Surfactants are surface active molecules which will naturally tend to accumulate at 

fluid interfaces. Commonly, they will contain a polar ‘head’ group and a non-polar ‘tail’ 

group, which have greatly variable affinity for polar and non-polar solutions (Green & 

Willhite, 1998).  When concentration of surfactant passes some threshold value (known as 

the critical micelle concentration, or CMC), micelles begin to form. In an aqueous-

continuous solution, polar head groups would face outwards while the non-polar tail groups 

would be isolated from the excess phase inside the micelle; if oil were present these non-

polar tail groups would solubilize a certain amount of oil within the micelles. The scientific 

field of study of such three (or more) component systems is called microemulsion phase 

behavior. 

Overview of Flood Schemes 

The chemical EOR methods evaluated in the work are named based on their 

constituent chemicals, and include polymer flooding (PF), Surfactant-Polymer Flooding 

(SP), Alkali-Surfactant-Polymer flooding (ASP) and the newly-developed Alkali-

Cosolvent-Polymer flooding (ACP). 
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In PF, polymer is added to water to increase its viscosity. This will result in 

improved areal and vertical sweep, allowing more of the reservoir to be contacted. Higher 

pressure drop in high-permeability sections will divert polymer into lower-permeability 

zones, helping overcome heterogeneity. Fractional flow theory demonstrates that 

increasing aqueous viscosity will result in lower water cut and less volume of injection 

water per volume of oil produced. If the fluid viscosity is high enough a stable piston-like 

displacement may occur, where all mobile oil is swept from the reservoir within 1 pore 

volume. Polymer flooding is simple compared to the other chemical flooding technologies 

and is much more mature, with many examples of successful field implementations. 

Typically chemical floods require the use of polymer for mobility control, though there are 

exceptions; without it surfactant and chemicals can propagate rapidly through the reservoir 

as the most wetting phase, and show extremely early breakthrough (Hirasaki, van 

Domeselaar, & Nelson, 1983). China’s large Daqing polymer flood has been very 

successful, while the Britnell polymer pilot in the Pelican Lake Basin, Alberta, has 

demonstrated good recovery of viscous oil (>5000 cP). 

Surfactant-Polymer (SP) flooding uses polymer for the mobility control. It also 

includes surfactants to lower IFT and sweep virtually all the oil from contacted zones in 

the reservoir. The ability to produce residual oil can result in an oil target 50-100% larger 

than in water or polymer floods if the flood is executed properly. SP floods often include 

the use of cosolvents (detailed below) to assist in breaking up viscous emulsions and 

phases, though they have major secondary benefits as well. 

Alkali-Surfactant-Polymer (ASP) flooding obeys the same physics as SP flooding, 

but involves addition of alkali to generate soaps from the crude oil to lower IFT, as well as 
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decrease adsorption of surfactant onto the rock (Falls, et al., 1994).  Alkali is shown to have 

other benefits such as stabilizing certain surfactants and polymers. 

Polymer floods may involve the continuous injection of polymer, or a polymer slug 

followed by a water chase.  Low-IFT SP and ASP floods start with a slug containing 

chemical (typically 0.25-0.4 PV), followed by a polymer drive (PD) to maintain mobility 

control. The polymer drive is essential to success; without it, chase water will finger 

through the surfactant/AS/AC bank and the flood may fail entirely. These floods may be 

performed as secondary or tertiary production methods. 

Microemulsion Phase Behavior 

Winsor in 1954 described the behavior of surfactants in the presence of oil and 

brine. He observed the presence of thermodynamically stable phases, so-called 

microemulsions (Winsor, 1954). These are distinct from traditionally defined emulsions or 

macroemulsions, which are unstable thermodynamically, though they may persist for very 

long periods. 

Mixtures of oil, brine and surfactant are typically described using pseudo-ternary 

diagrams, see, for example, (Lake, 1989) or Microemulsions and Related Systems (1988) 

by Bourrel and Schechter. Most such experiments also involve a multiple surfactant species 

as well as a cosolvent (usually an alcohol) to improve equilibration time and decrease 

viscosity of the microemulsion. Altering any intensive variable (temperature, pressure, 

salinity) will alter the behavior of a microemulsion (Winsor, 1954), but the parameter of 

most practical interest is brine salinity. 

In a typical experiment, brine containing electrolyte, surfactant and oil are mixed 

in a pipette. At low salinity, a Windsor Type 1 microemulsion will form. This 

microemulsion will be continuous in the aqueous phase, with surfactant micelles forming 
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in the brine and solubilizing in their interior droplets of oil. These microemulsions are 

known as ‘oil-in-water’ (O/W) microemulsions, as brine is the continuous phase with oil 

contained in micelles. Above the type 1 microemulsion will be a pure oil phase, with 

negligible amounts of surfactant. At sufficiently high surfactant concentrations, the system 

will be a single-phase microemulsion (see ternary diagrams in above reference for image). 

As the salinity (electrolyte concentration) of the brine phase is increased (all other 

variables remain constant), the dissolved salts start competing with the polar ‘head’ group 

of the surfactant for interactions with the water molecules. At sufficiently high salinity, the 

surfactant will be pushed completely out of the brine and into the oil phase, forming a 

Windsor type 2 or water-in-oil (W/O) microemulsion. This microemulsion will be oil 

continuous, with water solubilized inside reverse surfactant micelles, whose polar groups 

now point inward. The brine phase below will be virtually free of surfactant. 

At salinities between the extremes of the type 1 and type 2 microemulsions, a 

Windsor type 3 microemulsion will form. This state occurs when surfactant is roughly 

equally favored thermodynamically in the oil phase and the brine phase, and is 

demonstrated by the appearance of a third ‘middle’ phase between lower phase brine and 

upper phase oil. The internal geometry of the type 3 microemulsion is less well understood 

than that of types 1 and 2. However they may be well visualized from Scriven’s  work on 

equilibrium interfaces, as: 

... [A] continuous, orientable surface of positive genus, without intersection.  This 

divides the volume into two multiply connected, interpenetrating subvolumes, 

each of them physically continuous (mathematically connected) … for example 

sandstone. (Scriven, 1976). 

 

From the mass balance, it is simple to calculate the volume of brine and oil which 

are dissolved in the type 3 emulsion. A salinity where equal proportions of oil and water 
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are solubilized by the microemulsion is defined as the ‘optimum’ salinity; optimum salinity 

often exhibits ultralow IFT. 

Interfacial Tension and Solubilization Ratio 

The development of Winsor classifications for microemulsions is important due to 

its relationship with interfacial tension and therefore capillary desaturation. In 1974, Healy 

and Reed developed relationships between interfacial tension and microemulsion types 

(Healy & Reed, 1974). In 1979, Chun Huh derived a relationship relating the solubilization 

ratio at optimum salinity to interfacial tension.  A simple yet generally valid form of his 

equation is: 

𝛾 =
𝐶

𝜎2
 

Where C is well approximated as a constant ~  0.3 dynes/cm, and 𝜎 is the 

solubilization ratio, defined for oil or water as: 

𝜎𝑙 =
𝑣𝑙

𝑣𝑠
 

Where 𝜎𝑙 is the solubilization ratio, 𝑣𝑙 is the volume of oil or water solubilized and 𝑣𝑠 is 

the volume of surfactant. This breakthrough allowed IFT to be calculated quite accurately 

and simply from phase behavior scans. The region of lowest IFT corresponds 

approximately to optimum salinity. 

3.2 CHEMICALS USED IN MICELLAR-POLYMER FLOODING 

A Note on Aqueous Stability 

In most modern varieties of chemical floods, chemicals of interest must be mixed 

in an aqueous solution, though emulsion injection (consisting of ampiphile, brine and 
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hydrocarbon) does receive attention as well (Fu & Mamora, 2010). This implies that 

surfactant, polymer, and cosolvent must be completely soluble in brine at or near the 

optimum salinity. This can be a challenging criterion, as many surfactants in the past used 

to be close to insoluble in water at the salinities of injection fluid. 

To ensure a chemical formulation fulfills the solubility criteria, an aqueous stability 

test is performed. All the injected chemicals are mixed in a vial, which is blanketed with 

argon, sealed and heated to reservoir temperature. After mixing it is observed for any 

cloudiness or decrease in clarity that would result in a failed test. Not passing the aqueous 

stability test usually disqualifies a chemical formulation. 

Polymer 

Water-soluble polymer is a fundamental component in almost all chemical floods. 

It performs the essential role of increasing the viscosity of the injection fluid, to ensure that 

oil is stably displaced.  Indeed, typical surfactant slugs are relatively low volume and 

cannot tolerate viscous fingering (Hirasaki, van Domeselaar, & Nelson, 1983). Without 

polymer, surfactant floods are much less efficient unless stabilized by gravity (Lu et. al. 

2013). For proper mobility control, the polymer viscosity in chemical floods and drive 

should be equal to the inverse of the minimum total mobility of the oil bank. 

Polymers (Lu, Pope, & Weerasooriya, 2013) evaluated for EOR include hydrolyzed 

polyacrylamide (HPAM), polyacrylamide, acrylamido-2-methylpropane sulfonate 

(AMPS), hydroxyelthylcellulose (HEC), xanthan gum and scleroglucan. Currently HPAM 

is much more prevalent than other polymers, but has certain limitations. Other polymers 

are more robust to extreme salinities and temperatures (Kulawardana et. al., 2012). Levitt 

et. al. in 2008 developed screening criterion to assist in selecting appropriate polymer for 

various reservoir conditions (Levitt, 2008). 
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HPAM molecules include acrylamide monomers, some of which are hydrolyzed. 

The polymer solution rheology is non-Newtonian, and shows a Newtonian viscosity 

plateau at low shear rates, a power-law region of shear thinning in intermediate shear rates, 

and finally a plateau at high shear rates. At extreme shear rates, polymer can degrade due 

to shearing effects. This shear-thinning character is advantageous in a reservoir, where it 

is of lower viscosity at high rates near a wellbore and higher viscosity where more mobility 

control is needed; this characteristic is seen in various degrees in all polymers. 

Surfactants 

Surfactant molecules used in EOR have two basic requirements; they must interact 

with both polar and non-polar molecules equally, and must do so strongly. There are many 

such molecules manufactured commercially, which are generally divided based on the 

character of their polar head group into four classes: anionic, cationic, non-ionic and 

zwitterionic. Anionic surfactants receive the most attention as chemical EOR surfactants, 

as they demonstrate low adsorption on negatively charged rock facies, which are especially 

prevalent at high pH (Hirasaki et. al. 2011). 

Surfactant chemistry has improved significantly over the last several decades. 

Older surfactants included molecules such as Alkyl Benzene Sulfonate (ABS), a sulfonated 

head group attached to benzene with a hydrophobic tail of various lengths. Though 

effective in lowering IFT, ABS demonstrated poor aqueous stability and lack of calcium 

tolerance. Other surfactants such as Internal Olefin Sulfonates (IOS), Alcohol Ethoxy 

Sulfates, and Ether Sulfonates have shown excellent performance in corefloods (Levitt et. 

al., 2008).  

New surfactants including Guerbet alkoxy sulfates have high performance and low 

cost (Adkins et. al, 2010). They contain a large-branched Guerbet alcohol-based 
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hydrophobic tail, followed by propylene oxide groups (PO), then ethylene oxide groups 

(EO) and finally an anionic sulfate. The molecule therefore shows a continuous variation 

from hydrophobic (tail) to moderately hydrophobic (PO group) to moderately hydrophilic 

(EO) to hydrophilic (anionic head).  The branched Guerbet anionic tail confers many 

advantages to the molecule: they are inexpensively synthesized branched tails reduce 

formation of viscous gels and liquid crystals (Abe et. al., 1986) and can be size-customed 

to best match the oil of interest (Solairaj et. al., 2012). The addition of Ethoxy (EO) and 

Propoxy (PO) groups increases tolerance to divalent ions. Increasing the number of EO 

groups in a molecule tends to increase its hydrophilicity and therefore optimum salinity 

and aqueous stability. Increasing the number of PO groups tends to have an opposite effect 

(Bourell & Schechter, 1988, Flaaten et. al, 2009). 

Despite mostly excellent performance, these Guerbet alkoxy sulfates as with any 

other ether sulfates hydrolyze at temperatures above 60°C unless the pH is increased to 

around pH 10-11. Lu et. al. demonstrated that Guerbet alkoxy carboxylates have many of 

the same performance advantage as the sulfate molecules, and are thermally stable up to at 

least 120°C (2012). These carboxylate molecules have demonstrated excellent 

performance in corefloods. 

Surfactant formulations often include two or more surfactants. Blending diverse 

surfactants increases disorder around the interface, breaking up problematic surfactant 

structures  (Hirasaki, Miller, & Puerto, 2011; Levitt et. al., 2008; Abe, Schechter, Wade, 

Weerasooriya, & Yiv, 1986). This will reduce microemulsion viscosity, pressure drop in 

corefloods and generally increase robustness. These advantages can also be conferred by 

cosolvent molecules. 
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Cosolvent 

Cosolvent molecules range from small, pure alcohols such as IBA to  ethoxylated 

alcohols with hydrophobic tails as long as C6.  The most important distinction from 

surfactants is that cosolvent molecules tend to increase IFT, while surfactants reduce it. 

Cosolvents serve several major roles in chemical EOR processes. They help break 

up viscous emulsions formed in microemulsion phases; these viscous emulsions are 

associated with high surfactant retention, which can retard the propagation of the flood. 

Viscous emulsions can also create significant reservoir engineering issues, as they are 

unpredictable and unstable, as well as extremely non-Newtonian in rheology (Walker et. 

al., 2012). Cosolvents achieve this positive effect on microemulsions in ways similar to 

multiple, branched surfactants; they increase disorder at the interface and help destroy 

viscous phases (Salter, 1977).  In addition to breaking up emulsions, cosolvents decrease 

the time microemulsions take to equilibrate, and significantly reduce the absolute viscosity 

of these microemulsions (Bourrel & Schechter, 1988). Finally, cosolvents are hydrophilic 

molecules that can be used to manipulate optimum salinity and aqueous stability 

parameters (Sahni, et. al., 2012). 

Cosolvents have drawbacks that must be managed in virtually every design 

scenario. The added cost can make flood economics much less appealing. Additionally, 

cosolvent increases the IFT and decreases the solubilization ratio (Hirasaki, Miller, & 

Puerto, 2011; Salter, 1977). Despite these drawbacks, cosolvent is often necessary for good 

performance. 

Alkali 

The addition of alkali can benefit the robustness and economics of a chemical flood 

immensely. Alkali can generate soaps from reactive crude oils, whose activity is quantified 



 

 

21 

by titration with a strong base such as KOH in a total-acid-number measurement (TAN) 

(Jennings, 1975). TAN unfortunately is only weakly correlated to production of useful IFT 

reducing soaps (Buckley & Fan, 2007). The mechanism for the formation of soaps is 

saponification of esters and carboxylic acids in crude oils, and forming carboxylate soaps 

with large hydrophobes. These soaps tend to be quite hydrophobic so a hydrophilic 

surfactant or cosolvent is needed to balance the soaps. Soaps are extremely effective at 

reducing IFT, and can sometimes do so sufficiently to eliminate the requirement for added 

surfactants entirely. 

In addition to creating soaps, increasing the pH with alkali has been shown to 

significantly decrease adsorption of surfactant to the rock facies, often by over an order of 

magnitude (Hirasaki, Miller & Puerto 2011). This will allow the flood to propagate rapidly 

(less surfactant retardation) and require less surfactant. As alkali is inexpensive relative to 

surfactant, this is enough of an advantage that even non-active oils can benefit from alkali. 

Alkali is very reactive with reservoir minerals. Sodium hydroxide (NaOH, pH 14) 

is too reactive for most applications. Sodium Carbonate (Na2CO3 pH ~11) is preferred due 

to its low cost and moderate pH and buffering capacity, but cannot be used if the formation 

contains anhydrite or gypsum. 
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Chapter 4: Experimental Methods and Equipment 

4.1 FLUID PREPARATION 

Brine Preparation 

Brines used in the research all soft, consisting of NaCl and Na2CO3. Concentrated 

brine stock was made using deionized water from Barnstead water deionizer. Deionized 

water was added to a 4L container with a stir bar. Typically salt was added to generate 4 x 

stocks, i.e. the brine would be diluted with other chemicals in a ratio of 4:1. After salt was 

added, a large stir bar was inserted and the brine was allowed to mix at least 20 minutes on 

a stir plate before being used. As the DI water used was often somewhat acidic, 1M NaOH 

was added to raise the pH to 7-8. 

