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Abstract 

 

Comparative Systemic Analysis of Human Immunoglobulin Repertoires 

 

Gregory Ryan King, M.A. 

The University of Texas at Austin, 2018 

 

Supervisor:  George Georgiou 

 

 The humoral immune system is majorly composed of B cells producing effector 

immunoglobulin molecules, the vast diversity of which allow for the neutralization of 

pathogenic threats never previously seen by the immune system. High-throughput 

sequencing technology has allowed this vast repertoire to be characterized and quantified, 

but understanding this complex system requires methods of comparison to identify and 

differentiate B cell populations. In this thesis, differences between groups of repertoires 

within individuals are analyzed at both the cellular and proteomic level. Novel 

experimental techniques and visualization methods will allow for the analyses of several 

such high-dimensional complex systems, leading to a fuller picture of the B cells’ 

contribution to the immune system. 

 



 vi 

Table of Contents 

 

Chapter 1: The Plasma Cell Repertoire and Serological Contribution ....................1 

Background .....................................................................................................1 

Materials and Methods ....................................................................................7 

 Peripheral Blood and Bone Marrow Mononuclear Cell 

 and Serum Isolation ...............................................................................7 

 Plasma Cell and CD19+/- FACS Sorting of Bone Marrow 

 Mononuclear Cells .................................................................................9 

 Library Preparation for VH-Only Sequencing .......................................9 

 Bone Marrow B Cell MACS Isolation ................................................11 

 Serum IgG Purification and Preparation ..............................................13 

Results ...........................................................................................................14 

 Experimental Outline and Sample Processing .....................................14 

 Gene Usage and Class Switching by Repertoire..................................18 

 Somatic Hypermutation Rates and Clonal Distribution.......................20 

 Clonal Diversity ...................................................................................25 

 Compartmental Repertoire Comparison and Similarity ......................28 

 Proteomic Analysis of Total Serum IgG Repertoires ..........................31 

 

Chapter 2: The Anti-Pneumococcus Capsular Polysaccharide Antibody 

          Repertoire and Serological Response  .................................................34 

Background ...................................................................................................34 

Materials and Methods ..................................................................................37 

 Serum IgG Purification and Preparation ..............................................37 

 Anti-Pneumococcal Polysaccharide Antibody Enrichment .................38 

Results ...........................................................................................................39 

 Sample Subsets and Experimental Outline ..........................................39 

 High-Throughput Sequencing Derived Repertoire Characteristics .....42 

 Compartment Repertoire Overlap ........................................................45 



 vii 

 Vaccine Component Enriched Serological Repertoire ........................49 

 Contribution of Shared Clones to Serum IgG Response .....................52 

Chapter 3: Automated Comparative Repertoire Visualization ..............................54 

Background ...................................................................................................54 

Application Overview ...................................................................................55 

 CDR3 Amino Acid Length Histogram (Spectratype Plot) ..................55 

 V/J Gene Somatic Hypermutation Violin Plot.....................................57 

 Paired V-J Gene Usage Donut Plot ......................................................61 

 Categorical Clonal Frequency Mosaic Plot .........................................65 

 Clonal V Gene Somatic Hypermutation Burtin Plot............................69 

 Repertoire Diversity / Polarization Line Plot.......................................71 

Appendix ................................................................................................................74 

 Python Sample Processing and Graphing Code............................................74 

References  ...........................................................................................................149 



 1 

Chapter 1: The Plasma Cell Repertoire and Serological Contribution 

BACKGROUND 

A hallmark of the vertebrate adaptive immune system – hit upon by evolution in 

the very early stages of animal life on Earth and a major component of immunity in all 

mammals – is the receptor and soluble effector molecule of the B cell: the immunoglobulin, 

also known (for its ability to bind foreign bodies) as the antibody (Kindt et al. 2007). The 

antibody is a tetrameric glycoprotein made up of two dimers each containing a paired heavy 

and light chain (heavy and light referring to the molecular masses) joined covalently with 

cysteine disulfide bonds. The antibody’s essential role to play is in determining the 

presence of an unknown / foreign antigen, and relaying this message to a variety of cell 

types and other effector molecules to deal with the intruder promptly. The N-terminus and 

C-terminus of the antibody each have specialized functions that allows them to serve in 

this function. The N-terminus of both the heavy and light chains include regions of non-

germline sequences with a vast diversity of potential tertiary protein configurations which 

allow the molecule to bind to a theoretically infinite range of ligands, in some cases with 

extremely high specificity (Murphy and Weaver, 2016). Since this variable region (known 

as VH for the Variable Heavy chain and VL for the Variable Light chain) is present in 

duplicate on the antibody, the molecule will not only bind a target but can also crosslink 

multiple targets, creating aggregates that stimulate an ever-stronger local response. 

The C-terminus of the antibody, often known as the Constant region, is the portion 

of the heavy chain which signals specifically to other cells in the immune system where a 

potential target of interest lies. All animals have several interchangeable constant regions 

encoded by different genes, each with a different profile of interaction with various cell 

subsets. In humans, there are five isotypes for the heavy chain constant region: IgG, IgA, 

IgM, IgD, and IgE. The IgG and IgA isotypes are further divide into 4 and 2 subgroups, 



 2 

respectively. Each type may specialize in attracting certain cells or other effector 

molecules: for example, IgG3 is a strong attractor for the complement C1q binding protein 

that stimulates an innate cell-free attack, while IgA1 is more efficient at bringing 

neutrophils to assist (Vidarsson et al. 2014). While the canonical concept of a tetrameric 

“Y” shaped antibody is applicable to the IgG, IgE, and IgD subclasses (Figure 1.1), IgA 

and IgM can and often do take on polymeric configurations – IgA is commonly found as a 

dimer of two single IgA molecules (Joined by a J chain tail-to-tail) especially in sites of 

mucosal secretions, and soluble IgM takes on a large pentameric configuration. In the 

periphery, IgG subtypes are the most common member by far, making up a combined 85% 

of serum immunoglobulins (Manz et al. 2005). In the mucosa, the balance shifts heavily in  

the favor of IgA; IgA production in the mucosal sites most likely surpasses the production 

of all other antibody isotypes throughout the body (Rifai et al. 2000). 
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Figure 1.1: The generalized structure of mammalian antibodies (specifically IgG). 

 

The production of antibodies is entirely due to the diverse set of immunological 

cells known as B cells. B cells begin life in the bone marrow, in stromal sites containing 

hematopoietic stem cells which are constantly dividing throughout life. Like all germline 

cells, the precursors to B cells have the fundamental building blocks for any possible 

antibody in the immunoglobulin heavy-chain locus, on the 14th chromosome in humans. 

The locus is made up of many variants of three gene types, known as Variable (V), 

Diversity (D), and Joining (J). The first steps in development require the B cells to begin 

the process of heavy chain gene component recombination to bring together first a D and 

J gene at random, after the success of which allow for the second recombination of the V 

gene to the DJ segment. This bringing together of three random assortments of the dozens 
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of V genes and D genes with one of 6-7 J genes alone yields a sequence space of many 

thousands of possible heavy chain sequences. However, V-DJ joining is also accompanied 

by exonuclease digestion at the site of the VDJ recombination, the so-called junction 

region. As the junction region is chewed back a random number of bases, a low-fidelity 

DNA polymerase adds back a set a randomized bases that greatly increase the diversity of 

this site (see Figure 1.2). In the (likely) chance that a deleterious mutation occurs and no 

pre-B heavy chain is able to express, the V-D-J gene cassette of the second chromosome-

14 attempts another recombination, doubling the chances for a particular cell to create a 

functional heavy chain. 

 

 
Figure 1.2: The Human germline immunoglobulin heavy chain locus (IGH), with 

many variants of the Variable, Diversity, and Joining genes are displayed 

on top. The middle section displays the rearranged IGH locus at the naïve 

B cell stage with the recombination of a single V-D-J set followed by a 

constant domain determining the isotype. The bottom section depicts the 

spliced mRNA transcript as expressed in a functional B cell. 

 

 Upon a final productive rearrangement, naïve B cells that show no binding to self-

antigens (preventing autoimmunity) are released from the bone marrow into peripheral 

circulation to allow exposure to potential pathogen-expressed antigens for an immune 

response. Should a B cell membrane-bound antibody receptor find a cognate antigen, the 

cell can undergo a variety of proliferation and differentiation steps to allow the cell to 
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respond more fully to the invader. The two major effector B cell forms that allow both a 

full primary response and the ability to persist for long periods of time and contribute to 

immunological memory are the Plasma cell and the Memory B cell (figure 1.3). These 

important steps take place within lymphoid organs in segments known as the germinal 

center (figure 1.4). 

 

 

 

Figure 1.3: The generalized creation and end states of B Cells. Hematopoietic stem 

cells in the bone marrow can differentiate into B cells, from which only 

the minority of cells that undergo a productive heavy and light chain 

rearrangement can leave the bone marrow as naïve B cells. Upon 

encountering antigen in the periphery, B cells can mature into Plasma and 

Memory B Cells – the variants that contribute to an effective immune 

response and that can remain active for months to years and contribute to a 

secondary response should the same antigen be encountered in the future. 
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Figure 1.4: Induced hypermutation and proliferation of B cells in the germinal center. 

Cells that actively bind antigen displayed by antigen presenting cells, such 

as dendritic cells, in the “light” zone are stimulated to rapidly mutate and 

divide in the “dark” zone. The minority of cells with enhanced antigenic 

binding can then be repetitively selected for additional rounds of mutation, 

while non-functional or less useful variants die off as they are 

outcompeted for antigen to bind. 

 Plasma cells, more than any other B cell group, provide the body with humoral 

immunity through the constant high-level production of secreted antibodies. Plasma cells 

arise from particularly successful plasmablasts induced during exposure to antigenic 
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challenge; newly formed plasma cells have a lifespan of several days as they exist in the 

periphery, but long-term antigen protection is truly provided when these new plasma cells 

find their way to a survival niche in which they can be stimulated to persist and continue 

to secrete antibody (Radbruch et al. 2006). The niches sought out by plasma cells depend 

on their origins in the gut or periphery, but the most well understood niche contributing to 

serological long-term antibody expression is the bone marrow. Plasma cells that migrate 

back to their developmental origin can receive guidance by signaling from T cells and the 

bone marrow stroma (Koch and Benner 1982). Once settled, these plasma cells transition 

from a life cycle of days to weeks to one lasting months to years. Recent studies have begun 

to identify distinguishing factors between plasma cells of various ages in the bone marrow; 

the B cell co-receptor and signaling enhancer molecule CD19 has been directly shown to 

lower in expression levels as plasma cells remain in the bone marrow for longer periods of 

time (Henrik, E.M. et al. 2014, Halliley, J. et al. 2015). This allows for the selection and 

differentiation between the populations of plasma cells which may be newly derived and 

of the super-competent members that may be directly responsible for the protection against 

pathogens over many years. 

 

MATERIALS AND METHODS 

Peripheral Blood and Bone Marrow Mononuclear Cell and Serum Isolation 

All peripheral blood and bone marrow aspirate samples were collected by AllCells 

and shipped overnight at ambient temperature; processing was started immediately upon 

receipt of the samples in a sterilized biological safety hood. Sterile 1x PBS pH 7.4 plus 2 

mM EDTA (without Ca2+ or Mg2+) at room temperature was used to dilute samples prior 

to density centrifugation separation: peripheral blood (60 mL starting volume) was diluted 

1:1 by volume, and bone marrow aspirate (25 mL starting volume) was diluted 7:1 by 
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volume. The samples were aliquoted out in 35 mL increments and cautiously layered into 

50 mL conical centrifuge tubes containing 15 mL of room temperature Lymphocyte 

Separation Medium at 1.077 g/mL density (Corning, #25-072), without disturbing the 

separation medium interface. The vials were centrifuged at room temperature at 800g for 

15 minutes, with the brake turned off to ensure gentle deceleration. 

The upper serum / aspirate supernatant layers were removed by pipette and stored 

in 10 mL aliquots at -80 °C for future use. The mononuclear cell layers were then carefully 

aspirated by glass transfer pipette and pooled into a fresh 50 mL vial and brought to a final 

volume of 50 mL with PBS plus EDTA. The cell solution was gently mixed by inversion 

then centrifuged at 300g for 10 minutes at room temperature, and the PBS wash supernatant 

was discarded. Two additional PBS washes were performed, and the final cell pellet was 

resuspended in 2 mL 1x PBS pH 7.4 plus 2 mM EDTA and 0.5% Bovine Serum Albumin. 

Two 10 μL samples of the cell suspension were diluted 1:10 with 0.4% Trypan Blue 

for viability and cell concentration measurement via hemocytometer. For peripheral blood 

samples, ~1-2 x 107 mononuclear cells were pelleted and resuspended in 1 mL TRIzol 

RNA extraction reagent (Thermo Fisher #15596026) and stored at -80°C. The remaining 

cells were brought to ~2 x 107 cells/mL with 2x cell freezing medium: 40% RPMI 1640 

(ThermoFisher #12633012), 40% heat-inactivated fetal bovine serum (ThermoFisher 

#16140089), 20% DMSO (Sigma-Aldrich #D2650). Cell suspensions were then stored in 

liquid nitrogen after controlled freezing via isopropyl alcohol chilling (Nalgene Mr. Frosty, 

Sigma-Aldrich #C1562). For the bone marrow mononuclear cells, in addition to the frozen 

cell suspension and TRIzol aliquots, two additional ~1-2 x 107 mononuclear cell aliquots 

were set aside. 

 

 



 9 

Plasma Cell and CD19+/- FACS Sorting of Bone Marrow Mononuclear Cells 

FACS sample staining was performed by Gregory King, Gregory Ippolito, and 

Sebastian Schaetzle and sample sorting and processing by Richard Salinas. 

The first bone marrow mononuclear cell aliquot was prepared for FACS plasma 

cell plus CD19-expression level sorting. 107 cells in 1.1 mL FACS buffer (1x PBS pH 7.4 

plus 0.5% bovine serum albumin) were split into two equal aliquots in 1.5 mL Eppendorf 

tubes. The first aliquot (individual color controls) was then portioned into 5 tubes at 0.1 

mL each, and 10 μL of each of the labeled FACS antibody solution was added to each 

separate tube. The second sample aliquot at 0.5 mL had 10 μL of all 5 labeled antibodies 

added. All tubes were incubated in the dark for 15 minutes at room temperature, with gentle 

flicking every five minutes. Cells were washed with 1 mL FACS buffer, pelleted at 300g 

for 7 minutes, then resuspended with 0.5 mL FACS buffer for the color controls or 1 mL 

FACS buffer for the full sample. All samples were filtered into FACS tubes with a 45 μm 

filter cap (Corning #352235) and brought to sorting immediately on ice. The collected 

plasma cell subsets were immediately stored in 1 mL TRIzol at -80°C. 

Antibodies used for the plasma cell and CD19 sorting were Mouse Anti-Human 

CD138 PE (Miltenyi Clone B-B4, #130-081-301), Mouse Anti-Human CD19 v450 (BD 

Biosciences, #556633), Mouse Anti-Human CD38 FITC (BD Biosciences Clone HIT2, 

#555459), Mouse Anti-Human IgD PE (BD Biosciences Clone IA6-2, #555779), and 

Mouse Anti-Human CD27 APC (BD Biosciences Clone M-T271, #558664). 

 

Library Preparation for VH-Only Sequencing 

For mRNA isolation from the lysed cell samples stored at -80 °C in TRIzol, the 

tubes were thawed and 0.2 mL chloroform was added; the mixture was then vortexed for 

15 seconds and allowed to settle for 5 minutes at room temperature. The tubes were then 
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centrifuged at 4 °C for 10 minutes at 12000g, followed by careful removal of the upper 

clear layer into a fresh Eppendorf tube. 70% ethanol was added to the tubes 1:1 by volume 

and gently mixed. The samples were then run through an RNA purification centrifugal 

column and processed as recommended by the manufacturer (RNeasy Mini, Qiagen). 2x 

elutions with 15 μL each of RNAse-free water were pooled and RNA concentrations were 

measured by Nanodrop absorbance; 1000ng of RNA was set aside for immediate cDNA 

synthesis with the remainder stored at -80 °C. 

cDNA production was performed following the manufacturer’s protocol 

(ThermoFisher SuperStrand IV) using 1000ng of sample RNA. The cDNA synthesis 

program used was 50 °C for 4 minutes, 52 °C for 5 minutes, 55 °C for 6 minutes, and finally 

80 °C for 10 minutes. After the cDNA synthesis, 1 μL of RNase H was added and incubated 

for 20 minutes at 37 °C. The samples were then prepared for VH-only amplicon PCR using 

the manufacturer’s recommended FastStart Taq polymerase protocol with 8 μL of the 

cDNA product for a 400 μL final volume reaction, aliquoted at 50 μL per PCR tube. The 

program for VH amplification was: 95 °C for 2 minutes, 4 cycles of 92 °C, 50 °C, and 72 

°C (each 1 minute), 4 cycles of 92 °C, 55 °C, and 72 °C (each 1 minute), 22 cycles of 92 

°C, 63 °C, and 72 °C (each 1 minute), and finally 72 °C for 7 minutes. PCR products were 

purified using a Zymo-Spin I DNA binding column (Zymo Research #C1003) and eluted 

2x with 15 μL water each. The purified DNA was then run on a 1% TAE-agarose gel, and 

the appropriately sized VH band was cut out and purified with a Zymo-Spin I DNA binding 

column using agarose dissolving buffer (expected ~400bp band for IgG and IgM or ~500bp 

for IgA). Once again, the 2x 15 μL water elutions were pooled and the concentration 

measured by Nanodrop absorbance. DNA was then given to the University of Texas at 

Austin Genome Sequencing and Analysis Facility sequencing core for MiSeq library 

preparation by ligation and sequencing. 
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Bone Marrow B Cell MACS Isolation 

Initial 2 donor sample VH-VL pairing was done by Jon McDaniel, and subsequent 

donor samples were processed by Gregory King. 

The remaining 107 bone marrow mononuclear cells were then prepared for single 

cell emulsion VH-VL paired RT-PCR. The cell suspension was first depleted of non-B 

cells by magnetic-activated cell sorting (MACS) using the negative selection portion of the 

Miltenyi Human IgG+ Memory B Cell isolation kit (Miltenyi #130-094-350). The cell 

suspension was pelleted at 300g for 10 minutes at 4 °C, then resuspended in 0.4 mL of 

chilled MACS buffer (1x PBS pH 7.4 plus 0.5% bovine serum albumin). 0.1 mL of the 

Miltenyi B Cell Biotin-Antibody Cocktail was added and gently mixed then incubated for 

10 minutes at 4 °C. 0.3 mL of chilled MACS buffer and 0.2 mL of Anti-Biotin microbeads 

were added and mixed, followed by another 15-minute incubation at 4 °C. The cell 

suspension was centrifuged for 10 minutes at 300g at 4 °C, followed by removal of the 

supernatant and resuspension of the cell pellet in 1 mL cold MACS buffer. The cell 

suspension was run through a 45 μm filter (Corning #352235), then added to an 

equilibrated MACS LD column (Miltenyi #130-042-901). The non-B Cell depleted 

flowthrough was collected and pooled with 4x 1 mL MACS buffer washes. The cells were 

then washed with 15 mL chilled PBS and resuspended in 5 mL PBS, and a final viability 

count was performed prior to emulsion-based lysis and mRNA capture. 

Single-cell lysis and mRNA capture for bone marrow B Cell VH-VL RT-PCR was 

performed as described in McDaniel, J.R. et al. 2016. The B Cell suspension in PBS at 105 

cells/mL and an equal volume of lysis buffer (100 mM Tris pH 7.4 plus 500 mM LiCl, 10 

mM EDTA, 1% LiDS, 5 mM DTT) containing mRNA-capturing magnetic microbeads 

(Oligo d(T) microbeads, New England Biolabs #S1419S) were run through an in-house 

pump to form single-cell droplets in emulsions (4.5% Span-80, 0.4% Tween-80, and 0.05% 
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Triton-X 100 in mineral oil) for mRNA capture of paired heavy and light chain transcripts 

on beads. Emulsions were formed at a flow rate of 0.5 mL/minute for the aqueous solutions 

and 3 mL/minute for the oil, and captured in 50 mL conical vials chilled in ice. Emulsions 

were gently pooled and centrifuged at 4000 RPM for 6 minutes at 4 °C, and the upper 

layers of oil and non-cell containing emulsions were removed. An equal volume of chilled 

hydrated diethyl ether was added to the remaining large emulsions and mixed by gently 

inverting, followed by another 4000 RPM 6 minute centrifugation step at 4 °C. All 

supernatant was removed, and the pelleted mRNA-containing beads were resuspended in 

1 mL of chilled wash buffer (100 mM Tris pH 7.5 plus 500 mM LiCl and 1 mM EDTA). 

The beads were then pelleted on a magnetic rack at 4 °C and washed once with lysis buffer, 

followed by two washes with the bead wash buffer and a final equilibration in 0.5 mL of 

20 mM Tris pH 7.5 plus 3 mM MgCl and 50 mM KCl. After pelleting a final time, the 

beads were thoroughly resuspended in chilled emulsion RT-PCR mixture containing RTX 

polymerase. The ~3 mL prepared RT-PCR sample was then re-emulsified in 9 mL of the 

mineral oil mixture for 5 minutes using an Ultra-Turrax DT-20 emulsifier tube (IKA 

#0003700600) and aliquoted out into 96-well chilled PCR plates at 100 μL per well. The 

plates were sealed and placed in a thermocycler pre-heated to 68 °C, and were kept at 68 

°C for 30 minutes for reverse transcription followed by heating to 94 °C for 2 minutes. 

Amplification was performed with 25 cycles of 94 °C for 30 seconds, 60 °C for 30 seconds, 

and 68 °C for 2 minutes. A final 68 °C extension was performed for 7 minutes and plates 

were stored at 4 °C. 

