

Copyright

by

Gregory Ryan King

2018

The Thesis Committee for Gregory Ryan King

Certifies that this is the approved version of the following Thesis:

Comparative Systemic Analysis of Human Immunoglobulin Repertoires

APPROVED BY

SUPERVISING COMMITTEE:

George Georgiou, Supervisor

Gregory Ippolito

Comparative Systemic Analysis of Human Immunoglobulin Repertoires

by

Gregory Ryan King

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Arts

The University of Texas at Austin

December 2018

 iv

Acknowledgements

I would like to acknowledge and extend my gratitude towards my advisor, George

Georgiou, and to Professor Gregory Ippolito for their advice and patience throughout my

time in the BIGG lab. Working with George and Greg was always exciting, and having the

opportunity to learn from them and be a part of a group of so many great scientists is a

once in a lifetime experience. I also want to thank the entire lab for their guidance and input

along the way, and for support from Professors Jenny Jiang, Jennifer Maynard, Edward

Marcotte, Som Mukhopahdyay, and Bryan Davies.

Finally, I could not have come this far without my wife, Rhea King. I am eternally

grateful for her endless love and encouragement, and her patience and understanding

through the worst times and the best.

 v

Abstract

Comparative Systemic Analysis of Human Immunoglobulin Repertoires

Gregory Ryan King, M.A.

The University of Texas at Austin, 2018

Supervisor: George Georgiou

 The humoral immune system is majorly composed of B cells producing effector

immunoglobulin molecules, the vast diversity of which allow for the neutralization of

pathogenic threats never previously seen by the immune system. High-throughput

sequencing technology has allowed this vast repertoire to be characterized and quantified,

but understanding this complex system requires methods of comparison to identify and

differentiate B cell populations. In this thesis, differences between groups of repertoires

within individuals are analyzed at both the cellular and proteomic level. Novel

experimental techniques and visualization methods will allow for the analyses of several

such high-dimensional complex systems, leading to a fuller picture of the B cells’

contribution to the immune system.

 vi

Table of Contents

Chapter 1: The Plasma Cell Repertoire and Serological Contribution1

Background ...1

Materials and Methods ..7

 Peripheral Blood and Bone Marrow Mononuclear Cell

 and Serum Isolation ...7

 Plasma Cell and CD19+/- FACS Sorting of Bone Marrow

 Mononuclear Cells ...9

 Library Preparation for VH-Only Sequencing9

 Bone Marrow B Cell MACS Isolation ..11

 Serum IgG Purification and Preparation ..13

Results ...14

 Experimental Outline and Sample Processing14

 Gene Usage and Class Switching by Repertoire..................................18

 Somatic Hypermutation Rates and Clonal Distribution.......................20

 Clonal Diversity ...25

 Compartmental Repertoire Comparison and Similarity28

 Proteomic Analysis of Total Serum IgG Repertoires31

Chapter 2: The Anti-Pneumococcus Capsular Polysaccharide Antibody

 Repertoire and Serological Response ...34

Background ...34

Materials and Methods ..37

 Serum IgG Purification and Preparation ..37

 Anti-Pneumococcal Polysaccharide Antibody Enrichment38

Results ...39

 Sample Subsets and Experimental Outline ..39

 High-Throughput Sequencing Derived Repertoire Characteristics42

 Compartment Repertoire Overlap ..45

 vii

 Vaccine Component Enriched Serological Repertoire49

 Contribution of Shared Clones to Serum IgG Response52

Chapter 3: Automated Comparative Repertoire Visualization54

Background ...54

Application Overview ...55

 CDR3 Amino Acid Length Histogram (Spectratype Plot)55

 V/J Gene Somatic Hypermutation Violin Plot.....................................57

 Paired V-J Gene Usage Donut Plot ..61

 Categorical Clonal Frequency Mosaic Plot ...65

 Clonal V Gene Somatic Hypermutation Burtin Plot............................69

 Repertoire Diversity / Polarization Line Plot.......................................71

Appendix ..74

 Python Sample Processing and Graphing Code..74

References ...149

 1

Chapter 1: The Plasma Cell Repertoire and Serological Contribution

BACKGROUND

A hallmark of the vertebrate adaptive immune system – hit upon by evolution in

the very early stages of animal life on Earth and a major component of immunity in all

mammals – is the receptor and soluble effector molecule of the B cell: the immunoglobulin,

also known (for its ability to bind foreign bodies) as the antibody (Kindt et al. 2007). The

antibody is a tetrameric glycoprotein made up of two dimers each containing a paired heavy

and light chain (heavy and light referring to the molecular masses) joined covalently with

cysteine disulfide bonds. The antibody’s essential role to play is in determining the

presence of an unknown / foreign antigen, and relaying this message to a variety of cell

types and other effector molecules to deal with the intruder promptly. The N-terminus and

C-terminus of the antibody each have specialized functions that allows them to serve in

this function. The N-terminus of both the heavy and light chains include regions of non-

germline sequences with a vast diversity of potential tertiary protein configurations which

allow the molecule to bind to a theoretically infinite range of ligands, in some cases with

extremely high specificity (Murphy and Weaver, 2016). Since this variable region (known

as VH for the Variable Heavy chain and VL for the Variable Light chain) is present in

duplicate on the antibody, the molecule will not only bind a target but can also crosslink

multiple targets, creating aggregates that stimulate an ever-stronger local response.

The C-terminus of the antibody, often known as the Constant region, is the portion

of the heavy chain which signals specifically to other cells in the immune system where a

potential target of interest lies. All animals have several interchangeable constant regions

encoded by different genes, each with a different profile of interaction with various cell

subsets. In humans, there are five isotypes for the heavy chain constant region: IgG, IgA,

IgM, IgD, and IgE. The IgG and IgA isotypes are further divide into 4 and 2 subgroups,

 2

respectively. Each type may specialize in attracting certain cells or other effector

molecules: for example, IgG3 is a strong attractor for the complement C1q binding protein

that stimulates an innate cell-free attack, while IgA1 is more efficient at bringing

neutrophils to assist (Vidarsson et al. 2014). While the canonical concept of a tetrameric

“Y” shaped antibody is applicable to the IgG, IgE, and IgD subclasses (Figure 1.1), IgA

and IgM can and often do take on polymeric configurations – IgA is commonly found as a

dimer of two single IgA molecules (Joined by a J chain tail-to-tail) especially in sites of

mucosal secretions, and soluble IgM takes on a large pentameric configuration. In the

periphery, IgG subtypes are the most common member by far, making up a combined 85%

of serum immunoglobulins (Manz et al. 2005). In the mucosa, the balance shifts heavily in

the favor of IgA; IgA production in the mucosal sites most likely surpasses the production

of all other antibody isotypes throughout the body (Rifai et al. 2000).

 3

Figure 1.1: The generalized structure of mammalian antibodies (specifically IgG).

The production of antibodies is entirely due to the diverse set of immunological

cells known as B cells. B cells begin life in the bone marrow, in stromal sites containing

hematopoietic stem cells which are constantly dividing throughout life. Like all germline

cells, the precursors to B cells have the fundamental building blocks for any possible

antibody in the immunoglobulin heavy-chain locus, on the 14th chromosome in humans.

The locus is made up of many variants of three gene types, known as Variable (V),

Diversity (D), and Joining (J). The first steps in development require the B cells to begin

the process of heavy chain gene component recombination to bring together first a D and

J gene at random, after the success of which allow for the second recombination of the V

gene to the DJ segment. This bringing together of three random assortments of the dozens

 4

of V genes and D genes with one of 6-7 J genes alone yields a sequence space of many

thousands of possible heavy chain sequences. However, V-DJ joining is also accompanied

by exonuclease digestion at the site of the VDJ recombination, the so-called junction

region. As the junction region is chewed back a random number of bases, a low-fidelity

DNA polymerase adds back a set a randomized bases that greatly increase the diversity of

this site (see Figure 1.2). In the (likely) chance that a deleterious mutation occurs and no

pre-B heavy chain is able to express, the V-D-J gene cassette of the second chromosome-

14 attempts another recombination, doubling the chances for a particular cell to create a

functional heavy chain.

Figure 1.2: The Human germline immunoglobulin heavy chain locus (IGH), with

many variants of the Variable, Diversity, and Joining genes are displayed

on top. The middle section displays the rearranged IGH locus at the naïve

B cell stage with the recombination of a single V-D-J set followed by a

constant domain determining the isotype. The bottom section depicts the

spliced mRNA transcript as expressed in a functional B cell.

 Upon a final productive rearrangement, naïve B cells that show no binding to self-

antigens (preventing autoimmunity) are released from the bone marrow into peripheral

circulation to allow exposure to potential pathogen-expressed antigens for an immune

response. Should a B cell membrane-bound antibody receptor find a cognate antigen, the

cell can undergo a variety of proliferation and differentiation steps to allow the cell to

 5

respond more fully to the invader. The two major effector B cell forms that allow both a

full primary response and the ability to persist for long periods of time and contribute to

immunological memory are the Plasma cell and the Memory B cell (figure 1.3). These

important steps take place within lymphoid organs in segments known as the germinal

center (figure 1.4).

Figure 1.3: The generalized creation and end states of B Cells. Hematopoietic stem

cells in the bone marrow can differentiate into B cells, from which only

the minority of cells that undergo a productive heavy and light chain

rearrangement can leave the bone marrow as naïve B cells. Upon

encountering antigen in the periphery, B cells can mature into Plasma and

Memory B Cells – the variants that contribute to an effective immune

response and that can remain active for months to years and contribute to a

secondary response should the same antigen be encountered in the future.

 6

Figure 1.4: Induced hypermutation and proliferation of B cells in the germinal center.

Cells that actively bind antigen displayed by antigen presenting cells, such

as dendritic cells, in the “light” zone are stimulated to rapidly mutate and

divide in the “dark” zone. The minority of cells with enhanced antigenic

binding can then be repetitively selected for additional rounds of mutation,

while non-functional or less useful variants die off as they are

outcompeted for antigen to bind.

 Plasma cells, more than any other B cell group, provide the body with humoral

immunity through the constant high-level production of secreted antibodies. Plasma cells

arise from particularly successful plasmablasts induced during exposure to antigenic

 7

challenge; newly formed plasma cells have a lifespan of several days as they exist in the

periphery, but long-term antigen protection is truly provided when these new plasma cells

find their way to a survival niche in which they can be stimulated to persist and continue

to secrete antibody (Radbruch et al. 2006). The niches sought out by plasma cells depend

on their origins in the gut or periphery, but the most well understood niche contributing to

serological long-term antibody expression is the bone marrow. Plasma cells that migrate

back to their developmental origin can receive guidance by signaling from T cells and the

bone marrow stroma (Koch and Benner 1982). Once settled, these plasma cells transition

from a life cycle of days to weeks to one lasting months to years. Recent studies have begun

to identify distinguishing factors between plasma cells of various ages in the bone marrow;

the B cell co-receptor and signaling enhancer molecule CD19 has been directly shown to

lower in expression levels as plasma cells remain in the bone marrow for longer periods of

time (Henrik, E.M. et al. 2014, Halliley, J. et al. 2015). This allows for the selection and

differentiation between the populations of plasma cells which may be newly derived and

of the super-competent members that may be directly responsible for the protection against

pathogens over many years.

MATERIALS AND METHODS

Peripheral Blood and Bone Marrow Mononuclear Cell and Serum Isolation

All peripheral blood and bone marrow aspirate samples were collected by AllCells

and shipped overnight at ambient temperature; processing was started immediately upon

receipt of the samples in a sterilized biological safety hood. Sterile 1x PBS pH 7.4 plus 2

mM EDTA (without Ca2+ or Mg2+) at room temperature was used to dilute samples prior

to density centrifugation separation: peripheral blood (60 mL starting volume) was diluted

1:1 by volume, and bone marrow aspirate (25 mL starting volume) was diluted 7:1 by

 8

volume. The samples were aliquoted out in 35 mL increments and cautiously layered into

50 mL conical centrifuge tubes containing 15 mL of room temperature Lymphocyte

Separation Medium at 1.077 g/mL density (Corning, #25-072), without disturbing the

separation medium interface. The vials were centrifuged at room temperature at 800g for

15 minutes, with the brake turned off to ensure gentle deceleration.

The upper serum / aspirate supernatant layers were removed by pipette and stored

in 10 mL aliquots at -80 °C for future use. The mononuclear cell layers were then carefully

aspirated by glass transfer pipette and pooled into a fresh 50 mL vial and brought to a final

volume of 50 mL with PBS plus EDTA. The cell solution was gently mixed by inversion

then centrifuged at 300g for 10 minutes at room temperature, and the PBS wash supernatant

was discarded. Two additional PBS washes were performed, and the final cell pellet was

resuspended in 2 mL 1x PBS pH 7.4 plus 2 mM EDTA and 0.5% Bovine Serum Albumin.

Two 10 μL samples of the cell suspension were diluted 1:10 with 0.4% Trypan Blue

for viability and cell concentration measurement via hemocytometer. For peripheral blood

samples, ~1-2 x 107 mononuclear cells were pelleted and resuspended in 1 mL TRIzol

RNA extraction reagent (Thermo Fisher #15596026) and stored at -80°C. The remaining

cells were brought to ~2 x 107 cells/mL with 2x cell freezing medium: 40% RPMI 1640

(ThermoFisher #12633012), 40% heat-inactivated fetal bovine serum (ThermoFisher

#16140089), 20% DMSO (Sigma-Aldrich #D2650). Cell suspensions were then stored in

liquid nitrogen after controlled freezing via isopropyl alcohol chilling (Nalgene Mr. Frosty,

Sigma-Aldrich #C1562). For the bone marrow mononuclear cells, in addition to the frozen

cell suspension and TRIzol aliquots, two additional ~1-2 x 107 mononuclear cell aliquots

were set aside.

 9

Plasma Cell and CD19+/- FACS Sorting of Bone Marrow Mononuclear Cells

FACS sample staining was performed by Gregory King, Gregory Ippolito, and

Sebastian Schaetzle and sample sorting and processing by Richard Salinas.

The first bone marrow mononuclear cell aliquot was prepared for FACS plasma

cell plus CD19-expression level sorting. 107 cells in 1.1 mL FACS buffer (1x PBS pH 7.4

plus 0.5% bovine serum albumin) were split into two equal aliquots in 1.5 mL Eppendorf

tubes. The first aliquot (individual color controls) was then portioned into 5 tubes at 0.1

mL each, and 10 μL of each of the labeled FACS antibody solution was added to each

separate tube. The second sample aliquot at 0.5 mL had 10 μL of all 5 labeled antibodies

added. All tubes were incubated in the dark for 15 minutes at room temperature, with gentle

flicking every five minutes. Cells were washed with 1 mL FACS buffer, pelleted at 300g

for 7 minutes, then resuspended with 0.5 mL FACS buffer for the color controls or 1 mL

FACS buffer for the full sample. All samples were filtered into FACS tubes with a 45 μm

filter cap (Corning #352235) and brought to sorting immediately on ice. The collected

plasma cell subsets were immediately stored in 1 mL TRIzol at -80°C.

Antibodies used for the plasma cell and CD19 sorting were Mouse Anti-Human

CD138 PE (Miltenyi Clone B-B4, #130-081-301), Mouse Anti-Human CD19 v450 (BD

Biosciences, #556633), Mouse Anti-Human CD38 FITC (BD Biosciences Clone HIT2,

#555459), Mouse Anti-Human IgD PE (BD Biosciences Clone IA6-2, #555779), and

Mouse Anti-Human CD27 APC (BD Biosciences Clone M-T271, #558664).

Library Preparation for VH-Only Sequencing

For mRNA isolation from the lysed cell samples stored at -80 °C in TRIzol, the

tubes were thawed and 0.2 mL chloroform was added; the mixture was then vortexed for

15 seconds and allowed to settle for 5 minutes at room temperature. The tubes were then

 10

centrifuged at 4 °C for 10 minutes at 12000g, followed by careful removal of the upper

clear layer into a fresh Eppendorf tube. 70% ethanol was added to the tubes 1:1 by volume

and gently mixed. The samples were then run through an RNA purification centrifugal

column and processed as recommended by the manufacturer (RNeasy Mini, Qiagen). 2x

elutions with 15 μL each of RNAse-free water were pooled and RNA concentrations were

measured by Nanodrop absorbance; 1000ng of RNA was set aside for immediate cDNA

synthesis with the remainder stored at -80 °C.

cDNA production was performed following the manufacturer’s protocol

(ThermoFisher SuperStrand IV) using 1000ng of sample RNA. The cDNA synthesis

program used was 50 °C for 4 minutes, 52 °C for 5 minutes, 55 °C for 6 minutes, and finally

80 °C for 10 minutes. After the cDNA synthesis, 1 μL of RNase H was added and incubated

for 20 minutes at 37 °C. The samples were then prepared for VH-only amplicon PCR using

the manufacturer’s recommended FastStart Taq polymerase protocol with 8 μL of the

cDNA product for a 400 μL final volume reaction, aliquoted at 50 μL per PCR tube. The

program for VH amplification was: 95 °C for 2 minutes, 4 cycles of 92 °C, 50 °C, and 72

°C (each 1 minute), 4 cycles of 92 °C, 55 °C, and 72 °C (each 1 minute), 22 cycles of 92

°C, 63 °C, and 72 °C (each 1 minute), and finally 72 °C for 7 minutes. PCR products were

purified using a Zymo-Spin I DNA binding column (Zymo Research #C1003) and eluted

2x with 15 μL water each. The purified DNA was then run on a 1% TAE-agarose gel, and

the appropriately sized VH band was cut out and purified with a Zymo-Spin I DNA binding

column using agarose dissolving buffer (expected ~400bp band for IgG and IgM or ~500bp

for IgA). Once again, the 2x 15 μL water elutions were pooled and the concentration

measured by Nanodrop absorbance. DNA was then given to the University of Texas at

Austin Genome Sequencing and Analysis Facility sequencing core for MiSeq library

preparation by ligation and sequencing.

 11

Bone Marrow B Cell MACS Isolation

Initial 2 donor sample VH-VL pairing was done by Jon McDaniel, and subsequent

donor samples were processed by Gregory King.

The remaining 107 bone marrow mononuclear cells were then prepared for single

cell emulsion VH-VL paired RT-PCR. The cell suspension was first depleted of non-B

cells by magnetic-activated cell sorting (MACS) using the negative selection portion of the

Miltenyi Human IgG+ Memory B Cell isolation kit (Miltenyi #130-094-350). The cell

suspension was pelleted at 300g for 10 minutes at 4 °C, then resuspended in 0.4 mL of

chilled MACS buffer (1x PBS pH 7.4 plus 0.5% bovine serum albumin). 0.1 mL of the

Miltenyi B Cell Biotin-Antibody Cocktail was added and gently mixed then incubated for

10 minutes at 4 °C. 0.3 mL of chilled MACS buffer and 0.2 mL of Anti-Biotin microbeads

were added and mixed, followed by another 15-minute incubation at 4 °C. The cell

suspension was centrifuged for 10 minutes at 300g at 4 °C, followed by removal of the

supernatant and resuspension of the cell pellet in 1 mL cold MACS buffer. The cell

suspension was run through a 45 μm filter (Corning #352235), then added to an

equilibrated MACS LD column (Miltenyi #130-042-901). The non-B Cell depleted

flowthrough was collected and pooled with 4x 1 mL MACS buffer washes. The cells were

then washed with 15 mL chilled PBS and resuspended in 5 mL PBS, and a final viability

count was performed prior to emulsion-based lysis and mRNA capture.

Single-cell lysis and mRNA capture for bone marrow B Cell VH-VL RT-PCR was

performed as described in McDaniel, J.R. et al. 2016. The B Cell suspension in PBS at 105

cells/mL and an equal volume of lysis buffer (100 mM Tris pH 7.4 plus 500 mM LiCl, 10

mM EDTA, 1% LiDS, 5 mM DTT) containing mRNA-capturing magnetic microbeads

(Oligo d(T) microbeads, New England Biolabs #S1419S) were run through an in-house

pump to form single-cell droplets in emulsions (4.5% Span-80, 0.4% Tween-80, and 0.05%

 12

Triton-X 100 in mineral oil) for mRNA capture of paired heavy and light chain transcripts

on beads. Emulsions were formed at a flow rate of 0.5 mL/minute for the aqueous solutions

and 3 mL/minute for the oil, and captured in 50 mL conical vials chilled in ice. Emulsions

were gently pooled and centrifuged at 4000 RPM for 6 minutes at 4 °C, and the upper

layers of oil and non-cell containing emulsions were removed. An equal volume of chilled

hydrated diethyl ether was added to the remaining large emulsions and mixed by gently

inverting, followed by another 4000 RPM 6 minute centrifugation step at 4 °C. All

supernatant was removed, and the pelleted mRNA-containing beads were resuspended in

1 mL of chilled wash buffer (100 mM Tris pH 7.5 plus 500 mM LiCl and 1 mM EDTA).

The beads were then pelleted on a magnetic rack at 4 °C and washed once with lysis buffer,

followed by two washes with the bead wash buffer and a final equilibration in 0.5 mL of

20 mM Tris pH 7.5 plus 3 mM MgCl and 50 mM KCl. After pelleting a final time, the

beads were thoroughly resuspended in chilled emulsion RT-PCR mixture containing RTX

polymerase. The ~3 mL prepared RT-PCR sample was then re-emulsified in 9 mL of the

mineral oil mixture for 5 minutes using an Ultra-Turrax DT-20 emulsifier tube (IKA

#0003700600) and aliquoted out into 96-well chilled PCR plates at 100 μL per well. The

plates were sealed and placed in a thermocycler pre-heated to 68 °C, and were kept at 68

°C for 30 minutes for reverse transcription followed by heating to 94 °C for 2 minutes.

Amplification was performed with 25 cycles of 94 °C for 30 seconds, 60 °C for 30 seconds,

and 68 °C for 2 minutes. A final 68 °C extension was performed for 7 minutes and plates

were stored at 4 °C.

All reaction products were pooled and transferred to 2 mL Eppendorf tubes, then

centrifuged at 4 °C for 10 minutes at 13000g. The mineral oil supernatant was removed

with plastic disposable pipettes, and the tubes were filled with hydrated diethyl ether and

vortexed vigorously twice for 5-10 seconds each to break the emulsions followed by a 40

 13

second centrifugation at 16000g. The upper organic layer was carefully removed, and the

aqueous DNA-containing samples were pooled to three 2 mL tubes. Two additional ether

wash steps were performed, after which the tubes were left open in a chemical hood for 15

minutes then concentrated in a vacuum centrifuge at ambient temperature for 45 minutes

to evaporate any residual ether. The mRNA-capturing beads were magnetically pelleted,

and the supernatants were pooled. Two washes with Zymo-Spin DNA purification buffer

were pooled with the supernatants (final volume of ~5 mL) and purified in a single Zymo-

Spin I DNA purification column (Zymo Research #C1003) in a final volume of 30 μL H2O.

Serum IgG Purification and Preparation

For all donors, 5 mL of serum frozen at -80 °C was thawed to room temperature

and centrifuged for 5 minutes at 15000g to pellet debris, then diluted 1:1 with 1x PBS pH

7.4 and filtered through a 0.22 μm syringe filter. For each separate sample, 1.5 mL of

Protein G+ agarose (Thermo Scientific) resin was placed in a 5 mL polypropylene protein

purification column (pre-washed once with 5 mL 70% ethanol), then equilibrated with 3x

5 mL PBS washes at room temperature. The serum sample was then added to the resin and

allowed to flow through by gravity; flowthroughs were collected and run an additional two

times to ensure complete binding of antibody to the resin. 2x 1 mL PBS washes were

pooled with the flowthroughs, then 3x 10 mL PBS washes were collected separately. 8x

1.5 mL Eppendorf tubes were prepared each containing 0.1 mL 1M Tris pH 8.0 to

immediately neutralize the elution fractions; 8x acid elutions using 0.9 mL of 100 mM

glycine pH 2.7, collected into the prepared tubes. Protein concentration estimates were

performed via Nanodrop absorbance readings, and all fractions containing antibody were

pooled. The pooled antibody samples were then dialyzed overnight using a 10 kDa MWCO

dialysis membrane (SnakeSkin dialysis membrane) at 4 °C into 1x PBS, pH 7.4.

 14

To remove the antibody constant regions to assist with LC/MS proteomic analysis,

the samples were digested using IdeS enzyme, which is IgG-specific and cleaves only in

the hinge region (IdeS protease produced in-house). IdeS was added at a 1:50 ratio of

enzyme:IgG, and the mix was incubated for 2 hours at 37 °C. After digestion, a 10 μg

aliquot of digested IgG was run on a reducing SDS-PAGE gel to ensure proper cleavage.

RESULTS

Experimental Outline and Sample Processing

 In order to better understand the human antibody repertoire both in different tissue

compartments and at different life stages, a set of six healthy male donors – three younger

(ages 20-25) and three older (ages 50-55) – were selected to provide both peripheral blood

and a hip bone marrow aspirate. The donors in each age group were matched as closely as

possible in terms of activity levels, height and weight, and medications used. To ensure the

samples provided would be as fresh as possible and to avoid cross-contamination and

working with too many samples at once, each donor’s peripheral blood sample was shipped

overnight at ambient temperature (never frozen) and immediately processed the next day;

the bone marrow aspirate samples were then taken two days later and shipped / processed

similarly. The matched blood and bone marrow samples were therefore most likely to be

given in the same immunological state of health for each donor, and the sample processing

and separation into specific cellular compartments could be performed immediately upon

receipt.

 While peripheral blood is the most easily accessed immunological tissue and

therefore the most commonly studied, the bone marrow is arguably of greater interest as

both a site of initial development of B cells and as a store of long-lasting immunocompetent

memory B cell and plasma cells that carry out the rapid effector response to previously

 15

encountered pathogens. For this reason, we set out to characterize the general bone marrow

B cell repertoire population as it compares to the periphery and the important plasma cell

population within. Since recent reports have implicated the BCR co-receptor molecule

CD19 as an easily selected marker for plasma cell longevity within this compartment, the

long-term resident plasma cell subset was chosen as a major area of study to identify the

characteristics of the most successful members of the immunoglobulin-producing family.

 Mononuclear cell isolation via density centrifugation was used to separate the

plasma fractions from both blood and bone marrow aspirates and remove platelets, bone

marrow stromal cells, and other non-adaptive immunological cell subsets (see Figure 2.1

for the sample processing overview). The peripheral blood mononuclear cells (PBMCs) for

all donors were assayed for viability before processing for long-term liquid nitrogen

storage or immediate RNA isolation for VH-only BCR sequencing. The bone marrow

mononuclear cells (BMMCs) were split into several fractions for more detailed analysis.

Two aliquots of ~107 BMMCs each were set aside for VH-VL paired single-cell repertoire

sequencing of total B cells and for FACS plasma cell isolation based on CD19 expression

levels, respectively. Briefly, the portion for paired repertoire analysis was magnetically

depleted of non B cells via MACS, then run through an in-house flow-focusing device for

single cell lysis and mRNA capture leading to emulsion-based RT-PCR to pair each cell’s

VH and VL transcripts into a single cDNA amplicon. The FACS stained BMMC samples

were sorted first based on CD38high and CD138high selection of bone marrow plasma

cells, from which the cells were isolated into CD19high and CD19low expression groups

(for newer plasma cells and long-term resident, respectively) and immediately stored in

TRIzol at -80°C for VH-only sequencing and repertoire analysis (see table 1.1 for cell

counts per donor and number of cells used for each subset). The final sequencing libraries

derived from each donor compartment – Peripheral Blood Mononuclear Cell (PBMC),

 16

Bone Marrow Mononuclear Cell (BMMC), and Plasma cells sorted by CD19 expression

derived sequences – and the total number of clones for each library after quality filtering

are enumerated in table 1.2.

Figure 1.5: Experimental sample selection and processing pipeline for donor bone

marrow and peripheral blood samples.

Donor Age Total BMMCs PBMCs B Cells Paired BMMCs to FACS

Young1 24 1.52 x 108 7.50 x 107 1.35 x 106 1.20 x 107

Young2 22 1.87 x 108 1.70 x 108 1.50 x 106 1.88 x 107

Young3 24 5.40 x 107 8.88 x 107 1.00 x 106 1.35 x 107

Old1 57 6.88 x 107 1.72 x 108 9.35 x 105 1.72 x 107

Old2 56 9.04 x 107 1.26 x 108 1.16 x 106 1.13 x 107

Old3 58 1.74 x 108 1.53 x 108 1.80 x 106 1.70 x 107

Table 1.1: Donor ages and cell counts for all experimental samples.

 17

Donor Sample Total Reads Filtered Reads Remaining Total Clones

Young1 PBMC 881023 229117 26.01% 47761

 BMMC 2390817 710758 29.73% 125409

 CD19high 1989717 405022 20.36% 12596

 CD19low 1609903 360066 22.37% 8810

Young2 PBMC 3123204 902838 28.91% 91254

 BMMC 1646601 571490 34.71% 79635

 CD19high 1909840 460823 24.13% 16835

 CD19low 1701771 471196 27.69% 11629

Young3 PBMC 4108230 1089508 26.52% 73975

 BMMC 3972736 864281 21.76% 37727

 CD19high 2077396 679992 32.73% 68006

 CD19low 1267745 331543 26.15% 3191

Old1 PBMC 2747188 746075 27.16% 120909

 BMMC 1961699 600784 30.63% 110042

 CD19high 2034195 482828 23.74% 25487

 CD19low 1801607 383665 21.29% 12120

Old2 PBMC 2525005 664203 26.31% 248502

 BMMC 1347192 427510 31.73% 118584

 CD19high 1810419 336035 18.56% 9306

 CD19low 2219683 562379 25.34% 60241

Old3 PBMC 1130022 352855 31.23% 57114

 BMMC 1846823 581366 31.48% 54163

 CD19high 3370560 879211 26.09% 11006

 CD19low 2572185 656761 25.53% 8908

Table 1.2: Raw read counts from VH-only sequencing, along with quality filtered

read counts and total clones per donor sample.

 18

Gene Usage and Class Switching by Repertoire

 The base unit for the diversity in the antibody repertoire is the combination of V,D,

and J genes that are further mutated in the hopes of increased antigen binding; as the D

gene is so highly mutated, the V and J genes are often used as the main identifying factors

of a given clonotype. These paired V-J genes for all given clones in the repertoire are

highlighted in Figure 1.6. V-J gene pairings are shown as a double donut plot; the inner

ring consists of the V genes in order numerically with segment areas representing clonotype

prevalence in the population. The outer ring demonstrates the representative J gene usage

by clonotypes for each given V gene in the inner ring. In all donors, high enrichment of V

gene families 1 and 4 were seen; IGHV1-69 – a member of the largest V family by total

number of genes – along with IGHV4-34 were the top members of all donors when looking

at the peripheral blood cell derived members. However, in the plasma cell compartment

specifically IGHV4-34 became the single more common gene in all donors. In every single

donor and cellular compartment sequenced, IGHJ4 was the most commonly used for all

clones.

 While few discernable trends were seen in isotype usage either amongst donors or

compartments, a few generalizations are noteworthy. While IgM was the most dominant

constant region in every single sample (50% of total clones or more), IgG-expressing

clones were more prevalent in plasma cells as would be expected of cells which have

undergone selection in germinal centers; on average, IgG clonotypes were 13.9% more

common in these cells than in the periphery. IgA clones were by far the lowest proportion

of the repertoire in all compartments, with similar rates across the sample sets.

 19

Figure 1.6a: Paired V-J Gene Usage for donors Old1 and Young1; the inner ring

segments correspond to donor V genes sorted (clockwise, starting from

top center and colored by V family) numerically from V Family 1-on. The

outer ring segments show the relative usage of each J gene per V Gene,

ordered from J Gene 1-6.

Figure 1.6b: Paired V-J Gene Usage for donors Old2 and Young2; the inner ring

segments correspond to donor V genes sorted (clockwise, starting from

top center and colored by V family) numerically from V Family 1-on. The

outer ring segments show the relative usage of each J gene per V Gene,

ordered from J Gene 1-6.

 20

Figure 1.6c: Paired V-J Gene Usage for donors Old3 and Young3; the inner ring

segments correspond to donor V genes sorted (clockwise, starting from

top center and colored by V family) numerically from V Family 1-on. The

outer ring segments show the relative usage of each J gene per V Gene,

ordered from J Gene 1-6.

Somatic Hypermutation Rates and Clonal Distribution

 As a metric of selection and probable antigen affinity, rates of mutation in a given

clonotype’s V gene can provide valuable insights into the overall developmental stage of a

repertoire. As a population of cells progresses from naivety, levels of somatic

hypermutation should show a marked increase as they demonstrate utility. This trend is

indeed seen when comparing the peripheral blood cell population to bone-marrow resident

cells. Average V gene SHM rates (number of mutations divided by germline V gene length)

are lowest for PBMC populations in all sampled donors, while the overall bone marrow B

cell population averages around 2.5% higher SHM. Since the major subsets of this bone

marrow population are newly forming B cells with little to no V gene mutation and highly

mutated plasma cells, the plasma cell subset is expected to have the highest overall

mutation rates. This is seen across donors as expected, although the increase is only an

 21

additional 2.1% for all. The bimodal population distribution is clearly seen for bone

marrow cells in Figure 1.7; in the majority of non-BMMC repertoires, there is a normal

tapering off of the SHM distribution with a defined base of near-germline clones.

 Also seen in Figure 1.7 is the normalized relative clone sizes in each repertoire

subset. The much smaller plasma cell compartments appear to have a polarized

distribution; far fewer clones make up a large percent of the total than is seen in the larger

and more diverse periphera and bone marrow. The top 100 clones comprise 30% to 60%

of the total plasma cell repertoires, while in other repertoires they make up 18% or less.

Interestingly, the CD19low fraction appears to be even more heavily weighted by top clones

– an observation that suggests fewer remaining members of long-lived populations, as

would be expected.

 22

Figure 1.7a: Clonal Mosaics and V gene SHM profile for donors Old1 and Young1.

Mosaic patches are ordered from largest clone member to smallest; the

bottom 50% of the total clone population is shaded. The violin plots next

to each mosaic represent the overall V gene SHM distribution across the

population, ranging from 0% to 30%.

 23

Figure 1.7b: Clonal Mosaics and V gene SHM profile for donors Old2 and Young2.

Mosaic patches are ordered from largest clone member to smallest; the

bottom 50% of the total clone population is shaded. The violin plots next

to each mosaic represent the overall V gene SHM distribution across the

population, ranging from 0% to 30%.

 24

Figure 1.7c: Clonal Mosaics and V gene SHM profile for donors Old3 and Young3.

Mosaic patches are ordered from largest clone member to smallest; the

bottom 50% of the total clone population is shaded. The violin plots next

to each mosaic represent the overall V gene SHM distribution across the

population, ranging from 0% to 30%.

 25

Clonal Diversity

 Another characteristic of antibody repertoires considered in aggregate is their

overall diversity: the number of total unique clones, and their relative frequencies in

comparison to all. Compartment clonotype libraries were first pooled by donor age group

and analyzed for the total contribution of top clones to the overall repertoire as a crude

measure of population polarity (overrepresentation of a few clones compared to the whole

repertoire), shown in table 1.3. In both the PBMC and BMMC compartments, repertoire

polarity appeared to shift noticeably between age groups. In the periphery, the young donor

group population seems to be more dominated by fewer clones, with the top member and

top 50 clones being an average of 6.8% and 19.1% of young PBMC repertoires compared

to 1.2% and 16.6%, respectively, in the old donors. This trend was reversed in the general

bone marrow B cell compartment, with 18.5% of the repertoire consisting of the top 100

clones in the old but only making up 12.7% in the young. This particular trend may stem

from a reduction in bone marrow capacity for resident plasma cells in the old, along with

a reduced production of naïve B cells (Gibson, K.L. et al. 2009, Cancro, M.P. et al. 2009,

Tabibian-Keissar, H. et al. 2016).

 26

 Frequency of Top X Clones Out of Total Repertoire

Donor Compartment Top 1 Clone Top 10 Clones Top 50 Clones Top 100 Clones

Old PBMC 1.153% 6.649% 16.852% 23.975%

Young " 6.814% 11.198% 19.081% 24.889%

Old BMMC 1.564% 6.127% 13.693% 18.466%

Young " 0.744% 3.568% 8.765% 12.710%

Old CD19high 2.328% 14.700% 32.188% 41.930%

Young " 2.683% 15.163% 33.026% 41.405%

Old CD19low 5.072% 22.742% 31.705% 36.290%

Young " 4.325% 19.244% 40.668% 50.940%

Table 1.3: Contribution of top X clones to the overall repertoire for combined age

groups, indicative of repertoire polarization and skew towards fewer more

prevalent clonotypes.