In some experiments, it was necessary to remove oxygen from the brine injected 

into the core. This was done to maintain the reduced state of the core; natural in a reservoir 

environment. Typically, the brine was bubbled with argon for a minimum of 30 minutes. 

An injection column was evacuated, and the oxygen free brine was then allowed to fill the 

column. Sodium dithionite (generally 1000-2000 ppm) was used to scavenge remaining 

oxygen and lower the redox potential (ORP), converting soluble iron to the less harmful 

Fe 2+ state . 

Surfactant Stock 

Surfactant stocks were made at 4x final concentration. Liquid surfactant (with 

activity from 5% up to 100%) was carefully pipetted into DI water in a glass mixing jar. 

Electrolyte was added if needed. As with brine, the pH was adjusted to be approximately 

neutral after mixing.  
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Injected surfactant slugs also needed to be reduced and deoxygenated in some 

experiments. As these slugs contained polymer and surfactant, bubbling argon is a 

challenging but necessary step. Low flow rates are needed so the argon doesn’t simply 

bubble the slug away. The slugs were allowed to bubble with argon for 2 hours minimum; 

afterwards concentrated sodium dithionite was added to obtain 1,000 ppm final 

concentration. An evacuated column was then filled with the slug for injection. 

Polymer Stock & Filtration Ratio 

HPAM 3630s polymer stocks were made with very concentration of polymer 

(7,000-10,000 ppm). Careful quality control is very important with polymer: thorough 

mixing is required, and exposure to oxygen can degrade it. The following procedure was 

therefore carefully followed: 

Approximately 500 ml of DI water was massed in a 750 ml plastic mixing jar. 

Electrolytes were then added, along with a large stir bar. Using a properly-sized stir bar is 

critical for adequate mixing of the polymer stock (the bar should be 75% the diameter of 

the mixing vessel). The resulting brine was mixed at about 300 rpm, or fast enough that the 

vortex barely touched the stir bar.  

Argon was blanketed over the vortex. Solid polymer stock was removed from an 

oxygen scavenging container and the required amount was massed. This solid polymer was 

then slowly added over 2-3 minutes to the shoulder of the vortex. The stock was allowed 

to mix at this high rate until the stirrer was unable to continue mixing. Afterwards it was 

turned down to 80-100 rpm and allowed to mix for 3-4 days, a requirement for homogeneity 

in high concentration polymer. Several times during this period, the stock container was 

inverted vigorously for more mixing. 
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Polymer stocks and injection slugs need to be homogenous.  Heterogeneity can lead 

to core plugging as well as unpredictability in mobility control. All polymer solutions must 

pass a filtration ratio test before they are injected. 

To measure filtration ratio, ~250 ml of stock or slug is poured into a 90 mm filter 

bell. The filter paper used in the test is 1.2 micron multipore cellulose acetate.  The solution 

is filtered through the bell under 15 psi of argon pressure; Time elapsed for each 20 ml of 

filtered fluid is recorded. The filtration ratio (F.R.) is defined as 

𝐹. 𝑅. =  
𝑡 80 𝑚𝑙−𝑡 60 𝑚𝑙

𝑡 200 𝑚𝑙−𝑡 180 𝑚𝑙
  Where, 

t is elapsed time at volume indicated. If the filtration ratio is below 1.2, the solution 

is acceptable. If the filtration ratio is above 1.2, the solution can be mixed longer, filtered 

at a larger diameter filter size and re-filtered, or simply re-filtered at 1.2 microns if the F.R. 

is close to passing.  

Oil Dilution 

Crude S dead oil was diluted with decalin according to the EACN calculations 

detailed in Chapter 6. To do this, ~600 ml dead oil was poured from a large container into 

1 L glass jars. The glass jar was then placed in a water bath at 68°C for 30-60 min with a 

loosely attached lid. A large stir bar was placed in the jar and rotated at ~80-100 rpm. The 

stochastically calculated mass of decalin was added in intervals of 2-6 ml, with ample 

stirring between intervals with a glass stirring rod used to assist the stir bar. The final 

concentration of decalin added was 13.1 wt.%.  It is important to add decalin slowly, as the 

high asphaltene content of the crude S used could result in precipitation if a large amount 

were suddenly added. After all the decalin was added, the oil was stirred by hand for 5 

minutes and finally inverted several times. Any time the 1L vessel was used, the jar was 

first inverted several times to ensure the sample was well-mixed. 
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4.2 PHASE BEHAVIOR SCANS 

Phase behavior scans were designed to help understand the microemulsion phase 

behavior described in chapter 2. Pipette repeaters were used to add brine stock, DI water 

and finally surfactant stock to sealed borosilicate pipettes in desired amounts. The pipettes 

are arranged in order from low salinity to high salinity to easily observe the effects of 

salinity on microemulsion phase behavior and the evolution of type I-III-II 

microemulsions. After all the aqueous fluids were added, the pipettes were gently tapped 

on a hard surface to dislodge air bubbles from the tips. The levels of aqueous phase were 

then measured; this step allows for calculation of solubilization ratio for surfactants and 

also indicates if there are obvious problems with pipetting. 

Polymer is typically not added to phase behavior pipettes. Polymer has been shown 

to have little effect on the phase behavior of fluids involved, see for example Pope et al, 

who describes among other phenomena the limited impact of polymer on optimum salinity 

(1982). 

After the aqueous phase is added and measured, the pipettes were put in a hot oven 

for 2-3 minutes (generally 68°C) to allow them to heat up. The diluted viscous oil must 

heat for 10-12 minutes for it to be easily pipettes into the narrow borosilicate tubes. Even 

after heating, the oil is several hundred cP and requires care and skill to pipette accurately. 

The required 0.4-2.0 ml of oil was added depending on the water-oil ratio (W.O.R.) needed. 

Argon was used to displace volatile gasses in the tube, which was then sealed with 

a flame torch and put in the oven at temperature of interest. The tubes are then arranged by 

order of increasing salinity in the rack. They were mixed after several minutes, and over 

the next 3-4 days were mixed often, every 1-2 hours on average. 
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4.3 AQUEOUS STABILITY TEST 

Any formulation containing surfactant, brine and polymer needs to pass the 

aqueous stability test, as the fluids need to be injected as a clear aqueous phase. Any 

solution to be injected in the subsurface must be completely clear, i.e. entirely water 

soluble; any solid precipitation at all is unacceptable in a reservoir injection scheme. 

To test this solubility criterion, chemicals used in the phase behavior test above 

(including polymer) are combined in a salinity scan called an aqueous stability test. Glass 

vials are arranged and labeled according to salinity. Brine, DI, polymer and surfactant 

stocks are then added to the vials to represent a final chemical mixture. The vials are 

blanketed with argon and then sealed with a torch. 

At lower values of salinity, the solution should be perfectly clear. At some higher 

value of salinity, the solution will begin to become cloudy. At this salinity, salt has 

successfully pushed the surfactant out of the aqueous phase and forced it to precipitate, a 

phenomenon known as ‘salting-out’. It is important that this ‘salting-out’ salinity or 

aqueous stability be safely higher than the injection salinity for the chemical formulation. 

Polymer can affect aqueous stability and is therefore required in the vials.  
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Chapter 5: Heavy Oil Characterization 

One crude oil was primarily used in experiments in the study, and will be called 

crude S. Crude S is the oil used in all ASP formulations, corefloods, and many of the ACP 

formulations. Crude S will be the primary focus of the following chapters, other crudes 

used will be mentioned as needed. Characterizing the oil is an important first step in any 

phase-behavior based experimentation. 

5.1 LIVE AND DEAD OIL VISCOSITY 

An Ares LS-1 viscometer was used to measure the viscosity of the dead oil at 

temperatures up to 95 °C, after which the crude reaches its bubble point.  Initially, a 

transient rate test was run to ensure normal behavior of oil viscosity. Afterward, the crude 

was heated in intervals of 5-10°C and the viscosity was measured. The results of the 

surrogate oil viscosity and the dead oil viscosity are seen in Figure 5.1 Viscosity of Crude 

S and Surrogate Oil.  The extremely strong dependence of oil viscosity on temperature is 

highly advantageous in heavy oil EOR. Increasing the reservoir temperature just 30°C will 

decrease the surrogate oil viscosity an order of magnitude. 
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Figure 5.1 Viscosity of Crude S and Surrogate Oil 

 

5.2 EACN AND SURROGATE OIL  

Dead oil is not representative of oil in the subsurface; light ends have escaped from the oil, 

increasing its viscosity and increasing its equivalent alkane carbon number (EACN). 

EACN expresses the concept that varying hydrocarbon groups predictably change the 

optimum salinity of microemulsion phase behavior. A mole-weighted average of the 

EACN of each molecule results in an overall EACN of the mixture; in this case a heavy 

crude oil. Though EACN is impossible to directly calculate for a crude oil due to sheer 

complexity, its value can be measured as described below and in the literature (Cayias, 

Schechter, & Wade, 1976; Solairaj et. al., 2012). 
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To calculate EACN in the absence of a PVT report containing live oil composition, gas-

oil-ratio (GOR) is needed (85 SCF/BBL for Crude S) along with molecular weight of gas 

(assumed pure methane; = 16 g/mol) and molecular weight of oil (500 g/mol based on 

correlation from molecular weight and room temperature viscosity).  

A good phase behavior formulation is needed to measure EACN. The optimum 

salinity for Crude S was determined using the ASP formulation F-1, 0.15% C-28-25PO-

55EO-carboxylate, 0.15% IOS 19-23 with 1% IBA-5EO. As this oil was active, it is 

important to use multiple different hydrocarbon dilutants at the same oil concentration, 

rather than using one dilutant at multiple concentrations (changing the oil concentration 

changes the amount of produced soaps and therefore the optimum salinity shifts). Alkane 

dilutants ranging from C8 to C20 were used, and the optimum salinity was recorded. Dead 

oil EACN was determined by iteratively altering the dead oil EACN until the log of 

optimum salinity vs. EACN of the oil (crude + dilutants) fell on a straight line. Dead oil 

EACN was determined to be 17.0. 
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Figure 5.2 Optimum salinity vs. EACN of dilution for crude oil S 

The tight relationship above between optimum salinity and EACN shows the 

strength of the correlation using a dead oil EACN of 17; the sound basis for EACN is 

demonstrated in many similar datasets (Cayias, Schechter, & Wade, 1976; Bourrel & 

Schechter, 1988). 

5.3 PROPERTIES OF THE CRUDE S 

IFT was measured between oil and water using a ring tensiometer. The average 

value was 26 dynes/cm. Total acid number is approximately 3-4 mg KOH/ g Oil. 
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Chapter 6: ASP Phase Behavior Experiments 

As mentioned in Chapter 1, heavy oil resources are very vast and largely untapped. 

In this section, the applicability of ASP flooding was evaluated for heavy oils at elevated 

temperatures (100°C). The surrogate oil viscosity at this temperature was ~71 cP, a 

significant decrease from the viscosity in the reservoir of about 5000 cP. 

6.1 ASP PHASE BEHAVIOR 

Initial Phase Behavior Tests 

ASP phase behavior studies were carried out for many combinations of surfactants, 

cosurfactants and cosolvents. Sodium carbonate was the only alkali investigated, though 

other alkali species has shown promise in ASP coreflood applications.  Attempts were 

made to find an alkali-free SP formulation, but finding a formulation with suitable 

microemulsion characteristics and ultra-low IFT were unsuccessful. 

Initial experiments were conducted primarily with Tristyryl Phenol (TSP) alkoxy 

carboxylate surfactants with IOS co-surfactants in dead heavy oil. These experiments were 

conducted at 100°C. Initial scans demonstrated very high viscosity of microemulsion, 

which could have been unfeasible to propagate through a core though these scans often 

demonstrated ultra-low IFT. In order to mitigate these viscous phases, later formulations 

contained high concentrations of cosolvent, in particular Ethoxylated 2 wt. % Isobutanol 

(IBA-xEO) and TriEthylene Glycol Butyl Ether (TEGBE).  This is higher cosolvent 

concentration than desired since co-solvent increases IFT.  

As an alternative to increasing the concentration of cosolvent, the temperature of 

many formulations were raised to 120°C, to decrease the formation of viscous phases 

without increasing the cosolvent requirements in the formulation. Though this was largely 
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successful, the difficulties of working at 120°C precluded any corefloods being done at that 

temperature. 

After unsuccessfully attempting many formulations for the dead oil, the decision 

was made to create surrogate oil from the crude as described in 5.2 EACN and Surrogate 

Oil sections. To do this, certain information about the oil was required, especially solution-

gas ratio and oil molecular weight. The latter was obtained from a relationship relating oil 

molecular weight to room temperature viscosity (Closmann & Seba, 1990). Dilution with 

13.1% decalin was appropriate in terms of EACN, final oil viscosity and showed no 

evidence of asphaltene precipitation. 

Aqueous stability was almost always higher than optimum salinity for these 

formulations, as the surfactants used tended to be quite hydrophilic to compliment the 

highly hydrophobic soaps. 

Successful Phase Behavior Test 

After diluting the oil, phase behavior studies showed greatly improved 

microemulsion phase behavior, but TSP surfactants didn’t demonstrate adequately low 

IFT. Phase behavior using large-hydrophobe alkoxy carboxylate surfactants showed low 

microemulsion viscosity as well as ultra-low IFT. Other tests using older, smaller-

hydrophobe (13 carbon) TDA-xPO-Sulfate also demonstrated much promise, despite 

thoughts that the larger hydrophobe surfactants should perform better with the large EACN 

heavy oils (Solairaj et. al., 2012).  

Lowering cosolvent concentration to 1% IBA-5EO and surfactant concentration to 

0.3% (1:1 ratio of primary surfactant to cosurfactant) showed ultralow IFT, moderate 

microemulsion viscosity, absence of gel phases and appropriate activity map behavior. 

Details on two leading ASP candidates are described below. 
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F-1 ASP Formulation 

The formulation F-1, 0.15% C-28 25PO 55EO carboxylate, 0.15% IOS 19-23 with 

1% IBA-5EO was considered a good candidate for testing in an ASP coreflood. It showed 

ultralow interfacial tension at all oil concentrations, an appropriate activity map favorable 

for coreflooding, low microemulsion viscosity, aqueous stability and no gels or liquid 

crystals. Additionally, the carboxylate surfactant used as a primary surfactant is stable at 

elevated temperature (Adkins, et. al., 2010). An activity map for the flood is shown below. 

 

Figure 6.1.1: Activity map of F-1 formulation at 100°C. 

The activity map shows typical behavior for ASP formulations in oils generating 
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(WOR) of 9) region has higher optimum salinity, as proportionally less hydrophobic soap 

is generated. As the oil fraction increases, the in-situ soaps dominate the microemulsion 

behavior and the optimum salinity decreases, until it levels-off around 50% oil 

concentration (WOR = 1). The gradient depicted above is somewhat steep, with the 10% 

oil optimum salinity (35,000 ppm) almost twice that of the 30% oil optimum. Decreasing 

the hydrophilicity of the surfactants would have the effect of changing the ratio of 

hydrophobic to hydrophilic molecules between the surfactant and the soap, and would 

make the slope of the activity map flatter. The type III ‘window’ corresponds to 

microemulsion phase behaviors showing a distinct middle phase, and usually corresponds 

to the lowest IFT. A broader type III region can lead to a more robust design, more tolerant 

to local variations in salinity, oil composition or other unknowns in a reservoir. The above 

scan has an acceptably large type III window of 5,000-10,000 ppm TDS. 

Figure 5.2 depicts solubilization ratios for 10% oil (WOR = 9). IFT can be 

estimated using the Chun Huh equation. 
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Figure 6.1.2: Solubilization ratios in 10% oil for formulation F-1. 

