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Abstract 
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SPATIAL DISTRIBUTIONS OF NON-NATIVE WOODY PLANTS IN 

CENTRAL TEXAS 

 

Gabriel Louis De Jong, MA 

The University of Texas at Austin, 2014 

Supervisor: Norma L. Fowler 

 

 

 Many recent studies have demonstrated that propagule pressure is a useful 

predictor of patterns of invasions by non-native species. However, most of these studies 

have used only current, not historical, data to estimate propagule pressure. Recognizing 

the potential importance of propagule pressure over time, I used surrogate variables that 

represent both past and present propagule pressure, for example, the length of time a 

surrounding area had been developed. I quantified the relationships between these 

surrogate variables and the distribution and abundance of non-native woody plant species 

in central Texas. I constructed statistical models predicting native and non-native species 

richness and the occurrence of five common species using a set of six ecological and five 
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development-related predictor variables. I compared all models using the corrected 

Akaike information criterion (AICc).  

 Overall, age of residential development surrounding native woodlands was the 

best predictor, other than community type, of non-native species richness. As expected, 

areas near older developments had more non-native species than areas near newer 

developments. Surprisingly, age of development and average city age, two different 

measures of the length of time that landscaping (a major source of propagules of non-

native woody species in this region) had been present nearby, were much better 

predictors than distance to source populations. Age of development and average city age 

(weighted by distance from the site) were also both correlated with distance to source 

populations; this may be true in other systems as well. This suggests that the reason 

distance to source population has been a successful predictor of invasion may be because 

it is a surrogate for an underlying causal variable, length of time of exposure to source 

populations. Future studies of non-native invasions would benefit from taking into 

account both past and present propagule pressure: age of residential development and city 

age could be useful surrogates in other systems.  
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Introduction 

 While the majority of studies that investigate invasions by non-native species 

have focused on the invasiveness of species or the invasibility of communities (Alpert et 

al. 2000), propagule pressure is increasingly being recognized as a third critical variable 

(Lockwood et al. 2005, Simberloff 2009). Invasion is intrinsically a probabilistic process: 

the more propagules that reach a site, the more likely it is that species will become 

established there (Cassey et al. 2004, Colautti et al. 2006, Lockwood et al. 2005). Many 

invasions are still 'works in progress', in which the invasive species has not yet reached 

its maximum range or density (Dullinger et al. 2009). Under these conditions propagule 

pressure may account for substantial spatial variation in invasions (Dullinger et al. 2009, 

Simberloff 2009). Here I report the results of a study of the effects of propagule pressure 

on invasions by non-native woody species in central Texas, USA. 

 Propagule pressure is usually difficult to measure directly, so the use of surrogates 

such as visitation rates (e.g., Lonsdale 1999, McKinney 2002), human population density 

(e.g., McKinney 2001, Taylor and Irwin 2004), and rates of human transportation routes 

(e.g., Dullinger et al. 2009, Colautti et al. 2003, Schneider et al. 1998) are common. A 

frequent limitation of these studies is that they use only current data on human 

populations, human travel, and related variables, although conditions in the past may be 

as important or even more important (Heger and Trepl 2003). Recognizing the potential 

of past conditions, I used surrogates that represent both past and present propagule 

pressure, especially the length of time that the surrounding area has developed. Because 

the invasive woody species in this study area widely used in urban and suburban 



2 
 

landscaping, and because central Texas has undergone very rapid development from rural 

to urban/suburban in the past 50 years with concommitant increases in landscaping, this 

region provides an excellent system for investigating the effects of propagule pressure 

over time. 
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Methods 

 

Study area 

 All study sites were located on the eastern boundary of the Edwards Plateau in 

central Texas. This area is part of the Balcones Canyonlands Ecoregion (Bryce et al. 

2004). It has a highly dissected landscape created by erosion of the limestone bedrock, 

with many springs and intermittent streams and movement of water in and out of 

aquifers. Compared to other ecoregions on the Edwards Plateau, this region has a greater 

representation of mesic woodlands, typically dominated by Juniperus ashei (Ashe 

juniper), Quercus buckleyi (Texas red oak) and Q. fusiformis (Plateau live oak). Other 

tree species, such as Prunus serotina var. eximia (escarpment black cherry), may also be 

common, especially in canyons. The small areas of alluvial deposition along the larger 

streams and rivers support distinct communities dominated by species such as Carya 

illinoinensis (pecan) or Salix nigra (black willow). There is a gradual change in 

vegetation toward the west, with the climate becoming more arid and oak savannas more 

common. Soils are typically rocky and shallow with the limestone bedrock often exposed 

at the surface. Due to these edaphic conditions and the uneven terrain, little of the region 

has ever been plowed, although livestock grazing has been widespread. 

 

Study sites 

 I surveyed a total of 22 woodland sites in state, county, and city parks and 

preserves and on private properties. Each study site was a single contiguous area of 
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woodland. Woodlands, savannas, and developed areas are commonly interspersed in this 

region, in a spatial pattern that makes defining fragment size difficult (González 2010). 

Sites were selected to represent a range of management histories, distances to 

surrounding development, and ages of that development. Most of the sites were in or near 

Austin, Texas, and its rapidly developing metropolitan area. To help distinguish between 

the effects of development age and geographical location, I also included sites in or near 

old rural towns (Johnson City, Wimberley, and Blanco) that are not yet part of the 

suburban development around Austin.  

 

Vegetation surveys 

 I used a stratified sampling design: in each site I sampled each of three common, 

readily recognizable communities: streamside woodlands, mesic woodlands, and upland 

woodlands. Streamside woodlands were defined as closely associated with continuous or 

intermittent streams, having evidence of flooding, lacking J. ashei, which is intolerant of 

saturated soil conditions, and containing one or more of the following inundation-tolerant 

woody plant species: Platanus occidentalis (American sycamore), Cephalanthus 

occidentalis (common buttonbush), Salix nigra (black willow), Populus deltoides 

(cottonwood), or Taxodium distichum (bald cypress). Mesic woodlands were upslope 

from a stream (continuous or intermittent) and therefore unlikely to flood and did not 

contain inundation-tolerant species. Common species included Quercus buckleyi (Texas 

red oak), Quercus fusiformis (plateau live oak), Ulmus crassifolia (cedar elm), and Celtis 

reticulata (netleaf hackberry). Upland woodlands were defined as furthest upslope from 
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streams, usually relatively flat, and dominated by J. ashei in the overstory and Carex 

planostachys (cedar sedge) in the understory. Upland woodlands had lower understory 

cover and lower understory species diversity than mesic woodlands.  

 In each of these three defined communities within a site, I set up a transect 

following an existing trail. Each transect had 10-12 plots. The center of each plot was 

located at a random distance between 0 and 200 m from the start of the transect and 

randomly to the left or to the right of the trail, 6 m away from the trail. There was no 

visible evidence of disturbance (trails, trash, damage to plants) this far away from the 

trails. There were 13 sites that contained all three of the target plant communities and 

thus had three transects, while 9 sites lacked one or two communities because they were 

unavailable. 

 At each plot I recorded the identities of all native and non-native woody species 

that were rooted within a 5 m radius from the plot center. Woody vines (lianas) were also 

recorded in a plot if any part of the plant crossed the plot boundary. Two native 

succulents, Yucca rupicola (twistleaf yucca) and Opuntia engelmannii var. lindheimeri 

(Texas prickly pear), were also recorded if found in the plots. Surveying began in May of 

2011 and ended in December of 2012. 

 

Predictor variables 

 To determine the community and landscape features that are associated with 

invasion, I measured a set of independent variables and categorized them as either 

development-related or ecological. The five development variables were (1) age of 
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surrounding development, (2) distance to the nearest developed area, (3) average age of 

nearby cities, (4) distance to paved roads, and (5) road density. Age of development was 

calculated at the site level by averaging the ages of the 15 residential buildings found 

closest to my plots (typically within 500 m) along the site edge. Ages of residential 

buildings were obtained from county appraisal districts' records. Information on ages of 

cities was retrieved from the Texas Historical Association's online archives. I only 

included cities with population sizes greater than 800 in the 2010 U.S. census and less 

than 75 km away; they included small incorporated towns like Blanco, TX. Rather than 

choosing one city to associate with each site, I weighted the age of each city by the 

distance from its city center to the given site, which gave more weight to the cities that 

were closer to the given site. Distances from sites to city-centers were quantified using 

digitized maps in ArcMAP 10 (ESRI, Redlands, CA). Distance to the nearest developed 

area (usually homes, but development was defined to include commercial structures as 

well) and distance to paved roads were calculated at the plot level using digitized maps 

from the National Land Cover Database (NLCD2006). To calculate road densities I 

summed the length of paved roads within a 500 m radius around each plot center and 

divided these lengths by the total area of the circle, resulting in a variable with units of 

m/m2. I then averaged these values to get a single road density value to describe each site.  

 My six ecological variables were (1) community (as defined above), (2) percent 

canopy cover, (3) distance to the nearest stream center, (4) soil order, (5) aspect, and (6) 

percent slope. To determine canopy cover, I used Digital Ortho Quarter Quad (USGS 

2012) images, which are georectified aerial photographs (1 m2 resolution), and ArcMAP 
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10. These images were converted to binary images, with black pixels representing areas 

with woody plant cover and white pixels representing areas with herbaceous plant cover 

or bare ground. Percent woody canopy cover was then calculated at the plot level using 

plot circumferences. Distances from plot centers to the nearest stream center were 

quantified using digitized maps from the City of Austin GIS database. Soil data were 

retrieved from the Soil Survey Geographic database (SSURGO), Natural Resource 

Conservation Service (NRCS). Digital elevation models (DEM) and ArcMAP were used 

to generate percent slopes and aspects for each plot. 

 

Statistical analyses 

 I used generalized linear mixed models to test the effects of development on 

native and non-native species richness. My seven response variables were (1) native and 

(2) non-native woody species richness in each plot, and (3 - 7) the presence or absence of 

each of the five individual species abundant enough for analysis (see bellow). Each 

response variable was analyzed separately. The development-related and ecological 

variables were predictor variables. I used the SAS GLIMMIX procedure (SAS 9.3, 

Institute, Cary, NC), assuming a Poisson distribution with a log link function for each of 

the two measures of species richness, and a binomial distribution with a logit link 

function for each of the five individual species. City age, distance to roads, distance to 

streams and distance to development were transformed with the natural logarithm 

function to improve linearity. Site was included as a random term in all models. 
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 To compare models, I used the corrected Akaike information criterion (AICc). 

The better the model, the lower its AICc value. Because of the large number of potential 

predictor variables, and because none of the pairs of predictor variables were correlated 

strongly enough to justify discarding one of them a priori, I first modeled the effects of 

the five development variables and then, separately, the effects of the six ecological 

variables. I tested all possible models for each set of predictor variables. I retained the 

predictor variables that appeared in at least one model whose AICc value differed by less 

than 2.0 from the AICc of the model with the lowest AICc value for that set of predictor 

variables. I then combined the two sets of retained predictor variables, and again 

constructed all possible models that used those variables. Models whose AICc values 

differed by less than 2.0 from the lowest AICc value for that response variable are 

reported in Table 3. Among the models of Table 3, the "best model" for each response 

variable was considered to be the model with the fewest predictor variables. 
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Results 

 In total, I sampled 550 plots, containing 123 woody plant species, 16 of which 

were non-native. The most common non-native species, based on total frequencies in all 

plots, were Ligustrum lucidum (glossy privet), Nandina domestica (heavenly bamboo), 

Lonicera japonica (Japanese honeysuckle), Ligustrum sinense (Chinese privet) and Melia 

azedarach (chinaberry). All five of these are used in landscaping in the region and were 

originally deliberately introduced (Diggs Jr. et al. 1999). Non-native species were 

between 0.0% and 33.3% of the plant species at any given site (mean = 9.8%, SD = 8.9). 

 As expected, the five development variables were significantly correlated: as 

development age, city age, and road density increased, distances to development and to 

roads decreased (Table 1). Thus sites surrounded by older residential development were 

on average closer to residential development and to roads, were near older cities, and had 

higher nearby road densities (Table 1). The three numerical ecological variables (slope, 

distance to stream, and overstory canopy cover) were not significantly correlated with 

each other. Unexpectedly, sites near older cities and older developments were 

significantly closer to the nearest stream; consistent with this, distance to the nearest 

stream was positively correlated, though not significantly, with distance to development 

and to roads. Canopy cover and slope did not have consistent or significant correlations 

with the development variables.  

 Overstory canopy cover was high in all three communities, but was highest in 

mesic woodlands and lowest in uplands (Table 2). On average, mesic woodlands had 
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Table 2. Mean values and standard errors of predictor variables for three woodland 

plant communities 

 streamside (SE) mesic (SE) upland (SE) 

% canopy cover 85.6% (1.9) 90.7% (1.4) 80.4% (1.9) 

% slope 13.4% (0.9) 25.7% (1.5) 15.6% (0.9) 

distance to nearest 

stream (m) 
28.1 (2.0) 43.7 (3.5) 111.0 (8.1) 

distance to road (m) 392.8 (33.7) 402.1 (31.1) 302.8 (23.5) 

distance to 

development (m) 
541.8 (52.8) 588.0 (52.0) 667.9 (58.7) 
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steeper slopes. As expected, plots in streamside woodlands were closer to streams than 

plots in mesic woodlands, and upland plots were furthest from streams. Plots in uplands 

were on average closer to roads but further from development than plots in the other two 

communities. 

 

Species richness 

 Native richness was best predicted by a model that included, in addition to the 

random variable site, community type, slope, soil order, and road density (Table 3). More 

native species were found in plots in mesic woodlands, on steeper slopes, on more 

developed soils, and near denser road networks (Fig. 1). All other models of native 

species richness with AICc values less than 2.0 larger than the best model also had more 

than four predictor variables (Table 3).  

 Non-native species richness was best predicted by a model that included, in 

addition to the random variable site, community type and age of development, but this 

model was not distinguishably better than a model that substituted city age for age of 

development (Table 3). More non-native species were found in plots near (or in) older 

developments and cities (Fig. 2). In contrast to native richness, more non-native species 

were found in streamside woodlands followed by mesic woodlands and then by uplands 

(Fig. 2). All other models of native species richness with AICc values less than 2.0 larger 

than the best model also had more than three predictor variables (Table 3). 

 

Occurrences of individual species 
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Table 3. Predictors in all models whose AICc value differed from the best model by 

less than 2. Models are arranged in ascending order based on Δ AICc. The best model 

is in boldface. The best models have the fewest variables and an AICc value not 

distinguishable (Δ AICc < 2) from the lowest AICc value. All models also included 

site as a random factor. 

Dependent  

variable 

Predictor(s) in  

model 

Number 

of 

predictor 

variables 

AICc Δ AICc 
-2 Log 

Likelihood 

native 

species 

richness 

community, road 

density, slope, soil 

order 

4 2528.55 - 2510.21 

community, distance 

to development, 

distance to road, 

road density, slope, 

soil order 

6 2528.97 0.42 2506.48 

community, distance 

to road, road density, 

slope, soil order 

5 2529.02 0.47 2508.61 

community, distance 

to road, road density, 

slope, soil order, 

distance to stream 

6 2529.19 0.64 2506.70 

community, distance 

to development, 

distance to road, 

distance to stream, 

road density, slope, 

soil order 

7 2529.39 0.84 2504.81 

community, distance 

to development, 

distance to road, 

slope, soil order 

5 2530.28 1.73 2509.87 

community, distance 

to development, 

distance to road, 

distance to stream, 

slope, soil order 

6 2530.44 1.89 2507.95 
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Table 3 continued 

non-native 

species 

richness 

age of development, 

community 
2 718.64 - 708.53 

city age, community 2 719.07 0.43 708.96 

age of development, 

aspect, community 
3 719.36 0.72 703.10 

age of development, 

city age, community 
3 719.68 1.04 707.53 

age of development, 

community, distance 

to road 

3 719.69 1.05 707.69 

aspect, city age, 

community 
3 720.01 1.37 703.74 

age of development, 

aspect, city age, 

community 

4 720.18 1.54 702.18 

age of development, 

community, slope 
3 720.32 1.68 708.17 

city age, community, 

distance to road 
3 720.53 1.89 708.37 

presence/ 

absence of 

Ligustrum 

lucidum 

city age, community, 

distance to 

development, 

distance to road, 

distance to stream 

5 259.50 - 243.23 

age of development, 

city age, community, 

distance to 

development, 

distance to roads, 

distance to stream 

6 260.01 0.51 241.68 
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Table 3 continued 

 city age, 

community, 

distance to 

development, 

distance to road 

4 260.64 1.14 246.43 

city age, distance to 

development, 

community, distance 

to road, slope, 

distance to stream 

6 260.77 1.27 242.44 

age of development, 

city age, community, 

distance to 

development, 

distance to road, 

distance to stream, 

slope 

7 261.17 1.67 240.76 

presence/ 

absence of 

Nandina 

domestica 

aspect, city age, 

community 
3 253.06 - 236.8 

aspect, city age, 

community, slope 
4 253.33 0.27 234.99 

aspect, city age, 

community, distance 

to stream 

4 254.47 1.41 236.35 

aspect, city age, 

community, cover, 

slope 

5 254.63 1.57 234.22 

aspect, city age, 

community, distance 

to stream, slope 

5 254.87 1.81 234.46 

presence/ 

absence of 

Lonicera 

japonica 

aspect, city age, 

slope 
3 153.98 - 139.65 
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Table 3 continued 

 aspect, city age, 

distance to 

development, road 

density, slope 

5 154.95 0.97 138.71 

aspect, city age, road 

density, slope 
4 154.99 1.01 138.57 

aspect, slope 2 155.19 1.21 142.95 

aspect, city age, 

community, road 

density, slope 

5 155.21 1.23 137.63 

aspect, city age, 

community, distance 

to development, 

slope 

5 155.69 1.71 137.16 

aspect, city age, 

distance to 

development, slope 

4 155.7 1.72 139.28 

aspect, road density, 

slope 
3 155.84 1.86 141.51 

presence/ 

absence of 

Ligustrum 

sinense 

city age, community, 

distance to 

development 

3 137.35 - 127.18 

city age, community, 

distance to 

development, soil 

order 

4 138.7 1.35 124.37 

city age, 

community 
2 139.05 1.7 130.94 

presence/ 

absence of 

Melia 

azedarach 

age of development, 

cover, community 
3 205.72 - 193.57 
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Table 3 continued 

 
age of development, 

community 
2 206.18 0.46 196.07 

age of development, 

city age, community, 

cover, road density 

5 206.46 0.74 190.20 

cover, community 2 206.61 0.89 196.50 

age of development, 

community, cover, 

road density 

4 206.66 0.94 192.46 

age of development, 

aspect, community, 

cover, road density 

5 207.11 1.39 186.70 

age of development, 

city age, community, 

cover 

4 207.11 1.39 192.90 

community 1 207.19 1.47 199.12 

age of development, 

community, road 

density  

3 207.34 1.62 195.19 

age of development, 

aspect, city age, 

community, cover,  

5 207.35 1.63 186.94 
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Figure 1. Relationships between native species richness and each of the predictor variables in the 

best model. Bar heights for categorical variables (community type, soils) are least squares means 

from the best model and error bars are estimated standard errors from the best model; bars with 

the same letter are not significantly different. For graphical purposes I have grouped continuous 

variables (slope, road density) into three categories each (categories distinguished by color) and 

present histograms of the resulting distributions (three distributions per predictor variable. In 

these histograms, bar heights represent the observed frequencies of numbers of native species per 

plot and circles represent the corresponding frequencies predicted by the best model. 
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Figure 2. Relationships between non-native species richness and each of the predictor variables 

in the best model. For graphical purposes only I have grouped continuous variables (age of 

development, city age) into three categories each (categories distinguished by color) and present 

histograms of the resulting distributions (three distributions per predictor variable). In these 

histograms, bar heights represent the observed frequencies of numbers of native species per plot 

and circles represent the corresponding frequencies predicted by the best model. Bar heights for 

the categorical variable, community type, are least squares means from the best model and error 

bars are estimated standard errors from the best model; bars with the same letter are not 

significantly different.
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 Ligustrum lucidum occurrence was best predicted by a model that included city age, 

distance to development, distance to roads, and community type (Table 3). This model did not 

have the lowest AICc value, but had the fewest variables, while having an AICc value < 2.0 

different from the lowest AICc value. Plots near older cities, nearer development, and further 

from roads were more likely to have this species (Fig. 3). It was significantly more likely to 

occur in streamside plots than in upland plots; mesic woodland plots were intermediate (Fig. 4). 