All reaction products were pooled and transferred to 2 mL Eppendorf tubes, then 

centrifuged at 4 °C for 10 minutes at 13000g. The mineral oil supernatant was removed 

with plastic disposable pipettes, and the tubes were filled with hydrated diethyl ether and 

vortexed vigorously twice for 5-10 seconds each to break the emulsions followed by a 40 
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second centrifugation at 16000g. The upper organic layer was carefully removed, and the 

aqueous DNA-containing samples were pooled to three 2 mL tubes. Two additional ether 

wash steps were performed, after which the tubes were left open in a chemical hood for 15 

minutes then concentrated in a vacuum centrifuge at ambient temperature for 45 minutes 

to evaporate any residual ether. The mRNA-capturing beads were magnetically pelleted, 

and the supernatants were pooled. Two washes with Zymo-Spin DNA purification buffer 

were pooled with the supernatants (final volume of ~5 mL) and purified in a single Zymo-

Spin I DNA purification column (Zymo Research #C1003) in a final volume of 30 μL H2O. 

 

Serum IgG Purification and Preparation 

For all donors, 5 mL of serum frozen at -80 °C was thawed to room temperature 

and centrifuged for 5 minutes at 15000g to pellet debris, then diluted 1:1 with 1x PBS pH 

7.4 and filtered through a 0.22 μm syringe filter. For each separate sample, 1.5 mL of 

Protein G+ agarose (Thermo Scientific) resin was placed in a 5 mL polypropylene protein 

purification column (pre-washed once with 5 mL 70% ethanol), then equilibrated with 3x 

5 mL PBS washes at room temperature. The serum sample was then added to the resin and 

allowed to flow through by gravity; flowthroughs were collected and run an additional two 

times to ensure complete binding of antibody to the resin. 2x 1 mL PBS washes were 

pooled with the flowthroughs, then 3x 10 mL PBS washes were collected separately. 8x 

1.5 mL Eppendorf tubes were prepared each containing 0.1 mL 1M Tris pH 8.0 to 

immediately neutralize the elution fractions; 8x acid elutions using 0.9 mL of 100 mM 

glycine pH 2.7, collected into the prepared tubes. Protein concentration estimates were 

performed via Nanodrop absorbance readings, and all fractions containing antibody were 

pooled. The pooled antibody samples were then dialyzed overnight using a 10 kDa MWCO 

dialysis membrane (SnakeSkin dialysis membrane) at 4 °C into 1x PBS, pH 7.4. 
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To remove the antibody constant regions to assist with LC/MS proteomic analysis, 

the samples were digested using IdeS enzyme, which is IgG-specific and cleaves only in 

the hinge region (IdeS protease produced in-house). IdeS was added at a 1:50 ratio of 

enzyme:IgG, and the mix was incubated for 2 hours at 37 °C. After digestion, a 10 μg 

aliquot of digested IgG was run on a reducing SDS-PAGE gel to ensure proper cleavage. 

 

RESULTS 

Experimental Outline and Sample Processing 

 In order to better understand the human antibody repertoire both in different tissue 

compartments and at different life stages, a set of six healthy male donors – three younger 

(ages 20-25) and three older (ages 50-55) – were selected to provide both peripheral blood 

and a hip bone marrow aspirate. The donors in each age group were matched as closely as 

possible in terms of activity levels, height and weight, and medications used. To ensure the 

samples provided would be as fresh as possible and to avoid cross-contamination and 

working with too many samples at once, each donor’s peripheral blood sample was shipped 

overnight at ambient temperature (never frozen) and immediately processed the next day; 

the bone marrow aspirate samples were then taken two days later and shipped / processed 

similarly. The matched blood and bone marrow samples were therefore most likely to be 

given in the same immunological state of health for each donor, and the sample processing 

and separation into specific cellular compartments could be performed immediately upon 

receipt. 

 While peripheral blood is the most easily accessed immunological tissue and 

therefore the most commonly studied, the bone marrow is arguably of greater interest as 

both a site of initial development of B cells and as a store of long-lasting immunocompetent 

memory B cell and plasma cells that carry out the rapid effector response to previously 
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encountered pathogens. For this reason, we set out to characterize the general bone marrow 

B cell repertoire population as it compares to the periphery and the important plasma cell 

population within. Since recent reports have implicated the BCR co-receptor molecule 

CD19 as an easily selected marker for plasma cell longevity within this compartment, the 

long-term resident plasma cell subset was chosen as a major area of study to identify the 

characteristics of the most successful members of the immunoglobulin-producing family. 

 Mononuclear cell isolation via density centrifugation was used to separate the 

plasma fractions from both blood and bone marrow aspirates and remove platelets, bone 

marrow stromal cells, and other non-adaptive immunological cell subsets (see Figure 2.1 

for the sample processing overview). The peripheral blood mononuclear cells (PBMCs) for 

all donors were assayed for viability before processing for long-term liquid nitrogen 

storage or immediate RNA isolation for VH-only BCR sequencing. The bone marrow 

mononuclear cells (BMMCs) were split into several fractions for more detailed analysis. 

Two aliquots of ~107 BMMCs each were set aside for VH-VL paired single-cell repertoire 

sequencing of total B cells and for FACS plasma cell isolation based on CD19 expression 

levels, respectively. Briefly, the portion for paired repertoire analysis was magnetically 

depleted of non B cells via MACS, then run through an in-house flow-focusing device for 

single cell lysis and mRNA capture leading to emulsion-based RT-PCR to pair each cell’s 

VH and VL transcripts into a single cDNA amplicon. The FACS stained BMMC samples 

were sorted first based on CD38high and CD138high selection of bone marrow plasma 

cells, from which the cells were isolated into CD19high and CD19low expression groups 

(for newer plasma cells and long-term resident, respectively) and immediately stored in 

TRIzol at -80°C for VH-only sequencing and repertoire analysis (see table 1.1 for cell 

counts per donor and number of cells used for each subset). The final sequencing libraries 

derived from each donor compartment – Peripheral Blood Mononuclear Cell (PBMC), 
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Bone Marrow Mononuclear Cell (BMMC), and Plasma cells sorted by CD19 expression 

derived sequences – and the total number of clones for each library after quality filtering 

are enumerated in table 1.2. 

 

 

 
Figure 1.5: Experimental sample selection and processing pipeline for donor bone 

marrow and peripheral blood samples. 

 

Donor Age Total BMMCs PBMCs B Cells Paired BMMCs to FACS 

Young1 24 1.52 x 108 7.50 x 107 1.35 x 106 1.20 x 107 

Young2 22 1.87 x 108 1.70 x 108 1.50 x 106 1.88 x 107 

Young3 24 5.40 x 107 8.88 x 107 1.00 x 106 1.35 x 107 

Old1 57 6.88 x 107 1.72 x 108 9.35 x 105 1.72 x 107 

Old2 56 9.04 x 107 1.26 x 108 1.16 x 106 1.13 x 107 

Old3 58 1.74 x 108 1.53 x 108 1.80 x 106 1.70 x 107 

Table 1.1: Donor ages and cell counts for all experimental samples. 
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Donor Sample Total Reads Filtered Reads Remaining Total Clones 

Young1 PBMC 881023 229117 26.01% 47761 

 BMMC 2390817 710758 29.73% 125409 

 CD19high 1989717 405022 20.36% 12596 

 CD19low 1609903 360066 22.37% 8810 

Young2 PBMC 3123204 902838 28.91% 91254 

 BMMC 1646601 571490 34.71% 79635 

 CD19high 1909840 460823 24.13% 16835 

 CD19low 1701771 471196 27.69% 11629 

Young3 PBMC 4108230 1089508 26.52% 73975 

 BMMC 3972736 864281 21.76% 37727 

 CD19high 2077396 679992 32.73% 68006 

 CD19low 1267745 331543 26.15% 3191 

Old1 PBMC 2747188 746075 27.16% 120909 

 BMMC 1961699 600784 30.63% 110042 

 CD19high 2034195 482828 23.74% 25487 

 CD19low 1801607 383665 21.29% 12120 

Old2 PBMC 2525005 664203 26.31% 248502 

 BMMC 1347192 427510 31.73% 118584 

 CD19high 1810419 336035 18.56% 9306 

 CD19low 2219683 562379 25.34% 60241 

Old3 PBMC 1130022 352855 31.23% 57114 

 BMMC 1846823 581366 31.48% 54163 

 CD19high 3370560 879211 26.09% 11006 

 CD19low 2572185 656761 25.53% 8908 

Table 1.2: Raw read counts from VH-only sequencing, along with quality filtered 

read counts and total clones per donor sample. 
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Gene Usage and Class Switching by Repertoire 

 The base unit for the diversity in the antibody repertoire is the combination of V,D, 

and J genes that are further mutated in the hopes of increased antigen binding; as the D 

gene is so highly mutated, the V and J genes are often used as the main identifying factors 

of a given clonotype. These paired V-J genes for all given clones in the repertoire are 

highlighted in Figure 1.6. V-J gene pairings are shown as a double donut plot; the inner 

ring consists of the V genes in order numerically with segment areas representing clonotype 

prevalence in the population. The outer ring demonstrates the representative J gene usage 

by clonotypes for each given V gene in the inner ring. In all donors, high enrichment of V 

gene families 1 and 4 were seen; IGHV1-69 – a member of the largest V family by total 

number of genes – along with IGHV4-34 were the top members of all donors when looking 

at the peripheral blood cell derived members. However, in the plasma cell compartment 

specifically IGHV4-34 became the single more common gene in all donors. In every single 

donor and cellular compartment sequenced, IGHJ4 was the most commonly used for all 

clones. 

 While few discernable trends were seen in isotype usage either amongst donors or 

compartments, a few generalizations are noteworthy. While IgM was the most dominant 

constant region in every single sample (50% of total clones or more), IgG-expressing 

clones were more prevalent in plasma cells as would be expected of cells which have 

undergone selection in germinal centers; on average, IgG clonotypes were 13.9% more 

common in these cells than in the periphery. IgA clones were by far the lowest proportion 

of the repertoire in all compartments, with similar rates across the sample sets. 
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Figure 1.6a: Paired V-J Gene Usage for donors Old1 and Young1; the inner ring 

segments correspond to donor V genes sorted (clockwise, starting from 

top center and colored by V family) numerically from V Family 1-on. The 

outer ring segments show the relative usage of each J gene per V Gene, 

ordered from J Gene 1-6. 

 

 
Figure 1.6b: Paired V-J Gene Usage for donors Old2 and Young2; the inner ring 

segments correspond to donor V genes sorted (clockwise, starting from 

top center and colored by V family) numerically from V Family 1-on. The 

outer ring segments show the relative usage of each J gene per V Gene, 

ordered from J Gene 1-6. 



 20 

 
Figure 1.6c: Paired V-J Gene Usage for donors Old3 and Young3; the inner ring 

segments correspond to donor V genes sorted (clockwise, starting from 

top center and colored by V family) numerically from V Family 1-on. The 

outer ring segments show the relative usage of each J gene per V Gene, 

ordered from J Gene 1-6. 

 

Somatic Hypermutation Rates and Clonal Distribution 

 As a metric of selection and probable antigen affinity, rates of mutation in a given 

clonotype’s V gene can provide valuable insights into the overall developmental stage of a 

repertoire. As a population of cells progresses from naivety, levels of somatic 

hypermutation should show a marked increase as they demonstrate utility. This trend is 

indeed seen when comparing the peripheral blood cell population to bone-marrow resident 

cells. Average V gene SHM rates (number of mutations divided by germline V gene length) 

are lowest for PBMC populations in all sampled donors, while the overall bone marrow B 

cell population averages around 2.5% higher SHM. Since the major subsets of this bone 

marrow population are newly forming B cells with little to no V gene mutation and highly 

mutated plasma cells, the plasma cell subset is expected to have the highest overall 

mutation rates. This is seen across donors as expected, although the increase is only an 
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additional 2.1% for all. The bimodal population distribution is clearly seen for bone 

marrow cells in Figure 1.7; in the majority of non-BMMC repertoires, there is a normal 

tapering off of the SHM distribution with a defined base of near-germline clones. 

 Also seen in Figure 1.7 is the normalized relative clone sizes in each repertoire 

subset. The much smaller plasma cell compartments appear to have a polarized 

distribution; far fewer clones make up a large percent of the total than is seen in the larger 

and more diverse periphera and bone marrow. The top 100 clones comprise 30% to 60% 

of the total plasma cell repertoires, while in other repertoires they make up 18% or less. 

Interestingly, the CD19low fraction appears to be even more heavily weighted by top clones 

– an observation that suggests fewer remaining members of long-lived populations, as 

would be expected. 
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Figure 1.7a: Clonal Mosaics and V gene SHM profile for donors Old1 and Young1. 

Mosaic patches are ordered from largest clone member to smallest; the 

bottom 50% of the total clone population is shaded. The violin plots next 

to each mosaic represent the overall V gene SHM distribution across the 

population, ranging from 0% to 30%. 
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Figure 1.7b: Clonal Mosaics and V gene SHM profile for donors Old2 and Young2. 

Mosaic patches are ordered from largest clone member to smallest; the 

bottom 50% of the total clone population is shaded. The violin plots next 

to each mosaic represent the overall V gene SHM distribution across the 

population, ranging from 0% to 30%. 
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Figure 1.7c: Clonal Mosaics and V gene SHM profile for donors Old3 and Young3. 

Mosaic patches are ordered from largest clone member to smallest; the 

bottom 50% of the total clone population is shaded. The violin plots next 

to each mosaic represent the overall V gene SHM distribution across the 

population, ranging from 0% to 30%. 
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Clonal Diversity 

 Another characteristic of antibody repertoires considered in aggregate is their 

overall diversity: the number of total unique clones, and their relative frequencies in 

comparison to all. Compartment clonotype libraries were first pooled by donor age group 

and analyzed for the total contribution of top clones to the overall repertoire as a crude 

measure of population polarity (overrepresentation of a few clones compared to the whole 

repertoire), shown in table 1.3. In both the PBMC and BMMC compartments, repertoire 

polarity appeared to shift noticeably between age groups. In the periphery, the young donor 

group population seems to be more dominated by fewer clones, with the top member and 

top 50 clones being an average of 6.8% and 19.1% of young PBMC repertoires compared 

to 1.2% and 16.6%, respectively, in the old donors. This trend was reversed in the general 

bone marrow B cell compartment, with 18.5% of the repertoire consisting of the top 100 

clones in the old but only making up 12.7% in the young. This particular trend may stem 

from a reduction in bone marrow capacity for resident plasma cells in the old, along with 

a reduced production of naïve B cells (Gibson, K.L. et al. 2009, Cancro, M.P. et al. 2009, 

Tabibian-Keissar, H. et al. 2016). 
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  Frequency of Top X Clones Out of Total Repertoire 

Donor Compartment Top 1 Clone Top 10 Clones Top 50 Clones Top 100 Clones 

Old PBMC 1.153% 6.649% 16.852% 23.975% 

Young " 6.814% 11.198% 19.081% 24.889% 

Old BMMC 1.564% 6.127% 13.693% 18.466% 

Young " 0.744% 3.568% 8.765% 12.710% 

Old CD19high 2.328% 14.700% 32.188% 41.930% 

Young " 2.683% 15.163% 33.026% 41.405% 

Old CD19low 5.072% 22.742% 31.705% 36.290% 

Young " 4.325% 19.244% 40.668% 50.940% 

Table 1.3: Contribution of top X clones to the overall repertoire for combined age 

groups, indicative of repertoire polarization and skew towards fewer more 

prevalent clonotypes. 

 

Many metrics attempt to calculate diversity in an unbiased manner, and while 

quantifying diversity is not possible with a single equation it can be estimated for 

comparison best by the Hill diversity number which combines many metrics into one. By 

this measure, samples are far less likely to be skewed heavily by populations with much 

larger numbers of unique individuals or extremely polarized populations mostly consisting 

of a small few individuals (Chao, A. et al. 2014). The Hill diversity index between the 

orders of 0 and 1 increases as the repertoire is dominated by fewer clones (higher 

polarization), and orders greater than 2 derives a larger index from a more balanced 

population of equally sized clones. Graphing the Hill order number for different 

populations can help visually demonstrate repertoire profile differences between cellular 

subsets, as seen in figure 1.8. Interestingly, the overall diversity profiles of all 

compartments compared in the Old donors show remarkable similarity. The BMMC and 

PBMC compartments show the largest skew towards polarization in the older donors 

compared to the young. The CD19high and CD19low fractions show a large amount of 

polarization in most donors, as would be expected from the relatively small number of 

plasma cells selected; only donor Young1 seemed to show a high diversity of clones with 
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few overly represented members in the newly resident plasma cells. Donor Young2 showed 

a consistent similarity across all subsets, while donor Young3 showed high polarity in all 

compartments aside from the very diverse and equally represented bone marrow B cells. 

 

 
Figure 1.8: Hill number diversity plots for all donors, separated by cellular 

compartment. The Hill Diversity index from between 0 and 1 order is 

larger if the repertoire is dominated by fewer clones (higher polarization), 

whereas at orders greater than 2 a larger index rating derives from a more 

balanced population of equally sized clones. 
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Compartmental Repertoire Comparison and Similarity 

 Since the periphery, bone marrow resident B cells, and plasma cells are all 

inherently interconnected a natural question that arises is the overall similarity between 

these compartment repertoires. This similarity is best represented by the shared clones seen 

in more than one compartment, indicative of members that may still be migratory, or whose 

highly related cohorts are actively proliferating and can be seen in multiple areas. Since 

comparisons of more than three compartments are highly complex and visually confusing 

when presented as Venn diagrams, the clonal overlap for all donors is here presented in 

figure 1.9 as an UpSet plot generated using an open-source Python library (Conway, J.R. 

et al. 2017). The bottom segment of the graph shows the compartments with their total 

clone count, with columns representing specific shared subsets. The bar graph above 

indicates the total count of shared clones, and is ordered by decreasing similarity. For all 

donors the shared plasma cell fraction (CD19high and CD19low shared clones) are colored 

purple, plasma cell clones also seen in the periphery are colored red, plasma cell clones 

also seen in the BMMC B cells are teal, and gold indicates clones seen in every 

compartment sequenced. 

In all six donors, the BMMC and PBMC residing B cells show extremely high 

similarity to one another; this large number of shared sequences is to be expected, as both 

subsets include the highest number of total clones sequenced, and many newer B cells 

leaving the bone marrow are actively entering the periphery. The only donor with a 

compartment overlap greater then between the PBMC and BMMC fraction was donor 

Old2, with over 14000 clones shared between the periphery and the long-term resident 

CD19low plasma cells. All donors showed a large similarity between the long term and 

short term resident plasma cell compartment. This may be explained by many plasma cell 

members being in a transitory state of many months resident in the bone marrow, with the 
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total clones unique to each compartment being the true new residents (for CD19high 

expression) and very long-term residents (for CD19low expression). 

The older donors in general showed the expected trend of a high similarity between 

the periphery and new CD19high plasma cells, and between the bone marrow B cells and 

the CD19low older plasma cells. The younger donors seemed to have a wider variability 

between the periphery and any plasma cell fraction. Only donor Young3 showed a high 

correlation between the PBMC B cells and all plasma cells, dwarfing even the shared bone 

marrow B cell clones also seen in the plasma cell fractions. 
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Figure 1.9. 
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Figure 1.9 (previous page): UpSet repertoire comparisons based on the number of 

shared clonotypes between population sets. The bottom 

rows show the donor compartments and their total number 

of clones, with each column representing the shared subsets 

of compartments (indicated by darkened circles) ordered by 

maximum similarity (shared clones). The total number of 

shared clones is indicated in the bar graph above the sets. 

Shared sets of interest are colored by type; purple sets are 

the set of clones only seen in the plasma cell compartment 

(CD19high and CD19low), red sets are clones seen in the 

plasma cells and the PBMC derived B cells but not bone 

marrow, teal sets are seen in all bone marrow 

compartments (plasma cells and BMMCs) but not the 

periphery, and gold sets are clones seen in all 

compartments sequenced. 

 

Proteomic Analysis of Total Serum IgG Repertoires 

 While the quantitative probing of the actual proteomic repertoires has seen great 

strides in recent years due to ultra-high resolution mass spectrometry, studies utilizing 

IgSeq have almost entirely focused on small repertoire subsets. By enriching for antibodies 

specific to an antigen, the overall diversity of a sample is vastly reduced; this focus on 

fewer clones has been necessary to overcome resolution limitations of LC/MS. As such, 

little is known about the composition of total serum IgG. One major complication for 

clonotype identification is the lack of a robust BCR sequence library – while large PBMC-

based datasets do yield high-confidence matches, peripheral blood B cells account for only 

2% of all B cells in the body. Access to a spectrum of sequences from many compartments 

not only greatly increases the chance of identification but may lead to a far more 

biologically-relevant picture of the serological repertoire. 

 Total serum IgG that was collected from serum by Protein G-agarose 

chromatography was trypsinized and run over six hours on a Thermo Orbitrap mass 

spectrometer after C18 reversed-phase separation to maximize peptide resolution; the 
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resulting raw datasets were then parsed by Thermo Discover 1.4 using SEQUEST with a 

pooled database of quality filtered clonotype sequences including all donor compartment 

libraries. Despite the extended separation process, the total number of unique clone 

identifications did not surpass 200 members for any donor – a count many orders of 

magnitude less than expected. However, the clones that were identified showed a wide 

range of origins; aggregation of clone total areas by compartment of origin (unique clone 

seen in a single sample) suggests a proteomic repertoire heavily skewed towards an origin 

in the bone marrow (figure 1.10). This serves as some of the first physical evidence of a 

serological antibody origin in the bone marrow. 