As described earlier in the section Interfacial Tension and Solubilization Ratio, a 

solubilization ratio greater than 10 corresponds to ultra-low IFT from the Chun-Huh 

equation, and is adequate to reduce oil saturation to nearly zero in most cores. Note here 

that the area with solubilization ratio >10 is rather small. This is due to the fact that at 10% 

oil, there is little help from the in-situ generated soaps in lowering IFT; the surfactant barely 

manages to lower IFT to ultralow level. The results at 30% oil (WOR = 3/7) are shown 

below: 
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Figure 6.1.3: Solubilization ratios in 30% oil in formulation F-1. 

 

The formulation above demonstrates the significance of soaps in lowering IFT. 

While the solubilization ratio at 10% oil is not much above 10, we see here that 

solubilization ratio is much higher at 30% oil. This is not because the surfactant becomes 

more effective at greater oil concentrations, but because the soaps generated by alkali 

acting synergistically with the added surfactants are extremely effective in lowering 

interfacial tension. As the amount of soap generated is difficult to measure, it is not 

included in the ‘solubilization ratio’ shown in these figures.  
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F-2 ASP Formulation 

Though the F-1 formulation was a good candidate for coreflooding, it was desired 

to find a formulation which performed slightly better at low oil fractions (high WOR). A 

formulation F-2 containing 0.15% TDA-13PO Sulfate, 0.15% IOS 19-23, 1% IBA-5EO 

demonstrated similarly good characteristics as F-1, with the added benefit of performing 

better at high WOR. A potential problem is the formulation used sulfate surfactants, which 

are unstable at high temperatures. This problem is mostly alleviated by the use of high pH, 

which stabilizes the sulfates even at 100°C. 

 

Figure 6.1.4: Activity map for F-2 formulation 
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The F-2 formulation is less hydrophilic, resulting in a flatter activity map. Note that 

at 50% oil, F-1 and F-2 have the same optimum salinity (15,000 ppm), due to the strong 

influence of the soap on phase behavior. The solubilization ratio curves for F-2 use volume 

% of oil as the above figure. 

 

Figure 6.1.5: F-2 ASP formulation solubilization ratio for 30% oil. 
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Figure 6.1.6: F-2 ASP formulation solubilization ratio for 10% oil. 

Note the significantly higher solubilization ratios for F-2 vs. F-1, especially in the region 

of 10 vol.%  oil. The improvement in IFT at high WOR was the basis for selecting F-2 as 

the formulation of interest for the corefloods ASP-1 and ASP-2. 

6.2 ASP-1 COREFLOOD 

ASP-1 Coreflood Objective 

ASP-1 coreflood was designed to evaluate the performance of ASP flooding in 

heavy oils at temperatures above their reservoir temperature. Increasing the reservoir 

temperature will improve the feasibility of a chemical flood by reducing the oil viscosity, 

therefore increasing oil recovery and decreasing pressure drop. Additionally, lowering the 
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viscosity of the viscous oil will increase injectivity and therefore throughput rates in the 

field. The ASP core floods were conducted in Berea sandstone due to its relative 

homogeneity, high permeability (100’s of mD) and lack of clay content. 

ASP-1 Core Properties 

The properties of the Berea core used in ASP-1 flood follow in table 6.2.1. 

Core ASP-1 

Outcrop Berea   

Mass 1021 g  

Porosity 0.197   

Length 11.52 in 

Diameter 1.84 in 

Area 2.63 in2 

Temp 100 °C 

Brine Perm 246 mD 

PV 101 ml 

Table 6.2.1: ASP-1 Core Properties 

ASP-1 Coreflood Setup 

The core was first measured in dimensions and mass. Afterwards it was placed 

inside a 2 inch ID steel-jacketed core holder. Confining pressure of 1000 psi was applied 

to the outside of the core with an ISCO syringe pump. Pressure taps were drilled into the 

core at fixed intervals of 2.9 inches, to allow monitoring of pressure across different 

sections of the core. Dead volume in the core was to 2 ml. 

After securing the core in the core holder, a vacuum was applied to the core for 30 

minutes. After this time, the core was saturated with filtered 10,000 ppm NaCl brine. The 

volume of brine was measured and converted to pore volume of the core, approximately 

102 ml. 10,000 ppm NaCl brine was assumed to have a density of 1g/ml. 
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ASP-1 Tracer Test and Brine Flood  

After obtaining a volumetric measurement of pore volume, a tracer test was done 

with 40,000 ppm NaCl brine. This was the same resident brine used in the coreflood. The 

initially saturated 25,000 ppm brine was displaced with the resident brine at 5 ml/minute, 

while samples were collected every 3 ml (~ 36 seconds). Salinities were measured using a 

refractometer (reads refractive index, calibrated to NaCl) and recorded. The curve in Figure 

6.2.1: ASP-1 tracer data resulted from the test. 

 

Figure 6.2.1: ASP-1 tracer data used to calculate pore volume 

Integrating the area above the curve gives the pore volume of the core; the result 

was 101 ml, in close agreement with the volumetric values of 102 ml. 

After completing the tracer test, flow rate of brine was increased to 10 ml/min. 

Pressure drops for the brine flood were monitored, and Darcy’s law was applied to calculate 

brine permeability.  This permeability was calculated at room temperature and later at 

100°C. 
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Table 6.2.2: Brine flood performance @10 ml/min & 25°C in ASP-1 coreflood 

Section ΔPBrine, psi kBrine, mD 

1 1.28 228 

2 1.18 246 

3 1.04 281 

4 1.08 262 

Whole core 4.65 249 

 

After completion of the brine flood, the core was placed in a 100°C oven. Confining 

pressure was maintained at a constant 1000 psi by an ISCO syringe pump, while brine was 

occasionally bled from the effluent lines on the core. 

ASP-1 Oil Flood 

Unfiltered surrogate crude oil was heated to 100°C over 3 hours. Pressure was 

released every 10 minutes to ensure safety of equipment and experimenters. The oil flood 

was conducted at constant rate of 8.1 ml/min (100 ft/day) to ensure high pressure drop and 

desaturation of resident brine. 

It was apparent from the pressure drop data, which steadily increased with injection 

volume, that the unfiltered crude oil was plugging the face of the core. To test this 

hypothesis, the flow direction was reversed, and the plugging was removed from the initial 

inlet and replaced with plugging at the outlet. Initially it was thought that filtering the 

viscous oil might have an undesirable effect on phase behavior, therefore it remained 

unfiltered. It became an obvious necessity, and was filtered sequentially through 5, 3 and 

1.2 micron filters in an 85°C oven. Phase behavior changed slightly with filtration, as loss 

of light ends increased the optimum salinity 2500 ppm in 10 and 30 vol. % oil. It remained 

constant at 50 vol. % oil at about 15,000 ppm. 
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Filtered crude was injected in a second oil flood, whose results are below. Pressure 

drops were recorded after they reached a steady state value. The kro for the entire core was 

0.97, see table 6.2.3. 

Table 6.2.3: Filtered oil flood #2 performance @ 100°C  in coreflood ASP-1 

Section ΔPOil flood , psi kOil, mD kro 

1 19.5 235 1.034 

2 16.0 287 1.181 

3 14.3 321 1.143 

4 23.7 188 0.718 

Whole core 75.5 241 0.97 

 

Relative permeability > 1 is somewhat common in water-wet rocks with viscous 

oil, as Odeh showed in the late 1950’s (Downie & Crane, 1961). The low permeability in 

the last core is attributed to face plugging mentioned earlier; it wasn’t possible to entirely 

remove the plugging on both faces exposed to the unfiltered crude. Initial oil saturation Soi 

was 75%. 

ASP-1 Water Flood ASP-1 

After oil flooding, SB-1 brine was pumped through the core at 0.7 ml/min or 9.68 

ft/day. A back pressure regulator set to 32 psi was attached to the core to prevent 

vaporization of brine and light ends. After pressure drop reached steady state, krwo was 

calculated to be 0.038 for the core, though this value is artificially low due to the face 

plugging at the outlet. Relative permeability values for each section are shown below in 

table 6.2.4. 
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Table 6.2.4: Waterflood performance @100°C and 9.68 ft/day in ASP-1 Coreflood 

Section ΔPwaterflood, psi Kw, mD Krw
o 

1 1.98 10 0.045 

2 1.75 12 0.048 

3 1.85 11 0.039 

4 3.00 7 0.025 

Whole core 8.60 9 0.038 
 

Residual oil saturation Sorw after waterflood was 41.4%.  

ASP-1 Mobility Control Requirements 

The ASP-1 coreflood was designed to be a stable displacement. Figure 6.2.2 shows 

the apparent viscosity and total relative mobility required to displace the oil bank. 

 

Figure 6.2.2: Apparent viscosity and total relative mobility of oil bank in ASP-1 

The parameters used in the calculations are as follows: 
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Table 6.2.5: Mobility control requirement parameters 

Parameter Definition Value Justification 

krw
o 

End point water relative 
permeability 

0.04 
Obtained from 

water flood 

kro
o End point oil rel. perm 1 

Obtained from oil 
flood 

nw 
Fractional flow exponent 

water 
2 

Assumed for 
water wet  

no 
Fractional flow exponent 

oil 
2 

Assumed for 
water wet 

Swr 
Residual water saturation 

to oil 
0.28 

Calculated from 
mass balance 

Sor 
Residual oil saturation to 

water 
0.46 

Calculated from 
mass balance 

w  Water Viscosity 0.38 cP Known value 

o  Oil Viscosity 71 cP 
Measured in 
rheometer 

    

From the above total mobility calculations, it is apparent the minimum viscosity for 

a stable displacement fluid is ~82 cP. Polymer solutions are extremely shear-thinning, and 

shear rate is difficult to determine with certainty in a core flood due to combined effects of 

oil saturation, distribution and relative permeability.  With this in mind it is important to 

design a robust formulation for mobility control. In the case of ASP-1, 100 cP at a shear 

rate of 10 sec-1 (the approximate shear rate in the core) was determined to be appropriate. 

HPAM FP 3630s was used as the mobility control polymer in these experiments due to its 

high molecular weight. 

ASP-1 Salinity Gradient Design 

Another critical design parameter in a successful coreflood is the salinity gradient. 

As constant-salinity floods suffer various disadvantages, it is critical to reduce the salinity 

in steps from over-optimum to below optimum. This has the net effect of ensuring every 
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region in the core experiences the ultralow IFT in the type III microemulsion region 

corresponding to the optimum salinity.  

 

Figure 6.2.3 : ASP-01 salinity gradient design. The dotted line represents the salinity 

gradient. 

Pope and Nelson (1978)  showed the salinity gradient will retard the surfactant bank 

from an early breakthrough by the formation higher-salinity type II microemulsion in the 

front. The lower salinity behind it ensures all swept areas pass through the zone of ultralow 

IFT in type III, and the final lowest salinity brings the emulsion to type I, where capillary 

desaturation of aqueous phase should desaturate all trapped surfactant. 
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ASP-1 Chemical Flood 

The final injection ASP slug and polymer drive had the following composition, 

based on the design criterion described above and methods described in the experimental 

methods section. Before injecting the ASP slug, a sample tube of crude in the core and ASP 

slug were mixed together to ensure IFT was ultra-low. This last step ensures that no 

mistakes have been made in the slug and drive by checking the mixture for low IFT. 

Additionally, a refractometer can be used to check the total dissolved wt.% in the slug and 

drive (electrolyte, surfactant, cosolvent, and polymer) as a second test of quality control in 

the slug and drive. 

Table 6.2.3: ASP-1 Slug and drive composition 

Slug Component ASP Slug Polymer Drive 

PV injected 0.5 2 

[HPAM 3630s] 

ppm 
3,750 4,000 

PVinj *[Surf #1 + 

#2] 
15 --- 

[Surf #1], wt.% 
0.15%  

TDA-13 PO SO4
- --- 

[Surf #2], wt.% 
0.15%  

IOS 19-23 
--- 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

ppm Na2CO3 15,000 10,000 

TDS ppm 15,000 10,000 

Frontal velocity 

ft/day 
1.08 1.08 

Viscosity at 10/s 

& 100°C, cP 
70 101 
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Filtration Ratio 

F.R. 
1.12 1.16 

pH 10.8 10.5 

 

Coreflood recovery was 97.4% of tertiary oil saturation. This demonstrated 

excellent performance of the ASP/PD design in elevated temperature environments for 

heavy oils.  The coreflood result and recovery are below. 

 

Figure 6.2.4: ASP-1 oil recovery, oil cut and oil saturation 

The data in Figure 6.2.7 shows the oil bank breaks through at 0.25 PV of 

throughput, and rapidly increases to ~ 72% oil cut. This high oil cut is maintained until 

over 90% of oil is recovered. The microemulsion breakthrough is approximately 0.85 PV, 

slightly earlier than expected but still indicative of a stable displacement.  After 
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microemulsion breakthrough, oil cut continued to drop until it was negligible 1.12 PV. 

Pressure drops in the core in the Figure 6.2.8. 

 

 

Figure 6.2.5: ASP-1 Chemical flood pressure drops 

From the pressure drop data, the oil bank buildup, microemulsion and polymer 

drive are all clear to see. The total pressure drop is 14.8 psi/ft, which would be 

unsustainable in the field; however most rock containing heavy oils is permeable on the 

order of 1-5 Darcy; a corresponding pressure drop in such a rock would be 2-0.5 psi/ft.  
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ASP-1 Effluent Analysis  

Effluent analysis of the ASP-1 coreflood was limited to salinity measurements and 

pH measurements. Both showed salinity and pH propagated well with the chemical slug. 

After breakthrough of the microemulsion at 0.85 PV, the pH steadily increased to the 

steady state slug value of 10.85 at ~1.15 PV. Proper pH propagation is critical to a 

successful ASP coreflood, as the generated soaps provide most of the IFT-lowering 

micelles. Chromatographic separation of surfactant and alkali is highly undesireable. 

Salinity also showed proper propagation within the core. The salinity was measured 

using a refractometer, which captures all dissolved components, including surfactant, co-

solvent and oil solubilized in micelles, if present. The total salinity of the surfactant slug is 

32,000 ppm. The slug salinity measured from the refractometer reads a higher value than 

this at steady state (38,000), but is consistent with the initial measurement of the slug. 
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Figure 6.2.6: ASP-1 pH propagation with coreflood 

 

Figure 6.2.7: ASP-1 salinity propagation. This result corresponds well to slug breaking 

through and the ensuing polymer drive 
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6.3 ASP-2 COREFLOOD 

ASP-2 Coreflood Justification 

As the ASP-1 coreflood was a success, a more challenging design was selected for 

ASP-2. Though the ASP-1 coreflood had low surfactant concentration, the total ASP slug 

was large at 0.5 PV. The design for ASP-2 was identical to that of ASP-1, with the ASP 

slug designed to be only 0.25 PV. Such a low PV*C can significantly improve the 

economics of a surfactant flood. 

ASP-2 Core Properties 

As in ASP-1, the core material used in the flood was Berea sandstone, chosen for 

its relatively high permeability, low clay content and availability. The properties of the core 

used in ASP-2 flood follow. 

Table 6.3.1: Core Properties of ASP-2 rock 

Core ASP-2 

Outcrop Berea   

Mass 1068 g  

Porosity 0.205   

Length 11.44 in 

Diameter 1.85 in 

Area 2.63 in^2 

Temp 100 C 

Brine Perm 253 mD 

PV 102 ml 

 

The core overall is quite similar in character to that of ASP-1 core. 

ASP-2 Coreflood Setup 

The coreflood setup was identical to ASP-1. See table 6.2.1.  
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ASP-2 Brine Flood and Tracer Test 

The tracer test was conducted at room temperature, as was the initial brine flood. 

The pore volume from the tracer and volumetrically was 102 ml. After the room 

temperature tests were completed, the core was placed into a 100°C oven. Confining 

pressure was maintained with an ISCO pump on the mineral oil jacket. Meanwhile, 

injection fluids were heated in the same oven. Both the brine column and the core were 

vented often to prevent an unsafe buildup of pressure.  

After allowing the core to equilibrate overnight, a second tracer test was run at 

100°C, to compare with the room temperature value and to ensure the core remained 

undamaged. The permeability to brine of different sections is tabulated below. 

Table 6.3.2: Single phase brine permeability in ASP-2. 100°C, 5 ml/ min flow rate. 