 Nandina domestica occurrence was best predicted by three variables: city age, 

community type, and aspect (Table 3). Plots near older cities were more likely to have this 

species (Fig. 5). It was significantly more likely to occur in streamside and mesic woodland plots 

than in upland plots (Fig. 4). N. domestica was more likely to be present on east-facing slopes 

than on slopes with other aspects (Fig. 5). 

 Lonicera japonica was never present in upland communities, so I could not include data 

from all three communities in a generalized linear model. A chi-square test for differences in L. 

japonica occurrence between the three communities was significant (df = 2, χ2 = 44.12, P < 

0.0001). Combining streamside and mesic woodland communities into one category, I found that 

L. japonica occurrence differed significantly between uplands and the other two communities (df 

= 1, χ2 = 23.70, P < 0.0001). I then dropped all upland plots and proceeded with model selection. 

L. japonica occurrence was best predicted by two variables: aspect and slope (Table 3). Plots on 

gentler north and west-facing slopes were more likely to have this species (Fig. 6). 
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Figure 3. Relationships between Ligustrum lucidum occurrence and each of the predictor 

variables in the best model. For graphical purposes only I have grouped age of development, city 

age, and distance to development into three categories each (categories distinguished by color). 

Bar heights represent the observed percentages of plots and circles represent the predictions of 

the best model.  
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Figure 4. Relationships between occurrences of three non-native species and community type. 

Each species had community type as a term in their best model. Bar heights are least squares 

means from the best model and error bars are estimated standard errors from the best model; for 

each species, bars with the same letter are not significantly different.  
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Figure 5. Relationships between Nandina domestica occurrence and each of the predictor 

variables in the best model. For graphical purposes only I have grouped the continuous variable, 

city age, into three categories (categories distinguished by color). Bar heights represent the 

observed percentages of plots and circles represent the predictions of the best model. Bar heights 

for the categorical variable, aspect, are least squares means from the best model and error bars 

are estimated standard errors from the best model; bars with the same letter are not significantly 

different. 
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Figure 6. Relationships between Lonicera japonica occurrence and each of the predictor 

variables in the best model. For graphical purposes only I have grouped the continuous variable, 

slope, into three categories (categories distinguished by color). Bar heights represent the 

observed percentages of plots and circles represent the predictions of the best model. Bar heights 

for the categorical variable, aspect, are least squares means from the best model and error bars 

are estimated standard errors from the best model; bars with the same letter are not significantly 

different.
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 Ligustrum sinense was never present in plots in either upland communities or on west-

facing slopes. A chi-square test on the probability of occurrence revealed significant differences 

between community types (df = 2, χ2 = 35.26, P < 0.0001). Combining streamside and mesic 

woodland communities into one category, I found that L. sinense occurrence differed 

significantly between uplands and the other two communities (df = 1, χ2 = 16.21, P < 0.0001). 

Dropping upland plots and plots with gentle (≤ 5%) slopes, I performed a Fisher’s exact test on 

occurrences of L. sinense by aspect and found significant differences (P = 0.0461). With uplands 

and gentle slopes dropped, I then grouped all north-facing plots with east-facing plots and all 

south-facing plots with west-facing plots and found that L. sinense was more likely to be present 

on north- and east-facing slopes (df = 1, χ2 = 6.30, p = 0.012). I then dropped all upland plots and 

withheld aspect from the set of explanatory variables before proceeding with model selection. L. 

sinense was best predicted by a model that contained two predictor variables: city age and 

community type (Table 3). L. sinense was more likely to be present in plots near older cities and 

in streamside communities (Fig. 7).  

 Melia azedarach occurrence was best predicted by a model that contained one predictor 

variable: community type (Table 3). M. azedarach was significantly more likely to be present in 

plots in streamside woodlands than in mesic woodlands and uplands (Fig. 4). 
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Figure 7. Relationships between Ligustrum sinense occurrence and each of the predictor 

variables in the best model. For graphical purposes only I have grouped the continuous variable, 

city age, into three categories (categories distinguished by color). Bar heights represent the 

observed percentages of plots and circles represent the predictions of the best model. Bar heights 

for the categorical variable, community type, are least squares means from the best model and 

error bars are estimated standard errors from the best model; bars with the same letter are not 

significantly different.
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Discussion 

 

      Age of development and distance from development 

 My results underscore the importance of including a measure, direct or indirect, of 

propagule pressure and colonization pressure in studies of invasions by non-native 

species (Barney and Whitlow 2008, Lockwood et al. 2005, Rejmánek et al. 2005), and 

especially of including variables that are surrogates for the time span over which 

propagule pressure has been exerted. I found that the age of residential development 

surrounding native woodlands was the best predictor, other than community type, of non-

native species richness. Native woodlands near older developments had more non-native 

species than woodlands near younger developments, as would be expected if the length of 

time over which propagule pressure had occurred was strongly influencing landscape 

patterns of invasions (Lockwood et al. 2005, Williamson 1996). City age, which was 

strongly correlated with age of development, was nearly as good a predictor of non-native 

species richness as age of the surrounding development.  

 Many studies have shown that distance from putative source populations (e.g., 

suburban edge, property lines, settlements) is an important predictor of non-native 

species richness (Alston and Richardson 2006, Fornwalt et al. 2003). However, in my 

analysis, proximity to residential development did not appear in my better models of non-

native species richness (Table 3); the length of time that nearby source populations had 

been present (age of development, city age) was a substantially better predictor than 

distance from source populations. But had I not been able to use the length of time that 
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source populations had been present, my final models would have included distance to 

development. Since invasions occur gradually, it is likely that age of source population 

and distance to source population, which were correlated in my data set (Table 1), are 

also correlated in other systems as well. My results suggest that at least some of the 

reported importance of distance to source populations in previous studies may in fact be 

due to correlations between distance to source populations and age of those source 

populations.  

 Age of residential development has rarely been used as a predictor of plant 

invasions; I am aware of only three. In a study in New Zealand, Sullivan et al. (2005) 

included both distance and age in their models but found that a model with the number of 

houses within 250 m of a site was the single best predictor of the number of non-native 

species. Similar to my study, they found that age of development and distance to 

residential development were significantly negatively correlated with each other and that, 

when analyzed separately, both development variables were strong predictors of non-

native species richness. In Sidney, Australia, Rose and Fairweather (1997), found that 

native bushlands near older suburbs had higher proportions of non-native species, but 

they did not directly compare the effects of distance and age. Fensham and Cowie (1998) 

found a positive relationship between the number of non-native species in native 

communities and the age of nearby settlements on the Tiwi Islands, but they did not 

include distance in their analysis. I believe development age should be more widely used 

as a surrogate for the length of time over which propagule pressure and colonization 
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pressure have operated, especially in other regions in which the invasive species in 

question are used in landscaping, as in my study, or grown in gardens. 

 

      Differences among community types 

 In my study, streamside communities were more heavily invaded by non-natives 

than other communities, a common finding in invisibility studies worldwide (Henderson 

and Wells 1986, Hood and Naiman 2000, Pyšek and Prach 1994). In central Texas, where 

soil moisture is often limiting, water is most available to plants in streamside woodlands, 

less available in mesic woodlands, and least available in upland woodlands. In addition to 

being farther from drainage areas, upland sites have thinner soils that are frequently 

broken up by areas of exposed limestone bedrock; these characteristics tend to prevent 

soil moisture retention. Plots in upland woodlands had on average the fewest non-native 

woody species. Lower water availability in upland woodlands is likely also limiting the 

establishment and spread of non-native woody species there. The importance of slope 

direction (aspect) for some of the common non-native species in this study is consistent 

with this. Differences in soil depth and fertility may also be involved in differences 

among communities in non-native species richness (Stohlgren et al. 1998). 

 While there are many invasive species that originate in dry areas of the world, in 

central Texas, landscaping plants have mostly been species from regions more mesic than 

central Texas. This is a form of propagule bias (Colautti et al. 2006). Until recently, 

landscaping plants, gardens, and lawns have all routinely been irrigated. With the recent 

promotion of xeriscaping (the use of landscaping plants that do not require irrigation), 
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this may change. Xeriscaping, however desirable from a water-conservation viewpoint, 

could become a prolific source of new invasive species in the region if landscaping 

species are not selected with care. 

 

      Native versus non-native species 

 The best explanations for the distributions and abundances of native species 

differed from those for non-native species. The important factors for native species were 

mostly ecological, including community type, slope and soil type. Road density was the 

only important development-related predictor explaining the distribution and abundance 

of native species; there were more native species in areas with higher road densities. The 

underlying cause of this relationship is unknown, but could be due to a tendency for 

humans to settle in more productive areas in the landscape (Chown et al. 2003, Fjeldså 

and Burgess 2008) or due to differences in land use between densely populated areas and 

less densely populated areas. In the future, the most common of the non-native species 

may develop distributions that depend only, or mostly, on ecological factors, as they 

come to fill their potential ecological niches (Dullinger et al. 2009). 

 

      Seed dispersal 

 It is probably not chance that the five most common woody invasive species I 

found are all bird-dispersed. Among introduced species, rapid dispersal ability has been 

strongly associated with invasion success (Goodwin et al. 1999, Rejmánek 1996, 

Rejmánek and Richardson 1996) and is associated with many plant traits (Alpert et al. 
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2000). Globally, birds play important facilitative roles in plant invasions (Kruger et al. 

1986, Mack and Lonsdale 2001, Williams and Karl 1996). Urban and suburban 

development have contributed to this trend by increasing the numbers of frugivorous 

birds in these environments (Debussche and Isenmann 1990). An association with a good 

disperser (or multiple dispersers) may allow a species to spread faster and over longer 

distances (Johnson and Adkisson 1985), possibly shortening the lag phase that 

characterizes many invasions (Kowarik 1995). The non-native species that are abundant 

now may represent the first "wave" of invasions. In the future, we may observe a new set 

of non-native species, the slower dispersers, spread across the landscape. 

 

      Other factors 

 In addition to a longer time period for colonization to occur, sites near older 

developments and older cities may have experienced longer recreational use, which might 

have made them more susceptible to species invasions (Catford et al. 2009 and others 

within); I was not able to quantify this. Development also may affect populations of seed 

dispersers, positively or negatively (Debussche and Isenmann 1990, Lockwood 2007). 

Mockingbirds, the most common fruit-disperser in this region, are common both in cities 

and in wildlands (De Jong, pers. obs.) but I have no data on their relative abundances in 

developed and undeveloped areas, or in different community types. 

 

      Conclusion: the importance of considering propagule pressure over time 
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 To effectively understand and therefore be able to better manage invasions by 

non-natives, it is critical that we explain their distributions and abundances in space. To 

this end, I have shown that not only is it important that good predictors of present 

propagule pressure be included in studies of invasion (as many recent studies have), but it 

may be critical that surrogates be chosen that represent the time period over which 

propagule pressure has been exerted. Up to now, the latter type of surrogate has been 

used infrequently; I believe it should be included whenever possible. Had I not included 

variables that represent the history of propagule pressure in my system, including its 

variation in space and time, a significant driver of invasions would have been overlooked. 
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Appendices 

 Appendix 1. Background 

 Invasion ecology can be defined as the study of how and why organisms spread in 

environments to which they are not native and their impacts there (Alpert et al. 2000). 

This relatively new sub-discipline has gained considerable attention among ecologists in 

part because of the realization that non-native species can cause major environmental 

problems (Higgins et al. 1999, Luken and Thieret 1997, Vitousek et al. 1996). Rates of 

species introductions, both deliberate and accidental, are increasing and will likely 

continue to increase or accelerate in many regions, as has been demonstrated in the past 

(Pickard 1984, Ricciardi 2001, Ruiz et al. 2000, Wonham and Carlton 2005). Besides 

examining the impacts of non-native invaders, early research in invasion biology focused 

on two topics: invasiveness and invisibility. These two approaches, represented by these 

two foci, each centered on their own question in community ecology and so have differed 

not only in their explanations for invasion but also in how they propose to control 

invasions (Alpert et al. 2000).  

 Studies of invasiveness have sought to identify specific characteristics of a 

species that make them more or less likely to become invasive. This research focus was 

bolstered by early studies showing that, of the total number of introduced species, very 

few become invasive (Williamson 1996). Therefore, identifying the traits responsible for 

invasive behavior should be an effective way of analyzing risk and screening potential 

invasive species (Kolar and Lodge 2001, Simberloff 2005). Findings from invasiveness 

studies have lacked generality and predictive ability; the list of traits associated with 
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invasions has turned out to be very long (Reichard and Hamilton 1997). Different traits 

are likely important at different stages in the invasion process (Heger and Trepl 2003) 

and their importance may depend on environmental conditions during establishment 

(Moyle and Marchetti 2006). Recent studies have found that, among certain taxonomic 

groups and regions, the likelihood of species establishment and spread may be much 

higher than that predicted by Williamson (1996) (Jeschke and Strayer 2005, Richardson 

and Pyšek 2006). Examining life history traits, therefore, may be most useful in 

understanding invasions on a case-by-case basis, rather than as a tool to make general 

predictions across multiple species and different geographic contexts (Alpert et al. 2000).  

 Invasibility studies have examined the characteristics of an environment that 

make it more or less susceptible to invasion. Considerable progress has been made in 

identifying differences in invasibility between habitats (Alpert et al. 2000, Lonsdale 

1999). Habitats that are now recognized as having properties that resist invasions include 

arid habitats (Fleischmann 1997, Rejmánek 1989), large fragments of fragmented habitats 

(Harrison 1999), undisturbed tropical forests (Rejmánek 1996), and sandy or serpentine 

soils (Greenberg et al. 1997). Riparian zones have consistently been found to be more 

susceptible to invasions (Planty-Tabacchi et al. 1996, Kotanen et al. 1998, Stohlgren et al. 

1998). Ecosystems with more available nutrients, or that are more disturbed, have a 

greater susceptibility to plant invasions (Smith and Knapp 1999). In his classical work, 

Elton (1958) postulated that more species-diverse habitats should be more resistant to 

invasion. However, subsequent studies have found that the nature of the diversity-

invasibility relationship is often scale-dependent. Small-scale studies have often found a 
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negative relationship between diversity and invability (Levine and D'Antonio 1999, 

Naeem et al. 2000, Tilman 1997), while at large scales the relationship is often positive 

(Lonsdale 1999, Stohlgren et al. 1999). Within a single ecosystem, the diversity-

invasibility relationship may change depending on other ecosystem properties, such as 

productivity (Davies et al. 2007). 

 In spite of the progress made in understanding invasibility, the intrinsic 

characteristics of a system often fail to completely explain invasion patterns in the 

landscape; patterns often remain idiosyncratic in appearance (Lockwood et al. 2009). An 

emerging concensus is that while intrinsic qualities of habitats do affect vulnerability to 

invasion, there are external qualities, such as propagule pressure, that may better explain 

the distribution and abundances of non-native species at many scales (Lockwood et al. 

2005, Simberloff 2009). Also, by not accounting for spatial and temporal variation in 

propagule pressure, many studies have incorrectly attributed the “level of invasion” in a 

system (Hierro et al. 2005, Chytry et al. 2005) to actual differences in system invasibility 

(Lockwood et al. 2007, Simberloff 2009). By including estimates of propagule pressure 

associated with invasions, the intrinsic properties of a system, those that make it more or 

less likely to be invaded, can then be disentangled from the actual level of invasion 

(Catford et al. 2012, Chytry et al. 2008). Likewise, colonization pressure, or the number 

of species introduced to an area, may explain why certain areas contain more non-native 

species than other areas (Lockwood et al. 2009). 