 Average IgSeq clonotype summed areas for clones only identified in ANY bone 

marrow sequence dataset: 56.0% (standard deviation 10.0%). At least 40% of clonotypes 

identified in proteomic IgSeq in all donors were sequenced only in bone marrow 

compartments. Even more telling is the average of 26.6% of clones by total area deriving 

only from sequences in any plasma cell subset (standard deviation 12.6%). The longest-

lived plasma cell fraction CD19low also showed a consistent prevalence across donors, 

with at least one unique clonotype found in the top 10 ranked members for all individuals. 
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Figure 1.10: Clonotype sequence origin for total detected serum IgG members, 

weighted by the total elution area each compartment contributes. In order 

from the innermost ring to the outermost are donors Old1, Old2, Old3, 

Young1, and Young2 respectively. No data was collected for donor 

Young3. 
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Chapter 2: The Anti-Pneumococcus Capsular Polysaccharide Antibody 

Repertoire and Serological Response 

BACKGROUND 

A hallmark of the B cell’s unique place in the adaptive immune response is in the 

extreme versatility and de novo complexity of its effector molecule; there are numerous 

protein families containing a variety of specificities for foreign materials such as bacterial 

DNA and lipopolysaccharide, but none can boast the many functions of the antibody. Even 

the T cell receptor, with its similar genetic structure and combinatorial variety, finds itself 

lacking the multi-faceted roles allowed by a soluble molecule with a constant region that 

interacts with not only many different cell types, but even non-adaptive ambient 

immunological proteins such as the complement system (Hoffman et al. 2016). For 

researchers in the field of the humoral immune system, this provides a whole new method 

of studying how the body recognizes and removes pathogens – but one that is equally as 

complicated to probe as it is critical to understand. Proteomic analysis of serum antibody 

repertoires is currently in its infancy, being far more fraught with challenges than the 

traditional next-generation sequencing of antibody transcripts or even genomic studies of 

B cells at a high throughput (Lavinder et al. 2014, Wine et al. 2015). The only real tool 

currently capable of identifying and characterizing protein sequences at scale is liquid-

chromatography in series with an ultra-high sensitivity mass spectrometer (LC/MS); while 

the technology today is finally at the level allowing for identification of entire proteomes, 

many issues still hinder progress in the accuracy of sequencing an entire proteomic 

antibody repertoire. Unlike working with an RNA/DNA template, no method of 

amplification or selection of specific gene regions of interest exist in proteomics. 

Additionally, while antibodies as a group display a massive range of unique sequences the 

majority of the full molecule is identical to most other members. Since current methods of 
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LC/MS depend on a form of shotgun sequencing (in the form of tryptic peptides), 

reconstructing a highly variable non-genomic dataset is exceedingly difficult. 

To break the daunting problem of antibody proteomics down into more manageable 

chunks, more specific questions can be targeted than the overall repertoire analysis possible 

with VH-only transcriptomics. By focusing on a subset of the proteomic repertoire and 

enriching a sample to only a small number of antibodies with related properties it is 

possible to cut out much of the noise and quantitatively characterize a population of 

interest. One method of selecting a smaller set of similar antibodies is by utilizing their 

intended natural function – purification of members against a specific antigen, such as the 

pathogen components that have been encountered naturally or via vaccination. The number 

of antibodies recognizing any specific ligand are at least several orders of magnitude less 

prevalent than those recognizing others, and the serological component of immunity in 

terms of a specific disease may be even more rewarding to study than the broader repertoire 

(Lavinder et al. 2015). Another major benefit of studying a specific response to common 

vaccines is in the increased control of sample timing; donors can provide samples at 

important temporal junctions, and the likelihood of creating a memory response and 

proliferation of desired B cells in the donors leads to a better sequence database for the 

subsequent LC/MS search. 

One such antigen of interest is found in the capsular polysaccharides of the 

bacterium Streptococcus pneumoniae. S. pneumoniae is a common and deadly source of 

many cases of meningitis and pneumonia worldwide, responsible for over a million deaths 

annually worldwide (Torres et al. 2015). Vaccines against the pathogen exist, targeted 

mainly at the deadliest variants (serotypes), but these often have a much diminished 

efficacy in children and the elderly. The widely used Pneumovax-23 vaccine may be 

especially hypoactive in these groups; rather than a protein antigen, the vaccine is 
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comprised of the bacteria’s outer capsule polysaccharides for 23 different serotypes. Unlike 

protein antigens, which are targeted by both T cell and B cell effectors, polysaccharide 

antigens cannot be identified by T cell receptors. Even the antibody response to the much 

less confined and diverse polysaccharide structure tends to be consequently less specific 

and robust (Gonzalez-Fernandez et al. 2008; Weller et al. 2005). The major responders – 

especially involved in the secondary memory response – may be derived from an IgM 

memory B cell population expressing so-called “natural” antibodies (Shi et al. 2005). These 

antibodies tend to have lower rates of somatic hypermutation and a wider range of ligands 

for a single antibody than usually expected from an immunocompetent memory-response. 

Memory B cells act as a major component of the rapid secondary response by their 

ability to proliferate into antibody-secreting plasma cells. Memory B cells express the 

surface CD27 receptor, allowing for easy selection of the subset. While a majority of 

Memory B cells express IgG antibodies, a small subset does retain the IgM constant 

domain; these cells may have skipped germinal center mutagenesis entirely, with SHM and 

proliferation taking place in the marginal zone of the spleen instead (Tangye et al. 2007). 

This population appears to differ in overall repertoire profile as well, further suggesting a 

unique origin (Bagnara et al. 2015). Supporting this idea, individuals whose spleens have 

been removed and the young with underdeveloped marginal zone regions are far more 

likely to become infected by bacteria with capsules (Zandvoort et al. 2002). 

 CD27+ Memory B cells are known to be highly enriched for antibodies binding 

simple bacterial membrane components such as phosphorylcholine and capsular 

polysaccharides (Fiskesund et al. 2014). IgM Memory B cells in particular often take the 

role of a “natural effector” cell, targeting membrane antigens even with very little to no 

germinal center involvement (Weller et al. 2005). Activation of this Memory population 

may occur not in the systemic lymph, but in the marginal-zone like regions of the gut 
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(Hamada et al. 2002). As bacterial antigens are omnipresent in the gut, the IgM+ CD27+ 

subset may be used as specialized detectors of bacterial antigen given the lack of a T cell 

response. Marginal Zone B cells also express the innate immunity Toll-like receptor, which 

allows the B cell to respond even if an antigen is not bound by the BCR. Despite their key 

role in early identification of encapsulated pathogens, the contribution of this Memory B 

cell population to protective levels of serum antibody (either natural or higher affinity) is 

not known. This study attempts to characterize and quantify the T-cell independent serum 

response to the polysaccharide pneumococcal vaccine, using the high-risk 6B serotype 

antigen as a probe to separate the contributions from various B cell populations involved 

in the response. 

 

MATERIALS AND METHODS 

Serum IgG Purification and Preparation 

For all donors and timepoints, 5 mL of serum frozen at -80 °C was thawed to room 

temperature and centrifuged for 5 minutes at 15000g to pellet debris, then diluted 1:1 with 

1x PBS pH 7.4 and filtered through a 0.22 μm syringe filter. For each separate sample, 1.5 

mL of Protein G+ agarose (Thermo Scientific) resin was placed in a 5 mL polypropylene 

protein purification column (pre-washed once with 5 mL 70% ethanol), then equilibrated 

with 3x 5 mL PBS washes at room temperature. The serum sample was then added to the 

resin and allowed to flow through by gravity; flowthroughs were collected and run an 

additional two times to ensure complete binding of antibody to the resin. 2x 1 mL PBS 

washes were pooled with the flowthroughs, then 3x 10 mL PBS washes were collected 

separately. 8x 1.5 mL Eppendorf tubes were prepared each containing 0.1 mL 1M Tris pH 

8.0 to immediately neutralize the elution fractions; 8x acid elutions using 0.9 mL of 100 

mM glycine pH 2.7, collected into the prepared tubes. Protein concentration estimates were 
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performed via Nanodrop absorbance readings, and all fractions containing antibody were 

pooled. The pooled antibody samples were then dialyzed overnight using a 10 kDa MWCO 

dialysis membrane (SnakeSkin dialysis membrane) at 4C into 1x PBS, pH 7.4. 

To remove the antibody constant regions to assist with LC/MS proteomic analysis, 

the samples were digested using IdeS enzyme, which is IgG-specific and cleaves only in 

the hinge region (IdeS protease produced in-house). IdeS was added at a 1:50 ratio of 

enzyme:IgG, and the mix was incubated for 2 hours at 37C. After digestion, a 10 μg aliquot 

of digested IgG was run on a reducing SDS-PAGE gel to ensure proper cleavage. 

 

Anti-Pneumococcal Polysaccharide Antibody Enrichment 

 To create a substrate suitable for column chromatography, purified 6B 

polysaccharide was conjugated to NHS-agarose beads based on protocol described in Ey, 

P., 1993. To create an aminohexyl derivative prior to linkage, 1 mg of 6B polysaccharide 

(ATCC) was first dissolved in 1 mL of 0.2 M sodium bicarbonate, pH 9. 880 µL of 0.1 M 

1,6-diaminohexane pH 9 (adjusted with HCl) and 20 µL of 0.1 M sodium periodate were 

added and incubated for 15 minutes on ice. 100 µL of sodium borohydride was added and 

the reaction was kept on ice for 60 minutes in the dark. The resulting solution was then 

dialyzed overnight at 4 °C into 4 L of 0.1 M sodium bicarbonate, and a fresh 4 L of buffer 

was exchanged for another 12 hours at 4 °C. After this second 12 hour dialysis, the solution 

was again dialyzed overnight at 4 °C into sodium binding buffer (100 mM sodium 

phosphate, 150 mM NaCl at pH 7.2). 

Aminohexyl-6B conjugation to N-hydroxysuccinimide (NHS) activated agarose 

was started by dissolving 132 mg of NHS-activated agarose (Pierce) and incubating the 

solution rotating at room temperature for 60 minutes. The tube was then spun down for 2 

minutes at 1,000g and the supernatant pulled out and saved. The resin was then washed 2x 
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with 1.5 mL of PBS and supernatant was saved, then brought to 1.5 mL with 1 M 

ethanolamine to block the remaining reactive sites on the resin. After 30 minutes rotating 

at room temperature, the resin was equally split into two columns and centrifuged at 1,000g 

for 60 seconds followed by 2 washes with 400 µL of PBS. 

For purification of 6B-specific antibodies, serum IgG in PBS was run through the 

6B column three times, collecting the flowthroughs separately. Four sequential wash steps 

were done, each step with 400 µL of various wash buffers: 

• 5x washes with 1x PBS (binding buffer) 

• 3x washes with 50 mM Tris, 100 mM NaCl pH 7.4 (final wash saved) 

• 117 mg of NaCl, 1 mL of 1M Tris pH 7.4 in a final volume of 20 mL 

• 5x washes with 5 mM phosphocholine / 100 mM borate buffer pH 8.4 (all saved) 

• 381 mg of sodium borate, 16.5 mg of phosphocholine in a final volume of 10 mL 

• 3x washes with 150 mM NaCl pH 7.2 (final wash saved) 

• 438 mg NaCl in a final volume of 50 mL 

 

Columns were eluted 5x with 400 µL of 3.5 M MgCl2 pH 3.5, collected with 40 µL of 1 

M Tris pH 8 to neutralize. 

 

RESULTS 

Sample Subsets and Experimental Outline 

To characterize the humoral immune response to a perceived Pneumococcal 

challenge, four healthy adult donors were given the Pneumovax-23 vaccine and a matched 

set of peripheral blood samples were acquired on days 7, 14, and 28 after vaccination. From 

these samples, peripheral blood mononuclear cells were purified by density gradient 

centrifugation; from these cells a fraction were stained and sorted by FACS, selecting for 
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the Plasmablast, IgD+ Memory, IgD- Memory, and C27+ memory cellular subsets 

depending on sample. RT-PCR libraries using either IgG or IgM specific constant primers 

were created and sequenced using Illumina MiSeq technology. Post read quality filtering 

and clustering, each donor compartment repertoire contained an average of 5994 unique 

clonotypes ranging from a minimum 307 clones up to 30050 clones (table 2.1). These 

sequence databases were pooled by donor, and the pooled dataset was used for 

identification of tryptic peptides from polysaccharide-binding IgG. 

To select for and characterize anti-6B polysaccharide IgG, serum IgG collected by 

Protein-G agarose resin was run over custom 6B-NHS agarose columns; columns were 

washed thoroughly to remove general non-binders and general anti-cell wall component 

binding antibodies (figure 2.1). The elution fraction was then digested with IdeS to remove 

constant region sections, digested with trypsin, and run on high resolution Orbitrap LC/MS. 

Raw datasets were identified using the donor sequencing libraries via Thermo Proteome 

Discoverer software. 
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Donor Day Compartment, Isotype Raw Reads Filtered Reads Clones 

448 7 Plasmablast, IgM 66481 12269 307 

448 7 Plasmablast, IgG 297346 82338 1157 

448 7 PBMC, IgG 552374 148378 2055 

448 14 IgD+ Memory, IgM 271322 45974 3462 

448 14 IgD- Memory, IgG 205803 57694 14922 

449 7 Plasmablast, IgM 150259 27424 292 

449 7 Plasmablast, IgG 145220 36679 798 

449 7 IgM+ IgD- Memory, IgM 2024572 422053 6763 

449 14 IgD+ Memory, IgM 312978 51555 3199 

449 14 IgM+ IgD- Memory, IgG 2195939 178389 972 

449 14 IgD- Memory, IgG 275054 63519 3728 

450 7 Plasmablast, IgM 68716 14773 267 

450 7 Plasmablast, IgG 19679 5189 453 

450 7 CD27+ IgM+ Memory, IgM 956912 81314 2615 

450 14 IgD+ Memory, IgM 182713 28397 7460 

450 14 IgM+ IgD- Memory, IgM 198026 17212 3785 

450 15 IgM+ IgD- Memory, IgG 947297 84644 16712 

450 34 IgD+ Memory, IgM 511599 101803 30050 

450 34 IgM+ IgD- Memory, IgG 400823 5268 2904 

GCI 7 Plasmablast, IgG 8853 1181 299 

GCI 13 IgD+ Memory, IgM 510462 122182 16968 

GCI 13 IgM+ IgD- Memory, IgG 277210 59801 5057 

GCI 28 CD27+ Memory, IgG 454202 122364 13635 

Table 2.1: Donor library sequencing statistics and unique clonotype count. 
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Figure 2.1: Sample processing pipeline for enrichment of anti-6B polysaccharide 

antibodies for LC/MS proteomic sequencing. Total serum IgG was run 

over 6B-linked agarose beads, washed to remove non-binders, and eluted 

by low pH and high salt concentration. Enriched IgG was then buffer 

exchanged to remove salt followed by IdeS digestion to cleave the 

constant region and then tryptic digestion. Peptide digest was cleaned by 

C18 reverse phase chromatography prior to LC/MS. 

 

High-Throughput Sequencing Derived Repertoire Characteristics 

 For all donor sequencing samples, the resulting datasets were processed via a 

standardized pipeline that removed low-quality read sequences then aligned validated reads 

against the human immunoglobulin locus and clustered alignments based on a 95% 

similarity between CDRH3 sequences using MiXCR. Even accounting for total read 

sampling, day 7 plasmablast datasets from all donors showed far fewer overall clones than 

other cell types (893 clonotypes on average in the plasmablast compartment versus 14568 

in memory B cells); this smaller subset of clones was expected to be directly resulting from 
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the vaccinal challenge. In three of the four donors, a large proportion of the total 

plasmablast repertoire corresponded to only the top 5 clones identified (mean of 27.5% of 

all clonotypes); donor 449 showed a far less polarized plasmablast response, which may 

result from a hyporesponse to the vaccine itself as far fewer plasmablasts were isolated in 

the day 7 FACS collection (Figure 2.2). 

 

 
 

Figure 2.2: Day 7 plasmablast FACS sorting results and IgG plasmablast repertoire 

clonal mosaic profiles. The plasmablast cell sort was gated based on B 

cells with high CD27 and CD38 expression levels, as shown in the boxed 

selection. Clonal mosaics demonstrate the overall size of each clonotype 

in the repertoire, with the most prevalent clones starting at the bottom left 

of the diagram. Colors for clones are repeating for clarify and are 

uninformative. 
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 Overall V gene somatic hypermutation (SHM) rates between cellular subsets were 

found to be highly dependent not on the compartment but on the isotype of the antibody 

expressed; average SHM rates among IgG-expressing cells were 8.4%, with IgM at 6.2%. 

Interestingly, the top responding clones in the plasmablast fractions of both isotypes were 

found to be more highly mutated by around 2.5% than the average of all clones as shown 

in the clonal mosaic profile in Figure 2.3. Unlike the differences seen in SHM, there was 

no appreciable distinction in CDR3 amino acid length when compared either between 

isotypes or among all sequencing samples (average of 16.3 amino acids). 

 

 
Figure 2.3: Day 7 Plasmablast V gene SHM clonal mosaics for all donors, separated 

by IgM and IgG isotype. Individual clones are colored as a heatmap 

representing V gene mutation rates, with corresponding heatmap colorbars 

to right of each sample. 

 

 The overall V gene usage in the presumed vaccine-enriched clonotypes was found 

to be strikingly similar across donors. The V family 3 genes were used in the majority of 

day 7 plasmablast clones, and the most commonly used V gene for all donors in the 

plasmablast compartment was IGHV 3-30. The overall diversity of V gene usage was 
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found to be much higher in the memory compartments, with the V family 1 and 4 genes 

being slightly more common than family 3. J gene usage was also highly polarized in all 

donor plasmablast samples, with IGHJ4 being the foremost gene at an average of 45% in 

all plasmablast clones. In contrast, IGHJ6 was highly enriched in the memory B cell 

samples and was found in an average of 38% of total clones. 

 

Compartment Repertoire Overlap 

 As the selected sequenced B cell subsets for each donor were all collected within a 

close timeframe, some overlap between identified clones between each compartment are 

to be expected. For example, some members of the expanded plasmablast cells collected 

would presumably be seen to have high similarity to memory B cells from which they 

originated. To gauge the overall similarity of clonotypes found in the different cellular 

samples, sequencing libraries post-quality filtering were pooled and clonotyped in 

aggregate based on V and J gene usage and 90% amino acid CDRH3 sequence similarity. 

To visualize these relationships between subsets, a variety of graph formats can be used. 

While Venn diagrams are succinct and easily distinguished for 2-3 intersecting samples, 4 

or more intersecting samples sets are far more clearly seen in a novel format known as the 

UpSet plot as described by Conway et al. 2017 and shown in Figure 2.4. 

 Donor 448’s clonotypic overlap showed an unsurprisingly high relation between 

the day 7 plasmablast IgG subset and the overall day 7 PBMC cells. Within this relation 

however, 120 clones were shared not only by the IgG plasmablast and PBMC cells but 

were also highly related to the day 14 memory IgM population. Also of note was the 

similarity of many IgM plasmablast clones and the day 14 memory IgG-expressing cells, 

suggesting common progenitor memory B IgM-expressing cells that produced both IgM 

plasmablasts and class-switched IgG memory cells. A smaller group of clones were seen 
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in both the IgM and IgG isotypic plasmablast groups; in general, the day 14 IgM memory 

B cells were the most dissimilar to all other groups. 

 As the least responsive of all donors to the vaccination, donor 449’s overlap profile 

appears to show fewer sequenced plasmablast clones that have a high correlation to 

observed memory B cells. Many clonotypes were seen in the memory B cell IgM-

expressing population at both days 7 and 14. The plasmablast groups of both isotypes had 

relatively high overlap, and in general the plasmablast clones had the closest relation to 

memory B cells of the same isotype. An unexpected relation of note was seen between the 

day 14 memory B IgM and IgG cells with 300 clones being found in both populations. 

 Donor 450 was seen to have the expected high relation of clones in the Memory B 

IgM-expressing cells at all timepoints. This donor more than any other also seemed to have 

the highest overall similarity between the vaccine-induced plasmablast IgM cells and the 

memory B cell population of the same isotype at all time points sampled. At the latest day 

34 timepoint sampled, potentially IgG class-switched memory B cells were seen that 

corresponded to IgM memory B cells at the day 14 timepoint; this may be indicative of 

vaccine-responsive cells that went through the traditional germinal center hypermutation 

and proliferation steps. Unexpectedly, 75 clones were seen to be shared between the day 7 

plasmablast IgG group and the day 14 memory B cell population. 

 Finally, donor GCI showed the most similarity between populations of the same 

isotype; the memory B cell IgG population was self-similar at all timepoints, and many 

plasmablast IgG B cells appear to derive from this memory population. However, the day 

13 memory B cells expressing IgM were only found to overlap with the day 13 memory 

IgG population; these may be members of a single originating group from which some cells 

underwent class switching. No IgM-expressing plasmablast population was sampled for 

this donor. 
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Figure 2.4. 
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Figure 2.4, cont. 
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Figure 2.4 (previous page): UpSet clonotype overlap similarity plots for all donor 

sequencing libraries. The bottom section of each graph 

consists of each sequenced group, with shaded circles 

indicating the shared groups that would be displayed as 

overlapping circles in a Venn diagram. The upper bar plot 

displays the total number of shared clones in the shared 

subset indicated below the bar; plot bars are sorted 

descending by total number of clones shared amongst each 

sample set. 

 

Vaccine Component Enriched Serological Repertoire 

 While high-throughput sequencing datasets of specific B cell populations at 

specific timeframes after vaccination can give a general picture of the changing repertoire 

in response to immunological challenge, the actual effectors involved in eradication of the 

perceived threat – the soluble antibody itself – cannot be directly measured by next-

generation sequencing alone. As such, quantitative characterization of the serological 

response requires observation of the actual expression and antigen-binding capacity of 

these effector molecules. Recent advances in mass spectrometry allow for high-resolution 

identification of relatively complex protein samples; however, current limitations of these 

methods do not allow for the depth of sequencing required to identify all antibodies present 

in whole-blood serum samples as can be performed with the transcriptional repertoire. To 

simplify this issue, the serological response to vaccination was limited to a single 

component of the vaccine. The Pneumococcus serotype 6B capsular polysaccharide 

antigen was chosen as a model of a highly pathogenic challenger, and from total serum 

antibody an enriched subset of 6B-binding antibodies were purified as described in 

Methods. The 6B elution antibodies from all donors were compared by mass-spectrometry 

proteomics to the non-binding flowthrough, and top clones were chosen by the amount of 

enrichment seen in the elution. 
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 As shown in figure 2.5, it is evident that many individual clonotypes appear to 

derive from a single compartment – the clone is unique to a specific cellular subset. 