Section ΔPBrine, psi KBrine, mD 

1 0.67 220 

2 0.57 258 

3 0.48 307 

4 0.47 296 

Whole core 2.30 253 

ASP-2 Oil Flood 

After the plugging issues experienced with ASP-1, oil was filtered immediately for 

use in this experiment. The final filter size was 1.2 µm under 20 psi filter pressure. An oil 

column was made in a steel vessel and allowed to equilibrate in the oven for 3 hours; a 50 

psi back pressure regulator on the column allowed it to vent without loss of light ends as it 

heated.  

Oil was flooded in the core from the bottom (this high density oil doesn’t 

experience much gravitational instability) at high rates of 14 ft/day until pressure drops 
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were steady and oil cut was 100%. Mass balance calculations revealed the Soi to be 77%. 

Permeability to oil flood was measured and recorded below. 

Table 6.3.3: Pressure drops in oil flood, ASP-2 coreflood. 

Section ΔPOil flood , psi kOil, mD kro 

1 23.90 264 1.201 

2 21.24 297 1.150 

3 19.73 320 1.043 

4 18.92 315 1.065 

Whole core 87.0 286 1.133 

 

The more uniform permeability distribution to oil perm in ASP-2 vs. ASP-1 is 

likely due to the lack of plugging seen in ASP-1. 

ASP-2 Waterflood 

After reaching Soi the core was waterflooded at 9.68 ft/day (0.7 ml/min) until the 

oil cut was <1% and pressure drops were steady across the core. Heavy oils are expected 

to have poor waterflood performance; this means low sweep efficiency, early water 

breakthrough and high residual oil saturations. After 2 PV of water were injected, Sorw was 

0.46, confirming expectations of poor performance. Waterflood permeability in various 

sections is Table 6.3.4. 

Table 6.3.4: ASP-2 waterflood relative permeability 

Section ΔPwaterflood, psi kw, mD krw
o 

1 2.75 8 0.034 

2 1.52 14 0.053 

3 1.40 15 0.048 

4 1.60 12 0.041 

Whole core 17.10 11 0.042 
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ASP-2 Design Requirements 

Design requirements for ASP-2 are identical to those of ASP-1; the altered variable 

is ASP slug size. To ensure good performance with the lower chemical concentration used, 

viscosity of the slug was increased slightly. To accomplish this polymer concentration was 

raised to 4,000 ppm in both the slug and drive. Viscosity curves for ASP slug and polymer 

drive are below. 

 

Figure 6.3.1: ASP-2 Slug & drive viscosity. 

ASP-2 Chemical Flood 

The ASP-2 chemical slugs injected are below. They are virtually identical to those 

in ASP-1, with half the pore volume and slightly higher polymer concentration in the ASP 

slug vs. ASP-1. Differences are in bold. 
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Table 6.3.5: ASP-2 ASP slug and polymer drive composition 

Slug Component ASP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
4,000 4,000 

PVinj *[Surf #1 + 

#2] 
7.5 --- 

[Surf #1], wt.% 
0.15%  

TDA-13 PO SO4
- --- 

[Surf #2], wt.% 
0.15%  

IOS 19-23 
--- 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

ppm Na2CO3 15,000 10,000 

TDS ppm 15,000 10,000 

Frontal velocity 

ft/day 
1.08 1.08 

Viscosity at 10/s 

& 100°C, cP 
81 108 

Filtration Ratio 

F.R. 
1.11 1.15 

pH 10.5 10.6 

 

The flood was very effective at recovering tertiary oil; 97.6% of residual oil was 

removed from the core and final oil saturation was 1.23%.  
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Figure 6.3.2: ASP-2 coreflood recovery, oil cut and oil saturation in the core vs. PV of 

chemicals injected. 

The flood performance was equivalent to that of ASP-1; they both recoverd over 

97% of the oil in the core.  ASP-2 produced 93% of the oil before microemulsion 

breakthrough, vs. 88% in ASP-1, and produces all the oil before 1 PV, vs. 1.1 PV in ASP-

1. This is probably due to the slightly greater mobility control used in ASP-2, which 

removed the small amount of viscous instability seen in ASP-1. 

Pressure drops during the flood were as anticipated. Total pressure drop for the core 

at steady state was 17.2 psi/ft. Though this value is high for a reservoir, the rock used is 

significantly less permeable than many suitable heavy oil reservoirs, and the expected 
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pressure would be manageable for an oil of this viscosity in a multi-Darcy sand. Pressure 

drop data for the chemical flood are shown in Figure 6.3.6. 

 

Figure 6.3.4: ASP-2 chemical flood pressure drops 

The gap at 0.25 PV occurred when the column containing the polymer drive leaked. 

Data wasn’t written during a brief period when a replacement column was put online. 

ASP-2 Effluent Analysis 
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Figure 6.3.5: ASP-2 pH versus PV throughput 

 

Figure 6.3.6: ASP-2 Salinity vs. throughput 
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ASP Flooding Conclusions 

The ASP 1 & 2 floods demonstrated the applicability of the ASP technology to 

heavy oils in under elevated temperature conditions. Though work has been done with 

CEOR in heavy oils before, these have generally been in viscously unstable environments 

and without reservoir heating. This work demonstrates that heavy oil responds extremely 

well to ASP flooding when heated, and could potentially remove virtually 100% of the oil 

in contacted zones of a reservoir. Though there are certainly issues with heating a reservoir, 

the potential benefits of applying hybrid thermal-CEOR to heavy oil fields seem 

significant. 

Additionally, only very small amounts of surfactant (PV * C = 7.5) are needed to 

successfully execute such a flood. Multiplying the % pore volume b surfactant 

concentration yields a numerical value, PV*C. The PV*C value for the ASP 2 core flood 

was only 7.5, a low value (% PV = 25, C = 0.3). This is likely due to low surfactant 

adsorption in a high pH environment and the contribution of in-situ generated soaps in 

reducing IFT to ultralow levels. Such low concentrations of surfactant would have 

significant impacts on the economics of a chemical flood.  
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Chapter 7: ACP Experiments 

7.1 HISTORY OF ALKALINE FLOODING 

Alkaline flooding has a long history; though it has received somewhat less attention 

recently than surfactant-based processes, it too was a subject of technological development 

with varying success. Very long ago, researchers like Thom (1926) realized that the 

presence of sodium carbonate (high pH) in formation brines resulted in better performing 

water-drives and the formation of emulsions. These observations led to a development of 

high-pH technology in the 1920s, when waterflooding was a new process. In 1925, Nutting 

published some of the earliest related work, calling the technology the ‘soda processes’; he 

alludes to the earliest known alkaline flood in the same year, which was a failure (1925). 

An H. Atkinson in 1927 obtained a patent for the use of sodium hydroxide in waterflooding, 

though no record of its field implementation exists.  

These early researchers grasped many of the fundamental concepts critical in 

alkaline flooding, though they were limited by the analytical techniques available at the 

time. They identified emulsification and entrainment (crude oil transported with emulsion, 

via lowered IFT), wettability reversal (generally oil- to water-wet) and emulsification and 

entrapment (plugging of emulsion to improve volumetric sweep) as mechanisms primarily 

responsible for producing residual oil (Johnson, 1976). By 1942 researchers such as 

Subkow had grasped the concept of in-situ soap formation via deprotonation of carboxylic 

acids (Subkow, 1942). These mechanisms were established based on their understanding 

of the O/W (oil in water) emulsion, where water forms a continuous phase with oil 

solubilized. Though such emulsions can exhibit ultralow IFT and cause wettability 

alteration, their behavior is challenging to predict; especially when compared to a 



 

 

62 

thermodynamically stable microemulsions. This was a critical issue in the lack of 

successful alkaline floods, as detailed below. 

Understanding of the physics involved in surfactant process (for example, Windsor) 

helped improve the technology of alkaline flooding, and in the 1960’s interest in the 

technology reemerged. The first ‘modern’ caustic flood was an attempt at wettability 

alteration from oil-wet to water-wet in the Harrisburg Field in Nebraska (Leach, Wagner, 

Wood, & Harpke, 1962). Though one watered-out well produced some oil, the test was not 

considered successful due to the large slug used. A second wettability alteration test in the 

Singleton field produced 2.3% PV of incremental oil from 1966-1970, another 

discouraging result. Both these tests involved small slugs of high-concentration sodium 

hydroxide to alter wettability in an originally oil-wet environment (Emery, Mungan, & 

R.W., 1970). 

An attempt to use the other useful properties of the alkaline flood was made in 1964 

at the Whittier field, where researchers hoped to use the viscous emulsion to divert flow in 

a reservoir to unswept zones. A targeted area had been waterflooded for 2.5 years prior to 

alkaline injection, and was in severe decline. The 60 acre pattern of interest was flooded in 

1966 with a 23% PV slug of 2000 ppm sodium hydroxide, which corresponded to ultralow 

IFT. The rate turned around, almost immediately, and the test produced 350,000-470,000 

barrels of incremental oil (Graue & Johnson, 1974). Johnson’s 1973 report ‘Status of 

Caustic and Emulsion methods’ is a good overview of the period (Johnson, 1976). 

Understanding improved over the next decade, and alkaline flooding (often called 

caustic flooding in this era) enjoyed a heyday in the late 1970’s and early 1980’s. A report 

by Mayer reveals the extent to which knowledge had improved in the area; researchers 

show better understanding of alkaline displacement mechanisms, including complexities 
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of emulsions and their failure to consistently produce oil via the emulsification and 

entrapment mechanism (aka plug and divert), challenges of relying on wettability alteration 

and the emulsification mechanisms. Impact of salinity on emulsion behavior is given 

attention. Understanding of the true chemistry of acidic components in oil (asphaltenes, 

resins) is revealed. The importance of sequestering divalent cations with the alkaline agent 

is mentioned, and even viewed as positive in terms of flow diversion. Much more detail is 

given to alkali consumption form various minerals, including clays and gypsum (Mayer, 

Berg, Carmichael, & Weinbrandt, 1983). 

Two works from this period highlight the major leaps in understanding the process 

of alkaline flooding over the two prior decades: Burk’s 1987 report on various alkaline 

agents and TIORCO’s report on an Alkaline-Polymer flood. The TIORCO report is the 

first published account of alkaline flooding with polymer (AP) for conformance control, 

and took place in the Isenhour Unit, WY. This constituted a major breakthrough in the 

field; polymer to this point had been limited to surfactant-based or pure conformance 

applications, while alkaline floods were viewed as lower-tech, lower recovery technology. 

The Isenhour unit was a definitive success, despite its low permeability (21 mD) and fully 

emphasized the importance of conformance control, which had been addressed almost 

exclusively through the emulsification and entrapment mechanism to this point (Doll, 

1988). The other report, ‘comparison of Sodium Carbonate, Sodium Hydroxide and 

Sodium Orthosilicate for EOR’ from TIORCO clearly shows improved understanding of 

the effects of alkali on rocks and with oil, with solid coreflood designs, often boasting 90% 

tertiary recovery when various polymers were used. This paper clearly endorsed the 

moderately lower pH buffering properties of sodium carbonate over the strong-base sodium 

hydroxide, a position now well established in the industry (Burk, 1987). 
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Despite the improved understanding of the time, alkaline floods continued to fail 

with regularity. The Mayer report shows that 12 alkaline floods (from the likes of Exxon, 

Amoco, Shell, Gulf and Union, among others) recovered between 0-8% PV of incremental 

oil, and typically were <1% PV (Mayer, Berg, Carmichael, & Weinbrandt, 1983). Even the 

8% PV saturation reduction in Gulf’s Estes, TX flood, while promising, is no show-stopper 

for an EOR technique. These failures, in the opinion of the author, stem from two main 

issues in design: the first is a total lack of mobility control, rooted in the hope that emulsions 

will divert a significant fraction of injection water and improve volumetric sweep. The 

other failure is related to the first; a lack of understanding of emulsion/microemulsion 

phase behavior and the way such emulsions will behave in the field. This lack of 

understanding led to field test implementation of alkaline floods hoping the plug-and-divert 

mechanism would produce significant incremental oil. Additionally, researchers failed to 

adapt the techniques advocated by surfactant researchers (Reed and Healy, 1976) for 

interpretation of microemulsion phase behavior. 

In the 1990’s and 2000’s, alkaline flooding, like other chemical methods, received 

very little attention. Efforts were focused on heavy oil, primarily in Chinese and Canadian 

reservoir sands. The late 2000-2010’s have seen resurgence in papers produced at the 

University of Calgary and in China. These papers emphasize the role of pressure buildup 

corresponding to ultimate recovery, effects of single-slug salinity and simulation matching. 

They still fail to take into account proper phase behavior studies, emulsion characterization, 

best practices like the salinity gradient and any mention of mobility control outside of 

polymer. See, for example (Pei, Zhang, Ge, Ding, Tang, & Zheng, 2012; Arhuoma, Dong, 

& Idem, 2009). 
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7.2 ARGUMENT FOR THE DEVELOPMENT OF ACP PROCESSES 

In reviewing the literature, an argument for development of a new chemical 

flooding process emerges. Though alkaline flooding has shown potential over its decades 

of research, it has suffered from two looming problems. The first is lack of reliable mobility 

control: studies have repeatedly shown that even in a coreflood the emulsion is insufficient 

to provide good volumetric sweep. The second problem is the emulsions formed are 

challenging to interpret and harder to predict; unlike the microemulsions produced in 

surfactant based processes.  

To address these two issues, low-cost cosolvents were added to the alkaline 

flooding process to significantly improve performance and robustness of design. Water-

soluble  polymer, specifically hydrolyzed polyacrylamide (HPAM), was  added for 

mobility control; as demonstrated in earlier literature it is essential in high-performance 

design.  Additionally, research at the University of Texas has shown the addition of  

cosolvent to a chemical formulation significantly improves the predictability, rheological 

properties and phase behavior of microemulsions. This new process, with alkali, cosolvent 

and polymer (ACP) constitutes a major breakthrough in chemical enhanced oil recovery; 

for suitable oils it promises to produce excellent volumetric and displacement sweep 

efficiency, at lower cost than surfactant-based processes. ACP technology also boasts less 

complexity, greater robustness and no issues with aqueous stability. The chemicals 

involved are ecologically benign: polymers, alcohols and salt, important in the highly-

regulated industrial climate. 

7.3 ACP-01 COREFLOOD 

After crude S showed definite promise in ASP corefloods at 100°C, the decision 

was made to remove surfactant from the formulation entirely. The ACP corefloods 
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involving crude oil S comprise the first evaluation of the ACP process to recover truly 

heavy oils (API° <20). The objective in the flood design was to find practical limitations 

in oil viscosity and chemical concentrations. The flood design follows the best practices 

outlined in the ASP section above. The ACP-1 coreflood showed excellent performance 

and was a strong endorsement of the ACP technology in heavy oils, with over 90% tertiary 

oil recovery at reasonable pressure drop. 

ACP-01 Phase Behavior 

The crude oil S shows high activity and good phase behavior when alkali and 

cosolvent are added to the brine.  A formulation with only 1% IBA-5EO in Na2CO3 showed 

promise in terms of coreflooding. It has an acceptable region of ultralow-IFT (though 

narrower than an equivalent ASP formulation), and a relatively flat activity profile, which 

is beneficial in salinity gradient design. Equally important is the fluidity of the 

microemulsion; the phase behavior at 100°C showed no viscous phases or gels. The activity 

map below shows the relationship between salinity and microemulsion class present. The 

dotted line represents the salinty gradient selected for the coreflood ACP-1. 
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Figure 7.3.1: ACP-1 Activity Map 

 

ACP-01 Core Properties 

ACP-1 was another Berea Sandstone outcrop coreflood, run at 100°C. Like the 

previous ASP floods at this temperature, it was confined at 1000 PSI in a steel core holder, 

evacuated and saturated with 20,000 ppm NaCl connate brine. The pore volume was 

estimated from a tracer data, and single phase brine was pumped through the core to 

measure brine permeability. Filtered crude S displaced water at 1 ml/min, and final pressure 

drops were sufficiently high at ~85 psi/ft to ensure water was reduced to near-residual 

values. The core was then waterflooded with 20,000 ppm NaCl brine for several pore 
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volumes. Details of these processes can be found in the ASP section 6.2 – ASP-01 

coreflood setup. Below are charts detailing the performance of the brine, oil and water-

floods, as well as the essential core properties. 