 Direct quantification of propagule pressure in invaded systems has proven to be 

difficult, if not impossible, in many studies (for some examples of studies in which 



36 
 

propagule pressure was measured directly, see Wonham et al. 2001). Instead, ecologists 

have largely relied on surrogate measures, such as the number of visitors to nature 

reserves (Lonsdale 1999, McKinney 2002), human population density or size (McKinney 

2001, McKinney 2002, Taylor and Irwin 2004), economic activity (Taylor and Irwin 

2004), indicators of horticultural activity (Mulvaney 2001), length of roads (Dullinger et 

al. 2009), and boat and shipping traffic (Colautti et al. 2003, Schneider et al. 1998). Many 

studies have now shown that propagule pressure, not species traits or system traits, is the 

most important determinant of establishment success for introduced species (Cassey et al. 

2004, Colautti et al. 2006, Lockwood et al. 2005). Propagule pressure can play an 

important role in population spread by allowing an invader to adapt to different 

environments (Lavergne and Molofsky 2007, Saltonstall 2002). Given this apparent 

ability of propagule pressure to explain spatial and temporal patterns of invasions, there is 

a need to test new putative surrogates for propagule pressure (Lockwood et al. 2005, 

Simberloff 2009). Accordingly, in this study, I investigated the role of propagule pressure 

and colonization pressure in explaining the distribution and abundance of woody non-

native species in central Texas. I took advantage of the fact that most of the woody non-

native species in this region are ornamentals that have spread from human-created 

landscapes; this is also a common occurrence world-wide (Reichard and Hamilton 1997, 

Rejmánek 2014). Therefore, I was able to use age of development as a surrogate for the 

length of time propagule pressure had been present, and distance to development as a 

surrogate for the magnitude of the propagule pressure. 
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 Appendix 2. List of species.  

Scientific and common names of all plant species present in study plots. Names follow 

USDA Plants. Native status: 'e' for exotic, 'n' for native. 

number scientific name common name 
native 

status 

1 Abutilon incanum pelotazo n 

2 Acacia farnesiana sweet acacia n 

3 Acer negundo boxelder n 

4 Aesculus pavia red buckeye n 

5 Ageratina havanensis Havana snakeroot n 

6 Ailanthus altissima tree of heaven e 

7 Amorpha fruticosa false indigo bush n 

8 Ampelopsis arborea peppervine n 

9 Apocynum cannabinum Indianhemp n 

10 Baccharis neglecta Rooseveltweed n 

11 Berchemia scandens Alabama supplejack n 

12 Bernardia myricifolia mouse's eye n 

13 Broussonetia papyrifera paper mulberry e 

14 Callicarapa americana American beautyberry n 

15 Carya illinoinensis pecan n 

16 Celtis laevigata var. laevigata sugarberry n 

17 Celtis laevigata var. reticulata netleaf hackberry n 

18 Celtis occidentalis common hackberry n 

19 Cercis canadensis eastern redbud n 

20 Cnidoscolus texanus Texas bullnettle n 

21 Cocculus carolinus Carolina coralbead n 
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22 Colubrina texensis Texan hogplum n 

23 Condalia hookeri Brazilian bluewood n 

24 Cornus drummondii roughleaf dogwood n 

25 Croton fruticulosus bush croton n 

26 Croton sp.  n 

27 Croton texensis Texas croton n 

28 Cylindropuntia leptocaulis Christmas cactus n 

29 Desmanthus sp. bundleflower n 

30 Desmodium paniculatum panicledleaf ticktrefoil n 

31 Diospyros texana Texas persimmon n 

32 Eriobotrya japonica loquat e 

33 Eysenhardtia texana Texas kidneywood n 

34 Firmiana simplex Chinese parasoltree e 

35 Forestiera pubescens stretchberry n 

36 Frangula caroliniana Carolina buckthorn n 

37 Fraxinus albicans Texas ash n 

38 Fraxinus pennsylvanica green ash n 

39 Fraxinus sp.  n 

40 Funastrum cynanchoides ssp. 

cynanchoides 
fringed twinevine n 

41 Garrya ovata ssp. lindheimeri Lindheimer's silktassel n 

42 Ilex decidua deciduous holy n 

43 Ilex vomitoria yaupon n 

44 Ipomoea lindheimeri Lindheimer's morning-glory n 

45 Jasminum mesnyi Japanese jasmine e 

46 Juglans major Arizona walnut n 
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47 Juglans microcarpa little walnut n 

48 Juglans nigra black walnut n 

49 Juniperus ashei Ashe's juniper n 

50 Juniperus virginiana eastern redcedar n 

51 Lantana urticoides West Indian shrubverbena n 

52 Leucophyllum frutescens Texas barometer bush n 

53 Ligustrum lucidum glossy privet e 

54 Ligustrum sinense Chinese privet e 

55 Ligustrum sp.  e 

56 Lindera benzoin northern spicebush n 

57 Lonicera japonica Japanese honeysuckle e 

58 Maclura pomifera osage orange n 

59 Mahonia swaseyi Texas barberry n 

60 Mahonia trifoliolata algerita n 

61 Malvaviscus arboreus var. 

drummondii 
wax mallow n 

62 Matelia reticulata netted milkvine n 

63 Maurandella antirrhiniflora roving sailor n 

64 Melia azedarach Chinaberrytree e 

65 Mimosa aculeaticarpa var. 

biuncifera 
catclaw mimosa n 

66 Mimosa borealis fragrant mimosa n 

67 Morus alba white mulberry e 

68 Morus rubra red mulberry n 

69 Nandina domestica sacred bamboo e 

70 Nolina lindheimeriana devil's shoestring n 
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71 Nolina texana Texas sacahuista n 

72 Opuntia engelmannii var. 

lindheimeri 
Texas pricklypear n 

73 Parthenocissus quinquefolia Virginia creeper n 

74 Passiflora lutea yellow passionflower n 

75 Philadelphus ernestii canyon mock orange n 

76 Phoradendron tomentosum Christmas mistletoe n 

77 Photinia ×fraseri Fraser's photinia e 

78 Photinia serratifolia Taiwanese photinia e 

79 Platanus occidentalis American sycamore n 

80 Populus deltoides eastern cottonwood n 

81 Prosopis glandulosa honey mesquite n 

82 Prunus caroliniana Carolina laurelcherry n 

83 Prunus mexicana Mexican plum n 

84 Prunus serotina var. eximia black cherry n 

85 Ptelea trifoliata common hoptree n 

86 Quercus buckleyi Texas red oak n 

87 Quercus fusiformis Texas live oak n 

88 Quercus sinuata bastard oak n 

89 Quercus stellata post oak n 

90 Rhubus trivialis southern dewberry n 

91 Rhus copalinum winged sumac n 

92 Rhus lanceolata prairie sumac n 

93 Rhus trilobata var. trilobata skunkbush sumac n 

94 Rhus virens evergreen sumac n 

95 Sabal minor dwarf palmetto n 
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96 Salix nigra black willow n 

97 Sapindus saponaria wingleaf soapberry n 

98 Senna lindheimeriana velvet leaf senna n 

99 Sesbania drummondii poisonbean n 

100 Sideroxylon lanuginosum gum bully n 

101 Smilax bona-nox saw greenbrier n 

102 Sophora secundiflora mescal bean n 

103 Styphnolobium affine Eve's necklacepod n 

104 Taxodium distichum bald cypress n 

105 Tilia americana Carolina basswood n 

106 Toxicodendron radicans eastern poison ivy n 

107 Tragia betonicifolia betonyleaf noseburn n 

108 Triadica sebifera Chinese tallow e 

109 Ulmus americana American elm n 

110 Ulmus crassifolia cedar elm n 

111 Ungnadia speciosa Mexican buckeye n 

112 Unknown sp 1  n 

113 Unknown sp 2  n 

114 Unknown sp 3  n 

115 Viburnum rufidulum rusty blackhaw n 

116 Vicia villosa winter vetch n 

117 Vitex agnus-castus lilac chastetree e 

118 Vitis cinerea var. helleri Heller's grape n 

119 Vitis mustangensis mustang grape n 

120 Vitis sp.  n 

121 Yucca rupicola twisted-leaf yucca n 
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122 Zanthoxylum hirsutum Texas Hercules' club n 

123 Ziziphus obtusifolia lotebush n 
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Appendix 3. Raw data 
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alex u 12 30.3216 -97.8357 8 0 0 0 0 0 0 SO 2.663 97.4 25.13 4.988 0.065 4.803 36.05 5.520 inc 

alex u 13 30.3216 -97.8358 10 0 0 0 0 0 0 SO 2.663 100.0 25.13 5.051 0.065 4.848 31.32 5.503 inc 

alex u 14 30.3215 -97.836 8 0 0 0 0 0 0 SO 2.663 92.4 25.13 5.157 0.065 5.032 40.15 5.561 inc 

alex u 15 30.3215 -97.8362 6 0 0 0 0 0 0 SO 2.663 97.4 25.13 5.265 0.065 5.128 35.00 5.537 inc 

alex u 16 30.3216 -97.8365 5 0 0 0 0 0 0 SO 2.663 100.0 25.13 5.414 0.065 5.274 30.73 5.435 inc 

alex u 17 30.3215 -97.8365 6 0 0 0 0 0 0 SO 2.663 87.0 25.13 5.407 0.065 5.286 33.75 5.407 inc 

alex u 18 30.3217 -97.8366 7 0 0 0 0 0 0 SO 2.663 97.4 25.13 5.465 0.065 5.323 33.29 5.384 inc 

alex u 19 30.3217 -97.8372 5 0 0 0 0 0 0 SO 2.663 98.7 25.13 5.654 0.065 5.442 14.76 5.130 inc 

alex u 20 30.3218 -97.8373 4 0 0 0 0 0 0 SO 2.663 96.1 25.13 5.727 0.065 5.442 9.75 5.074 inc 

alex u 21 30.3218 -97.8374 6 0 0 0 0 0 0 SO 2.663 100.0 25.13 5.727 0.065 5.442 9.75 5.048 inc 

alex u 22 30.3218 -97.8374 8 0 0 0 0 0 0 SO 2.663 80.3 25.13 5.758 0.065 5.442 9.27 5.009 inc 

alex u 23 30.3219 -97.8375 9 0 0 0 0 0 0 WE 2.663 92.6 25.13 5.765 0.065 5.398 7.50 5.025 inc 

alex w 0 30.3222 -97.8369 8 0 0 0 0 0 0 NO 2.663 100.0 25.13 5.602 0.065 5.198 65.31 5.198 mol 
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alex w 1 30.3223 -97.8367 10 0 0 0 0 0 0 NO 2.663 100.0 25.13 5.525 0.065 5.142 47.16 5.130 mol 

alex w 2 30.3223 -97.8367 7 0 0 0 0 0 0 NO 2.663 83.9 25.13 5.525 0.065 5.142 47.16 5.153 mol 

alex w 3 30.3223 -97.8365 7 0 0 0 0 0 0 NO 2.663 100.0 25.13 5.442 0.065 5.142 38.61 5.124 mol 

alex w 4 30.3223 -97.8363 10 0 0 0 0 0 0 NO 2.663 100.0 25.13 5.352 0.065 5.142 77.86 5.124 mol 

alex w 5 30.3221 -97.836 9 0 0 0 0 0 0 NO 2.663 100.0 25.13 5.198 0.065 4.959 65.11 5.220 mol 

alex w 6 30.322 -97.8357 11 0 0 0 0 0 0 SO 2.663 100.0 25.13 5.017 0.065 4.714 6.69 5.283 mol 

alex w 7 30.322 -97.8356 10 0 0 0 0 0 0 SO 2.663 100.0 25.13 5.017 0.065 4.615 7.34 5.295 mol 

alex w 8 30.322 -97.8355 11 0 0 0 0 0 0 SO 2.663 100.0 25.13 4.875 0.065 4.511 13.80 5.297 mol 

alex w 9 30.3221 -97.8354 13 0 0 0 0 0 0 NO 2.663 100.0 25.13 4.796 0.065 4.402 53.17 5.270 mol 

alex w 10 30.322 -97.8354 11 0 0 0 0 0 0 SO 2.663 88.9 25.13 4.796 0.065 4.394 13.08 5.306 mol 

alex w 11 30.3221 -97.8353 12 0 0 0 0 0 0 NO 2.663 100.0 25.13 4.710 0.065 4.273 65.29 5.285 mol 

basa u 24 30.4797 -97.8696 2 0 0 0 0 0 0 EA 2.060 88.3 4.87 6.771 0.002 5.998 9.13 4.247 mol 

basa u 25 30.4796 -97.8697 6 0 0 0 0 0 0 EA 2.060 50.0 4.87 6.783 0.002 6.044 8.56 4.510 mol 

basa u 26 30.4795 -97.8697 4 0 0 0 0 0 0 EA 2.060 66.7 4.87 6.790 0.002 6.065 7.11 4.580 mol 

basa u 27 30.4795 -97.8697 5 0 0 0 0 0 0 EA 2.060 61.5 4.87 6.790 0.002 6.065 7.11 4.594 mol 
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basa u 28 30.4795 -97.8696 3 0 0 0 0 0 0 EA 2.060 81.7 4.87 6.790 0.002 6.074 8.73 4.557 mol 

basa u 29 30.4795 -97.8696 2 0 0 0 0 0 0 EA 2.060 63.6 4.87 6.780 0.002 6.074 8.73 4.534 mol 

basa u 30 30.4794 -97.8697 2 0 0 0 0 0 0 EA 2.060 61.5 4.87 6.802 0.002 6.085 5.49 4.678 mol 

basa u 31 30.479 -97.8694 1 0 0 0 0 0 0 EA 2.060 32.9 4.87 6.808 0.002 6.200 8.53 4.800 mol 

basa u 32 30.479 -97.8692 6 0 0 0 0 0 0 EA 2.060 88.6 4.87 6.790 0.002 6.197 5.70 4.656 mol 

basa u 33 30.479 -97.8692 6 0 0 0 0 0 0 EA 2.060 60.0 4.87 6.790 0.002 6.216 5.70 4.660 mol 

basa u 34 30.4789 -97.8689 6 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.761 0.002 6.238 8.65 4.376 mol 

basa u 35 30.4789 -97.8688 5 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.742 0.002 6.254 12.61 4.215 mol 

basa w 36 30.48 -97.869 13 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.688 0.002 6.000 4.96 2.605 mol 

basa w 37 30.4799 -97.8688 9 0 0 0 0 0 0 SO 2.060 100.0 4.87 6.677 0.002 6.033 12.97 2.250 mol 

basa w 38 30.4799 -97.8687 13 0 0 0 0 0 0 SO 2.060 100.0 4.87 6.667 0.002 6.044 12.97 1.700 mol 

basa w 39 30.4792 -97.8682 9 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.671 0.002 6.245 6.41 1.657 mol 

basa w 40 30.4791 -97.8681 14 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.668 0.002 6.270 7.18 1.991 mol 

basa w 41 30.479 -97.8681 12 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.676 0.002 6.287 14.89 2.345 mol 

basa w 42 30.479 -97.8681 10 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.676 0.002 6.296 5.74 2.176 mol 
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basa w 43 30.4789 -97.868 9 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.681 0.002 6.312 13.59 2.581 mol 

basa w 44 30.4789 -97.8679 7 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.672 0.002 6.320 7.91 2.250 mol 

basa w 45 30.4788 -97.8679 9 0 0 0 0 0 0 EA 2.060 100.0 4.87 6.672 0.002 6.336 7.91 2.324 mol 

basa w 46 30.4787 -97.8679 6 0 0 0 0 0 0 EA 2.060 89.6 4.87 6.688 0.002 6.352 11.96 2.989 mol 

basa w 47 30.4787 -97.8679 6 0 0 0 0 0 0 EA 2.060 91.4 4.87 6.688 0.002 6.367 8.74 3.016 mol 

bcgb r 72 30.2575 -97.7856 7 3 1 1 0 0 0 SO 3.210 100.0 34.67 5.002 0.000 4.557 10.49 2.539 ent 

bcgb r 73 30.2575 -97.7857 7 2 1 1 0 0 0 SO 3.210 100.0 34.67 4.971 0.000 4.557 10.49 2.701 ent 

bcgb r 74 30.2574 -97.7858 5 4 1 1 0 0 1 SO 3.210 85.0 34.67 4.920 0.000 4.371 11.11 2.729 ent 

bcgb r 75 30.2574 -97.7858 7 2 1 1 0 0 0 SO 3.210 100.0 34.67 4.920 0.000 4.453 9.52 2.384 ent 

bcgb r 76 30.2573 -97.786 8 2 0 1 0 0 0 SO 3.210 100.0 34.67 4.875 0.000 4.371 8.51 2.297 ent 

bcgb r 77 30.2573 -97.7862 11 3 1 1 0 0 0 SO 3.210 100.0 34.67 4.693 0.000 4.263 7.25 1.991 ent 

bcgb r 78 30.2572 -97.7864 7 2 1 0 0 0 1 SO 3.210 100.0 34.67 4.676 0.000 3.951 15.82 1.634 ent 

bcgb r 79 30.257 -97.7867 6 3 1 1 0 0 0 SO 3.210 100.0 34.67 4.535 0.000 3.612 4.42 0.000 ent 

bcgb r 80 30.2569 -97.7868 3 2 0 1 0 0 1 SO 3.210 100.0 34.67 4.535 0.000 3.743 11.52 0.000 ent 

bcgb r 81 30.257 -97.787 4 2 0 0 0 0 1 SO 3.210 81.0 34.67 4.371 0.000 3.485 25.56 2.668 ent 
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bcgb u 48 30.2555 -97.7847 7 1 0 1 0 0 0 EA 3.210 100.0 34.67 3.932 0.000 4.394 16.54 5.411 mol 

bcgb u 49 30.2554 -97.7847 10 2 1 1 0 0 0 EA 3.210 87.2 34.67 3.932 0.000 4.394 11.60 5.454 mol 

bcgb u 50 30.2555 -97.7848 8 1 1 0 0 0 0 NO 3.210 71.8 34.67 4.111 0.000 4.511 8.37 5.390 mol 

bcgb u 51 30.2554 -97.7849 4 0 0 0 0 0 0 NO 3.210 32.1 34.67 4.263 0.000 4.615 9.36 5.420 mol 

bcgb u 52 30.2555 -97.7849 9 2 0 1 0 0 0 NO 3.210 46.2 34.67 4.263 0.000 4.615 8.85 5.376 mol 

bcgb u 53 30.2556 -97.7851 7 0 0 0 0 0 0 NO 3.210 69.6 34.67 4.511 0.000 4.796 7.91 5.323 inc 

bcgb u 54 30.2555 -97.7851 8 0 0 0 0 0 0 NO 3.210 90.5 34.67 4.511 0.000 4.796 7.94 5.355 inc 

bcgb u 55 30.2557 -97.7852 11 1 0 1 0 0 0 NO 3.210 100.0 34.67 4.615 0.000 4.878 5.24 5.226 inc 

bcgb u 56 30.2555 -97.7857 7 0 0 0 0 0 0 NO 3.210 74.0 34.67 5.017 0.000 5.198 25.38 5.273 inc 

bcgb u 57 30.2555 -97.7858 13 0 0 0 0 0 0 NO 3.210 71.4 34.67 5.081 0.000 5.252 23.15 5.247 inc 

bcgb u 58 30.2554 -97.7861 8 0 0 0 0 0 0 EA 3.210 98.8 34.67 5.198 0.000 5.352 15.66 5.240 inc 

bcgb u 59 30.2555 -97.786 14 2 1 1 0 0 0 EA 3.210 80.0 34.67 5.198 0.000 5.352 15.39 5.212 inc 

bcgb w 60 30.2575 -97.7848 8 3 1 1 0 1 0 NO 3.210 51.3 34.67 5.089 0.000 5.115 3.92 3.221 mol 

bcgb w 61 30.2574 -97.7849 8 2 1 1 0 0 0 NO 3.210 78.2 34.67 5.070 0.000 5.070 5.17 3.289 mol 

bcgb w 62 30.2574 -97.7849 11 4 1 1 0 0 1 NO 3.210 97.8 34.67 5.070 0.000 5.091 2.35 3.277 mol 