Many metrics attempt to calculate diversity in an unbiased manner, and while

quantifying diversity is not possible with a single equation it can be estimated for

comparison best by the Hill diversity number which combines many metrics into one. By

this measure, samples are far less likely to be skewed heavily by populations with much

larger numbers of unique individuals or extremely polarized populations mostly consisting

of a small few individuals (Chao, A. et al. 2014). The Hill diversity index between the

orders of 0 and 1 increases as the repertoire is dominated by fewer clones (higher

polarization), and orders greater than 2 derives a larger index from a more balanced

population of equally sized clones. Graphing the Hill order number for different

populations can help visually demonstrate repertoire profile differences between cellular

subsets, as seen in figure 1.8. Interestingly, the overall diversity profiles of all

compartments compared in the Old donors show remarkable similarity. The BMMC and

PBMC compartments show the largest skew towards polarization in the older donors

compared to the young. The CD19high and CD19low fractions show a large amount of

polarization in most donors, as would be expected from the relatively small number of

plasma cells selected; only donor Young1 seemed to show a high diversity of clones with

 27

few overly represented members in the newly resident plasma cells. Donor Young2 showed

a consistent similarity across all subsets, while donor Young3 showed high polarity in all

compartments aside from the very diverse and equally represented bone marrow B cells.

Figure 1.8: Hill number diversity plots for all donors, separated by cellular

compartment. The Hill Diversity index from between 0 and 1 order is

larger if the repertoire is dominated by fewer clones (higher polarization),

whereas at orders greater than 2 a larger index rating derives from a more

balanced population of equally sized clones.

 28

Compartmental Repertoire Comparison and Similarity

 Since the periphery, bone marrow resident B cells, and plasma cells are all

inherently interconnected a natural question that arises is the overall similarity between

these compartment repertoires. This similarity is best represented by the shared clones seen

in more than one compartment, indicative of members that may still be migratory, or whose

highly related cohorts are actively proliferating and can be seen in multiple areas. Since

comparisons of more than three compartments are highly complex and visually confusing

when presented as Venn diagrams, the clonal overlap for all donors is here presented in

figure 1.9 as an UpSet plot generated using an open-source Python library (Conway, J.R.

et al. 2017). The bottom segment of the graph shows the compartments with their total

clone count, with columns representing specific shared subsets. The bar graph above

indicates the total count of shared clones, and is ordered by decreasing similarity. For all

donors the shared plasma cell fraction (CD19high and CD19low shared clones) are colored

purple, plasma cell clones also seen in the periphery are colored red, plasma cell clones

also seen in the BMMC B cells are teal, and gold indicates clones seen in every

compartment sequenced.

In all six donors, the BMMC and PBMC residing B cells show extremely high

similarity to one another; this large number of shared sequences is to be expected, as both

subsets include the highest number of total clones sequenced, and many newer B cells

leaving the bone marrow are actively entering the periphery. The only donor with a

compartment overlap greater then between the PBMC and BMMC fraction was donor

Old2, with over 14000 clones shared between the periphery and the long-term resident

CD19low plasma cells. All donors showed a large similarity between the long term and

short term resident plasma cell compartment. This may be explained by many plasma cell

members being in a transitory state of many months resident in the bone marrow, with the

 29

total clones unique to each compartment being the true new residents (for CD19high

expression) and very long-term residents (for CD19low expression).

The older donors in general showed the expected trend of a high similarity between

the periphery and new CD19high plasma cells, and between the bone marrow B cells and

the CD19low older plasma cells. The younger donors seemed to have a wider variability

between the periphery and any plasma cell fraction. Only donor Young3 showed a high

correlation between the PBMC B cells and all plasma cells, dwarfing even the shared bone

marrow B cell clones also seen in the plasma cell fractions.

 30

Figure 1.9.

 31

Figure 1.9 (previous page): UpSet repertoire comparisons based on the number of

shared clonotypes between population sets. The bottom

rows show the donor compartments and their total number

of clones, with each column representing the shared subsets

of compartments (indicated by darkened circles) ordered by

maximum similarity (shared clones). The total number of

shared clones is indicated in the bar graph above the sets.

Shared sets of interest are colored by type; purple sets are

the set of clones only seen in the plasma cell compartment

(CD19high and CD19low), red sets are clones seen in the

plasma cells and the PBMC derived B cells but not bone

marrow, teal sets are seen in all bone marrow

compartments (plasma cells and BMMCs) but not the

periphery, and gold sets are clones seen in all

compartments sequenced.

Proteomic Analysis of Total Serum IgG Repertoires

 While the quantitative probing of the actual proteomic repertoires has seen great

strides in recent years due to ultra-high resolution mass spectrometry, studies utilizing

IgSeq have almost entirely focused on small repertoire subsets. By enriching for antibodies

specific to an antigen, the overall diversity of a sample is vastly reduced; this focus on

fewer clones has been necessary to overcome resolution limitations of LC/MS. As such,

little is known about the composition of total serum IgG. One major complication for

clonotype identification is the lack of a robust BCR sequence library – while large PBMC-

based datasets do yield high-confidence matches, peripheral blood B cells account for only

2% of all B cells in the body. Access to a spectrum of sequences from many compartments

not only greatly increases the chance of identification but may lead to a far more

biologically-relevant picture of the serological repertoire.

 Total serum IgG that was collected from serum by Protein G-agarose

chromatography was trypsinized and run over six hours on a Thermo Orbitrap mass

spectrometer after C18 reversed-phase separation to maximize peptide resolution; the

 32

resulting raw datasets were then parsed by Thermo Discover 1.4 using SEQUEST with a

pooled database of quality filtered clonotype sequences including all donor compartment

libraries. Despite the extended separation process, the total number of unique clone

identifications did not surpass 200 members for any donor – a count many orders of

magnitude less than expected. However, the clones that were identified showed a wide

range of origins; aggregation of clone total areas by compartment of origin (unique clone

seen in a single sample) suggests a proteomic repertoire heavily skewed towards an origin

in the bone marrow (figure 1.10). This serves as some of the first physical evidence of a

serological antibody origin in the bone marrow.

 Average IgSeq clonotype summed areas for clones only identified in ANY bone

marrow sequence dataset: 56.0% (standard deviation 10.0%). At least 40% of clonotypes

identified in proteomic IgSeq in all donors were sequenced only in bone marrow

compartments. Even more telling is the average of 26.6% of clones by total area deriving

only from sequences in any plasma cell subset (standard deviation 12.6%). The longest-

lived plasma cell fraction CD19low also showed a consistent prevalence across donors,

with at least one unique clonotype found in the top 10 ranked members for all individuals.

 33

Figure 1.10: Clonotype sequence origin for total detected serum IgG members,

weighted by the total elution area each compartment contributes. In order

from the innermost ring to the outermost are donors Old1, Old2, Old3,

Young1, and Young2 respectively. No data was collected for donor

Young3.

 34

Chapter 2: The Anti-Pneumococcus Capsular Polysaccharide Antibody

Repertoire and Serological Response

BACKGROUND

A hallmark of the B cell’s unique place in the adaptive immune response is in the

extreme versatility and de novo complexity of its effector molecule; there are numerous

protein families containing a variety of specificities for foreign materials such as bacterial

DNA and lipopolysaccharide, but none can boast the many functions of the antibody. Even

the T cell receptor, with its similar genetic structure and combinatorial variety, finds itself

lacking the multi-faceted roles allowed by a soluble molecule with a constant region that

interacts with not only many different cell types, but even non-adaptive ambient

immunological proteins such as the complement system (Hoffman et al. 2016). For

researchers in the field of the humoral immune system, this provides a whole new method

of studying how the body recognizes and removes pathogens – but one that is equally as

complicated to probe as it is critical to understand. Proteomic analysis of serum antibody

repertoires is currently in its infancy, being far more fraught with challenges than the

traditional next-generation sequencing of antibody transcripts or even genomic studies of

B cells at a high throughput (Lavinder et al. 2014, Wine et al. 2015). The only real tool

currently capable of identifying and characterizing protein sequences at scale is liquid-

chromatography in series with an ultra-high sensitivity mass spectrometer (LC/MS); while

the technology today is finally at the level allowing for identification of entire proteomes,

many issues still hinder progress in the accuracy of sequencing an entire proteomic

antibody repertoire. Unlike working with an RNA/DNA template, no method of

amplification or selection of specific gene regions of interest exist in proteomics.

Additionally, while antibodies as a group display a massive range of unique sequences the

majority of the full molecule is identical to most other members. Since current methods of

 35

LC/MS depend on a form of shotgun sequencing (in the form of tryptic peptides),

reconstructing a highly variable non-genomic dataset is exceedingly difficult.

To break the daunting problem of antibody proteomics down into more manageable

chunks, more specific questions can be targeted than the overall repertoire analysis possible

with VH-only transcriptomics. By focusing on a subset of the proteomic repertoire and

enriching a sample to only a small number of antibodies with related properties it is

possible to cut out much of the noise and quantitatively characterize a population of

interest. One method of selecting a smaller set of similar antibodies is by utilizing their

intended natural function – purification of members against a specific antigen, such as the

pathogen components that have been encountered naturally or via vaccination. The number

of antibodies recognizing any specific ligand are at least several orders of magnitude less

prevalent than those recognizing others, and the serological component of immunity in

terms of a specific disease may be even more rewarding to study than the broader repertoire

(Lavinder et al. 2015). Another major benefit of studying a specific response to common

vaccines is in the increased control of sample timing; donors can provide samples at

important temporal junctions, and the likelihood of creating a memory response and

proliferation of desired B cells in the donors leads to a better sequence database for the

subsequent LC/MS search.

One such antigen of interest is found in the capsular polysaccharides of the

bacterium Streptococcus pneumoniae. S. pneumoniae is a common and deadly source of

many cases of meningitis and pneumonia worldwide, responsible for over a million deaths

annually worldwide (Torres et al. 2015). Vaccines against the pathogen exist, targeted

mainly at the deadliest variants (serotypes), but these often have a much diminished

efficacy in children and the elderly. The widely used Pneumovax-23 vaccine may be

especially hypoactive in these groups; rather than a protein antigen, the vaccine is

 36

comprised of the bacteria’s outer capsule polysaccharides for 23 different serotypes. Unlike

protein antigens, which are targeted by both T cell and B cell effectors, polysaccharide

antigens cannot be identified by T cell receptors. Even the antibody response to the much

less confined and diverse polysaccharide structure tends to be consequently less specific

and robust (Gonzalez-Fernandez et al. 2008; Weller et al. 2005). The major responders –

especially involved in the secondary memory response – may be derived from an IgM

memory B cell population expressing so-called “natural” antibodies (Shi et al. 2005). These

antibodies tend to have lower rates of somatic hypermutation and a wider range of ligands

for a single antibody than usually expected from an immunocompetent memory-response.

Memory B cells act as a major component of the rapid secondary response by their

ability to proliferate into antibody-secreting plasma cells. Memory B cells express the

surface CD27 receptor, allowing for easy selection of the subset. While a majority of

Memory B cells express IgG antibodies, a small subset does retain the IgM constant

domain; these cells may have skipped germinal center mutagenesis entirely, with SHM and

proliferation taking place in the marginal zone of the spleen instead (Tangye et al. 2007).

This population appears to differ in overall repertoire profile as well, further suggesting a

unique origin (Bagnara et al. 2015). Supporting this idea, individuals whose spleens have

been removed and the young with underdeveloped marginal zone regions are far more

likely to become infected by bacteria with capsules (Zandvoort et al. 2002).

 CD27+ Memory B cells are known to be highly enriched for antibodies binding

simple bacterial membrane components such as phosphorylcholine and capsular

polysaccharides (Fiskesund et al. 2014). IgM Memory B cells in particular often take the

role of a “natural effector” cell, targeting membrane antigens even with very little to no

germinal center involvement (Weller et al. 2005). Activation of this Memory population

may occur not in the systemic lymph, but in the marginal-zone like regions of the gut

 37

(Hamada et al. 2002). As bacterial antigens are omnipresent in the gut, the IgM+ CD27+

subset may be used as specialized detectors of bacterial antigen given the lack of a T cell

response. Marginal Zone B cells also express the innate immunity Toll-like receptor, which

allows the B cell to respond even if an antigen is not bound by the BCR. Despite their key

role in early identification of encapsulated pathogens, the contribution of this Memory B

cell population to protective levels of serum antibody (either natural or higher affinity) is

not known. This study attempts to characterize and quantify the T-cell independent serum

response to the polysaccharide pneumococcal vaccine, using the high-risk 6B serotype

antigen as a probe to separate the contributions from various B cell populations involved

in the response.

MATERIALS AND METHODS

Serum IgG Purification and Preparation

For all donors and timepoints, 5 mL of serum frozen at -80 °C was thawed to room

temperature and centrifuged for 5 minutes at 15000g to pellet debris, then diluted 1:1 with

1x PBS pH 7.4 and filtered through a 0.22 μm syringe filter. For each separate sample, 1.5

mL of Protein G+ agarose (Thermo Scientific) resin was placed in a 5 mL polypropylene

protein purification column (pre-washed once with 5 mL 70% ethanol), then equilibrated

with 3x 5 mL PBS washes at room temperature. The serum sample was then added to the

resin and allowed to flow through by gravity; flowthroughs were collected and run an

additional two times to ensure complete binding of antibody to the resin. 2x 1 mL PBS

washes were pooled with the flowthroughs, then 3x 10 mL PBS washes were collected

separately. 8x 1.5 mL Eppendorf tubes were prepared each containing 0.1 mL 1M Tris pH

8.0 to immediately neutralize the elution fractions; 8x acid elutions using 0.9 mL of 100

mM glycine pH 2.7, collected into the prepared tubes. Protein concentration estimates were

 38

performed via Nanodrop absorbance readings, and all fractions containing antibody were

pooled. The pooled antibody samples were then dialyzed overnight using a 10 kDa MWCO

dialysis membrane (SnakeSkin dialysis membrane) at 4C into 1x PBS, pH 7.4.

To remove the antibody constant regions to assist with LC/MS proteomic analysis,

the samples were digested using IdeS enzyme, which is IgG-specific and cleaves only in

the hinge region (IdeS protease produced in-house). IdeS was added at a 1:50 ratio of

enzyme:IgG, and the mix was incubated for 2 hours at 37C. After digestion, a 10 μg aliquot

of digested IgG was run on a reducing SDS-PAGE gel to ensure proper cleavage.

Anti-Pneumococcal Polysaccharide Antibody Enrichment

 To create a substrate suitable for column chromatography, purified 6B

polysaccharide was conjugated to NHS-agarose beads based on protocol described in Ey,

P., 1993. To create an aminohexyl derivative prior to linkage, 1 mg of 6B polysaccharide

(ATCC) was first dissolved in 1 mL of 0.2 M sodium bicarbonate, pH 9. 880 µL of 0.1 M

1,6-diaminohexane pH 9 (adjusted with HCl) and 20 µL of 0.1 M sodium periodate were

added and incubated for 15 minutes on ice. 100 µL of sodium borohydride was added and

the reaction was kept on ice for 60 minutes in the dark. The resulting solution was then

dialyzed overnight at 4 °C into 4 L of 0.1 M sodium bicarbonate, and a fresh 4 L of buffer

was exchanged for another 12 hours at 4 °C. After this second 12 hour dialysis, the solution

was again dialyzed overnight at 4 °C into sodium binding buffer (100 mM sodium

phosphate, 150 mM NaCl at pH 7.2).

Aminohexyl-6B conjugation to N-hydroxysuccinimide (NHS) activated agarose

was started by dissolving 132 mg of NHS-activated agarose (Pierce) and incubating the

solution rotating at room temperature for 60 minutes. The tube was then spun down for 2

minutes at 1,000g and the supernatant pulled out and saved. The resin was then washed 2x

 39

with 1.5 mL of PBS and supernatant was saved, then brought to 1.5 mL with 1 M

ethanolamine to block the remaining reactive sites on the resin. After 30 minutes rotating

at room temperature, the resin was equally split into two columns and centrifuged at 1,000g

for 60 seconds followed by 2 washes with 400 µL of PBS.

For purification of 6B-specific antibodies, serum IgG in PBS was run through the

6B column three times, collecting the flowthroughs separately. Four sequential wash steps

were done, each step with 400 µL of various wash buffers:

• 5x washes with 1x PBS (binding buffer)

• 3x washes with 50 mM Tris, 100 mM NaCl pH 7.4 (final wash saved)

• 117 mg of NaCl, 1 mL of 1M Tris pH 7.4 in a final volume of 20 mL

• 5x washes with 5 mM phosphocholine / 100 mM borate buffer pH 8.4 (all saved)

• 381 mg of sodium borate, 16.5 mg of phosphocholine in a final volume of 10 mL

• 3x washes with 150 mM NaCl pH 7.2 (final wash saved)

• 438 mg NaCl in a final volume of 50 mL

Columns were eluted 5x with 400 µL of 3.5 M MgCl2 pH 3.5, collected with 40 µL of 1

M Tris pH 8 to neutralize.

RESULTS

Sample Subsets and Experimental Outline

To characterize the humoral immune response to a perceived Pneumococcal

challenge, four healthy adult donors were given the Pneumovax-23 vaccine and a matched

set of peripheral blood samples were acquired on days 7, 14, and 28 after vaccination. From

these samples, peripheral blood mononuclear cells were purified by density gradient

centrifugation; from these cells a fraction were stained and sorted by FACS, selecting for

 40

the Plasmablast, IgD+ Memory, IgD- Memory, and C27+ memory cellular subsets

depending on sample. RT-PCR libraries using either IgG or IgM specific constant primers

were created and sequenced using Illumina MiSeq technology. Post read quality filtering

and clustering, each donor compartment repertoire contained an average of 5994 unique

clonotypes ranging from a minimum 307 clones up to 30050 clones (table 2.1). These

sequence databases were pooled by donor, and the pooled dataset was used for

identification of tryptic peptides from polysaccharide-binding IgG.

To select for and characterize anti-6B polysaccharide IgG, serum IgG collected by

Protein-G agarose resin was run over custom 6B-NHS agarose columns; columns were

washed thoroughly to remove general non-binders and general anti-cell wall component

binding antibodies (figure 2.1). The elution fraction was then digested with IdeS to remove

constant region sections, digested with trypsin, and run on high resolution Orbitrap LC/MS.

Raw datasets were identified using the donor sequencing libraries via Thermo Proteome

Discoverer software.

 41

Donor Day Compartment, Isotype Raw Reads Filtered Reads Clones

448 7 Plasmablast, IgM 66481 12269 307

448 7 Plasmablast, IgG 297346 82338 1157

448 7 PBMC, IgG 552374 148378 2055

448 14 IgD+ Memory, IgM 271322 45974 3462

448 14 IgD- Memory, IgG 205803 57694 14922

449 7 Plasmablast, IgM 150259 27424 292

449 7 Plasmablast, IgG 145220 36679 798

449 7 IgM+ IgD- Memory, IgM 2024572 422053 6763

449 14 IgD+ Memory, IgM 312978 51555 3199

449 14 IgM+ IgD- Memory, IgG 2195939 178389 972

449 14 IgD- Memory, IgG 275054 63519 3728

450 7 Plasmablast, IgM 68716 14773 267

450 7 Plasmablast, IgG 19679 5189 453

450 7 CD27+ IgM+ Memory, IgM 956912 81314 2615

450 14 IgD+ Memory, IgM 182713 28397 7460

450 14 IgM+ IgD- Memory, IgM 198026 17212 3785

450 15 IgM+ IgD- Memory, IgG 947297 84644 16712

450 34 IgD+ Memory, IgM 511599 101803 30050

450 34 IgM+ IgD- Memory, IgG 400823 5268 2904

GCI 7 Plasmablast, IgG 8853 1181 299

GCI 13 IgD+ Memory, IgM 510462 122182 16968

GCI 13 IgM+ IgD- Memory, IgG 277210 59801 5057

GCI 28 CD27+ Memory, IgG 454202 122364 13635

Table 2.1: Donor library sequencing statistics and unique clonotype count.

 42

Figure 2.1: Sample processing pipeline for enrichment of anti-6B polysaccharide

antibodies for LC/MS proteomic sequencing. Total serum IgG was run

over 6B-linked agarose beads, washed to remove non-binders, and eluted

by low pH and high salt concentration. Enriched IgG was then buffer

exchanged to remove salt followed by IdeS digestion to cleave the

constant region and then tryptic digestion. Peptide digest was cleaned by

C18 reverse phase chromatography prior to LC/MS.

High-Throughput Sequencing Derived Repertoire Characteristics

 For all donor sequencing samples, the resulting datasets were processed via a

standardized pipeline that removed low-quality read sequences then aligned validated reads

against the human immunoglobulin locus and clustered alignments based on a 95%

similarity between CDRH3 sequences using MiXCR. Even accounting for total read

sampling, day 7 plasmablast datasets from all donors showed far fewer overall clones than

other cell types (893 clonotypes on average in the plasmablast compartment versus 14568

in memory B cells); this smaller subset of clones was expected to be directly resulting from

 43

the vaccinal challenge. In three of the four donors, a large proportion of the total

plasmablast repertoire corresponded to only the top 5 clones identified (mean of 27.5% of

all clonotypes); donor 449 showed a far less polarized plasmablast response, which may

result from a hyporesponse to the vaccine itself as far fewer plasmablasts were isolated in

the day 7 FACS collection (Figure 2.2).

Figure 2.2: Day 7 plasmablast FACS sorting results and IgG plasmablast repertoire

clonal mosaic profiles. The plasmablast cell sort was gated based on B

cells with high CD27 and CD38 expression levels, as shown in the boxed

selection. Clonal mosaics demonstrate the overall size of each clonotype

in the repertoire, with the most prevalent clones starting at the bottom left

of the diagram. Colors for clones are repeating for clarify and are

uninformative.

 44

 Overall V gene somatic hypermutation (SHM) rates between cellular subsets were

found to be highly dependent not on the compartment but on the isotype of the antibody

expressed; average SHM rates among IgG-expressing cells were 8.4%, with IgM at 6.2%.

Interestingly, the top responding clones in the plasmablast fractions of both isotypes were

found to be more highly mutated by around 2.5% than the average of all clones as shown

in the clonal mosaic profile in Figure 2.3. Unlike the differences seen in SHM, there was

no appreciable distinction in CDR3 amino acid length when compared either between

isotypes or among all sequencing samples (average of 16.3 amino acids).

Figure 2.3: Day 7 Plasmablast V gene SHM clonal mosaics for all donors, separated

by IgM and IgG isotype. Individual clones are colored as a heatmap

representing V gene mutation rates, with corresponding heatmap colorbars

to right of each sample.

 The overall V gene usage in the presumed vaccine-enriched clonotypes was found

to be strikingly similar across donors. The V family 3 genes were used in the majority of

day 7 plasmablast clones, and the most commonly used V gene for all donors in the

plasmablast compartment was IGHV 3-30. The overall diversity of V gene usage was

 45

found to be much higher in the memory compartments, with the V family 1 and 4 genes

being slightly more common than family 3. J gene usage was also highly polarized in all

donor plasmablast samples, with IGHJ4 being the foremost gene at an average of 45% in

all plasmablast clones. In contrast, IGHJ6 was highly enriched in the memory B cell

samples and was found in an average of 38% of total clones.

Compartment Repertoire Overlap

 As the selected sequenced B cell subsets for each donor were all collected within a

close timeframe, some overlap between identified clones between each compartment are

to be expected. For example, some members of the expanded plasmablast cells collected

would presumably be seen to have high similarity to memory B cells from which they

originated. To gauge the overall similarity of clonotypes found in the different cellular

samples, sequencing libraries post-quality filtering were pooled and clonotyped in

aggregate based on V and J gene usage and 90% amino acid CDRH3 sequence similarity.

To visualize these relationships between subsets, a variety of graph formats can be used.

While Venn diagrams are succinct and easily distinguished for 2-3 intersecting samples, 4

or more intersecting samples sets are far more clearly seen in a novel format known as the

UpSet plot as described by Conway et al. 2017 and shown in Figure 2.4.

 Donor 448’s clonotypic overlap showed an unsurprisingly high relation between

the day 7 plasmablast IgG subset and the overall day 7 PBMC cells. Within this relation

however, 120 clones were shared not only by the IgG plasmablast and PBMC cells but

were also highly related to the day 14 memory IgM population. Also of note was the

similarity of many IgM plasmablast clones and the day 14 memory IgG-expressing cells,

suggesting common progenitor memory B IgM-expressing cells that produced both IgM

plasmablasts and class-switched IgG memory cells. A smaller group of clones were seen

 46

in both the IgM and IgG isotypic plasmablast groups; in general, the day 14 IgM memory

B cells were the most dissimilar to all other groups.

 As the least responsive of all donors to the vaccination, donor 449’s overlap profile

appears to show fewer sequenced plasmablast clones that have a high correlation to

observed memory B cells. Many clonotypes were seen in the memory B cell IgM-

expressing population at both days 7 and 14. The plasmablast groups of both isotypes had

relatively high overlap, and in general the plasmablast clones had the closest relation to

memory B cells of the same isotype. An unexpected relation of note was seen between the

day 14 memory B IgM and IgG cells with 300 clones being found in both populations.

 Donor 450 was seen to have the expected high relation of clones in the Memory B

IgM-expressing cells at all timepoints. This donor more than any other also seemed to have

the highest overall similarity between the vaccine-induced plasmablast IgM cells and the

memory B cell population of the same isotype at all time points sampled. At the latest day

34 timepoint sampled, potentially IgG class-switched memory B cells were seen that

corresponded to IgM memory B cells at the day 14 timepoint; this may be indicative of

vaccine-responsive cells that went through the traditional germinal center hypermutation

and proliferation steps. Unexpectedly, 75 clones were seen to be shared between the day 7

plasmablast IgG group and the day 14 memory B cell population.

 Finally, donor GCI showed the most similarity between populations of the same

isotype; the memory B cell IgG population was self-similar at all timepoints, and many

plasmablast IgG B cells appear to derive from this memory population. However, the day

13 memory B cells expressing IgM were only found to overlap with the day 13 memory

IgG population; these may be members of a single originating group from which some cells

underwent class switching. No IgM-expressing plasmablast population was sampled for

this donor.

 47

Figure 2.4.

 48

Figure 2.4, cont.

 49

Figure 2.4 (previous page): UpSet clonotype overlap similarity plots for all donor

sequencing libraries. The bottom section of each graph

consists of each sequenced group, with shaded circles

indicating the shared groups that would be displayed as

overlapping circles in a Venn diagram. The upper bar plot

displays the total number of shared clones in the shared

subset indicated below the bar; plot bars are sorted

descending by total number of clones shared amongst each

sample set.

Vaccine Component Enriched Serological Repertoire

 While high-throughput sequencing datasets of specific B cell populations at

specific timeframes after vaccination can give a general picture of the changing repertoire

in response to immunological challenge, the actual effectors involved in eradication of the

perceived threat – the soluble antibody itself – cannot be directly measured by next-

generation sequencing alone. As such, quantitative characterization of the serological

response requires observation of the actual expression and antigen-binding capacity of

these effector molecules. Recent advances in mass spectrometry allow for high-resolution

identification of relatively complex protein samples; however, current limitations of these

methods do not allow for the depth of sequencing required to identify all antibodies present

in whole-blood serum samples as can be performed with the transcriptional repertoire. To

simplify this issue, the serological response to vaccination was limited to a single

component of the vaccine. The Pneumococcus serotype 6B capsular polysaccharide

antigen was chosen as a model of a highly pathogenic challenger, and from total serum

antibody an enriched subset of 6B-binding antibodies were purified as described in

Methods. The 6B elution antibodies from all donors were compared by mass-spectrometry

proteomics to the non-binding flowthrough, and top clones were chosen by the amount of

enrichment seen in the elution.

 50

 As shown in figure 2.5, it is evident that many individual clonotypes appear to

derive from a single compartment – the clone is unique to a specific cellular subset.

Although the plasmablast subset should consist heavily of newly proliferating cells

responding to the vaccine challenge, unique sequences coming from the Memory B cell

compartment seem to have a much larger role in the 6B response. Another surprising

observation is the high similarity of the anti-6B repertoire compared before immunization

and at day 32; the top clone present maintained its rank for all donors, and the overall ratio

of top clones in day 32 strongly correlate to day 0. The largest change in top clones was

seen in the hyporesponsive donor 449; only two of the top ten clones in the day 0 elution

carry over to day 32. The overall anti-6B repertoire also appears to be highly polarized –

very few clones make up the majority of the response (top 5 clones making up 38% to 64%

of the response by total area). This could indicate one of two explanations; first, prior

exposure to the Pneumovax vaccine or the 6B serotype lead to high affinity antibodies that

persist long term. Alternatively, the top ranking members could simply be a part of the

widespread natural antibodies which are adept at binding the more repetitive and simplistic

capsular polysaccharide. The latter case may be the stronger explanation, as one would

expect a larger shift after vaccination were the day 32 repertoire representative of a re-

expanded memory response.

 51

Figure 2.5a: Top proteomic clonotypes enriched by 6B-polysaccharide chromatography

and LC/MS IgSeq. Clones identified as a specific compartment such as

“Memory” indicate that the clonotype is derived from sequences that were

only seen in the Memory B cell libraries (no contribution from other

compartments). Grey bars signify that a clone is present in multiple

compartments or is shared by all.

 52

Figure 2.5b: Top proteomic clonotypes enriched by 6B-polysaccharide chromatography

and LC/MS IgSeq. Clones identified as a specific compartment such as

“Memory” indicate that the clonotype is derived from sequences that were

only seen in the Memory B cell libraries (no contribution from other

compartments). Grey bars signify that a clone is present in multiple

compartments or is shared by all.

Contribution of Shared Clones to Serum IgG Response

Shared public clonotypes between donors were not only found as members of

interest in the sequencing data alone. As evidence of their potential importance in the

response to T cell independent antigens, some shared clones with similar CDRH3

sequences were found in the enriched 6B-specific proteomic elutions of multiple donors as

 53

well (table 2.2). As an example, one prevalent shared clonotype found in the 6B-responding

elutions (CDRH3 sequence CARSLWPEDYW) in donors 448 and 449 was found in the

day 0 elutions for both donors at rank 67 and 123 respectively, and also in the day 32

elution for donor 449 at rank 106. Every clonotype found in the IgSeq 6B-enriched fraction

found shared by multiple donors was from the V gene family 3 or 4, and all had a generally

low V gene SHM of 5-9%. These clones are the strongest examples of natural antibodies

– often pre-class switched IgM effectors which act as the first responders to bacterial

capsular antigens. In support of this idea, several of the identified CDR3 clonotypes from

each donor (CARAWRVDSVMPKRYFDFW, CARSRGAMATLRGKRGYYGMDVW,

CARGNVDRSMVYNFFDPW, and CVKLGYRAPDDPW) were only found in the day

13-14 Memory IgM-expressing B cells, and were not seen in any IgG-expressing B cell

sequence datasets.

CDRH3 Sequence
Rank in Elution

(Per Donor)

V Gene V Gene SHM %

(Per Donor)

CARGRNNFRVW 448: 123; 449: 66 IGHV3-7 448: 7.1%, 449: 7.9%

CARAWRVDSVMPKRYFDFW 448: 76, 449: 154 IGHV4-31 448: 9.7%, 449: 9.7%

CARSRGAMATLRGKRGYYGMDVW 449: 3, 450: 43 IGHV4-34 449: 7.2%, 450: 7.0%

CARGNVDRSMVYNFFDPW 449: 5, 450: 31 IGHV3-72 449: 5.1%, 450: 4.9%

CVKLGYRAPDDPW 449: 19, 450: 86 IGHV3-7 449: 8.5%, 450: 8.8%

CARQVQDAMDVW 449: 224, 450: 95 IGHV3-51 449: 2.5%, 450: 2.5%

CARSLWPEDYW 448: 67; 449: 106 IGHV3-7 448: 8.1%, 449: 7.9%

Table 2.2: Shared public CDRH3 sequences found in multiple donors and all in the

6B-enriched IgSeq mass spectrometry proteomics elution fractions. Clone

ranks are displayed for each donor, along with the V gene SHM of the

clone as seen in each donor.

 54

Chapter 3: Automated Comparative Repertoire Visualization

BACKGROUND

In the new era of massive high-throughput repertoire sequencing datasets, gaining

a picture of general sample characteristics is critical but incredibly difficult to visualize.

While simple statistics can be easily calculated, much more comprehensive figures that

quickly show the distributions of many factors in the high-dimensional repertoire are far

better for qualitative analysis and comparison. Spreadsheet / statistical programs such as

Excel can be used to create figures, but they are often limited by few chart types, limited

configuration of a plot, and file size restrictions that disallow work with entire datasets.

These limitations all but require at least an intermediate knowledge of a programming

language to reasonably parse and visualize big data like the antibody repertoire. This can

be a harsh restriction for many researchers, and often leads to repertoire analyses that are

completely different amongst individuals. For this reason, a tool that can aggregate

information and produce a variety of figures in a standardized manner for any library would

be of great use for initial analysis and discussion between scientists. This chapter describes

such a tool, utilizing the Python programming language and the Bokeh data visualization

library to create a simple program that produces a dashboard with a variety of clear figures

given either a single repertoire or a collection of repertoire datasets for comparison. Thanks

to the much more dynamic graphics libraries available to the scientific community, the

dashboard figures are interactive; charts can be easily zoomed or panned, and hovering

tooltips provide information otherwise lost in a static figure. The analyses and output chart

types are discussed below, and the Python source code is provided in the appendix for

review and modification.

 55

APPLICATION OVERVIEW

CDR3 Amino Acid Length Histogram (Spectratype Plot)

One of the earliest methods of visualizing characteristics of the BCR / TCR

repertoire was through the measurement of the length of the CDR3 region. By using V

gene-specific primers for PCR amplification of complex samples and running the results

on a polyacrylamide gel to separate by size, the distribution of the product lengths is easily

quantified by measurement of the brightness of each band and plotted as a histogram

known as a spectratype plot (Gorski 1995). This method served as the first high-throughput

means of analyzing immune repertoires and is still a commonly used measure of

hypermutation and for general repertoire comparison. As full-scale repertoire sequencing

is now possible, CDR3 spectratype analysis can be performed bioinformatically after

identification of VDJ genes and the CDR3 region sequence (often using the translated

protein sequence for histogram binning).

 For the automated comparison of spectratype histograms between repertoires, data

is provided as a table of clonotypes including either the CDR3 sequences or their

previously calculated amino acid lengths. A clonotype histogram is calculated using the

binned segment lengths using Numpy’s histogram statistical function, normalizing the total

density sum to unity (figure 3.1). For comparation of multiple samples each sample

histogram is calculated separately, then each sample bin is plotted sequentially with a

customizable color for each repertoire as shown in the legend (figure 3.2). For interactive

visualization the plot can be panned and zoomed, allowing for specific box regions of the

plot to be highlighted to demonstrate differences of interest between the samples (figure

3.3).

 56

Figure 3.1: A standard CDR3 amino acid length spectratype for a single repertoire.

Figure 3.2: Comparative repertoire CDR3 amino acid length spectratype.

 57

Figure 3.3. Zoomed-in region of CDR3 spectratype highlighting the differences

between two repertoires.

V/J Gene Somatic Hypermutation Violin Plot

 While CDR3 length analysis has been possible for decades, high-throughput

analysis of the average hypermutation of individual clones has only become possible with

full heavy chain sequencing of total repertoires. Gene annotation software such as IMGT’s

HighV-Quest and MIXCR are used to identify the germline V, D, and J genes, and somatic

hypermutation (SHM) levels can be calculated by counting the total nucleotide point

mutations, insertions, and deletions (Bolotin 2015). Unlike the total length of the CDR3

region, clonal SHM levels serve as a proxy for overall selection and utility; plasma cells

having undergone many rounds of SHM in the secondary immune organs can be

 58

distinguished from naïve B cell populations which should have much lower rates of

mutation. While SHM occurs throughout the VDJ region, identification of the germline D

gene is generally unreliable as the insertion / deletion of nucleotides during recombination

significantly modifies the original sequence – as such, the V and J genes are used as more

reliable measures of overall hypermutation.

 For visualizing repertoire V and J gene SHM levels, commonly a histogram or box

plot is used to show the distribution in the repertoire. However, a more recent variant of

the box plot known as the violin plot has several advantages over other plots in quickly and

informatively yielding overall characteristics. The violin plot (named after its visual

similarity to the instrument) is a combination of a box plot and the density distribution of

the data as with a smoothed histogram (Hintze 1998). The violin plot excels in efficiently

communicating the overall statistical trends of a sample as with a box plot, but also allows

for distinguishing between uniform or bi/multi-modal distributions as with the histogram.