Table 7.3.1: ACP-1 Core Properties 

Core ACP-1 

Outcrop Berea   

Mass 1069 g  

Porosity 0.205   

Length 11.44 in 

Diameter 1.85 in 

Area 2.63 in^2 

Temp 100 C 

Brine Perm 253 mD 

PV 102 ml 

Soi 0.75  

Sorw 0.45  

Kro 1.13  

Krw 0.041  

 

Table 7.3.2: ACP-1 Flood data by section 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.23 211 276 1.31 10 0.049 

2 0.24 280 297 1.06 11 0.041 

3 0.20 337 360 1.07 12 0.036 

4 0.23 276 299 1.08 10 0.037 

whole core 0.99 268 304 1.13 11 0.040 

 

ACP-1 Chemical Flood Design 

Design of an ACP chemical slug follows the same requirements as an ASP slug. It 

needs to demonstrate adequate mobility control, a favorable salinity gradient, passing 

filtration ratio and aqueous stability. Figures 7.3.2 & 7.3.3 below show the salinity gradient 
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design and a total mobility curve. Chemical slugs were designed for mobility control to 

ensure stable displacement in the ACP flood; they were somewhat more viscous than the 

slugs in the ASP-2 flood. The excess mobility control contributed to higher pressure drop 

in the core during the ACP coreflood. 

 

 

Figure 7.3.2: Salinity Gradient Design for ACP-1 
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Figure 7.3.3: ACP-1Apparent viscosity and total relative mobility curves 

The following chemical formulations were designed according to the principles 
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Table 7.3.3: ACP-01 chemical formulation 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
4,000 4,000 

PVinj *[Surf #1 + 

#2] 
0.0 --- 

[Surf #1], wt.% None --- 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

ppm Na2CO3 10,000 5,000 

TDS ppm 10,000 5,000 

Frontal velocity 

ft/day 
1.08 1.08 

Viscosity at 10/s 

& 100°C, cP 
89 135 

Filtration Ratio 

F.R. 
1.05 1.10 

pH 10.5 10.6 

 

These slugs were mixed for 4 hours, filtered and filtration ratio was measured. 

Afterwards, their viscosity was measured. 
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Figure 7.3.4: ACP-01 slug and drive rheological behavior 

ACP-01 Results 

The ACP-1 chemical flood was a clear success. The coreflood recovered 97.3% of 

the tertiary oil, and over 95% of this was produced at 0.95 PV. The oil bank broke through 

at 0.25 PV, as predicted by fractional flow theory. The oil bank was extremely consistent 

and clean, and microemulsion didn’t break through until 0.90 PV, when almost all the oil 

had been recovered. Pressure drops reached a maximum of 21.5 PSI at the end of the flood 

due to the polymer drive. This Berea rock’s low permeability means that this flood would 

likely see a sustainable field pressure drop of 1-4 PSI in high perm sand (1-5D) associated 

with heavy oil. 
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Figure 7.3.5: ACP-01 oil recovery 

 

Figure 7.3.6: ACP-01 pressure drop data 
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The ACP-1 flood was clearly as successful as earlier ASP floods, demonstrating 

similar recovery, pressure drops and emulsion breakthroughs. This demonstrates the 

potential for ACP flooding in heavy oils when the reservoir is heated to reduce oil viscosity; 

The ACP process is cheaper, simpler and more robust than ASP designs. 

ACP-01 Effluent analysis 

Effluent analysis was done on the ACP-01 samples, and included salinity and pH. 

Curves for both measurements are below. 

 

Figure 7.3.7: ACP-01 salinity propagation 
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Figure 7.3.8: ACP-01 pH propagation 

7.4 ACP-02 COREFLOOD 

The success of displacing heavy oil at 100°C was encouraging for the ACP process. 

However, industry resistance to heating a reservoir is strong and understandable; even 

moderate heating could be a hard sell, although energy requirements are much more modest 

than for steam drive as the heat losses are much lower. This being the case, lowering the 

temperature of the experiments to find the limitations of the viscously-stable ACP flood 

was a primary objective of the study. A decrease in experimental temperature to 68°C was 

selected as the initial variable of interest in the ACP-02 coreflood.  

The temperature change allowed for design changes in the coreflood. Higher 

permeability Bentheimer sandstone was selected as the core, despite issues with 

mineralogy, due to higher fluid viscosity. Epoxy-hardened cores were used in place of steel 

core-holders. Oil viscosity increased three fold, from 71 cP to 220 cP. 
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The ACP-02 coreflood was successful in recovering over 90% of tertiary recovery, 

but exhibited higher pressure drops than expected due to problems predicting shear rates 

in the core. This result clearly showed the practical viscosity limitation for viscously-stable 

ACP in heavy oils is above 220 cP, and below 68°C for the particular oil investigated.  As 

polymer concentration was too high, the high pressure drop was somewhat welcome to 

researchers: it meant lower polymer concentrations can be used. Subsequent corefloods 

were designed with the more accurate shear rate information obtained from the coreflood. 

ACP-02 Phase Behavior 

The same formulation as ACP-01 was selected as the formulation of interest in 

ACP-02. The phase behavior plots didn’t change appreciably with temperature from 100°C 

to 68°C; see the activity map in the ACP-01 phase behavior section. 

ACP-02 Epoxy Core Procedure 

As mentioned, a 1 foot long Bentheimer sandstone core was used in the ACP-02 

flood. After cutting, the core was allowed to dry in an 85°C oven overnight; It was 

measured and weighed the next day. After measuring, it was fitted to 2” polycarbonate core 

end caps, which were fixed with 5-minute epoxy. The core itself was painted with 5-minute 

epoxy, to prevent the slow-setting epoxy from imbibing into the highly permeable rock. 

An acrylic shell was slipped around the core and held in place with silicone gel. The annular 

space between the core and the shell was filled with slow-setting Versamid 2-part epoxy 

and allowed to set up overnight. The next day communication to the core was established 

with five pressure taps, 2 on the end caps and 3 in the core face. Fittings were attached and 

the core was leak tested. Afterwards, it was evacuated like the cores in the stainless steel 
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core-holder, and was saturated with 20,000 ppm NaCl brine. A tracer test was done to 

confirm the porosity value calculated from the mass balance of saturating brine. 

ACP-02 Core Properties 

Like earlier corefloods, ACP-02 was initially brine-flooded to measure the brine 

permeability and to check the coreflood setup for issues. Oil was then forced into the core 

under high pressure to displace the wetting water phase; initial oil saturation was 82%.  

Unfiltered oil was used in the ACP-02 coreflood, as Bentheimer sandstone is permeable 

enough to prevent plugging. Waterflood was conducted at 68°C with 20,000 ppm NaCl 

brine containing 2,000 ppm sodium dithionite as a reducing agent. The particular lot of 

Bentheimer sandstone contains significant iron oxide, which can degrade polymer via the 

fenten-reaction mechanism (Levitt, Slaughter, Pope, & Jouenne, 2011). Maintaining a core 

ORP of <-500 mV and high pH ensures that the iron in the core will have very low 

solubility. The ORP of the injection fluids was -600 mV, but the core was never reduced 

to a value below -60 mV; this is probably because the dithionite solution is unstable at 

temperatures much above 60°C. To address this issue, the core temperature was lowered 

to 55°C, and 15 PV of dithionite brine was injected. The temperature was then raised to 

68°C. The core ORP was approximately -120 mV, and the chemical slugs were injected. 

Tables 7.4.1 & 7.4.2  of essential core properties and flood performance are below. 

 

 

 

 

Table 7.4.1: ACP-02 Core properties 
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Core ACP-2 

Outcrop Bentheimer   

Mass 1150 g  

Porosity 0.268   

Length 11.73 in 

Diameter 1.85 in 

Area 2.62 in^2 

Temp 68 C 

Brine Perm 2873 mD 

PV 126 ml 

Soi 0.815  

Sorw 0.469  

kro 1.19  

krw 0.053  

 

Table 7.4.2: ACP-02 flood data by section 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.35 2690 2763 1.03 127 0.047 

2 0.31 2930 3383 1.15 172 0.059 

3 0.35 2690 3754 1.4 144 0.053 

4 0.31 2949 3126 1.06 136 0.046 

whole core 1.38 2670 3183 1.19 142 0.053 

ACP-02 Coreflood Design 

The most important difference in design of ACP-02 is the mobility requirement. 

The oil is now much more viscous than in previous floods, and is in higher permeability 

rock with lower shear rate. 
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Figure 7.4.1: ACP-02 mobility control requirements 

Based on the mobility requirements a viscosity of 250 cP for the slug and drive was 

determined to be sufficient at the estimated shear rate in the core, about 4 sec-1. The 

following slugs were made based on the salinity gradient requirements and the mobility 

requirements. 
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Table 7.4.3: ACP-02  ACP slug and PD drive composition 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
6,000 6,000 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

ppm Na2CO3 10,000 5,000 

TDS ppm 10,000 5,000 

Frontal velocity 

ft/day 
1.08 1.08 

Viscosity at 5.6/s 

& 68°C, cP 
205 291 

Filtration Ratio 

F.R. 
1.01 1.04 

pH 11.5 11.4 

 

Figure 7.4.2: ACP-02 slug and drive viscosity 
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The high polymer concentration was based on an incorrect design assumption, that 

the shear rate in the core would be around 4-5 sec-1. This was determined by the shear rate 

equation with the parameters in table 7.4.4: 

 

Table 7.4.4: ACP-02 shear equation parameters 

Frontal Advance Rate (ft/day) 1.08 

Porosity (decimal) 0.26 

Absolute Permeability (mD) 2700 

End-Point Water Relative Permeability 0.95 

Sorw (decimal) 0.45 

n (power law exponent) 0.45 

C (shear correction factor) 3 
 

The final in-situ shear rate with these parameters is 5.6sec-1, however the true 

correction factor was closer to 1.5, rather than 3, and the shear rate closer to 2.0 sec-1. See 

section 7.5 for details. 

ACP-02 Chemical Flood 

The ACP-02 ACO flood was successful at recovering tertiary oil; within 1.2 PV 

93.6% of oil was recovered, and 80% oil recovery was seen by the time emulsion broke 

through at 0.85 PV. Final oil saturation in the core is 2.92%. 
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Figure 7.4.3: ACP-02 Oil Recovery 

The more viscous oil resulted in a very high oil bank cut, ~85% oil, as expected 

from fractional-flow theory. The flood, despite its excess mobility control, took slightly 

more injection to produce oil than the Berea ASP and ACP sandstone floods at 100°C. 

Pressure drops for the flood follow in figure 7.4.4. 
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Figure 7.4.4: ACP-02 pressure drop data 

The final pressure drop of 8.5 PSI/ft is unrealistically high for a field application of 

ACP technology, and was addressed in later ACP floods. The apparent viscosity in the 

core, assuming no permeability reduction, 8.5 psi pressure drop and 2700 mD permeability 

is ~650 cP, far higher than required as shown by the relative mobility curves above. 

Table 7.4.5: ACP-02 Chemical flood relative permeability and permeability reduction 

factor 

Section ACP Flood Perm 

(mD) 

dP (psi) Perm reduction 

factor 

1 2491 2.1  1.080 

2 2612 2.0 1.122 

3 2616 2.0 1.028 

4 2245 2.2 1.314 

overall 2578 8.3 1.074 

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0 1.5

P
re

ss
u

re
 D

ro
p

 [
p

si
]

Pore Volumes injected

Sec 4

Whole

Sec 1

Sec 2

Sec 3



 

 

84 

ACP-02 Effluent Analysis 

Recovery vs. pH follows.  

 

Figure 7.4.5: ACP-02 Coreflood oil recovery 

ACP-02 Discussion 

Pessimistic estimate of shear rate in the ACP-02 coreflood led to a design with an 

excess of polymer. Part of the logic behind the high polymer concentration was a fear that 

unreduced ferric (Fe3+) iron would be present and could degrade the polymer, adversely 

impacting the mobility control. After effluent analysis showed no obvious degradation in 

the polymer, it was decided to learn more about the effect of mobility control on following 

experiment. 
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7.5 CALCULATING CORE SHEAR RATES 

Shear rate is an important parameter in flood design, and estimating it properly 

depends on good understanding of the rock being used as well as experience. The 

equivalent shear rate was calculated using the equation: 

𝛾𝑒𝑞 =
4𝑢𝐶

√8𝜙𝑘𝑘𝑟𝑤𝑆𝑤

(
3𝑛 + 1

4𝑛
)

𝑛
𝑛−1

 

Where 𝛾𝑒𝑞 is the equivalent shear rate(1/s), 𝑢 is q/A  in (cm/s), 𝜙 is the porosity,  𝑘 

is the brine permeability (cm2), 𝑘𝑟𝑤 is the relative permeability to water, 𝑆𝑤 is the water 

saturation in the core, and 𝑛 is the polymer power-law exponent. When using the equation, 

unit consistency is important; all lengths should be in cm and time in seconds. The 𝐶 

parameter is the shear correction factor in the equation. The assumption for the coreflood 

design was a C-factor of 2.5-3, leading to an in-situ final shear rate of about 5.5 sec-1; if 

this shear rate were in-situ, the polymer viscosity in the designed slugs would have been 

appropriate. The shear rate was overestimated, however, due to the C factor estimate being 

too high. A better value for C is about 1.3 in the Bentheimer cores, the determination of 

which is defined below. 

To determine the value of C, it was necessary to measure the rheology of a polymer 

solution both in a rheometer and in a rock core at several shear rates. First the bulk 

rheometer data for the polymer drive in an ACP flood were plotted. 
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Figure 7.5.1: ACP-04 bulk polymer drive rheology 

From the bulk rheometer data, the power law relationship from the power-law 

region, shown above (y = Kcx
b, here y = 423.29x-0.639) was calculated. The exponent, n, is 

1-b, while Kc is the bulk viscosity at 1sec-1, assuming the power-law relationship held at 1 

sec-1. This isn’t always true, and oftentimes extrapolation is needed, though in the above 

figure 7.5.1, 1 sec-1 is still within the power law region. 

After completion of a coreflood with ~100% recovery (ACP-04), the polymer 

solution was pumped through the core at different rates to obtain a more accurate C factor 

for Bentheimer sandstone. From the pressure drops recorded, and the flow rate, an apparent 

viscosity was calculated via Darcy’s law.  
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Table 7.5.1: ACP-04 raw data from polymer flood 

 

 

 

 

 

 

 

 

The apparent shear rate is calculated from an uncorrected shear rate equation, i.e. 

where the C-factor C=1. 

7.5.1     𝛾𝑒𝑞 =
4𝑢

√8𝜙𝑘𝑘𝑟𝑤𝑆𝑤

(
3𝑛 + 1

4𝑛
)

𝑛
𝑛−1

 

The apparent viscosity was plotted vs. apparent shear rate, and determined if it was 

power-law or not. The below data are appropriately shear-thinning. 

 

Figure 7.5.2: ACP-04 apparent shear rate vs. apparent viscosity, during ACP-04 polymer 

drive flood 
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The points in the power-law regime were plotted on a log-log graph. The 

parameters for the coreflood apparent viscosity vs. shear rate were recorded, again where 

y = Kvx
b. The parameter K* was then be determined by: 

 

7.5.2      𝐾∗ =
𝐾𝑐𝑜𝑟𝑒

𝐾𝑉𝑖𝑠𝑐𝑜𝑚𝑒𝑡𝑒𝑟
 

 

𝐾∗ will always be < 1, as the polymer’s viscosity will always be higher in a 

rheometer than a core at an apparent shear rate in the core. Once the K* parameter was 

obtained, it was transformed to the C-factor via: 

7.5.3        𝐶 = [𝐾∗]
1

𝑛−1 

 

Once the C-factor was calculated, the earlier-obtained data was corrected for shear 

rate in the equivalent shear-rate column. The C factor for this Bentheimer flood was C = 

1.67 

Table 7.5.2: ACP-04 core viscosity data with corrected, equivalent shear rate 

 

Once the true C factor was accounted for, the core viscosity data and the rheometer 

viscosity data collapsed as expected. 