53 
 

bcgb w 63 30.2573 -97.7851 13 2 1 1 0 0 0 NO 3.210 100.0 34.67 5.099 0.000 5.002 2.01 3.277 mol 

bcgb w 64 30.2571 -97.7852 14 3 1 1 0 0 1 NO 3.210 98.7 34.67 5.058 0.000 5.017 8.03 3.664 mol 

bcgb w 65 30.2571 -97.7855 11 3 1 1 0 0 1 NO 3.210 87.3 34.67 5.154 0.000 4.909 3.49 3.373 mol 

bcgb w 66 30.257 -97.7856 9 3 1 1 0 0 0 NO 3.210 100.0 34.67 5.170 0.000 4.848 11.51 3.731 mol 

bcgb w 67 30.2569 -97.7858 13 4 1 1 0 1 0 NO 3.210 98.7 34.67 5.154 0.000 4.803 9.25 3.868 mol 

bcgb w 68 30.2568 -97.7858 12 2 0 1 0 0 1 NO 3.210 91.4 34.67 5.143 0.000 4.726 9.25 3.945 mol 

bcgb w 69 30.2567 -97.7861 11 3 1 1 0 0 0 NO 3.210 100.0 34.67 5.099 0.000 4.615 11.24 3.938 mol 

bcgb w 70 30.2567 -97.7864 12 2 0 1 0 1 0 NO 3.210 100.0 34.67 4.964 0.000 4.466 17.13 3.842 mol 

bcgb w 71 30.2566 -97.7866 8 0 0 0 0 0 0 WE 3.210 100.0 34.67 4.771 0.000 4.459 8.98 3.741 mol 

bchp r 94 30.3032 -97.9173 5 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.603 0.021 5.827 17.33 3.720 mol 

bchp r 95 30.3032 -97.9173 7 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.603 0.021 5.827 17.33 3.741 mol 

bchp r 96 30.3033 -97.9172 5 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.608 0.021 5.818 17.38 3.617 mol 

bchp r 97 30.3033 -97.9171 10 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.571 0.021 5.818 17.38 3.643 mol 

bchp r 98 30.3033 -97.9171 8 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.576 0.021 5.827 18.57 3.676 mol 

bchp r 99 30.3034 -97.9169 8 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.545 0.021 5.809 16.40 3.641 mol 
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bchp r 100 30.3034 -97.9169 9 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.545 0.021 5.809 16.40 3.720 mol 

bchp r 101 30.3037 -97.9165 7 1 1 0 0 0 0 SO 2.285 100.0 13.80 5.475 0.021 5.778 17.84 3.953 mol 

bchp r 102 30.3037 -97.9164 8 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.492 0.021 5.791 17.84 3.970 mol 

bchp r 103 30.3037 -97.9164 9 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.492 0.021 5.791 17.84 4.007 mol 

bchp u 104 30.3038 -97.9163 3 0 0 0 0 0 0 EA 2.285 100.0 13.80 5.435 0.021 5.750 19.00 4.248 mol 

bchp u 105 30.3039 -97.9155 2 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.571 0.021 5.827 32.86 3.725 mol 

bchp u 106 30.3049 -97.9134 2 0 0 0 0 0 0 EA 2.285 100.0 13.80 5.563 0.021 6.055 15.44 2.250 ent 

bchp u 107 30.3048 -97.9135 3 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.563 0.021 6.065 16.25 2.297 ent 

bchp u 108 30.3048 -97.9136 2 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.590 0.021 6.044 17.01 2.297 ent 

bchp u 109 30.3047 -97.9137 2 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.583 0.021 6.033 17.88 2.079 ent 

bchp u 110 30.3047 -97.914 6 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.605 0.021 5.967 18.45 0.000 ent 

bchp u 111 30.3046 -97.914 2 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.605 0.021 5.980 19.35 1.609 ent 

bchp u 112 30.3046 -97.914 4 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.605 0.021 5.980 19.35 1.634 ent 

bchp u 113 30.3046 -97.9142 5 0 0 0 0 0 0 SO 2.285 100.0 13.80 5.638 0.021 5.936 14.24 1.342 mol 

bchp u 114 30.3043 -97.9144 4 0 0 0 0 0 0 EA 2.285 100.0 13.80 5.740 0.021 5.938 3.26 2.642 ent 
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bchp u 115 30.3042 -97.9146 4 0 0 0 0 0 0 EA 2.285 100.0 13.80 5.750 0.021 5.931 19.43 2.619 ent 

bchp w 82 30.3036 -97.9179 10 0 0 0 0 0 0 SO 2.285 32.1 13.80 5.442 0.021 5.654 5.18 4.626 mol 

bchp w 83 30.3037 -97.918 9 0 0 0 0 0 0 EA 2.285 0.0 13.80 5.391 0.021 5.613 4.70 4.721 mol 

bchp w 84 30.3037 -97.9181 10 0 0 0 0 0 0 EA 2.285 46.8 13.80 5.391 0.021 5.576 5.33 4.809 mol 

bchp w 85 30.3035 -97.9184 8 0 0 0 0 0 0 SO 2.285 73.4 13.80 5.333 0.021 5.580 8.02 4.796 mol 

bchp w 86 30.3035 -97.9185 9 1 0 1 0 0 0 SO 2.285 7.7 13.80 5.353 0.021 5.580 7.38 4.775 mol 

bchp w 87 30.303 -97.9187 11 0 0 0 0 0 0 SO 2.285 0.0 13.80 5.399 0.021 5.653 5.41 4.609 mol 

bchp w 88 30.3026 -97.9192 7 0 0 0 0 0 0 EA 2.285 69.2 13.80 5.356 0.021 5.599 6.93 4.640 mol 

bchp w 89 30.3025 -97.9195 4 0 0 0 0 0 0 EA 2.285 53.8 13.80 5.263 0.021 5.571 7.20 4.769 mol 

bchp w 90 30.3025 -97.9195 5 0 0 0 0 0 0 EA 2.285 100.0 13.80 5.296 0.021 5.543 6.43 4.757 mol 

bchp w 91 30.3024 -97.9195 5 0 0 0 0 0 0 EA 2.285 86.8 13.80 5.329 0.021 5.571 7.49 4.663 mol 

bchp w 92 30.3023 -97.9196 7 0 0 0 0 0 0 EA 2.285 31.2 13.80 5.329 0.021 5.574 7.00 4.698 mol 

bchp w 93 30.302 -97.9197 12 0 0 0 0 0 0 EA 2.285 79.2 13.80 5.399 0.021 5.660 7.62 4.639 mol 

bcwp r 140 30.2659 -97.8237 7 2 0 1 0 1 0 EA 2.926 100.0 26.47 5.768 0.030 5.911 26.04 3.011 mol 

bcwp r 141 30.2659 -97.8236 9 1 0 0 0 1 0 EA 2.926 100.0 26.47 5.744 0.030 5.872 21.33 2.642 mol 
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bcwp r 142 30.2676 -97.8241 6 3 0 1 0 1 0 EA 2.926 100.0 26.47 5.590 0.030 5.710 9.01 3.437 ent 

bcwp r 143 30.2678 -97.8241 3 2 0 0 0 1 0 EA 2.926 100.0 26.47 5.576 0.030 5.727 8.50 3.348 ent 

bcwp r 144 30.2678 -97.8242 3 2 0 0 0 1 0 EA 2.926 85.7 26.47 5.576 0.030 5.721 10.67 3.355 ent 

bcwp r 145 30.2679 -97.8241 9 1 0 0 0 0 0 EA 2.926 100.0 26.47 5.571 0.030 5.716 7.31 3.129 ent 

bcwp r 146 30.2681 -97.8242 6 3 0 1 0 1 0 EA 2.926 100.0 26.47 5.565 0.030 5.712 8.68 3.100 ent 

bcwp r 147 30.2685 -97.8243 3 0 0 0 0 0 0 EA 2.926 100.0 26.47 5.599 0.030 5.772 7.39 2.729 ent 

bcwp r 148 30.2687 -97.8245 3 3 0 1 0 0 1 EA 2.926 92.3 26.47 5.545 0.030 5.698 8.03 3.072 ent 

bcwp r 149 30.2689 -97.8247 4 0 0 0 0 0 0 NO 2.926 100.0 26.47 5.479 0.030 5.661 7.89 3.267 mol 

bcwp r 150 30.269 -97.8246 6 2 0 1 0 0 0 EA 2.926 100.0 26.47 5.443 0.030 5.629 4.58 2.722 ent 

bcwp r 151 30.2693 -97.8249 1 3 1 0 0 1 0 NO 2.926 98.7 26.47 5.395 0.030 5.567 3.78 2.989 ent 

bcwp u 117 30.2741 -97.8258 6 0 0 0 0 0 0 WE 2.926 6.5 26.47 3.951 0.030 4.813 26.91 4.216 inc 

bcwp u 118 30.2745 -97.8259 7 0 0 0 0 0 0 SO 2.926 31.2 26.47 4.163 0.030 4.689 40.69 4.057 inc 

bcwp u 119 30.2744 -97.826 6 0 0 0 0 0 0 SO 2.926 60.7 26.47 4.163 0.030 4.689 34.72 4.001 inc 

bcwp u 120 30.2744 -97.826 7 0 0 0 0 0 0 SO 2.926 100.0 26.47 4.221 0.030 4.689 34.72 3.968 inc 

bcwp u 121 30.2746 -97.8261 3 0 0 0 0 0 0 SO 2.926 0.0 26.47 4.175 0.030 4.644 28.52 3.950 inc 
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bcwp u 122 30.2745 -97.8263 9 0 0 0 0 0 0 SO 2.926 92.3 26.47 4.453 0.030 4.745 25.98 3.583 inc 

bcwp u 123 30.2745 -97.8271 10 0 0 0 0 0 0 WE 2.926 92.3 26.47 4.964 0.030 5.188 16.17 4.026 inc 

bcwp u 124 30.2748 -97.8273 6 0 0 0 0 0 0 SO 2.926 50.7 26.47 4.944 0.030 5.168 26.35 4.562 inc 

bcwp u 125 30.2749 -97.8274 5 0 0 0 0 0 0 SO 2.926 91.0 26.47 5.008 0.030 5.168 28.33 4.612 inc 

bcwp u 126 30.2749 -97.8273 6 0 0 0 0 0 0 SO 2.926 78.4 26.47 4.944 0.030 5.147 25.99 4.612 inc 

bcwp u 127 30.275 -97.8273 8 1 0 1 0 0 0 SO 2.926 71.0 26.47 4.920 0.030 5.147 25.99 4.685 inc 

bcwp w 128 30.2702 -97.8254 13 1 1 0 0 0 0 SO 2.926 100.0 26.47 5.099 0.030 5.371 15.59 3.714 ent 

bcwp w 129 30.2701 -97.8252 12 0 0 0 0 0 0 SO 2.926 100.0 26.47 5.070 0.030 5.362 14.99 3.446 ent 

bcwp w 130 30.27 -97.825 11 1 0 0 0 0 1 WE 2.926 100.0 26.47 5.115 0.030 5.362 34.88 3.191 ent 

bcwp w 131 30.2699 -97.8249 10 1 1 0 0 0 0 WE 2.926 84.8 26.47 5.147 0.030 5.329 52.29 3.082 ent 

bcwp w 132 30.2699 -97.8249 15 2 0 1 0 0 1 WE 2.926 100.0 26.47 5.147 0.030 5.329 52.29 3.136 ent 

bcwp w 133 30.2698 -97.8248 13 1 0 0 0 1 0 SO 2.926 100.0 26.47 5.183 0.030 5.371 62.85 3.056 ent 

bcwp w 134 30.2698 -97.8247 15 0 0 0 0 0 0 WE 2.926 98.4 26.47 5.143 0.030 5.343 79.06 3.289 ent 

bcwp w 135 30.2694 -97.8246 14 1 0 0 0 0 1 WE 2.926 98.7 26.47 5.263 0.030 5.473 42.58 2.500 ent 

bcwp w 136 30.2695 -97.8245 11 2 1 0 0 0 1 WE 2.926 100.0 26.47 5.188 0.030 5.414 63.16 3.235 ent 
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bcwp w 137 30.2692 -97.8241 14 1 1 0 0 0 0 WE 2.926 3.8 26.47 5.288 0.030 5.487 81.77 3.628 ent 

bcwp w 138 30.2691 -97.8242 13 2 1 0 0 0 1 WE 2.926 100.0 26.47 5.333 0.030 5.525 63.37 3.242 ent 

bcwp w 139 30.269 -97.8241 10 1 1 0 0 0 0 WE 2.926 86.8 26.47 5.377 0.030 5.590 74.44 3.282 ent 

blan r 152 30.0933 -98.4209 5 3 1 0 1 1 0 NO 5.043 98.8 41.87 5.053 0.000 4.083 11.09 3.863 ent 

blan r 153 30.0935 -98.4208 6 2 1 0 1 0 0 NO 5.043 100.0 41.87 5.070 0.000 4.175 17.98 3.842 ent 

blan r 154 30.0936 -98.4207 2 2 1 0 0 1 0 NO 5.043 92.3 41.87 5.089 0.000 4.175 18.24 3.863 ent 

blan r 155 30.0939 -98.4204 6 2 1 0 1 0 0 WE 5.043 100.0 41.87 5.128 0.000 4.292 14.01 3.787 ent 

blan r 156 30.0944 -98.4199 3 1 1 0 0 0 0 NO 5.043 100.0 41.87 4.951 0.000 4.714 17.03 3.820 ent 

blan r 157 30.0944 -98.4198 5 4 1 0 1 1 1 NO 5.043 98.7 41.87 4.949 0.000 4.710 10.94 3.950 ent 

blan r 158 30.0945 -98.4197 8 3 1 0 1 1 0 NO 5.043 100.0 41.87 4.875 0.000 4.796 11.78 3.976 ent 

blan r 159 30.0945 -98.4197 7 2 1 0 1 0 0 NO 5.043 100.0 41.87 4.796 0.000 4.796 17.40 3.834 ent 

blan r 160 30.0945 -98.4196 5 3 1 0 1 0 1 NO 5.043 97.6 41.87 4.796 0.000 4.796 11.78 3.990 ent 

blan r 161 30.0946 -98.4197 5 1 1 0 0 0 0 NO 5.043 100.0 41.87 4.796 0.000 4.875 17.61 3.868 ent 

blan w 162 30.0946 -98.4196 10 2 1 0 1 0 0 NO 5.043 100.0 41.87 4.796 0.000 4.875 17.61 3.908 ent 

blan w 163 30.0939 -98.4208 2 1 1 0 0 0 0 WE 5.043 100.0 41.87 4.971 0.000 4.535 0.90 3.101 ent 
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blan w 164 30.0939 -98.4206 5 2 1 0 1 0 0 WE 5.043 96.1 41.87 5.008 0.000 4.535 5.27 3.221 ent 

blan w 165 30.0941 -98.4205 6 1 1 0 0 0 0 NO 5.043 98.7 41.87 5.037 0.000 4.557 7.46 3.249 ent 

blan w 166 30.0942 -98.4203 5 2 1 0 1 0 0 WE 5.043 96.2 41.87 5.112 0.000 4.600 6.42 3.470 ent 

blan w 167 30.0942 -98.4203 3 1 1 0 0 0 0 WE 5.043 95.9 41.87 5.051 0.000 4.600 6.42 3.348 ent 

blan w 168 30.0942 -98.4202 4 1 1 0 0 0 0 WE 5.043 100.0 41.87 5.112 0.000 4.459 21.40 3.628 ent 

blan w 169 30.0943 -98.4201 4 1 1 0 0 0 0 WE 5.043 93.6 41.87 5.037 0.000 4.658 11.51 3.503 ent 

blan w 170 30.0943 -98.4202 4 2 1 1 0 0 0 WE 5.043 100.0 41.87 4.971 0.000 4.658 11.51 3.424 ent 

blan w 171 30.0945 -98.4198 8 1 1 0 0 0 0 NO 5.043 95.9 41.87 4.796 0.000 4.796 18.28 3.669 ent 

blan w 172 30.0946 -98.4198 6 1 1 0 0 0 0 NO 5.043 97.5 41.87 4.710 0.000 4.875 11.89 3.512 ent 