 For automated repertoire analysis, a repertoire’s clonal SHM distribution can be

plotted either with a separate, mirrored violin plot for the V and J genes separately or by

placing the V and J distributions on each side of the violin. While this application can be

used to plot the V and J genes separately, for concise graphs allowing quick comparison of

samples all figures below split the violins between the genes for each sample. The basic

plot takes a table of all repertoire clonotypes and plots each sample as would be done with

a categorical boxplot; the violin widths are all normalized to unity, with labeled sample

categories on the X axis and the overall gene SHM percentages on the Y axis (figure 3.4).

The widths, colors of samples, and separation or combination of the V and J violins are all

easily customizable. The violin density distribution is calculated using Scipy’s variable

kernel density estimator function with the Scott density function as standard (Scott 1992).

To further clarify the sample statistics, interactive hovering tooltips are included for each

 59

sample violin – the user can highlight a violin region with the mouse (or tap the violin plot

if using a mobile device) to reveal the average, maximum, and 25th and 7th percentile SHM

values for the repertoire, and additional sample information can be easily added for display

if desired (figure 3.5). As with the CDR3 length spectratype plot, the user can pan and

zoom in on specific regions to more easily identify sample distributions (figure 3.6).

Figure 3.4: Violin plots demonstrating comparative repertoire clonotype V and J gene

somatic hypermutation levels.

 60

Figure 3.5: Demonstration of hovering tooltips displaying sample average, maximum,

and 25th and 75th percentile SHM values upon selection of a sample violin.

Figure 3.6: Zoomed-in selection of single sample from figure 5 for increased visibility

of the sample SHM distributions.

 61

Paired V-J Gene Usage Donut Plot

 While the V gene is often considered as the most informative gene region, the J

region is also easily identifiable and contributes significantly to antigenic specificity.

Correlation tables of the relative frequencies of V-J gene pairings are important to

understand, but almost impossible to picture. To clearly demonstrate all sets of V-J pairings

in a repertoire, a donut chart within a donut chart may be a superior method to quickly see

how common specific pairings are. As seen in figure 3.7 below, the inner ring consists of

all V gene frequencies while the outer ring consists of the cognate J gene percentages. For

visual clarity, the graph can be colored by V or J gene or V family (figure 3.8). Users can

also select specific genes, zoom into a region of the plot, and a hovering tooltip quickly

shows which gene is selected and the percent composition in the full repertoire (figures

3.9, 3.10).

 62

Figure 3.7: The V-J gene paired donut plot. The outer ring consists of the J gene

frequencies as paired with the specific V gene in the inner ring. The chart

can be colored by V or J gene.

 63

Figure 3.8: Demonstration of the chart colored by V family.

 64

Figure 3.9: Selection of individual genes is available, with hovering tooltips

displaying the gene and percent of the total.

 65

Figure 3.10: Zoomed in section of the chart with several V genes highlighted.

Categorical Clonal Frequency Mosaic Plot

 Since the total number and frequencies of clones in a repertoire underlie the overall

diversity and polarization, a common method of displaying these relative areas are using a

square mosaic plot consisting of sorted rectangles sized in proportion to the clone’s

 66

prevalence. As a repertoire may have thousands to hundreds of thousands of clones these

charts may be difficult to interpret, but trends regarding the top clones are distinct and

useful for comparison (figure 3.11). To further increase the utility of the clonal mosaic plot,

clone rectangles can be colored based on category (such as isotype, V gene, or V family as

seen in figure 3.12) or by continuous metrics like clonal V gene SHM. For continuous data

like mutation rates, a heatmap is automatically calculated based on the range of the data

and a mapping color bar legend is displayed (figure 3.13).

 67

Figure 3.11: A repertoire clonal mosaic depicting all clones and their frequencies.

Clones are colored by isotype, and a tooltip displays additional clone

information.

 68

Figure 3.12: Repertoire from figure 3.11 colored by V family.

 69

Figure 3.13: Clonal mosaics colored as a heatmap indicating clone V gene mutation

levels. For continuous colormaps a legend sidebar is automatically

calculated based on the range of the data.

Clonal V Gene Somatic Hypermutation Burtin Plot

 In addition to looking at the total V gene hypermutation rates of a population, a

novel approach to mutation rates is to consider all clones with specific V genes between

two repertoires. The best method for picturing this is the Burtin plot, a form of radial bar

chart. Unique V genes are displayed around the ring, with the length of the bar displaying

the total SHM levels for all repertoires. As shown in figure 3.14, V gene SHM rates can

vary wildly even within a single individual – a fact that is missed by aggregating total V

gene SHM.

 70

Figure 3.14: A Burtin V gene SHM plot. Bars are colored by sample repertoire, with V

genes found in all repertoires represented radially. Total SHM rates for

each gene are shown as the radius / length of the bars.

 71

Figure 3.15: Zoomed in section from figure 3.14.

Repertoire Diversity / Polarization Line Plot

 Qualitative measures of sample diversity and polarization are key for inter-

repertoire comparison. One such measure of diversity is the series of Hill numbers, which

are more adept than other measures since the series is far less affected by samples with

extreme polarity or high total unique clone counts (Anne, C. et al 2014). As show in figure

 72

3.16, multiple repertoires can be easily seen side-by-side for diversity comparison. For a

set of in silico controls, several faux repertoires can be generated and displayed along with

the actual datasets. These repertoires range from highly polarized to completely equally

distributed across the population (figure 3.17).

Figure 3.16: A Hill number diversity plot comparing three repertoires.

 73

Figure 3.17: The Hill number diversity plot from 3.16 with added faux-repertoire

controls for very highly, highly, moderately, and low polarized repertoires.

 74

Appendix
Python Processing & Graphing Scripts

##########MIXCR Utilities

import logging
import subprocess
import os
import pandas

MIXCR_alignment_cols = ["descrR1", "cloneId", "vGene", "dGene", "jGene", "cGene",
 "vBestIdentityPercent", "dBestIdentityPercent",
"jBestIdentityPercent"]

def MIXCR_Align(fastx, vdjca_out = None, species = "HomoSapiens", chains = "IG", threads = 8,
other_align_params = None,
 java_memory = None, save_reads = False, save_descs = True,
MIXCR_jar = MIXCR_loc, overwrite = False):
 """Perform a MIXCR alignment of the specified FASTQ/FASTA sequence file; wrapper function
for mixcr.jar align.

 Parameters

 fastx: str
 Filename for the FASTQ/FASTA file to align with MIXCR.
 vdjca_out: str or None
 Output filename for the MIXCR .vdjca alignment file; by default will use the
prefix filename from fastx.
 species: str
 Species name (as usable by MIXCR) to use for V/D/J gene alignment; default is
"HomoSapiens".
 chains: str or list of str
 Immunological chain genes to compare against as used by MIXCR; default is "IG"
meaning any immunoglobulin.
 threads: int
 Number of CPU threads available for the MIXCR executable; default is 8.
 other_align_params: str or None
 Additional parameters given to MIXCR align as a string; optional.
 java_memory: int or str
 Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to
"java -Xms8G -Xmx8G").
 save_reads: bool
 Whether or not to save the full read sequences in the output .vdjca file (MIXCR
align -g option); default False.
 save_descs: bool
 Whether or not to save the read descriptions in the output .vdjca file (MIXCR
align -a option); default True.
 MIXCR_jar: str
 Path of the MIXCR executable jar file; see MIXCR_loc.
 overwrite: bool
 If True, any existing .vdjca file of the same name will be overwritten (MIXCR -f
option); default is False.
 """

 logger = logging.getLogger("MIXCR_Align")

 if isinstance(vdjca_out, str):
 if not vdjca_out.lower().endswith(".vdjca"):
 vdjca_out += ".vdjca"
 else:
 vdjca_out = ".".join(fastx.split(".")[:-1]) + ".vdjca"

 75

 species = species if isinstance(species, str) else "HomoSapiens"

 if hasattr(chains, "__iter__") and not isinstance(chains, str):
 chains = ",".join(chains)
 elif not isinstance(chains, str):
 chains = "IG"
 logger.warning("chains needs to be either a list of chain types or a str;
defaulting to \"IG\"")

 threads = threads if int(threads) > 0 else 8

 MIXCR_call = ["java", "-jar"]

 if java_memory is not None:
 java_memory = str(java_memory).upper()

 if not java_memory.endswith("G"):
 java_memory += "G"

 java_initial_mem = "-Xms" + java_memory
 java_max_mem = "-Xmx" + java_memory

 MIXCR_call.extend([java_initial_mem, java_max_mem])

 MIXCR_call.append(MIXCR_jar)
 MIXCR_call.append("align")
 MIXCR_call.extend(["-t", str(threads)])
 MIXCR_call.extend(["-s", species])
 MIXCR_call.extend(["-c", chains])

 if save_reads:
 MIXCR_call.append("-g")
 if save_descs:
 MIXCR_call.append("-a")
 if overwrite:
 MIXCR_call.append("-f")

 if other_align_params is not None:
 MIXCR_call.extend(other_align_params.split(" "))

 MIXCR_call.append(fastx)
 MIXCR_call.append(vdjca_out)

 logger.info("Starting alignment for " + fastx + "...")
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call))

 try:
 align_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT,
universal_newlines = True)

 except subprocess.CalledProcessError as cpe:
 MIXCR_error = cpe.stdout.strip().lower()

 if "filenotfoundexception" in MIXCR_error:
 logger.error("Could not access input file " + fastx + "!")

 elif "already exists" in MIXCR_error:
 logger.error("Output filename " + vdjca_out + " already exists!")
 logger.error("Run MIXCR_Align again with overwrite = True or use a unique
vdjca_out filename.")

 elif "unable to access jarfile" in MIXCR_error:
 logger.error("The MIXCR executable could not be found; check if the
provided jarfile path is correct!")

 76

 else:
 logger.error("An unknown error occurred trying to run MIXCR align!")

 logger.error(MIXCR_error)
 return None

 logger.info(align_log)

def MIXCR_Filter_Alignments(vdjca, vdjca_out, seq_feature = None, cdr3_nt_seq = None,
other_filter_params = None,
 java_memory = None, MIXCR_jar =
MIXCR_loc, overwrite = False):
 """Filter a MIXCR alignment to remove sequences not containing a specific feature, or with
a specific CDR3 sequence.
 Wrapper function for mixcr.jar filterAlignments.

 Parameters

 vdjca: str
 Filename for the VDJCA alignment binary file to filter.
 vdjca_out: str
 Output filename for the filtered MIXCR .vdjca alignment file.
 seq_feature: str or None
 Sequence feature to filter on, from any of ["FR1", "CDR1", "FR2", "CDR2", "FR3",
"CDR3", "FR4"].
 cdr3_nt_seq: str or None
 Nucleotide CDR3 sequence that must be present in filtered sequences; optional.
 other_filter_params: str or None
 Additional parameters given to MIXCR filterAlignments as a string; optional.
 java_memory: int or str
 Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to
"java -Xms8G -Xmx8G").
 MIXCR_jar: str
 Path of the MIXCR executable jar file; see MIXCR_loc.
 overwrite: bool
 If True, any existing .vdjca file of the same name will be overwritten (MIXCR -f
option); default is False.
 """

 logger = logging.getLogger("MIXCR_Filter_Alignments")

 if isinstance(vdjca_out, str):
 if not vdjca_out.lower().endswith(".vdjca"):
 vdjca_out += ".vdjca"

 MIXCR_call = ["java", "-jar"]

 if java_memory is not None:
 java_memory = str(java_memory).upper()

 if not java_memory.endswith("G"):
 java_memory += "G"

 java_initial_mem = "-Xms" + java_memory
 java_max_mem = "-Xmx" + java_memory

 MIXCR_call.extend([java_initial_mem, java_max_mem])

 MIXCR_call.append(MIXCR_jar)
 MIXCR_call.append("filterAlignments")

 valid_seq_features = ["FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"]
 if isinstance(seq_feature, str) and any([seq_feature.upper() == feat for feat in
valid_seq_features]):
 seq_feature = seq_feature.upper()

 77

 MIXCR_call.extend(["-g", seq_feature])

 else:
 logger.error("seq_feature to filter must be a valid CDR/FR region (eg.
\"CDR2\")!")
 return None

 if isinstance(cdr3_nt_seq, str):
 cdr3_nt_seq = cdr3_nt_seq.upper()

 if len(cdr3_nt_seq.replace("A", "").replace("C", "").replace("G",
"").replace("T", "")) > 0:
 logger.error("Sequences filtered by CDR3 must be nucleotide sequences
only!")
 return None

 MIXCR_call.extend(["-e", cdr3_nt_seq])

 if overwrite:
 MIXCR_call.append("-f")

 if other_filter_params is not None:
 MIXCR_call.extend(other_filter_params.split(" "))

 MIXCR_call.append(vdjca)
 MIXCR_call.append(vdjca_out)

 logger.info("Filtering alignments from " + vdjca + "...")
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call))

 try:
 filter_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT,
universal_newlines = True)

 except subprocess.CalledProcessError as cpe:
 MIXCR_error = cpe.stdout.strip().lower()

 if "filenotfoundexception" in MIXCR_error:
 logger.error("Could not access input file " + vdjca + "!")

 elif "already exists" in MIXCR_error:
 logger.error("Output filename " + vdjca_out + " already exists!")
 logger.error("Run MIXCR_Filter_Alignments again with overwrite = True or
use a unique vdjca_out filename.")

 elif "unable to access jarfile" in MIXCR_error:
 logger.error("The MIXCR executable could not be found; check if the
provided jarfile path is correct!")

 else:
 logger.error("An unknown error occurred trying to run MIXCR
filterAlignments!")

 logger.error(MIXCR_error)
 return None

 logger.info(filter_log)

def MIXCR_Assemble(vdjca, clns_out = None, threads = 8, create_index = True, other_assemble_params
= None,
 java_memory = None, MIXCR_jar = MIXCR_loc, overwrite = False):
 """Assemble clonotypes from a MIXCR alignment; wrapper function for mixcr.jar assemble.

 Parameters

 78

 vdjca: str
 Filename for the VDJCA alignment binary file to clonotype.
 clns_out: str or None
 Output filename for the MIXCR .clns alignment file; by default will use the
prefix filename from vdjca.
 threads: int
 Number of CPU threads available for the MIXCR executable; default is 8.
 create_index: bool
 Whether to create an index file usable for the export of total alignment reads
with clone IDs; default is True.
 other_assemble_params: str or None
 Additional parameters given to MIXCR assemble as a string; optional.
 java_memory: int or str
 Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to
"java -Xms8G -Xmx8G").
 MIXCR_jar: str
 Path of the MIXCR executable jar file; see MIXCR_loc.
 overwrite: bool
 If True, any existing .clns file of the same name will be overwritten (MIXCR -f
option); default is False.
 """

 logger = logging.getLogger("MIXCR_Assemble")

 if isinstance(clns_out, str):
 if not clns_out.lower().endswith(".clns"):
 clns_out += ".clns"
 else:
 clns_out = ".".join(vdjca.split(".")[:-1]) + ".clns"

 threads = threads if int(threads) > 0 else 8

 MIXCR_call = ["java", "-jar"]

 if java_memory is not None:
 java_memory = str(java_memory).upper()

 if not java_memory.endswith("G"):
 java_memory += "G"

 java_initial_mem = "-Xms" + java_memory
 java_max_mem = "-Xmx" + java_memory

 MIXCR_call.extend([java_initial_mem, java_max_mem])

 MIXCR_call.append(MIXCR_jar)
 MIXCR_call.append("assemble")
 MIXCR_call.extend(["-t", str(threads)])

 if create_index:
 index_file = ".".join(vdjca.split(".")[:-1]) + "_index"
 MIXCR_call.extend(["-i", index_file])

 if overwrite:
 MIXCR_call.append("-f")

 if other_assemble_params is not None:
 MIXCR_call.extend(other_assemble_params.split(" "))

 MIXCR_call.append(vdjca)
 MIXCR_call.append(clns_out)

 logger.info("Assembling clonotypes from " + vdjca + "...")
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call))

 79

 try:
 assemble_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT,
universal_newlines = True)

 except subprocess.CalledProcessError as cpe:
 MIXCR_error = cpe.stdout.strip().lower()

 if "filenotfoundexception" in MIXCR_error:
 logger.error("Could not access input file " + vdjca + "!")

 elif "already exists" in MIXCR_error:
 logger.error("Output filename " + clns_out + " already exists!")
 logger.error("Run MIXCR_Assemble again with overwrite = True or use a
unique clns_out filename.")

 elif "unable to access jarfile" in MIXCR_error:
 logger.error("The MIXCR executable could not be found; check if the
provided jarfile path is correct!")

 else:
 logger.error("An unknown error occurred trying to run MIXCR assemble!")

 logger.error(MIXCR_error)
 return None

 logger.info(assemble_log)

def Export_MIXCR_Alignments(vdjca, aligns_out = None, export_clone_ids = True, export_descriptions
= True,
 export_top_genes = "VDJC",
export_top_gene_identities = "VDJ", export_read_ids = False,
 nt_feat_seqs = "all", aa_feat_seqs =
"all", export_full_seq = False, export_aligns = None,
 clone_index_file = None,
other_export_fields = None, java_memory = None,
 MIXCR_jar = MIXCR_loc, overwrite =
False):
 """Export specified MIXCR alignment fields to a tab-separated text file for further
downstream analysis.
 Wrapper function for mixcr.jar exportAlignments; most arguments are used to pick the
fields exported to text.

 Parameters

 vdjca: str
 Filename for the VDJCA alignment binary file to export to text.
 aligns_out: str or None
 Output filename for the alignment text file; by default will use the prefix of
vdjca plus "_alignments.txt".
 export_clone_ids: bool
 Whether or not to export clone IDs (clone index file must be available, see
clone_index_file); default True.
 export_descriptions: bool
 Whether to export the original FASTX read headers (if descriptions were saved
during align); default True.
 export_top_genes: str
 A string containing any/all of "VDJC" to export the top V/D/J/C gene called per
read; default is "VDJC".
 export_top_gene_identities: str or None
 A string containing any/all of "VDJC" to export the gene region identity (%
similarity to gene); default "VDJ".
 export_read_ids: bool
 Whether the original read ID numbers should be exported; default is False.
 nt_feat_seqs: str, list of str, or None

 80

 Which CDR and framework region (FR) nucleotide sequences should be exported, or
"all" (default is "all").
 Example for only exporting FR2, FR3, and CDR3: ["FR2", "FR3", "CDR3"]
 aa_feat_seqs: str, list of str, or None
 Which CDR and framework region (FR) amino acid sequences should be exported, or
"all" (default is "all").
 Example for only exporting FR2, FR3, and CDR3: ["FR2", "FR3", "CDR3"]
 export_full_seq: bool
 Whether to export the full read nucleotide sequence for each read; default is
False.
 export_aligns: str or None
 A string containing any/all of "VDJC" to export the V/D/J/C alignment to germline
per read; default is None.
 clone_index_file: str or None
 Index of clone IDs for each alignment; if None the file is assumed to be the
prefix of vdjca plus "_index".
 other_export_fields: str, list of str, or None
 Additional export fields usable by MIXCR; can be a string of options or a list of
option strings.
 Example: "-mutationsDetailed FR3 -lengthOf CDR3"
 java_memory: int or str
 Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to
"java -Xms8G -Xmx8G").
 MIXCR_jar: str
 Path of the MIXCR executable jar file; see MIXCR_loc.
 overwrite: bool
 If True, any existing output file of the same name will be overwritten (MIXCR -f
option); default is False.
 """

 logger = logging.getLogger("Export_MIXCR_Alignments")

 if aligns_out is None:
 aligns_out = ".".join(vdjca.split(".")[:-1]) + "_alignments.txt"

 if clone_index_file is None:
 clone_index_file = ".".join(vdjca.split(".")[:-1]) + "_index"

 MIXCR_call = ["java", "-jar"]

 if java_memory is not None:
 java_memory = str(java_memory).upper()

 if not java_memory.endswith("G"):
 java_memory += "G"

 java_initial_mem = "-Xms" + java_memory
 java_max_mem = "-Xmx" + java_memory

 MIXCR_call.extend([java_initial_mem, java_max_mem])

 MIXCR_call.append(MIXCR_jar)
 MIXCR_call.append("exportAlignments")

 if overwrite:
 MIXCR_call.append("-f")

 if export_clone_ids:
 MIXCR_call.extend(["-cloneId", clone_index_file])

 if export_descriptions:
 MIXCR_call.append("-descrR1")

 if isinstance(export_top_genes, str):
 export_top_genes = export_top_genes.upper()

 81

 if "ALL" in export_top_genes:
 export_top_genes = "VDJC"

 if "V" in export_top_genes:
 MIXCR_call.append("-vGene")
 if "D" in export_top_genes:
 MIXCR_call.append("-dGene")
 if "J" in export_top_genes:
 MIXCR_call.append("-jGene")
 if "C" in export_top_genes:
 MIXCR_call.append("-cGene")

 if isinstance(export_top_gene_identities, str):
 export_top_gene_identities = export_top_gene_identities.upper()
 if "ALL" in export_top_gene_identities:
 export_top_gene_identities = "VDJC"

 if "V" in export_top_gene_identities:
 MIXCR_call.append("-vBestIdentityPercent")
 if "D" in export_top_gene_identities:
 MIXCR_call.append("-dBestIdentityPercent")
 if "J" in export_top_gene_identities:
 MIXCR_call.append("-jBestIdentityPercent")
 if "C" in export_top_gene_identities:
 MIXCR_call.append("-cBestIdentityPercent")

 if export_read_ids:
 MIXCR_call.append("-readId")

 if hasattr(nt_feat_seqs, "__iter__") and not isinstance(nt_feat_seqs, str):
 for feat in nt_feat_seqs:
 MIXCR_call.extend(["-nFeature", feat.upper()])
 elif isinstance(nt_feat_seqs, str):
 nt_feat_seqs = nt_feat_seqs.upper()

 if "ALL" in nt_feat_seqs:
 MIXCR_call.extend(["-nFeature", "FR1", "-nFeature", "FR2", "-nFeature",
"FR3", "-nFeature", "FR4"])
 MIXCR_call.extend(["-nFeature", "CDR1", "-nFeature", "CDR2", "-nFeature",
"CDR3"])
 else:
 MIXCR_call.extend(["-nFeature", nt_feat_seqs])

 if hasattr(aa_feat_seqs, "__iter__") and not isinstance(aa_feat_seqs, str):
 for feat in aa_feat_seqs:
 MIXCR_call.extend(["-aaFeature", feat.upper()])
 elif isinstance(aa_feat_seqs, str):
 aa_feat_seqs = aa_feat_seqs.upper()

 if "ALL" in aa_feat_seqs:
 MIXCR_call.extend(["-aaFeature", "FR1", "-aaFeature", "FR2", "-
aaFeature", "FR3", "-aaFeature", "FR4"])
 MIXCR_call.extend(["-aaFeature", "CDR1", "-aaFeature", "CDR2", "-
aaFeature", "CDR3"])
 else:
 MIXCR_call.extend(["-aaFeature", aa_feat_seqs])

 if export_full_seq:
 MIXCR_call.append("-sequence")

 if isinstance(export_aligns, str):
 export_aligns = export_aligns.upper()
 if "ALL" in export_aligns:
 export_aligns = "VDJC"

 82

 if "V" in export_aligns:
 MIXCR_call.append("-vAlignment")
 if "D" in export_aligns:
 MIXCR_call.append("-dAlignment")
 if "J" in export_aligns:
 MIXCR_call.append("-jAlignment")
 if "C" in export_aligns:
 MIXCR_call.append("-cAlignment")

 if other_export_fields is not None:
 if isinstance(other_export_fields, str):
 other_export_fields = other_export_fields.split(" ")

 MIXCR_call.extend(other_export_fields)

 MIXCR_call.append(vdjca)
 MIXCR_call.append(aligns_out)

 logger.info("Exporting alignments from " + vdjca + "...")
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call))

 try:
 subprocess.check_call(MIXCR_call, stderr = subprocess.STDOUT)

 except subprocess.CalledProcessError as cpe:
 MIXCR_error = cpe.stdout.strip().lower()

 if "filenotfoundexception" in MIXCR_error:
 logger.error("Could not access input file " + vdjca + "!")

 elif "already exists" in MIXCR_error:
 logger.error("Output filename " + aligns_out + " already exists!")
 logger.error("Run Export_MIXCR_Alignments again with overwrite = True or
use a unique aligns_out filename.")

 elif "unable to access jarfile" in MIXCR_error:
 logger.error("The MIXCR executable could not be found; check if the
provided jarfile path is correct!")

 else:
 logger.error("An unknown error occurred trying to run MIXCR
exportAlignments.")

 logger.error(MIXCR_error)
 return None

 logger.info("Alignments written to {0}.".format(aligns_out))

def Run_MIXCR(fastx, required_features = None, align_params = None, filter_params = None,
assemble_params = None,
 export_params = None, delete_temps = False, java_memory = None,
MIXCR_jar = MIXCR_loc, log_file = None):
 """

 Parameters

 Returns

 SUCCESS
 """

 file_prefix = ".".join(fastx.split(".")[:-1])

 if log_file is None:
 log_file = file_prefix + "_MIXCR_log.txt"

 83

 logging.basicConfig(filename = log_file, level = logging.DEBUG,
 datefmt = "%m-%d-%y %H:%M:%S", format =
"%(asctime)s in %(name)s:\n%(message)s\n")
 console = logging.StreamHandler()
 console.setLevel(logging.INFO)
 console.setFormatter(logging.Formatter("%(levelname)s\t%(message)s"))
 logging.getLogger("").addHandler(console)

 if align_params is not None:
 MIXCR_Align(fastx, **align_params)
 else:
 MIXCR_Align(fastx)

 if isinstance(required_features, str):
 required_features = required_features.upper()

 if "ALL" in required_features:
 required_features = ["FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"]
 else:
 required_features = [required_features]

 if required_features is not None:
 cur_in_filename = file_prefix
 cur_out_filename = file_prefix + "_has"

 for feature in required_features:
 cur_out_filename += "_" + feature
 MIXCR_Filter_Alignments(cur_in_filename + ".vdjca", cur_out_filename +
".vdjca", feature)
 cur_in_filename = cur_out_filename

 vdjca = cur_in_filename + ".vdjca"

 else:
 vdjca = file_prefix + ".vdjca"

 MIXCR_Assemble(vdjca)

 if export_params is not None:
 Export_MIXCR_Alignments(vdjca, **export_params)
 else:
 Export_MIXCR_Alignments(vdjca)

def FASTX_Random_Sample(filename, outfile_prefix = None, num_seqs = None, num_resamples = None):
 pass

from .Constants import MIXCR_header_dtypes, MIXCR_headers_renamed, no_stop_feats,
no_frameshift_feats

def MIXCR_to_DataFrame(filename, col_dtypes = MIXCR_header_dtypes, renamed_cols =
MIXCR_headers_renamed,
 drop_features_with_stop = no_stop_feats,
drop_features_with_frameshift = no_frameshift_feats,
 clone_col = "CloneID", min_clone_count = 2,
simplify_isotypes = True, stop_char = "*",
 frameshift_char = "_", assume_heavy_or_light = True,
assume_heavy_light_cutoff = 0.9):
 """
 By default, removes sequences with a stop codon in any gene region or a frameshift in any
region but FR4.

 Parameters

 Returns

 84

 seq_df: pandas.DataFrame
 A pandas DataFrame consisting of the filtered alignments from filename.
 """

 if not os.path.exists(filename):
 print("Error in MIXCR_to_DataFrame: can't find input alignment file
{0}!".format(filename))
 return None

 seq_df = pandas.read_csv(filename, sep = "\t", usecols = [i for i in col_dtypes], dtype =
col_dtypes)
 total_raw_reads = len(seq_df)

 print("{0} successfully loaded; identified a total of {1} raw reads.".format(filename,
total_raw_reads))

 if renamed_cols:
 seq_df = seq_df.rename(columns = renamed_cols)

 filtered_report = "Dropped {0} sequences ({1:.1%} of raw reads) with a {2} in feature
{3}."
 if drop_features_with_stop:
 for feature in drop_features_with_stop:
 prefiltered_reads = len(seq_df)

 if feature in seq_df.columns:
 seq_df = seq_df[~seq_df[feature].str.contains(stop_char, na =
False, regex = False)]
 dropped_reads = prefiltered_reads - len(seq_df)
 print(filtered_report.format(dropped_reads, (dropped_reads /
total_raw_reads), "stop codon", feature))

 else:
 print("Error in MIXCR_to_DataFrame: column \"{0}\" not found in
alignment file!".format(feature))
 return None

 if drop_features_with_frameshift:
 for feature in drop_features_with_frameshift:
 prefiltered_reads = len(seq_df)

 if feature in seq_df.columns:
 seq_df = seq_df[~seq_df[feature].str.contains(frameshift_char, na
= False, regex = False)]
 dropped_reads = prefiltered_reads - len(seq_df)
 print(filtered_report.format(dropped_reads, (dropped_reads /
total_raw_reads), "frameshift", feature))

 else:
 print("Error in MIXCR_to_DataFrame: column \"{0}\" not found in
alignment file!".format(feature))
 return None

 cur_reads = len(seq_df)
 if cur_reads < total_raw_reads:
 pct_total = cur_reads / total_raw_reads
 print("{0} reads remaining after filtering features ({1:.1%} of
total).".format(cur_reads, pct_total))

 if clone_col is not None and clone_col in seq_df.columns:
 if min_clone_count > 0:
 prefiltered_reads = len(seq_df)
 seq_df = seq_df[seq_df[clone_col].notnull()]
 seq_df[clone_col] = seq_df[clone_col].astype(int)

 85

 no_clone = prefiltered_reads - len(seq_df)
 pct_total = no_clone / total_raw_reads
 print("{0} reads removed with no assigned clonotype ({1:.1%} of
total).".format(no_clone, pct_total))

 if min_clone_count > 1:
 prefiltered_reads = len(seq_df)
 clone_counts = seq_df[clone_col].value_counts()
 clone_counts_filtered = clone_counts[clone_counts >= min_clone_count]
 seq_df = seq_df[seq_df[clone_col].isin(clone_counts_filtered.index)]

 not_enough_clone_members = prefiltered_reads - len(seq_df)
 pct_total = not_enough_clone_members / total_raw_reads
 report = "{0} reads removed for being in clonotypes consisting of less
than {1} reads ({2:.1%} of total)."
 print(report.format(not_enough_clone_members, min_clone_count,
pct_total))

 elif clone_col is not None and clone_col not in seq_df.columns:
 print("Error in MIXCR_to_DataFrame: clone ID column \"{0}\" not found in
alignment file!".format(clone_col))
 return None

 for col in ["VGene", "DGene", "JGene"]:
 if col in seq_df.columns:
 seq_df[col] = seq_df[col].fillna("Unknown")

 if "V_Identity" in seq_df.columns:
 seq_df["V_SHM"] = 1.0 - seq_df["V_Identity"]
 seq_df = seq_df.drop(["V_Identity"], axis = 1)

 if "D_Identity" in seq_df.columns:
 seq_df["D_SHM"] = 1.0 - seq_df["D_Identity"]
 seq_df = seq_df.drop(["D_Identity"], axis = 1)

 if "J_Identity" in seq_df.columns:
 seq_df["J_SHM"] = 1.0 - seq_df["J_Identity"]
 seq_df = seq_df.drop(["J_Identity"], axis = 1)

 if "CGene" in seq_df.columns:
 seq_df["Isotype"] = seq_df["CGene"].str.split("*").str[0] #Remove MIXCR allele
calls, primers are ambiguous
 seq_df["Isotype"] = seq_df["Isotype"].fillna("Other")
 seq_df = seq_df.drop(["CGene"], axis = 1)

 if assume_heavy_or_light:
 #if heavy chain is >90% of reads, remove any light chain seqs. and vice
versa
 heavy_chains = len(seq_df[seq_df["Isotype"].str.contains("IGH")])
 light_chains = len(seq_df[seq_df["Isotype"].str.contains("IGL") |
seq_df["Isotype"].str.contains("IGK")])
 heavy_chain_ratio = heavy_chains / len(seq_df)
 light_chain_ratio = light_chains / len(seq_df)

 if heavy_chain_ratio > assume_heavy_light_cutoff and light_chains > 0:
 seq_df = seq_df[seq_df["Isotype"].str.contains("IGH")]
 cutoff_report = "{0} light chain reads dropped (assumed to be
erroneous as {1:.1%} of reads are IGH)."
 print(cutoff_report.format(light_chains, heavy_chain_ratio))

 elif light_chain_ratio > assume_heavy_light_cutoff:
 seq_df = seq_df[seq_df["Isotype"].str.contains("IGK") |
seq_df["Isotype"].str.contains("IGL")]

 86

 cutoff_report = "{0} heavy chain reads dropped (assumed to be
erroneous as {1:.1%} of reads are IGK/L)."
 print(cutoff_report.format(heavy_chains, light_chain_ratio))

 if simplify_isotypes:
 simple_isotypes = {
 "IGHA1": "IgA", "IGHA2": "IgA", "IGHD": "IgD", "IGHEP1": "IgE",
"IGHE": "IgE",
 "IGHG1": "IgG", "IGHG2": "IgG", "IGHG3": "IgG", "IGHG4": "IgG",
"IGHGP": "IgG",
 "IGHM": "IgM", "IGLC1": "IgL", "IGLC2": "IgL", "IGLC3": "IgL",
"IGLC4": "IgL",
 "IGLC5": "IgL", "IGLC6": "IgL", "IGLC7": "IgL", "IGKC": "IgK"
 }

 for isotype in simple_isotypes:
 seq_df["Isotype"] = seq_df["Isotype"].str.replace(isotype,
simple_isotypes[isotype])

 seq_df = seq_df.reset_index(drop = True)

 filtered_reads = len(seq_df)
 print("{0} reads remaining in final dataframe!".format(filtered_reads))

 return seq_df

###########Repertoire Comparison

import pandas

def Morisita_Horn_Similarity(combined_freq_df, freq_col1, freq_col2):
 """Calculates the Morisita-Horn index of similarity: 2 * sum(freq(x) * freq(y)) /
(sum(freq(x)^2) + sum(freq(y)^2))
 This function is intended for use by Repertoire_Similarity().

 Parameters

 combined_freq_df: pandas.DataFrame
 DataFrame containing the frequencies of each unique clone found in either of the
two repertoires.
 freq_col1: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
first repertoire.
 freq_col2: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
second repertoire.

 Returns

 MH_index: float
 The similarity of the repertoires as defined by the Morisita-Horn index.
 """

 freq_product = combined_freq_df[freq_col1] * combined_freq_df[freq_col2]
 freq1_squared = combined_freq_df[freq_col1] ** 2
 freq2_squared = combined_freq_df[freq_col2] ** 2

 summed_freq_product = freq_product.sum()
 summed_freq_squared = freq1_squared.sum() + freq2_squared.sum()

 MH_index = (summed_freq_product / summed_freq_squared) * 2.0
 return MH_index

def Cosine_Similarity(combined_freq_df, freq_col1, freq_col2):

 87

 """Calculates the Cosine index of similarity: sum(freq(x) * freq(y)) /
(sqrt(sum(freq(x)^2)) * sqrt(sum(freq(y)^2)))
 This function is intended for use by Repertoire_Similarity().

 Parameters

 combined_freq_df: pandas.DataFrame
 DataFrame containing the frequencies of each unique clone found in either of the
two repertoires.
 freq_col1: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
first repertoire.
 freq_col2: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
second repertoire.

 Returns

 cosine_index: float
 The similarity of the repertoires as defined by the Cosine index.
 """

 from numpy import sqrt
 freq_product = combined_freq_df[freq_col1] * combined_freq_df[freq_col2]
 freq1_squared = combined_freq_df[freq_col1] ** 2
 freq2_squared = combined_freq_df[freq_col2] ** 2

 summed_freq_product = freq_product.sum()
 freq1_squared_sum_sqrt = sqrt(freq1_squared.sum())
 freq2_squared_sum_sqrt = sqrt(freq2_squared.sum())

 cosine_index = summed_freq_product / (freq1_squared_sum_sqrt * freq2_squared_sum_sqrt)
 return cosine_index

def Jaccard_Similarity(combined_freq_df, freq_col1, freq_col2):
 """Calculates the Jaccard index of similarity: sum(minimum of freqs(x, y)) / sum(maximum
of freqs(x, y))
 This function is intended for use by Repertoire_Similarity().