Frontal 
Advance 
(ft/day) 

Flow rate 
(ml/min) 

dP 
(PSI) 

Flux 
(cm/sec) 

Apparent 
shear rate 

( sec-1) 

Apparent 
Visc (cP) 

Equivalent 
Shear Rate  

(sec-1) 

1.04 0.100 4.50 
8.761E-

05 
1.234 330.054 2.061 

2.59 0.250 6.64 
2.182E-

04 
3.072 194.805 5.134 

5.19 0.500 9.40 
4.372E-

04 
6.157 137.889 10.288 

10.37 1.000 14.50 
8.736E-

04 
12.301 106.351 20.555 
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Figure 7.5.3: ACP-04 Polymer viscosity in rheometer and in core, demonstrating power 

of correct C-factor 

  

The core data show excellent agreement with the bulk rheometer at low shear rates. 

Higher shear rates show increasing apparent viscosity, a phenomenon understood to 

involve polymer shear-thickening (Delshad et. al., 2008. Obtaining a correct C-factor was 

a helpful in designing later corefloods, as apparent polymer viscosity could be better 

estimated. 
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7.6 ACP-03 COREFLOOD 

The ACP-03 coreflood was identical in design to ACP-02, except in terms of 

polymer concentration. The impact on tertiary oil recovery of reducing polymer viscosity 

was expected to be negative, but reducing the concentration of polymer from an unrealistic 

6000 ppm was an optimization priority. 

ACP-03 was largely successful in oil recovery terms; it produced 80.3% of tertiary 

oil within 1.2 PV of injection. Though significantly lower than the preceding ACP-02 

flood, which recovered 93.6% of tertiary oil, the significant decrease in polymer 

concentration probably explains this lower recovery factor. The flood was quite successful 

in reducing pressure drop, and demonstrated concretely the impact of polymer 

concentration on ACP pressure drop in the viscously stable regime (as opposed to 

microemulsion viscosity, which can dominate in corefloods with less viscous oils). 

ACP-03 Phase Behavior 

Phase behavior in ACP-03 was unchanged from earlier floods.  See ACP-01 phase 

behavior.  

ACP-03 Core Properties 

The core setup in ACP-03 was Bentheimer sandstone in an epoxy core, as in ACP-

02. It was handled as in the ACP-02 coreflood, as the temperature, oil viscosity and 

chemical formulation were also the same as ACP-02. A tracer curve was generated to 

calculate the pore volume of the core, afterwards the core was flooded with reduced 

resident brine (1000 ppm dithionite; -650 mV) to calculate single phase permeability to 

brine. The temperature was raised to 86°C and the core was allowed to come to equilibrium 

overnight. The core was then oil flooded with surrogate crude S at 30 ft/day the next day 

to establish an initial oil saturation of 0.86. Resident brine was flooded through the core at 
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10ft/day until pressure drops were steady and oil cut low; Sorw was calculated to be 0.484. 

Waterflood brine was pumped into the 68°C oven from a vessel outside, which allowed the 

reduced brine to remain stable for a longer period. The brine was pumped through 2m of 

coiled overhead tubing to ensure it was heated to near-core temperature before injecting. 

ORP of the effluent brine after several pore volumes was < -60 mV, as in ACP-02. After 

establishing remaining-oil conditions, chemicals were injected. See tables 7.6.1 & 7.6.2. 

Table 7.6.1: ACP-03 Core properties 

Core ACP-3 

Outcrop Bentheimer   

Mass 1068.9 g  

Porosity 0.268   

Length 11.73 in 

Diameter 1.85 in 

Area 2.62 in^2 

Temp 68 C 

Brine Perm 2675 mD 

PV 126 ml 

Soi 0.860  

Sorw 0.469  

kro 1.19  

krw 0.053  

 

 

Table 7.6.2: ACP-03 flood data by section 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.36 2450 2573 1.050 107 0.044 

2 0.33 2669 3150 1.180      146 0.055 

3 0.36 2450 3495 1.427 122 0.05 

4 0.35 2379 2911 1.223 115 0.048 

Whole 1.38 2675 3005 1.123 120 0.045 
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ACP-03 Coreflood Design 

After the success in the ACP-02 coreflood, the decision to reduce chemical use was 

a logical step. Though 6000 ppm polymer ACP slug and drive showed good performance 

in terms of recovery, the high viscosity led to excess mobility control in the flood and 

pressure drops which would be unsustainable in the field environment (~8.3 psi/ft). A final 

polymer concentration of 3000 ppm was chosen, as it significantly decreased polymer 

without strongly impacting the stable displacement seen in ACP-02. Mobility 

requirements, slug compositions and viscosity are shown below in Figure 7.6.1. 

 

Figure 7.6.1: ACP-03 mobility control requirements 
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For a viscously-stable displacement to occur, the inverse of total mobility of the 

chemical slugs needs to exceed 225 cP. The more accurate information about shear rate in 

the core, predicted from earlier Bentheimer floods, allowed for more accurate prediction 

of the polymer viscosity in-situ. The following slugs in table 7.6.3 were made based on the 

salinity gradient requirements and the mobility requirements. 

 

 

 

Table 7.6.3: ACP-03 ACP slug and PD drive composition 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
3,000 3,000 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

Na2CO3 ppm 10,000 5,000 

TDS ppm 10,000 5,000 

Frontal velocity 

ft/day 
1.08 1.08 

Viscosity at 5.6/s 

& 68°C, cP 
98 140 

Viscosity at 

1.77/s 

& 68°C, cP 
185 289 

Filtration Ratio 

F.R. 
1.01 1.04 

pH 11.5 11.4 
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Figure 7.6.2: ACP-03 slug and drive viscosity 

The viscosity curves in Figure 7.6.2 show that the ACP slug will be slightly 

viscously unstable (if the core final shear rate was approximately 1.8-2 sec-1 as predicted 

by the revised Canella C-factor), while the PD will be viscously stable. This prediction was 

validated in the results of ACP-03. 

Results ACP-03 

The ACP-03 coreflood oil recovery plots are below. They show evidence of viscous 

instability in the ever decreasing oil cut after oil breakthrough, unlike the long, steady 

plateau in the earlier tests. Tertiary oil recovery was lower (80.5%) than earlier floods, and 
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ACP-02 (0.86 PV), further evidence of viscous fingering present in the core. Residual oil 

saturation was 9.52%. See Figure 7.6.3 

 

Figure 7.6.3: ACP-03 oil recovery 

An overlay of the ACP-02 oil recovery vs. the ACP-03 curve is instructive (Figure 

7.6.4). It shows the relative positions of the emulsion break-through and oil bank, and 

demonstrates the effect of mobility control on recovery; with lower mobility (high 

displacing viscosity) we see higher oil banks for longer periods, resulting in higher 

recovery factors, at the expense of high pressure drop and chemical concentration. 
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Figure 7.6.4: Overlay of ACP-02 and 03 corefloods 

Pressure drop in the core was moderate at ~3.5 PSI/ft at steady state; this value may 

be sufficiently low to implement in field tests (Figure 7.6.5). The pressure curves show a 

slight spike in each section, representing the viscous oil bank, followed by the less viscous 

ACP slug. The more viscous polymer drive then displaces the ACP slug and oil bank, and 

pressure drop increases as a consequence. 
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Figure 7.6.5: ACP-03 pressure drop data 
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corresponds to a polymer drive viscosity in the core at endpoint of 226 cP. Slight 

permeability reduction was experienced. Polymer was not degraded by the core, despite 

the potential presence of unreduced iron compounds. 
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lower salinity with the salinity gradient, while increasing dissolved oil in the 

microemulsion contribute to this difficulty. 

 

Figure 7.6.6: ACP-03 pH with injected volume.  Propagation with oil bank is very tight. 

 

Figure 7.6.7: ACP-03 salinity propagation in core shows slight retardation. 
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7.7 ACP-04 COREFLOOD 

ACP corefloods 1-3 proved quite successful at removing oil from high permeability 

Bentheimer sandstone. They demonstrated the successful implementation of applying 

robust design from ASP technology in ACP flooding, showed the impact of mobility 

control and temperature on pressure drop and oil recovery, and improved understanding of 

shear rate in the cores of interest. The floods, however, still required significant increase in 

reservoir temperature to be successfully implemented; even achieving 68°C is a tall order 

when reservoir temperature is 20-25°C. In order to hopefully minimize cost and 

demonstrate limitations of the new process, a flood was designed for 50°C environment. 

This corresponds to an oil viscosity of 970 cP, which researchers assumed would be outside 

the acceptable operating envelopes for the flood. 

Good design practices developed at UT, however, allowed researchers to fulfill 

necessary requirements for a practical application of the technology. The ACP-04 flood 

showed high tertiary oil recovery (>95%) at reasonable pressure drop (4.4 PSI/ft), with 

moderate chemical concentration (<4100 ppm HPAM). That the phase behavior and 

salinity gradient remain virtually unchanged from 100°C to 50°C speaks volumes to the 

robustness of the process: in a heating scheme where temperature varies significantly in a 

reservoir, ACP shows special promise in the system investigated. 

ACP-04 Phase Behavior 

The phase behavior of the ACP-1 (1% IBA-5EO in Na2CO3) formulation for crude 

S changes very little with temperature from 100°C to 50°C; Optimum salinity remains the 

same at 10% oil, and increases only slightly (0.25% or less) in the 30 and 50% oil scans. 

The area of ultralow IFT seems to expand slightly, with good properties in the type 1 region 

(Figure 7.7.1).  
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Figure 7.7.1: ACP-04 activity diagram 

It was determined from the phase behavior chart above that the same salinity 

gradient can be implemented at 50°C as at 100°C and 68°C. 

ACP-04 Core Properties 

The ACP-04 core was Bentheimer sandstone in an epoxy mold, as in ACP-02 and 

03. After calculating the pore volume in the core, a brine flood was performed to calculate 

the single phase permeability. Brine composition was 20,000 ppm NaCl with 1,000 ppm 

sodium dithionite to maintain reduction. Sodium bicarbonate wasn’t present, so the core’s 

reduced state was lost after some time.  Core setup was largely the same as in earlier floods, 

with the exception of dithionite brine handling methods; as it is stable at 50°C, the 

dithionite brine was kept in the oven at all times and showed no signs of degradation. Crude 
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very high, calculated to be 1.3. This high oil relative permeability was an important factor 

in the successful implementation of the flood; it lowered pressure drop and required 

chemical concentration of polymer. Initial oil saturation was calculated to be 87.5%, the 

highest of any flood to this point, probably due to the high viscosity of the oil. 

After the core was saturated with oil, waterflood commenced. Waterflood brine was 

15,000 ppm NaCl, with 4,000 ppm Na2CO3  and 1,000 ppm Na2S2O4 (dithionite) present 

as a buffer and reducing agent, respectively. ORP of the injection brine was <-600 mV, 

and pH was balanced to 7.6. Oil saturation was reduced to 0.59 after 2.5 PV of throughput. 

ACP slug and polymer drive were injected at 0.5 ft/day (unlike earlier floods at 1.0 ft/day); 

the decreased rate lowered pressure drop and decreased chemical requirements. Core 

properties are in Figs 7.7.1 & 7.7.2. 

Table 7.7.1: Core properties ACP-04 

Core ACP-04 

Outcrop Bentheimer   

Mass 1139.6 g  

Porosity 0.231   

Length 11.65 in 

Diameter 1.94 in 

Area 2.90 in2 

Temp 50 °C 

Brine Perm 2505 mD 

PV 130 ml 

Soi 0.875  

Sorw 0.59  

kro 1.33  

krw 0.024  
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Table 7.7.2: ACP-04 flood parameters 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.85 2071 2572 1.24 88 0.043 

2 0.6 2930 3959 1.35 64 0.022 

3 0.7 2515 3954 1.57 54 0.022 

4 0.62 2839 3559 1.25 48 0.017 

Whole 2.77 2505 3361 1.33 60 0.024 

 

The high oil relative permeability is an effect of increased oil viscosity (Downie & 

Crane, 1961). Lower krw is also seen than in prior floods; this is due to the much higher oil 

viscosity and concomitant decrease in sweep efficiency. To reduce this core to true Sorw 

would require much more throughput than was practical in the time constrained coreflood 

environment, a principle much more impactful in a reservoir. 

ACP-04 Coreflood Design 

Design of the 50°C ACP flood required a challenging balance of parameters; for 

the flood to be considered successful, pressure drop needed to be below 5 psi/ft, chemical 

concentration below 4500 ppm polymer, tertiary recovery over 80% oil in 1.25 PV or less 

and frontal advance rate of at least 0.50 ft/day.  These criterion were met, but barely, and 

the flood result represents a near-practical limitation for stable ACP displacements of 

heavy oil in rocks like Bentheimer sandstone. The chemical slugs designed for the flood 

are described below in Table 7.7.3: 
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Table 7.7.3: ACP-04 Slug and drive composition 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

Ppm 
4,100 3,700 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

Na2CO3 ppm 9,000 5,000 

Isoascorbic Acid 1,000 1,000 

TDS ppm 10,000 5,000 

Frontal velocity 

ft/day 
0.48 0.48 

Viscosity at 1.0/s 

& 68°C, cP 
673 663 

Filtration Ratio 

F.R. 
1.07 1.01 

pH 10.85 10.80 

 

The salinity gradient design for the flood was essentially unchanged from earlier 

experiments. The low salinity in the ACP slug allowed for low polymer concentrations to 

be used, despite the fact the polymer was injected just below optimum salinity. 
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Figure 7.7.2: ACP-04 Salinity gradient design, 1% IBA-5EO @ 50C 

Mobility curves show the total dominance of oil viscosity over relative permeability 

of water in the oil bank; the lowest mobility exists at the highest oil bank cut. Note the 

maximum mobility requirement (770 cP inverse) is substantially below the oil viscosity of 

970 cP; this is a function of the high oil relative permeability of 1.3. Without this effect, 

pressure drop would have increased by about 25% in a stable flood, and chemical 

concentrations would need to be higher.  
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Figure 7.7.3: ACP-04 Mobility curves 
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To overcome such challenging mobility requirements, the flood velocity was 

reduced to 0.5 ft/day, to take advantage of the extreme shear-thinning behavior of 3630s 

HPAM polymer. Curves for the design viscosity are below (Figure 7.7.3). Estimates of the 

shear rate in the core of 0.8 were determined from below parameters (Table 7.7.4). 

 

Figure 7.7.4: Viscosity curves for ACP-05 slug and drive. Arrow depicts final in-situ 

viscosity. 

Table 7.7.4: ACP-05 Shear rate parameters 

Frontal Advance Rate (ft/day) 0.48 

Porosity (decimal) 0.24 

Absolute Permeability (mD) 2500 

End-Point Water Relative Permeability 0.95 

Sorw (decimal) 0.6 

n (power law term) 0.4 

C (constant) 1.3 

Final In-Situ Shear Rate (Sw = 1) 0.78 
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The flood was designed with very little safety factor in mobility, as seen above. 

This was due to the high pressure drop requirement and the assumption that if the flood 

were unstable, it would be only slightly so if polymer degradation weren’t present. 

Results ACP-04 

The 50°C ACP-04 coreflood was successful in fulfilling required criterion. The 

tertiary oil recovery was 95.2%, with a SORC = 3 %. Oil bank was present very early, at 

0.25 PV, due to the high initial oil saturation. The high oil viscosity contributed to a very 

wide and consistent oil bank cut, ~ 87% oil. The first evidence of Type II microemulsion 

was found at 0.86 PV, with a clear TIII-TI emulsion formed at 1 PV. Oil recovery was 87% 

at 0.86 PV when the emulsion broke through. Oil cut decreased rapidly and showed very 

little tail-off with time (Figure 7.7.4). 

 

Figure 7.7.5: ACP-04 Oil recovery 
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The pressure drop data below show very tight design specifications resulted in a 

stable flood with virtually no excess mobility control. Pressure drop in each section was 

just over 1 PSI, and total steady state pressure drop was approximately 4.4 PSI/ft (Figure 

7.7.5). Note the pressure peak corresponding to the oil bank is virtually identical in height 

to the steady state pressure drop. 