Although the plasmablast subset should consist heavily of newly proliferating cells 

responding to the vaccine challenge, unique sequences coming from the Memory B cell 

compartment seem to have a much larger role in the 6B response. Another surprising 

observation is the high similarity of the anti-6B repertoire compared before immunization 

and at day 32; the top clone present maintained its rank for all donors, and the overall ratio 

of top clones in day 32 strongly correlate to day 0. The largest change in top clones was 

seen in the hyporesponsive donor 449; only two of the top ten clones in the day 0 elution 

carry over to day 32. The overall anti-6B repertoire also appears to be highly polarized – 

very few clones make up the majority of the response (top 5 clones making up 38% to 64% 

of the response by total area). This could indicate one of two explanations; first, prior 

exposure to the Pneumovax vaccine or the 6B serotype lead to high affinity antibodies that 

persist long term. Alternatively, the top ranking members could simply be a part of the 

widespread natural antibodies which are adept at binding the more repetitive and simplistic 

capsular polysaccharide. The latter case may be the stronger explanation, as one would 

expect a larger shift after vaccination were the day 32 repertoire representative of a re-

expanded memory response. 
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Figure 2.5a: Top proteomic clonotypes enriched by 6B-polysaccharide chromatography 

and LC/MS IgSeq. Clones identified as a specific compartment such as 

“Memory” indicate that the clonotype is derived from sequences that were 

only seen in the Memory B cell libraries (no contribution from other 

compartments). Grey bars signify that a clone is present in multiple 

compartments or is shared by all. 
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Figure 2.5b: Top proteomic clonotypes enriched by 6B-polysaccharide chromatography 

and LC/MS IgSeq. Clones identified as a specific compartment such as 

“Memory” indicate that the clonotype is derived from sequences that were 

only seen in the Memory B cell libraries (no contribution from other 

compartments). Grey bars signify that a clone is present in multiple 

compartments or is shared by all. 

 

Contribution of Shared Clones to Serum IgG Response 

Shared public clonotypes between donors were not only found as members of 

interest in the sequencing data alone. As evidence of their potential importance in the 

response to T cell independent antigens, some shared clones with similar CDRH3 

sequences were found in the enriched 6B-specific proteomic elutions of multiple donors as 
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well (table 2.2). As an example, one prevalent shared clonotype found in the 6B-responding 

elutions (CDRH3 sequence CARSLWPEDYW) in donors 448 and 449 was found in the 

day 0 elutions for both donors at rank 67 and 123 respectively, and also in the day 32 

elution for donor 449 at rank 106. Every clonotype found in the IgSeq 6B-enriched fraction 

found shared by multiple donors was from the V gene family 3 or 4, and all had a generally 

low V gene SHM of 5-9%. These clones are the strongest examples of natural antibodies 

– often pre-class switched IgM effectors which act as the first responders to bacterial 

capsular antigens. In support of this idea, several of the identified CDR3 clonotypes from 

each donor (CARAWRVDSVMPKRYFDFW, CARSRGAMATLRGKRGYYGMDVW, 

CARGNVDRSMVYNFFDPW, and CVKLGYRAPDDPW) were only found in the day 

13-14 Memory IgM-expressing B cells, and were not seen in any IgG-expressing B cell 

sequence datasets. 

 

CDRH3 Sequence 
Rank in Elution 

(Per Donor) 

V Gene V Gene SHM % 

(Per Donor) 

CARGRNNFRVW 448: 123; 449: 66 IGHV3-7 448: 7.1%, 449: 7.9% 

CARAWRVDSVMPKRYFDFW 448: 76, 449: 154 IGHV4-31 448: 9.7%, 449: 9.7% 

CARSRGAMATLRGKRGYYGMDVW 449: 3, 450: 43 IGHV4-34 449: 7.2%, 450: 7.0% 

CARGNVDRSMVYNFFDPW 449: 5, 450: 31 IGHV3-72 449: 5.1%, 450: 4.9% 

CVKLGYRAPDDPW 449: 19, 450: 86 IGHV3-7 449: 8.5%, 450: 8.8% 

CARQVQDAMDVW 449: 224, 450: 95 IGHV3-51 449: 2.5%, 450: 2.5% 

CARSLWPEDYW 448: 67; 449: 106 IGHV3-7 448: 8.1%, 449: 7.9% 

 

Table 2.2: Shared public CDRH3 sequences found in multiple donors and all in the 

6B-enriched IgSeq mass spectrometry proteomics elution fractions. Clone 

ranks are displayed for each donor, along with the V gene SHM of the 

clone as seen in each donor. 
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Chapter 3: Automated Comparative Repertoire Visualization 

BACKGROUND 

In the new era of massive high-throughput repertoire sequencing datasets, gaining 

a picture of general sample characteristics is critical but incredibly difficult to visualize. 

While simple statistics can be easily calculated, much more comprehensive figures that 

quickly show the distributions of many factors in the high-dimensional repertoire are far 

better for qualitative analysis and comparison. Spreadsheet / statistical programs such as 

Excel can be used to create figures, but they are often limited by few chart types, limited 

configuration of a plot, and file size restrictions that disallow work with entire datasets. 

These limitations all but require at least an intermediate knowledge of a programming 

language to reasonably parse and visualize big data like the antibody repertoire. This can 

be a harsh restriction for many researchers, and often leads to repertoire analyses that are 

completely different amongst individuals. For this reason, a tool that can aggregate 

information and produce a variety of figures in a standardized manner for any library would 

be of great use for initial analysis and discussion between scientists. This chapter describes 

such a tool, utilizing the Python programming language and the Bokeh data visualization 

library to create a simple program that produces a dashboard with a variety of clear figures 

given either a single repertoire or a collection of repertoire datasets for comparison. Thanks 

to the much more dynamic graphics libraries available to the scientific community, the 

dashboard figures are interactive; charts can be easily zoomed or panned, and hovering 

tooltips provide information otherwise lost in a static figure. The analyses and output chart 

types are discussed below, and the Python source code is provided in the appendix for 

review and modification. 
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APPLICATION OVERVIEW 

CDR3 Amino Acid Length Histogram (Spectratype Plot) 

One of the earliest methods of visualizing characteristics of the BCR / TCR 

repertoire was through the measurement of the length of the CDR3 region. By using V 

gene-specific primers for PCR amplification of complex samples and running the results 

on a polyacrylamide gel to separate by size, the distribution of the product lengths is easily 

quantified by measurement of the brightness of each band and plotted as a histogram 

known as a spectratype plot (Gorski 1995). This method served as the first high-throughput 

means of analyzing immune repertoires and is still a commonly used measure of 

hypermutation and for general repertoire comparison. As full-scale repertoire sequencing 

is now possible, CDR3 spectratype analysis can be performed bioinformatically after 

identification of VDJ genes and the CDR3 region sequence (often using the translated 

protein sequence for histogram binning). 

 For the automated comparison of spectratype histograms between repertoires, data 

is provided as a table of clonotypes including either the CDR3 sequences or their 

previously calculated amino acid lengths. A clonotype histogram is calculated using the 

binned segment lengths using Numpy’s histogram statistical function, normalizing the total 

density sum to unity (figure 3.1). For comparation of multiple samples each sample 

histogram is calculated separately, then each sample bin is plotted sequentially with a 

customizable color for each repertoire as shown in the legend (figure 3.2). For interactive 

visualization the plot can be panned and zoomed, allowing for specific box regions of the 

plot to be highlighted to demonstrate differences of interest between the samples (figure 

3.3). 
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Figure 3.1: A standard CDR3 amino acid length spectratype for a single repertoire. 

 

 

Figure 3.2: Comparative repertoire CDR3 amino acid length spectratype. 
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Figure 3.3. Zoomed-in region of CDR3 spectratype highlighting the differences 

between two repertoires. 

 

V/J Gene Somatic Hypermutation Violin Plot 

 While CDR3 length analysis has been possible for decades, high-throughput 

analysis of the average hypermutation of individual clones has only become possible with 

full heavy chain sequencing of total repertoires. Gene annotation software such as IMGT’s 

HighV-Quest and MIXCR are used to identify the germline V, D, and J genes, and somatic 

hypermutation (SHM) levels can be calculated by counting the total nucleotide point 

mutations, insertions, and deletions (Bolotin 2015). Unlike the total length of the CDR3 

region, clonal SHM levels serve as a proxy for overall selection and utility; plasma cells 

having undergone many rounds of SHM in the secondary immune organs can be 
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distinguished from naïve B cell populations which should have much lower rates of 

mutation. While SHM occurs throughout the VDJ region, identification of the germline D 

gene is generally unreliable as the insertion / deletion of nucleotides during recombination 

significantly modifies the original sequence – as such, the V and J genes are used as more 

reliable measures of overall hypermutation. 

 For visualizing repertoire V and J gene SHM levels, commonly a histogram or box 

plot is used to show the distribution in the repertoire. However, a more recent variant of 

the box plot known as the violin plot has several advantages over other plots in quickly and 

informatively yielding overall characteristics. The violin plot (named after its visual 

similarity to the instrument) is a combination of a box plot and the density distribution of 

the data as with a smoothed histogram (Hintze 1998). The violin plot excels in efficiently 

communicating the overall statistical trends of a sample as with a box plot, but also allows 

for distinguishing between uniform or bi/multi-modal distributions as with the histogram. 

 For automated repertoire analysis, a repertoire’s clonal SHM distribution can be 

plotted either with a separate, mirrored violin plot for the V and J genes separately or by 

placing the V and J distributions on each side of the violin. While this application can be 

used to plot the V and J genes separately, for concise graphs allowing quick comparison of 

samples all figures below split the violins between the genes for each sample. The basic 

plot takes a table of all repertoire clonotypes and plots each sample as would be done with 

a categorical boxplot; the violin widths are all normalized to unity, with labeled sample 

categories on the X axis and the overall gene SHM percentages on the Y axis (figure 3.4). 

The widths, colors of samples, and separation or combination of the V and J violins are all 

easily customizable. The violin density distribution is calculated using Scipy’s variable 

kernel density estimator function with the Scott density function as standard (Scott 1992). 

To further clarify the sample statistics, interactive hovering tooltips are included for each 
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sample violin – the user can highlight a violin region with the mouse (or tap the violin plot 

if using a mobile device) to reveal the average, maximum, and 25th and 7th percentile SHM 

values for the repertoire, and additional sample information can be easily added for display 

if desired (figure 3.5). As with the CDR3 length spectratype plot, the user can pan and 

zoom in on specific regions to more easily identify sample distributions (figure 3.6). 

 

 
Figure 3.4: Violin plots demonstrating comparative repertoire clonotype V and J gene 

somatic hypermutation levels. 
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Figure 3.5: Demonstration of hovering tooltips displaying sample average, maximum, 

and 25th and 75th percentile SHM values upon selection of a sample violin. 

 

 
Figure 3.6: Zoomed-in selection of single sample from figure 5 for increased visibility 

of the sample SHM distributions. 
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Paired V-J Gene Usage Donut Plot 

 While the V gene is often considered as the most informative gene region, the J 

region is also easily identifiable and contributes significantly to antigenic specificity. 

Correlation tables of the relative frequencies of V-J gene pairings are important to 

understand, but almost impossible to picture. To clearly demonstrate all sets of V-J pairings 

in a repertoire, a donut chart within a donut chart may be a superior method to quickly see 

how common specific pairings are. As seen in figure 3.7 below, the inner ring consists of 

all V gene frequencies while the outer ring consists of the cognate J gene percentages. For 

visual clarity, the graph can be colored by V or J gene or V family (figure 3.8). Users can 

also select specific genes, zoom into a region of the plot, and a hovering tooltip quickly 

shows which gene is selected and the percent composition in the full repertoire (figures 

3.9, 3.10). 
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Figure 3.7: The V-J gene paired donut plot. The outer ring consists of the J gene 

frequencies as paired with the specific V gene in the inner ring. The chart 

can be colored by V or J gene. 
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Figure 3.8: Demonstration of the chart colored by V family. 
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Figure 3.9: Selection of individual genes is available, with hovering tooltips 

displaying the gene and percent of the total. 
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Figure 3.10: Zoomed in section of the chart with several V genes highlighted. 

 

Categorical Clonal Frequency Mosaic Plot 

 Since the total number and frequencies of clones in a repertoire underlie the overall 

diversity and polarization, a common method of displaying these relative areas are using a 

square mosaic plot consisting of sorted rectangles sized in proportion to the clone’s 
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prevalence. As a repertoire may have thousands to hundreds of thousands of clones these 

charts may be difficult to interpret, but trends regarding the top clones are distinct and 

useful for comparison (figure 3.11). To further increase the utility of the clonal mosaic plot, 

clone rectangles can be colored based on category (such as isotype, V gene, or V family as 

seen in figure 3.12) or by continuous metrics like clonal V gene SHM. For continuous data 

like mutation rates, a heatmap is automatically calculated based on the range of the data 

and a mapping color bar legend is displayed (figure 3.13). 
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Figure 3.11: A repertoire clonal mosaic depicting all clones and their frequencies. 

Clones are colored by isotype, and a tooltip displays additional clone 

information. 
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Figure 3.12: Repertoire from figure 3.11 colored by V family. 
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Figure 3.13: Clonal mosaics colored as a heatmap indicating clone V gene mutation 

levels. For continuous colormaps a legend sidebar is automatically 

calculated based on the range of the data. 

 

Clonal V Gene Somatic Hypermutation Burtin Plot 

 In addition to looking at the total V gene hypermutation rates of a population, a 

novel approach to mutation rates is to consider all clones with specific V genes between 

two repertoires. The best method for picturing this is the Burtin plot, a form of radial bar 

chart. Unique V genes are displayed around the ring, with the length of the bar displaying 

the total SHM levels for all repertoires. As shown in figure 3.14, V gene SHM rates can 

vary wildly even within a single individual – a fact that is missed by aggregating total V 

gene SHM. 
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Figure 3.14: A Burtin V gene SHM plot. Bars are colored by sample repertoire, with V 

genes found in all repertoires represented radially. Total SHM rates for 

each gene are shown as the radius / length of the bars. 
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Figure 3.15: Zoomed in section from figure 3.14. 

 

Repertoire Diversity / Polarization Line Plot 

 Qualitative measures of sample diversity and polarization are key for inter-

repertoire comparison. One such measure of diversity is the series of Hill numbers, which 

are more adept than other measures since the series is far less affected by samples with 

extreme polarity or high total unique clone counts (Anne, C. et al 2014). As show in figure 
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3.16, multiple repertoires can be easily seen side-by-side for diversity comparison. For a 

set of in silico controls, several faux repertoires can be generated and displayed along with 

the actual datasets. These repertoires range from highly polarized to completely equally 

distributed across the population (figure 3.17). 

 

 

Figure 3.16: A Hill number diversity plot comparing three repertoires. 
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Figure 3.17: The Hill number diversity plot from 3.16 with added faux-repertoire 

controls for very highly, highly, moderately, and low polarized repertoires. 
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Appendix 
Python Processing & Graphing Scripts 

 
 
##########MIXCR Utilities 
 
import logging 
import subprocess 
import os 
import pandas 
 
MIXCR_alignment_cols = ["descrR1", "cloneId", "vGene", "dGene", "jGene", "cGene", 
      "vBestIdentityPercent", "dBestIdentityPercent", 
"jBestIdentityPercent"] 
 
def MIXCR_Align(fastx, vdjca_out = None, species = "HomoSapiens", chains = "IG", threads = 8, 
other_align_params = None, 
    java_memory = None, save_reads = False, save_descs = True, 
MIXCR_jar = MIXCR_loc, overwrite = False): 
 """Perform a MIXCR alignment of the specified FASTQ/FASTA sequence file; wrapper function 
for mixcr.jar align. 
 
 Parameters 
 ---------- 
 fastx: str 
  Filename for the FASTQ/FASTA file to align with MIXCR. 
 vdjca_out: str or None 
  Output filename for the MIXCR .vdjca alignment file; by default will use the 
prefix filename from fastx. 
 species: str 
  Species name (as usable by MIXCR) to use for V/D/J gene alignment; default is 
"HomoSapiens". 
 chains: str or list of str 
  Immunological chain genes to compare against as used by MIXCR; default is "IG" 
meaning any immunoglobulin. 
 threads: int 
  Number of CPU threads available for the MIXCR executable; default is 8. 
 other_align_params: str or None 
  Additional parameters given to MIXCR align as a string; optional. 
 java_memory: int or str 
  Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to 
"java -Xms8G -Xmx8G"). 
 save_reads: bool 
  Whether or not to save the full read sequences in the output .vdjca file (MIXCR 
align -g option); default False. 
 save_descs: bool 
  Whether or not to save the read descriptions in the output .vdjca file (MIXCR 
align -a option); default True. 
 MIXCR_jar: str 
  Path of the MIXCR executable jar file; see MIXCR_loc. 
 overwrite: bool 
  If True, any existing .vdjca file of the same name will be overwritten (MIXCR -f 
option); default is False. 
 """ 
 
 logger = logging.getLogger("MIXCR_Align") 
 
 if isinstance(vdjca_out, str): 
  if not vdjca_out.lower().endswith(".vdjca"): 
   vdjca_out += ".vdjca" 
 else: 
  vdjca_out = ".".join(fastx.split(".")[:-1]) + ".vdjca" 
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 species = species if isinstance(species, str) else "HomoSapiens" 
 
 if hasattr(chains, "__iter__") and not isinstance(chains, str): 
  chains = ",".join(chains) 
 elif not isinstance(chains, str): 
  chains = "IG" 
  logger.warning("chains needs to be either a list of chain types or a str; 
defaulting to \"IG\"") 
 
 threads = threads if int(threads) > 0 else 8 
 
 MIXCR_call = ["java", "-jar"] 
 
 if java_memory is not None: 
  java_memory = str(java_memory).upper() 
 
  if not java_memory.endswith("G"): 
   java_memory += "G" 
 
  java_initial_mem = "-Xms" + java_memory 
  java_max_mem = "-Xmx" + java_memory 
 
  MIXCR_call.extend([java_initial_mem, java_max_mem]) 
 
 MIXCR_call.append(MIXCR_jar) 
 MIXCR_call.append("align") 
 MIXCR_call.extend(["-t", str(threads)]) 
 MIXCR_call.extend(["-s", species]) 
 MIXCR_call.extend(["-c", chains]) 
 
 if save_reads: 
  MIXCR_call.append("-g") 
 if save_descs: 
  MIXCR_call.append("-a") 
 if overwrite: 
  MIXCR_call.append("-f") 
 
 if other_align_params is not None: 
  MIXCR_call.extend(other_align_params.split(" ")) 
 
 MIXCR_call.append(fastx) 
 MIXCR_call.append(vdjca_out) 
 
 logger.info("Starting alignment for " + fastx + "...") 
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call)) 
 
 try: 
  align_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT, 
universal_newlines = True) 
 
 except subprocess.CalledProcessError as cpe: 
  MIXCR_error = cpe.stdout.strip().lower() 
 
  if "filenotfoundexception" in MIXCR_error: 
   logger.error("Could not access input file " + fastx + "!") 
 
  elif "already exists" in MIXCR_error: 
   logger.error("Output filename " + vdjca_out + " already exists!") 
   logger.error("Run MIXCR_Align again with overwrite = True or use a unique 
vdjca_out filename.") 
 
  elif "unable to access jarfile" in MIXCR_error: 
   logger.error("The MIXCR executable could not be found; check if the 
provided jarfile path is correct!") 
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  else: 
   logger.error("An unknown error occurred trying to run MIXCR align!") 
 
  logger.error(MIXCR_error) 
  return None 
 
 logger.info(align_log) 
 
def MIXCR_Filter_Alignments(vdjca, vdjca_out, seq_feature = None, cdr3_nt_seq = None, 
other_filter_params = None, 
       java_memory = None, MIXCR_jar = 
MIXCR_loc, overwrite = False): 
 """Filter a MIXCR alignment to remove sequences not containing a specific feature, or with 
a specific CDR3 sequence. 
 Wrapper function for mixcr.jar filterAlignments. 
 
 Parameters 
 ---------- 
 vdjca: str 
  Filename for the VDJCA alignment binary file to filter. 
 vdjca_out: str 
  Output filename for the filtered MIXCR .vdjca alignment file. 
 seq_feature: str or None 
  Sequence feature to filter on, from any of ["FR1", "CDR1", "FR2", "CDR2", "FR3", 
"CDR3", "FR4"]. 
 cdr3_nt_seq: str or None 
  Nucleotide CDR3 sequence that must be present in filtered sequences; optional. 
 other_filter_params: str or None 
  Additional parameters given to MIXCR filterAlignments as a string; optional. 
 java_memory: int or str 
  Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to 
"java -Xms8G -Xmx8G"). 
 MIXCR_jar: str 
  Path of the MIXCR executable jar file; see MIXCR_loc. 
 overwrite: bool 
  If True, any existing .vdjca file of the same name will be overwritten (MIXCR -f 
option); default is False. 
 """ 
 
 logger = logging.getLogger("MIXCR_Filter_Alignments") 
 
 if isinstance(vdjca_out, str): 
  if not vdjca_out.lower().endswith(".vdjca"): 
   vdjca_out += ".vdjca" 
 
 MIXCR_call = ["java", "-jar"] 
 
 if java_memory is not None: 
  java_memory = str(java_memory).upper() 
 
  if not java_memory.endswith("G"): 
   java_memory += "G" 
 
  java_initial_mem = "-Xms" + java_memory 
  java_max_mem = "-Xmx" + java_memory 
 
  MIXCR_call.extend([java_initial_mem, java_max_mem]) 
 
 MIXCR_call.append(MIXCR_jar) 
 MIXCR_call.append("filterAlignments") 
 
 valid_seq_features = ["FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"] 
 if isinstance(seq_feature, str) and any([seq_feature.upper() == feat for feat in 
valid_seq_features]): 
  seq_feature = seq_feature.upper() 
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  MIXCR_call.extend(["-g", seq_feature]) 
 
 else: 
  logger.error("seq_feature to filter must be a valid CDR/FR region (eg. 
\"CDR2\")!") 
  return None 
 
 if isinstance(cdr3_nt_seq, str): 
  cdr3_nt_seq = cdr3_nt_seq.upper() 
 
  if len(cdr3_nt_seq.replace("A", "").replace("C", "").replace("G", 
"").replace("T", "")) > 0: 
   logger.error("Sequences filtered by CDR3 must be nucleotide sequences 
only!") 
   return None 
 
  MIXCR_call.extend(["-e", cdr3_nt_seq]) 
 
 if overwrite: 
  MIXCR_call.append("-f") 
 
 if other_filter_params is not None: 
  MIXCR_call.extend(other_filter_params.split(" ")) 
 
 MIXCR_call.append(vdjca) 
 MIXCR_call.append(vdjca_out) 
 
 logger.info("Filtering alignments from " + vdjca + "...") 
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call)) 
 
 try: 
  filter_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT, 
universal_newlines = True) 
 
 except subprocess.CalledProcessError as cpe: 
  MIXCR_error = cpe.stdout.strip().lower() 
 
  if "filenotfoundexception" in MIXCR_error: 
   logger.error("Could not access input file " + vdjca + "!") 
 
  elif "already exists" in MIXCR_error: 
   logger.error("Output filename " + vdjca_out + " already exists!") 
   logger.error("Run MIXCR_Filter_Alignments again with overwrite = True or 
use a unique vdjca_out filename.") 
 
  elif "unable to access jarfile" in MIXCR_error: 
   logger.error("The MIXCR executable could not be found; check if the 
provided jarfile path is correct!") 
 
  else: 
   logger.error("An unknown error occurred trying to run MIXCR 
filterAlignments!") 
 
  logger.error(MIXCR_error) 
  return None 
 
 logger.info(filter_log) 
 
def MIXCR_Assemble(vdjca, clns_out = None, threads = 8, create_index = True, other_assemble_params 
= None, 
       java_memory = None, MIXCR_jar = MIXCR_loc, overwrite = False): 
 """Assemble clonotypes from a MIXCR alignment; wrapper function for mixcr.jar assemble. 
 