 Parameters

 combined_freq_df: pandas.DataFrame
 DataFrame containing the frequencies of each unique clone found in either of the
two repertoires.
 freq_col1: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
first repertoire.
 freq_col2: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
second repertoire.

 Returns

 jaccard_index: float
 The similarity of the repertoires as defined by the Jaccard index.
 """

 min_freqs = combined_freq_df[[freq_col1, freq_col2]].min(axis = 1)
 max_freqs = combined_freq_df[[freq_col1, freq_col2]].max(axis = 1)

 jaccard_index = min_freqs.sum() / max_freqs.sum()
 return jaccard_index

def Bray_Curtis_Similarity(combined_freq_df, freq_col1, freq_col2):
 """Calculates the Bray-Curtis index of similarity: sum(minimum of freqs(x, y))

 88

 This function is intended for use by Repertoire_Similarity().

 Parameters

 combined_freq_df: pandas.DataFrame
 DataFrame containing the frequencies of each unique clone found in either of the
two repertoires.
 freq_col1: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
first repertoire.
 freq_col2: str
 Column name in combined_freq_df with the clonal frequencies for all clones in the
second repertoire.

 Returns

 BC_index: float
 The similarity of the repertoires as defined by the Bray-Curtis index.
 """

 min_freqs = combined_freq_df[[freq_col1, freq_col2]].min(axis = 1)

 BC_index = min_freqs.sum()
 return BC_index

def Repertoire_Similarity(clone_df1, clone_df2, how = "all", clone_col = "CloneID", count_col =
"Clustered"):
 """Calculates the similarity of two repertoires that MUST have been clonotyped together
(ie, must share clone IDs).
 Generally returns a fraction ranging from 0.0 (no similarity) to 1.0 (in theory,
identical) depending on the method.
 Implemented methods currently available (for the "how" argument):
 Morisita-Horn, called using "morisita_horn", "morisita", "horn", or "mh".
 Cosine, called using "cosine" or "cos".
 Jaccard, called using "jaccard" or "j".
 Bray-Curtis, called using "bray_curtis", "bray", "curtis", "bc".
 Using "all" yields a dict of all methods formatted as {str: float} for the method
name -> resulting value.

 Parameters

 clone_df1: pandas.DataFrame
 First DataFrame containing unique clones sharing clone IDs with clone_df2 (must
have been clonotyped together).
 clone_df2: pandas.DataFrame
 Second DataFrame containing unique clones sharing clone IDs with clone_df1 (must
have been clonotyped together).
 how: str
 Method for calculating similarity, defaulting to "all"; can be one of the
following:
 "mh", "morisita", "horn", or "morisita_horn" for Morisita-Horn
similarity.
 "cos" or "cosine" for Cosine similarity.
 "j" or "jaccard" for Jaccard similarity.
 "bc", "bray", "curtis", or "bray_curtis" for Bray-Curtis similarity.
 "all" returns a dict of all methods formatted as {str: float} for the
method name -> resulting value.
 clone_col: str
 Name of column in both DataFrames with the unique clone IDs; default is
"CloneID".
 count_col: str
 Name of column in both DataFrames with the count or frequency for each unique
clone; default is "Clustered".

 Returns

 89

 similarity or similarities: float or {str: float}
 If how != "all" returns the value of the given similarity index, otherwise a dict
of the results of all methods.
 An example of the result from how = "all": {"Morisita_Horn": 0.9556, "Cosine":
0.9239, "Jaccard": 0.8913}
 """

 valid_method_calls = ["all", "mh", "morisita", "horn", "cos", "j", "bc", "bray", "curtis"]

 if isinstance(how, str) and any([m in how.lower() for m in valid_method_calls]):
 how = how.lower()

 if "all" in how:
 method = "All"
 elif any(["mh" in how, "morisita" in how, "horn" in how]):
 method = "Morisita_Horn"
 elif "cos" in how:
 method = "Cosine"
 elif "j" in how:
 method = "Jaccard"
 elif any(["bc" in how, "bray" in how, "curtis" in how]):
 method = "Bray_Curtis"

 else:
 print("Warning in Repertoire_Similarity: \"how\" argument invalid; defaulting to
\"all\"!")
 method = "All"

 similarity_funcs = {
 "Morisita_Horn": Morisita_Horn_Similarity,
 "Cosine": Cosine_Similarity,
 "Jaccard": Jaccard_Similarity,
 "Bray_Curtis": Bray_Curtis_Similarity
 }

 if clone_col not in clone_df1.columns or clone_col not in clone_df2.columns:
 print("Error in Repertoire_Similarity: clone ID column \"{0}\" not
found!".format(clone_col))
 return None

 if count_col not in clone_df1.columns or count_col not in clone_df2.columns:
 print("Error in Repertoire_Similarity: clone count/frequency column \"{0}\" not
found!".format(count_col))
 return None

 clone_df1_freqs = clone_df1[[clone_col, count_col]]
 clone_df2_freqs = clone_df2[[clone_col, count_col]]

 total_clone_counts_df1 = float(clone_df1_freqs[count_col].sum())
 total_clone_counts_df2 = float(clone_df2_freqs[count_col].sum())
 clone_df1_freqs["Freq_DF1"] = clone_df1_freqs[count_col] / total_clone_counts_df1
 clone_df2_freqs["Freq_DF2"] = clone_df2_freqs[count_col] / total_clone_counts_df2
 clone_df1_freqs = clone_df1_freqs.drop([count_col], axis = 1)
 clone_df2_freqs = clone_df2_freqs.drop([count_col], axis = 1)

 merged_clone_dfs = clone_df1_freqs.merge(clone_df2_freqs, on = clone_col, how = "outer")
 merged_clone_dfs = merged_clone_dfs.fillna(0.0)

 if method == "All":
 similarities = {}

 for func in similarity_funcs:
 Similarity_Function = similarity_funcs[func]

 90

 similarities[func] = Similarity_Function(merged_clone_dfs, freq_col1 =
"Freq_DF1", freq_col2 = "Freq_DF2")

 return similarities

 else:
 Similarity_Function = similarity_funcs[method]
 similarity = Similarity_Function(merged_clone_dfs, freq_col1 = "Freq_DF1",
freq_col2 = "Freq_DF2")
 return similarity

##########Graphing
import matplotlib.pyplot as plt
import numpy
from squarify import squarify
from itertools import cycle
from matplotlib.colors import Colormap
from matplotlib.patches import Rectangle, Wedge
from matplotlib.collections import PatchCollection
from matplotlib.ticker import StrMethodFormatter
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset

#Add ability to plot several groups
def Rank_Abundance_Graph(clone_counts, max_clones = None, zoom_inset = None, figsize = None):
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Rank_Abundance_Graph: clone_counts must be a list/iterable of
clone counts/frequencies!")
 return None

 if figsize is None:
 fig = plt.figure()
 else:
 fig = plt.figure(figsize = figsize)

 ax = fig.add_subplot(1, 1, 1)

 total_clone_counts = float(sum(clone_counts))
 total_clones = len(clone_counts)

 clone_freqs = []
 for clone in sorted(clone_counts, reverse = True):
 clone_freq = clone / total_clone_counts
 clone_freqs.append(clone_freq)

 ranks = [i for i in range(1, total_clones + 1)]
 ax.bar(x = ranks, height = clone_freqs)

 if max_clones is not None:
 ax.set_xlim(0, max_clones)

 #zoomed_ax = zoomed_inset_axes(ax, 0.5, loc = 1)
 zoomed_ax = inset_axes(ax, 2, 1)
 zoomed_ax.bar(x = ranks, height = clone_freqs)
 zoomed_ax.set_xlim(0, 20)
 zoomed_ax.set_ylim(0, max(clone_freqs))
 mark_inset(ax, zoomed_ax, loc1 = 2, loc2 = 4, ec = "black")

 return fig

def Mosaic_Plot(members, member_color_data = None, fig_name = None, title = None, colors = "Set2",
num_colors = 3,
 quant_cmap = "viridis", colorbar_pos = "right", colorbar_width =
0.02, highlight_upper_percent = 0.5,

 91

 fig = None, ax = None, figsize = (2, 2), dpi = 600, bbox_inches =
"tight", multiple_fig = False):
 """Creates a Mosaic plot figure optionally colored by an additional quantitative factor
using Matplotlib patches.

 Parameters

 members: list or other non-string iterable
 An iterable of float or integer values to be used as areas for the mosaic
patches.
 member_color_data: list or other non-string iterable of same length as members, or None
 An optional list of the same length as members with a quantitative range to color
members by (such as gene SHM).
 fig_name: str or None
 Filename to save the output figure; if None, shows the figure on screen
(matplotlib.pyplot.show); default None.
 title: str or None
 Text to be used as the figure title; default is None.
 colors: str, or matplotlib Colormap, or list or other non-string iterable of same length
as members, or None
 Colormap to use for the mosaic patches IF member_color_data is NOT provided, and
ignored otherwise.
 colors can be a str of any matplotlib colormap name, or a Colormap object;
default is "Set2".
 If another iterable is provided, must be a list of color names/values to manually
provide each patch's color.
 num_colors: int
 If member_color_data is None, num_colors sets the mosaic patches to cycle through
the first "num_colors" colors.
 Too many colors to cycle through is visually straining and may be problematic for
a group of many small patches.
 num_colors is ignored if member_color_data is provided, or if colors is a
list/iterable of each patch's colors.
 Default: 3
 quant_cmap: str or matplotlib Colormap
 Describes the colormap to use for mapping the values of member_color_data to
quantitative color values.
 Can be a str name for a matplotlib colormap or a Colormap object; default is
"viridis".
 colorbar_pos: str
 Location on figure (cardinal direction) to place the colorbar if
member_color_data given; default is "right".
 colorbar_width: float
 Width for the colorbar if member_color_data is provided (passed to matplotlib
Rectangle patch); default is 0.02.
 highlight_upper_percent: float or None
 If not None (default), the upper x% of patches will use a lighter color scheme
than the patches smaller than x%.
 Example: if set as 0.6 the top 60% of patches will be normally colored and the
remaining patches will be darker.
 fig: matplotlib Figure or None
 Matplotlib Figure object to use instead of creating a new Figure; default is
None.
 ax: matplotlib Axes or None
 Matplotlib Axes object to use instead of adding a new Axes; default is None.
 figsize: tuple of (int, int) or (float, float)
 Size for the matplotlib Figure object as a tuple of (inches, inches); default is
(2, 2).
 dpi: int
 Dots per inch (DPI) for the matplotlib Figure; default is 600.
 bbox_inches: str, int
 Image bounding box parameter given to matplotlib; default is "tight".
 multiple_fig: bool
 ADD
 """

 92

 if hasattr(members, "__iter__") and not isinstance(members, str):
 total_area = float(sum(members))
 norm_areas = [float(member) / total_area for member in members]
 else:
 print("Error in Mosaic_Plot: members must be a list/iterable (eg. pandas Series,
numpy array) of ints/floats!")
 return None

 sorted_areas = sorted(norm_areas, reverse = True) #Keeping original list to use
for sorting other lists
 mosaic_rects = squarify(sorted_areas, 0.0, 0.0, 1.0, 1.0)

 if fig is None:
 fig = plt.figure(figsize = figsize, dpi = dpi)

 if ax is None:
 ax = fig.add_subplot(1, 1, 1, aspect = "equal")

 ax.set_axis_off()

 if isinstance(title, str):
 ax.set_title(title)

 if isinstance(colors, str):
 colors = plt.get_cmap(colors).colors
 elif isinstance(colors, Colormap):
 colors = colors.colors #lol
 elif hasattr(colors, "__iter__") and not isinstance(colors, str) and len(colors) ==
len(members):
 num_colors = len(colors)
 #Since member order will have probably changed after sorting, must sort the color
list based on original member.
 colors = [clr for member, clr in sorted(zip(norm_areas, colors), key = lambda x:
x[0], reverse = True)]
 else:
 colors = plt.get_cmap("Set2").colors

 num_colors = num_colors if isinstance(num_colors, int) and num_colors > 1 else 3
 mosaic_colors = cycle(colors[0:num_colors])

 if isinstance(highlight_upper_percent, float) and 0.0 < highlight_upper_percent < 1.0:
 change_colors = True
 lower_colors = []

 for c in colors[0:num_colors]:
 darker_color = [0.0 if rgb <= 0.25 else rgb - 0.25 for rgb in c]
 lower_colors.append(darker_color)

 else:
 change_colors = False

 mosaic_patches = []

 area_summed = 0.0
 for rect in mosaic_rects:
 rect_xy = (rect["x"], rect["y"])
 rect_width = rect["dx"]
 rect_height = rect["dy"]

 if change_colors:
 cur_area = rect_width * rect_height
 area_summed += cur_area

 if area_summed > highlight_upper_percent:

 93

 mosaic_colors = cycle(lower_colors)
 change_colors = False

 mosaic_patches.append(Rectangle(rect_xy, rect_width, rect_height, facecolor =
next(mosaic_colors)))

 mosaic_collection = PatchCollection(mosaic_patches, edgecolor = "#404040", linewidth =
0.2, match_original = True)

 if hasattr(member_color_data, "__iter__") and not isinstance(member_color_data, str):
 if len(member_color_data) != len(members):
 print("Error creating Mosaic: member_color_data must be the same length
as the members input!")
 print("Make sure the correct matching data is used, or remove
member_color_data to repeat default colors.")
 return None

 member_colors = [j for i, j in sorted(zip(norm_areas, member_color_data), key =
lambda x: x[0], reverse = True)]

 quant_cmap = quant_cmap if isinstance(quant_cmap, str) else "viridis"
 colorbar_width = colorbar_width if isinstance(colorbar_width, float) and
colorbar_width > 0.0 else 0.02

 mosaic_collection.set_array(numpy.array(member_colors))
 mosaic_collection.set_cmap(quant_cmap)

 colorbar_parameters = {
 "width": 0.1, #Width of the ticks
 "length": 2.0, #Length of the ticks
 "labelsize": 3.0, #Tick label text size
 "pad": 2.0 #Distance between ticks and tick labels
 }

 #Ax dimensions (left, bottom, width, height) and parameters for colorbar ax
depending on position in figure
 colorbar_pos_params = {
 "top": ((0.1725, 0.9, 0.679, colorbar_width),
 {"top": True, "bottom": False, "labeltop": True,
"labelbottom": False}),
 "right": ((0.87, 0.11, colorbar_width, 0.77),
 {"right": True, "left": False, "labelright": True,
"labelleft": False}),
 "bottom": ((0.1725, 0.07, 0.679, colorbar_width),
 {"top": False, "bottom": True, "labeltop": False,
"labelbottom": True}),
 "left": ((0.135, 0.11, colorbar_width, 0.77),
 {"right": False, "left": True, "labelright": False,
"labelleft": True})
 }

 colorbar_horizontal = False #Display colorbar horizontally if positioned on the
top or bottom of figure

 if isinstance(colorbar_pos, str): #Figure out what cardinal direction the
colorbar axis should be placed:
 colorbar_pos = colorbar_pos.lower()
 if any([pos in colorbar_pos for pos in ["top", "north", "up"]]):
 colorbar_pos = "top"
 colorbar_horizontal = True
 elif any([pos in colorbar_pos for pos in ["right", "east"]]):
 colorbar_pos = "right"
 elif any([pos in colorbar_pos for pos in ["bottom", "south", "down"]]):
 colorbar_pos = "bottom"
 colorbar_horizontal = True

 94

 elif any([pos in colorbar_pos for pos in ["left", "west"]]):
 colorbar_pos = "left"
 else:
 colorbar_pos = "right"
 else:
 colorbar_pos = "right"

 colorbar_ax = fig.add_axes(colorbar_pos_params[colorbar_pos][0])
 colorbar_parameters.update(colorbar_pos_params[colorbar_pos][1])

 if colorbar_horizontal:
 mosaic_colorbar = fig.colorbar(mosaic_collection, cax = colorbar_ax,
orientation = "horizontal")
 colorbar_ax.xaxis.set_major_formatter(StrMethodFormatter("{x:.1%}"))
 else:
 mosaic_colorbar = fig.colorbar(mosaic_collection, cax = colorbar_ax,
orientation = "vertical")
 colorbar_ax.yaxis.set_major_formatter(StrMethodFormatter("{x:.1%}"))

 colorbar_ax.tick_params(**colorbar_parameters)
 mosaic_colorbar.outline.set_linewidth(0.1)

 ax.add_collection(mosaic_collection)

 if not multiple_fig:
 if fig_name is not None:
 fig.savefig(fig_name, bbox_inches = bbox_inches)
 else:
 plt.show()

def Multiple_Mosaic(data_list):
 pass

def Rarefaction_Plot():
 pass

def Diversity_Plot(clone_dfs, fig_name = None, title = None):
 fig = plt.figure(dpi = 600)
 ax = fig.add_subplot(1, 1, 1)

vgene_colors = {
 "IGHV1-17": (1.0, 0.0, 0.0, 1.0),
 "IGHV1-18": (1.0, 0.09264715147068088, 0.0, 1.0),
 "IGHV1-2": (1.0, 0.18529430294136176, 0.0, 1.0),
 "IGHV1-24": (1.0, 0.2779414544120426, 0.0, 1.0),
 "IGHV1-3": (1.0, 0.37058860588272352, 0.0, 1.0),
 "IGHV1-45": (1.0, 0.46323575735340439, 0.0, 1.0),
 "IGHV1-46": (1.0, 0.5558829088240852, 0.0, 1.0),
 "IGHV1-58": (1.0, 0.64853006029476612, 0.0, 1.0),
 "IGHV1-67": (1.0, 0.76433899963311702, 0.0, 1.0),
 "IGHV1-68": (1.0, 0.85698615110379794, 0.0, 1.0),
 "IGHV1-69": (0.99595556580850708, 0.94558886838298584, 0.0, 1.0),
 "IGHV1-8": (0.95771954595484032, 1.0, 0.0, 1.0),
 "IGHV2-10": (0.8650723944841594, 1.0, 0.0, 1.0),
 "IGHV2-26": (0.77242524301347859, 1.0, 0.0, 1.0),
 "IGHV2-5": (0.67977809154279767, 1.0, 0.0, 1.0),
 "IGHV2-70": (0.58713094007211675, 1.0, 0.0, 1.0),
 "IGHV3-11": (0.47132200073376579, 1.0, 0.0, 1.0),
 "IGHV3-13": (0.37867484926308459, 1.0, 0.0, 1.0),
 "IGHV3-15": (0.28602769779240411, 1.0, 0.0, 1.0),
 "IGHV3-16": (0.19338054632172286, 1.0, 0.0, 1.0),
 "IGHV3-19": (0.10073339485104227, 1.0, 0.0, 1.0),
 "IGHV3-20": (0.023528747793453701, 1.0, 0.015442504413092598, 1.0),
 "IGHV3-21": (0.0, 1.0, 0.084560769107334968, 1.0),

 95

 "IGHV3-22": (0.0, 1.0, 0.17720733690405541, 1.0),
 "IGHV3-23": (0.0, 1.0, 0.29301554664995555, 1.0),
 "IGHV3-25": (0.0, 1.0, 0.3856621144466757, 1.0),
 "IGHV3-30": (0.0, 1.0, 0.47830868224339584, 1.0),
 "IGHV3-33": (0.0, 1.0, 0.57095525004011594, 1.0),
 "IGHV3-35": (0.0, 1.0, 0.66360181783683614, 1.0),
 "IGHV3-36": (0.0, 1.0, 0.75624838563355612, 1.0),
 "IGHV3-38": (0.0, 1.0, 0.84889495343027632, 1.0),
 "IGHV3-43": (0.0, 1.0, 0.96470316317617644, 1.0),
 "IGHV3-47": (0.0, 0.94264990772343771, 1.0, 1.0),
 "IGHV3-48": (0.0, 0.85000275625275612, 1.0, 1.0),
 "IGHV3-49": (0.0, 0.75735560478207531, 1.0, 1.0),
 "IGHV3-52": (0.0, 0.6647084533113945, 1.0, 1.0),
 "IGHV3-53": (0.0, 0.57206130184071435, 1.0, 1.0),
 "IGHV3-60": (0.0, 0.47941415037003288, 1.0, 1.0),
 "IGHV3-62": (0.0, 0.38676699889935195, 1.0, 1.0),
 "IGHV3-64": (0.0, 0.27095805956100094, 1.0, 1.0),
 "IGHV3-65": (0.0, 0.17831090809032013, 1.0, 1.0),
 "IGHV3-66": (0.0, 0.08566375661963932, 1.0, 1.0),
 "IGHV3-7": (0.023161131617013827, 0.016177736765972346, 1.0, 1.0),
 "IGHV3-71": (0.099630546321722385, 0.0, 1.0, 1.0),
 "IGHV3-72": (0.19227769779240333, 0.0, 1.0, 1.0),
 "IGHV3-73": (0.28492484926308431, 0.0, 1.0, 1.0),
 "IGHV3-74": (0.37757200073376529, 0.0, 1.0, 1.0),
 "IGHV3-76": (0.49338094007211653, 0.0, 1.0, 1.0),
 "IGHV3-9": (0.58602809154279745, 0.0, 1.0, 1.0),
 "IGHV4-28": (0.67867524301347837, 0.0, 1.0, 1.0),
 "IGHV4-31": (0.7713223944841594, 0.0, 1.0, 1.0),
 "IGHV4-34": (0.86396954595484032, 0.0, 1.0, 1.0),
 "IGHV4-39": (0.95661669742552136, 0.0, 1.0, 1.0),
 "IGHV4-4": (0.99558794963206743, 0.0, 0.94632410073586526, 1.0),
 "IGHV4-55": (1.0, 0.0, 0.85808899963311702, 1.0),
 "IGHV4-59": (1.0, 0.0, 0.74228006029476601, 1.0),
 "IGHV4-61": (1.0, 0.0, 0.64963290882408509, 1.0),
 "IGHV5-51": (1.0, 0.0, 0.55698575735340428, 1.0),
 "IGHV5-78": (1.0, 0.0, 0.46433860588272341, 1.0),
 "IGHV6-1": (1.0, 0.0, 0.37169145441204254, 1.0),
 "IGHV7-27": (1.0, 0.0, 0.27904430294136173, 1.0),
 "IGHV7-81": (1.0, 0.0, 0.18639715147068092, 1.0)
}

jgene_colors = {
 "IGHJ1": (0.2235294117647059, 0.23137254901960785, 0.4745098039215686),
 "IGHJ2": (0.3215686274509804, 0.32941176470588235, 0.6392156862745098),
 "IGHJ3": (0.4196078431372549, 0.43137254901960786, 0.8117647058823529),
 "IGHJ4": (0.611764705882353, 0.6196078431372549, 0.8705882352941177),
 "IGHJ5": (0.38823529411764707, 0.4745098039215686, 0.2235294117647059),
 "IGHJ6": (0.5490196078431373, 0.6352941176470588, 0.3215686274509804),
 "IGHJ2P": (0.7098039215686275, 0.8117647058823529, 0.4196078431372549)
}

def VJ_Gene_Plot(clone_df, vgene_col = "VGene", jgene_col = "JGene", count_col = "Clustered",
v_colormap = vgene_colors,
 j_colormap = jgene_colors, vj_gap = 0.1, v_edgecolor = "black",
j_edgecolor = "black", linewidth = 0.2,
 vgene_gap = 0.0, fig_name = None, title = None, figsize = (4,
4), dpi = 600):
 """Creates a paired V-J gene usage hierarchical donut plot, with V genes in the inner ring
and J genes in the outer.

 Parameters

 clone_df: pandas.DataFrame
 The unique clone member DataFrame with the V and J gene calls plus clone member
counts / frequencies.

 96

 vgene_col: str
 The name for the column in clone_df containing the V gene calls; default is
"VGene".
 jgene_col: str
 The name for the column in clone_df containing the J gene calls; default is
"JGene".
 count_col: str
 The name for the column in clone_df containing the clone member counts or
frequencies; default is "Clustered".
 v_colormap: dict of {str: color}
 A dict of V gene names to the corresponding color values for the gene; see
vgene_colors for default.
 j_colormap: dict of {str: color}
 A dict of J gene names to the corresponding color values for the gene; see
jgene_colors for default.
 vj_gap: float
 The amount of space between the outer and inner rings, in figure unit dimensions;
default is 0.1.
 v_edgecolor: color
 Name of a valid matplotlib color, RGB tuple, etc. to use for the V gene segment
borders; default is "black".
 j_edgecolor: color
 Name of a valid matplotlib color, RGB tuple, etc. to use for the J gene segment
borders; default is "black".
 linewidth: float
 The size (width) of the border lines surrounding the V/J gene segments; default
is 0.2.
 vgene_gap: float
 An angle in degrees to use as a gap between the V gene sections; default is 0.
 fig_name: str or None
 Name of the output file for the figure; if left None (the default) the plot is
displayed on screen.
 title: str or None
 Optional title for the figure (matplotlib ax.set_title).
 figsize: tuple of (int, int)
 A tuple of two integers/floats describing the figure width and height in inches;
default is (4, 4).
 dpi: int
 The Dots Per Inch for the figure; default is 600.
 """

 if vgene_col not in clone_df.columns:
 print("Error in VJ_Gene_Plot: V gene column \"{0}\" not found in
DataFrame!".format(vgene_col))
 return None
 if jgene_col not in clone_df.columns:
 print("Error in VJ_Gene_Plot: J gene column \"{0}\" not found in
DataFrame!".format(jgene_col))
 return None
 if count_col not in clone_df.columns:
 print("Error in VJ_Gene_Plot: clone count/frequency column \"{0}\" not found in
DataFrame!".format(count_col))
 return None

 fig = plt.figure(figsize = figsize, dpi = dpi)
 ax = fig.add_subplot(1, 1, 1, aspect = "equal")
 ax.set_axis_off()
 ax.invert_xaxis() #This ensures the plot is displayed clockwise.

 #v_radius and v_width are the inner ring diameter and width; j_radius and j_width are for
the outer ring.
 v_radius = 0.345
 v_width = 0.15
 j_radius = 0.45
 j_width = 0.1

 97

 center = (0.5, 0.5)

 gene_df = clone_df[[vgene_col, jgene_col, count_col]].groupby([vgene_col,
jgene_col]).agg({count_col: sum})
 gene_df = gene_df.sort_index() #First sorts by V gene ascending, then J gene ascending.
 gene_df = gene_df.reset_index() #Now returns the VGene and JGene columns to the
DataFrame.

 total_vgenes = len(gene_df[vgene_col].drop_duplicates())
 total_gapsize = total_vgenes * vgene_gap
 remaining_size = 360.0 - float(total_gapsize)
 gap_size = float(vgene_gap)

 total_counts = gene_df[count_col].sum()
 gene_df["Arc_Length"] = gene_df[count_col] / total_counts * remaining_size
 cur_v_start = 90.0 + (gap_size / 2.0) #Starting at 90 degrees (top center of the circle)
plus half the gap size.

 ring_patches = []
 for vgene in gene_df[vgene_col].drop_duplicates():
 cur_vgene_df = gene_df[gene_df[vgene_col] == vgene]

 v_color = v_colormap[vgene]
 v_arc_length = cur_vgene_df["Arc_Length"].sum()
 cur_v_end = cur_v_start + v_arc_length

 inner_patch = Wedge(center, v_radius, cur_v_start, cur_v_end, v_width,
 facecolor = v_color, edgecolor =
v_edgecolor, lw = linewidth)
 ring_patches.append(inner_patch)

 cur_j_start = cur_v_start
 for jgene, jgene_arc_length in zip(cur_vgene_df[jgene_col],
cur_vgene_df["Arc_Length"]):
 j_color = j_colormap[jgene]
 cur_j_end = cur_j_start + jgene_arc_length

 outer_patch = Wedge(center, j_radius, cur_j_start, cur_j_end, j_width,
 facecolor = j_color, edgecolor =
j_edgecolor, lw = linewidth)
 ring_patches.append(outer_patch)

 cur_j_start = cur_j_end

 cur_v_start = cur_v_end + gap_size

 ax.add_collection(PatchCollection(ring_patches, match_original = True))

 if title is not None:
 ax.set_title(title)

 if fig_name is not None:
 fig.savefig(fig_name, bbox_inches = "tight")
 else:
 plt.show()

####FOR TESTING:
if __name__ == "__main__":
 test_clone_counts = []
 with open("clones_test.txt", "r") as clone_test:
 for line in clone_test:
 line = line.strip()
 test_clone_counts.append(float(line))
 sm = test_clone_counts[:600]
 rank_graph = Rank_Abundance_Graph(sm)

 98

 rank_graph.savefig("t1b", bbox_inches = "tight", dpi = 600)
 rank_graph3 = Rank_Abundance_Graph(sm, figsize = (8, 5))
 rank_graph3.savefig("t3b", bbox_inches = "tight", dpi = 600)
 plt.show()

 test_clones20 = [0.9, 7.5, 6.0, 5.9, 5.5, 4.0, 2.8, 2.1, 1.3, 1.0, 0.5, 0.5, 0.5, 0.4,
0.4, 0.4, 0.3, 0.2, 0.2, 0.1]
 test_shm20 = [0.0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.1, 0.2, 0.3, 0.1, 0.3, 0.3, 0.1, 0.0, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3]
 Mosaic_Plot(test_clones20)
 Mosaic_Plot(test_clones20, highlight_upper_percent = 0.7)
 #Mosaic_Plot(test_clones20, test_shm20)
 #Mosaic_Plot(test_clones20, test_shm20, colorbar_pos = "bottom")

##########Repertoire Diversity
def Shannon_Wiener_Index(clone_counts):
 """Calculates the Shannon-Wiener index of diversity: -sum(x * ln(x)) for clone frequencies
x.

 Parameters

 clone_counts: list of ints/floats
 The count or frequencies of each clone in a sample as a list/iterable.

 Returns

 sw_index: float
 The Shannon-Wiener index value for clone_counts.
 """

 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Shannon_Wiener_Index: clone_counts must be a list/iterable of
clone counts/frequencies!")
 return None

 total_clone_counts = float(sum(clone_counts))
 sw_index = 0.0
 for clone in clone_counts:
 clone_freq = clone / total_clone_counts
 sw_index -= (clone_freq * numpy.log(clone_freq))

 return sw_index

def Gini_Simpson_Index(clone_counts):
 """Calculates the Gini-Simpson index of diversity: sum(x ^ 2) for clone frequencies x.

 Parameters

 clone_counts: list of ints/floats
 The count or frequencies of each clone in a sample as a list/iterable.

 Returns

 gs_index: float
 The Gini-Simpson index value for clone_counts.
 """

 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Gini_Simpson_Index: clone_counts must be a list/iterable of clone
counts/frequencies!")
 return None

 total_clone_counts = float(sum(clone_counts))
 gs_index = 0.0
 for clone in clone_counts:

 99

 clone_freq = clone / total_clone_counts
 gs_index += (clone_freq * clone_freq)

 return gs_index

def Hill_Diversity_Index(clone_counts, N = (0.0, 10.0), step = 0.1):
 """Calculates the Hill diversity metrics: sum(x ^ Q) ^ 1/(1-Q) for clone frequencies x and
positive order Q.
 By default, returns a list of the Hill indices from 0 to 10 with step of 0.1, but can also
return a single index.
 Order acts as a "true diversity" measure, whether high or low abundance clones have the
most influence on diversity.
 For Q of 0, species frequency has zero effect; this is the "species richness", ie. the
number of unique clones.
 For 0 < Q < 1, rare species contribute more to the diversity rating than abundant species.
 For Q of 1, rare and abundant species are equally weighted contributors to diversity; same
as exp(Shannon-Wiener).
 For Q > 1, abundant clones contribute most to diversity (at Q of 2, equal to 1/Gini-
Simpson).

 Parameters

 clone_counts: list of ints/floats
 The count or frequencies of each clone in a sample as a list/iterable.
 N: int/float or (int/float, int/float)
 Either tuple of (start_order, end_order) or single float of the order number to
calculate; default: (0.0, 10.0)
 step: int/float
 The step increment for the count from start_order to end_order if N is not a
single number; default: 0.1

 Returns

 hill_index or hill_indices: (float, float) or list of (float, float)
 If N is one order, returns the order and index as (order, index); otherwise
returns a list of (order, index)
 """

 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Hill_Diversity_Index: clone_counts must be a list/iterable of
clone counts/frequencies!")
 return None

 if hasattr(N, "__iter__"):
 if len(N) != 2 or N[1] <= N[0]:
 print("Error in Hill_Diversity_Index: if N is an iterable it must be of
length 2 for the start/end orders.")
 return None

 chunks = numpy.floor(N[1] / step) + 1
 orders = numpy.linspace(start = N[0], stop = N[1], num = chunks)

 else:
 orders = [N]

 total_clone_counts = float(sum(clone_counts))
 hill_indices = []

 for order in orders:
 hill_index = 0.0

 if order == 0.0:
 hill_index = len(clone_counts) #Hill index at zero is simply the species
richness (total number of clones)

 100

 elif order == 1.0:
 sw_index = Shannon_Wiener_Index(clone_counts)
 hill_index = numpy.exp(sw_index) #Hill index at one is the exponential of
the Shannon-Wiener index

 else:
 for clone in clone_counts:
 clone_freq = clone / total_clone_counts
 hill_index += (clone_freq ** order)

 order_exponent = 1.0 / (1.0 - order)
 hill_index = hill_index ** order_exponent

 order_index = (order, hill_index)
 hill_indices.append(order_index)

 if len(hill_indices) == 1:
 return hill_indices[0]
 else:
 return hill_indices

def Berger_Parker_Index(clone_counts):
 """Calculates the Berger-Parker index of diversity: just the frequency of the most
prevalent clone in a sample.

 Parameters

 clone_counts: list of ints/floats
 The count or frequencies of each clone in a sample as a list/iterable.

 Returns

 bp_index: float
 The Berger-Parker index value for clone_counts.
 """

 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Berger_Parker_Index: clone_counts must be a list/iterable of
clone counts/frequencies!")
 return None

 total_clone_counts = float(sum(clone_counts))
 bp_index = 0.0
 for clone in clone_counts:
 clone_freq = clone / total_clone_counts

 if clone_freq > bp_index:
 bp_index = clone_freq

 return bp_index

def Diversity_Index(clone_counts, ratio = 0.5):
 """Calculates the simple diversity index: the minimum fraction of all clones that make up
x% of the total counts.
 By default, the calculated index is set at 50%.

 Parameters

 clone_counts: list of ints/floats
 The count or frequencies of each clone in a sample as a list/iterable.
 ratio: float
 The ratio/fraction (0.0 < ratio < 1.0) of total clone counts/frequencies to use;
default is 0.5.

 Returns

 101

 div_index: float
 The diversity index value for clone_counts.
 """

 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str):
 print("Error in Diversity_Index: clone_counts must be a list/iterable of clone
counts/frequencies!")
 return None

 if not 0.0 < ratio < 1.0:
 print("Error in Diversity_Index: ratio must be a float greater than 0.0 and less
than 1.0!")
 return None

 total_clone_counts = float(sum(clone_counts))
 total_clones = float(len(clone_counts))
 sorted_clones = sorted(clone_counts, reverse = True)

 cur_percent = 0.0
 cur_clones = 0
 for clone in sorted_clones:
 clone_freq = clone / total_clone_counts
 cur_percent += clone_freq
 cur_clones += 1

 if cur_percent >= ratio:
 div_index = float(cur_clones) / total_clones
 break

 return div_index

###########File utilities
import gzip
import os

def Decompress_GZIP(filename, output_filename = None):
 """Takes a compressed gzip text file (such as a fastq.gz sequence file) and saves the
decompressed version.

 Parameters

 filename: str
 Name of the gzip file to load for decompression.
 output_filename: str or None
 Name to use for the decompressed file; if None, the filename is same as the input
file minus the trailing ".gz".
 """

 if output_filename is None:
 output_filename = ".".join(filename.split(".")[:-1])

 with gzip.open(filename, "rt") as compressed_file:
 file_contents = compressed_file.read()

 with open(output_filename, "w", newline = "\n") as decompressed_file:
 decompressed_file.write(file_contents)

def Textfile_to_GZIP(filename, output_filename = None):
 """Opens a text file (such as a .fastq sequence file) and saves a gzip compressed .gz
version.