 

Figure 7.7.6: ACP-04 Pressure drop data 

Effluent analysis (Figures 7.7.6 & 7.7.7) was as expected: salinity propagated 

correctly in the core as pH and TDS. The spike and subsequent decline of TDS is due to 

solubilized oil in the microemulsion. Polymer was assumed not to have been degraded 

based on apparent viscosity in the core.  
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Figure 7.7.7: ACP-04 pH propagation 

 

Figure 7.7.8: ACP-04 Salinity propagation 
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7.8 ACP-05 COREFLOOD 

To further explore the limitations of using ACP flooding to recover heavy oils, a 

coreflood was executed at room temperature with the same crude S, where viscosity = 4800 

cP.  The coreflood showed poor recovery tertiary recovery at 1 PV injection (60%) and 

unsustainable peak pressure drops (17 PSI/ft). Viscous stability was impractical to achieve 

at the flood conditions, so the slug and drive composition were as in the above ACP-03 

flood, resulting in a mobility ratio ~ 5; after 3 PV of injection, the flood still produced some 

oil. Final tertiary recovery was >90% at 3 PV, speaking to the effectiveness of the low IFT 

displacement measurement.  

There were two major contributions to understanding cemented by the ACP-05 

flood. The first is phase behavior at 25°C (room temperature) was very consistent with 

phase behavior up to 100°C; such behavior would be a major boon to an ACP flood in situ, 

and if it is general to heavy crude oils would provide a major boost in applicability. The 

second is the importance of adding alkali to the polymer drive. This has the dual advantage 

of protecting the polymer from degradation (recall iron was present in this core), and still 

can show IFT low enough for >90% displacement efficiency. The polymer drive effectively 

acts as an AP flood within the ACP flood; this fact could be very advantageous in a field 

study where viscous instability was expected. 

ACP-05 Phase Behavior 

Phase behavior of the ACP formulation with 1% IBA-5EO was encouraging; it is 

virtually the same as 50°C-100° phase behavior maps (Figure 7.8.1). This is very important 

in a hybrid thermal-chemical EOR scheme, as reservoir temperature would be far from 

uniform in the formation. If phase behavior were strongly affected by temperature, proper 

salinity gradient design would be very hard to achieve. 
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Figure 7.8.1: ACP-05 Activity map 

In the scan, type III regions showed very nice ultra-low IFT emulsion 

characteristics, without excessive viscosity. The type I regions at lower salinity also 

showed low IFT, especially close to the type III region. The phase behaviors were 

challenging to interpret at room temperature due to the viscosity of the oil and the long 

equilibration times required, however the type III regions depicted above were clear. 

ACP-05 Core Properties 

Working with heavy oil at room temperature was challenging; at 4800 cP, oil flood 

and waterflood required high pressures and very low flow rate. All core handling was as 

ACP-05, without any oven heating required. Reduced brine saturated the core, and single-
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crude S was injected at 100 PSI, resulting in Soi = 88.9%. This very high oil saturation is 

likely near true residual water, and it is very little higher than the saturation from ACP-05 

at 50°C despite increasing oil viscosity by a factor of 5. Section 1, which was lower 

permeability to begin with, was the only section where oil relative permeability was low, 

and probably experienced limited face plugging. The core was waterflooded with 20,000 

ppm TDS reduced brine: 15,000 ppm NaCl, 1000 ppm dithionite and 4000 ppm NaHCO3 

(buffer). The viscosity of the oil posed a problem; the core was flooded at constant pressure 

of 100 psi initially to create injectivity for ~0.10 PV. This injectivity challenge is worth 

highlighting for field applications. Afterwards, the core was flooded at 0.1 ml/minute 

(1.1ft/day) for 10 hours, then at 1ml/minute (11ft/day) for 0.8 PV. Overall pressure drop 

was approximately 21 psi, leading to an overall Krw of 0.007. This extremely low value is 

a result of the high oil saturation remaining in the core and the viscosity of the oil. Initial 

oil saturation was 88.9%, and post-waterflood saturation was 64.5%.  Relevant core 

properties are found in Tables 7.8.2 & 7.8.2. 
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Table 7.8.1: ACP-05 Core properties 

Core ALK-01 

Outcrop Bentheimer   

Mass 1147.5 g  

Porosity 0.211   

Length 11.65 in 

Diameter 1.96 in 

Area 3.02 in2 

Temp 25 °C 

Brine Perm 2369 mD 

PV 121 ml 

Soi 0.889  

Sorw 0.625  

Kro 1.33  

Krw 0.007  

Oil Viscosity 4800 cP 

 

Table 7.8.2: ACP-05 Coreflood parameters 

Section ΔPBrine (psi) kBrine (mD) koil (mD) kro kwf (mD) krw 

1 0.35 2438 2490 1.02 35 0.014 

2 0.32 2663 4039 1.51 19 0.007 

3 0.25 3414 4772 1.4 14 0.004 

4 0.45 1896 2647 1.4 11 0.006 

Whole 1.44 2369 3156 1.33 16 0.007 
 

ACP-05 Coreflood Design 

The ACP-05 design was somewhat different than earlier corefloods. At room 

temperature, achieving viscous stability (~4800 cP in the core) was impractical with 3630 

HPAM; not only would pressure drops be unacceptably high, but concentrations also would 
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be extreme (>6,000 ppm polymer). To allow for a direct comparison with another 

coreflood, and to maintain chemical concentrations at reasonable levels, the chemical slugs 

designed were the same as in ACP-04 (50° flood, 970 cP oil). Chemical slugs injected are 

below in Table 7.8.3: 

Table 7.8.3: ACP-05 Chemical injection slug composition 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

Ppm 
4,100 3,700 

[Cosolvent], 

wt.% 

1%  

IBA-5EO 
--- 

Na2CO3 ppm 9,000 5,000 

Isoascorbic Acid 1,000 1,000 

TDS ppm 10,000 5,000 

Frontal velocity 

ft/day 
0.50 0.50 

Viscosity 

0.56 s-1, 25 oC 
1,295 cP 1,271 

Filtration Ratio 

F.R. 
1.00 1.05 

pH 10.20 10.40 

 

The chemical slug design resulted in an in-situ mobility ratio of 4-5. This was 

expected from the design and is more practical in oils with viscosity > 1,000 cP. 
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Figure 7.8.2: ACP-05 Salinity gradient and phase behavior. 

The black dotted line represents the salinity gradient selected for the coreflood vs. 

the phase behavior of interest. The salinity gradient is virtually identical to all other ACP 

floods, even those at 100°C. 
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Figure 7.8.3: ACP-05 Mobility requirements 

Table 7.8.4: ACP-05 Mobility control parameters in  
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Mobility control curves show the extreme viscosity required to displace the oil bank 

(Fig 7.8.3); as the oil saturation in the core was so high, this is a requirement for a 

significant portion of the injection cycle. Note that the water relative permeability is 
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virtually unnoticeable in this flood, despite the low relative permeability to water used in 

the calculation (0.007) Figure 7.8.4 and Table 7.8.5 detail slug & drive viscosity. 

 

Figure 7.8.4: ACP-05 Slug and drive rheometery. Design rate and viscosity shown with 

arrows. 

Table 7.8.5: ACP-05 Shear calculation parameters 

Frontal Advance Rate (ft/day) 0.50 

Porosity (decimal) 0.214 

Absolute Permeability (mD) 2370 

End-Point Water Relative 
Permeability 

0.95 

Sorw (decimal) 0.625 

n (power law term) 0.38 

C (constant) 1.36 

 

Initial flood design assumed a shear rate correction factor C = 1.36, resulting in a 

shear rate of 0.86 and viscosity = 947 cP. Post-flood analysis showed this shear factor 

1

10

100

1000

10000

0.01 0.1 1 10 100

V
is

co
si

ty
 c

P

Shear rate S^-1

HSE-09 PD

HSE-09 Slug



 

 

118 

assumption to be slightly on the low side, the calculated correction factor of C=1.57 in the 

core, results in a shear rate of 0.95 sec-1 and viscosity of about 850 cP. 

ACP-05 Results 

The HSE-09 coreflood was succesful in displacing oil, with a final recovery of 

~95% tertiary recovery. The max oil cut (~85% oil) was high, but rapidly fell as the slug 

and drive broke through early, as expected from fractional flow theory.  While the earlier 

successful ACP floods produced >90% recovery within 1 PV, the ACP-05 coreflood 

required 2 PV of throughput to achieve 90% recovery, with 4.15% Sorc. Though high oil 

cuts were initially achieved, and could prove promising in a field recovery, the pressure 

drop of the early flood was far greater than can be practially achieved in a reservoir. 

Microemulsion breakthrough occurred at 0.45 PV, as expected for a viscously-unstable 

flood.  Maximum pressure drop occurred when the oil bank was at peak volume in the core, 

and was 17.5 PSI. This pressure would have been even higher but for a leak in the polymer 

drive column, which took some time to fix. Figure 7.8.5 shows ACP-05 oil recovery, while 

7.8.6 shows ACP-04 vs. ACP-05. 

The flood is an excellent example of the challenges in applying ACP flooding at 

low reservoir temperatureand how increasing the temperature even 25°C can lead to 

dramatic improvements in heavy oil recovery performance. 
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Figure 7.8.5: ACP-05 Oil recovery plot. 

 

Figure 7.8.6: ACP-05 vs. ACP-04 oil cut and recovery. 
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Figure 7.8.7: ACP-05 Pressure drop data 

The above pressure data (Fig. 7.8.7) show the primary obstacle to displacing heavy 

oils at high viscosity: extreme pressure (17 psi/ft) is required to mobilize these fluids at 

reasonable rates. Most heavy oil production schemes involve some mitigation to this 

problem, either via heating with steam or water, or producing the unconsolidated formation 

itself as in CHOPS.  

Table 7.8.6: Chemical flood performance 

Section ACP Flood Perm 

(mD) 

dP (psi) Perm reduction 

factor 

1 2364 1.35  1.03 

2 2897 1.1 0.92 

3 2901 1.1 1.17 

4 2659 1.2 0.70 

overall 2501 5.0 0.93 
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The chemical flood performed approximately as expected in terms of viscosity at 

recovery. Post-calculation of core shear rates confirmed a C factor of 1.5, slighly higher 

than the 1.3 selected for the design of the flood. The shear rate in the core was calculated 

to be 0.93 sec-1, which corresponds to a polymer viscosity of 850 cP. The pressure drops 

from the flood show an apparent viscosity of about 800 cP. Salinty and pH propogated with 

the chemical slug as expected, and showed early breakthrough characteristic of viscous 

instability (Figs 7.8.8 & 7.8.9). 
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Figure 7.8.8: ACP-05 pH propagation and oil cut vs. throughput. 

 

Figure 7.8.9: ACP-05 Salinity propagation and oil cut 
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Chapter 8: Alkaline Floods 

ACP flooding was demonstrated in 5 corefloods as an alternative to ASP flooding 

to recover heavy oils. Two corefloods were run at 68°C to demonstrate the advantages of 

ACP flooding vs. alkaline flooding, or alkaline-polymer (AP) flooding.  

8.1 ALKALINE-POLYMER FLOOD AP-01 

 An AP coreflood was designed to show the various advantages and disadvantages 

of the AP flood vs. the new ACP alternative. The primary advantages of the ACP process 

over AP are completely customizable phase behavior through the use of cosolvents, and 

the reduction of the formation of viscous emulsions. Demonstration of the custom phase 

behavior principle is within the scope of this work, but the proof of issues with viscous 

emulsions requires further experimentation. 

The AP-01 flood was carried out in Bentheimer sandstone at 68°C, confined by 

epoxy as in corefloods ACP-02 and 03. Viscous emulsions formed at this temperature 

without cosolvent, and were anticipated to cause lowered tertiary recovery and increased 

pressure drop profiles in the coreflood. This wasn’t demonstrated in the flood however; 

AP-01 chemicals recovered 96.9% of the tertiary oil at a pressure drop of 4.5 PSI/ft This 

rather high pressure drop can be shown to be a direct result of the polymer viscosity and 

not an effect of a viscous emulsion; however the deleterious effects of such an emulsion in 

the field can be surmised from other experiences data. 

AP Flood Phase Behavior 

When alkali forms soaps from crude oils without the presence of cosolvent or 

surfactant, the resulting phase behavior system shows major hydrophobic character. The 

soaps generated are, after all, crude oil components, and only show suitable phase behavior 
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at very low salinity. A map of the alkali-only phase behavior with Crude S in Na2CO3 is 

shown below in Figure 8.1.1. 

 

Figure 8.1.1: Alkali scan with crude S 

 

The much lower salinity required for a successful AP flood is apparent 

immediately. In order to realize the major advantage of a salinity gradient, an injection slug 

needs approximately 6,000 ppm Na2CO3, and polymer only requires 2,500 ppm. Alkali 

consumption is one of the major problems with such low salinity. When alkali is consumed 

at high rates, it can seriously retard the formation of the low IFT oil bank. Though polymer 

in an AP flood would likely still be of benefit in terms of improved sweep, the resulting oil 

recovery would be below what was expected for a robust chemical flood. Alkali 

consumption would be an even greater problem if electrolytes other than Na2CO3 were 

required in the formulation; in such a case the effective alkali concentration would be even 

lower, and consumption issues exacerbated. The other major problem with extremely low 

injection salinity is issues with clays: when exposed to such fresh water, clay will swell 
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significantly and can dramatically reduce permeability in the rock (Zhou et. al, 1996). Such 

a reduction in permeability could be a major problem for a flood with viscous fluids like 

AP. 

AP-01 Core Properties 

The core in AP-01 flood was handled like the other epoxy core ACP floods at 68°C. 

Reduced brine with 20,000 ppm NaCl, 8,000 ppm NaHCO3 (buffer) and 1000 ppm 

Na2S2O4 (reducing agent) saturated the core and established pore volume. Afterwards, the 

same brine was injected to calculate single-phase brine permeability. Initial oil saturation 

with Crude S was established under 50 PSI injection pressure, and was subsequently 

waterflooded with the same brine as above. Brine pH was injected at 8.0 and ORP <-600 

mV, and was produced after waterflood at pH 7.91 and ORP <-600 mV. Soi was only 

83.5%, due to the lower saturation pressure used in the flood; this was due to the potential 

of the core cracking under high pressure during oil flood from poor quality control during 

core construction. Waterflood was completed at 10.84 ft/day, and oil saturation after 

waterflood was 48.4%. Tables 8.1.1 & 8.1.2 detail relevant core properties. 
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Table 8.1.1: AP-01 Core Properties 

Core AP-02 

Outcrop Bentheimer   

Mass 1150 g  

Porosity 0.238   

Length 11.67 in 

Diameter 1.94 in 

Area 2.90 in2 

Temp 68 °C 

Brine Perm 2700 mD 

PV 135 ml 

Soi 0.835  

Sorw 0.59  

kro 1.33  

krw 0.024  

 

Table 8.1.2: AP-01 Coreflood parameters 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.34 2728 1324 0.485 105 0.040 

2 0.28 3212 3992 1.243 111 0.035 

3 0.29 3072 3751 1.221 75 0.025 

4 0.38 2441 3385 1.387 47 0.019 

Whole 1.34 2700 2594 0.961 71 0.026 

 

The low oil relative permeability in section 1 was likely due to face plugging in the 

section; the injection of the high-pressure waterflood seems to have resolved the issue. 

Plugging seemed likely based on photos of the core after completion of the flood. The later 

sections show the greater than unity relative permeability to oil characteristic of viscous 

oils. 



 

 

127 

AP-01 Coreflood Design 

Design of the AP-01 coreflood depended on the core properties at the temperature 

of interest, which were similar to the ACP floods at 68°C, and the phase behavior of the 

AP formulations, which was quite different. Oil viscosity is 220 cP. The following slugs 

(Table 8.1.3) were selected as the appropriate for the AP-01 injection slug and drive. 

Table 8.1.3: AP-01 Slug and drive. Bold shows differences from ACP-03 flood. 