 Parameters 
 ---------- 
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 vdjca: str 
  Filename for the VDJCA alignment binary file to clonotype. 
 clns_out: str or None 
  Output filename for the MIXCR .clns alignment file; by default will use the 
prefix filename from vdjca. 
 threads: int 
  Number of CPU threads available for the MIXCR executable; default is 8. 
 create_index: bool 
  Whether to create an index file usable for the export of total alignment reads 
with clone IDs; default is True. 
 other_assemble_params: str or None 
  Additional parameters given to MIXCR assemble as a string; optional. 
 java_memory: int or str 
  Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to 
"java -Xms8G -Xmx8G"). 
 MIXCR_jar: str 
  Path of the MIXCR executable jar file; see MIXCR_loc. 
 overwrite: bool 
  If True, any existing .clns file of the same name will be overwritten (MIXCR -f 
option); default is False. 
 """ 
 
 logger = logging.getLogger("MIXCR_Assemble") 
 
 if isinstance(clns_out, str): 
  if not clns_out.lower().endswith(".clns"): 
   clns_out += ".clns" 
 else: 
  clns_out = ".".join(vdjca.split(".")[:-1]) + ".clns" 
 
 threads = threads if int(threads) > 0 else 8 
 
 MIXCR_call = ["java", "-jar"] 
 
 if java_memory is not None: 
  java_memory = str(java_memory).upper() 
 
  if not java_memory.endswith("G"): 
   java_memory += "G" 
 
  java_initial_mem = "-Xms" + java_memory 
  java_max_mem = "-Xmx" + java_memory 
 
  MIXCR_call.extend([java_initial_mem, java_max_mem]) 
 
 MIXCR_call.append(MIXCR_jar) 
 MIXCR_call.append("assemble") 
 MIXCR_call.extend(["-t", str(threads)]) 
 
 if create_index: 
  index_file = ".".join(vdjca.split(".")[:-1]) + "_index" 
  MIXCR_call.extend(["-i", index_file]) 
 
 if overwrite: 
  MIXCR_call.append("-f") 
 
 if other_assemble_params is not None: 
  MIXCR_call.extend(other_assemble_params.split(" ")) 
 
 MIXCR_call.append(vdjca) 
 MIXCR_call.append(clns_out) 
 
 logger.info("Assembling clonotypes from " + vdjca + "...") 
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call)) 
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 try: 
  assemble_log = subprocess.check_output(MIXCR_call, stderr = subprocess.STDOUT, 
universal_newlines = True) 
 
 except subprocess.CalledProcessError as cpe: 
  MIXCR_error = cpe.stdout.strip().lower() 
 
  if "filenotfoundexception" in MIXCR_error: 
   logger.error("Could not access input file " + vdjca + "!") 
 
  elif "already exists" in MIXCR_error: 
   logger.error("Output filename " + clns_out + " already exists!") 
   logger.error("Run MIXCR_Assemble again with overwrite = True or use a 
unique clns_out filename.") 
 
  elif "unable to access jarfile" in MIXCR_error: 
   logger.error("The MIXCR executable could not be found; check if the 
provided jarfile path is correct!") 
 
  else: 
   logger.error("An unknown error occurred trying to run MIXCR assemble!") 
 
  logger.error(MIXCR_error) 
  return None 
 
 logger.info(assemble_log) 
 
def Export_MIXCR_Alignments(vdjca, aligns_out = None, export_clone_ids = True, export_descriptions 
= True, 
       export_top_genes = "VDJC", 
export_top_gene_identities = "VDJ", export_read_ids = False, 
       nt_feat_seqs = "all", aa_feat_seqs = 
"all", export_full_seq = False, export_aligns = None, 
       clone_index_file = None, 
other_export_fields = None, java_memory = None, 
       MIXCR_jar = MIXCR_loc, overwrite = 
False): 
 """Export specified MIXCR alignment fields to a tab-separated text file for further 
downstream analysis. 
 Wrapper function for mixcr.jar exportAlignments; most arguments are used to pick the 
fields exported to text. 
 
 Parameters 
 ---------- 
 vdjca: str 
  Filename for the VDJCA alignment binary file to export to text. 
 aligns_out: str or None 
  Output filename for the alignment text file; by default will use the prefix of 
vdjca plus "_alignments.txt". 
 export_clone_ids: bool 
  Whether or not to export clone IDs (clone index file must be available, see 
clone_index_file); default True. 
 export_descriptions: bool 
  Whether to export the original FASTX read headers (if descriptions were saved 
during align); default True. 
 export_top_genes: str 
  A string containing any/all of "VDJC" to export the top V/D/J/C gene called per 
read; default is "VDJC". 
 export_top_gene_identities: str or None 
  A string containing any/all of "VDJC" to export the gene region identity (% 
similarity to gene); default "VDJ". 
 export_read_ids: bool 
  Whether the original read ID numbers should be exported; default is False. 
 nt_feat_seqs: str, list of str, or None 
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  Which CDR and framework region (FR) nucleotide sequences should be exported, or 
"all" (default is "all"). 
  Example for only exporting FR2, FR3, and CDR3: ["FR2", "FR3", "CDR3"] 
 aa_feat_seqs: str, list of str, or None 
  Which CDR and framework region (FR) amino acid sequences should be exported, or 
"all" (default is "all"). 
  Example for only exporting FR2, FR3, and CDR3: ["FR2", "FR3", "CDR3"] 
 export_full_seq: bool 
  Whether to export the full read nucleotide sequence for each read; default is 
False. 
 export_aligns: str or None 
  A string containing any/all of "VDJC" to export the V/D/J/C alignment to germline 
per read; default is None. 
 clone_index_file: str or None 
  Index of clone IDs for each alignment; if None the file is assumed to be the 
prefix of vdjca plus "_index". 
 other_export_fields: str, list of str, or None 
  Additional export fields usable by MIXCR; can be a string of options or a list of 
option strings. 
  Example: "-mutationsDetailed FR3 -lengthOf CDR3" 
 java_memory: int or str 
  Amount of memory usable by the Java virtual machine in GB of RAM (eg. 8 leads to 
"java -Xms8G -Xmx8G"). 
 MIXCR_jar: str 
  Path of the MIXCR executable jar file; see MIXCR_loc. 
 overwrite: bool 
  If True, any existing output file of the same name will be overwritten (MIXCR -f 
option); default is False. 
 """ 
 
 logger = logging.getLogger("Export_MIXCR_Alignments") 
 
 if aligns_out is None: 
  aligns_out = ".".join(vdjca.split(".")[:-1]) + "_alignments.txt" 
 
 if clone_index_file is None: 
  clone_index_file = ".".join(vdjca.split(".")[:-1]) + "_index" 
 
 MIXCR_call = ["java", "-jar"] 
 
 if java_memory is not None: 
  java_memory = str(java_memory).upper() 
 
  if not java_memory.endswith("G"): 
   java_memory += "G" 
 
  java_initial_mem = "-Xms" + java_memory 
  java_max_mem = "-Xmx" + java_memory 
 
  MIXCR_call.extend([java_initial_mem, java_max_mem]) 
 
 MIXCR_call.append(MIXCR_jar) 
 MIXCR_call.append("exportAlignments") 
 
 if overwrite: 
  MIXCR_call.append("-f") 
 
 if export_clone_ids: 
  MIXCR_call.extend(["-cloneId", clone_index_file]) 
 
 if export_descriptions: 
  MIXCR_call.append("-descrR1") 
 
 if isinstance(export_top_genes, str): 
  export_top_genes = export_top_genes.upper() 
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  if "ALL" in export_top_genes: 
   export_top_genes = "VDJC" 
 
  if "V" in export_top_genes: 
   MIXCR_call.append("-vGene") 
  if "D" in export_top_genes: 
   MIXCR_call.append("-dGene") 
  if "J" in export_top_genes: 
   MIXCR_call.append("-jGene") 
  if "C" in export_top_genes: 
   MIXCR_call.append("-cGene") 
 
 if isinstance(export_top_gene_identities, str): 
  export_top_gene_identities = export_top_gene_identities.upper() 
  if "ALL" in export_top_gene_identities: 
   export_top_gene_identities = "VDJC" 
 
  if "V" in export_top_gene_identities: 
   MIXCR_call.append("-vBestIdentityPercent") 
  if "D" in export_top_gene_identities: 
   MIXCR_call.append("-dBestIdentityPercent") 
  if "J" in export_top_gene_identities: 
   MIXCR_call.append("-jBestIdentityPercent") 
  if "C" in export_top_gene_identities: 
   MIXCR_call.append("-cBestIdentityPercent") 
 
 if export_read_ids: 
  MIXCR_call.append("-readId") 
 
 if hasattr(nt_feat_seqs, "__iter__") and not isinstance(nt_feat_seqs, str): 
  for feat in nt_feat_seqs: 
   MIXCR_call.extend(["-nFeature", feat.upper()]) 
 elif isinstance(nt_feat_seqs, str): 
  nt_feat_seqs = nt_feat_seqs.upper() 
 
  if "ALL" in nt_feat_seqs: 
   MIXCR_call.extend(["-nFeature", "FR1", "-nFeature", "FR2", "-nFeature", 
"FR3", "-nFeature", "FR4"]) 
   MIXCR_call.extend(["-nFeature", "CDR1", "-nFeature", "CDR2", "-nFeature", 
"CDR3"]) 
  else: 
   MIXCR_call.extend(["-nFeature", nt_feat_seqs]) 
 
 if hasattr(aa_feat_seqs, "__iter__") and not isinstance(aa_feat_seqs, str): 
  for feat in aa_feat_seqs: 
   MIXCR_call.extend(["-aaFeature", feat.upper()]) 
 elif isinstance(aa_feat_seqs, str): 
  aa_feat_seqs = aa_feat_seqs.upper() 
 
  if "ALL" in aa_feat_seqs: 
   MIXCR_call.extend(["-aaFeature", "FR1", "-aaFeature", "FR2", "-
aaFeature", "FR3", "-aaFeature", "FR4"]) 
   MIXCR_call.extend(["-aaFeature", "CDR1", "-aaFeature", "CDR2", "-
aaFeature", "CDR3"]) 
  else: 
   MIXCR_call.extend(["-aaFeature", aa_feat_seqs]) 
 
 if export_full_seq: 
  MIXCR_call.append("-sequence") 
 
 if isinstance(export_aligns, str): 
  export_aligns = export_aligns.upper() 
  if "ALL" in export_aligns: 
   export_aligns = "VDJC" 
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  if "V" in export_aligns: 
   MIXCR_call.append("-vAlignment") 
  if "D" in export_aligns: 
   MIXCR_call.append("-dAlignment") 
  if "J" in export_aligns: 
   MIXCR_call.append("-jAlignment") 
  if "C" in export_aligns: 
   MIXCR_call.append("-cAlignment") 
 
 if other_export_fields is not None: 
  if isinstance(other_export_fields, str): 
   other_export_fields = other_export_fields.split(" ") 
 
  MIXCR_call.extend(other_export_fields) 
 
 MIXCR_call.append(vdjca) 
 MIXCR_call.append(aligns_out) 
 
 logger.info("Exporting alignments from " + vdjca + "...") 
 logger.debug("Full call to MIXCR:\n" + " ".join(MIXCR_call)) 
 
 try: 
  subprocess.check_call(MIXCR_call, stderr = subprocess.STDOUT) 
 
 except subprocess.CalledProcessError as cpe: 
  MIXCR_error = cpe.stdout.strip().lower() 
 
  if "filenotfoundexception" in MIXCR_error: 
   logger.error("Could not access input file " + vdjca + "!") 
 
  elif "already exists" in MIXCR_error: 
   logger.error("Output filename " + aligns_out + " already exists!") 
   logger.error("Run Export_MIXCR_Alignments again with overwrite = True or 
use a unique aligns_out filename.") 
 
  elif "unable to access jarfile" in MIXCR_error: 
   logger.error("The MIXCR executable could not be found; check if the 
provided jarfile path is correct!") 
 
  else: 
   logger.error("An unknown error occurred trying to run MIXCR 
exportAlignments.") 
 
  logger.error(MIXCR_error) 
  return None 
 
 logger.info("Alignments written to {0}.".format(aligns_out)) 
 
def Run_MIXCR(fastx, required_features = None, align_params = None, filter_params = None, 
assemble_params = None, 
     export_params = None, delete_temps = False, java_memory = None, 
MIXCR_jar = MIXCR_loc, log_file = None): 
 """ 
 
 Parameters 
 ---------- 
 Returns 
 ---------- 
 SUCCESS 
 """ 
 
 file_prefix = ".".join(fastx.split(".")[:-1]) 
 
 if log_file is None: 
  log_file = file_prefix + "_MIXCR_log.txt" 
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 logging.basicConfig(filename = log_file, level = logging.DEBUG, 
      datefmt = "%m-%d-%y %H:%M:%S", format = 
"%(asctime)s in %(name)s:\n%(message)s\n") 
 console = logging.StreamHandler() 
 console.setLevel(logging.INFO) 
 console.setFormatter(logging.Formatter("%(levelname)s\t%(message)s")) 
 logging.getLogger("").addHandler(console) 
 
 if align_params is not None: 
  MIXCR_Align(fastx, **align_params) 
 else: 
  MIXCR_Align(fastx) 
 
 if isinstance(required_features, str): 
  required_features = required_features.upper() 
 
  if "ALL" in required_features: 
   required_features = ["FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"] 
  else: 
   required_features = [required_features] 
 
 if required_features is not None: 
  cur_in_filename = file_prefix 
  cur_out_filename = file_prefix + "_has" 
 
  for feature in required_features: 
   cur_out_filename += "_" + feature 
   MIXCR_Filter_Alignments(cur_in_filename + ".vdjca", cur_out_filename + 
".vdjca", feature) 
   cur_in_filename = cur_out_filename 
 
  vdjca = cur_in_filename + ".vdjca" 
 
 else: 
  vdjca = file_prefix + ".vdjca" 
 
 MIXCR_Assemble(vdjca) 
 
 if export_params is not None: 
  Export_MIXCR_Alignments(vdjca, **export_params) 
 else: 
  Export_MIXCR_Alignments(vdjca) 
 
def FASTX_Random_Sample(filename, outfile_prefix = None, num_seqs = None, num_resamples = None): 
 pass 
 
from .Constants import MIXCR_header_dtypes, MIXCR_headers_renamed, no_stop_feats, 
no_frameshift_feats 
 
def MIXCR_to_DataFrame(filename, col_dtypes = MIXCR_header_dtypes, renamed_cols = 
MIXCR_headers_renamed, 
        drop_features_with_stop = no_stop_feats, 
drop_features_with_frameshift = no_frameshift_feats, 
        clone_col = "CloneID", min_clone_count = 2, 
simplify_isotypes = True, stop_char = "*", 
        frameshift_char = "_", assume_heavy_or_light = True, 
assume_heavy_light_cutoff = 0.9): 
 """ 
 By default, removes sequences with a stop codon in any gene region or a frameshift in any 
region but FR4. 
 
 Parameters 
 ---------- 
 Returns 
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 ---------- 
 seq_df: pandas.DataFrame 
  A pandas DataFrame consisting of the filtered alignments from filename. 
 """ 
 
 if not os.path.exists(filename): 
  print("Error in MIXCR_to_DataFrame: can't find input alignment file 
{0}!".format(filename)) 
  return None 
 
 seq_df = pandas.read_csv(filename, sep = "\t", usecols = [i for i in col_dtypes], dtype = 
col_dtypes) 
 total_raw_reads = len(seq_df) 
 
 print("{0} successfully loaded; identified a total of {1} raw reads.".format(filename, 
total_raw_reads)) 
 
 if renamed_cols: 
  seq_df = seq_df.rename(columns = renamed_cols) 
 
 filtered_report = "Dropped {0} sequences ({1:.1%} of raw reads) with a {2} in feature 
{3}." 
 if drop_features_with_stop: 
  for feature in drop_features_with_stop: 
   prefiltered_reads = len(seq_df) 
 
   if feature in seq_df.columns: 
    seq_df = seq_df[~seq_df[feature].str.contains(stop_char, na = 
False, regex = False)] 
    dropped_reads = prefiltered_reads - len(seq_df) 
    print(filtered_report.format(dropped_reads, (dropped_reads / 
total_raw_reads), "stop codon", feature)) 
 
   else: 
    print("Error in MIXCR_to_DataFrame: column \"{0}\" not found in 
alignment file!".format(feature)) 
    return None 
 
 if drop_features_with_frameshift: 
  for feature in drop_features_with_frameshift: 
   prefiltered_reads = len(seq_df) 
 
   if feature in seq_df.columns: 
    seq_df = seq_df[~seq_df[feature].str.contains(frameshift_char, na 
= False, regex = False)] 
    dropped_reads = prefiltered_reads - len(seq_df) 
    print(filtered_report.format(dropped_reads, (dropped_reads / 
total_raw_reads), "frameshift", feature)) 
 
   else: 
    print("Error in MIXCR_to_DataFrame: column \"{0}\" not found in 
alignment file!".format(feature)) 
    return None 
 
 cur_reads = len(seq_df) 
 if cur_reads < total_raw_reads: 
  pct_total = cur_reads / total_raw_reads 
  print("{0} reads remaining after filtering features ({1:.1%} of 
total).".format(cur_reads, pct_total)) 
 
 if clone_col is not None and clone_col in seq_df.columns: 
  if min_clone_count > 0: 
   prefiltered_reads = len(seq_df) 
   seq_df = seq_df[seq_df[clone_col].notnull()] 
   seq_df[clone_col] = seq_df[clone_col].astype(int) 
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   no_clone = prefiltered_reads - len(seq_df) 
   pct_total = no_clone / total_raw_reads 
   print("{0} reads removed with no assigned clonotype ({1:.1%} of 
total).".format(no_clone, pct_total)) 
 
  if min_clone_count > 1: 
   prefiltered_reads = len(seq_df) 
   clone_counts = seq_df[clone_col].value_counts() 
   clone_counts_filtered = clone_counts[clone_counts >= min_clone_count] 
   seq_df = seq_df[seq_df[clone_col].isin(clone_counts_filtered.index)] 
 
   not_enough_clone_members = prefiltered_reads - len(seq_df) 
   pct_total = not_enough_clone_members / total_raw_reads 
   report = "{0} reads removed for being in clonotypes consisting of less 
than {1} reads ({2:.1%} of total)." 
   print(report.format(not_enough_clone_members, min_clone_count, 
pct_total)) 
 
 elif clone_col is not None and clone_col not in seq_df.columns: 
  print("Error in MIXCR_to_DataFrame: clone ID column \"{0}\" not found in 
alignment file!".format(clone_col)) 
  return None 
 
 for col in ["VGene", "DGene", "JGene"]: 
  if col in seq_df.columns: 
   seq_df[col] = seq_df[col].fillna("Unknown") 
 
 if "V_Identity" in seq_df.columns: 
  seq_df["V_SHM"] = 1.0 - seq_df["V_Identity"] 
  seq_df = seq_df.drop(["V_Identity"], axis = 1) 
 
 if "D_Identity" in seq_df.columns: 
  seq_df["D_SHM"] = 1.0 - seq_df["D_Identity"] 
  seq_df = seq_df.drop(["D_Identity"], axis = 1) 
 
 if "J_Identity" in seq_df.columns: 
  seq_df["J_SHM"] = 1.0 - seq_df["J_Identity"] 
  seq_df = seq_df.drop(["J_Identity"], axis = 1) 
 
 if "CGene" in seq_df.columns: 
  seq_df["Isotype"] = seq_df["CGene"].str.split("*").str[0] #Remove MIXCR allele 
calls, primers are ambiguous 
  seq_df["Isotype"] = seq_df["Isotype"].fillna("Other") 
  seq_df = seq_df.drop(["CGene"], axis = 1) 
 
  if assume_heavy_or_light: 
   #if heavy chain is >90% of reads, remove any light chain seqs. and vice 
versa 
   heavy_chains = len(seq_df[seq_df["Isotype"].str.contains("IGH")]) 
   light_chains = len(seq_df[seq_df["Isotype"].str.contains("IGL") | 
seq_df["Isotype"].str.contains("IGK")]) 
   heavy_chain_ratio = heavy_chains / len(seq_df) 
   light_chain_ratio = light_chains / len(seq_df) 
 
   if heavy_chain_ratio > assume_heavy_light_cutoff and light_chains > 0: 
    seq_df = seq_df[seq_df["Isotype"].str.contains("IGH")] 
    cutoff_report = "{0} light chain reads dropped (assumed to be 
erroneous as {1:.1%} of reads are IGH)." 
    print(cutoff_report.format(light_chains, heavy_chain_ratio)) 
 
   elif light_chain_ratio > assume_heavy_light_cutoff: 
    seq_df = seq_df[seq_df["Isotype"].str.contains("IGK") | 
seq_df["Isotype"].str.contains("IGL")] 
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    cutoff_report = "{0} heavy chain reads dropped (assumed to be 
erroneous as {1:.1%} of reads are IGK/L)." 
    print(cutoff_report.format(heavy_chains, light_chain_ratio)) 
 
  if simplify_isotypes: 
   simple_isotypes = { 
    "IGHA1": "IgA", "IGHA2": "IgA", "IGHD": "IgD", "IGHEP1": "IgE", 
"IGHE": "IgE", 
    "IGHG1": "IgG", "IGHG2": "IgG", "IGHG3": "IgG", "IGHG4": "IgG", 
"IGHGP": "IgG", 
    "IGHM": "IgM", "IGLC1": "IgL", "IGLC2": "IgL", "IGLC3": "IgL", 
"IGLC4": "IgL", 
    "IGLC5": "IgL", "IGLC6": "IgL", "IGLC7": "IgL", "IGKC": "IgK" 
   } 
 
   for isotype in simple_isotypes: 
    seq_df["Isotype"] = seq_df["Isotype"].str.replace(isotype, 
simple_isotypes[isotype]) 
 
 seq_df = seq_df.reset_index(drop = True) 
 
 filtered_reads = len(seq_df) 
 print("{0} reads remaining in final dataframe!".format(filtered_reads)) 
 
 return seq_df 
 
 
###########Repertoire Comparison 
 
import pandas 
 
def Morisita_Horn_Similarity(combined_freq_df, freq_col1, freq_col2): 
 """Calculates the Morisita-Horn index of similarity: 2 * sum(freq(x) * freq(y)) / 
(sum(freq(x)^2) + sum(freq(y)^2)) 
 This function is intended for use by Repertoire_Similarity(). 
 