 Parameters

 102

 filename: str
 Name of the text file to be compressed.
 output_filename: str or None
 Name to use for the compressed file; if None, the input filename is used with an
appended ".gz" extension.
 """

 if output_filename is None:
 output_filename = filename + ".gz"

 with open(filename, "r") as text_file:
 file_contents = text_file.read()

 with gzip.open(output_filename, "wt") as compressed_file:
 compressed_file.write(file_contents)

def Stitch_Reads():
 pass

def Filter_Trim_Reads():
 pass

def Rename_FASTQ_Headers(filename, output_filename, header_prefix, keep_illumina_pos_and_read =
True):
 """Creates a copy of the "filename" FASTQ file with modified read headers, optionally
keeping Illumina read info.
 Useful for ensuring the origin of reads when multiple different sequence files are merged
before MIXCR processing.

 Parameters

 filename: str
 Filename of the FASTQ file to modify.
 output_filename: str
 Name for the modified output file.
 header_prefix: str
 Header prefix used for each modified read.
 keep_illumina_pos_and_read: bool
 Whether to save the Illumina MiSeq/HiSeq flowcell lane, xy position, and read
direction (R1/R2) for all reads.
 If False, a simple read counter (starting at 1) is appended to the header prefix.
 Example: "@M02288:110:000000000-AE88A:1:1101:8994:1790 1:N:0:2" ->
"@Prefix_1101:8994:1790:R1"
 """

 with open(filename, "r") as fastq_in:
 with open(output_filename, "w", newline = "\n") as fastq_out: #Non-windows
newline is important for MIXCR!
 cur_line = 0
 cur_seq = 1
 modified_prefix = "@" + header_prefix + "_"

 for line in fastq_in:
 line = line.strip()

 if not line.startswith("@") and cur_line == 0:
 fastq_out.write(line + "\n") #Write any pre-data comment
lines and move on
 continue

 if line.startswith("@") and cur_line % 4 == 0:
 if keep_illumina_pos_and_read:
 read_num = ""
 if len(line.split(" ")) > 1:
 illumina_read = line.split(" ")[1]

 103

 read_num = "_R" +
illumina_read.split(":")[0]

 line = line.split(" ")[0]

 illumina_fields = line.split(":")
 lane_xy = ":".join(illumina_fields[4:7])
 cur_header = modified_prefix + lane_xy + read_num

 fastq_out.write(cur_header + "\n")

 else:
 fastq_out.write(modified_prefix + str(cur_seq) +
"\n")

 cur_seq += 1

 else:
 fastq_out.write(line + "\n")

 cur_line += 1

def Concat_FASTQ(filenames, output_filename, rename_headers = None, keep_illumina_pos_and_read =
True):
 """Concatenates all FASTQs in filenames with the ability to modify read headers,
optionally keeping Illumina info.

 Parameters

 filenames: list of str
 File names of the input FASTQ files to concatenate.
 output_filename: str
 Name for the merged output FASTQ file.
 rename_headers: list of str
 Optional; header prefixes to use for each file in filenames - must be the same
length as filenames.
 keep_illumina_pos_and_read: bool
 Whether to save the Illumina MiSeq/HiSeq flowcell lane, xy position, and read
direction (R1/R2) for all reads.
 If False, a simple read counter (starting at 1) is appended to the header prefix.
 Example: "@M02288:110:000000000-AE88A:1:1101:8994:1790 1:N:0:2" ->
"@Prefix_1101:8994:1790:R1"

 Returns

 success: bool
 Returns True if no errors occur and False otherwise.
 """

 for fastq_file in filenames:
 if not os.path.exists(fastq_file):
 print("Error in Concat_FASTQ - can't find input file: " + fastq_file)
 return False

 if rename_headers is not None:
 if not all([hasattr(rename_headers, "__iter__"), len(rename_headers) ==
len(filenames)]):
 print("Error in Concat_FASTQ - rename_headers must be a list of the same
length as filenames.")
 return False

 with open(output_filename, "w", newline = "\n") as fastq_out:
 if rename_headers is not None:
 for fastq, renamed_header in zip(filenames, rename_headers):

 104

 Rename_FASTQ_Headers(fastq, "temp_renamed_headers.fastq",
renamed_header, keep_illumina_pos_and_read)

 with open("temp_renamed_headers.fastq", "r") as fastq_in:
 for line in fastq_in:
 line = line.strip()
 fastq_out.write(line + "\n")

 try:
 os.remove("temp_renamed_headers.fastq")
 except:
 print("Warning in Concat_FASTQ - couldn't delete
temporary file.")

 else:
 for fastq in filenames:
 with open(fastq, "r") as fastq_in:
 for line in fastq_in:
 line = line.strip()
 fastq_out.write(line + "\n")

 return True

def FASTQ_to_FASTA(filename, output_filename = None, seqs_to_upper = False, remove_ambig_seqs =
False, line_maxlen = 0):
 """Converts a FASTQ sequence file to FASTA, optionally with ambiguous N-containing
sequences removed.

 Parameters

 filename: str
 Filename of the FASTQ file to convert.
 output_filename: str or None
 Name for the converted FASTA output file; if None, the FASTQ extension is
replaced with ".fasta".
 seqs_to_upper: bool
 If True, convert all sequence characters to uppercase (default is False).
 remove_ambig_seqs: bool
 If True, sequences containing any ambiguous bases (N) will be dropped from the
output FASTA (default is False).
 line_maxlen: int
 Number of characters per sequence-containing line to write for the output FASTA;
default of 0 means no limit.
 """

 if output_filename is None:
 output_filename = ".".join(filename.split(".")[:-1]) + ".fasta"

 line_maxlen = line_maxlen if isinstance(line_maxlen, int) and line_maxlen >= 0 else 0

 headers = []
 sequences = []

 with open(filename, "r") as fastq_file:
 cur_line = 0

 for line in fastq_file:
 line = line.strip()

 if not line.startswith("@") and cur_line == 0:
 continue #In case the FASTQ file doesn't immediately start off
with a sequence, move on to the next line

 if line.startswith("@") and cur_line % 4 == 0:
 headers.append(">" + line[1:])

 105

 if cur_line % 4 == 1:
 if seqs_to_upper:
 line = line.upper()

 sequences.append(line)

 cur_line += 1

 with open(output_filename, "w", newline = "\n") as fasta_file: #Non-windows newline is
important for MIXCR!
 for header, sequence in zip(headers, sequences):
 if remove_ambig_seqs and "N" in sequence.upper():
 continue

 fasta_file.write(header + "\n")

 if line_maxlen == 0:
 fasta_file.write(sequence + "\n")
 else:
 for i in range(0, len(sequence), line_maxlen):
 sub_seq = sequence[i : i + line_maxlen]
 fasta_file.write(sub_seq + "\n")

#########Repertoire utilities

import pandas
import os

compartment_types = {
 "PBMC": (),
 "BMMC": (),
 "Memory": (),
 "PlasmaCell": (),
 "Plasmablast": ()
}

clone_agg_funcs = {
 "CDR3_NT": "top",
 "CDR1_AA": "top",
 "CDR2_AA": "top",
 "CDR3_AA": "top",
 "VGene": "top",
 "JGene": "top",
 "Isotype": "top",
 "V_SHM": "mean",
 "J_SHM": "mean",
 "Compartment": "multiple",
 "Sample": "multiple",
 "Donor": "uniques"
}

default_clonotyping_params = {
 "identity": 0.96,
 "min_len": 5,
 "method": "usearch",
 "max_accepts": 0,
 "max_rejects": 0 #, "require_same_V_gene" (or family): False,
"require_same_J_gene" (or family): False
}

def Repertoire_Stats(clone_df):
 pass

 106

def Group_Clones(seq_df, clone_col = "CloneID", agg_funcs = clone_agg_funcs, read_count_col =
None, descending = True,
 clone_count_col_out = "Clustered", clone_freq_col_out =
"Frequency"):
 """Groups a DataFrame of reads together by clone ID into a DataFrame of clones.
 Allows customization of clone feature aggregation and sorting by clone prevalence.
 By default Group_Clones does not take into account read counts since data from cDNA IgSeq
can be skewed during PCR.
 Read information columns to use and the functions for aggregation are defined by the
agg_funcs argument.
 Special functions for aggregation are:
 "top": picks the most common value for a feature (most common gene called out of
all genes called for a clone).
 "multiple": yields "Multiple" if a clone feature has more than one unique value,
else returns the sole value.
 "uniques": gives the number of unique values found for a clone (for example, 3 if
three donors share a clone).
 Any other functions found in agg_funcs must be usable by pandas agg() function (examples:
"mean", "sum", "count").

 Parameters

 seq_df: pandas.DataFrame
 Sequence dataframe containing sequences to be clustered by clone ID.
 clone_col: str
 Column name containing the clonotype ID for each sequence; default is "CloneID".
 agg_funcs: dict of {str: str or function}
 Dictionary of column name to aggregation function to be used for the feature; for
default see clone_agg_funcs.
 read_count_col: str or None
 Column containing the counts per read to use for calculating clonotype abundance.
 If not provided, read counts are discarded; default is None, since cDNA IgSeq
read counts are biased by PCR.
 descending: bool
 Whether to sort the clones by descending clone relative frequency / abundance;
default is True.
 clone_count_col_out: str
 Name of output column in clone_df with the number of reads aggregated per clone;
default is "Clustered".
 clone_freq_col_out: str
 Name of output column in clone_df with the clone abundance/frequency (from 0.0 to
1.0); default is "Frequency".

 Returns

 clone_df: pandas.DataFrame
 Pandas DataFrame containing the aggregated clone members and their properties.
 """

 if clone_col not in seq_df.columns:
 print("Error in Group_Clones: clone ID column \"{0}\" not found in sequence
DataFrame!".format(clone_col))
 return None

 agg_dict = {}
 for feature_col in agg_funcs:
 if feature_col in seq_df:
 agg_dict[feature_col] = agg_funcs[feature_col]

 selected_cols = [clone_col] + [col for col in agg_dict]
 read_feature_df = seq_df[selected_cols]
 total_initial_reads = len(read_feature_df)

 read_feature_df = read_feature_df[read_feature_df[clone_col].notnull()]
 cur_reads = len(read_feature_df)

 107

 if cur_reads < total_initial_reads:
 dropped = total_initial_reads - cur_reads
 print("{0} reads dropped with no clone ID ({1:.1%} of total).".format(dropped,
(dropped / total_initial_reads)))

 top_lambda = lambda x: x.value_counts().index[0]
 has_multiple_lambda = lambda x: "Multiple" if len(x.drop_duplicates()) > 1 else
x.drop_duplicates().tolist()[0]
 count_unique_lambda = lambda x: len(x.drop_duplicates())

 clone_aggregator = {clone_col: "count"}

 for col, func in agg_dict.items():
 if col in read_feature_df.columns:
 if col == read_count_col:
 continue

 if isinstance(func, str) and "top" in func.lower():
 read_feature_df[col] = read_feature_df[col].fillna("")
 clone_aggregator[col] = top_lambda

 elif isinstance(func, str) and "multiple" in func.lower():
 clone_aggregator[col] = has_multiple_lambda

 elif isinstance(func, str) and "unique" in func.lower():
 clone_aggregator[col] = count_unique_lambda

 else:
 clone_aggregator[col] = func

 clone_df = read_feature_df.groupby([clone_col]).agg(clone_aggregator)
 clone_df = clone_df.rename(columns = {clone_col: clone_count_col_out})

 if read_count_col is not None and read_count_col in read_feature_df.columns:
 clone_df[clone_count_col_out] =
read_feature_df.groupby([clone_col])[read_count_col].sum()

 if descending:
 clone_df = clone_df.sort_values([clone_count_col_out], ascending = [False])

 if clone_freq_col_out is not None:
 total_counts = float(clone_df[clone_count_col_out].sum())
 clone_df[clone_freq_col_out] = clone_df[clone_count_col_out].astype(float) /
total_counts

 clone_df = clone_df.reset_index()

 return clone_df

def Clonotype_Sequences(seq_df, feature_col = "CDR3_NT", clonotyping_params =
default_clonotyping_params,
 clone_col_out = None, for_rarefaction = False,
usearch_loc = usearch_exe):
 """Clonotypes sequences by gene feature(s) such as the nucleotide CDR3 sequence, returning
a column of the determined clone IDs.
 Currently the only available clonotyping method is "usearch".

 By default function will return the seq_df with a new column containing the clone IDs, but
can also return the count of total clones
 as an int by setting for_rarefaction to True (faster return when clonotyping many
subsamples during rarefaction analysis).

 Parameters

 108

 seq_df: pandas.DataFrame
 Input sequence dataframe to be clonotyped.
 method: str
 Method for determining clonal membership; current implementation only allows for
"usearch".
 Default: "usearch"
 parameters: dict
 A dict of str parameter names to values used to customize clonotype
identification.
 Default: see default_clonotyping_params
 for_rarefaction: bool
 For clone vs read count rarefaction analysis, only return the number of unique
clones as an int (more efficient quick return).
 Default: False; the full seq_df with the additional clone identification column
will be returned.
 usearch_loc: str
 Path location of the binary executable for usearch clonotyping.
 Default: see usearch_exe_loc
 uc_dtypes: dict of str: type
 Column names and datatypes for processing the .uc tab-separated output file
produced by usearch.
 Default: see usearch_col_dtypes

 Returns

 seq_df: pandas.DataFrame
 The original input seq_df plus the additional column of clone membership ID for
each sequence.

 OR

 total_clones: int
 The total number of unique clones in the dataframe (returned when for_rarefaction
= True)
 """

 method_funcs = ["usearch"]

 if "method" not in clonotyping_params:
 print("Warning in Clonotype_Sequences: no clonotyping method given, defaulting to
USEARCH.")
 clonotyping_method = "usearch"

 elif isinstance(clonotyping_params["method"], str) and
clonotyping_params["method"].lower() not in method_funcs:
 print("Error in Clonotype_Sequences: invalid method \"{0}\"; options
are:".format(clonotyping_params["method"]))
 for m in method_funcs:
 print("--" + m)

 return None

 else:
 clonotyping_method = clonotyping_params["method"].lower()

 if "identity" not in clonotyping_params:
 print("Warning in Clonotype_Sequences: no sequence identity % given, defaulting
to 0.96.")
 identity = 0.96

 else:
 if not 0.0 < clonotyping_params["identity"] < 1.0:
 if 0 < clonotyping_params["identity"] < 100:
 identity = clonotyping_params["identity"] / 100.0

 109

 else:
 print("Error in Clonotype_Sequences: \"identity\" should be a
float between 0.0 and 1.0!")
 return None

 else:
 identity = clonotyping_params["identity"]

 column_not_found_error = "Error in Clonotype_Sequences: column \"{0}\" not found in
sequence DataFrame!"
 if hasattr(feature_col, "__iter__") and not isinstance(feature_col, str):
 for col in feature_col:
 if col not in seq_df.columns:
 print(column_not_found_error.format(col))
 return None

 seqs = seq_df[feature_col].sum(axis = 1)
 cols_clonotyped = "".join(feature_col)

 elif isinstance(feature_col, str):
 if feature_col not in seq_df.columns:
 print(column_not_found_error.format(feature_col))
 return None

 seqs = seq_df[feature_col]
 cols_clonotyped = feature_col

 else:
 print("Error in Clonotype_Sequences: feature_col to clonotype by must be a column
name / list of column names!")
 return None

 if clone_col_out is None:
 clone_col_out = cols_clonotyped + "_CloneID"

 elif isinstance(clone_col_out, str):
 if clone_col_out in seq_df.columns:
 print("Error in Clonotype_Sequences: output column \"{0}\" already in
DataFrame!".format(clone_col_out))
 return None

 if "_cloneid" not in clone_col_out.lower():
 clone_col_out = clone_col_out + "_CloneID"

 else:
 print("Warning in Clonotype_Sequences: clone_col_out should be a column name or
None to append \"_CloneID\"!")
 clone_col_out = cols_clonotyped + "_CloneID"
 print("Defaulting to \"{0}\"!".format(clone_col_out))

 if "min_len" not in clonotyping_params:
 min_len = 5

 elif isinstance(clonotyping_params["min_len"], int) or
isinstance(clonotyping_params["min_len"], float):
 if clonotyping_params["min_len"] < 1:
 print("Warning in Clonotype_Sequences: parameter \"min_len\" should be an
int >0; defaulting to 5!")
 min_len = 5

 else:
 min_len = int(clonotyping_params["min_len"])

 else:

 110

 print("Warning in Clonotype_Sequences: parameter \"min_len\" should be an int >0;
defaulting to 5!")
 min_len = 5

 if clonotyping_method == "usearch":
 if "max_accepts" in clonotyping_params:
 if isinstance(clonotyping_params["max_accepts"], int):
 max_accepts = clonotyping_params["max_accepts"]

 else:
 print("Warning in Clonotype_Sequences: parameter \"max_accepts\"
should be an int; defaulting to 0!")
 max_accepts = 0

 else:
 max_accepts = 0

 if "max_rejects" in clonotyping_params:
 if isinstance(clonotyping_params["max_rejects"], int):
 max_rejects = clonotyping_params["max_rejects"]

 else:
 print("Warning in Clonotype_Sequences: parameter \"max_rejects\"
should be an int; defaulting to 0!")
 max_rejects = 0

 else:
 max_rejects = 0

 clone_IDs = Clonotype_Usearch(seqs, identity = identity, max_accepts =
max_accepts, max_rejects = max_rejects,
 min_len = min_len,
usearch_loc = usearch_loc, for_rarefaction = for_rarefaction)

 if clone_IDs is None:
 print("Error in Clonotype_Sequences: clonotyping function failed!")
 return None

 if not for_rarefaction:
 clone_IDs = clone_IDs.rename(columns = {"Clone_ID": clone_col_out})
 seq_df = seq_df.join(clone_IDs, how = "left")

 return seq_df

 else:
 return clone_IDs

def Clonotype_Usearch(seqs, identity = 0.96, max_accepts = 0, max_rejects = 0, min_len = 5,
usearch_loc = usearch_exe,
 for_rarefaction = False, delete_temp = True):
 """Clonotypes sequences via Usearch, returning the read clone IDs or the number of clones
for rarefaction analysis.
 By default returns a Series mapping the reads to clone IDs.

 Parameters

 seqs: pandas.Series
 Input sequences with the appropriate index to merge resulting clone IDs back to
original reads.
 identity: float or int
 Sequence similarity cutoff for grouping clones; must be a float between 0.0 and
1.0 or an int between 0 and 100.
 Default is 0.96 (sequences having a 96% similarity or more can be grouped
together).
 max_accepts: int

 111

 Parameter passed to Usearch cluster_fast as maxaccepts; should be an int >= 0 (0
being disabled); default is 0.
 max_rejects: int
 Parameter passed to Usearch cluster_fast as maxrejects; should be an int >= 0 (0
being disabled); default is 0.
 min_len: int
 Minimum length of sequence to be clonotyped for placement in a clonal group;
default is 5.
 usearch_loc: str
 Path / location of the binary executable for Usearch; for default see
usearch_exe.
 for_rarefaction: bool
 Returns only the number of clones for faster clone vs input read rarefaction
analysis; default is False.
 delete_temp: bool
 If True, the temporary .fasta Usearch input file and Usearch output .uc files
will be removed; default is True.

 Returns

 clones or total_clones: pandas.DataFrame or int
 The DataFrame mapping read ID to clone ID for the input sequences, or the total
number of clones identified.
 """

 if not os.path.exists(usearch_loc):
 print("Error in Clonotype_Usearch: Usearch executable not found!")
 return None

 uc_col_names = ("Type", "Clone_ID", "Len_Size", "Identity_to_Centroid", "Orientation",
 "NA1", "NA2", "NA3", "Read_ID", "Centroid_Label")

 uc_col_dtypes = {
 "Type": str,
 "Clone_ID": int,
 "Len_Size": int,
 "Identity_to_Centroid": str,
 "Orientation": str,
 "NA1": str,
 "NA2": str,
 "NA3": str,
 "Read_ID": int,
 "Centroid_Label": str
 }

 cluster_seqs_file = "to_cluster.fasta"
 uc_file = "usearch_cluster_IDs.uc"

 with open(cluster_seqs_file, "w") as cluster_seqs_fasta:
 for idx, seq in seqs.iteritems():
 cluster_seqs_fasta.write(">" + str(idx) + "\n" + str(seq) + "\n")

 if not os.path.exists(cluster_seqs_file):
 print("Error in Clonotype_Usearch: error writing FASTA input file for Usearch!")
 return None

 usearch_call = "{0} --cluster_fast {1}".format(usearch_loc, cluster_seqs_file)
 usearch_call += " --id {0} --maxaccepts {1} --maxrejects {2}".format(identity,
max_accepts, max_rejects)
 usearch_call += " --minseqlength {0} --top_hit_only --uc {1}".format(min_len, uc_file)
 os.system(usearch_call)

 if not os.path.exists(uc_file):
 print("Error in Clonotype_Usearch: Usearch .uc results file was not found, error
occurred during clonotyping!")

 112

 return None

 clones = pandas.read_csv(uc_file, sep = "\t", header = None, names = uc_col_names, dtype =
uc_col_dtypes)

 if delete_temp:
 os.remove(cluster_seqs_file)
 os.remove(uc_file)

 if not for_rarefaction:
 clones = clones[clones["Type"] != "C"]
 clones = clones[["Clone_ID", "Read_ID"]]
 total_clones = len(clones)
 reads_per_clone = len(seqs) / total_clones

 print("{0} clonotypes identified; average of {1:.1f} reads per
clone.".format(total_clones, reads_per_clone))

 clones = clones.set_index("Read_ID")
 return clones

 else:
 total_clones = len(clones[clones["Type"] == "S"])
 return total_clones

#########Mass Spec utilities

import os

def DataFrame_to_FASTA(seq_df, filename, header_prefix = None, seq_col = "Sequence", header_cols =
"ReadID", overwrite = False):
 """

 Parameters

 Returns

 success: bool
 Whether the FASTA file was successfully written or not.
 """

 if os.path.exists(filename) and not overwrite:
 print("Error in DataFrame_to_FASTA: " + filename + " already exists!")
 print("Pick a new file name, or run DataFrame_to_FASTA with overwrite = True.")
 return False

 if seq_col not in seq_df.columns:
 print("Error in DataFrame_to_FASTA: sequence column \"" + seq_col + "\" not found
in DataFrame!")
 return False

 if header_prefix is None:
 header_prefix = ">"

 elif isinstance(header_prefix, str):
 if not header_prefix.startswith(">"):
 header_prefix = ">" + header_prefix

 else:
 print("Error in DataFrame_to_FASTA: header_prefix must be a string or left as the
default None for no prefix!")
 return False

 113

 fasta_df = seq_df[[seq_col]]
 fasta_df["Header"] = header_prefix

 if hasattr(header_cols, "__iter__") and not isinstance(header_cols, str):
 for field in header_cols:
 if field in seq_df.columns:
 pass

 else:
 pass

 elif isinstance(header_cols, "str") and header_cols in seq_df.columns:
 pass

 with open(filename, "w", newline = "\n") as fasta:
 for header, seq in zip(seq_df[header_cols], seq_df[seq_col]):
 fasta.write(">" + header + "\n")
 fasta.write(seq + "\n")

 success = os.path.exists(filename)
 return success

#########Constants
#Constant region VH-only primer sequences used to identify additional isotypes missed during
annotation
VHonly_primer_IgG = "TCCACCAAGGGCCCAT"
VHonly_primer_IgA = "CTTCTTCCCCCAGGAG"
VHonly_primer_IgM = "AGTGCATCCGCCCCAA"

#Constant region pairing primer sequences used to identify additional isotypes missed during
annotation
pairing_primer_IgA = "ACCAGCCCCAAGCAGGGCCC"
pairing_primer_IgG = "TCCACCAAGGGCCCATC"
pairing_primer_IgM = "AGTGCATCCGCCCCAACCCA"

#By default, remove sequences with a stop codon in any gene region or a frameshift in any region
but FR4 (primer site)
no_stop_feats = ("FR1_AA", "CDR1_AA", "FR2_AA", "CDR2_AA", "FR3_AA", "CDR3_AA", "FR4_AA")
no_frameshift_feats = ("FR1_AA", "CDR1_AA", "FR2_AA", "CDR2_AA", "FR3_AA", "CDR3_AA")

#Columns and data types to parse USEARCH tab-separated .uc output files
usearch_col_names = ("Type", "ClusterID", "Len_Size", "Identity_to_Centroid", "Orientation",
 "NA1", "NA2", "NA3", "Query_Label", "Centroid_Label")

usearch_col_dtypes = {
 "Type": str,
 "ClusterID": int,
 "Len_Size": int,
 "Identity_to_Centroid": str,
 "Orientation": str,
 "NA1": str,
 "NA2": str,
 "NA3": str,
 "Query_Label": int,
 "Centroid_Label": str
}

MIXCR_header_dtypes = {
 "cloneId": float,
 "descrR1": str,
 "bestVGene": str,
 "bestDGene": str,
 "bestJGene": str,
 "bestCGene": str,

 114

 "vBestIdentityPercent": float,
 "jBestIdentityPercent": float,
 "nSeqFR1": str,
 "nSeqFR2": str,
 "nSeqFR3": str,
 "nSeqFR4": str,
 "nSeqCDR1": str,
 "nSeqCDR2": str,
 "nSeqCDR3": str,
 "aaSeqFR1": str,
 "aaSeqFR2": str,
 "aaSeqFR3": str,
 "aaSeqFR4": str,
 "aaSeqCDR1": str,
 "aaSeqCDR2": str,
 "aaSeqCDR3": str
}

MIXCR_headers_renamed = {
 "cloneId": "CloneID",
 "descrR1": "ReadID",
 "bestVGene": "VGene",
 "bestDGene": "DGene",
 "bestJGene": "JGene",
 "bestCGene": "CGene",
 "vBestIdentityPercent": "V_Identity",
 "dBestIdentityPercent": "D_Identity",
 "jBestIdentityPercent": "J_Identity",
 "nSeqFR1": "FR1_NT",
 "nSeqFR2": "FR2_NT",
 "nSeqFR3": "FR3_NT",
 "nSeqFR4": "FR4_NT",
 "nSeqCDR1": "CDR1_NT",
 "nSeqCDR2": "CDR2_NT",
 "nSeqCDR3": "CDR3_NT",
 "aaSeqFR1": "FR1_AA",
 "aaSeqFR2": "FR2_AA",
 "aaSeqFR3": "FR3_AA",
 "aaSeqFR4": "FR4_AA",
 "aaSeqCDR1": "CDR1_AA",
 "aaSeqCDR2": "CDR2_AA",
 "aaSeqCDR3": "CDR3_AA"
}

#All Homo sapiens heavy/light V and J genes, as recorded by IMGT as of 06-17-2017
human_VH_genes = (
 "IGHV1-12", "IGHV1-14", "IGHV1-17", "IGHV1-18", "IGHV1-2", "IGHV1-24", "IGHV1-3", "IGHV1-
38-4",
 "IGHV1-45", "IGHV1-46", "IGHV1-58", "IGHV1-67", "IGHV1-68", "IGHV1-69", "IGHV1-69-2",
"IGHV1-69D",
 "IGHV1-8", "IGHV2-10", "IGHV2-26", "IGHV2-5", "IGHV2-70", "IGHV2-70D", "IGHV3-11", "IGHV3-
13",
 "IGHV3-15", "IGHV3-16", "IGHV3-19", "IGHV3-20", "IGHV3-21", "IGHV3-22", "IGHV3-23",
"IGHV3-23D",
 "IGHV3-25", "IGHV3-29", "IGHV3-30", "IGHV3-30-3", "IGHV3-30-5", "IGHV3-32", "IGHV3-33",
"IGHV3-33-2",
 "IGHV3-35", "IGHV3-36", "IGHV3-37", "IGHV3-38", "IGHV3-38-3", "IGHV3-41", "IGHV3-42",
"IGHV3-42D",
 "IGHV3-43", "IGHV3-43D", "IGHV3-47", "IGHV3-48", "IGHV3-49", "IGHV3-50", "IGHV3-52",
"IGHV3-53",
 "IGHV3-54", "IGHV3-57", "IGHV3-6", "IGHV3-60", "IGHV3-62", "IGHV3-63", "IGHV3-64", "IGHV3-
64D",
 "IGHV3-65", "IGHV3-66", "IGHV3-69", "IGHV3-7", "IGHV3-71", "IGHV3-72", "IGHV3-73", "IGHV3-
74",

 115

 "IGHV3-75", "IGHV3-76", "IGHV3-79", "IGHV3-9", "IGHV3-NL1", "IGHV4-28", "IGHV4-30-1",
"IGHV4-30-2",
 "IGHV4-30-4", "IGHV4-31", "IGHV4-34", "IGHV4-38-2", "IGHV4-39", "IGHV4-4", "IGHV4-55",
"IGHV4-59",
 "IGHV4-61", "IGHV4-80", "IGHV5-10", "IGHV5-10-1", "IGHV5-51", "IGHV5-78", "IGHV6-1",
"IGHV7-27",
 "IGHV7-40", "IGHV7-40D", "IGHV7-4-1", "IGHV7-56", "IGHV7-77", "IGHV7-81"
)

human_VL_genes = (
 "IGKV1-12", "IGKV1-13", "IGKV1-16", "IGKV1-17", "IGKV1-27", "IGKV1-33", "IGKV1-39",
"IGKV1-5",
 "IGKV1-6", "IGKV1-8", "IGKV1-9", "IGKV1-NL1", "IGKV1D-12", "IGKV1D-13", "IGKV1D-16",
"IGKV1D-17",
 "IGKV1D-33", "IGKV1D-39", "IGKV1D-43", "IGKV1D-8", "IGKV2-24", "IGKV2-28", "IGKV2-29",
"IGKV2-30",
 "IGKV2-40", "IGKV2D-26", "IGKV2D-28", "IGKV2D-29", "IGKV2D-30", "IGKV2D-40", "IGKV3-11",
"IGKV3-15",
 "IGKV3-20", "IGKV3D-11", "IGKV3D-15", "IGKV3D-20", "IGKV3D-7", "IGKV4-1", "IGKV5-2",
"IGKV6-21",
 "IGKV6D-21", "IGLV1-36", "IGLV1-40", "IGLV1-44", "IGLV1-47", "IGLV1-51", "IGLV10-54",
"IGLV2-11",
 "IGLV2-14", "IGLV2-18", "IGLV2-23", "IGLV2-8", "IGLV3-1", "IGLV3-10", "IGLV3-12", "IGLV3-
16", "IGLV3-19",
 "IGLV3-21", "IGLV3-22", "IGLV3-25", "IGLV3-27", "IGLV3-9", "IGLV4-3", "IGLV4-60", "IGLV4-
69", "IGLV5-37",
 "IGLV5-39", "IGLV5-45", "IGLV5-52", "IGLV6-57", "IGLV7-43", "IGLV7-46", "IGLV8-61",
"IGLV9-49"
)

human_JH_genes = ("IGHJ1", "IGHJ2", "IGHJ3", "IGHJ4", "IGHJ5", "IGHJ6")

human_JL_genes = ("IGKJ1", "IGKJ2", "IGKJ3", "IGKJ4", "IGKJ5", "IGLJ1", "IGLJ2", "IGLJ3", "IGLJ6",
"IGLJ7")

#Gene names to (int, int) indicating its relative start and end position in the human IGH locus
(see NCBI NG_001019)
human_VH_gene_locations = {
 "IGHVIII-82": (501, 792), "IGHV7-81": (5328, 5764), "IGHV4-80": (7159, 7562), "IGHV3-79":
(12253, 12705),
 "IGHVII-78-1": (14450, 14724), "IGHV5-78": (28799, 29233), "IGHVIII-76-1": (48276, 48582),
 "IGHV3-76": (52035, 52484), "IGHV3-75": (56198, 56667), "IGHVII-74-1": (58935, 59103),
"IGHV3-74": (69450, 69905),
 "IGHV3-73": (77192, 77653), "IGHV3-72": (89192, 89653), "IGHV3-71": (104727, 105188),
"IGHV2-70": (109325, 109768),
 "IGHV1-69D": (117815, 118253), "IGHV1-69-2": (142798, 143235), "IGHV3-69-1": (151730,
152182),
 "IGHV2-70D": (156328, 156771), "IGHV1-69": (165225, 165663), "IGHV1-68": (176059, 176538),
 "IGHVIII-67-4": (184948, 185253), "IGHVIII-67-3": (187457, 187731), "IGHVIII-67-2":
(193145, 193243),
 "IGHVII-67-1": (193803, 193952), "IGHV1-67": (199303, 199742), "IGHV3-66": (204880,
205330),
 "IGHVII-65-1": (208301, 208573), "IGHV3-65": (213813, 214307), "IGHV3-64": (222167,
222622),
 "IGHV3-63": (227665, 228132), "IGHVII-62-1": (229557, 229829), "IGHV3-62": (236760,
237215),
 "IGHV4-61": (240789, 241226), "IGHVII-60-1": (242372, 242640), "IGHV3-60": (248692,
249148),
 "IGHV4-59": (252665, 253096), "IGHV1-58": (257551, 257988), "IGHV3-57": (261131, 261436),
 "IGHV7-56": (270149, 270583), "IGHV4-55": (273794, 274229), "IGHV3-54": (278553, 279009),
 "IGHVII-53-1": (280421, 280690), "IGHV3-53": (287219, 287669), "IGHV3-52": (293519,
293969),
 "IGHVII-51-2": (295369, 295631), "IGHVIII-51-1": (296538, 296844), "IGHV5-51": (301168,
301603),

 116

 "IGHV3-50": (313790, 314245), "IGHVII-49-1": (315747, 316017), "IGHV3-49": (322948,
323409),
 "IGHV3-48": (342080, 342535), "IGHVIII-47-1": (348909, 349212), "IGHV3-47": (361311,
361766),
 "IGHVII-46-1": (364221, 364509), "IGHV1-46": (368793, 369230), "IGHV1-45": (372912,
373349),
 "IGHVII-44-2": (385964, 386200), "IGHVIV-44-1": (390575, 391003), "IGHVIII-44": (401952,
402128),
 "IGHVII-43-1": (407345, 407554), "IGHV3-43": (409625, 410082), "IGHV3-42": (416657,
417091),
 "IGHV3-41": (436761, 437216), "IGHVII-40-1": (439335, 439411), "IGHV7-40": (454784,
454986),
 "IGHV4-39": (458198, 458636), "IGHVIII-38-1": (462035, 462327), "IGHV3-38": (469402,
469851),
 "IGHV3-37": (483231, 483680), "IGHV3-36": (487114, 487576), "IGHV3-35": (490502, 490955),
 "IGHV7-34-1": (502612, 503045), "IGHV4-34": (506252, 506684), "IGHV3-33-2": (510799,
511247),
 "IGHVII-33-1": (512681, 512954), "IGHV3-33": (520101, 520554), "IGHV3-32": (523743,
524200),
 "IGHVII-30-21": (525641, 525897), "IGHV4-30-2": (530625, 531062), "IGHV3-30-2": (535512,
535960),
 "IGHVII-30-1": (537392, 537665), "IGHV3-30": (544812, 545265), "IGHV3-29": (548782,
549239),
 "IGHVII-28-1": (550659, 550913), "IGHV4-28": (555657, 556091), "IGHV7-27": (562109,
562522),
 "IGHVII-26-2": (565385, 565697), "IGHVIII-26-1": (570633, 570939), "IGHV2-26": (578507,
578950),
 "IGHVIII-25-1": (586538, 586779), "IGHV3-25": (590866, 591319), "IGHV1-24": (603362,
603799),
 "IGHV3-23": (611284, 611739), "IGHVIII-22-2": (615472, 615659), "IGHVII-22-1": (616717,
616985),
 "IGHV3-22": (622122, 622583), "IGHV3-21": (644830, 645283), "IGHVII-20-1": (667521,
667559),
 "IGHV3-20": (668954, 669409), "IGHV3-19": (683355, 683647), "IGHV1-18": (695010, 695446),
 "IGHV1-17": (705567, 706003), "IGHVIII-16-1": (709294, 709599), "IGHV3-16": (714689,
715142),
 "IGHVII-15-1": (716541, 716811), "IGHV3-15": (726262, 726723), "IGHV1-14": (734214,
734463),
 "IGHVIII-13-1": (737761, 738059), "IGHV3-13": (750353, 750805), "IGHV1-12": (757636,
757925),
 "IGHVIII-11-1": (759870, 760056), "IGHV3-11": (763261, 763710), "IGHV5-10-1": (771832,
772373),
 "IGHV3-64D": (791772, 792262), "IGHV3-7": (817741, 818196), "IGHV3-6": (824347, 824801),
 "IGHVIII-5-2": (834485, 834745), "IGHVIII-5-1": (840581, 840679), "IGHV2-5": (842000,
842443),
 "IGHV7-4-1": (854764, 855200), "IGHV4-4": (867989, 868423), "IGHV1-3": (874813, 875250),
 "IGHVIII-2-1": (878510, 878811), "IGHV1-2": (893326, 893763), "IGHVII-1-1": (934954,
935407),
 "IGHV6-1": (940144, 940591)
}

human_JH_gene_locations = {
 "IGHJ1": (1014887, 1014940), "IGHJ2": (1015094, 1015148), "IGHJ2P": (1015493, 1015552),
"IGHJ3": (1015709, 1015760),
 "IGHJ4": (1016083, 1016132), "IGHJ5": (1016481, 1016533), "IGHJ3P": (1016880, 1016930),
"IGHJ6": (1017085, 1017149)
}