blue r 173 30.004 -98.0901 7 3 1 1 1 0 0 NO 3.470 100.0 40.73 6.137 0.027 5.802 1.63 4.126 mol 

blue r 174 30.0039 -98.0902 8 2 1 0 1 0 0 NO 3.470 100.0 40.73 6.093 0.027 5.772 1.22 4.187 mol 

blue r 175 30.0039 -98.0902 7 3 1 1 1 0 0 WE 3.470 100.0 40.73 6.095 0.027 5.765 16.24 4.120 mol 

blue r 176 30.0038 -98.0901 7 2 1 0 1 0 0 WE 3.470 100.0 40.73 6.070 0.027 5.710 3.55 4.315 mol 

blue r 177 30.0035 -98.0903 5 1 0 0 1 0 0 WE 3.470 100.0 40.73 6.002 0.027 5.599 14.42 4.350 inc 

blue r 178 30.003 -98.0902 6 1 0 0 1 0 0 WE 3.470 93.6 40.73 5.843 0.027 5.404 9.68 4.614 mol 
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blue r 179 30.0029 -98.0903 6 0 0 0 0 0 0 WE 3.470 96.1 40.73 5.843 0.027 5.361 7.14 4.592 mol 

blue r 180 30.003 -98.0902 6 0 0 0 0 0 0 WE 3.470 92.2 40.73 5.839 0.027 5.377 9.85 4.690 mol 

blue r 181 30.0028 -98.0902 5 0 0 0 0 0 0 WE 3.470 90.0 40.73 5.779 0.027 5.286 7.71 4.732 mol 

blue r 182 30.0036 -98.0907 4 0 0 0 0 0 0 WE 3.470 96.3 40.73 6.042 0.027 5.608 5.89 3.676 mol 

blue r 183 30.0037 -98.0906 4 0 0 0 0 0 0 WE 3.470 51.4 40.73 6.065 0.027 5.644 18.92 3.646 mol 

blue r 184 30.0039 -98.0905 6 0 0 0 0 0 0 WE 3.470 100.0 40.73 6.105 0.027 5.716 33.95 3.687 mol 

blue u 195 30.0027 -98.0914 6 0 0 0 0 0 0 SO 3.470 100.0 40.73 5.832 0.027 5.142 3.93 1.991 mol 

blue u 196 30.0025 -98.0914 4 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.779 0.027 5.017 8.75 2.787 mol 

blue u 197 30.0025 -98.0914 5 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.779 0.027 5.017 13.18 2.822 mol 

blue u 198 30.0024 -98.0914 7 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.779 0.027 4.949 13.18 2.862 mol 

blue u 199 30.0023 -98.0915 6 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.769 0.027 4.878 15.10 2.745 mol 

blue u 200 30.0019 -98.0917 7 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.676 0.027 4.563 3.85 2.308 mol 

blue u 201 30.0017 -98.0918 5 1 0 1 0 0 0 WE 3.470 100.0 40.73 5.648 0.027 4.402 5.50 1.634 mol 

blue u 202 30.0016 -98.0918 4 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.624 0.027 4.175 6.55 1.386 mol 

blue u 203 30.0015 -98.0919 2 0 0 0 0 0 0 WE 3.470 100.0 40.73 5.599 0.027 4.175 5.70 1.527 mol 
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blue u 551 30.0042 -98.09 5 0 0 0 0 0 0 WE 3.470 100.0 40.73 6.157 0.027 5.866 2.10 3.978 mol 

blue w 185 30.004 -98.0905 12 1 0 1 0 0 0 WE 3.470 87.5 40.73 6.123 0.027 5.753 32.96 3.617 mol 

blue w 186 30.0043 -98.0903 9 1 0 0 1 0 0 WE 3.470 100.0 40.73 6.204 0.027 5.875 38.84 3.330 mol 

blue w 187 30.0044 -98.0903 9 1 0 0 1 0 0 WE 3.470 100.0 40.73 6.202 0.027 5.907 33.04 3.156 mol 

blue w 188 30.0044 -98.0902 11 1 0 0 1 0 0 WE 3.470 100.0 40.73 6.222 0.027 5.907 33.04 3.151 mol 

blue w 189 30.0045 -98.0902 11 0 0 0 0 0 0 WE 3.470 100.0 40.73 6.241 0.027 5.934 37.39 2.729 mol 

blue w 190 30.0046 -98.0901 12 1 0 0 1 0 0 WE 3.470 100.0 40.73 6.259 0.027 5.964 26.24 1.921 mol 

blue w 191 30.0046 -98.09 13 0 0 0 0 0 0 WE 3.470 100.0 40.73 6.257 0.027 5.970 33.00 1.896 mol 

blue w 192 30.003 -98.0913 9 0 0 0 0 0 0 EA 3.470 100.0 40.73 5.921 0.027 5.303 2.44 1.386 mol 

blue w 193 30.0029 -98.0914 7 1 0 0 1 0 0 SO 3.470 97.5 40.73 5.907 0.027 5.252 1.51 0.000 mol 

blue w 194 30.0027 -98.0914 8 0 0 0 0 0 0 SO 3.470 100.0 40.73 5.858 0.027 5.198 3.94 1.634 mol 

bucr r 227 30.3818 -97.7706 4 0 0 0 0 0 0 NO 2.278 96.1 31.07 4.111 0.111 4.535 14.05 3.721 inc 

bucr r 228 30.3818 -97.7707 10 2 1 0 0 0 0 NO 2.278 100.0 31.07 4.111 0.111 4.535 16.67 3.685 inc 

bucr r 229 30.3817 -97.7708 7 2 0 0 0 0 1 WE 2.278 100.0 31.07 4.263 0.111 4.563 11.69 3.719 inc 

bucr r 230 30.3817 -97.7709 10 1 0 0 0 0 0 WE 2.278 94.9 31.07 4.263 0.111 4.615 24.89 3.559 mol 
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bucr r 231 30.3815 -97.7709 11 0 0 0 0 0 0 WE 2.278 97.4 31.07 4.453 0.111 4.767 21.99 3.983 inc 

bucr r 232 30.3808 -97.7713 6 0 0 0 0 0 0 WE 2.278 100.0 31.07 4.799 0.111 5.106 15.07 4.554 inc 

bucr r 233 30.3808 -97.7714 10 1 0 0 1 0 0 WE 2.278 100.0 31.07 4.860 0.111 5.070 15.07 4.528 inc 

bucr r 234 30.3808 -97.7714 7 0 0 0 0 0 0 WE 2.278 100.0 31.07 4.860 0.111 5.070 14.73 4.517 inc 

bucr r 235 30.3806 -97.7715 10 0 0 0 0 0 0 WE 2.278 100.0 31.07 4.839 0.111 5.089 15.40 4.552 inc 

bucr u 204 30.3821 -97.7711 8 0 0 0 0 0 0 SO 2.278 71.3 31.07 3.045 0.111 3.932 1.58 2.841 mol 

bucr u 205 30.382 -97.7714 5 0 0 0 0 0 0 SO 2.278 57.1 31.07 2.398 0.111 3.743 3.69 3.119 mol 

bucr u 206 30.382 -97.7716 10 0 0 0 0 0 0 EA 2.278 41.0 31.07 2.717 0.111 3.612 2.62 3.170 mol 

bucr u 207 30.3819 -97.7716 9 0 0 0 0 0 0 EA 2.278 32.4 31.07 3.151 0.111 3.612 4.27 3.213 mol 

bucr u 208 30.3818 -97.7718 9 0 0 0 0 0 0 SO 2.278 44.9 31.07 3.485 0.111 3.823 4.50 3.164 mol 

bucr u 209 30.3817 -97.772 11 0 0 0 0 0 0 SO 2.278 37.7 31.07 3.377 0.111 3.932 4.58 3.170 mol 

bucr u 210 30.3814 -97.7723 7 0 0 0 0 0 0 SO 2.278 57.5 31.07 3.485 0.111 4.005 2.61 2.789 mol 

bucr u 211 30.3813 -97.7724 6 1 1 0 0 0 0 SO 2.278 82.5 31.07 3.714 0.111 4.163 2.61 2.568 mol 

bucr u 212 30.3811 -97.7726 7 1 1 0 0 0 0 SO 2.278 70.1 31.07 4.005 0.111 4.175 2.47 2.568 mol 

bucr u 214 30.3823 -97.7695 8 1 1 0 0 0 0 NO 2.278 100.0 31.07 4.394 0.111 3.714 34.59 3.296 inc 
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bucr u 215 30.3823 -97.7695 10 0 0 0 0 0 0 NO 2.278 100.0 31.07 4.263 0.111 3.714 34.59 3.296 inc 

bucr u 216 30.3822 -97.7699 9 0 0 0 0 0 0 NO 2.278 100.0 31.07 3.612 0.111 3.714 27.67 3.700 inc 

bucr w 217 30.3822 -97.7687 10 1 1 0 0 0 0 NO 2.278 100.0 31.07 4.466 0.111 4.292 36.32 2.889 inc 

bucr w 218 30.3822 -97.7686 15 0 0 0 0 0 0 NO 2.278 100.0 31.07 4.453 0.111 4.346 31.09 2.568 inc 

bucr w 219 30.3821 -97.7683 11 0 0 0 0 0 0 NO 2.278 86.1 31.07 4.292 0.111 4.557 14.54 1.657 inc 

bucr w 220 30.3822 -97.7683 10 1 1 0 0 0 0 SO 2.278 93.4 31.07 4.083 0.111 4.535 13.27 1.634 mol 

bucr w 221 30.3824 -97.7683 10 1 1 0 0 0 0 SO 2.278 77.9 31.07 3.771 0.111 4.301 12.95 2.437 mol 

bucr w 222 30.383 -97.7683 13 0 0 0 0 0 0 NO 2.278 98.6 31.07 3.485 0.111 2.398 23.01 2.605 mol 

bucr w 223 30.3829 -97.7684 11 1 0 0 0 0 1 NO 2.278 100.0 31.07 3.743 0.111 3.045 20.73 1.896 mol 

bucr w 224 30.382 -97.7702 10 1 1 0 0 0 0 NO 2.278 100.0 31.07 3.714 0.111 4.111 17.50 3.666 inc 

bucr w 225 30.382 -97.7704 8 0 0 0 0 0 0 NO 2.278 84.6 31.07 3.434 0.111 4.111 27.99 3.424 inc 

bucr w 226 30.3819 -97.7705 9 0 0 0 0 0 0 NO 2.278 83.5 31.07 3.932 0.111 4.394 15.27 3.719 inc 

char u 236 30.1639 -98.074 3 0 0 0 0 0 0 SO 2.346 75.6 21.87 6.890 0.019 5.605 4.22 3.719 mol 

char u 237 30.164 -98.074 5 1 0 0 0 0 1 SO 2.346 100.0 21.87 6.882 0.019 5.608 3.79 3.721 mol 

char u 238 30.164 -98.0739 3 0 0 0 0 0 0 SO 2.346 100.0 21.87 6.888 0.019 5.571 3.79 3.761 inc 
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char u 239 30.1641 -98.074 5 0 0 0 0 0 0 SO 2.346 100.0 21.87 6.873 0.019 5.583 3.47 3.950 inc 

char u 240 30.1645 -98.074 5 0 0 0 0 0 0 SO 2.346 48.8 21.87 6.839 0.019 5.644 1.71 4.358 inc 

char u 241 30.1647 -98.0741 2 0 0 0 0 0 0 WE 2.346 62.0 21.87 6.815 0.019 5.694 0.65 4.655 inc 

char u 242 30.1647 -98.0742 4 0 0 0 0 0 0 SO 2.346 51.7 21.87 6.808 0.019 5.707 1.91 4.709 inc 

char u 243 30.1647 -98.0742 6 0 0 0 0 0 0 SO 2.346 9.6 21.87 6.799 0.019 5.707 1.91 4.760 inc 

char u 244 30.1655 -98.0747 4 0 0 0 0 0 0 SO 2.346 70.9 21.87 6.689 0.019 5.398 5.62 5.330 inc 

char u 245 30.1656 -98.0748 4 0 0 0 0 0 0 SO 2.346 55.3 21.87 6.671 0.019 5.352 6.80 5.400 inc 

cofo r 246 30.3323 -97.8916 4 1 0 0 0 0 1 NO 2.317 100.0 25.60 6.312 0.017 6.320 19.70 4.043 inc 

cofo r 247 30.3324 -97.8916 4 0 0 0 0 0 0 NO 2.317 100.0 25.60 6.294 0.017 6.304 22.10 4.008 inc 

cofo r 248 30.3326 -97.8914 9 1 0 0 0 0 1 NO 2.317 100.0 25.60 6.276 0.017 6.292 12.68 3.726 inc 

cofo r 249 30.3326 -97.8913 9 1 0 0 0 0 1 NO 2.317 100.0 25.60 6.257 0.017 6.274 12.68 3.596 inc 

cofo r 250 30.3329 -97.8912 9 1 0 0 0 0 1 NO 2.317 100.0 25.60 6.224 0.017 6.246 9.61 3.270 inc 

cofo r 251 30.3331 -97.8911 6 1 0 0 0 1 0 NO 2.317 53.9 25.60 6.229 0.017 6.245 7.75 3.016 inc 

cofo r 252 30.3332 -97.8911 11 0 0 0 0 0 0 NO 2.317 55.1 25.60 6.236 0.017 6.206 4.74 3.182 inc 

cofo r 253 30.3336 -97.891 9 1 1 0 0 0 0 EA 2.317 81.5 25.60 6.236 0.017 6.109 17.10 3.373 inc 
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cofo r 254 30.3337 -97.8911 10 0 0 0 0 0 0 EA 2.317 41.4 25.60 6.257 0.017 6.104 17.10 3.497 inc 

cofo r 255 30.3339 -97.8911 7 0 0 0 0 0 0 EA 2.317 98.6 25.60 6.260 0.017 6.060 21.33 3.718 inc 

cofo r 256 30.3341 -97.8912 6 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.286 0.017 5.983 25.63 3.852 inc 

cofo u 257 30.3366 -97.8919 6 0 0 0 0 0 0 NO 2.317 100.0 25.60 6.438 0.017 4.689 6.16 2.350 mol 

cofo u 258 30.3362 -97.8917 5 0 0 0 0 0 0 EA 2.317 97.5 25.60 6.434 0.017 5.089 13.70 0.693 mol 

cofo u 259 30.3361 -97.8911 6 0 0 0 0 0 0 WE 2.317 88.5 25.60 6.353 0.017 5.235 4.34 2.944 mol 

cofo u 260 30.3361 -97.8911 6 0 0 0 0 0 0 WE 2.317 88.9 25.60 6.353 0.017 5.235 4.34 2.944 mol 

cofo u 261 30.3362 -97.891 5 0 0 0 0 0 0 WE 2.317 69.6 25.60 6.353 0.017 5.183 6.43 2.822 mol 

cofo u 262 30.336 -97.8909 3 0 0 0 0 0 0 SO 2.317 100.0 25.60 6.331 0.017 5.316 6.06 0.000 mol 

cofo u 263 30.3361 -97.8908 2 0 0 0 0 0 0 SO 2.317 100.0 25.60 6.322 0.017 5.269 11.10 1.527 mol 

cofo u 264 30.3357 -97.8909 1 0 0 0 0 0 0 WE 2.317 67.9 25.60 6.328 0.017 5.487 0.06 2.764 mol 

cofo u 265 30.3356 -97.891 2 0 0 0 0 0 0 EA 2.317 80.8 25.60 6.336 0.017 5.475 0.19 2.224 mol 

cofo u 266 30.3356 -97.891 6 0 0 0 0 0 0 WE 2.317 76.9 25.60 6.336 0.017 5.513 0.14 2.593 mol 

cofo u 267 30.3354 -97.891 6 0 0 0 0 0 0 NO 2.317 100.0 25.60 6.322 0.017 5.550 1.40 2.639 mol 

cofo w 268 30.3354 -97.8919 7 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.462 0.017 5.498 13.90 4.277 inc 
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cofo w 269 30.3354 -97.8919 7 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.462 0.017 5.498 13.90 4.277 inc 

cofo w 270 30.3351 -97.8915 3 0 0 0 0 0 0 NO 2.317 100.0 25.60 6.379 0.017 5.677 23.06 3.788 inc 

cofo w 271 30.335 -97.8915 4 0 0 0 0 0 0 NO 2.317 100.0 25.60 6.379 0.017 5.677 23.06 3.749 inc 

cofo w 272 30.3349 -97.8915 5 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.369 0.017 5.710 21.67 3.743 inc 

cofo w 273 30.3345 -97.8911 5 1 1 0 0 0 0 EA 2.317 100.0 25.60 6.282 0.017 5.886 23.17 3.258 inc 

cofo w 274 30.3344 -97.8911 6 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.278 0.017 5.886 23.17 3.424 inc 

cofo w 275 30.3343 -97.891 6 0 0 0 0 0 0 EA 2.317 100.0 25.60 6.274 0.017 5.945 21.54 3.485 inc 

cofo w 276 30.334 -97.8912 8 0 0 0 0 0 0 EA 2.317 78.2 25.60 6.283 0.017 6.007 24.71 3.869 inc 

cofo w 277 30.3339 -97.8911 4 0 0 0 0 0 0 EA 2.317 92.7 25.60 6.260 0.017 6.060 21.33 3.714 inc 

cold u 278 30.3581 -97.8145 2 0 0 0 0 0 0 WE 2.437 78.5 15.87 5.070 0.018 5.142 19.81 3.897 inc 

cold u 279 30.3581 -97.8146 3 0 0 0 0 0 0 WE 2.437 88.6 15.87 5.112 0.018 5.168 9.12 3.909 inc 

cold u 280 30.3578 -97.8148 4 0 0 0 0 0 0 WE 2.437 97.4 15.87 5.205 0.018 5.168 9.02 3.889 inc 

cold u 281 30.3576 -97.8148 4 0 0 0 0 0 0 WE 2.437 86.3 15.87 5.198 0.018 5.205 17.66 4.065 inc 

cold u 282 30.3576 -97.8149 3 0 0 0 0 0 0 WE 2.437 100.0 15.87 5.252 0.018 5.258 11.43 3.907 inc 

cold u 283 30.3573 -97.8151 5 1 0 0 0 0 0 WE 2.437 88.6 15.87 5.303 0.018 5.308 26.45 3.993 inc 