 Parameters 
 ---------- 
 combined_freq_df: pandas.DataFrame 
  DataFrame containing the frequencies of each unique clone found in either of the 
two repertoires. 
 freq_col1: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
first repertoire. 
 freq_col2: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
second repertoire. 
 
 Returns 
 ---------- 
 MH_index: float 
  The similarity of the repertoires as defined by the Morisita-Horn index. 
 """ 
 
 freq_product = combined_freq_df[freq_col1] * combined_freq_df[freq_col2] 
 freq1_squared = combined_freq_df[freq_col1] ** 2 
 freq2_squared = combined_freq_df[freq_col2] ** 2 
 
 summed_freq_product = freq_product.sum() 
 summed_freq_squared = freq1_squared.sum() + freq2_squared.sum() 
 
 MH_index = (summed_freq_product / summed_freq_squared) * 2.0 
 return MH_index 
 
def Cosine_Similarity(combined_freq_df, freq_col1, freq_col2): 
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 """Calculates the Cosine index of similarity: sum(freq(x) * freq(y)) / 
(sqrt(sum(freq(x)^2)) * sqrt(sum(freq(y)^2))) 
 This function is intended for use by Repertoire_Similarity(). 
 
 Parameters 
 ---------- 
 combined_freq_df: pandas.DataFrame 
  DataFrame containing the frequencies of each unique clone found in either of the 
two repertoires. 
 freq_col1: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
first repertoire. 
 freq_col2: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
second repertoire. 
 
 Returns 
 ---------- 
 cosine_index: float 
  The similarity of the repertoires as defined by the Cosine index. 
 """ 
 
 from numpy import sqrt 
 freq_product = combined_freq_df[freq_col1] * combined_freq_df[freq_col2] 
 freq1_squared = combined_freq_df[freq_col1] ** 2 
 freq2_squared = combined_freq_df[freq_col2] ** 2 
 
 summed_freq_product = freq_product.sum() 
 freq1_squared_sum_sqrt = sqrt(freq1_squared.sum()) 
 freq2_squared_sum_sqrt = sqrt(freq2_squared.sum()) 
 
 cosine_index = summed_freq_product / (freq1_squared_sum_sqrt * freq2_squared_sum_sqrt) 
 return cosine_index 
 
def Jaccard_Similarity(combined_freq_df, freq_col1, freq_col2): 
 """Calculates the Jaccard index of similarity: sum(minimum of freqs(x, y)) / sum(maximum 
of freqs(x, y)) 
 This function is intended for use by Repertoire_Similarity(). 
 
 Parameters 
 ---------- 
 combined_freq_df: pandas.DataFrame 
  DataFrame containing the frequencies of each unique clone found in either of the 
two repertoires. 
 freq_col1: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
first repertoire. 
 freq_col2: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
second repertoire. 
 
 Returns 
 ---------- 
 jaccard_index: float 
  The similarity of the repertoires as defined by the Jaccard index. 
 """ 
 
 min_freqs = combined_freq_df[[freq_col1, freq_col2]].min(axis = 1) 
 max_freqs = combined_freq_df[[freq_col1, freq_col2]].max(axis = 1) 
 
 jaccard_index = min_freqs.sum() / max_freqs.sum() 
 return jaccard_index 
 
def Bray_Curtis_Similarity(combined_freq_df, freq_col1, freq_col2): 
 """Calculates the Bray-Curtis index of similarity: sum(minimum of freqs(x, y)) 
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 This function is intended for use by Repertoire_Similarity(). 
 
 Parameters 
 ---------- 
 combined_freq_df: pandas.DataFrame 
  DataFrame containing the frequencies of each unique clone found in either of the 
two repertoires. 
 freq_col1: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
first repertoire. 
 freq_col2: str 
  Column name in combined_freq_df with the clonal frequencies for all clones in the 
second repertoire. 
 
 Returns 
 ---------- 
 BC_index: float 
  The similarity of the repertoires as defined by the Bray-Curtis index. 
 """ 
 
 min_freqs = combined_freq_df[[freq_col1, freq_col2]].min(axis = 1) 
 
 BC_index = min_freqs.sum() 
 return BC_index 
 
def Repertoire_Similarity(clone_df1, clone_df2, how = "all", clone_col = "CloneID", count_col = 
"Clustered"): 
 """Calculates the similarity of two repertoires that MUST have been clonotyped together 
(ie, must share clone IDs). 
 Generally returns a fraction ranging from 0.0 (no similarity) to 1.0 (in theory, 
identical) depending on the method. 
 Implemented methods currently available (for the "how" argument): 
  Morisita-Horn, called using "morisita_horn", "morisita", "horn", or "mh". 
  Cosine, called using "cosine" or "cos". 
  Jaccard, called using "jaccard" or "j". 
  Bray-Curtis, called using "bray_curtis", "bray", "curtis", "bc". 
  Using "all" yields a dict of all methods formatted as {str: float} for the method 
name -> resulting value. 
 
 Parameters 
 ---------- 
 clone_df1: pandas.DataFrame 
  First DataFrame containing unique clones sharing clone IDs with clone_df2 (must 
have been clonotyped together). 
 clone_df2: pandas.DataFrame 
  Second DataFrame containing unique clones sharing clone IDs with clone_df1 (must 
have been clonotyped together). 
 how: str 
  Method for calculating similarity, defaulting to "all"; can be one of the 
following: 
   "mh", "morisita", "horn", or "morisita_horn" for Morisita-Horn 
similarity. 
   "cos" or "cosine" for Cosine similarity. 
   "j" or "jaccard" for Jaccard similarity. 
   "bc", "bray", "curtis", or "bray_curtis" for Bray-Curtis similarity. 
   "all" returns a dict of all methods formatted as {str: float} for the 
method name -> resulting value. 
 clone_col: str 
  Name of column in both DataFrames with the unique clone IDs; default is 
"CloneID". 
 count_col: str 
  Name of column in both DataFrames with the count or frequency for each unique 
clone; default is "Clustered". 
 
 Returns 
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 ---------- 
 similarity or similarities: float or {str: float} 
  If how != "all" returns the value of the given similarity index, otherwise a dict 
of the results of all methods. 
  An example of the result from how = "all": {"Morisita_Horn": 0.9556, "Cosine": 
0.9239, "Jaccard": 0.8913} 
 """ 
 
 valid_method_calls = ["all", "mh", "morisita", "horn", "cos", "j", "bc", "bray", "curtis"] 
 
 if isinstance(how, str) and any([m in how.lower() for m in valid_method_calls]): 
  how = how.lower() 
 
  if "all" in how: 
   method = "All" 
  elif any(["mh" in how, "morisita" in how, "horn" in how]): 
   method = "Morisita_Horn" 
  elif "cos" in how: 
   method = "Cosine" 
  elif "j" in how: 
   method = "Jaccard" 
  elif any(["bc" in how, "bray" in how, "curtis" in how]): 
   method = "Bray_Curtis" 
 
 else: 
  print("Warning in Repertoire_Similarity: \"how\" argument invalid; defaulting to 
\"all\"!") 
  method = "All" 
 
 similarity_funcs = { 
  "Morisita_Horn": Morisita_Horn_Similarity, 
  "Cosine": Cosine_Similarity, 
  "Jaccard": Jaccard_Similarity, 
  "Bray_Curtis": Bray_Curtis_Similarity 
 } 
 
 if clone_col not in clone_df1.columns or clone_col not in clone_df2.columns: 
  print("Error in Repertoire_Similarity: clone ID column \"{0}\" not 
found!".format(clone_col)) 
  return None 
 
 if count_col not in clone_df1.columns or count_col not in clone_df2.columns: 
  print("Error in Repertoire_Similarity: clone count/frequency column \"{0}\" not 
found!".format(count_col)) 
  return None 
 
 clone_df1_freqs = clone_df1[[clone_col, count_col]] 
 clone_df2_freqs = clone_df2[[clone_col, count_col]] 
 
 total_clone_counts_df1 = float(clone_df1_freqs[count_col].sum()) 
 total_clone_counts_df2 = float(clone_df2_freqs[count_col].sum()) 
 clone_df1_freqs["Freq_DF1"] = clone_df1_freqs[count_col] / total_clone_counts_df1 
 clone_df2_freqs["Freq_DF2"] = clone_df2_freqs[count_col] / total_clone_counts_df2 
 clone_df1_freqs = clone_df1_freqs.drop([count_col], axis = 1) 
 clone_df2_freqs = clone_df2_freqs.drop([count_col], axis = 1) 
 
 merged_clone_dfs = clone_df1_freqs.merge(clone_df2_freqs, on = clone_col, how = "outer") 
 merged_clone_dfs = merged_clone_dfs.fillna(0.0) 
 
 if method == "All": 
  similarities = {} 
 
  for func in similarity_funcs: 
   Similarity_Function = similarity_funcs[func] 
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   similarities[func] = Similarity_Function(merged_clone_dfs, freq_col1 = 
"Freq_DF1", freq_col2 = "Freq_DF2") 
 
  return similarities 
 
 else: 
  Similarity_Function = similarity_funcs[method] 
  similarity = Similarity_Function(merged_clone_dfs, freq_col1 = "Freq_DF1", 
freq_col2 = "Freq_DF2") 
  return similarity 
 
 
##########Graphing 
import matplotlib.pyplot as plt 
import numpy 
from squarify import squarify 
from itertools import cycle 
from matplotlib.colors import Colormap 
from matplotlib.patches import Rectangle, Wedge 
from matplotlib.collections import PatchCollection 
from matplotlib.ticker import StrMethodFormatter 
from mpl_toolkits.axes_grid1.inset_locator import inset_axes 
from mpl_toolkits.axes_grid1.inset_locator import mark_inset 
 
#Add ability to plot several groups 
def Rank_Abundance_Graph(clone_counts, max_clones = None, zoom_inset = None, figsize = None): 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Rank_Abundance_Graph: clone_counts must be a list/iterable of 
clone counts/frequencies!") 
  return None 
 
 if figsize is None: 
  fig = plt.figure() 
 else: 
  fig = plt.figure(figsize = figsize) 
 
 ax = fig.add_subplot(1, 1, 1) 
 
 total_clone_counts = float(sum(clone_counts)) 
 total_clones = len(clone_counts) 
 
 clone_freqs = [] 
 for clone in sorted(clone_counts, reverse = True): 
  clone_freq = clone / total_clone_counts 
  clone_freqs.append(clone_freq) 
 
 ranks = [i for i in range(1, total_clones + 1)] 
 ax.bar(x = ranks, height = clone_freqs) 
 
 if max_clones is not None: 
  ax.set_xlim(0, max_clones) 
 
 #zoomed_ax = zoomed_inset_axes(ax, 0.5, loc = 1) 
 zoomed_ax = inset_axes(ax, 2, 1) 
 zoomed_ax.bar(x = ranks, height = clone_freqs) 
 zoomed_ax.set_xlim(0, 20) 
 zoomed_ax.set_ylim(0, max(clone_freqs)) 
 mark_inset(ax, zoomed_ax, loc1 = 2, loc2 = 4, ec = "black") 
 
 return fig 
 
def Mosaic_Plot(members, member_color_data = None, fig_name = None, title = None, colors = "Set2", 
num_colors = 3, 
    quant_cmap = "viridis", colorbar_pos = "right", colorbar_width = 
0.02, highlight_upper_percent = 0.5, 
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    fig = None, ax = None, figsize = (2, 2), dpi = 600, bbox_inches = 
"tight", multiple_fig = False): 
 """Creates a Mosaic plot figure optionally colored by an additional quantitative factor 
using Matplotlib patches. 
 
 Parameters 
 ---------- 
 members: list or other non-string iterable 
  An iterable of float or integer values to be used as areas for the mosaic 
patches. 
 member_color_data: list or other non-string iterable of same length as members, or None 
  An optional list of the same length as members with a quantitative range to color 
members by (such as gene SHM). 
 fig_name: str or None 
  Filename to save the output figure; if None, shows the figure on screen 
(matplotlib.pyplot.show); default None. 
 title: str or None 
  Text to be used as the figure title; default is None. 
 colors: str, or matplotlib Colormap, or list or other non-string iterable of same length 
as members, or None 
  Colormap to use for the mosaic patches IF member_color_data is NOT provided, and 
ignored otherwise. 
  colors can be a str of any matplotlib colormap name, or a Colormap object; 
default is "Set2". 
  If another iterable is provided, must be a list of color names/values to manually 
provide each patch's color. 
 num_colors: int 
  If member_color_data is None, num_colors sets the mosaic patches to cycle through 
the first "num_colors" colors. 
  Too many colors to cycle through is visually straining and may be problematic for 
a group of many small patches. 
  num_colors is ignored if member_color_data is provided, or if colors is a 
list/iterable of each patch's colors. 
  Default: 3 
 quant_cmap: str or matplotlib Colormap 
  Describes the colormap to use for mapping the values of member_color_data to 
quantitative color values. 
  Can be a str name for a matplotlib colormap or a Colormap object; default is 
"viridis". 
 colorbar_pos: str 
  Location on figure (cardinal direction) to place the colorbar if 
member_color_data given; default is "right". 
 colorbar_width: float 
  Width for the colorbar if member_color_data is provided (passed to matplotlib 
Rectangle patch); default is 0.02. 
 highlight_upper_percent: float or None 
  If not None (default), the upper x% of patches will use a lighter color scheme 
than the patches smaller than x%. 
  Example: if set as 0.6 the top 60% of patches will be normally colored and the 
remaining patches will be darker. 
 fig: matplotlib Figure or None 
  Matplotlib Figure object to use instead of creating a new Figure; default is 
None. 
 ax: matplotlib Axes or None 
  Matplotlib Axes object to use instead of adding a new Axes; default is None. 
 figsize: tuple of (int, int) or (float, float) 
  Size for the matplotlib Figure object as a tuple of (inches, inches); default is 
(2, 2). 
 dpi: int 
  Dots per inch (DPI) for the matplotlib Figure; default is 600. 
 bbox_inches: str, int 
  Image bounding box parameter given to matplotlib; default is "tight". 
 multiple_fig: bool 
  ADD 
 """ 
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 if hasattr(members, "__iter__") and not isinstance(members, str): 
  total_area = float(sum(members)) 
  norm_areas = [float(member) / total_area for member in members] 
 else: 
  print("Error in Mosaic_Plot: members must be a list/iterable (eg. pandas Series, 
numpy array) of ints/floats!") 
  return None 
 
 sorted_areas = sorted(norm_areas, reverse = True)  #Keeping original list to use 
for sorting other lists 
 mosaic_rects = squarify(sorted_areas, 0.0, 0.0, 1.0, 1.0) 
 
 if fig is None: 
  fig = plt.figure(figsize = figsize, dpi = dpi) 
 
 if ax is None: 
  ax = fig.add_subplot(1, 1, 1, aspect = "equal") 
 
 ax.set_axis_off() 
 
 if isinstance(title, str): 
  ax.set_title(title) 
 
 if isinstance(colors, str): 
  colors = plt.get_cmap(colors).colors 
 elif isinstance(colors, Colormap): 
  colors = colors.colors #lol 
 elif hasattr(colors, "__iter__") and not isinstance(colors, str) and len(colors) == 
len(members): 
  num_colors = len(colors) 
  #Since member order will have probably changed after sorting, must sort the color 
list based on original member. 
  colors = [clr for member, clr in sorted(zip(norm_areas, colors), key = lambda x: 
x[0], reverse = True)] 
 else: 
  colors = plt.get_cmap("Set2").colors 
 
 num_colors = num_colors if isinstance(num_colors, int) and num_colors > 1 else 3 
 mosaic_colors = cycle(colors[0:num_colors]) 
 
 if isinstance(highlight_upper_percent, float) and 0.0 < highlight_upper_percent < 1.0: 
  change_colors = True 
  lower_colors = [] 
 
  for c in colors[0:num_colors]: 
   darker_color = [0.0 if rgb <= 0.25 else rgb - 0.25 for rgb in c] 
   lower_colors.append(darker_color) 
 
 else: 
  change_colors = False 
 
 mosaic_patches = [] 
 
 area_summed = 0.0 
 for rect in mosaic_rects: 
  rect_xy = (rect["x"], rect["y"]) 
  rect_width = rect["dx"] 
  rect_height = rect["dy"] 
 
  if change_colors: 
   cur_area = rect_width * rect_height 
   area_summed += cur_area 
 
   if area_summed > highlight_upper_percent: 
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    mosaic_colors = cycle(lower_colors) 
    change_colors = False 
 
  mosaic_patches.append(Rectangle(rect_xy, rect_width, rect_height, facecolor = 
next(mosaic_colors))) 
 
 mosaic_collection = PatchCollection(mosaic_patches, edgecolor = "#404040", linewidth = 
0.2, match_original = True) 
 
 if hasattr(member_color_data, "__iter__") and not isinstance(member_color_data, str): 
  if len(member_color_data) != len(members): 
   print("Error creating Mosaic: member_color_data must be the same length 
as the members input!") 
   print("Make sure the correct matching data is used, or remove 
member_color_data to repeat default colors.") 
   return None 
 
  member_colors = [j for i, j in sorted(zip(norm_areas, member_color_data), key = 
lambda x: x[0], reverse = True)] 
 
  quant_cmap = quant_cmap if isinstance(quant_cmap, str) else "viridis" 
  colorbar_width = colorbar_width if isinstance(colorbar_width, float) and 
colorbar_width > 0.0 else 0.02 
 
  mosaic_collection.set_array(numpy.array(member_colors)) 
  mosaic_collection.set_cmap(quant_cmap) 
 
  colorbar_parameters = { 
   "width": 0.1,  #Width of the ticks 
   "length": 2.0,  #Length of the ticks 
   "labelsize": 3.0, #Tick label text size 
   "pad": 2.0   #Distance between ticks and tick labels 
  } 
 