#Regex for potentially N-linked glycosylation sites with the mammalian consensus sequence: Asn +
NOT Pro + Ser or Thr
N_linked_gly_consensus = "N[^P][ST]"

#########Repertoire Graphing / Visualization Dashboard
import numpy

 117

import json
import pandas
import math
from scipy.stats import gaussian_kde
from squarify import squarify
from itertools import cycle, combinations

from bokeh.plotting import figure
from bokeh.models import (Range1d, HoverTool, ColumnDataSource, CustomJS, ColorBar,
LinearColorMapper,
 NumeralTickFormatter, FixedTicker,
BasicTickFormatter)
from bokeh.models.widgets import Select
from bokeh.colors import RGB
from bokeh.palettes import viridis, all_palettes
from bokeh.io import save, show, output_file
from bokeh.io.export import export_png
from bokeh.embed import components
from bokeh.layouts import column, layout, gridplot, Spacer
from bokeh.transform import linear_cmap
from bokeh.util.hex import hexbin

vgene_colors = {
 "IGHV1-17": RGB(255, 0, 0),
 "IGHV1-18": RGB(255, 24, 0),
 "IGHV1-2": RGB(255, 47, 0),
 "IGHV1-24": RGB(255, 71, 0),
 "IGHV1-3": RGB(255, 95, 0),
 "IGHV1-45": RGB(255, 118, 0),
 "IGHV1-46": RGB(255, 142, 0),
 "IGHV1-58": RGB(255, 165, 0),
 "IGHV1-67": RGB(255, 195, 0),
 "IGHV1-68": RGB(255, 219, 0),
 "IGHV1-69": RGB(254, 241, 0),
 "IGHV1-8": RGB(244, 255, 0),
 "IGHV2-10": RGB(221, 255, 0),
 "IGHV2-26": RGB(197, 255, 0),
 "IGHV2-5": RGB(173, 255, 0),
 "IGHV2-70": RGB(150, 255, 0),
 "IGHV3-11": RGB(120, 255, 0),
 "IGHV3-13": RGB(97, 255, 0),
 "IGHV3-15": RGB(73, 255, 0),
 "IGHV3-16": RGB(49, 255, 0),
 "IGHV3-19": RGB(26, 255, 0),
 "IGHV3-20": RGB(6, 255, 4),
 "IGHV3-21": RGB(0, 255, 22),
 "IGHV3-22": RGB(0, 255, 45),
 "IGHV3-23": RGB(0, 255, 75),
 "IGHV3-25": RGB(0, 255, 98),
 "IGHV3-30": RGB(0, 255, 122),
 "IGHV3-33": RGB(0, 255, 146),
 "IGHV3-35": RGB(0, 255, 169),
 "IGHV3-36": RGB(0, 255, 193),
 "IGHV3-38": RGB(0, 255, 217),
 "IGHV3-43": RGB(0, 255, 246),
 "IGHV3-47": RGB(0, 240, 255),
 "IGHV3-48": RGB(0, 217, 255),
 "IGHV3-49": RGB(0, 193, 255),
 "IGHV3-52": RGB(0, 169, 255),
 "IGHV3-53": RGB(0, 146, 255),
 "IGHV3-60": RGB(0, 122, 255),
 "IGHV3-62": RGB(0, 99, 255),
 "IGHV3-64": RGB(0, 69, 255),
 "IGHV3-65": RGB(0, 45, 255),
 "IGHV3-66": RGB(0, 22, 255),

 118

 "IGHV3-7": RGB(6, 4, 255),
 "IGHV3-71": RGB(25, 0, 255),
 "IGHV3-72": RGB(49, 0, 255),
 "IGHV3-73": RGB(73, 0, 255),
 "IGHV3-74": RGB(96, 0, 255),
 "IGHV3-76": RGB(126, 0, 255),
 "IGHV3-9": RGB(149, 0, 255),
 "IGHV4-28": RGB(173, 0, 255),
 "IGHV4-31": RGB(197, 0, 255),
 "IGHV4-34": RGB(220, 0, 255),
 "IGHV4-39": RGB(244, 0, 255),
 "IGHV4-4": RGB(254, 0, 241),
 "IGHV4-55": RGB(255, 0, 219),
 "IGHV4-59": RGB(255, 0, 189),
 "IGHV4-61": RGB(255, 0, 166),
 "IGHV5-51": RGB(255, 0, 142),
 "IGHV5-78": RGB(255, 0, 118),
 "IGHV6-1": RGB(255, 0, 95),
 "IGHV7-27": RGB(255, 0, 71),
 "IGHV7-81": RGB(255, 0, 47)
}

vfamily_colors = {
 "IGHV1": RGB(254, 131, 0),
 "IGHV2": RGB(185, 255, 0),
 "IGHV3": RGB(27, 164, 172),
 "IGHV4": RGB(232, 0, 229),
 "IGHV5": RGB(150, 0, 210),
 "IGHV6": RGB(255, 0, 95),
 "IGHV7": RGB(35, 140, 20)
}

jgene_colors = {
 "IGHJ1": RGB(57, 59, 121),
 "IGHJ2": RGB(82, 84, 163),
 "IGHJ3": RGB(107, 110, 207),
 "IGHJ4": RGB(156, 158, 222),
 "IGHJ5": RGB(99, 121, 57),
 "IGHJ6": RGB(140, 162, 82),
 "IGHJ2P": RGB(181, 207, 107)
}

isotype_colors = {
 "IgG": RGB(55, 126, 184),
 "IgG1": RGB(55, 126, 184),
 "IgG2": RGB(55, 126, 184),
 "IgG3": RGB(55, 126, 184),
 "IgG4": RGB(55, 126, 184),
 "IGHG": RGB(55, 126, 184),
 "IGHG1": RGB(55, 126, 184),
 "IGHG2": RGB(55, 126, 184),
 "IGHG3": RGB(55, 126, 184),
 "IGHG4": RGB(55, 126, 184),
 "IgA": RGB(228, 26, 28),
 "IgA1": RGB(228, 26, 28),
 "IgA2": RGB(228, 26, 28),
 "IGHA": RGB(228, 26, 28),
 "IGHA1": RGB(228, 26, 28),
 "IGHA2": RGB(228, 26, 28),
 "IgM": RGB(77, 175, 74),
 "IGHM": RGB(77, 175, 74),
 "IgD": RGB(152, 78, 163),
 "IGHD": RGB(152, 78, 163),
 "IgE": RGB(255, 127, 0),
 "IGHE": RGB(255, 127, 0)

 119

}

def Shannon_Wiener_Index(clone_counts):
 total_clone_counts = float(sum(clone_counts))
 sw_index = 0.0
 for clone in clone_counts:
 clone_freq = clone / total_clone_counts
 sw_index -= (clone_freq * numpy.log(clone_freq))
 return sw_index

def Hill_Diversity_Index(clone_counts, N = (0.0, 10.0), step = 0.1):
 if hasattr(N, "__iter__"):
 if len(N) != 2 or N[1] <= N[0]:
 print("Error in Hill_Diversity_Index: if N is an iterable it must be of
length 2 for the start/end orders.")
 return None
 chunks = numpy.floor(N[1] / step) + 1
 orders = numpy.linspace(start = N[0], stop = N[1], num = chunks)
 else:
 orders = [N]
 total_clone_counts = float(sum(clone_counts))
 hill_indices = []
 for order in orders:
 hill_index = 0.0
 if order == 0.0:
 hill_index = len(clone_counts) #Hill index at zero is simply the species
richness (total number of clones)
 elif order == 1.0:
 sw_index = Shannon_Wiener_Index(clone_counts)
 hill_index = numpy.exp(sw_index) #Hill index at one is the exponential of
the Shannon-Wiener index
 else:
 for clone in clone_counts:
 clone_freq = clone / total_clone_counts
 hill_index += (clone_freq ** order)
 order_exponent = 1.0 / (1.0 - order)
 hill_index = hill_index ** order_exponent
 order_index = (order, hill_index)
 hill_indices.append(order_index)
 if len(hill_indices) == 1:
 return hill_indices[0]
 else:
 return hill_indices

class Cyrcos_Repertoire_Comparison_Plot(object):
 def __init__(self, clone_dfs, title = "", top_clones = None, normalize_segments = True,
gap_size = 10,
 start_pos = "top", clockwise = True, offset_segments = None,
segment_face_colors = "Category10",
 segment_outline_colors = None, fade_segments = True, clone_col =
"CloneID", count_col = "Clustered",
 sample_col = "Sample", figsize = (1000, 1000)):
 """Creates a Circos-like Chord graph for comparing multiple immune repertoire
clonotype profiles."""

 #Plot visual aspect definitions
 segment_width = 0.07 #Thickness of the circle arc segments
 offset_shift_amount = 0.1 #Increase in radius for segments to offset
 min_segment_alpha = 0.2

 #Gather the samples and their respective DataFrames
 df_cols = [clone_col, count_col]
 self.samples = []
 comparison_dfs = []

 120

 if isinstance(clone_dfs, dict): #Input is a dictionary of {sample_name:
DataFrame}
 for sample in clone_dfs:
 self.samples.append(sample)
 clone_df = clone_dfs[sample][df_cols].sort_values([count_col],
ascending = [False])

 if top_clones is not None:
 clone_df = clone_df.head(top_clones)

 comparison_dfs.append(clone_df)

 else: #Input is a single DataFrame with all samples; sample_col gives the sample
to split on
 df_cols.append(sample_col)
 for sample, df in clone_dfs[df_cols].groupby([sample_col]):
 self.samples.append(sample)
 clone_df = df.sort_values([count_col], ascending = [False])

 if top_clones is not None:
 clone_df = clone_df.head(top_clones)

 comparison_dfs.append(clone_df)

 self.total_samples = len(self.samples)

 #Create the figure plot
 self.Create_Plot(title = title, figsize = figsize)

 sample_clone_counts = [len(df) for df in comparison_dfs]
 total_gap_size = gap_size * self.total_samples
 total_segment_len = 360 - total_gap_size

 if normalize_segments:
 self.segment_lengths = [total_segment_len / self.total_samples] *
self.total_samples
 else:
 total_clones = sum(sample_clone_counts)
 self.segment_lengths = [clones / total_clones * total_segment_len for
clones in sample_clone_counts]

 #Convert description of the first segment's start location to the angular
position in degrees:
 start_pos = start_pos.lower()
 if "top" in start_pos or "north" in start_pos:
 start_position = 90
 elif "right" in start_pos or "east" in start_pos:
 start_position = 0
 elif "bottom" in start_pos or "south" in start_pos:
 start_position = -90
 elif "left" in start_pos or "west" in start_pos:
 start_position = -180
 else:
 start_position = 90

 #Shift the start position to align the first gap's center with the start
position.
 self.direction = "clock" if clockwise else "anticlock"
 start_position -= gap_size / 2 if clockwise else 0

 radius = 0.8
 self.inner_radii = [radius] * self.total_samples

 if offset_segments is not None:
 if isinstance(offset_segments, int):

 121

 self.inner_radii[offset_segments] += offset_shift_amount

 elif hasattr(offset_segments, "__iter__") and not
isinstance(offset_segments, str):
 for seg in offset_segments:
 self.inner_radii[seg] += offset_shift_amount

 self.outer_radii = [r + segment_width for r in self.inner_radii]

 if isinstance(segment_face_colors, str):
 if segment_face_colors in all_palettes:
 self.segment_face_colors =
all_palettes[segment_face_colors][self.total_samples]
 else:
 self.segment_face_colors = [segment_face_colors] *
self.total_samples
 elif hasattr(segment_face_colors, "__iter__") and not
isinstance(segment_face_colors, str):
 if len(segment_face_colors) == self.total_samples:
 self.segment_face_colors = segment_face_colors
 else:
 raise IndexError("List provided to segment_face_colors is not the
same length as total segments!")
 else:
 print("Warning: segment_face_colors should be a colormap or list of
colors for each segment!")
 print("Defaulting to \"Category10\"...")
 self.segment_face_colors = all_palettes["Category10"][self.total_samples]

 if segment_outline_colors is None:
 self.segment_outline_colors = ["transparent"] * self.total_samples
 elif isinstance(segment_outline_colors, str):
 self.segment_outline_colors = [segment_outline_colors] *
self.total_samples
 elif hasattr(segment_outline_colors, "__iter__") and not
isinstance(segment_outline_colors, str):
 self.segment_outline_colors = segment_outline_colors
 else:
 raise TypeError("segment_outline_colors should be a color name, list of
colors, or None!")

 #Add the repertoire circle segments to the figure
 self.Create_Segments(start_position, gap_size, clockwise, fade_segments,
min_alpha = min_segment_alpha)

 #Add rank and segment position columns to the clone DataFrames
 for idx, _ in enumerate(comparison_dfs):
 #Rank clones by total count / frequency (largest clone being rank 0,
second largest rank 1, etc.)
 clone_ranks = comparison_dfs[idx][count_col].rank(method = "first",
ascending = False).astype(int)
 comparison_dfs[idx]["Rank"] = clone_ranks - 1

 #Convert the rank to a relative position from 0.0 to 1.0 for placement
along the segments
 comparison_dfs[idx]["Position"] = comparison_dfs[idx]["Rank"] /
len(comparison_dfs[idx])

 #Iterate through all combinations of two samples and create the links from clone
to clone
 for comb in combinations(range(self.total_samples), 2):
 idx1 = comb[0]
 idx2 = comb[1]
 sample1 = self.samples[idx1]
 sample2 = self.samples[idx2]

 122

 sample_df1 = comparison_dfs[idx1].set_index([clone_col])
 sample_df2 = comparison_dfs[idx2].set_index([clone_col])

 #Join the samples into a DataFrame containing only the shared clones and
their positions
 joined_df = sample_df1.join(sample_df2, how = "inner", lsuffix = "1",
rsuffix = "2")

 #Calculate the angular position for the clones (segment start location +
clone position * segment length)
 #If the plot is drawn clockwise, subtract the segment start instead of
adding it
 seg1_start = -self.segment_starts[idx1] if self.direction == "clock" else
self.segment_starts[idx1]
 seg2_start = -self.segment_starts[idx2] if self.direction == "clock" else
self.segment_starts[idx2]
 pos1 = joined_df["Position1"] * self.segment_lengths[idx1] + seg1_start
 pos2 = joined_df["Position2"] * self.segment_lengths[idx2] + seg2_start

 #Convert the positions to the start and end xy coordinates
 inner_rad1 = self.inner_radii[idx1]
 inner_rad2 = self.inner_radii[idx2]
 xy1 = self.Angle_to_XY(angles = pos1, radius = inner_rad1)
 xy2 = self.Angle_to_XY(angles = pos2, radius = inner_rad2)
 #Convert the list of (x, y) tuples to a list of xs and a list of ys
 xs1, ys1 = zip(*xy1)
 xs2, ys2 = zip(*xy2)

 link_data = {
 "x0": xs1,
 "y0": ys1,
 "x1": xs2,
 "y1": ys2
 }
 link_source = ColumnDataSource(link_data)

 #Plot the links matching clone positions between repertoires; control
points are the center of the circle
 self.plot.quadratic(x0 = "x0", y0 = "y0", x1 = "x1", y1 = "y1", cx = 0.5,
cy = 0.5, source = link_source,
 color = "black", line_width = 1)

 def Create_Plot(self, title, figsize):
 plot_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 "x_range": Range1d(-0.5, 1.5, bounds = (-1.0, 2.0)),
 "y_range": Range1d(-0.5, 1.5, bounds = (-1.0, 2.0)),
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right",
 "outline_line_alpha": 0.0
 }
 self.plot = figure(**plot_params)
 self.plot.grid.visible = False
 self.plot.axis.visible = False

 def Create_Segments(self, start_position, gap_size, clockwise, fade_segments, fade_steps =
1000, min_alpha = 0.01):
 self.segment_starts = []
 self.segment_ends = []

 if clockwise:
 segment_deltas = [-seg_len for seg_len in self.segment_lengths]

 123

 gap_delta = -gap_size
 else:
 segment_deltas = [seg_len for seg_len in self.segment_lengths]
 gap_delta = gap_size

 cur_position = start_position

 segment_border_starts = []
 segment_border_ends = []

 for seg_len in segment_deltas:
 segment_border_starts.append(cur_position)
 cur_position += seg_len
 segment_border_ends.append(cur_position)
 cur_position += gap_delta

 border_source_dict = {
 "start_angle": segment_border_starts,
 "end_angle": segment_border_ends,
 "inner_radius": self.inner_radii,
 "outer_radius": self.outer_radii,
 "line_color": self.segment_outline_colors
 }
 border_data = ColumnDataSource(data = border_source_dict)

 self.borders = self.plot.annular_wedge(x = 0.5, y = 0.5, start_angle =
"start_angle", end_angle = "end_angle",

inner_radius = "inner_radius", outer_radius = "outer_radius",

fill_color = None, line_color = "line_color", line_width = 1,

direction = self.direction, start_angle_units = "deg",

end_angle_units = "deg", source = border_data)

 cur_position = start_position
 cur_seg_starts = []
 cur_seg_ends = []

 if fade_segments:
 self.segment_alphas = []

 #Extend the radius and fill color lists to account for the extra alpha
segments:
 inner_seg_radii = [r for r in self.inner_radii for _ in
range(fade_steps)]
 outer_seg_radii = [r for r in self.outer_radii for _ in
range(fade_steps)]
 self.segment_face_colors = [seg_color for seg_color in
self.segment_face_colors for _ in range(fade_steps)]

 for segment_delta in segment_deltas:
 alpha_segment_delta = segment_delta / fade_steps
 alpha_delta = (1.0 - min_alpha) / fade_steps
 cur_alpha = 1.0

 self.segment_starts.append(cur_position)

 for _ in range(fade_steps):
 cur_seg_starts.append(cur_position)
 cur_position += alpha_segment_delta
 cur_seg_ends.append(cur_position)

 self.segment_alphas.append(cur_alpha)

 124

 cur_alpha -= alpha_delta

 self.segment_ends.append(cur_position)
 cur_position += gap_delta

 cur_legend = [label for label in self.samples for _ in range(fade_steps)]

 else:
 self.segment_alphas = [1.0] * self.total_samples
 inner_seg_radii = self.inner_radii
 outer_seg_radii = self.outer_radii

 for segment_delta in segment_deltas:
 self.segment_starts.append(cur_position)
 cur_seg_starts.append(cur_position)

 cur_position += segment_delta
 self.segment_ends.append(cur_position)
 cur_seg_ends.append(cur_position)

 cur_position += gap_delta

 cur_legend = self.samples

 source_data_dict = {
 "start_angle": cur_seg_starts,
 "end_angle": cur_seg_ends,
 "inner_radius": inner_seg_radii,
 "outer_radius": outer_seg_radii,
 "fill_color": self.segment_face_colors,
 "fill_alpha": self.segment_alphas,
 "legend": cur_legend
 }
 source_data = ColumnDataSource(data = source_data_dict)

 self.wedges = self.plot.annular_wedge(x = 0.5, y = 0.5, direction =
self.direction, start_angle = "start_angle",

end_angle = "end_angle", inner_radius = "inner_radius",

outer_radius = "outer_radius", fill_color = "fill_color",

fill_alpha = "fill_alpha", line_color = None, start_angle_units = "deg",

end_angle_units = "deg", legend = "legend", source = source_data)

 def Angle_to_XY(self, angles, radius, angles_in_degrees = True, offset = (0.5, 0.5)):
 """Converts an angular position to X, Y coordinates.

 Parameters

 angles: int/float or iterable of int/float
 Angle(s) to convert to X, Y coordinate(s).
 radius: int/float
 Radius of the circle for which the X, Y coordinates map to.
 angles_in_degrees: bool
 Whether the provided angle(s) are in degrees or radians; default is True.
 offset: tuple of (float, float)
 The x and y location of the center of the circle; default is (0.5, 0.5).

 Returns

 xy_coords: tuple of (float, float) or list of tuples (float, float)
 X and Y coordinate(s) of the angles provided on a circle with provided
radius.

 125

 """

 if angles_in_degrees:
 x = radius * numpy.sin(numpy.deg2rad(angles)) + offset[0]
 y = radius * numpy.cos(numpy.deg2rad(angles)) + offset[1]
 else:
 x = radius * numpy.sin(angles) + offset[0]
 y = radius * numpy.cos(angles) + offset[1]

 #Return a tuple of (x, y) if a single angle was provided, or a list of (x, y)
tuples if multiple angles
 if hasattr(x, "__iter__") and hasattr(y, "__iter__"):
 xy_coords = list(zip(x, y))
 else:
 xy_coords = (x, y)

 return xy_coords

 def Show(self):
 """Call Bokeh show function to display the current plot in a browser window."""

 show(self.plot)

 def Get_Plot_Components(self):
 """Call Bokeh components function to get the HTML script and div elements
representing the current plot.

 Returns

 plot_script: str
 The HTML code for the Bokeh JavaScript plot to display.
 plot_div: str
 The HTML code for the div element used to place the plot in a page.
 """

 plot_script, plot_div = components(self.plot)
 return plot_script, plot_div

 def Save_HTML(self, filename, title = "Repertoire Comparison Cyrcos Graph"):
 """Calls Bokeh save function to save an HTML file containing the current plot.

 Parameters

 filename: str
 The desired filename / filepath for the output HTML file.
 title: str
 A title to use for the HTML file; default is "Repertoire Comparison
Cyrcos Graph".
 """

 save(self.plot, filename = filename, title = title)

class Repertoire_Upset_Plot(object):
 def __init__(self, clone_dfs, title = "", min_shared = 2, max_shared = None,
overlap_bounds = None,
 clone_col = "CloneID", sample_col = None, highlighted_sets =
None, figsize = (1200, 900)):
 """Creates a Repertoire comparison UpSet overlap plot."""

 df_cols = [clone_col]

 if isinstance(clone_dfs, dict):
 df_dict = {sample: clone_dfs[sample][df_cols] for sample in clone_dfs}

 126

 comparison_df = pandas.concat(list(df_dict.values()), ignore_index =
True)
 samples = [i for i in df_dict]

 else:
 df_cols.append(sample_col)

 comparison_df = clone_dfs[df_cols]
 samples = clone_dfs[sample_col].drop_duplicates().tolist()

 #Collapse by clone IDs and concatenate the multiple repertoire sample names
containing each clone using JSON
 serializer = lambda x: json.dumps(x.tolist())
 grouped_df = comparison_df.groupby([clone_col])[sample_col].agg({serializer,
"count"})
 grouped_df = grouped_df.rename(columns = {"<lambda>": "Samples", "count":
"Sample_Count"})

 if min_shared is not None:
 grouped_df = grouped_df[grouped_df["Sample_Count"] >= min_shared]
 if max_shared is not None:
 grouped_df = grouped_df[grouped_df["Sample_Count"] <= max_shared]

 #Calculate the total number of clones shared by each combination of samples
 overlap_counts = grouped_df["Samples"].value_counts()
 if overlap_bounds is not None:
 overlap_counts = overlap_counts[overlap_counts >= overlap_bounds[0]]
 overlap_counts = overlap_counts[overlap_counts <= overlap_bounds[1]]

 total_sets = len(overlap_counts)
 total_samples = len(samples)
 MAIN_BAR_WIDTH = 0.5
 set_colors = ("#82C882", "#BEB4D2", "#FABE82", "#FFFF96", "#326EB4", "#F00082",
"#BE5A14", "#646464")

 main_plot_params = {
 "plot_width": int(figsize[0] * 0.6),
 "plot_height": int(figsize[1] * 0.75),
 "x_range": Range1d(-MAIN_BAR_WIDTH, total_sets - 1 + MAIN_BAR_WIDTH),
 "title": title,
 "tools": "save, reset, help",
 "outline_line_alpha": 0.0
 }
 self.main_plot = figure(**main_plot_params)
 self.main_plot.grid.visible = False
 self.main_plot.xaxis.visible = False
 largest_overlap = overlap_counts.max()
 self.main_plot.yaxis.bounds = (0, largest_overlap)
 self.main_plot.yaxis.axis_label_text_font_size = "12pt"

 sample_sets_xs = [i for i in range(total_sets)]
 default_bar_color = "#96AAC8"
 sample_sets_colors = []
 cur_color_idx = 0
 cur_color = default_bar_color

 if highlighted_sets is not None:
 for main_bar_set in overlap_counts.index:
 for highlighted_subset in highlighted_sets:
 cur_set = json.loads(main_bar_set)
 if set(cur_set) == set(highlighted_subset):
 cur_color = set_colors[cur_color_idx]
 cur_color_idx += 1
 break
 else:

 127

 cur_color = default_bar_color
 sample_sets_colors.append(cur_color)
 else:
 sample_sets_colors += [default_bar_color] * len(overlap_counts)

 main_bars_data = {
 "x": sample_sets_xs,
 "top": overlap_counts.tolist(),
 "color": sample_sets_colors
 }
 main_bars_source = ColumnDataSource(main_bars_data)
 self.main_bars = self.main_plot.vbar(x = "x", top = "top", width =
MAIN_BAR_WIDTH, bottom = 0,
 color =
"color", source = main_bars_source)
 self.main_plot.yaxis.axis_label = "Total Shared Clones"

 sample_sets_plot_params = {
 "plot_width": int(figsize[0] * 0.6),
 "plot_height": int(figsize[1] * 0.25),
 "x_range": self.main_plot.x_range,
 "y_range": Range1d(-MAIN_BAR_WIDTH, total_samples - 1 + MAIN_BAR_WIDTH,
bounds = (0, total_samples)),
 "tools": "save, reset, help",
 "background_fill_color": "#C8C896",
 "background_fill_alpha": 0.1,
 "outline_line_alpha": 0.0
 }
 self.sample_sets_plot = figure(**sample_sets_plot_params)
 self.sample_sets_plot.grid.visible = False
 self.sample_sets_plot.xaxis.visible = False
 self.sample_sets_plot.yaxis.axis_label = " " #Helps keep plot at the same width
as the main plot dimensions
 self.sample_sets_plot.yaxis.axis_label_text_font_size = "12pt"

 #Used to pad the Y axis to align properly with the main bar graph
 self.sample_sets_plot.yaxis[0].ticker = [i for i in range(total_samples)]
 self.sample_sets_plot.yaxis.major_label_overrides = {"0": str(largest_overlap)}

 #"Draw" invisible axis line / labels / ticks to match main plot width
 self.sample_sets_plot.yaxis.axis_label_text_color = None
 self.sample_sets_plot.yaxis.axis_line_color = None
 self.sample_sets_plot.yaxis.major_tick_line_color = None
 self.sample_sets_plot.yaxis.major_label_text_color = None

 sample_set_circle_radius = MAIN_BAR_WIDTH * 0.3

 sample_sets_data = {
 "x": sample_sets_xs * total_samples,
 "y": [i for i in range(total_samples) for _ in range(total_sets)]
 }
 sample_sets_source = ColumnDataSource(sample_sets_data)
 self.sample_sets_plot.circle(x = "x", y = "y", radius = sample_set_circle_radius,
fill_color = "#787878",
 line_color = None,
alpha = 0.5, source = sample_sets_source)

 #Get the total clones per sample for the total clone counts bar graph
 clone_counts = comparison_df[sample_col].value_counts()

 #Create the linked circles that mark the compared samples
 ypos_to_sample = clone_counts.reset_index()["index"].to_dict()
 sample_to_ypos = {ypos_to_sample[key]: key for key in ypos_to_sample}
 cur_set_color = "black"
 cur_color_idx = 0

 128

 for x_pos, cur_set in enumerate(overlap_counts.index):
 sample_set = json.loads(cur_set)
 cur_set_count = len(sample_set)
 set_ys = [sample_to_ypos[sample] for sample in sample_set]

 if highlighted_sets is not None:
 for subset in highlighted_sets:
 if set(sample_set) == set(subset):
 cur_set_color = set_colors[cur_color_idx]
 cur_color_idx += 1
 break
 else:
 cur_set_color = "black"

 #Draw the bars linking the sample set circles
 min_circle_y = min(set_ys)
 max_circle_y = max(set_ys)
 self.sample_sets_plot.line(x = [x_pos, x_pos], y = [min_circle_y,
max_circle_y],
 line_width = 5,
line_color = cur_set_color)
 #Draw the sample set circles
 self.sample_sets_plot.circle(x = [x_pos] * cur_set_count, y = set_ys,
radius = sample_set_circle_radius,
 fill_color =
cur_set_color, line_color = None)

 largest_repertoire_clones = clone_counts.max()
 clone_bar_plot_params = {
 "plot_width": int(figsize[0] * 0.4),
 "plot_height": int(figsize[1] * 0.25),
 "x_range": Range1d(largest_repertoire_clones, 0),
 "tools": "save, reset, help",
 "outline_line_alpha": 0.0,
 "y_axis_location": "right"
 }
 self.clone_bar_plot = figure(**clone_bar_plot_params)
 self.clone_bar_plot.grid.visible = False
 self.clone_bar_plot.xaxis.axis_label_text_font_size = "12pt"
 self.clone_bar_plot.yaxis[0].ticker = [i for i in range(total_samples)]
 sample_ticks_to_labels = {tick_y: sample for tick_y, sample in
enumerate(clone_counts.index.tolist())}
 self.clone_bar_plot.yaxis.major_label_overrides = sample_ticks_to_labels
 self.clone_bar_plot.yaxis.major_tick_line_color = None
 self.clone_bar_plot.yaxis.major_label_text_baseline = "middle"
 self.clone_bar_plot.yaxis.major_label_text_font_size = "12pt"

 clone_bars_data = {
 "y": [i for i in range(total_samples)],
 "right": clone_counts.tolist()
 }
 clone_bars_source = ColumnDataSource(clone_bars_data)
 self.clone_bars = self.clone_bar_plot.hbar(y = "y", right = "right", height =
0.5, left = 0,

color = "#96AAC8", source = clone_bars_source)
 self.clone_bar_plot.xaxis.axis_label = "Total Clones"

 top_left_spacer = Spacer(width = int(figsize[0] * 0.4), height = int(figsize[1] *
0.75))
 self.plots_grid = gridplot([top_left_spacer, self.main_plot, self.clone_bar_plot,
self.sample_sets_plot],
 ncols = 2, tools = "save,
reset, help", toolbar_location = "right")

 129

 def Show(self):
 """Call Bokeh show function to display the current plot in a browser window."""

 show(self.plots_grid)

 def Get_Plot_Components(self):
 """Call Bokeh components function to get the HTML script and div elements
representing the current plot.

 Returns

 plot_script: str
 The HTML code for the Bokeh JavaScript plot to display.
 plot_div: str
 The HTML code for the div element used to place the plot in a page.
 """

 plot_script, plot_div = components(self.plots_grid)
 return plot_script, plot_div

 def Save_HTML(self, filename, title = "Repertoire Comparison UpSet Graph"):
 """Calls Bokeh save function to save an HTML file containing the current plot.

 Parameters

 filename: str
 The desired filename / filepath for the output HTML file.
 title: str
 A title to use for the HTML file; default is "Repertoire Comparison UpSet
Graph".
 """

 save(self.plots_grid, filename = filename, title = title)

def VJ_Gene_Plot(clone_df, png = None, title = "", vgene_col = "VGene", jgene_col = "JGene",
count_col = "Clustered",
 vgene_colors = vgene_colors, vfamily_colors = vfamily_colors,
jgene_colors = jgene_colors,
 vj_gap = 0.008, vgene_gap = 0.0, line_width = 0.4, figsize =
(800, 800), hover_tooltip = True):
 """Creates a donut (??) chart for prevalence of all V/J gene pairs in a Repertoire.

 Parameters

 clone_df: pandas DataFrame

 Returns

 script: str
 div: str
 """

 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 #"sizing_mode": "scale_both",
 "x_range": Range1d(-0.5, 1.5, bounds = (-1.5, 2.5)),
 "y_range": Range1d(-0.5, 1.5, bounds = (-1.5, 2.5)),
 #"outline_line_alpha": 0.0,
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, tap, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right"
 }

 130

 plot = figure(**figure_params)
 plot.grid.visible = False
 plot.axis.visible = False

 if hover_tooltip:
 hover_tool = HoverTool(tooltips = [("Gene", "@legend"), ("Percent",
"@percent{(0.00%)}")],
 point_policy =
"snap_to_data")
 plot.add_tools(hover_tool)

 gene_df = clone_df[[vgene_col, jgene_col, count_col]].groupby([vgene_col,
jgene_col]).agg({count_col: sum})
 #Sort by V gene ascending, then J gene ascending
 gene_df = gene_df.sort_index()
 gene_df = gene_df.reset_index()

 total_vgenes = len(gene_df[vgene_col].drop_duplicates())
 total_gapsize = total_vgenes * vgene_gap
 remaining_size = 360.0 - float(total_gapsize)
 gap_size = float(vgene_gap)

 total_counts = gene_df[count_col].sum()
 gene_df["Arc_Length"] = gene_df[count_col] / total_counts * remaining_size
 #Starting at 90 degrees (top center of the circle) plus half the gap size
 #cur_v_start = -90.0 + (gap_size / 2.0)
 cur_v_start = 90.0 + (gap_size / 2.0)

 v_start_angles = []
 v_end_angles = []
 vgene_facecolors = []
 vgene_hover_colors = []
 vfamily_facecolors = []
 vfamily_hover_colors = []
 v_legend_text = []
 v_legend_percent = []

 j_start_angles = []
 j_end_angles = []
 jgene_facecolors = []
 jgene_hover_colors = []
 j_legend_text = []
 j_legend_percent = []

 for vgene in gene_df[vgene_col].drop_duplicates():
 cur_vgene_df = gene_df[gene_df[vgene_col] == vgene]
 vfamily = vgene.split("-")[0]

 vgene_color = vgene_colors[vgene]
 vgene_hover_color = vgene_color.darken(0.05)
 vfamily_color = vfamily_colors[vfamily]
 vfamily_hover_color = vfamily_color.darken(0.05)

 v_arc_length = cur_vgene_df["Arc_Length"].sum()
 cur_v_end = cur_v_start + v_arc_length

 v_start_angles.append(cur_v_start)
 v_end_angles.append(cur_v_end)

 vgene_facecolors.append(vgene_color)
 vgene_hover_colors.append(vgene_hover_color)
 vfamily_facecolors.append(vfamily_color)
 vfamily_hover_colors.append(vfamily_hover_color)

 v_legend_text.append(vgene)

 131

 cur_vgene_counts = cur_vgene_df["Clustered"].sum()
 v_legend_percent.append(cur_vgene_counts / total_counts)

 cur_j_start = cur_v_start
 for jgene, jgene_arc_length in zip(cur_vgene_df[jgene_col],
cur_vgene_df["Arc_Length"]):
 cur_j_end = cur_j_start + jgene_arc_length

 jgene_color = jgene_colors[jgene]
 jgene_hover_color = jgene_color.darken(0.05)

 j_start_angles.append(cur_j_start)
 j_end_angles.append(cur_j_end)

 jgene_facecolors.append(jgene_color)
 jgene_hover_colors.append(jgene_hover_color)

 cur_j_start = cur_j_end

 j_legend_text.append(jgene)
 cur_jgene_counts = cur_vgene_df[cur_vgene_df[jgene_col] ==
jgene]["Clustered"].sum()
 j_legend_percent.append(cur_jgene_counts / cur_vgene_counts)

 cur_v_start = cur_v_end + gap_size

 v_wedge_data = {
 "start_angle": v_start_angles,
 "end_angle": v_end_angles,
 "fill_color": vgene_facecolors,
 "legend": v_legend_text,
 "percent": v_legend_percent,
 "vgene_facecolors": vgene_facecolors,
 "vfamily_facecolors": vfamily_facecolors,
 "hover_fill_color": vgene_hover_colors,
 "vgene_hover_colors": vgene_hover_colors,
 "vfamily_hover_colors": vfamily_hover_colors
 }
 v_source = ColumnDataSource(v_wedge_data)

 v_inner_rad = 0.4
 v_outer_rad = 0.692

 plot.annular_wedge(x = 0.5, y = 0.5, start_angle = "start_angle", end_angle = "end_angle",
 fill_color = "fill_color", selection_fill_color =
"fill_color",
 nonselection_fill_color = "fill_color",
selection_fill_alpha = 1.0,
 nonselection_fill_alpha = 0.2, hover_fill_color =
"hover_fill_color", inner_radius = v_inner_rad,
 outer_radius = v_outer_rad, line_color = "black",
line_width = line_width, source = v_source,
 legend = "legend", start_angle_units = "deg",
end_angle_units = "deg")

 j_wedge_data = {
 "start_angle": j_start_angles,
 "end_angle": j_end_angles,
 "fill_color": jgene_facecolors,
 "legend": j_legend_text,
 "percent": j_legend_percent,
 "hover_fill_color": jgene_hover_colors
 }

 j_source = ColumnDataSource(j_wedge_data)

 132

 j_inner_rad = v_outer_rad + vj_gap
 j_outer_rad = j_inner_rad + 0.15

 plot.annular_wedge(x = 0.5, y = 0.5, start_angle = "start_angle", end_angle = "end_angle",
 fill_color = "fill_color", selection_fill_color =
"fill_color",
 nonselection_fill_color = "fill_color",
selection_fill_alpha = 1.0,
 nonselection_fill_alpha = 0.2, hover_fill_color =
"hover_fill_color", inner_radius = j_inner_rad,
 outer_radius = j_outer_rad, line_color = "black",
line_width = line_width, source = j_source,
 legend = "legend", start_angle_units = "deg",
end_angle_units = "deg")

 if png is not None:
 export_png(plot, png)

 change_v_color = CustomJS(args = {"source": v_source}, code = """
 var selection = cb_obj.value;
 var new_color_array;
 var new_hover_array;
 if(selection.toLowerCase().indexOf("gene") !== -1) {
 new_color_array = source.data["vgene_facecolors"];
 new_hover_array = source.data["vgene_hover_colors"];
 } else {
 new_color_array = source.data["vfamily_facecolors"];
 new_hover_array = source.data["vfamily_hover_colors"];
 }
 var fill_color = source.data["fill_color"];
 var hover_fill_color = source.data["hover_fill_color"];
 for(idx = 0; idx < fill_color.length; idx++) {
 fill_color[idx] = new_color_array[idx];
 hover_fill_color[idx] = new_hover_array[idx];
 }
 source.change.emit();
 """)

 v_data_color_by = Select(title = "Color by:", options = ["V Gene", "V Family"],
 value = "V Gene", callback =
change_v_color)

 plot_layout = column(v_data_color_by, plot)
 return plot_layout

def Violin_SHM_Plot(clone_df, png = None, title = "", vshm_col = "V_SHM", jshm_col = "J_SHM",
split_col = None,
 quads = True, violin_width = 0.8, line_width = 0.4,
figsize = (1000, 600), hover_tooltip = True):
 """Creates a SHM violin plot that can be used to compare multiple categories in a
Repertoire.