67 
 

cold u 284 30.3572 -97.8152 7 0 0 0 0 0 0 WE 2.437 98.8 15.87 5.352 0.018 5.356 22.87 3.832 inc 

cold u 285 30.3572 -97.8152 3 0 0 0 0 0 0 WE 2.437 98.2 15.87 5.352 0.018 5.362 32.50 3.870 inc 

cold u 286 30.3571 -97.8153 7 0 0 0 0 0 0 WE 2.437 79.5 15.87 5.399 0.018 5.414 24.66 3.785 inc 

cold u 287 30.357 -97.8153 2 0 0 0 0 0 0 WE 2.437 98.6 15.87 5.402 0.018 5.423 25.87 3.884 inc 

cold u 288 30.357 -97.8154 5 0 0 0 0 0 0 WE 2.437 100.0 15.87 5.446 0.018 5.465 15.62 3.704 inc 

cold w 289 30.357 -97.8158 8 0 0 0 0 0 0 EA 2.437 100.0 15.87 5.567 0.018 5.583 33.38 2.870 inc 

cold w 290 30.3571 -97.8157 10 0 0 0 0 0 0 EA 2.437 100.0 15.87 5.567 0.018 5.576 23.36 2.963 inc 

cold w 291 30.3572 -97.8157 15 0 0 0 0 0 0 EA 2.437 100.0 15.87 5.525 0.018 5.533 39.74 2.454 inc 

cold w 292 30.3574 -97.8155 9 0 0 0 0 0 0 SO 2.437 94.9 15.87 5.485 0.018 5.486 50.53 2.256 inc 

cold w 293 30.3575 -97.8153 9 0 0 0 0 0 0 EA 2.437 81.8 15.87 5.442 0.018 5.399 47.47 2.963 inc 

cold w 294 30.3578 -97.8152 7 0 0 0 0 0 0 SO 2.437 100.0 15.87 5.353 0.018 5.370 35.43 3.050 inc 

cold w 295 30.3578 -97.8152 6 1 0 0 0 0 0 SO 2.437 100.0 15.87 5.356 0.018 5.370 40.41 2.963 inc 

cold w 296 30.358 -97.815 8 0 0 0 0 0 0 SO 2.437 92.3 15.87 5.274 0.018 5.300 41.34 3.289 inc 

cold w 297 30.358 -97.8149 10 0 0 0 0 0 0 SO 2.437 97.7 15.87 5.274 0.018 5.316 43.41 3.267 inc 

cold w 298 30.3581 -97.815 8 0 0 0 0 0 0 SO 2.437 100.0 15.87 5.286 0.018 5.316 43.41 3.082 inc 
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elmp r 323 30.3428 -97.841 6 3 1 1 0 0 1 EA 2.493 80.5 23.07 6.497 0.003 6.172 43.38 0.693 mol 

elmp r 324 30.3432 -97.8408 7 4 1 1 0 1 0 EA 2.493 100.0 23.07 6.436 0.003 6.216 37.00 0.693 mol 

elmp r 325 30.3433 -97.8408 8 2 1 0 0 1 0 EA 2.493 94.9 23.07 6.420 0.003 6.221 40.23 0.000 mol 

elmp r 326 30.3438 -97.8407 11 1 1 0 0 0 0 EA 2.493 84.8 23.07 6.340 0.003 6.289 18.27 1.792 mol 

elmp r 327 30.3439 -97.8407 6 1 1 0 0 0 0 EA 2.493 61.3 23.07 6.302 0.003 6.277 17.36 2.204 mol 

elmp r 328 30.3441 -97.8407 6 1 1 0 0 0 0 EA 2.493 100.0 23.07 6.265 0.003 6.286 15.27 1.958 mol 

elmp r 329 30.3442 -97.8408 7 1 1 0 0 0 0 EA 2.493 92.4 23.07 6.226 0.003 6.296 16.11 2.154 mol 

elmp r 330 30.3446 -97.8409 6 2 1 0 0 0 1 EA 2.493 100.0 23.07 6.142 0.003 6.296 3.31 0.693 mol 

elmp r 331 30.3447 -97.8409 8 1 1 0 0 0 0 WE 2.493 97.0 23.07 6.118 0.003 6.278 6.54 0.693 mol 

elmp r 332 30.3447 -97.8409 9 1 1 0 0 0 0 WE 2.493 100.0 23.07 6.118 0.003 6.278 6.54 0.881 mol 

elmp u 299 30.3407 -97.8384 7 0 0 0 0 0 0 WE 2.493 96.1 23.07 6.846 0.003 6.166 10.51 3.191 mol 

elmp u 300 30.3407 -97.8382 4 0 0 0 0 0 0 WE 2.493 98.7 23.07 6.853 0.003 6.127 37.28 3.470 mol 

elmp u 301 30.3405 -97.838 4 0 0 0 0 0 0 WE 2.493 97.4 23.07 6.876 0.003 6.114 53.41 3.580 mol 

elmp u 302 30.3406 -97.8378 5 0 0 0 0 0 0 SO 2.493 100.0 23.07 6.887 0.003 6.042 20.47 4.039 mol 

elmp u 303 30.3407 -97.8377 7 0 0 0 0 0 0 SO 2.493 76.3 23.07 6.868 0.003 6.037 17.06 4.241 mol 
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elmp u 304 30.3407 -97.8377 2 0 0 0 0 0 0 SO 2.493 97.3 23.07 6.872 0.003 6.009 17.08 4.346 mol 

elmp u 305 30.3409 -97.8378 5 0 0 0 0 0 0 SO 2.493 98.7 23.07 6.849 0.003 6.029 18.72 4.344 mol 

elmp u 306 30.3409 -97.8378 8 0 0 0 0 0 0 WE 2.493 100.0 23.07 6.845 0.003 6.024 17.69 4.351 mol 

elmp u 307 30.341 -97.838 8 0 0 0 0 0 0 WE 2.493 96.3 23.07 6.821 0.003 6.065 46.33 4.240 mol 

elmp u 308 30.3411 -97.838 8 0 0 0 0 0 0 WE 2.493 100.0 23.07 6.810 0.003 6.060 43.92 4.219 mol 

elmp u 309 30.3413 -97.838 9 0 0 0 0 0 0 WE 2.493 100.0 23.07 6.796 0.003 6.070 40.53 4.120 mol 

elmp u 310 30.3415 -97.838 8 0 0 0 0 0 0 WE 2.493 97.5 23.07 6.775 0.003 6.060 49.69 4.060 mol 

elmp w 311 30.3458 -97.8417 11 1 1 0 0 0 0 SO 2.493 100.0 23.07 5.802 0.003 6.176 29.17 2.862 mol 

elmp w 312 30.3456 -97.8419 11 0 0 0 0 0 0 EA 2.493 94.9 23.07 5.861 0.003 6.151 51.73 2.708 mol 

elmp w 313 30.3454 -97.8419 10 0 0 0 0 0 0 EA 2.493 84.2 23.07 5.916 0.003 6.140 47.00 2.324 mol 

elmp w 314 30.3452 -97.8419 10 0 0 0 0 0 0 EA 2.493 100.0 23.07 5.969 0.003 6.131 53.98 1.657 mol 

elmp w 315 30.3452 -97.8418 11 1 0 1 0 0 0 EA 2.493 100.0 23.07 5.994 0.003 6.151 30.74 0.000 mol 

elmp w 316 30.3452 -97.8418 10 2 1 1 0 0 0 EA 2.493 100.0 23.07 5.994 0.003 6.151 30.74 0.693 mol 

elmp w 317 30.3451 -97.8417 12 1 0 1 0 0 0 EA 2.493 100.0 23.07 5.994 0.003 6.166 28.42 0.000 mol 

elmp w 318 30.3452 -97.8415 11 0 0 0 0 0 0 SO 2.493 100.0 23.07 5.994 0.003 6.186 12.62 2.324 mol 
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elmp w 319 30.3447 -97.8409 14 1 0 0 0 0 1 WE 2.493 96.1 23.07 6.120 0.003 6.300 6.54 1.792 mol 

elmp w 320 30.3444 -97.8408 15 1 0 1 0 0 0 EA 2.493 97.5 23.07 6.184 0.003 6.286 8.89 1.386 mol 

elmp w 321 30.3444 -97.8408 10 1 0 1 0 0 0 EA 2.493 83.3 23.07 6.204 0.003 6.300 13.95 1.700 mol 

elmp w 322 30.3444 -97.8408 18 0 0 0 0 0 0 EA 2.493 100.0 23.07 6.207 0.003 6.300 13.95 1.700 mol 

foun r 333 30.1977 -98.081 6 1 1 0 0 0 0 WE 2.797 1.3 30.73 5.565 0.020 4.620 1.02 0.693 mol 

foun r 334 30.1977 -98.0811 8 1 0 1 0 0 0 WE 2.797 44.7 30.73 5.513 0.020 4.511 0.50 1.099 mol 

foun r 335 30.1976 -98.0811 6 0 0 0 0 0 0 WE 2.797 82.3 30.73 5.509 0.020 4.402 1.06 0.000 mol 

foun r 336 30.1975 -98.0814 7 0 0 0 0 0 0 WE 2.797 75.6 30.73 5.456 0.020 4.163 0.77 0.693 mol 

foun r 337 30.1975 -98.0816 5 0 0 0 0 0 0 WE 2.797 36.3 30.73 5.381 0.020 3.932 0.89 1.609 mol 

foun r 338 30.1974 -98.0817 7 1 0 1 0 0 0 WE 2.797 32.9 30.73 5.371 0.020 3.771 1.14 1.792 mol 

foun r 339 30.1973 -98.082 6 1 1 0 0 0 0 WE 2.797 64.6 30.73 5.293 0.020 3.377 1.11 1.099 mol 

foun r 340 30.1973 -98.0821 7 0 0 0 0 0 0 SO 2.797 66.7 30.73 5.258 0.020 3.151 1.08 1.386 mol 

foun r 341 30.1973 -98.0824 7 1 0 0 1 0 0 SO 2.797 100.0 30.73 5.188 0.020 2.717 1.42 0.693 mol 

foun r 342 30.1972 -98.0825 3 0 0 0 0 0 0 SO 2.797 34.6 30.73 5.200 0.020 2.398 1.45 1.609 mol 

gade r 343 30.3266 -97.8493 9 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.949 0.072 5.017 8.79 4.428 inc 
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gade r 344 30.3265 -97.8491 9 0 0 0 0 0 0 SO 2.536 100.0 20.73 5.017 0.072 5.106 7.79 4.167 mol 

gade r 345 30.3262 -97.849 9 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.767 0.072 5.053 7.64 3.590 mol 

gade r 346 30.3262 -97.8489 9 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.693 0.072 5.008 7.60 3.388 mol 

gade r 347 30.3262 -97.8488 9 2 1 1 0 0 0 SO 2.536 100.0 20.73 4.693 0.072 5.008 7.60 3.329 mol 

gade r 348 30.3263 -97.8485 10 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.535 0.072 4.909 25.64 2.989 mol 

gade r 349 30.3265 -97.8485 9 1 1 0 0 0 0 EA 2.536 100.0 20.73 4.693 0.072 4.909 26.94 3.353 mol 

gade r 350 30.3265 -97.8485 10 1 0 1 0 0 0 EA 2.536 100.0 20.73 4.644 0.072 4.964 22.53 3.447 mol 

gade r 351 30.3266 -97.8483 11 1 0 1 0 0 0 EA 2.536 100.0 20.73 4.689 0.072 4.978 23.08 3.339 mol 

gade r 352 30.3266 -97.8483 7 1 1 0 0 0 0 EA 2.536 100.0 20.73 4.771 0.072 4.978 23.08 3.355 mol 

gade u 364 30.3255 -97.8492 5 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.615 0.072 4.860 40.79 2.946 mol 

gade u 365 30.3256 -97.8491 5 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.615 0.072 4.839 32.61 2.224 mol 

gade u 366 30.3259 -97.849 8 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.635 0.072 4.878 28.61 2.088 mol 

gade u 367 30.3258 -97.849 5 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.726 0.072 4.906 28.61 2.197 mol 

gade u 368 30.3259 -97.8491 8 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.726 0.072 4.941 37.26 2.518 mol 

gade u 369 30.326 -97.8496 5 0 0 0 0 0 0 EA 2.536 100.0 20.73 5.106 0.072 5.170 27.80 4.171 mol 
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gade u 370 30.326 -97.8496 7 0 0 0 0 0 0 EA 2.536 100.0 20.73 5.143 0.072 5.142 27.80 4.261 mol 

gade u 371 30.3261 -97.85 8 0 0 0 0 0 0 EA 2.536 100.0 20.73 5.254 0.072 5.002 18.65 4.643 inc 

gade u 372 30.3262 -97.85 4 0 0 0 0 0 0 EA 2.536 100.0 20.73 5.254 0.072 4.941 14.76 4.727 inc 

gade u 373 30.3262 -97.8501 4 0 0 0 0 0 0 EA 2.536 100.0 20.73 5.205 0.072 4.941 14.76 4.749 inc 

gade w 353 30.3265 -97.8479 8 1 0 1 0 0 0 EA 2.536 100.0 20.73 4.402 0.072 4.726 48.23 2.722 mol 

gade w 354 30.3264 -97.8479 7 1 0 1 0 0 0 EA 2.536 98.8 20.73 4.273 0.072 4.689 48.92 2.758 mol 

gade w 355 30.3264 -97.848 9 1 0 1 0 0 0 EA 2.536 100.0 20.73 4.371 0.072 4.644 53.39 2.250 mol 

gade w 356 30.3263 -97.8481 11 0 0 0 0 0 0 EA 2.536 98.7 20.73 4.301 0.072 4.615 42.40 2.568 mol 

gade w 357 30.3263 -97.8482 8 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.301 0.072 4.615 52.06 2.324 mol 

gade w 358 30.3261 -97.8483 6 1 1 0 0 0 0 EA 2.536 100.0 20.73 4.175 0.072 4.676 50.70 2.384 mol 

gade w 359 30.326 -97.8485 8 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.175 0.072 4.676 46.71 2.389 mol 

gade w 360 30.326 -97.8485 8 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.083 0.072 4.605 46.71 2.736 mol 

gade w 361 30.326 -97.8485 8 0 0 0 0 0 0 SO 2.536 100.0 20.73 4.221 0.072 4.676 34.76 2.642 mol 

gade w 362 30.3257 -97.8489 9 1 0 1 0 0 0 EA 2.536 97.5 20.73 4.453 0.072 4.726 22.58 2.437 mol 

gade w 363 30.3255 -97.8493 5 0 0 0 0 0 0 EA 2.536 100.0 20.73 4.676 0.072 4.920 36.76 3.219 mol 
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hapo r 385 30.3458 -98.1317 4 0 0 0 0 0 0 NO 1.957 98.7 11.87 6.507 0.000 6.434 9.68 1.657 mol 

hapo r 386 30.3459 -98.1319 5 0 0 0 0 0 0 NO 1.957 98.7 11.87 6.505 0.000 6.450 5.40 2.088 mol 

hapo r 387 30.3459 -98.1319 2 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.505 0.000 6.450 5.40 2.262 mol 

hapo r 388 30.3459 -98.132 2 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.511 0.000 6.444 5.40 2.297 mol 

hapo r 389 30.3459 -98.132 8 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.497 0.000 6.444 21.50 2.729 mol 

hapo r 390 30.3459 -98.1321 8 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.497 0.000 6.444 21.50 2.787 mol 

hapo r 391 30.346 -98.1321 6 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.504 0.000 6.438 37.23 2.729 mol 

hapo r 392 30.3462 -98.1326 2 0 0 0 0 0 0 NO 1.957 96.1 11.87 6.512 0.000 6.461 36.73 2.736 mol 

hapo r 393 30.3464 -98.1327 4 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.520 0.000 6.481 9.31 2.224 mol 

hapo r 394 30.3464 -98.1327 3 0 0 0 0 0 0 NO 1.957 100.0 11.87 6.520 0.000 6.481 16.62 2.204 mol 

hapo w 374 30.3479 -98.1362 11 0 0 0 0 0 0 NO 1.957 97.5 11.87 6.687 0.000 6.347 35.90 3.294 mol 

hapo w 375 30.3478 -98.1361 5 0 0 0 0 0 0 NO 1.957 91.0 11.87 6.674 0.000 6.365 29.79 3.582 mol 

hapo w 376 30.3478 -98.136 7 0 0 0 0 0 0 NO 1.957 97.1 11.87 6.661 0.000 6.365 32.92 3.624 mol 

hapo w 377 30.3477 -98.1359 8 0 0 0 0 0 0 NO 1.957 93.7 11.87 6.661 0.000 6.382 24.69 3.696 mol 

hapo w 378 30.3477 -98.1357 6 0 0 0 0 0 0 NO 1.957 75.0 11.87 6.661 0.000 6.428 26.58 3.437 mol 
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hapo w 379 30.3477 -98.1354 5 0 0 0 0 0 0 NO 1.957 96.2 11.87 6.648 0.000 6.455 15.69 3.503 mol 

hapo w 380 30.3475 -98.1353 8 0 0 0 0 0 0 EA 1.957 72.7 11.87 6.635 0.000 6.452 24.48 3.700 mol 

hapo w 381 30.3475 -98.1352 9 0 0 0 0 0 0 EA 1.957 53.2 11.87 6.622 0.000 6.479 25.11 3.551 mol 

hapo w 382 30.3475 -98.1351 7 0 0 0 0 0 0 EA 1.957 88.4 11.87 6.622 0.000 6.492 29.43 3.403 mol 

hapo w 383 30.3474 -98.135 11 0 0 0 0 0 0 EA 1.957 83.3 11.87 6.609 0.000 6.490 26.62 3.425 mol 

hapo w 384 30.347 -98.1348 11 0 0 0 0 0 0 EA 1.957 19.2 11.87 6.555 0.000 6.458 36.33 3.762 mol 