  #Ax dimensions (left, bottom, width, height) and parameters for colorbar ax 
depending on position in figure 
  colorbar_pos_params = { 
   "top": ((0.1725, 0.9, 0.679, colorbar_width), 
     {"top": True, "bottom": False, "labeltop": True, 
"labelbottom": False}), 
   "right": ((0.87, 0.11, colorbar_width, 0.77), 
       {"right": True, "left": False, "labelright": True, 
"labelleft": False}), 
   "bottom": ((0.1725, 0.07, 0.679, colorbar_width), 
        {"top": False, "bottom": True, "labeltop": False, 
"labelbottom": True}), 
   "left": ((0.135, 0.11, colorbar_width, 0.77), 
      {"right": False, "left": True, "labelright": False, 
"labelleft": True}) 
  } 
 
  colorbar_horizontal = False #Display colorbar horizontally if positioned on the 
top or bottom of figure 
 
  if isinstance(colorbar_pos, str): #Figure out what cardinal direction the 
colorbar axis should be placed: 
   colorbar_pos = colorbar_pos.lower() 
   if any([pos in colorbar_pos for pos in ["top", "north", "up"]]): 
    colorbar_pos = "top" 
    colorbar_horizontal = True 
   elif any([pos in colorbar_pos for pos in ["right", "east"]]): 
    colorbar_pos = "right" 
   elif any([pos in colorbar_pos for pos in ["bottom", "south", "down"]]): 
    colorbar_pos = "bottom" 
    colorbar_horizontal = True 
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   elif any([pos in colorbar_pos for pos in ["left", "west"]]): 
    colorbar_pos = "left" 
   else: 
    colorbar_pos = "right" 
  else: 
   colorbar_pos = "right" 
 
  colorbar_ax = fig.add_axes(colorbar_pos_params[colorbar_pos][0]) 
  colorbar_parameters.update(colorbar_pos_params[colorbar_pos][1]) 
 
  if colorbar_horizontal: 
   mosaic_colorbar = fig.colorbar(mosaic_collection, cax = colorbar_ax, 
orientation = "horizontal") 
   colorbar_ax.xaxis.set_major_formatter(StrMethodFormatter("{x:.1%}")) 
  else: 
   mosaic_colorbar = fig.colorbar(mosaic_collection, cax = colorbar_ax, 
orientation = "vertical") 
   colorbar_ax.yaxis.set_major_formatter(StrMethodFormatter("{x:.1%}")) 
 
  colorbar_ax.tick_params(**colorbar_parameters) 
  mosaic_colorbar.outline.set_linewidth(0.1) 
 
 ax.add_collection(mosaic_collection) 
 
 if not multiple_fig: 
  if fig_name is not None: 
   fig.savefig(fig_name, bbox_inches = bbox_inches) 
  else: 
   plt.show() 
 
def Multiple_Mosaic(data_list): 
 pass 
 
def Rarefaction_Plot(): 
 pass 
 
def Diversity_Plot(clone_dfs, fig_name = None, title = None): 
 fig = plt.figure(dpi = 600) 
 ax = fig.add_subplot(1, 1, 1) 
 
 
vgene_colors = { 
 "IGHV1-17": (1.0, 0.0, 0.0, 1.0), 
 "IGHV1-18": (1.0, 0.09264715147068088, 0.0, 1.0), 
 "IGHV1-2": (1.0, 0.18529430294136176, 0.0, 1.0), 
 "IGHV1-24": (1.0, 0.2779414544120426, 0.0, 1.0), 
 "IGHV1-3": (1.0, 0.37058860588272352, 0.0, 1.0), 
 "IGHV1-45": (1.0, 0.46323575735340439, 0.0, 1.0), 
 "IGHV1-46": (1.0, 0.5558829088240852, 0.0, 1.0), 
 "IGHV1-58": (1.0, 0.64853006029476612, 0.0, 1.0), 
 "IGHV1-67": (1.0, 0.76433899963311702, 0.0, 1.0), 
 "IGHV1-68": (1.0, 0.85698615110379794, 0.0, 1.0), 
 "IGHV1-69": (0.99595556580850708, 0.94558886838298584, 0.0, 1.0), 
 "IGHV1-8": (0.95771954595484032, 1.0, 0.0, 1.0), 
 "IGHV2-10": (0.8650723944841594, 1.0, 0.0, 1.0), 
 "IGHV2-26": (0.77242524301347859, 1.0, 0.0, 1.0), 
 "IGHV2-5": (0.67977809154279767, 1.0, 0.0, 1.0), 
 "IGHV2-70": (0.58713094007211675, 1.0, 0.0, 1.0), 
 "IGHV3-11": (0.47132200073376579, 1.0, 0.0, 1.0), 
 "IGHV3-13": (0.37867484926308459, 1.0, 0.0, 1.0), 
 "IGHV3-15": (0.28602769779240411, 1.0, 0.0, 1.0), 
 "IGHV3-16": (0.19338054632172286, 1.0, 0.0, 1.0), 
 "IGHV3-19": (0.10073339485104227, 1.0, 0.0, 1.0), 
 "IGHV3-20": (0.023528747793453701, 1.0, 0.015442504413092598, 1.0), 
 "IGHV3-21": (0.0, 1.0, 0.084560769107334968, 1.0), 
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 "IGHV3-22": (0.0, 1.0, 0.17720733690405541, 1.0), 
 "IGHV3-23": (0.0, 1.0, 0.29301554664995555, 1.0), 
 "IGHV3-25": (0.0, 1.0, 0.3856621144466757, 1.0), 
 "IGHV3-30": (0.0, 1.0, 0.47830868224339584, 1.0), 
 "IGHV3-33": (0.0, 1.0, 0.57095525004011594, 1.0), 
 "IGHV3-35": (0.0, 1.0, 0.66360181783683614, 1.0), 
 "IGHV3-36": (0.0, 1.0, 0.75624838563355612, 1.0), 
 "IGHV3-38": (0.0, 1.0, 0.84889495343027632, 1.0), 
 "IGHV3-43": (0.0, 1.0, 0.96470316317617644, 1.0), 
 "IGHV3-47": (0.0, 0.94264990772343771, 1.0, 1.0), 
 "IGHV3-48": (0.0, 0.85000275625275612, 1.0, 1.0), 
 "IGHV3-49": (0.0, 0.75735560478207531, 1.0, 1.0), 
 "IGHV3-52": (0.0, 0.6647084533113945, 1.0, 1.0), 
 "IGHV3-53": (0.0, 0.57206130184071435, 1.0, 1.0), 
 "IGHV3-60": (0.0, 0.47941415037003288, 1.0, 1.0), 
 "IGHV3-62": (0.0, 0.38676699889935195, 1.0, 1.0), 
 "IGHV3-64": (0.0, 0.27095805956100094, 1.0, 1.0), 
 "IGHV3-65": (0.0, 0.17831090809032013, 1.0, 1.0), 
 "IGHV3-66": (0.0, 0.08566375661963932, 1.0, 1.0), 
 "IGHV3-7": (0.023161131617013827, 0.016177736765972346, 1.0, 1.0), 
 "IGHV3-71": (0.099630546321722385, 0.0, 1.0, 1.0), 
 "IGHV3-72": (0.19227769779240333, 0.0, 1.0, 1.0), 
 "IGHV3-73": (0.28492484926308431, 0.0, 1.0, 1.0), 
 "IGHV3-74": (0.37757200073376529, 0.0, 1.0, 1.0), 
 "IGHV3-76": (0.49338094007211653, 0.0, 1.0, 1.0), 
 "IGHV3-9": (0.58602809154279745, 0.0, 1.0, 1.0), 
 "IGHV4-28": (0.67867524301347837, 0.0, 1.0, 1.0), 
 "IGHV4-31": (0.7713223944841594, 0.0, 1.0, 1.0), 
 "IGHV4-34": (0.86396954595484032, 0.0, 1.0, 1.0), 
 "IGHV4-39": (0.95661669742552136, 0.0, 1.0, 1.0), 
 "IGHV4-4": (0.99558794963206743, 0.0, 0.94632410073586526, 1.0), 
 "IGHV4-55": (1.0, 0.0, 0.85808899963311702, 1.0), 
 "IGHV4-59": (1.0, 0.0, 0.74228006029476601, 1.0), 
 "IGHV4-61": (1.0, 0.0, 0.64963290882408509, 1.0), 
 "IGHV5-51": (1.0, 0.0, 0.55698575735340428, 1.0), 
 "IGHV5-78": (1.0, 0.0, 0.46433860588272341, 1.0), 
 "IGHV6-1": (1.0, 0.0, 0.37169145441204254, 1.0), 
 "IGHV7-27": (1.0, 0.0, 0.27904430294136173, 1.0), 
 "IGHV7-81": (1.0, 0.0, 0.18639715147068092, 1.0) 
} 
 
jgene_colors = { 
 "IGHJ1": (0.2235294117647059, 0.23137254901960785, 0.4745098039215686), 
 "IGHJ2": (0.3215686274509804, 0.32941176470588235, 0.6392156862745098), 
 "IGHJ3": (0.4196078431372549, 0.43137254901960786, 0.8117647058823529), 
 "IGHJ4": (0.611764705882353, 0.6196078431372549, 0.8705882352941177), 
 "IGHJ5": (0.38823529411764707, 0.4745098039215686, 0.2235294117647059), 
 "IGHJ6": (0.5490196078431373, 0.6352941176470588, 0.3215686274509804), 
 "IGHJ2P": (0.7098039215686275, 0.8117647058823529, 0.4196078431372549) 
} 
 
def VJ_Gene_Plot(clone_df, vgene_col = "VGene", jgene_col = "JGene", count_col = "Clustered", 
v_colormap = vgene_colors, 
     j_colormap = jgene_colors, vj_gap = 0.1, v_edgecolor = "black", 
j_edgecolor = "black", linewidth = 0.2, 
     vgene_gap = 0.0, fig_name = None, title = None, figsize = (4, 
4), dpi = 600): 
 """Creates a paired V-J gene usage hierarchical donut plot, with V genes in the inner ring 
and J genes in the outer. 
 
 Parameters 
 ---------- 
 clone_df: pandas.DataFrame 
  The unique clone member DataFrame with the V and J gene calls plus clone member 
counts / frequencies. 
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 vgene_col: str 
  The name for the column in clone_df containing the V gene calls; default is 
"VGene". 
 jgene_col: str 
  The name for the column in clone_df containing the J gene calls; default is 
"JGene". 
 count_col: str 
  The name for the column in clone_df containing the clone member counts or 
frequencies; default is "Clustered". 
 v_colormap: dict of {str: color} 
  A dict of V gene names to the corresponding color values for the gene; see 
vgene_colors for default. 
 j_colormap: dict of {str: color} 
  A dict of J gene names to the corresponding color values for the gene; see 
jgene_colors for default. 
 vj_gap: float 
  The amount of space between the outer and inner rings, in figure unit dimensions; 
default is 0.1. 
 v_edgecolor: color 
  Name of a valid matplotlib color, RGB tuple, etc. to use for the V gene segment 
borders; default is "black". 
 j_edgecolor: color 
  Name of a valid matplotlib color, RGB tuple, etc. to use for the J gene segment 
borders; default is "black". 
 linewidth: float 
  The size (width) of the border lines surrounding the V/J gene segments; default 
is 0.2. 
 vgene_gap: float 
  An angle in degrees to use as a gap between the V gene sections; default is 0. 
 fig_name: str or None 
  Name of the output file for the figure; if left None (the default) the plot is 
displayed on screen. 
 title: str or None 
  Optional title for the figure (matplotlib ax.set_title). 
 figsize: tuple of (int, int) 
  A tuple of two integers/floats describing the figure width and height in inches; 
default is (4, 4). 
 dpi: int 
  The Dots Per Inch for the figure; default is 600. 
 """ 
 
 if vgene_col not in clone_df.columns: 
  print("Error in VJ_Gene_Plot: V gene column \"{0}\" not found in 
DataFrame!".format(vgene_col)) 
  return None 
 if jgene_col not in clone_df.columns: 
  print("Error in VJ_Gene_Plot: J gene column \"{0}\" not found in 
DataFrame!".format(jgene_col)) 
  return None 
 if count_col not in clone_df.columns: 
  print("Error in VJ_Gene_Plot: clone count/frequency column \"{0}\" not found in 
DataFrame!".format(count_col)) 
  return None 
 
 fig = plt.figure(figsize = figsize, dpi = dpi) 
 ax = fig.add_subplot(1, 1, 1, aspect = "equal") 
 ax.set_axis_off() 
 ax.invert_xaxis() #This ensures the plot is displayed clockwise. 
 
 #v_radius and v_width are the inner ring diameter and width; j_radius and j_width are for 
the outer ring. 
 v_radius = 0.345 
 v_width = 0.15 
 j_radius = 0.45 
 j_width = 0.1 
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 center = (0.5, 0.5) 
 
 gene_df = clone_df[[vgene_col, jgene_col, count_col]].groupby([vgene_col, 
jgene_col]).agg({count_col: sum}) 
 gene_df = gene_df.sort_index() #First sorts by V gene ascending, then J gene ascending. 
 gene_df = gene_df.reset_index() #Now returns the VGene and JGene columns to the 
DataFrame. 
 
 total_vgenes = len(gene_df[vgene_col].drop_duplicates()) 
 total_gapsize = total_vgenes * vgene_gap 
 remaining_size = 360.0 - float(total_gapsize) 
 gap_size = float(vgene_gap) 
 
 total_counts = gene_df[count_col].sum() 
 gene_df["Arc_Length"] = gene_df[count_col] / total_counts * remaining_size 
 cur_v_start = 90.0 + (gap_size / 2.0) #Starting at 90 degrees (top center of the circle) 
plus half the gap size. 
 
 ring_patches = [] 
 for vgene in gene_df[vgene_col].drop_duplicates(): 
  cur_vgene_df = gene_df[gene_df[vgene_col] == vgene] 
 
  v_color = v_colormap[vgene] 
  v_arc_length = cur_vgene_df["Arc_Length"].sum() 
  cur_v_end = cur_v_start + v_arc_length 
 
  inner_patch = Wedge(center, v_radius, cur_v_start, cur_v_end, v_width, 
       facecolor = v_color, edgecolor = 
v_edgecolor, lw = linewidth) 
  ring_patches.append(inner_patch) 
 
  cur_j_start = cur_v_start 
  for jgene, jgene_arc_length in zip(cur_vgene_df[jgene_col], 
cur_vgene_df["Arc_Length"]): 
   j_color = j_colormap[jgene] 
   cur_j_end = cur_j_start + jgene_arc_length 
 
   outer_patch = Wedge(center, j_radius, cur_j_start, cur_j_end, j_width, 
        facecolor = j_color, edgecolor = 
j_edgecolor, lw = linewidth) 
   ring_patches.append(outer_patch) 
 
   cur_j_start = cur_j_end 
 
  cur_v_start = cur_v_end + gap_size 
 
 ax.add_collection(PatchCollection(ring_patches, match_original = True)) 
 
 if title is not None: 
  ax.set_title(title) 
 
 if fig_name is not None: 
  fig.savefig(fig_name, bbox_inches = "tight") 
 else: 
  plt.show() 
 
####FOR TESTING: 
if __name__ == "__main__": 
 test_clone_counts = [] 
 with open("clones_test.txt", "r") as clone_test: 
  for line in clone_test: 
   line = line.strip() 
   test_clone_counts.append(float(line)) 
 sm = test_clone_counts[:600] 
 rank_graph = Rank_Abundance_Graph(sm) 
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 rank_graph.savefig("t1b", bbox_inches = "tight", dpi = 600) 
 rank_graph3 = Rank_Abundance_Graph(sm, figsize = (8, 5)) 
 rank_graph3.savefig("t3b", bbox_inches = "tight", dpi = 600) 
 plt.show() 
 
 test_clones20 = [0.9, 7.5, 6.0, 5.9, 5.5, 4.0, 2.8, 2.1, 1.3, 1.0, 0.5, 0.5, 0.5, 0.4, 
0.4, 0.4, 0.3, 0.2, 0.2, 0.1] 
 test_shm20 = [0.0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.1, 0.2, 0.3, 0.1, 0.3, 0.3, 0.1, 0.0, 0.3, 
0.3, 0.3, 0.3, 0.3, 0.3] 
 Mosaic_Plot(test_clones20) 
 Mosaic_Plot(test_clones20, highlight_upper_percent = 0.7) 
 #Mosaic_Plot(test_clones20, test_shm20) 
 #Mosaic_Plot(test_clones20, test_shm20, colorbar_pos = "bottom") 
 
##########Repertoire Diversity 
def Shannon_Wiener_Index(clone_counts): 
 """Calculates the Shannon-Wiener index of diversity: -sum(x * ln(x)) for clone frequencies 
x. 
 
 Parameters 
 ---------- 
 clone_counts: list of ints/floats 
  The count or frequencies of each clone in a sample as a list/iterable. 
 
 Returns 
 ---------- 
 sw_index: float 
  The Shannon-Wiener index value for clone_counts. 
 """ 
 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Shannon_Wiener_Index: clone_counts must be a list/iterable of 
clone counts/frequencies!") 
  return None 
 
 total_clone_counts = float(sum(clone_counts)) 
 sw_index = 0.0 
 for clone in clone_counts: 
  clone_freq = clone / total_clone_counts 
  sw_index -= (clone_freq * numpy.log(clone_freq)) 
 
 return sw_index 
 
def Gini_Simpson_Index(clone_counts): 
 """Calculates the Gini-Simpson index of diversity: sum(x ^ 2) for clone frequencies x. 
 
 Parameters 
 ---------- 
 clone_counts: list of ints/floats 
  The count or frequencies of each clone in a sample as a list/iterable. 
 
 Returns 
 ---------- 
 gs_index: float 
  The Gini-Simpson index value for clone_counts. 
 """ 
 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Gini_Simpson_Index: clone_counts must be a list/iterable of clone 
counts/frequencies!") 
  return None 
 
 total_clone_counts = float(sum(clone_counts)) 
 gs_index = 0.0 
 for clone in clone_counts: 
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  clone_freq = clone / total_clone_counts 
  gs_index += (clone_freq * clone_freq) 
 
 return gs_index 
 
def Hill_Diversity_Index(clone_counts, N = (0.0, 10.0), step = 0.1): 
 """Calculates the Hill diversity metrics: sum(x ^ Q) ^ 1/(1-Q) for clone frequencies x and 
positive order Q. 
 By default, returns a list of the Hill indices from 0 to 10 with step of 0.1, but can also 
return a single index. 
 Order acts as a "true diversity" measure, whether high or low abundance clones have the 
most influence on diversity. 
 For Q of 0, species frequency has zero effect; this is the "species richness", ie. the 
number of unique clones. 
 For 0 < Q < 1, rare species contribute more to the diversity rating than abundant species. 
 For Q of 1, rare and abundant species are equally weighted contributors to diversity; same 
as exp(Shannon-Wiener). 
 For Q > 1, abundant clones contribute most to diversity (at Q of 2, equal to 1/Gini-
Simpson). 
 
 Parameters 
 ---------- 
 clone_counts: list of ints/floats 
  The count or frequencies of each clone in a sample as a list/iterable. 
 N: int/float or (int/float, int/float) 
  Either tuple of (start_order, end_order) or single float of the order number to 
calculate; default: (0.0, 10.0) 
 step: int/float 
  The step increment for the count from start_order to end_order if N is not a 
single number; default: 0.1 
 
 Returns 
 ---------- 
 hill_index or hill_indices: (float, float) or list of (float, float) 
  If N is one order, returns the order and index as (order, index); otherwise 
returns a list of (order, index) 
 """ 
 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Hill_Diversity_Index: clone_counts must be a list/iterable of 
clone counts/frequencies!") 
  return None 
 
 if hasattr(N, "__iter__"): 
  if len(N) != 2 or N[1] <= N[0]: 
   print("Error in Hill_Diversity_Index: if N is an iterable it must be of 
length 2 for the start/end orders.") 
   return None 
 
  chunks = numpy.floor(N[1] / step) + 1 
  orders = numpy.linspace(start = N[0], stop = N[1], num = chunks) 
 
 else: 
  orders = [N] 
 
 total_clone_counts = float(sum(clone_counts)) 
 hill_indices = [] 
 
 for order in orders: 
  hill_index = 0.0 
 
  if order == 0.0: 
   hill_index = len(clone_counts) #Hill index at zero is simply the species 
richness (total number of clones) 
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  elif order == 1.0: 
   sw_index = Shannon_Wiener_Index(clone_counts) 
   hill_index = numpy.exp(sw_index) #Hill index at one is the exponential of 
the Shannon-Wiener index 
 
  else: 
   for clone in clone_counts: 
    clone_freq = clone / total_clone_counts 
    hill_index += (clone_freq ** order) 
 
   order_exponent = 1.0 / (1.0 - order) 
   hill_index = hill_index ** order_exponent 
 
  order_index = (order, hill_index) 
  hill_indices.append(order_index) 
 
 if len(hill_indices) == 1: 
  return hill_indices[0] 
 else: 
  return hill_indices 
 
def Berger_Parker_Index(clone_counts): 
 """Calculates the Berger-Parker index of diversity: just the frequency of the most 
prevalent clone in a sample. 
 
 Parameters 
 ---------- 
 clone_counts: list of ints/floats 
  The count or frequencies of each clone in a sample as a list/iterable. 
 
 Returns 
 ---------- 
 bp_index: float 
  The Berger-Parker index value for clone_counts. 
 """ 
 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Berger_Parker_Index: clone_counts must be a list/iterable of 
clone counts/frequencies!") 
  return None 
 
 total_clone_counts = float(sum(clone_counts)) 
 bp_index = 0.0 
 for clone in clone_counts: 
  clone_freq = clone / total_clone_counts 
 
  if clone_freq > bp_index: 
   bp_index = clone_freq 
 
 return bp_index 
 
def Diversity_Index(clone_counts, ratio = 0.5): 
 """Calculates the simple diversity index: the minimum fraction of all clones that make up 
x% of the total counts. 
 By default, the calculated index is set at 50%. 
 
 Parameters 
 ---------- 
 clone_counts: list of ints/floats 
  The count or frequencies of each clone in a sample as a list/iterable. 
 ratio: float 
  The ratio/fraction (0.0 < ratio < 1.0) of total clone counts/frequencies to use; 
default is 0.5. 
 
 Returns 
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 ---------- 
 div_index: float 
  The diversity index value for clone_counts. 
 """ 
 
 if not hasattr(clone_counts, "__iter__") or isinstance(clone_counts, str): 
  print("Error in Diversity_Index: clone_counts must be a list/iterable of clone 
counts/frequencies!") 
  return None 
 
 if not 0.0 < ratio < 1.0: 
  print("Error in Diversity_Index: ratio must be a float greater than 0.0 and less 
than 1.0!") 
  return None 
 
 total_clone_counts = float(sum(clone_counts)) 
 total_clones = float(len(clone_counts)) 
 sorted_clones = sorted(clone_counts, reverse = True) 
 
 cur_percent = 0.0 
 cur_clones = 0 
 for clone in sorted_clones: 
  clone_freq = clone / total_clone_counts 
  cur_percent += clone_freq 
  cur_clones += 1 
 
  if cur_percent >= ratio: 
   div_index = float(cur_clones) / total_clones 
   break 
 
 return div_index 
 
 
###########File utilities 
import gzip 
import os 
 
def Decompress_GZIP(filename, output_filename = None): 
 """Takes a compressed gzip text file (such as a fastq.gz sequence file) and saves the 
decompressed version. 
 
 Parameters 
 ---------- 
 filename: str 
  Name of the gzip file to load for decompression. 
 output_filename: str or None 
  Name to use for the decompressed file; if None, the filename is same as the input 
file minus the trailing ".gz". 
 """ 
 
 if output_filename is None: 
  output_filename = ".".join(filename.split(".")[:-1]) 
 
 with gzip.open(filename, "rt") as compressed_file: 
  file_contents = compressed_file.read() 
 
 with open(output_filename, "w", newline = "\n") as decompressed_file: 
  decompressed_file.write(file_contents) 
 
def Textfile_to_GZIP(filename, output_filename = None): 
 """Opens a text file (such as a .fastq sequence file) and saves a gzip compressed .gz 
version. 
 