 Parameters

 clone_df: pandas DataFrame

 Returns

 script: str
 div: str
 """

 figure_params = {
 "plot_width": figsize[0],

 133

 "plot_height": figsize[1],
 "y_range": Range1d(-0.005, 0.3, bounds = (-0.01, 0.31)),
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right"
 }

 plot = figure(**figure_params)
 plot.grid.visible = False
 plot.xaxis.minor_tick_line_color = None
 plot.xaxis.major_label_text_font_size = "10pt"
 plot.yaxis.axis_label = "V/J Gene SHM"
 plot.yaxis.major_label_text_font_size = "10pt"
 plot.yaxis.formatter = NumeralTickFormatter(format = "0.00%")

 if hover_tooltip:
 hover_tooltips = [("Mean SHM", "@mean{(0.00%)}"), ("Max SHM", "@max{(0.00%)}"),
 ("25th Percentile", "@quantile25{(0.00%)}"),
("75th Percentile", "@quantile75{(0.00%)}")]
 hover_tool = HoverTool(point_policy = "follow_mouse", tooltips = hover_tooltips)
 plot.add_tools(hover_tool)

 shm_cols = []
 if vshm_col is not None:
 shm_cols.append(vshm_col)
 if jshm_col is not None:
 shm_cols.append(jshm_col)

 #To compare samples, add the sample column to split on to the DataFrame
 if split_col is not None:
 shm_cols.append(split_col)
 shm_df = clone_df[shm_cols]

 samples = []
 shm_dfs = []
 for sample, df in shm_df.groupby([split_col]):
 samples.append(sample)
 shm_dfs.append(df)

 else:
 samples = ["Repertoire"]
 shm_dfs = [clone_df[shm_cols]]

 vshm_violin_color = "lightgreen"
 jshm_violin_color = "slateblue"
 violin_xs = []
 violin_ys = []
 violin_colors = []
 violin_legends = []
 hover_means = []
 hover_maxes = []
 hover_25quantiles = []
 hover_75quantiles = []
 x_location_to_category = {}
 violin_x_offset = 0

 for sample, df in zip(samples, shm_dfs):
 #Create the density functions
 if vshm_col in df.columns:
 vshm_mean = df[vshm_col].mean()
 vshm_max = df[vshm_col].max()
 hover_means.append([vshm_mean])
 hover_maxes.append([vshm_max])
 hover_25quantiles.append([df[vshm_col].quantile(0.25)])

 134

 hover_75quantiles.append([df[vshm_col].quantile(0.75)])

 y_points = numpy.linspace(0.0, vshm_max, 300) #Create the y range of 300
points from min to max
 reversed_y_points = numpy.flipud(y_points)
 v_kernel = gaussian_kde(df[vshm_col], "scott")
 vshm_x_points = v_kernel(y_points)

 #Normalize the x range to standard width; negate V SHM points to place it
on the left half of the violin
 vshm_x_points = -vshm_x_points / vshm_x_points.max() * violin_width / 2.0

 #Return to the patch starting points if a different violin is drawn for
the other half, or mirror data
 if jshm_col in df.columns:
 vshm_x_points = numpy.append(vshm_x_points,
abs(vshm_x_points).min())
 vshm_y_points = numpy.append(y_points, y_points.min())
 else:
 reversed_vshm_x = numpy.flipud(-vshm_x_points)
 vshm_x_points = numpy.append(vshm_x_points, reversed_vshm_x)
 vshm_y_points = numpy.append(y_points, reversed_y_points)

 violin_xs.append(vshm_x_points + violin_x_offset)
 violin_ys.append(vshm_y_points)
 violin_colors.append(vshm_violin_color)
 violin_legends.append("V Gene SHM")

 if jshm_col in df.columns:
 jshm_mean = df[jshm_col].mean()
 jshm_max = df[jshm_col].max()
 hover_means.append([jshm_mean])
 hover_maxes.append([jshm_max])
 hover_25quantiles.append([df[jshm_col].quantile(0.25)])
 hover_75quantiles.append([df[jshm_col].quantile(0.75)])

 y_points = numpy.linspace(0.0, jshm_max, 300) #Create the y range of 300
points from min to max
 reversed_y_points = numpy.flipud(y_points)
 j_kernel = gaussian_kde(df[jshm_col], "scott")
 jshm_x_points = j_kernel(y_points)

 #Normalize the x range to standard width
 jshm_x_points = jshm_x_points / jshm_x_points.max() * violin_width / 2.0

 #Return to the patch starting points if a different violin is drawn for
the other half, or mirror data
 if vshm_col in df.columns:
 jshm_x_points = numpy.append(jshm_x_points,
abs(jshm_x_points).min())
 jshm_y_points = numpy.append(y_points, y_points.min())
 else:
 reversed_jshm_x = numpy.flipud(-jshm_x_points)
 jshm_x_points = numpy.append(jshm_x_points, reversed_jshm_x)
 jshm_y_points = numpy.append(y_points, reversed_y_points)

 violin_xs.append(jshm_x_points + violin_x_offset)
 violin_ys.append(jshm_y_points)
 violin_colors.append(jshm_violin_color)
 violin_legends.append("J Gene SHM")

 if quads:
 pass

 x_location_to_category[violin_x_offset] = sample

 135

 violin_x_offset += violin_width * 1.2

 violin_data = {
 "xs": violin_xs,
 "ys": violin_ys,
 "fill_color": violin_colors,
 "legend": violin_legends,
 "mean": hover_means,
 "max": hover_maxes,
 "quantile25": hover_25quantiles,
 "quantile75": hover_75quantiles
 }
 violin_source = ColumnDataSource(violin_data)

 plot.patches(xs = "xs", ys = "ys", fill_color = "fill_color", line_color = "black",
line_width = line_width,
 legend = "legend", source = violin_source)

 #Replace / remap the X axis tickers to the categorical samples
 plot.xaxis.ticker = FixedTicker(ticks = [loc for loc in x_location_to_category])
 plot.xaxis.major_label_overrides = x_location_to_category
 plot.x_range.bounds = (min(x_location_to_category.keys()) - 1,
max(x_location_to_category.keys()) + 1)

 if png is not None:
 export_png(plot, png)

 return plot

def Mosaic_Plot(clone_df, png = None, title = "", top_clones = 5000, count_col = "Clustered",
vgene_col = "VGene",
 jgene_col = "JGene", isotype_col = "Isotype", vshm_col = "V_SHM",
jshm_col = "J_SHM",
 vgene_colors = vgene_colors, vfamily_colors = vfamily_colors,
jgene_colors = jgene_colors,
 isotype_colors = isotype_colors, line_width = 0.3, figsize =
(600, 600), hover_tooltip = True):
 """"""

 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 #"sizing_mode": "scale_both",
 "x_range": Range1d(-0.1, 1.1, bounds = (-1.0, 2.0)),
 "y_range": Range1d(-0.1, 1.1, bounds = (-1.0, 2.0)),
 #"outline_line_alpha": 0.0,
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right"
 }

 plot = figure(**figure_params)
 plot.grid.visible = False
 plot.axis.visible = False

 hover_tooltips = [("Clone ID", "@CloneID")]

 info_cols = [count_col]
 if vgene_col is not None:
 info_cols.append(vgene_col)
 hover_tooltips.append(("V Gene", "@" + vgene_col))
 if jgene_col is not None:
 info_cols.append(jgene_col)
 hover_tooltips.append(("J Gene", "@" + jgene_col))

 136

 if isotype_col is not None:
 info_cols.append(isotype_col)
 hover_tooltips.append(("Isotype", "@" + isotype_col))
 if vshm_col is not None:
 info_cols.append(vshm_col)
 hover_tooltips.append(("V Gene SHM", "@" + vshm_col + "{(0.00%)}"))
 if jshm_col is not None:
 info_cols.append(jshm_col)
 hover_tooltips.append(("J Gene SHM", "@" + jshm_col + "{(0.00%)}"))

 if hover_tooltip:
 hover_tool = HoverTool(point_policy = "snap_to_data", tooltips = hover_tooltips)
 plot.add_tools(hover_tool)

 mosaic_df = clone_df[info_cols]
 mosaic_df = mosaic_df.sort_values([count_col], ascending = [False])

 if top_clones:
 mosaic_df = mosaic_df.head(top_clones)

 total_area = float(mosaic_df[count_col].sum())
 mosaic_df["Clone_Frequencies"] = mosaic_df[count_col].astype(float) / total_area

 hover_tooltips.append(("Clone Frequency", "@Clone_Frequencies{(0.00%)}"))

 mosaic_rects = squarify(mosaic_df["Clone_Frequencies"].tolist(), 0.0, 0.0, 1.0, 1.0)
 #Add half width/height to x/y position for center points
 mosaic_df["x"] = [rect["x"] + rect["dx"] / 2.0 for rect in mosaic_rects]
 mosaic_df["y"] = [rect["y"] + rect["dy"] / 2.0 for rect in mosaic_rects]
 mosaic_df["width"] = [rect["dx"] for rect in mosaic_rects]
 mosaic_df["height"] = [rect["dy"] for rect in mosaic_rects]

 #By default there is no legend text, since colors are alternating and non-informative
 mosaic_df["legend"] = ""
 mosaic_df["Empty_Legend"] = ""

 alternating_colors = [RGB(102, 194, 165), RGB(252, 141, 98), RGB(141, 160, 203)]
 alt2_color_cycle = cycle(alternating_colors[0:2])
 alt3_color_cycle = cycle(alternating_colors)
 mosaic_df["alternating2_colors"] = [next(alt2_color_cycle) for _ in mosaic_rects]
 mosaic_df["alternating3_colors"] = [next(alt3_color_cycle) for _ in mosaic_rects]
 #Default color scheme is alternating 3 colors
 mosaic_df["fill_color"] = mosaic_df["alternating3_colors"]

 #Set up various mosaic coloring options and associated legends
 color_select_options = ["Alternating (2)", "Alternating (3)"]
 if vgene_col in mosaic_df.columns:
 mosaic_df["vgene_colors"] = mosaic_df[vgene_col].map(vgene_colors)
 vfamilies = mosaic_df[vgene_col].str.split("-").str[0]
 mosaic_df["vfamily_colors"] = vfamilies.map(vfamily_colors)
 color_select_options.append("V Gene")
 color_select_options.append("V Family")
 mosaic_df["VGene_Legend"] = mosaic_df[vgene_col]
 mosaic_df["VFamily_Legend"] = mosaic_df[vgene_col].str.split("-").str[0]
 if jgene_col in mosaic_df.columns:
 mosaic_df["jgene_colors"] = mosaic_df[jgene_col].map(jgene_colors)
 color_select_options.append("J Gene")
 mosaic_df["JGene_Legend"] = mosaic_df[jgene_col]
 if isotype_col in mosaic_df.columns:
 mosaic_df["isotype_colors"] = mosaic_df[isotype_col].map(isotype_colors)
 color_select_options.append("Isotype")
 mosaic_df["Isotype_Legend"] = mosaic_df[isotype_col]

 #Using viridis as a quantitative heatmap color scheme for SHM values

 137

 #The SHM values are binned into 180 groups; viridis in >180 bins uses some values twice,
which pandas.cut can't use
 shm_viridis = list(viridis(180))
 colorbar_tick_formatter = NumeralTickFormatter(format = "0.00%")

 if vshm_col in mosaic_df.columns:
 vshm_min = mosaic_df[vshm_col].min()
 vshm_max = mosaic_df[vshm_col].max()
 #Use pandas.cut to bin the V gene SHM values into the heatmap colors
 mosaic_df["vshm_colors"] = pandas.cut(mosaic_df[vshm_col], bins = 180, labels =
shm_viridis)
 color_select_options.append("V Gene SHM")

 vshm_color_mapper = LinearColorMapper(palette = shm_viridis, low = vshm_min, high
= vshm_max)
 vshm_ticks = FixedTicker(ticks = numpy.linspace(vshm_min, vshm_max, 8))
 vshm_colorbar = ColorBar(color_mapper = vshm_color_mapper, location = (0, 0),
name = "vshm_colorbar",
 label_standoff = 12, formatter
= colorbar_tick_formatter, ticker = vshm_ticks)
 plot.add_layout(vshm_colorbar, "right")

 if jshm_col in mosaic_df.columns:
 jshm_min = mosaic_df[jshm_col].min()
 jshm_max = mosaic_df[jshm_col].max()
 #Use pandas.cut to bin the J gene SHM values into the heatmap colors
 mosaic_df["jshm_colors"] = pandas.cut(mosaic_df[jshm_col], bins = 180, labels =
shm_viridis)
 color_select_options.append("J Gene SHM")

 jshm_color_mapper = LinearColorMapper(palette = shm_viridis, low = jshm_min, high
= jshm_max)
 jshm_ticks = FixedTicker(ticks = numpy.linspace(jshm_min, jshm_max, 8))
 jshm_colorbar = ColorBar(color_mapper = jshm_color_mapper, location = (0, 0),
name = "jshm_colorbar",
 label_standoff = 12, formatter
= colorbar_tick_formatter, ticker = jshm_ticks)
 plot.add_layout(jshm_colorbar, "right")

 mosaic_source = ColumnDataSource(mosaic_df)

 plot.rect(x = "x", y = "y", width = "width", height = "height", fill_color = "fill_color",
legend = "legend",
 line_color = "black", line_width = line_width, source = mosaic_source)

 #By default, the plot legend and ColorBar should be turned off (since the color is
repeating and uninformative)
 plot.legend[0].visible = False
 vshm_colorbar = plot.select("vshm_colorbar")[0]
 jshm_colorbar = plot.select("jshm_colorbar")[0]
 vshm_colorbar.visible = False
 jshm_colorbar.visible = False

 if png is not None:
 export_png(plot, png)

 change_args = {
 "source": mosaic_source,
 "legend_obj": plot.legend[0],
 "vshm_colorbar_obj": vshm_colorbar,
 "jshm_colorbar_obj": jshm_colorbar
 }
 change_rect_color = CustomJS(args = change_args, code = """
 var selection = cb_obj.value.toLowerCase();
 var new_color_array;

 138

 var new_legend_array;

 if(selection.indexOf("v gene shm") !== -1) {
 new_color_array = source.data["vshm_colors"];
 new_legend_array = source.data["Empty_Legend"];
 legend_obj.visible = false;
 vshm_colorbar_obj.visible = true;
 jshm_colorbar_obj.visible = false;
 } else if(selection.indexOf("j gene shm") !== -1) {
 new_color_array = source.data["jshm_colors"];
 new_legend_array = source.data["Empty_Legend"];
 legend_obj.visible = false;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = true;
 } else if(selection.indexOf("v gene") !== -1) {
 new_color_array = source.data["vgene_colors"];
 new_legend_array = source.data["VGene_Legend"];
 legend_obj.visible = true;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 } else if(selection.indexOf("v family") !== -1) {
 new_color_array = source.data["vfamily_colors"];
 new_legend_array = source.data["VFamily_Legend"];
 legend_obj.visible = true;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 } else if(selection.indexOf("j gene") !== -1) {
 new_color_array = source.data["jgene_colors"];
 new_legend_array = source.data["JGene_Legend"];
 legend_obj.visible = true;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 } else if(selection.indexOf("isotype") !== -1) {
 new_color_array = source.data["isotype_colors"];
 new_legend_array = source.data["Isotype_Legend"];
 legend_obj.visible = true;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 } else if(selection.indexOf("2") !== -1) {
 new_color_array = source.data["alternating2_colors"];
 new_legend_array = source.data["Empty_Legend"];
 legend_obj.visible = false;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 } else {
 new_color_array = source.data["alternating3_colors"];
 new_legend_array = source.data["Empty_Legend"];
 legend_obj.visible = false;
 vshm_colorbar_obj.visible = false;
 jshm_colorbar_obj.visible = false;
 }

 var fill_color = source.data["fill_color"];
 var legend = source.data["legend"];
 for(idx = 0; idx < fill_color.length; idx++) {
 fill_color[idx] = new_color_array[idx];
 legend[idx] = new_legend_array[idx];
 }
 source.change.emit();
 """)

 patch_coloring_select = Select(title = "Color by:", options = color_select_options, value
= "Alternating (3)",
 callback = change_rect_color)

 139

 plot_layout = column(patch_coloring_select, plot)

 return plot_layout

def Burtin_VGene_SHM_Plot(clone_df, png = None, title = "", vgene_col = "VGene", vshm_col =
"V_SHM", split_col = None,
 vfamily_colors = vfamily_colors, label_arc =
20, figsize = (900, 900)):
 """"""

 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 "x_axis_type": None,
 "y_axis_type": None,
 "x_range": Range1d(-45, 45, bounds = (-50, 50)),
 "y_range": Range1d(-45, 45, bounds = (-50, 50)),
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right",
 "background_fill_color": RGB(216, 216, 216)
 }

 plot = figure(**figure_params)
 plot.grid.visible = False
 plot.axis.visible = False

 label_offset = 90 #Offset the SHM % labels to the top of the plot
 plot_data_degrees = 360 - label_arc
 initial_angle = label_offset + label_arc / 2
 ending_angle = label_offset + 360 - label_arc / 2
 plot_inner_rad = 10
 plot_outer_rad = 35
 plot_thickness = plot_outer_rad - plot_inner_rad

 df_cols = [vgene_col, vshm_col]
 #If comparing multiple samples, add the sample column to split on to the DataFrame
 if split_col is not None:
 df_cols.append(split_col)

 vgene_shm_df = clone_df[df_cols].sort_values([vgene_col])

 total_vgenes = len(vgene_shm_df[vgene_col].drop_duplicates())
 vgene_arc_degrees = plot_data_degrees / total_vgenes

 #Create and color arc backgrounds by V family
 vgene_family_df = vgene_shm_df[[vgene_col]].drop_duplicates().reset_index(drop = True)
 vgene_family_df["VFamily"] = vgene_family_df[vgene_col].str.split("-").str[0]
 vgene_family_df["fill_color"] = vgene_family_df["VFamily"].map(vfamily_colors)
 vfamily_arc_length = plot_data_degrees / total_vgenes
 vgene_family_df["start_angle"] = vgene_family_df.index * vfamily_arc_length +
initial_angle
 vgene_family_df["end_angle"] = vgene_family_df["start_angle"] + vfamily_arc_length

 vfamily_source = ColumnDataSource(vgene_family_df)
 plot.annular_wedge(x = 0, y = 0, start_angle = "start_angle", end_angle = "end_angle",
fill_color = "fill_color",
 inner_radius = plot_inner_rad, outer_radius =
plot_outer_rad, line_color = None,
 source = vfamily_source, start_angle_units = "deg",
end_angle_units = "deg")

 if split_col in vgene_shm_df:

 140

 vgene_shm_dfs = [sample_df_tup for sample_df_tup in
vgene_shm_df.groupby([split_col])]

 samples = []
 grouped_vgene_shm_dfs = []
 for sample, df in vgene_shm_dfs:
 samples.append(sample)

 grouped_vgene_shm_dfs.append(df.groupby([vgene_col])[vshm_col].agg({"mean"}))

 #Add the V genes that may be present in one sample but not in the current one
 all_vgenes = vgene_shm_df[vgene_col].drop_duplicates().tolist()
 grouped_vgene_shm_dfs = [df.reindex(all_vgenes).reset_index() for df in
grouped_vgene_shm_dfs]

 vshm_min = min([df["mean"].min() for df in grouped_vgene_shm_dfs])
 vshm_max = max([df["mean"].max() for df in grouped_vgene_shm_dfs])

 else:
 grouped_vgene_shm_df =
vgene_shm_df.groupby([vgene_col])[vshm_col].agg({"mean"}).reset_index()
 grouped_vgene_shm_df =
grouped_vgene_shm_df.sort_values([vgene_col]).reset_index(drop = True)

 vshm_min = grouped_vgene_shm_df["mean"].min()
 vshm_max = grouped_vgene_shm_df["mean"].max()

 samples = ["All"]
 grouped_vgene_shm_dfs = [grouped_vgene_shm_df]

 #Create the labels and radial axis lines for the SHM data
 shm_labels = ["{0:.1%}".format(shm) for shm in numpy.linspace(vshm_min, vshm_max, 7)]
 shm_label_radii = numpy.linspace(plot_inner_rad, plot_outer_rad, 7)
 plot.circle(x = 0, y = 0, radius = shm_label_radii, fill_color = None, line_color =
"white")
 plot.text(x = 0, y = shm_label_radii[1:], text = shm_labels[1:], text_font_size = "10pt",
 text_align = "center", text_baseline = "middle")

 #Create line-width annular wedges to separate V genes
 sep_angles = numpy.linspace(initial_angle, ending_angle, total_vgenes + 1)
 sep_inner_radius = plot_inner_rad - 1
 sep_outer_radius = plot_outer_rad + 1
 plot.annular_wedge(x = 0, y = 0, start_angle = sep_angles, end_angle = sep_angles,
fill_color = None,
 inner_radius = sep_inner_radius, outer_radius =
sep_outer_radius, line_color = "black",
 start_angle_units = "deg", end_angle_units = "deg")

 #Gene text labels; text angle location is the midpoint of the V gene separation lines
 text_radius = plot_outer_rad + 3.5
 text_radian_locs = numpy.deg2rad((sep_angles[1:] + sep_angles[:-1]) / 2)
 text_x = text_radius * numpy.cos(text_radian_locs)
 text_y = text_radius * numpy.sin(text_radian_locs)
 #Angle the text based on the position around the circle; reverse the left half so the text
isn't upside-down
 mid_graph_radian = numpy.deg2rad(label_offset + 180)
 text_angles = [rad if rad > mid_graph_radian else rad + numpy.pi for rad in
text_radian_locs]
 plot.text(x = text_x, y = text_y, text = vgene_family_df[vgene_col], angle = text_angles,
 text_font_size = "10pt", text_align = "center", text_baseline =
"middle")

 #Finally draw the bars and legend for the mean SHM values for all clones of a specific V
gene
 total_samples = len(grouped_vgene_shm_dfs)

 141

 vgene_arc_radians = numpy.deg2rad(vgene_arc_degrees)
 bar_width = vgene_arc_radians / (total_samples + 1)
 spacer_width = bar_width / (total_samples + 1)
 sample_colors = (RGB(60, 60, 60), RGB(130, 40, 40), RGB(60, 60, 130), RGB(10, 50, 100),
RGB(150, 100, 20))
 sample_label_ys = numpy.linspace(-total_samples, total_samples, total_samples)
 arc_starts = text_radian_locs - (vgene_arc_radians / 2) + spacer_width

 for sample, cur_df in enumerate(grouped_vgene_shm_dfs):
 bar_start_angles = arc_starts + sample * (bar_width + spacer_width)
 bar_end_angles = bar_start_angles + bar_width
 cur_df["Normalized_SHM"] = cur_df["mean"] / vshm_max

 shm_bars = cur_df["Normalized_SHM"] * plot_thickness + plot_inner_rad
 plot.annular_wedge(x = 0, y = 0, start_angle = bar_start_angles, end_angle =
bar_end_angles, line_color = None,
 inner_radius = plot_inner_rad, outer_radius =
shm_bars, fill_color = sample_colors[sample])

 if total_samples > 1:
 plot.rect(x = -2, y = sample_label_ys[sample], width = 2.5, height = 1.5,
color = sample_colors[sample])
 plot.text(x = 0, y = sample_label_ys[sample], text = {"value":
samples[sample]}, text_font_size = "10pt",
 text_baseline = "middle")

 if png is not None:
 export_png(plot, png)

 return plot

def Diversity_Plot(clone_df, png = None, title = "", count_col = "Clustered", split_col = None,
line_width = 3,
 add_control_diversities = True, y_axis_type = "log", figsize =
(1000, 700)):
 """"""

 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 "x_range": Range1d(0, 10),
 "y_axis_type": y_axis_type,
 "title": title,
 "tools": "save, help",
 "toolbar_location": "right"
 }

 plot = figure(**figure_params)
 plot.xgrid.grid_line_alpha = 0.0
 plot.xaxis.axis_label = "Order (N)"
 plot.yaxis.axis_label = "Hill Diversity Constant"
 plot.yaxis.formatter = BasicTickFormatter()

 #If comparing multiple samples, add the sample column to split on to the DataFrame
 if split_col is not None:
 diversity_df = clone_df[[count_col, split_col]]

 samples = []
 diversity_dfs = []
 for sample, df in diversity_df.groupby([split_col]):
 samples.append(sample)
 diversity_dfs.append(df)

 else:
 samples = ["Repertoire"]

 142

 diversity_dfs = [clone_df[[count_col]]]

 sample_colors = (RGB(30, 160, 120), RGB(220, 90, 0), RGB(120, 110, 180), RGB(230, 40,
140))
 for sample, df, line_color in zip(samples, diversity_dfs, sample_colors[:len(samples)]):
 hill_indices = Hill_Diversity_Index(df[count_col])
 n_orders = [i[0] for i in hill_indices]
 order_diversities = [i[1] for i in hill_indices]

 #ADD MORE LINE STYLES (dotted, etc.)
 plot.line(x = n_orders, y = order_diversities, color = line_color, line_width =
line_width, legend = sample)

 if add_control_diversities:
 total_clones = max([len(i) for i in diversity_dfs])
 total_counts = max([df[count_col].sum() for df in diversity_dfs])

 #Very highly polarized data creates a sample in which the top 20 clones are 20%
of the total by prevalence
 top20_20_data = [total_counts * 0.2 / 20] * 20
 top20_20_data += [total_counts * 0.8 / (total_clones - 20) for _ in
range(total_clones - 20)]
 #Highly polarized data has the top 20 clones at 15% of the total
 top20_15_data = [total_counts * 0.15 / 20] * 20
 top20_15_data += [total_counts * 0.85 / (total_clones - 20) for _ in
range(total_clones - 20)]
 #Moderately polarized data has the top 20 clones at 10% of the total
 top20_10_data = [total_counts * 0.1 / 20] * 20
 top20_10_data += [total_counts * 0.9 / (total_clones - 20) for _ in
range(total_clones - 20)]
 #Lowly polarized data has the top 20 clones at 5% of the total
 top20_5_data = [total_counts * 0.05 / 20] * 20
 top20_5_data += [total_counts * 0.95 / (total_clones - 20) for _ in
range(total_clones - 20)]

 top20_20_diversities = [i[1] for i in Hill_Diversity_Index(top20_20_data)]
 top20_15_diversities = [i[1] for i in Hill_Diversity_Index(top20_15_data)]
 top20_10_diversities = [i[1] for i in Hill_Diversity_Index(top20_10_data)]
 top20_5_diversities = [i[1] for i in Hill_Diversity_Index(top20_5_data)]
 plot.line(x = n_orders, y = top20_20_diversities, color = RGB(160, 200, 230),
alpha = 0.8, line_dash = (12,),
 line_width = line_width, legend = "Very Highly Polarized (Top
20 Clones 20%)")
 plot.line(x = n_orders, y = top20_15_diversities, color = RGB(30, 120, 180),
alpha = 0.8, line_dash = (12,),
 line_width = line_width, legend = "Highly Polarized (Top 20
Clones 15%)")
 plot.line(x = n_orders, y = top20_10_diversities, color = RGB(180, 220, 140),
alpha = 0.8, line_dash = (12,),
 line_width = line_width, legend = "Moderately Polarized (Top 20
Clones 10%)")
 plot.line(x = n_orders, y = top20_5_diversities, color = RGB(50, 160, 40), alpha
= 0.8, line_dash = (12,),
 line_width = line_width, legend = "Lowly Polarized (Top 20
Clones 5%)")

 if png is not None:
 export_png(plot, png)

 return plot

def CDR_Length_Histogram_Plot(clone_df, png = None, title = "", cdr_col = "CDR3_AA", split_col =
None,
 quantile_boundries = (0.0001, 0.9999),
figsize = (800, 600)):

 143

 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 "title": title,
 "tools": "pan, wheel_zoom, box_zoom, save, reset, help",
 "active_scroll": "wheel_zoom",
 "toolbar_location": "right"
 }

 plot = figure(**figure_params)
 plot.grid.visible = False
 plot.xaxis.minor_tick_line_color = None
 plot.xaxis.axis_label = "CDR3 Length"
 plot.xaxis.axis_label_text_font_size = "12pt"
 plot.xaxis.major_label_text_font_size = "12pt"
 plot.yaxis.axis_label = "P(x)"
 plot.yaxis.axis_label_text_font_size = "12pt"
 plot.yaxis.major_label_text_font_size = "12pt"

 #To compare samples, add the sample column to split on to the DataFrame
 if split_col is not None:
 cdr3_df = clone_df[[cdr_col, split_col]]

 samples = []
 cdr3_lens = []
 for sample, df in cdr3_df.groupby([split_col]):
 samples.append(sample)
 cdr3_lens.append(df[cdr_col].str.len())

 else:
 samples = ["Repertoire"]
 cdr3_lens = [clone_df[cdr_col].str.len()]

 bin_min = min([cdr_len_series.min() for cdr_len_series in cdr3_lens])
 bin_max = max([cdr_len_series.max() for cdr_len_series in cdr3_lens]) + 1
 bin_range = [i for i in range(bin_min, bin_max)]

 bar_colors = ["#A0C8E6", "#32A032", "#1E78B4", "#B4DC8C"]
 bar_offset = 0.0
 bar_width = 1 / len(samples)

 upper_y = 0.0

 for idx, (sample, cdr_len_series) in enumerate(zip(samples, cdr3_lens)):
 heights, lefts = numpy.histogram(cdr_len_series, density = True, bins =
bin_range)

 #Ensure proper Y axis scrolling boundaries are set
 if heights.max() > upper_y:
 upper_y = heights.max()

 #Shift bars if multiple samples are being plotted
 lefts = lefts.astype(float)
 lefts += bar_offset

 bar_lefts = lefts[:-1]
 bar_rights = bar_lefts + bar_width

 plot.quad(top = heights, bottom = 0, left = bar_lefts, right = bar_rights,
fill_color = bar_colors[idx],
 line_color = None, legend = sample)

 bar_offset += bar_width

 plot.y_range.start = -0.001

 144

 plot.y_range.end = upper_y
 plot.y_range.bounds = (-0.05, upper_y * 1.5)

 if quantile_boundries is not None:
 lower_x = clone_df[cdr_col].str.len().quantile(quantile_boundries[0])
 upper_x = clone_df[cdr_col].str.len().quantile(quantile_boundries[1])

 plot.x_range.start = lower_x
 plot.x_range.end = upper_x

 plot.x_range.bounds = (0, bin_max + 4)

 if png is not None:
 export_png(plot, png)

 return plot

def Rarefaction_Plot(align_df, png = None, title = "", cdr_col = "CDR3_AA", split_col = None,
cdr_identity = 0.96,
 steps = 50, reads = None, figsize = (800, 600),
hover_tooltip = True, save_to_file = False):
 figure_params = {
 "plot_width": figsize[0],
 "plot_height": figsize[1],
 "title": title,
 "tools": "save, help",
 "toolbar_location": "right"
 }
 plot = figure(**figure_params)
 plot.xgrid.grid_line_color = None
 plot.xaxis.axis_label = "Total Sampled Reads"
 plot.yaxis.axis_label = "Total Clonotypes"
 plot.axis.formatter = NumeralTickFormatter(format = "0")

 tooltips = [("Total Sampled Reads", "@xs"), ("Total Clones", "@ys")]
 if hover_tooltip:
 hover_tool = HoverTool(point_policy = "snap_to_data", tooltips = tooltips, mode =
"hline", names = ["rar_line"])
 plot.add_tools(hover_tool)

 #If comparing multiple samples, add the sample column to split on to the DataFrame
 if split_col is not None:
 reads_df = align_df[[cdr_col, split_col]]

 samples = []
 reads_dfs = []
 for sample, df in reads_df.groupby([split_col]):
 samples.append(sample)
 reads_dfs.append(df)

 if hover_tooltip and len(samples) > 1:
 tooltips.append(("Sample", "@sample"))

 else:
 samples = ["Repertoire"]
 reads_dfs = [align_df[[cdr_col]]]

 sample_colors = ["#1EA078", "#DC5A00", "#786EB4", "#E6288C", "#B4D28C", "#A028B4"]
 for sample, df, color in zip(samples, reads_dfs, sample_colors[:len(samples)]):
 total_reads = len(df)
 subsamp_sizes = []
 cur_total = 0

 if reads is not None:
 subsamp_steps = reads

 145

 else:
 subsamp_steps = math.floor(total_reads / steps)

 #Create the list of all read subsample counts to clonotype
 while cur_total < total_reads:
 if cur_total != 0:
 subsamp_sizes.append(cur_total)

 cur_total += subsamp_steps

 subsamp_sizes.append(total_reads)

 subsamp_clones = []
 for n in subsamp_sizes:
 sub_read_df = df.sample(n)
 sub_total_clones = Clonotype_Usearch(sub_read_df[cdr_col], identity =
cdr_identity)
 subsamp_clones.append(sub_total_clones)

 rarefaction_data = {
 "reads": subsamp_sizes,
 "clones": subsamp_clones,
 "sample": [sample if len(samples) > 1 else None] * len(subsamp_sizes)
 }
 rar_source = ColumnDataSource(rarefaction_data)

 plot.line(x = "reads", y = "clones", color = color, line_width = 3, source =
rar_source,
 legend = "sample", name = "rar_line")
 plot.scatter(x = "reads", y = "clones", color = color, source = rar_source)

 if save_to_file:
 with open(sample + "_Rarefaction_Data.txt", "w") as
rarefaction_text_file:
 rarefaction_text_file.write("Reads\tClones\n")
 for read_count, clone_count in zip(subsamp_sizes,
subsamp_clones):

 rarefaction_text_file.write("{0}\t{1}\n".format(read_count, clone_count))

 if png is not None:
 export_png(plot, png)

 return plot

def Repertoire_Dashboard(clone_dfs, filename = None, title = "Repertoire Analysis Dashboard",
plot_title_prefix = "",
 mosaic_top_clones = 5000, cyrcos_top_clones =
1000, upset_highlighted_sets = None,
 clone_col = "CloneID", vgene_col = "VGene",
jgene_col = "JGene", isotype_col = "Isotype",
 count_col = "Clustered", vshm_col = "V_SHM",
jshm_col = "J_SHM", cdr_col = "CDR3_AA",
 sample_col = None, sizing_mode = "scale_width",
show_plots = True, bokeh_resources = "cdn"):
 """Creates an interactive dashboard HTML page displaying all the comparative
visualizations.