june u 395 30.4772 -97.9625 4 0 0 0 0 0 0 SO 2.293 84.6 15.00 5.811 0.020 5.883 37.88 5.720 inc 

june u 396 30.477 -97.9624 5 0 0 0 0 0 0 SO 2.293 21.5 15.00 5.742 0.020 5.827 17.77 5.667 inc 

june u 397 30.4771 -97.9623 4 0 0 0 0 0 0 SO 2.293 88.6 15.00 5.725 0.020 5.820 25.65 5.669 inc 

june u 398 30.477 -97.9622 4 0 0 0 0 0 0 SO 2.293 55.8 15.00 5.708 0.020 5.778 16.18 5.647 inc 

june u 399 30.4769 -97.9621 1 0 0 0 0 0 0 SO 2.293 45.5 15.00 5.679 0.020 5.734 13.67 5.600 inc 

june u 400 30.4769 -97.9619 4 0 0 0 0 0 0 SO 2.293 0.0 15.00 5.596 0.020 5.680 13.40 5.587 inc 

june u 401 30.477 -97.9618 3 0 0 0 0 0 0 SO 2.293 88.2 15.00 5.624 0.020 5.676 12.54 5.628 inc 

june u 402 30.4769 -97.9616 5 0 0 0 0 0 0 EA 2.293 1.3 15.00 5.543 0.020 5.599 8.96 5.614 inc 

june u 403 30.4771 -97.9616 5 0 0 0 0 0 0 SO 2.293 71.1 15.00 5.580 0.020 5.648 15.93 5.668 inc 
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june u 404 30.4771 -97.9615 3 0 0 0 0 0 0 SO 2.293 89.7 15.00 5.545 0.020 5.624 14.07 5.682 inc 

june u 405 30.4771 -97.9613 4 0 0 0 0 0 0 SO 2.293 32.1 15.00 5.473 0.020 5.571 11.53 5.692 inc 

june u 406 30.4771 -97.9612 6 0 0 0 0 0 0 SO 2.293 57.1 15.00 5.435 0.020 5.543 11.19 5.705 inc 

lbjp r 407 30.2745 -98.4132 8 4 1 1 1 1 0 SO 4.905 96.2 51.00 4.875 0.070 4.826 6.66 3.103 mol 

lbjp r 408 30.2745 -98.413 7 2 1 0 0 1 0 EA 4.905 100.0 51.00 4.710 0.070 4.658 1.67 1.386 mol 

lbjp r 409 30.2745 -98.4129 9 2 1 0 1 0 0 NO 4.905 98.7 51.00 4.615 0.070 4.563 12.11 0.881 mol 

lbjp r 410 30.2746 -98.4129 5 3 1 0 1 1 0 NO 4.905 96.1 51.00 4.511 0.070 4.424 1.96 0.693 mol 

lbjp r 411 30.2751 -98.4128 4 3 1 0 1 1 0 SO 4.905 100.0 51.00 4.371 0.070 4.263 1.37 2.500 mol 

lbjp r 412 30.2751 -98.4127 5 3 1 1 0 1 0 EA 4.905 96.8 51.00 4.371 0.070 4.263 1.42 1.792 mol 

lbjp r 413 30.2751 -98.4126 6 3 1 1 0 1 0 EA 4.905 98.2 51.00 4.292 0.070 4.111 4.85 1.792 mol 

lbjp r 414 30.2751 -98.4126 6 3 1 1 0 1 0 EA 4.905 100.0 51.00 4.292 0.070 4.111 4.85 1.700 mol 

lbjp r 415 30.2751 -98.4126 9 3 1 0 1 1 0 NO 4.905 100.0 51.00 4.175 0.070 3.932 4.04 0.693 mol 

lbjp r 416 30.2752 -98.4126 8 3 1 0 1 1 0 EA 4.905 100.0 51.00 3.932 0.070 3.932 4.45 1.386 mol 

pede r 417 30.3111 -98.2391 4 0 0 0 0 0 0 NO 2.008 0.0 17.33 7.878 0.002 7.263 2.86 2.105 ent 

pede r 418 30.3111 -98.2389 4 0 0 0 0 0 0 WE 2.008 37.0 17.33 7.875 0.002 7.268 1.35 2.324 ent 
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pede r 419 30.3113 -98.2388 3 0 0 0 0 0 0 WE 2.008 5.1 17.33 7.879 0.002 7.272 1.62 0.693 ent 

pede r 420 30.3112 -98.2388 4 0 0 0 0 0 0 NO 2.008 80.0 17.33 7.876 0.002 7.272 1.61 1.792 ent 

pede r 421 30.3113 -98.2387 5 0 0 0 0 0 0 WE 2.008 2.6 17.33 7.874 0.002 7.283 1.95 1.174 ent 

pede r 422 30.3113 -98.2385 6 0 0 0 0 0 0 NO 2.008 67.1 17.33 7.872 0.002 7.290 0.83 2.568 ent 

pede r 423 30.3114 -98.2383 5 0 0 0 0 0 0 WE 2.008 98.7 17.33 7.873 0.002 7.300 5.96 2.568 ent 

pede r 424 30.3115 -98.238 4 0 0 0 0 0 0 NO 2.008 71.8 17.33 7.869 0.002 7.317 12.10 2.736 ent 

pede r 425 30.3116 -98.2379 3 0 0 0 0 0 0 NO 2.008 82.5 17.33 7.870 0.002 7.322 8.55 2.605 ent 

pede r 426 30.312 -98.2373 3 0 0 0 0 0 0 NO 2.008 97.4 17.33 7.871 0.002 7.350 8.01 2.764 ent 

pede u 438 30.3346 -98.2528 9 0 0 0 0 0 0 NO 2.008 94.9 17.33 8.087 0.002 4.860 7.52 5.898 alf 

pede u 439 30.3348 -98.2529 8 0 0 0 0 0 0 EA 2.008 97.5 17.33 8.088 0.002 5.017 9.33 5.914 alf 

pede u 440 30.3349 -98.2529 6 0 0 0 0 0 0 EA 2.008 93.2 17.33 8.090 0.002 5.070 9.18 5.906 alf 

pede u 441 30.3349 -98.2531 4 0 0 0 0 0 0 EA 2.008 92.3 17.33 8.094 0.002 5.143 5.58 5.925 alf 

pede u 442 30.3351 -98.253 6 0 0 0 0 0 0 NO 2.008 100.0 17.33 8.089 0.002 5.245 7.07 5.849 alf 

pede u 443 30.3354 -98.2528 2 0 0 0 0 0 0 NO 2.008 92.1 17.33 8.084 0.002 5.288 9.09 5.748 alf 

pede u 444 30.3354 -98.2528 3 0 0 0 0 0 0 NO 2.008 91.5 17.33 8.080 0.002 5.333 7.27 5.731 alf 
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pede u 445 30.3356 -98.2527 4 0 0 0 0 0 0 NO 2.008 81.8 17.33 8.076 0.002 5.404 12.69 5.662 alf 

pede u 446 30.3358 -98.2523 4 0 0 0 0 0 0 EA 2.008 84.4 17.33 8.062 0.002 5.493 4.78 5.490 alf 

pede u 447 30.3359 -98.2521 6 0 0 0 0 0 0 NO 2.008 64.5 17.33 8.058 0.002 5.529 5.44 5.435 alf 

pede u 448 30.3361 -98.252 3 0 0 0 0 0 0 NO 2.008 78.2 17.33 8.051 0.002 5.565 6.54 5.345 alf 

pede u 449 30.3361 -98.2513 4 0 0 0 0 0 0 NO 2.008 44.3 17.33 8.032 0.002 5.590 4.53 5.224 alf 

pede w 427 30.3106 -98.2388 3 0 0 0 0 0 0 NO 2.008 74.1 17.33 7.858 0.002 7.288 49.55 4.196 mol 

pede w 428 30.3105 -98.2391 7 0 0 0 0 0 0 NO 2.008 89.3 17.33 7.862 0.002 7.270 58.12 4.177 mol 

pede w 429 30.3104 -98.2393 9 0 0 0 0 0 0 NO 2.008 87.2 17.33 7.864 0.002 7.259 60.36 4.288 mol 

pede w 430 30.3103 -98.2395 8 0 0 0 0 0 0 NO 2.008 81.0 17.33 7.867 0.002 7.248 57.94 4.333 mol 

pede w 431 30.3102 -98.2399 7 0 0 0 0 0 0 NO 2.008 87.3 17.33 7.868 0.002 7.232 57.29 4.459 mol 

pede w 432 30.3102 -98.2402 5 0 0 0 0 0 0 NO 2.008 93.8 17.33 7.872 0.002 7.212 44.14 4.404 mol 

pede w 433 30.3101 -98.2403 9 0 0 0 0 0 0 WE 2.008 82.3 17.33 7.875 0.002 7.207 26.79 4.427 mol 

pede w 434 30.3101 -98.2404 9 0 0 0 0 0 0 NO 2.008 98.7 17.33 7.877 0.002 7.198 24.33 4.371 mol 

pede w 435 30.3101 -98.2405 9 0 0 0 0 0 0 NO 2.008 92.3 17.33 7.879 0.002 7.191 27.51 4.330 mol 

pede w 436 30.31 -98.2407 9 0 0 0 0 0 0 NO 2.008 87.0 17.33 7.881 0.002 7.182 38.00 4.404 mol 
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pede w 437 30.3101 -98.2408 8 0 0 0 0 0 0 NO 2.008 93.6 17.33 7.884 0.002 7.172 25.79 4.326 mol 

priv r 462 30.482 -97.9011 10 0 0 0 0 0 0 SO 2.166 68.4 17.87 5.428 0.021 5.461 14.57 0.881 mol 

priv r 463 30.4819 -97.901 8 0 0 0 0 0 0 NO 2.166 64.6 17.87 5.333 0.021 5.399 2.02 0.000 mol 

priv r 464 30.4818 -97.901 11 0 0 0 0 0 0 SO 2.166 80.6 17.87 5.333 0.021 5.364 3.44 1.342 mol 

priv r 465 30.4817 -97.9009 13 0 0 0 0 0 0 SO 2.166 39.2 17.87 5.263 0.021 5.296 5.38 2.176 mol 

priv r 466 30.4817 -97.9008 10 1 0 0 1 0 0 NO 2.166 0.0 17.87 5.188 0.021 5.222 8.13 2.105 mol 

priv r 467 30.4816 -97.9006 4 0 0 0 0 0 0 SO 2.166 41.0 17.87 5.106 0.021 5.106 8.16 1.792 mol 

priv r 468 30.4814 -97.9006 7 0 0 0 0 0 0 EA 2.166 88.3 17.87 4.964 0.021 5.058 8.48 1.700 mol 

priv r 469 30.4814 -97.9005 8 1 0 0 1 0 0 WE 2.166 60.7 17.87 4.920 0.021 4.964 7.08 1.342 mol 

priv r 470 30.4809 -97.9005 8 0 0 0 0 0 0 EA 2.166 19.5 17.87 4.615 0.021 4.676 10.11 1.634 mol 

priv r 471 30.4808 -97.9005 10 0 0 0 0 0 0 SO 2.166 83.3 17.87 4.505 0.021 4.557 3.78 2.324 mol 

priv u 450 30.4854 -97.8921 6 0 0 0 0 0 0 SO 2.166 67.9 17.87 4.466 0.021 4.005 18.92 5.954 inc 

priv u 451 30.4854 -97.8921 3 0 0 0 0 0 0 EA 2.166 9.1 17.87 4.535 0.021 4.083 16.06 5.969 inc 

priv u 452 30.4852 -97.8922 8 0 0 0 0 0 0 EA 2.166 85.7 17.87 4.615 0.021 4.083 11.49 5.948 inc 

priv u 453 30.4851 -97.8924 5 0 0 0 0 0 0 EA 2.166 85.0 17.87 4.635 0.021 4.005 12.24 5.903 inc 
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priv u 454 30.4849 -97.8923 3 0 0 0 0 0 0 EA 2.166 94.8 17.87 4.620 0.021 4.175 9.75 5.852 inc 

priv u 455 30.4848 -97.8923 4 0 0 0 0 0 0 EA 2.166 58.2 17.87 4.615 0.021 4.273 10.60 5.826 inc 

priv u 456 30.4848 -97.8924 2 0 0 0 0 0 0 SO 2.166 94.8 17.87 4.511 0.021 4.175 10.94 5.829 inc 

priv u 457 30.4845 -97.8924 1 0 0 0 0 0 0 EA 2.166 38.0 17.87 4.535 0.021 4.535 9.31 5.701 inc 

priv u 458 30.4844 -97.8926 4 0 0 0 0 0 0 SO 2.166 98.7 17.87 4.346 0.021 4.505 8.38 5.666 inc 

priv u 459 30.4842 -97.8926 2 0 0 0 0 0 0 SO 2.166 13.6 17.87 4.466 0.021 4.535 10.63 5.603 inc 

priv u 460 30.4842 -97.8927 2 0 0 0 0 0 0 SO 2.166 58.1 17.87 4.466 0.021 4.535 10.63 5.594 inc 

priv u 461 30.4842 -97.8927 2 0 0 0 0 0 0 SO 2.166 92.3 17.87 4.371 0.021 4.453 8.29 5.600 inc 

shie r 472 30.2642 -97.9933 4 0 0 0 0 0 0 WE 2.140 55.8 21.67 7.633 0.000 7.346 5.21 4.038 mol 

shie r 473 30.2642 -97.9934 5 0 0 0 0 0 0 WE 2.140 83.8 21.67 7.637 0.000 7.345 5.89 4.143 mol 

shie r 474 30.2643 -97.9936 7 0 0 0 0 0 0 WE 2.140 94.9 21.67 7.640 0.000 7.349 4.45 4.174 mol 

shie r 475 30.2643 -97.9937 4 0 0 0 0 0 0 WE 2.140 19.3 21.67 7.635 0.000 7.349 4.59 4.159 mol 

shie r 476 30.2643 -97.9937 5 0 0 0 0 0 0 WE 2.140 0.0 21.67 7.640 0.000 7.349 4.59 4.174 mol 

shie r 477 30.2645 -97.994 4 0 0 0 0 0 0 WE 2.140 79.7 21.67 7.647 0.000 7.358 5.47 4.470 mol 

shie r 478 30.2644 -97.9942 5 0 0 0 0 0 0 WE 2.140 68.4 21.67 7.642 0.000 7.357 8.05 4.401 mol 
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shie r 479 30.2645 -97.9942 2 0 0 0 0 0 0 WE 2.140 20.0 21.67 7.646 0.000 7.362 6.89 4.475 mol 

shie r 480 30.2645 -97.9943 3 0 0 0 0 0 0 WE 2.140 20.4 21.67 7.646 0.000 7.356 9.01 4.406 mol 

shie r 481 30.2646 -97.9945 7 1 0 0 0 0 1 WE 2.140 73.1 21.67 7.650 0.000 7.367 7.90 4.464 mol 

shie r 482 30.2646 -97.9945 2 0 0 0 0 0 0 WE 2.140 100.0 21.67 7.650 0.000 7.367 7.90 4.419 mol 

shie u 493 30.2642 -97.9942 8 0 0 0 0 0 0 WE 2.140 100.0 21.67 7.628 0.000 7.337 15.63 4.012 mol 

shie u 494 30.2632 -97.9926 3 0 0 0 0 0 0 NO 2.140 17.5 21.67 7.591 0.000 7.287 5.05 1.342 mol 

shie u 495 30.2633 -97.9929 3 0 0 0 0 0 0 NO 2.140 21.3 21.67 7.593 0.000 7.295 7.06 2.398 ent 

shie u 496 30.2635 -97.9932 4 0 0 0 0 0 0 SO 2.140 9.1 21.67 7.600 0.000 7.297 8.33 2.571 ent 

shie u 497 30.2636 -97.9935 3 0 0 0 0 0 0 SO 2.140 5.2 21.67 7.603 0.000 7.300 18.47 2.518 ent 

shie u 498 30.2638 -97.9935 7 0 0 0 0 0 0 SO 2.140 100.0 21.67 7.612 0.000 7.312 40.90 2.197 ent 

shie u 499 30.2638 -97.9937 6 0 0 0 0 0 0 SO 2.140 96.2 21.67 7.611 0.000 7.310 40.86 2.197 ent 

shie u 500 30.2638 -97.9937 3 0 0 0 0 0 0 SO 2.140 86.0 21.67 7.610 0.000 7.309 40.58 2.197 ent 

shie u 501 30.2638 -97.9939 5 0 0 0 0 0 0 SO 2.140 86.1 21.67 7.610 0.000 7.308 36.67 2.398 ent 

shie u 502 30.2638 -97.9939 4 0 0 0 0 0 0 SO 2.140 77.9 21.67 7.614 0.000 7.313 40.91 2.773 ent 

shie u 503 30.2638 -97.994 4 0 0 0 0 0 0 SO 2.140 41.3 21.67 7.609 0.000 7.312 42.66 2.639 ent 
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shie u 504 30.2638 -97.9941 6 0 0 0 0 0 0 SO 2.140 25.0 21.67 7.613 0.000 7.312 40.88 2.890 ent 

shie w 483 30.2646 -97.9946 5 0 0 0 0 0 0 WE 2.140 72.7 21.67 7.650 0.000 7.360 9.22 4.302 mol 

shie w 484 30.2635 -97.9927 5 0 0 0 0 0 0 SO 2.140 63.3 21.67 7.604 0.000 7.303 30.82 2.500 mol 

shie w 485 30.2635 -97.9927 8 0 0 0 0 0 0 SO 2.140 80.8 21.67 7.604 0.000 7.310 20.53 2.668 mol 

shie w 486 30.2637 -97.993 7 0 0 0 0 0 0 SO 2.140 94.9 21.67 7.611 0.000 7.313 59.76 2.605 mol 

shie w 487 30.2637 -97.9932 9 0 0 0 0 0 0 SO 2.140 93.7 21.67 7.609 0.000 7.315 57.27 2.500 mol 