Slug Component ACP Slug Polymer Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
3,000 3,000 

[Cosolvent], 

wt.% 
--- --- 

Na2CO3 ppm 6,000 2,500 

Isoascorbic Acid 1,000 1,000 

TDS ppm 7,000 3,500 

Frontal velocity 

ft/day 
1.0 1.0 

Viscosity at 

2.51/s 

& 68°C, cP 
236 245 

Filtration Ratio 

F.R. 
1.15 1.10 

pH 10.40 10.40 

 

The phase behavior shown above gave rise to the following salinity gradient. 
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Figure 8.1.2: AP-01 Salinity gradient design 

The positive effect of salinity gradient on the result of this flood is important to 

emphasize. The result of this AP flood was far better than many others in the literature 

(though the experiments weren’t nearly identical); this was almost certainly due to the 

application of sophisticated best practices like the salinity gradient to the technology (Potts 

& Kuehne, 1988; Wu, Dong, & Shirif, 2011). 

The mobility requirements for this flood were virtually identical to the ACP-03 

flood, and a mobility curve is below. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60

N
a2

C
O

3
 p

p
m

 (
TD

S)

Vol % Crude S

type 1

type 3

type 2

Brine 28,000 ppm TDS

Slug 6,000 ppm Na2CO3

Drive 2,500 ppm Na2CO3



 

 

129 

 

Figure 8.1.3: AP-01 Mobility requirements 

From the mobility curves (Fig 8.1.3), the slugs described above were determined to 

be appropriate from this viscosity profile and calculated in-situ shear rate. Viscosity of the 

chemicals in the core was designed to approach 280 cP, affording a good deal of excess 

mobility control if needed (Fig 8.1.4 & Table 8.1.4). 
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Figure 8.1.4: AP-02 Slug and drive viscosity 

Table 8.1.4: AP-01 Shear rate calculation parameters. 

Frontal Advance Rate (ft/day) 1 

Porosity (decimal) 0.2388 

Absolute Permeability (mD) 2700 

End-Point Water Relative Perm 0.045 

Sorw (decimal) 0.45 

n (power law term) 0.45 

C (constant) 1.6 

Final In-Situ Shear Rate (Sw = 1) 1.92 

 

The reason the flood was designed with excess mobility control to this extent 

involved the properties of the viscous emulsions seen in phase behavior studies of the AP 

formulation.  Even emulsions with only 30% oil were as viscous as the surrogate crude S 

at low shear rate (Fig 8.1.5).  
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Figure 8.1.5: Viscosity of AP emulsion vs. ACP microemulsion. 30% vol. crude S. 

The figure clearly shows the increase in viscosity for AP emulsions relative to ACP 

microemulsions. In the type I emulsion above, almost 1.5 orders of magnitude separate the 

emulsion from the ACP microemulsion; at low shear (<1 sec-1) the type 1 emulsion is more 

viscous than the crude S viscosity. Though hard to estimate, it was supposed that an 

emulsion of much higher oil content (50-80% oil) could form in the AP-01 coreflood and 

show major negative impacts. This hypothesis wasn’t demonstrated in the execution of the 

flood, and pressure drop was dominated by the polymer and not a viscous emulsion.  

AP-02 Results 

The AP-02 coreflood performed better than anticipated. It recovered almost 97% 

of tertiary oil, with a residual saturation of only 1.48% at a moderate 4.5 PSI/ft pressure 

drop. The excellent performance was due to solid mobility control and very favorable IFT 

properties, likely helped by the lack of cosolvent (which raises IFT). The application of 

best principles was also a major contributing factor to the success of the flood. 
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The absence of viscous emulsion formation was a major benefit to the flood, and 

has potential to allow for overly optimistic interpretation of the results. In a field 

environment, with major heterogeneity and very long residence times, the emulsions 

detailed in the design section could have negative impact on the flood, especially when 

they are >50% oil (as would likely be the case in a nearly unproduced heavy oil 

application). 

The oil recovery plot (Fig 8.1.6) shows high oil cut averaging >80% oil, consistent 

between 0.3 and 0.7 PV. Type II emulsion is barely present at 0.82 PV, when 85% of 

tertiary oil had been produced. Final recovery of tertiary oil was 96.9% with Sorc = 1.48%.  

 

Figure 8.1.6: AP-02 Chemical flood oil recovery 
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Pressure drop was high but possibly field-applicable at a maximum 4.5 psi/ft (Fig. 

8.1.7). The excess mobility control in the flood is clearly seen in the curves; pressure drop 

continually increases with polymer viscosity as the core is swept out and shear rate 

decreases as a consequence. 

 

Figure 8.1.7: AP-01 Chemical flood pressure drop 

Salinity and pH propagated with the slug as expected (Fig’s 8.1.8 & 8.1.9). 
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Figure 8.1.8: AP-01 pH propagation. 

 

Figure 8.1.9: AP-01 Salinity propagation 
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The slug and drive were not degraded in the core as shown in below effluent 

rheology (Fig 8.1.10). The polymer protection package used, in combination with the high 

permeability rock, was enough to overcome the presence of iron minerals which could 

degrade polymer. 

 

Figure 8.1.10: AP-01 Slug viscosity pre-injection and post-injection 

8.2 ALKALI FLOOD ALK-01 

Part of the reason the viscous emulsion was of little impact in AP-01 was the excess 

mobility control in the flood. To demonstrate the deleterious effects of viscous emulsion 

formation in a core, as well as show the definite need for polymer in an alkaline flood, the 

alkaline flood ALK-01 was designed and implemented. ALK-01, like AP-01, was a 

Bentheimer sandstone core in epoxy at 68°C. 

The alkaline flood showed tertiary recovery of 40%, poor compared to the >90% 

recoveries in AP and ACP floods. This response is typical of chemical floods when 

inadequate mobility control is used; early emulsion breakthrough, very high emulsion 

production, low oil cut and poor overall oil recovery.  
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ALK-01 Core Properties 

The ALK-01 epoxy core was Bentheimer sandstone, and was handled as in 

preceding corefloods. Reduced brine saturated the core, and single-phase brine was used 

to establish residual saturation. Oil was flooded to the core at 75 PSI & 68°C, resulting in 

Soi = 81.4%. Oil flood seemed to cause some plugging in section 1 (see the relative 

permeability values below), which was alleviated by briefly flowing oil counter-current to 

remove plugs. Waterflood was completed at 68°C, and reduction of the core was 

incomplete (-270 mV) due to instability of dithionite at 68°C. So remaining was high after 

waterflood at 51.5% and krw low due to high oil viscosity and relatively little throughput 

(2.5 PV water) Tables 8.2.1 - 8.2.3 show relevant core properties. 
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Table 8.2.1: ALK-01 Brine composition 

Brine Composition 
NaCl 10,000 ppm 
NaHCO3 4,000 ppm 
Dithionite 1,000 ppm 

 ORP -600 mV 
pH 7.13  

 

Table 8.2.2: ALK-01 Core Properties 

Core ALK-01 

Outcrop Bentheimer   

Mass 1058.2 g  

Porosity 0.243   

Length 11.84 in 

Diameter 1.94 in 

Area 2.95 in2 

Temp 68 °C 

Brine Perm 2666 mD 

PV 125.5 ml 

Soi 0.814  

Sorw 0.515  

kro 1.13  

krw 0.026  

Oil Viscosity 220 cP 

 

 

Table 8.2.3: ALK-01 Flood parameters 

Section ΔPBrine 

(psi) 

kBrine 

(mD) 

koil (mD) kro kwf 

(mD) 

krw 

1 0.45 2171 1357 0.708 105 0.040 

2 0.35 2707 3553 1.20 111 0.035 

3 0.31 3056 4128 1.39 75 0.025 

4 0.28 2830 3648 1.05 47 0.019 

Whole 1.45 2666 2607 1.13 71 0.026 
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ALK-01 Coreflood Design 

The ALK-01 coreflood design was based primarily on phase behavior. As polymer 

wasn’t present, there was no concern about achieving mobility control, unlike all prior 

floods. Table 8.2.4 shows alkaline flood composition. Figure 8.2.1 details the identical 

salinity gradient from the AP-01 coreflood in Section 8.2 

Table 8.2.4: ALK-01 Chemical slug detail 

Slug Component ALK Slug Water Drive 

PV injected 0.25 2 

[HPAM 3630s] 

ppm 
--- --- 

[Cosolvent], 

wt.% 
--- --- 

Na2CO3 ppm 6,000 2,500 

Isoascorbic Acid 1,000 1,000 

TDS ppm 7,000 3,500 

Frontal velocity 

ft/day 
1.0 1.0 

Viscosity at 

2.51/s 

& 68°C, cP 
0.41 0.41 

Filtration Ratio 

F.R. 
--- --- 

pH 10.90 10.88 
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Figure 8.2.1: ALK-01 salinity gradient design 

 

ALK-01 Results 

The ALK-01 coreflood was largely a failure, and speaks to the importance of 

adequate mobility control and reducing formation of viscous emulsions. Tertiary recovery 

was 46% after 2.5 PV of alkaline brine were injected (Fig 8.2.2). The emulsions formed 

weren’t as viscous as was considered possible in the flood design; since the flow paths 

were already established by the waterflood, the chemical flood simply bypassed the high 

oil saturation zones and swept little excess oil. Despite this fact, the pressure drop peaked 

at 1.7 PSI/ft. In the last section of the core, pressure drop spiked as high as 0.78 PSI/ft, 

which corresponds to an apparent oil/alkaline flood viscosity of 300 cP. This apparent 

viscosity is as high as in the AP-01 flood at steady state, despite the complete lack of 

polymer, and demonstrates problem effects of viscous emulsions. Maximum oil cut was 
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40%, and quickly tapered down. Very large volumes of emulsion were produced, which 

could be challenging to manage in a reservoir or surface facility. 

 

Figure 8.2.2: ALK-01 Oil Recovery 

Pressure drops are high early in the flood (Fig 8.2.3), when a large oil bank is 

displaced by a viscous emulsion. They taper off and decrease and then show increase later 

in the flood. This may be due to mineral swelling, as the injected brine is very low salinity, 

but Bentheimer sandstone contains very little clay. It also seems that the low oil-content 

emulsions were still viscous even at the end of the flood.  The pressure drop was dominated 

by the emulsion and oil bank propagation: in a viscous oil flood with higher residual oil 

saturation (likely in the field), emulsions could be yet much more viscous and damaging. 
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Figure 8.2.3: ALK-01 flood pressure data 

The flood matches well with Koval’s theory of miscible, viscously-unstable 

displacements. Parameters used in the match are shown in Table 8.2.5. 
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Table 8.2.5: ALK-01 Koval parameters 

Parameter Description Value Units/Source 
µO Oil viscosity used in viscosity ratio 220 cP 

µS Alkaline slug viscosity.  0.41 cP 

E Koval viscosity ratio. 11.4 Calculated  

Vdp Dykstra-Parsons coefficient. (Homogenous) 0.3   

H Heterogeneity factor 2.09  Calculated 

F Gravity Factor 1   

K  Koval factor for calculating swept with 
throughput. K = H*F*E 

24.0 1/PV 

Vpvbt Breakthrough of solvent in PV, Vpvbt = 1/K 0.04 PV 

So Initial oil saturation 0.81   

So  Oil saturation start of flood 0.51   

Sor Residual oil saturation in flood of interest 0.05   

 

The match of oil tertiary oil recovery in Koval vs. the flood is seen below. The 

initial mismatch is due to the formation of an oil bank, as the flood was in tertiary mode. 

The oil bank production quickly brings the flood recovery in line with the simple Koval 

model, and matches it for at least 2.5 PV. A more sophisticated Koval model can capture 

this effect. 
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Figure 8.2.4: ALK-01 recovery and theoretical Koval match 
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Chapter 9: Summary and Conclusions 

This research produced several important conclusions relevant to chemical EOR, 

heavy oil EOR and hybrid thermal chemical EOR. 

9.1 ACP TECHNOLOGY 

 Based on the experimental results of this study, the new ACP flooding process 

shows major advantages relative to other chemical floods for the recovery of heavy oils. It 

is cheaper, simpler and more robust than surfactant-based processes, while having no 

disadvantage in terms of oil recovery. It shows much more favorable oil recovery 

characteristics than alkaline-only flooding, and its customizable phase behavior allow for 

more flexibility in design than in cosolvent-free AP (alkaline-polymer) flooding. 

9.2 HEAVY OILS AND ACP 

Heavy oils are extremely abundant, particularly in the western hemisphere, and will 

represent a major portion of the future energy portfolio of the world. The difficulties in 

producing them are well documented, and any improved or new technology in heavy oil 

EOR has potential to see widespread application in the field.  

Chemical EOR has already been demonstrated in several heavy oil fields, with 

encouraging results; Application of the advantageous ACP process could prove a major 

breakthrough in Heavy Oil EOR. The heavy oils themselves are extremely well suited for 

ACP technology, as they typically contain high concentrations of soap-forming fractions. 

However there are major limitations in all EOR types in extremely viscous oils where 

injection and production rates are very low, and heavy oil ACP is no exception. At 

viscosity/permeability ratio >3 cP/mD, corefloods show excessive pressure drop and high 

chemical concentration; in addition to viscous instability and production rates. 
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9.3 THERMAL-CHEMICAL EOR HYBRID  

The major potential for heavy oil production using ACP chemical flooding (suitable 

chemistry, abundance, good formations) justified the evaluation of strategies for 

overcoming the limitations of oil viscosity common to heavy oil reservoirs. Addition of 

thermal energy was shown in experiments to have potential to reduce or eliminate many 

problems associated with using EOR to produce heavy oil. . 

Fundamentally, heating the reservoir decreases oil viscosity. Heavy oil viscosity 

decreases dramatically with temperature: an increase of 20°C can reduce oil viscosity an 

order of magnitude. Such a reduction in viscosity would have immediate positive impact 

on injection and production rates in the reservoir, but has other benefits as well. Heating 

the reservoir can lower the chemical concentration required to displace the heavy oil bank, 

while also dramatically improving sweep and tertiary recovery. Another significant finding 

showed the ACP phase behavior of two heavy oils to be largely stable with temperature. 

In a heated reservoir with a temperature gradient present, an ACP flood which functions 

well over the entire range of temperatures encountered is critically important. 

The thermal-chemical EOR hybrids were demonstrated in corefloods, and showed 

major promise at viscosity/permeability ratio as high as 3 cP/md. While a room temperature 

ACP coreflood showed excessive pressure drop, poor tertiary recovery and viscous 

instability, a moderate increase of 25°C allowed for reasonable pressure drop, 95% tertiary 

recovery within 1 PV of injection and viscous stability. This highlights the underlying 

motivation for hybrid-thermal-chemical EOR: moderate temperature increase leads to 

major improvements in recovery. 

Although these experimental laboratory results are extremely encouraging, there is 

of course a need for additional research to more fully develop the use of ACP flooding to 
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recover heavy oil. Some of this research is already underway at the University of Texas.  

For example, the use of electrical preheating is being studied. Specific applications will 

also require ACP core floods using reservoir cores and fluids.  There is also the potential 

to discover even better cosolvents to use for ACP floods with particular heavy oils.  Finally, 

additional lab experiments using heavy oils with an even higher viscosity than studied in 

this research should be done to explore the limits of the technology.   
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Symbols List 

cP is centipoise, a measurement of viscosity.  It is 1/100th of a poise. Units are 0.01 g * 

cm^-1 * S^-1 

D is depth 

𝑔 is the gravitational constant 

GOR is gas-oil ratio, often expressed in standard cubic feet/stock tank barrel (SCF/STB) 

HLB is hydrophile - lipophile balance. This term refers to the balance of affinity of the 

head and tail groups in surfactants for aqueous and oleic phases, respectively. 

𝑘 is Permeability (millidarcy, 1 mD = 10^-5cm2) 

𝑘̅    is the single phase permeability (usually defined with respect to brine) 

𝑘̿ .  is the permeability tensor 

𝑘𝑟𝑓 is the relative permeability of the fluid 

Mf  is the mobility of the fluid 

𝑀𝑠  is mobility ratio of the shock front 

𝑁𝑡 is the trapping number 

O/W is an Oil-in-Water emulsion 

Soi is initial oil saturation  

Sorw is residual oil saturation to water 

𝑣𝑙 is the volume of oil or water solubilized in the microemulsion 

𝑣𝑠 is the volume of surfactant  

WOR is Water Oil Ratio 
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Greek Symbols 

𝜇𝑓 is the viscosity of the fluid 

𝑘 is Permeability Tensor 

Φ is Potential gradient 

𝛾 is Interfacial tension (dynes/cm) 

𝜌 is fluid density 
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