 Parameters

 clone_dfs: pandas DataFrame or dict of {str: DataFrame}
 Input repertoire(s) with sample names; input should be formatted as a dict of
sample name: DataFrame or a single
 concatenated pandas DataFrame with a column sample_col specifying the samples of
origin

 146

 filename: str or None
 Name for the saved output HTML file, or None if user wishes to save manually;
default is None
 title: str
 Page title for the output HTML file; default is "Repertoire Analysis Dashboard"
 plot_title_prefix: str
 Optional prefix added to the title of each plot, for example to prefix titles
with a Donor name; default is ""
 mosaic_top_clones: int
 Limit for the total clones to display for Mosaic plots (over 5000 is often
visually jarring); default is 5000
 cyrcos_top_clones: int
 Limit for the total clones to display for Cyrcos plots; default is 1000
 upset_highlighted_sets: list of tuples or None
 Specific shared sample sets to highlight in different colors for the UpSet
comparison plot; default is None
 clone_col: str
 Header / name for the column containing the sample clone IDs; default is
"CloneID"
 vgene_col: str
 Header / name for the column containing the sample V genes; default is "VGene"
 jgene_col: str
 Header / name for the column containing the sample J genes; default is "JGene"
 isotype_col: str
 Header / name for the column containing the sample isotypes; default is "Isotype"
 count_col: str
 Header / name for the column containing the sample clone counts or frequencies;
default is "Clustered"
 vshm_col: str
 Header / name for the column containing the sample clone V gene SHMs; default is
"V_SHM"
 jshm_col: str
 Header / name for the column containing the sample clone J gene SHMs; default is
"J_SHM"
 cdr_col: str
 Header / name for the column containing the sample clone CDR3 amino acid
sequences; default is "CDR3_AA"
 sample_col: str or None
 Header / name for the column containing sample names if all samples are in one
DataFrame; default is "Sample"
 sizing_mode: str
 How to scale the plots in the dashboard layout (see Bokeh layout function);
default is "scale_width"
 show_plots: bool
 Whether the dashboard page will be immediately shown upon creation; default is
True
 bokeh_resources: str
 BokehJS resource location used for the dashboard (see Bokeh output_file
documentation); default is "cdn"
 "cdn" gets the required files from the Bokeh CDN (requires internet connection)
 "inline" adds all necessary stylesheets and scripts to the HTML page itself

 Returns

 dashboard: bokeh nested layout of Column and Row
 The output dashboard Layout object representing the final plots and their
placements
 """

 #Set up output file if user wants to save the dashboard page
 if filename is not None:
 output_file(filename = filename, title = title, mode = bokeh_resources)

 repertoire_cols = [clone_col, vgene_col, jgene_col, isotype_col, count_col, vshm_col,
jshm_col, cdr_col]

 147

 if isinstance(clone_dfs, dict):
 if sample_col is None:
 sample_col = "Sample"

 dfs = []
 for sample in clone_dfs:
 clone_df = clone_dfs[sample][repertoire_cols]
 clone_df[sample_col] = sample
 dfs.append(clone_df)

 comparison_df = pandas.concat(dfs, ignore_index = True)

 elif isinstance(clone_dfs, pandas.DataFrame):
 if sample_col is not None:
 repertoire_cols.append(sample_col)
 comparison_df = clone_dfs[repertoire_cols]
 else:
 raise KeyError("No sample-name column header was found in the repertoire
DataFrame!")

 ###
 ## Paired V-J Gene Usage Donut Plots ##
 ###
 vj_gene_plots = []
 for sample, df in comparison_df.groupby([sample_col]):
 plot_title = "{0} {1} Paired V-J Gene Usage".format(plot_title_prefix, sample)
 vj_gene_plot = VJ_Gene_Plot(df, title = plot_title, vgene_col = vgene_col,
jgene_col = jgene_col,
 count_col = count_col,
vgene_colors = vgene_colors, jgene_colors = jgene_colors,
 vfamily_colors =
vfamily_colors)
 vj_gene_plots.append(vj_gene_plot)

 ###
 ## V/J Gene SHMs Violin Plot ##
 ###
 vj_shm_plot = Violin_SHM_Plot(comparison_df, title = plot_title_prefix + " Gene SHM
Levels", vshm_col = vshm_col,
 jshm_col = jshm_col, split_col
= sample_col)

 ###
 ## Repertoire Clone Frequency Mosaic Plots ##
 ###
 mosaic_plots = []
 for sample, df in comparison_df.groupby([sample_col]):
 plot_title = "{0} {1} Clonotype Frequencies Mosaic".format(plot_title_prefix,
sample)
 mosaic_plot = Mosaic_Plot(df, title = plot_title, top_clones = mosaic_top_clones,
vgene_col = vgene_col,
 jgene_col = jgene_col,
isotype_col = isotype_col, count_col = count_col,
 vshm_col = vshm_col, jshm_col
= jshm_col, vgene_colors = vgene_colors,
 jgene_colors = jgene_colors,
vfamily_colors = vfamily_colors,
 isotype_colors =
isotype_colors)
 mosaic_plots.append(mosaic_plot)

 ###
 ## Clonal V Gene SHM Burtin Plot ##
 ###

 148

 clonal_vgene_shm_plot = Burtin_VGene_SHM_Plot(comparison_df, title = plot_title_prefix + "
Clonal V Gene Mean SHM",

vgene_col = vgene_col, vshm_col = vshm_col, split_col = sample_col,

vfamily_colors = vfamily_colors)

 ###
 ## Repertoire Diversity Plot ##
 ###
 diversity_plot = Diversity_Plot(comparison_df, title = plot_title_prefix + " Repertoire
Diversity & Polarization",
 count_col = count_col,
split_col = sample_col)

 ###
 ## CDR3 Amino Acid Length Histogram Plot ##
 ###
 cdr_len_plot = CDR_Length_Histogram_Plot(comparison_df, title = plot_title_prefix + " CDR3
Length Spectratype",
 cdr_col
= cdr_col, split_col = sample_col)

 ###
 ## Shared Repertoire Clonotypes UpSet Plot ##
 ###
 upset_plot = Repertoire_Upset_Plot(comparison_df, title = plot_title_prefix + " Shared
Clone Set UpSet Plot",
 clone_col =
clone_col, sample_col = sample_col,
 highlighted_sets =
upset_highlighted_sets)

 ###
 ## Shared Clone Rank/Frequency Circos Plot ##
 ###
 cyrcos_plot = Cyrcos_Repertoire_Comparison_Plot(comparison_df, title = " Shared Repertoire
Clonal Frequency",

 top_clones = cyrcos_top_clones, clone_col = clone_col,

 count_col = count_col, sample_col = sample_col)

 dashboard_layout = [[upset_plot.plots_grid], [vj_shm_plot, clonal_vgene_shm_plot],
[cdr_len_plot, diversity_plot]]

 #Arrange the mosaic and V-J gene plots into two columns
 mosaic_plots = [list(plots) for plots in numpy.array_split(mosaic_plots,
numpy.ceil(len(mosaic_plots) / 2))]
 vj_gene_plots = [list(plots) for plots in numpy.array_split(vj_gene_plots,
numpy.ceil(len(vj_gene_plots) / 2))]

 dashboard_layout += mosaic_plots
 dashboard_layout += vj_gene_plots

 dashboard_layout += [[cyrcos_plot.plot]]
 dashboard = layout(children = dashboard_layout, sizing_mode = sizing_mode)

 if show_plots:
 show(dashboard)
 else:
 save(dashboard)

 149

References
Agematsu, K., Nagumo, H., Yang, F.C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K.,

Mori, T., Kobata, T., Morimoto, C. and Komiyama, A. 1997. B Cell Subpopulations

Separated by CD27 and Crucial Collaboration of CD27+ B Cells and Helper T Cells

in Immunoglobulin Production. European Journal of Immunology, 27(8): 2073-

2079.

Ahuja, A., Anderson, S.M., Khalil, A. and Shlomchik, M.J. 2008. Maintenance of the

Plasma Cell Pool is Independent of Memory B Cells. Proceedings of the National

Academy of Sciences, 105(12): 4802-4807.

Amanna, I.J., Carlson, N.E. and Slifka, M.K. 2007. Duration of Humoral Immunity to

Common Viral and Vaccine Antigens. New England Journal of Medicine, 357(19):

1903-1915.

Amanna, I.J. and Slifka, M.K., 2010. Mechanisms that Determine Plasma Cell Lifespan

and the Duration of Humoral Immunity. Immunological Reviews, 236(1): 125-138.

Angelin-Duclos, C., Cattoretti, G., Lin, K.I. and Calame, K. 2000. Commitment of B

Lymphocytes to a Plasma Cell Fate is Associated with Blimp-1 Expression in vivo.

The Journal of Immunology, 165(10): 5462-5471.

Anttila, M., Voutilainen, M., Jäntti, V., Eskola, J. and Käyhty, H. 1999. Contribution of

Serotype-Specific IgG Concentration, IgG Subclasses and Relative Antibody

Avidity to Opsonophagocytic Activity Against Streptococcus pneumoniae.

Clinical and Experimental Immunology, 118(3): 402.

Arce, S., Luger, E., Muehlinghaus, G., Cassese, G., Hauser, A., Horst, A., Lehnert, K.,

Odendahl, M., Honemann, D., Heller, K.D. and Kleinschmidt, H. 2004. CD38 low

IgG-Secreting Cells are Precursors of Various CD38 high-Expressing Plasma Cell

Populations. Journal of Leukocyte Biology, 75(6): 1022-1028.

Arnon, T.I., Horton, R.M., Grigorova, I.L. and Cyster, J.G. 2013. Visualization of Splenic

Marginal Zone B-Cell Shuttling and Follicular B-Cell Egress. Nature, 493(7434):

684-688.

Bagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller,

S., Dunn-Walters, D.K., Weill J., and Reynaud, C. 2015. A Reassessment of IgM

Memory Subsets in Humans. Journal of Immunology 195(8): 3716-3724.

Banerjee, M., Mehr, R., Belelovsky, A., Spencer, J. and Dunn‐Walters, D.K. 2002. Age‐

and Tissue‐Specific Differences in Human Germinal Center B Cell Selection

Revealed by Analysis of IgVH Gene Hypermutation and Lineage Trees. European

Journal of Immunology, 32(7): 1947-1957.

Bashford-Rogers, R.J., Palser, A.L., Huntly, B.J., Rance, R., Vassiliou, G.S., Follows, G.A.

and Kellam, P. 2013. Network Properties Derived from Deep Sequencing of

Human B-Cell Receptor Repertoires Delineate B-Cell Populations. Genome

Research, 23(11): 1874-1884.

Bienvenu, J., Whicher, J., Chir, B. and Aguzzi, F. 1996. Immunoglobulins. Serum Proteins

in Clinical Medicine, ed. Ritchie, R.F. and Navolotskaia, O. 1: 1-16.

 150

Bolotin, D.A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I.Z., Putintseva,

E.V. and Chudakov, D.M. 2015. MiXCR: Software for Comprehensive Adaptive

Immunity Profiling. Nature Methods, 12(5): 380-381.

Boyd, S.D., Gaeta, B.A., Jackson, K.J., Fire, A.Z., Marshall, E.L., Merker, J.D., Maniar,

J.M., Zhang, L.N., Sahaf, B., Jones, C.D. and Simen, B.B. 2010. Individual

Variation in the Germline Ig Gene Repertoire Inferred from Variable Region Gene

Rearrangements. The Journal of Immunology, 184(12): 6986-6992.

Boyd, S.D. and Joshi, S.A. 2015. High-Throughput DNA Sequencing Analysis of

Antibody Repertoires. Antibodies for Infectious Diseases, ed. Rappuoli, R. 345-

362.

Briney, B.S., Willis, J.R., McKinney, B.A. and Crowe, J.E. 2012. High-Throughput

Antibody Sequencing Reveals Genetic Evidence of Global Regulation of the Naive

and Memory Repertoires that Extends Across Individuals. Genes and Immunity,

13(6): 469-473.

Cambridge, G., Leandro, M.J., Edwards, J.C., Ehrenstein, M.R., Salden, M., Bodman‐

Smith, M. and Webster, A.D. 2003. Serologic Changes Following B Lymphocyte

Depletion Therapy for Rheumatoid Arthritis. Arthritis & Rheumatology, 48(8):

2146-2154.

Cancro, M.P., Hao, Y., Scholz, J.L., Riley, R.L., Frasca, D., Dunn-Walters, D.K. and

Blomberg, B.B. 2009. B Cells and Aging: Molecules and Mechanisms. Trends in

Immunology, 30(7): 313-318.

Carrasco, Y.R. and Batista, F.D. 2007. B Cells Acquire Particulate Antigen in a

Macrophage-Rich Area at the Boundary between the Follicle and the Subcapsular

Sinus of the Lymph Node. Immunity, 27(1): 160-171.

Cerutti, A., Cols, M. and Puga, I. 2012. Activation of B Cells by Non‐Canonical Helper

Signals. EMBO Reports, 13(9): 798-810.

Cerutti, A., Cols, M. and Puga, I. 2013. Marginal Zone B Cells: Virtues of Innate-Like

Antibody-Producing Lymphocytes. Nature Reviews Immunology, 13(2): 118-132.

Chao, A., Gotelli, N. Hsieh, T., Sander, E., Ma, K.H., Colwell, R.K., and Ellison, A. 2014.

Rarefaction and Extrapolation with Hill Numbers: a Framework for Sampling and

Estimation in Species Diversity Studies. Ecological Monographs 84(1): 45-67.

Chu, V.T. and Berek, C. 2013. The Establishment of the Plasma Cell Survival Niche in the

Bone Marrow. Immunological Reviews, 251(1): 177-188.

Cobaleda, C., Schebesta, A., Delogu, A. and Busslinger, M. 2007. Pax5: The Guardian of

B Cell Identity and Function. Nature Immunology, 8(5): 463-470.

Conway, J.R., Lex, A., and Gehlenborg, N. 2017. UpSetR: an R Package for the

Visualization of Intersecting Sets and Their Properties. Bioinformatics 33(18):

2938-2940.

Crotty, S., Felgner, P., Davies, H., Glidewell, J., Villarreal, L. and Ahmed, R. 2003. Cutting

Edge: Long-Term B Cell Memory in Humans after Smallpox Vaccination. The

Journal of Immunology, 171(10): 4969-4973.

DeKosky, B.J., Ippolito, G.C., Deschner, R.P., Lavinder, J.J., Wine, Y., Rawlings, B.M.,

Varadarajan, N., Giesecke, C., Dörner, T., Andrews, S.F. and Wilson, P.C. 2013.

 151

High-Throughput Sequencing of the Paired Human Immunoglobulin Heavy and

Light Chain Repertoire. Nature Biotechnology, 31(2): 166-169.

Delogu, A., Schebesta, A., Sun, Q., Aschenbrenner, K., Perlot, T. and Busslinger, M. 2006.

Gene Repression by Pax5 in B Cells is Essential for Blood Cell Homeostasis and

is Reversed in Plasma Cells. Immunity, 24(3): 269-281.

Depoil, D., Fleire, S., Treanor, B.L., Weber, M., Harwood, N.E., Marchbank, K.L.,

Tybulewicz, V.L. and Batista, F.D. 2008. CD19 is Essential for B Cell Activation

by Promoting B Cell Receptor–Antigen Microcluster Formation in Response to

Membrane-Bound Ligand. Nature Immunology, 9(1): 63-72.

Dunn-Walters, D.K. and Ademokun, A.A. 2010. B Cell Repertoire and Ageing. Current

Opinion in Immunology, 22(4): 514-520.

Dunn‐Walters, D.K. 2016. The Ageing Human B Cell Repertoire: a Failure of Selection?.

Clinical & Experimental Immunology, 183(1): 50-56.

Edwards, J.C., Szczepański, L., Szechiński, J., Filipowicz-Sosnowska, A., Emery, P.,

Close, D.R., Stevens, R.M. and Shaw, T. 2004. Efficacy of B-Cell–Targeted

Therapy with Rituximab in Patients with Rheumatoid Arthritis. New England

Journal of Medicine, 350(25): 2572-2581.

Ey, P. L. 1993. Use of Stable 6-aminohexyl Derivatives for Labelling Polysaccharides with

Haptens and for Preparing Polysaccharide Immunoadsorbents. Journal of

Immunological Methods 160(1): 135-137.

Ferguson, F.G., Wikby, A., Maxson, P., Olsson, J. and Johansson, B. 1995. Immune

Parameters in a Longitudinal Study of a Very Old Population of Swedish People: a

Comparison Between Survivors and Nonsurvivors. The Journals of Gerontology

Series A: Biological Sciences and Medical Sciences, 50(6): B378-B382.

Fiskesund, R., Steen, J., Amara, K., Murray, F., Szwajda, A., Liu, A., Douagi, V., and

Frostegard, J. 2014. Naturally Occurring Human Phosphorylcholine Antibodies

Are Predominantly Products of Affinity-Matured B Cells in the Adult. Journal of

Immunology, 192(10): 4551-4559.

Ganusov, V.V. and De Boer, R.J. 2007. Do Most Lymphocytes in Humans Really Reside

in the Gut?. Trends in Immunology, 28(12): 514-518.

Ghetie, V. and Ward, E.S. 2000. Multiple Roles for the Major Histocompatibility Complex

Class I–Related Receptor FcRn. Annual Review of Immunology, 18(1): 739-766.

Gibson, K.L., Wu, Y.C., Barnett, Y., Duggan, O., Vaughan, R., Kondeatis, E., Nilsson,

B.O., Wikby, A., Kipling, D. and Dunn‐Walters, D.K. 2009. B‐Cell Diversity

Decreases in Old Age and is Correlated with Poor Health Status. Aging Cell, 8(1):

18-25.

Gorski, J., Piatek, T., Yassai, M., Gorski, J., Maslanka, K. 1995. Improvements in

Repertoire Analysis by CDR3 Size Spectratyping. Annals of the New York Academy

of Sciences, 756(1): 99-102.

Gray, D. 2002. A Role for Antigen in the Maintenance of Immunological Memory. Nature

Reviews Immunology, 2(1): 60-65.

Greiff, V., Bhat, P., Cook, S.C., Menzel, U., Kang, W. and Reddy, S.T. 2015. A

Bioinformatic Framework for Immune Repertoire Diversity Profiling Enables

Detection of Immunological Status. Genome Medicine, 7(1): 49.

 152

Halliley, J.L., Tipton, C.M., Liesveld, J., Rosenberg, A.F., Darce, J., Gregoretti, I.V.,

Popova, L., Kaminiski, D., Fucile, C.F., Albizua, I. and Kyu, S. 2015. Long-Lived

Plasma Cells are Contained within the CD19− CD38 hi CD138+ Subset in Human

Bone Marrow. Immunity, 43(1): 132-145.

Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., et al.

2002. Identification of multiple isolated lymphoid follicles on the antimesenteric

wall of the mouse small intestine. The Journal of Immunology, 168(1), 57-64.

Heesters, B.A., Chatterjee, P., Kim, Y.A., Gonzalez, S.F., Kuligowski, M.P., Kirchhausen,

T. and Carroll, M.C. 2013. Endocytosis and Recycling of Immune Complexes by

Follicular Dendritic Cells Enhances B Cell Antigen Binding and Activation.

Immunity, 38(6): 1164-1175.

Heesters, B.A., Myers, R.C. and Carroll, M.C. 2014. Follicular Dendritic Cells: Dynamic

Antigen Libraries. Nature Reviews Immunology, 14(7): 495-504.

Heesters, B.A., van der Poel, C.E., Das, A. and Carroll, M.C. 2016. Antigen Presentation

to B Cells. Trends in Immunology, 37(12): 844-854.

Hertz, M. and Nemazee, D. 1998. Receptor Editing and Commitment in B Lymphocytes.

Current Opinion in Immunology, 10(2): 208-213.

Hintze, J., Nelson, R. 1998. Violin Plots: A Box Plot-Density Trace Synergism. The

American Statistician, 52(2): 181-184.

Mei, H.E., Wirries, I., Frolich, D., Brisslert, M., Giesecke, C., Grun, J.R., Alexander, T,

Schmidt, S., Luda, K., Kuhl, A.A., Engelmann, R., Durr, M., Scheel, T., Bokarewa,

M., Perka, C., Radbruch, A., and Dorner, T. 2015. A Unique Population of IgG-

Expressing Plasma Cells Lacking CD19 is Enriched in Human Bone Marrow.

Blood, 125: 1739 - 1748.

Hoehn, K.B., Fowler, A., Lunter, G. and Pybus, O.G., 2016. The Diversity and Molecular

Evolution of B-Cell Receptors During Infection. Molecular Biology and Evolution,

33(5): 1147-1157.

Hoffman, W., Lakkis, F.G. and Chalasani, G. 2016. B cells, Antibodies, and More. Clinical

Journal of the American Society of Nephrology, 11(1): 137-154.

Jost, L. 2006. Entropy and Diversity. Oikos, 113(2): 363-375.

Julien, J.P., Sok, D., Khayat, R., Lee, J.H., Doores, K.J., Walker, L.M., Ramos, A.,

Diwanji, D.C., Pejchal, R., Cupo, A. and Katpally, U. 2013. Broadly Neutralizing

Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the

HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 9(5).

Kindt, T.J., Goldsby, R.A., Osborne, B.A. and Kuby, J. 2007. Kuby Immunology.

Macmillan.

Klein, U., Rajewsky, K. and Kuppers, R. 1998. Human Immunoglobulin (Ig) M+ IgD+

Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry

Somatically Mutated Variable Region Genes: CD27 as a General Marker for

Somatically Mutated (Memory) B Cells. Journal of Experimental Medicine,

188(9): 1679-1689.

Klein, U. and Dalla-Favera, R. 2008. Germinal Centres: Role in B-cell Physiology and

Malignancy. Nature Reviews Immunology, 8(1): 22-33.

 153

Koch, G. and Benner, R. 1982. Differential Requirement for B-Memory and T-Memory

Cells in Adoptive Antibody Formation in Mouse Bone Marrow. Immunology, 45:

697–704.

Kolibab, K., Smithson, S.L., Rabquer, B., Khuder, S. and Westerink, M.J. 2005. Immune

Response to Pneumococcal Polysaccharides 4 and 14 in Elderly and Young Adults:

Analysis of the Variable Heavy Chain Repertoire. Infection and Immunity, 73(11):

7465-7476.

Kraus, M., Alimzhanov, M.B., Rajewsky, N. and Rajewsky, K. 2004. Survival of Resting

Mature B Lymphocytes Depends on BCR Signaling via the Igα/β Heterodimer.

Cell, 117(6): 787-800.

Kruetzmann, S., Rosado, M.M., Weber, H., Germing, U., Tournilhac, O., Peter, H.H.,

Berner, R., Peters, A., Boehm, T., Plebani, A. and Quinti, I. 2003. Human

Immunoglobulin M Memory B Cells Controlling Streptococcus pneumoniae

Infections are Generated in the Spleen. Journal of Experimental Medicine, 197(7):

939-945.

Laserson, U., Vigneault, F., Gadala-Maria, D., Yaari, G., Uduman, M., Vander Heiden,

J.A., Kelton, W., Jung, S.T., Liu, Y., Laserson, J. and Chari, R. 2014. High-

Resolution Antibody Dynamics of Vaccine-Induced Immune Responses.

Proceedings of the National Academy of Sciences, 111(13): 4928-4933.

Leandro, M.J., Edwards, J.C., Cambridge, G., Ehrenstein, M.R. and Isenberg, D.A. 2002.

An Open Study of B Lymphocyte Depletion in Systemic Lupus Erythematosus.

Arthritis & Rheumatology, 46(10): 2673-2677.

Leinster, T. and Cobbold, C.A. 2012. Measuring Diversity: The Importance of Species

Similarity. Ecology, 93(3): 477-489.

Liao, H.X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Roskin,

K.M., Schramm, C.A., Zhang, Z. and Zhu, J. 2013. Co-evolution of a Broadly

Neutralizing HIV-1 Antibody and Founder Virus. Nature, 496(7446): 469-476.

Mamani-Matsuda, M., Cosma, A., Weller, S., Faili, A., Staib, C., Garçon, L., Hermine, O.,

Beyne-Rauzy, O., Fieschi, C., Pers, J.O. and Arakelyan, N. 2008. The Human

Spleen is a Major Reservoir for Long-Lived Vaccinia Virus–Specific Memory B

Cells. Blood, 111(9): 4653-4659.

Manz, R.A., Lohning, M., Cassese, G., Thiel, A. and Radbruch, A. 1998. Survival of Long-

Lived Plasma Cells is Independent of Antigen. International Immunology, 10(11):

1703-1711.

Manz, R.A., Arce, S., Cassese, G., Hauser, A.E., Hiepe, F. and Radbruch, A. 2002.

Humoral Immunity and Long-Lived Plasma Cells. Current Opinion in

Immunology, 14(4): 517-521.

Manz, R.A. and Radbruch, A. 2002. Plasma Cells for a Lifetime?. European Journal of

Immunology, 32(4): 923-927.

Manz, R.A., Hauser, A.E., Hiepe, F. and Radbruch, A. 2005. Maintenance of Serum

Antibody Levels. Annual Review of Immunology, 23: 367-386.

Martensson, I.L., Keenan, R.A. and Licence, S. 2007. The Pre-B-Cell Receptor. Current

Opinion in Immunology, 19(2): 137-142.

 154

McDaniel, J.R., DeKosky, B.J., Tanno, H., Ellington, A.D. and Georgiou, G. 2016. Ultra-

High-Throughput Sequencing of the Immune Receptor Repertoire from Millions of

Lymphocytes. Nature Protocols, 11(3): 429-442.

Mei, H.E., Wirries, I., Frölich, D., Brisslert, M., Giesecke, C., Grun, J.R., Alexander, T.,

Schmidt, S., Luda, K., Kühl, A.A. and Engelmann, R. 2015. A Unique Population

of IgG-Expressing Plasma Cells Lacking CD19 is Enriched in Human Bone

Marrow. Blood, 125(11): 1739-1748.

Mohr, E., Serre, K., Manz, R.A., Cunningham, A.F., Khan, M., Hardie, D.L., Bird, R. and

MacLennan, I.C. 2009. Dendritic Cells and Monocyte/Macrophages that Create the

IL-6/APRIL-rich Lymph Node Microenvironments where Plasmablasts Mature.

The Journal of Immunology, 182(4): 2113-2123.

Mora, T., Walczak, A.M., Bialek, W. and Callan, C.G. 2010. Maximum Entropy Models

for Antibody Diversity. Proceedings of the National Academy of Sciences, 107(12):

5405-5410.

Mroczek, E.S., Ippolito, G.C., Rogosch, T., Hoi, K.H., Hwangpo, T.A., Brand, M.G.,

Zhuang, Y., Liu, C.R., Schneider, D.A., Zemlin, M. and Brown, E.E. 2014.

Differences in the Composition of the Human Antibody Repertoire by B Cell

Subsets in the Blood. Frontiers in Immunology, 5(96).

Murphy, K. and Weaver, C. 2016. Janeway's Immunobiology. Garland Science.

Vancouver Park, S. and Nahm, M.H. 2011. Older Adults have a Low Capacity to

Opsonize Pneumococci due to Low IgM Antibody Response to Pneumococcal

Vaccinations. Infection and Immunity, 79(1): 314-320.

Pritz, T., Lair, J., Ban, M., Keller, M., Weinberger, B., Krismer, M. and Grubeck‐

Loebenstein, B. 2015. Plasma Cell Numbers Decrease in Bone Marrow of Old

Patients. European Journal of Immunology, 45(3): 738-746.

Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A.,

Swerdlow, H.P. and Gu, Y. 2012. A Tale of Three Next Generation Sequencing

Platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq

Sequencers. BMC Genomics, 13(1): 341.

Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G., Dorner, T. and

Hiepe, F., 2006. Competence and Competition: The Challenge of Becoming a

Long-Lived Plasma Cell. Nature Reviews Immunology, 6(10): 741-750.

Radl, J., Sepers, J.M., Skvaril, F., Morell, A. and Hijmans, W. 1975. Immunoglobulin

Patterns in Humans over 95 Years of Age. Clinical and Experimental Immunology,

22(1): 84-90.

Rajewsky, K., 1996. Clonal Selection and Learning in the Antibody System. Nature,

381(6585): 751-758.

Renyi, A. 1961. On Measures of Entropy and Information. Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability (1): Contributions

to the Theory of Statistics.

Rifai, A., Fadden, K., Morrison, S.L. and Chintalacharuvu, K.R. 2000. The N-glycans

Determine the Differential Blood Clearance and Hepatic Uptake of Human

Immunoglobulin (Ig) A1 and IgA2 Isotypes. Journal of Experimental Medicine,

191(12): 2171-2182.

 155

Robinson, W.H. 2015. Sequencing the Functional Antibody Repertoire—Diagnostic and

Therapeutic Discovery. Nature Reviews Rheumatology. 11(3): 171–182.

Roldan, E., Rodriguez, C., Navas, G., Parra, C. and Brieva, J.A. 1992. Cytokine Network

Regulating Terminal Maturation of Human Bone Marrow B Cells Capable of

Spontaneous and High Rate Ig Secretion in vitro. The Journal of Immunology,

149(7): 2367-2371.

Rowland, S.L., Tuttle, K., Torres, R.M. and Pelanda, R. 2013. Antigen and Cytokine

Receptor Signals Guide the Development of the Naive Mature B Cell Repertoire.

Immunologic Research, 55(1-3): 231-240.

Sanz, I., Wei, C., Lee, F.E.H. and Anolik, J. 2008. Phenotypic and Functional

Heterogeneity of Human Memory B Cells. Seminars in Immunology, 20(1): 67-82.

Scott, D., Terrell, G. 1992. Variable Kernel Density Estimation. The Annals of Statistics,

1992: 1236-1265.

Scheeren, F.A., Nagasawa, M., Weijer, K., Cupedo, T., Kirberg, J., Legrand, N. and Spits,

H. 2008. T Cell–Independent Development and Induction of Somatic

Hypermutation in Human IgM+ IgD+ CD27+ B Cells. Journal of Experimental

Medicine, 205(9): 2033-2042.

Slifka, M.K., Matloubian, M. and Ahmed, R. 1995. Bone Marrow is a Major Site of Long-

Term Antibody Production after Acute Viral Infection. Journal of Virology, 69(3):

1895-1902.

Slifka, M.K., Antia, R., Whitmire, J.K. and Ahmed, R. 1998. Humoral Immunity due to

Long-Lived Plasma Cells. Immunity, 8(3): 363-372.

Smith, K.G., Light, A., Nossal, G.J.V. and Tarlinton, D.M. 1997. The Extent of Affinity

Maturation Differs between the Memory and Antibody‐Forming Cell

Compartments in the Primary Immune Response. The EMBO Journal, 16(11):

2996-3006.

Smithson, S.L., Kolibab, K., Shriner, A.K., Srivastava, N., Khuder, S. and Westerink, M.J.

2005. Immune Response to Pneumococcal Polysaccharides 4 and 14 in Elderly and

Young Adults: Analysis of the Variable Light Chain Repertoire. Infection and

Immunity, 73(11): 7477-7484.

Steens, A., Vestrheim, D.F., Aaberge, I.S., Wiklund, B.S., Storsaeter, J., Bergsaker, M.R.,

Ronning, K. and Furuseth, E. 2014. A Review of the Evidence to Inform

Pneumococcal Vaccine Recommendations for Risk Groups Aged 2 Years and

Older. Epidemiology & Infection, 142(12): 2471-2482.

Suzuki, K., Maruya, M., Kawamoto, S. and Fagarasan, S. 2010. Roles of B‐1 and B‐2 Cells

in Innate and Acquired IgA‐Mediated Immunity. Immunological Reviews, 237(1):

180-190.

Tabibian‐Keissar, H., Hazanov, L., Schiby, G., Rosenthal, N., Rakovsky, A., Michaeli, M.,

Shahaf, G.L., Pickman, Y., Rosenblatt, K., Melamed, D. and Dunn‐Walters, D.

2016. Aging Affects B‐Cell Antigen Receptor Repertoire Diversity in Primary and

Secondary Lymphoid Tissues. European Journal of Immunology, 46(2): 480-492.

Tangye, S.G., Avery, D.T., Deenick, E.K. and Hodgkin, P.D. 2003. Intrinsic Differences

in the Proliferation of Naive and Memory Human B Cells as a Mechanism for

 156

Enhanced Secondary Immune Responses. The Journal of Immunology, 170(2):

686-694.

Tangye, S.G. and Good, K.L. 2007. Human IgM+CD27+ B Cells: Memory B Cells or

“Memory” B Cells?. The Journal of Immunology, 179(1): 13-19.

Tarlinton, D., Radbruch, A., Hiepe, F. and Dorner, T. 2008. Plasma Cell Differentiation

and Survival. Current Opinion in Immunology, 20(2): 162-169.

Tavares, S.M.Q.M.C., Junior, W.D.L.B. and e Silva, M.R.L. 2014. Normal Lymphocyte

Immunophenotype in an Elderly Population. Revista Brasileira de Hematologia e

Hemoterapia, 36(3): 180-183.

Thomas, M.D., Srivastava, B. and Allman, D. 2006. Regulation of Peripheral B Cell

Maturation. Cellular Immunology, 239(2): 92-102.

Tokoyoda, K., Hauser, A.E., Nakayama, T. and Radbruch, A. 2010. Organization of

Immunological Memory by Bone Marrow Stroma. Nature Reviews Immunology,

10(3): 193-200.

Venturi, V., Kedzierska, K., Turner, S.J., Doherty, P.C. and Davenport, M.P. 2007.

Methods for Comparing the Diversity of Samples of the T Cell Receptor Repertoire.

Journal of Immunological Methods, 321(1): 182-195.

Victora, G.D. and Nussenzweig, M.C. 2012. Germinal Centers. Annual Review of

Immunology, 30: 429-457.

Vidarsson, G., Dekkers, G. and Rispens, T. 2014. IgG Subclasses and Allotypes: From

Structure to Effector Functions. Frontiers in Immunology, 5: 520.

Weill, J.C., Weller, S. and Reynaud, C.A. 2009. Human Marginal Zone B Cells. Annual

Review of Immunology, 27: 267-285.

Weiss-Ottolenghi, Y. and Gershoni, J.M. 2014. Profiling the IgOme: Meeting the

Challenge. FEBS Letters, 588(2): 318-325.

Weller, S., Reynaud, C., and Weill, J. 2005. Vaccination Against Encapsulated Bacteria in

Humans: Paradoxes. Trends in Immunology 26(2): 85-89.

Wu, Y.C.B., Kipling, D. and Dunn-Walters, D.K. 2012. Age-Related Changes in Human

Peripheral Blood IGH Repertoire Following Vaccination. Frontiers in

Immunology, 3: 193.

Yaari, G. and Kleinstein, S.H. 2015. Practical Guidelines for B-Cell Receptor Repertoire

Sequencing Analysis. Genome Medicine, 7(1): 121.

Yoshida, T., Mei, H., Dorner, T., Hiepe, F., Radbruch, A., Fillatreau, S. and Hoyer, B.F.

2010. Memory B and Memory Plasma Cells. Immunological Reviews, 237(1): 117-

139.

Yoshikawa, T.T. and Marrie, T.J. 2000. Community-Acquired Pneumonia in the Elderly.

Clinical Infectious Diseases, 31(4): 1066-1078.

Zandvoort, A. and W. Timens. 2002. The Dual Function of the Splenic Marginal Zone:

Essential for Initiation of Anti‐TI‐2 Responses but Also Vital in the General First‐

line Defense Against Blood‐Borne Antigens. Clinical and Experimental

Immunology 130(1): 4-11.

Zhang, W., Brahmakshatriya, V. and Swain, S.L. 2014. CD4 T Cell Defects in the Aged:

Causes, Consequences and Strategies to Circumvent. Experimental Gerontology,

54: 67-70.