shie w 488 30.2639 -97.9935 6 0 0 0 0 0 0 SO 2.140 96.2 21.67 7.617 0.000 7.319 43.35 3.086 mol 

shie w 489 30.2639 -97.9936 6 0 0 0 0 0 0 SO 2.140 100.0 21.67 7.617 0.000 7.325 34.80 3.182 mol 

shie w 490 30.2639 -97.9937 6 0 0 0 0 0 0 SO 2.140 100.0 21.67 7.616 0.000 7.323 31.99 3.135 mol 

shie w 491 30.264 -97.9938 7 0 0 0 0 0 0 SO 2.140 91.1 21.67 7.620 0.000 7.329 20.84 3.497 mol 

shie w 492 30.2641 -97.9939 11 0 0 0 0 0 0 SO 2.140 100.0 21.67 7.624 0.000 7.334 14.70 3.761 mol 

sted r 529 30.4042 -97.7905 13 1 0 0 1 0 0 NO 2.169 58.6 29.93 6.525 0.052 5.258 19.99 3.330 mol 

sted r 530 30.4042 -97.7905 11 1 0 0 1 0 0 NO 2.169 84.0 29.93 6.525 0.052 5.265 19.99 3.348 mol 

sted r 531 30.4042 -97.7907 10 1 0 0 1 0 0 NO 2.169 67.9 29.93 6.539 0.052 5.274 24.17 3.160 mol 

sted r 532 30.4042 -97.7907 6 1 0 0 1 0 0 NO 2.169 98.5 29.93 6.554 0.052 5.323 25.52 3.397 mol 
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sted r 533 30.4042 -97.7908 4 1 0 0 1 0 0 NO 2.169 88.9 29.93 6.554 0.052 5.333 35.28 3.364 mol 

sted r 534 30.4042 -97.7909 6 1 0 0 1 0 0 NO 2.169 94.8 29.93 6.568 0.052 5.346 40.30 3.355 mol 

sted r 535 30.4041 -97.7909 7 1 0 0 1 0 0 NO 2.169 100.0 29.93 6.568 0.052 5.346 40.30 3.373 mol 

sted r 536 30.4042 -97.7911 14 1 0 0 1 0 0 NO 2.169 100.0 29.93 6.596 0.052 5.377 48.27 3.258 mol 

sted r 537 30.4041 -97.7919 11 0 0 0 0 0 0 NO 2.169 100.0 29.93 6.700 0.052 5.550 79.32 3.091 mol 

sted r 538 30.4041 -97.792 7 0 0 0 0 0 0 NO 2.169 100.0 29.93 6.712 0.052 5.603 59.00 3.178 mol 

sted r 539 30.4041 -97.7923 8 0 0 0 0 0 0 NO 2.169 100.0 29.93 6.736 0.052 5.650 61.54 3.219 mol 

sted r 540 30.404 -97.7924 8 0 0 0 0 0 0 NO 2.169 100.0 29.93 6.749 0.052 5.673 61.18 3.296 mol 

sted u 505 30.4044 -97.7929 4 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.815 0.052 5.707 0.87 2.437 mol 

sted u 506 30.4045 -97.7928 6 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.792 0.052 5.680 3.47 3.046 mol 

sted u 507 30.4045 -97.7927 7 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.792 0.052 5.680 4.00 3.108 mol 

sted u 508 30.4045 -97.7926 9 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.770 0.052 5.626 4.30 3.091 mol 

sted u 509 30.4045 -97.7923 10 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.746 0.052 5.545 4.88 3.170 mol 

sted u 510 30.4046 -97.7922 10 0 0 0 0 0 0 SO 2.169 96.2 29.93 6.735 0.052 5.488 5.27 3.415 mol 

sted u 511 30.4045 -97.7922 10 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.735 0.052 5.516 3.78 3.045 mol 
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sted u 512 30.4044 -97.7922 12 0 0 0 0 0 0 NO 2.169 100.0 29.93 6.735 0.052 5.543 16.28 2.350 mol 

sted u 513 30.4047 -97.7922 9 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.723 0.052 5.428 1.04 3.714 mol 

sted u 514 30.4045 -97.7921 6 0 0 0 0 0 0 SO 2.169 88.5 29.93 6.723 0.052 5.487 5.20 3.108 mol 

sted u 515 30.4046 -97.7919 10 0 0 0 0 0 0 SO 2.169 89.9 29.93 6.698 0.052 5.395 3.12 3.332 mol 

sted u 516 30.4047 -97.7915 13 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.648 0.052 5.222 3.93 3.643 mol 

sted w 517 30.4047 -97.7915 8 2 0 0 1 1 0 SO 2.169 87.3 29.93 6.635 0.052 5.188 2.95 3.537 mol 

sted w 518 30.4047 -97.7914 8 0 0 0 0 0 0 SO 2.169 96.0 29.93 6.635 0.052 5.188 2.95 3.584 mol 

sted w 519 30.4047 -97.7911 11 0 0 0 0 0 0 SO 2.169 100.0 29.93 6.594 0.052 5.035 2.50 3.685 mol 

sted w 520 30.4047 -97.7909 9 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.567 0.052 5.032 1.29 3.389 mol 

sted w 521 30.4048 -97.7909 6 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.567 0.052 4.971 1.80 3.596 mol 

sted w 522 30.4047 -97.7909 12 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.567 0.052 5.032 1.26 3.373 mol 

sted w 523 30.4047 -97.7908 8 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.567 0.052 5.032 1.29 3.382 mol 

sted w 524 30.4048 -97.7906 7 0 0 0 0 0 0 EA 2.169 98.7 29.93 6.538 0.052 4.901 1.13 3.576 mol 

sted w 525 30.4049 -97.7904 10 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.509 0.052 4.726 4.02 3.800 mol 

sted w 526 30.4049 -97.7903 8 0 0 0 0 0 0 EA 2.169 100.0 29.93 6.494 0.052 4.799 3.49 3.640 mol 
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sted w 527 30.405 -97.79 8 1 0 0 0 0 1 EA 2.169 100.0 29.93 6.431 0.052 4.535 6.66 3.778 mol 

sted w 528 30.4043 -97.7905 9 0 0 0 0 0 0 NO 2.169 55.1 29.93 6.510 0.052 5.205 40.41 3.151 mol 

wall r 541 30.2854 -97.734 5 1 1 0 0 0 0 WE 5.159 82.1 76.53 0.000 0.082 2.398 9.62 1.527 mol 

wall r 542 30.2852 -97.7342 4 1 1 0 0 0 0 SO 5.159 91.3 76.53 0.000 0.082 3.045 3.70 1.174 mol 

wall r 543 30.285 -97.7346 4 2 1 0 0 0 0 SO 5.159 30.9 76.53 2.398 0.082 3.434 7.72 1.921 mol 

wall r 544 30.2849 -97.7347 10 3 1 1 0 0 1 SO 5.159 61.3 76.53 0.000 0.082 4.005 6.96 0.881 mol 

wall r 545 30.2846 -97.7348 6 2 1 0 0 0 1 WE 5.159 94.9 76.53 3.434 0.082 4.459 4.55 2.500 mol 

wall r 546 30.2842 -97.735 3 2 1 0 0 0 1 EA 5.159 100.0 76.53 3.434 0.082 4.535 16.23 0.693 mol 

wall r 547 30.284 -97.7348 10 1 1 0 0 0 0 EA 5.159 100.0 76.53 3.377 0.082 4.263 10.92 0.000 mol 

wall r 548 30.2839 -97.7347 6 1 1 0 0 0 0 WE 5.159 100.0 76.53 2.398 0.082 4.111 6.87 1.609 mol 

wall r 549 30.2836 -97.7346 4 4 1 1 0 0 0 SO 5.159 100.0 76.53 3.045 0.082 3.485 4.89 0.693 mol 

wall r 550 30.2835 -97.7346 6 2 1 1 0 0 0 EA 5.159 93.5 76.53 3.151 0.082 3.151 6.29 1.426 mol 
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Variable Explanation Measured 

site site code  

 code meaning 

 alex Alexander's property - private 

 basa Baker Sanctuary 

 bcgb Barton Creek Greenbelt 

 bchp Barton Creek Habitat Preserve 

 bcwp Barton Creek Wilderness Park 

 blan Blanco State Park 

 blue The Blue Hole 

 bucr Bull Creek Greenbelt 

 char Charro Ranch 

 cofo Commons Ford Metro. Park 

 cold Coldwater creek – private property 

 elmp Emma Long Metro. Park 

 foun Founder's Memorial Park 

 gade Gaderson's property - private 

 hapo Hamilton Pool 

 june June's property - private 

 lbjp LBJ National Historical Park 

 pede Pedernales Falls State Park 

 shie Shield Ranch – private property 

 sted St. Edwards Park 

 wall Waller Creek 

community community type a plot was 

located in 

 

 code meaning 

 r streamside woodland 

 u upland woodland 

 w mesic woodland 

join unique numerical identifier of 

plot 

 

lat latitude north 7 sigfig, NAD 1983 UTM, meters 

lon longitude west 7 sigfig, NAD 1983 UTM, meters 

numspn number of native species in plot count of number of native woody 

species in plot 

numspe number of exotic species in plot count of the number of non-native 

woody species in plot 

lilu Ligustrum lucidum 0 is absent, 1 is present in plot 

nado Nandina domestica 0 is absent, 1 is present in plot 

loja Lonicera japonica 0 is absent, 1 is present in plot 

lisi Ligustrum sinsense 0 is absent, 1 is present in plot 
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meaz Melia azedarach 0 is absent, 1 is present in plot 

aspect direction slope was facing in 

plot 

calculated using topographic maps 

in ArcGIS 

 code meaning 

 NO north, 315-45 compass degrees 

 SO south, 135-225 compass degrees 

 EA east, 45-135 compass degrees 

 WE west, 225-315 compass degrees 

cityage age of city, site-level value ages of cities weighted by distances 

from site to all cities, transformed 

with natural logarithm, rounded to 

3 decimals 

cover overstory canopy cover in plot percentage based on aerial 

photographs, rounded to 1 decimal 

devage age of development, site level average of 15 residential or 

commercial homes, county records, 

rounded to 2 decimals 

devdist distance to development from 

plot 

meters to nearest in ArcGIS, 

transformed with the natural 

logarithm, rounded to 3 decimals 

roaddens road density, site level average from all plots in site, length 

of road in 500m radius circle 

around plot center in ArcGIS, 

rounded to 3 decimals 

roaddist distance to road from plot meters to nearest in ArcGIS, 

transformed with the natural 

logarithm, rounded to 3 decimals 

slope percentage slope in plot calculated in ArcGIS from 

topographic maps, rounded to 2 

decimals 

streamdist distance to nearest stream 

center 

calculated in meters in ArcGIS, 

transformed with the natural 

logarithm, rounded to 3 decimals 

soilorder soil type (order) in plot used digitized maps in ArcGIS 

 code meaning 

 ent entisol 

 inc inceptisol 

 mol mollisol 

 alf alfisol 



87 
 

Works Cited 

Alpert, P., et al. 2000. Invasiveness, invasibility and the role of environmental stress in 

the spread of non-native plants. - Perspectives in Plant Ecology, Evolution and 

Systematics 3: 52-66. 

Alston, K. P. and Richardson, D. M. 2006. The roles of habitat features, disturbance, and 

distance from putative source populations in structuring alien plant invasions at 

the urban/wildland interface on the Cape Peninsula, South Africa. - Biological 

Conservation 132: 183-198. 

Barney, J. N. and Whitlow, T. H. 2008. A unifying framework for biological invasions: 

the state factor model. - Biological Invasions 10: 259-272. 

Bryce, S. A., et al. 2004. Ecoregions of Texas. - In: U.S. Environmental Protection 

Agency, Western Ecology Division. 

Cassey, P., et al. 2004. Global patterns of introduction effort and establishment success in 

birds. - Proceedings of the Royal Society B-Biological Sciences 271: S405-S408. 

Catford, J. A., et al. 2009. Reducing redundancy in invasion ecology by integrating 

hypotheses into a single theoretical framework. - Diversity and Distributions 15: 

22-40. 

Chown, S. L., et al. 2003. Energy, species richness, and human population size: 

Conservation implications at a national scale. - Ecological Applications 13: 1233-

1241. 

Colautti, R. I., et al. 2006. Propagule pressure: A null model for biological invasions. - 

Biological Invasions 8: 1023-1037. 



88 
 

Debussche, M. and Isenmann, P. 1990. Introduced and cultivated fleshy-fruited plants: 

consequences of a mutualistic Mediterranean plant-bird system. - In: F. di Castri, 

et al. (eds), Biological Invasions in Europe and the Mediterranean Basin. pp. 399-

416. 

Diggs Jr., G. M., et al. 1999. Schinners and Mahler's Illustrated Flora of North Central 

Texas. - Botanical Research Institute of Texas. 

Dullinger, S., et al. 2009. Niche based distribution modelling of an invasive alien plant: 

effects of population status, propagule pressure and invasion history. - Biological 

Invasions 11: 2401-2414. 

Fensham, R. J. and Cowie, I. D. 1998. Alien plant invasions on the Tiwi Islands. Extent, 

implications and priorities for control. - Biological Conservation 83: 55-68. 

Fjeldså, J. and Burgess, N. D. 2008. The coincidence of biodiversity patterns and human 

settlement in Africa. - African Journal of Ecology 46: 33-42. 

Fornwalt, P. J., et al. 2003. Non-native plant invasions in managed and protected 

ponderosa pine/Douglas-fir forests of the Colorado Front Range. - Forest Ecology 

and Management 177: 515-527. 

González, A. V. 2010. Dynamics of woody plant encroachment in Texas savannas: 

density dependence, environmental heterogeneity, and spatial patterns. - In: 

School of Biological Sciences. The University of Texas at Austin. 

Goodwin, B. J., et al. 1999. Predicting invasiveness of plant species based on biological 

information. - Conservation Biology 13: 422-426. 



89 
 

Heger, T. and Trepl, L. 2003. Predicting biological invasions. - Biological Invasions 5: 

313-321. 

Henderson, L. and Wells, M. J. 1986. Alien plant invasions in the grassland and savanna 

biomes. - In: I. A. MacDonald, et al. (eds), The ecology and management of 

biological invasions in South Africa. Oxford University Press, pp. 109-117. 

Hood, W. G. and Naiman, R. J. 2000. Vulnerability of riparian zones to invasion by 

exotic vascular plants. - Plant Ecology 148: 105-114. 

Johnson, W. C. and Adkisson, C. S. 1985. Dispersal of beech nuts by blue jays in 

fragmented landscapes. - American Midland Naturalist 113: 319-324. 

Kowarik, I. 1995. Time lags in biological invasions with regard to the success and failure 

of alien species. - In: P. Pysek, et al. (eds), Plant Invasions: General Aspects and 

Special Problems. SPB Academic Publishing, pp. 15-38. 

Kruger, F. J., et al. 1986. Processes of invasion by alien plants. - In: I. A. MacDonald, et 

al. (eds), The Ecology and Control of Biological Invasions in Southern Africa. 

Oxford University Press, pp. 145-155. 

Lockwood, J. L., et al. 2005. The role of propagule pressure in explaining species 

invasions. - Trends in Ecology & Evolution 20: 223-228. 

Lockwood, J. L., et al. 2007. Invasion ecology. - Blackwell. 

Lonsdale, W. M. 1999. Global patterns of plant invasions and the concept of invasibility. 

- Ecology 80: 1522-1536. 

Mack, R. N. and Lonsdale, W. M. 2001. Humans as global plant dispersers: Getting more 

than we bargained for. - Bioscience 51: 95-102. 



90 
 

McKinney, C. L. 2001. Effects of human population, area, and time on non-native plant 

and fish diversity in the United States. - Biological Conservation 100: 243-252. 

McKinney, M. L. 2002. Influence of settlement time, human population, park shape and 

age, visitation and roads on the number of alien plant species in protected areas in 

the USA. - Diversity and Distributions 8: 311-318. 

Pollock, M. M., et al. 1998. Plant species richness in riparian wetlands - A test of 

biodiversity theory. - Ecology 79: 94-105. 

Pyšek, P. and Prach, K. 1994. How important are rivers for supporting plant invasions? - 

In: L. Waal, et al. (eds), Ecology and management of invasive riverside plants. 

John Wiley & Sons, pp. 19-26. 

Rejmánek, M. 1996. A theory of seed plant invasiveness: The first sketch. - Biological 

Conservation 78: 171-181. 

Rejmánek, M. and Richardson, D. M. 1996. What attributes make some plant species 

more invasive? - Ecology 77: 1655-1661. 

Rejmánek, M., et al. 2005. Ecology of invasive plants: state of the art. - In: H. A. 

Mooney, et al. (eds), Invasive Alien Species: A New Synthesis. Island Press, pp. 

104-161. 

Rose, S. and Fairweather, P. G. 1997. Changes in floristic composition of urban 

brushland invaded by Pittosporum undulatum in northern Sydney, Australia. - 

Australian Journal of Botany 45: 123-149. 



91 
 

Schneider, D. W., et al. 1998. A transportation model assessment of the risk to native 

mussel communities from zebra mussel spread. - Conservation Biology 12: 788-

800. 

Simberloff, D. 2009. The Role of Propagule Pressure in Biological Invasions. - Annual 

Review of Ecology, Evolution and Systematics 40: 81-102. 

Stohlgren, T. J., et al. 1998. Riparian zones as havens for exotic plant species in the 

central grasslands. - Plant Ecology 138: 113-125. 

Sullivan, J. J., et al. 2005. Movement of exotic plants into coastal native forests from 

gardens in northern New Zealand. - New Zealand Journal of Ecology 29: 1-10. 

Taylor, B. W. and Irwin, R. E. 2004. Linking economic activities to the distribution of 

exotic plants. - Proceedings of the National Academy of Sciences of the United 

States of America 101: 17725-17730. 

Williams, P. A. and Karl, B. J. 1996. Fleshy fruits of indigenous and adventive plants in 

the diet of birds in forest remnants, Nelson, New Zealand. - New Zealand Journal 

of Ecology 20: 127-145. 

Williamson, M. H. 1996. Biological Invasions. - Chapman & Hall. 

 