 Parameters 
 ---------- 
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 filename: str 
  Name of the text file to be compressed. 
 output_filename: str or None 
  Name to use for the compressed file; if None, the input filename is used with an 
appended ".gz" extension. 
 """ 
 
 if output_filename is None: 
  output_filename = filename + ".gz" 
 
 with open(filename, "r") as text_file: 
  file_contents = text_file.read() 
 
 with gzip.open(output_filename, "wt") as compressed_file: 
  compressed_file.write(file_contents) 
 
def Stitch_Reads(): 
 pass 
 
def Filter_Trim_Reads(): 
 pass 
 
def Rename_FASTQ_Headers(filename, output_filename, header_prefix, keep_illumina_pos_and_read = 
True): 
 """Creates a copy of the "filename" FASTQ file with modified read headers, optionally 
keeping Illumina read info. 
 Useful for ensuring the origin of reads when multiple different sequence files are merged 
before MIXCR processing. 
 
 Parameters 
 ---------- 
 filename: str 
  Filename of the FASTQ file to modify. 
 output_filename: str 
  Name for the modified output file. 
 header_prefix: str 
  Header prefix used for each modified read. 
 keep_illumina_pos_and_read: bool 
  Whether to save the Illumina MiSeq/HiSeq flowcell lane, xy position, and read 
direction (R1/R2) for all reads. 
  If False, a simple read counter (starting at 1) is appended to the header prefix. 
  Example: "@M02288:110:000000000-AE88A:1:1101:8994:1790 1:N:0:2" -> 
"@Prefix_1101:8994:1790:R1" 
 """ 
 
 with open(filename, "r") as fastq_in: 
  with open(output_filename, "w", newline = "\n") as fastq_out: #Non-windows 
newline is important for MIXCR! 
   cur_line = 0 
   cur_seq = 1 
   modified_prefix = "@" + header_prefix + "_" 
 
   for line in fastq_in: 
    line = line.strip() 
 
    if not line.startswith("@") and cur_line == 0: 
     fastq_out.write(line + "\n") #Write any pre-data comment 
lines and move on 
     continue 
 
    if line.startswith("@") and cur_line % 4 == 0: 
     if keep_illumina_pos_and_read: 
      read_num = "" 
      if len(line.split(" ")) > 1: 
       illumina_read = line.split(" ")[1] 
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       read_num = "_R" + 
illumina_read.split(":")[0] 
 
       line = line.split(" ")[0] 
 
      illumina_fields = line.split(":") 
      lane_xy = ":".join(illumina_fields[4:7]) 
      cur_header = modified_prefix + lane_xy + read_num 
 
      fastq_out.write(cur_header + "\n") 
 
     else: 
      fastq_out.write(modified_prefix + str(cur_seq) + 
"\n") 
 
     cur_seq += 1 
 
    else: 
     fastq_out.write(line + "\n") 
 
    cur_line += 1 
 
def Concat_FASTQ(filenames, output_filename, rename_headers = None, keep_illumina_pos_and_read = 
True): 
 """Concatenates all FASTQs in filenames with the ability to modify read headers, 
optionally keeping Illumina info. 
 
 Parameters 
 ---------- 
 filenames: list of str 
  File names of the input FASTQ files to concatenate. 
 output_filename: str 
  Name for the merged output FASTQ file. 
 rename_headers: list of str 
  Optional; header prefixes to use for each file in filenames - must be the same 
length as filenames. 
 keep_illumina_pos_and_read: bool 
  Whether to save the Illumina MiSeq/HiSeq flowcell lane, xy position, and read 
direction (R1/R2) for all reads. 
  If False, a simple read counter (starting at 1) is appended to the header prefix. 
  Example: "@M02288:110:000000000-AE88A:1:1101:8994:1790 1:N:0:2" -> 
"@Prefix_1101:8994:1790:R1" 
 
 Returns 
 ---------- 
 success: bool 
  Returns True if no errors occur and False otherwise. 
 """ 
 
 for fastq_file in filenames: 
  if not os.path.exists(fastq_file): 
   print("Error in Concat_FASTQ - can't find input file: " + fastq_file) 
   return False 
 
 if rename_headers is not None: 
  if not all([hasattr(rename_headers, "__iter__"), len(rename_headers) == 
len(filenames)]): 
   print("Error in Concat_FASTQ - rename_headers must be a list of the same 
length as filenames.") 
   return False 
 
 with open(output_filename, "w", newline = "\n") as fastq_out: 
  if rename_headers is not None: 
   for fastq, renamed_header in zip(filenames, rename_headers): 
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    Rename_FASTQ_Headers(fastq, "temp_renamed_headers.fastq", 
renamed_header, keep_illumina_pos_and_read) 
 
    with open("temp_renamed_headers.fastq", "r") as fastq_in: 
     for line in fastq_in: 
      line = line.strip() 
      fastq_out.write(line + "\n") 
 
    try: 
     os.remove("temp_renamed_headers.fastq") 
    except: 
     print("Warning in Concat_FASTQ - couldn't delete 
temporary file.") 
 
  else: 
   for fastq in filenames: 
    with open(fastq, "r") as fastq_in: 
     for line in fastq_in: 
      line = line.strip() 
      fastq_out.write(line + "\n") 
 
 return True 
 
def FASTQ_to_FASTA(filename, output_filename = None, seqs_to_upper = False, remove_ambig_seqs = 
False, line_maxlen = 0): 
 """Converts a FASTQ sequence file to FASTA, optionally with ambiguous N-containing 
sequences removed. 
 
 Parameters 
 ---------- 
 filename: str 
  Filename of the FASTQ file to convert. 
 output_filename: str or None 
  Name for the converted FASTA output file; if None, the FASTQ extension is 
replaced with ".fasta". 
 seqs_to_upper: bool 
  If True, convert all sequence characters to uppercase (default is False). 
 remove_ambig_seqs: bool 
  If True, sequences containing any ambiguous bases (N) will be dropped from the 
output FASTA (default is False). 
 line_maxlen: int 
  Number of characters per sequence-containing line to write for the output FASTA; 
default of 0 means no limit. 
 """ 
 
 if output_filename is None: 
  output_filename = ".".join(filename.split(".")[:-1]) + ".fasta" 
 
 line_maxlen = line_maxlen if isinstance(line_maxlen, int) and line_maxlen >= 0 else 0 
 
 headers = [] 
 sequences = [] 
 
 with open(filename, "r") as fastq_file: 
  cur_line = 0 
 
  for line in fastq_file: 
   line = line.strip() 
 
   if not line.startswith("@") and cur_line == 0: 
    continue #In case the FASTQ file doesn't immediately start off 
with a sequence, move on to the next line 
 
   if line.startswith("@") and cur_line % 4 == 0: 
    headers.append(">" + line[1:]) 
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   if cur_line % 4 == 1: 
    if seqs_to_upper: 
     line = line.upper() 
 
    sequences.append(line) 
 
   cur_line += 1 
 
 with open(output_filename, "w", newline = "\n") as fasta_file: #Non-windows newline is 
important for MIXCR! 
  for header, sequence in zip(headers, sequences): 
   if remove_ambig_seqs and "N" in sequence.upper(): 
    continue 
 
   fasta_file.write(header + "\n") 
 
   if line_maxlen == 0: 
    fasta_file.write(sequence + "\n") 
   else: 
    for i in range(0, len(sequence), line_maxlen): 
     sub_seq = sequence[i : i + line_maxlen] 
     fasta_file.write(sub_seq + "\n") 
 
 
#########Repertoire utilities 
 
import pandas 
import os 
 
compartment_types = { 
 "PBMC": (), 
 "BMMC": (), 
 "Memory": (), 
 "PlasmaCell": (), 
 "Plasmablast": () 
} 
 
clone_agg_funcs = { 
 "CDR3_NT": "top", 
 "CDR1_AA": "top", 
 "CDR2_AA": "top", 
 "CDR3_AA": "top", 
 "VGene": "top", 
 "JGene": "top", 
 "Isotype": "top", 
 "V_SHM": "mean", 
 "J_SHM": "mean", 
 "Compartment": "multiple", 
 "Sample": "multiple", 
 "Donor": "uniques" 
} 
 
default_clonotyping_params = { 
 "identity": 0.96, 
 "min_len": 5, 
 "method": "usearch", 
 "max_accepts": 0, 
 "max_rejects": 0  #, "require_same_V_gene" (or family): False, 
"require_same_J_gene" (or family): False 
} 
 
def Repertoire_Stats(clone_df): 
 pass 
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def Group_Clones(seq_df, clone_col = "CloneID", agg_funcs = clone_agg_funcs, read_count_col = 
None, descending = True, 
     clone_count_col_out = "Clustered", clone_freq_col_out = 
"Frequency"): 
 """Groups a DataFrame of reads together by clone ID into a DataFrame of clones. 
 Allows customization of clone feature aggregation and sorting by clone prevalence. 
 By default Group_Clones does not take into account read counts since data from cDNA IgSeq 
can be skewed during PCR. 
 Read information columns to use and the functions for aggregation are defined by the 
agg_funcs argument. 
 Special functions for aggregation are: 
  "top": picks the most common value for a feature (most common gene called out of 
all genes called for a clone). 
  "multiple": yields "Multiple" if a clone feature has more than one unique value, 
else returns the sole value. 
  "uniques": gives the number of unique values found for a clone (for example, 3 if 
three donors share a clone). 
 Any other functions found in agg_funcs must be usable by pandas agg() function (examples: 
"mean", "sum", "count"). 
 
 Parameters 
 ---------- 
 seq_df: pandas.DataFrame 
  Sequence dataframe containing sequences to be clustered by clone ID. 
 clone_col: str 
  Column name containing the clonotype ID for each sequence; default is "CloneID". 
 agg_funcs: dict of {str: str or function} 
  Dictionary of column name to aggregation function to be used for the feature; for 
default see clone_agg_funcs. 
 read_count_col: str or None 
  Column containing the counts per read to use for calculating clonotype abundance. 
  If not provided, read counts are discarded; default is None, since cDNA IgSeq 
read counts are biased by PCR. 
 descending: bool 
  Whether to sort the clones by descending clone relative frequency / abundance; 
default is True. 
 clone_count_col_out: str 
  Name of output column in clone_df with the number of reads aggregated per clone; 
default is "Clustered". 
 clone_freq_col_out: str 
  Name of output column in clone_df with the clone abundance/frequency (from 0.0 to 
1.0); default is "Frequency". 
 
 Returns 
 ---------- 
 clone_df: pandas.DataFrame 
  Pandas DataFrame containing the aggregated clone members and their properties. 
 """ 
 
 if clone_col not in seq_df.columns: 
  print("Error in Group_Clones: clone ID column \"{0}\" not found in sequence 
DataFrame!".format(clone_col)) 
  return None 
 
 agg_dict = {} 
 for feature_col in agg_funcs: 
  if feature_col in seq_df: 
   agg_dict[feature_col] = agg_funcs[feature_col] 
 
 selected_cols = [clone_col] + [col for col in agg_dict] 
 read_feature_df = seq_df[selected_cols] 
 total_initial_reads = len(read_feature_df) 
 
 read_feature_df = read_feature_df[read_feature_df[clone_col].notnull()] 
 cur_reads = len(read_feature_df) 



 107 

 
 if cur_reads < total_initial_reads: 
  dropped = total_initial_reads - cur_reads 
  print("{0} reads dropped with no clone ID ({1:.1%} of total).".format(dropped, 
(dropped / total_initial_reads))) 
 
 top_lambda = lambda x: x.value_counts().index[0] 
 has_multiple_lambda = lambda x: "Multiple" if len(x.drop_duplicates()) > 1 else 
x.drop_duplicates().tolist()[0] 
 count_unique_lambda = lambda x: len(x.drop_duplicates()) 
 
 clone_aggregator = {clone_col: "count"} 
 
 for col, func in agg_dict.items(): 
  if col in read_feature_df.columns: 
   if col == read_count_col: 
    continue 
 
   if isinstance(func, str) and "top" in func.lower(): 
    read_feature_df[col] = read_feature_df[col].fillna("") 
    clone_aggregator[col] = top_lambda 
 
   elif isinstance(func, str) and "multiple" in func.lower(): 
    clone_aggregator[col] = has_multiple_lambda 
 
   elif isinstance(func, str) and "unique" in func.lower(): 
    clone_aggregator[col] = count_unique_lambda 
 
   else: 
    clone_aggregator[col] = func 
 
 clone_df = read_feature_df.groupby([clone_col]).agg(clone_aggregator) 
 clone_df = clone_df.rename(columns = {clone_col: clone_count_col_out}) 
 
 if read_count_col is not None and read_count_col in read_feature_df.columns: 
  clone_df[clone_count_col_out] = 
read_feature_df.groupby([clone_col])[read_count_col].sum() 
 
 if descending: 
  clone_df = clone_df.sort_values([clone_count_col_out], ascending = [False]) 
 
 if clone_freq_col_out is not None: 
  total_counts = float(clone_df[clone_count_col_out].sum()) 
  clone_df[clone_freq_col_out] = clone_df[clone_count_col_out].astype(float) / 
total_counts 
 
 clone_df = clone_df.reset_index() 
 
 return clone_df 
 
def Clonotype_Sequences(seq_df, feature_col = "CDR3_NT", clonotyping_params = 
default_clonotyping_params, 
      clone_col_out = None, for_rarefaction = False, 
usearch_loc = usearch_exe): 
 """Clonotypes sequences by gene feature(s) such as the nucleotide CDR3 sequence, returning 
a column of the determined clone IDs. 
 Currently the only available clonotyping method is "usearch". 
 
 By default function will return the seq_df with a new column containing the clone IDs, but 
can also return the count of total clones 
 as an int by setting for_rarefaction to True (faster return when clonotyping many 
subsamples during rarefaction analysis). 
 
 Parameters 
 ---------- 
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 seq_df: pandas.DataFrame 
  Input sequence dataframe to be clonotyped. 
 method: str 
  Method for determining clonal membership; current implementation only allows for 
"usearch". 
  Default: "usearch" 
 parameters: dict 
  A dict of str parameter names to values used to customize clonotype 
identification. 
  Default: see default_clonotyping_params 
 for_rarefaction: bool 
  For clone vs read count rarefaction analysis, only return the number of unique 
clones as an int (more efficient quick return). 
  Default: False; the full seq_df with the additional clone identification column 
will be returned. 
 usearch_loc: str 
  Path location of the binary executable for usearch clonotyping. 
  Default: see usearch_exe_loc 
 uc_dtypes: dict of str: type 
  Column names and datatypes for processing the .uc tab-separated output file 
produced by usearch. 
  Default: see usearch_col_dtypes 
 
 Returns 
 ---------- 
 seq_df: pandas.DataFrame 
  The original input seq_df plus the additional column of clone membership ID for 
each sequence. 
 
 OR 
 
 total_clones: int 
  The total number of unique clones in the dataframe (returned when for_rarefaction 
= True) 
 """ 
 
 method_funcs = ["usearch"] 
 
 if "method" not in clonotyping_params: 
  print("Warning in Clonotype_Sequences: no clonotyping method given, defaulting to 
USEARCH.") 
  clonotyping_method = "usearch" 
 
 elif isinstance(clonotyping_params["method"], str) and 
clonotyping_params["method"].lower() not in method_funcs: 
  print("Error in Clonotype_Sequences: invalid method \"{0}\"; options 
are:".format(clonotyping_params["method"])) 
  for m in method_funcs: 
   print("--" + m) 
 
  return None 
 
 else: 
  clonotyping_method = clonotyping_params["method"].lower() 
 
 if "identity" not in clonotyping_params: 
  print("Warning in Clonotype_Sequences: no sequence identity % given, defaulting 
to 0.96.") 
  identity = 0.96 
 
 else: 
  if not 0.0 < clonotyping_params["identity"] < 1.0: 
   if 0 < clonotyping_params["identity"] < 100: 
    identity = clonotyping_params["identity"] / 100.0 
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   else: 
    print("Error in Clonotype_Sequences: \"identity\" should be a 
float between 0.0 and 1.0!") 
    return None 
 
  else: 
   identity = clonotyping_params["identity"] 
 
 column_not_found_error = "Error in Clonotype_Sequences: column \"{0}\" not found in 
sequence DataFrame!" 
 if hasattr(feature_col, "__iter__") and not isinstance(feature_col, str): 
  for col in feature_col: 
   if col not in seq_df.columns: 
    print(column_not_found_error.format(col)) 
    return None 
 
  seqs = seq_df[feature_col].sum(axis = 1) 
  cols_clonotyped = "".join(feature_col) 
 
 elif isinstance(feature_col, str): 
  if feature_col not in seq_df.columns: 
   print(column_not_found_error.format(feature_col)) 
   return None 
 
  seqs = seq_df[feature_col] 
  cols_clonotyped = feature_col 
 
 else: 
  print("Error in Clonotype_Sequences: feature_col to clonotype by must be a column 
name / list of column names!") 
  return None 
 
 if clone_col_out is None: 
  clone_col_out = cols_clonotyped + "_CloneID" 
 
 elif isinstance(clone_col_out, str): 
  if clone_col_out in seq_df.columns: 
   print("Error in Clonotype_Sequences: output column \"{0}\" already in 
DataFrame!".format(clone_col_out)) 
   return None 
 
  if "_cloneid" not in clone_col_out.lower(): 
   clone_col_out = clone_col_out + "_CloneID" 
 
 else: 
  print("Warning in Clonotype_Sequences: clone_col_out should be a column name or 
None to append \"_CloneID\"!") 
  clone_col_out = cols_clonotyped + "_CloneID" 
  print("Defaulting to \"{0}\"!".format(clone_col_out)) 
 
 if "min_len" not in clonotyping_params: 
  min_len = 5 
 
 elif isinstance(clonotyping_params["min_len"], int) or 
isinstance(clonotyping_params["min_len"], float): 
  if clonotyping_params["min_len"] < 1: 
   print("Warning in Clonotype_Sequences: parameter \"min_len\" should be an 
int >0; defaulting to 5!") 
   min_len = 5 
 
  else: 
   min_len = int(clonotyping_params["min_len"]) 
 
 else: 
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  print("Warning in Clonotype_Sequences: parameter \"min_len\" should be an int >0; 
defaulting to 5!") 
  min_len = 5 
 
 if clonotyping_method == "usearch": 
  if "max_accepts" in clonotyping_params: 
   if isinstance(clonotyping_params["max_accepts"], int): 
    max_accepts = clonotyping_params["max_accepts"] 
 
   else: 
    print("Warning in Clonotype_Sequences: parameter \"max_accepts\" 
should be an int; defaulting to 0!") 
    max_accepts = 0 
 
  else: 
   max_accepts = 0 
 
  if "max_rejects" in clonotyping_params: 
   if isinstance(clonotyping_params["max_rejects"], int): 
    max_rejects = clonotyping_params["max_rejects"] 
 
   else: 
    print("Warning in Clonotype_Sequences: parameter \"max_rejects\" 
should be an int; defaulting to 0!") 
    max_rejects = 0 
 
  else: 
   max_rejects = 0 
 
  clone_IDs = Clonotype_Usearch(seqs, identity = identity, max_accepts = 
max_accepts, max_rejects = max_rejects, 
           min_len = min_len, 
usearch_loc = usearch_loc, for_rarefaction = for_rarefaction) 
 
 if clone_IDs is None: 
  print("Error in Clonotype_Sequences: clonotyping function failed!") 
  return None 
 
 if not for_rarefaction: 
  clone_IDs = clone_IDs.rename(columns = {"Clone_ID": clone_col_out}) 
  seq_df = seq_df.join(clone_IDs, how = "left") 
 
  return seq_df 
 
 else: 
  return clone_IDs 
 
def Clonotype_Usearch(seqs, identity = 0.96, max_accepts = 0, max_rejects = 0, min_len = 5, 
usearch_loc = usearch_exe, 
       for_rarefaction = False, delete_temp = True): 
 """Clonotypes sequences via Usearch, returning the read clone IDs or the number of clones 
for rarefaction analysis. 
 By default returns a Series mapping the reads to clone IDs. 
 
 Parameters 
 ---------- 
 seqs: pandas.Series 
  Input sequences with the appropriate index to merge resulting clone IDs back to 
original reads. 
 identity: float or int 
  Sequence similarity cutoff for grouping clones; must be a float between 0.0 and 
1.0 or an int between 0 and 100. 
  Default is 0.96 (sequences having a 96% similarity or more can be grouped 
together). 
 max_accepts: int 
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  Parameter passed to Usearch cluster_fast as maxaccepts; should be an int >= 0 (0 
being disabled); default is 0. 
 max_rejects: int 
  Parameter passed to Usearch cluster_fast as maxrejects; should be an int >= 0 (0 
being disabled); default is 0. 
 min_len: int 
  Minimum length of sequence to be clonotyped for placement in a clonal group; 
default is 5. 
 usearch_loc: str 
  Path / location of the binary executable for Usearch; for default see 
usearch_exe. 
 for_rarefaction: bool 
  Returns only the number of clones for faster clone vs input read rarefaction 
analysis; default is False. 
 delete_temp: bool 
  If True, the temporary .fasta Usearch input file and Usearch output .uc files 
will be removed; default is True. 
 
 Returns 
 ---------- 
 clones or total_clones: pandas.DataFrame or int 
  The DataFrame mapping read ID to clone ID for the input sequences, or the total 
number of clones identified. 
 """ 
 
 if not os.path.exists(usearch_loc): 
  print("Error in Clonotype_Usearch: Usearch executable not found!") 
  return None 
 
 uc_col_names = ("Type", "Clone_ID", "Len_Size", "Identity_to_Centroid", "Orientation", 
       "NA1", "NA2", "NA3", "Read_ID", "Centroid_Label") 
 
 uc_col_dtypes = { 
  "Type": str, 
  "Clone_ID": int, 
  "Len_Size": int, 
  "Identity_to_Centroid": str, 
  "Orientation": str, 
  "NA1": str, 
  "NA2": str, 
  "NA3": str, 
  "Read_ID": int, 
  "Centroid_Label": str 
 } 
 
 cluster_seqs_file = "to_cluster.fasta" 
 uc_file = "usearch_cluster_IDs.uc" 
 
 with open(cluster_seqs_file, "w") as cluster_seqs_fasta: 
  for idx, seq in seqs.iteritems(): 
   cluster_seqs_fasta.write(">" + str(idx) + "\n" + str(seq) + "\n") 
 
 if not os.path.exists(cluster_seqs_file): 
  print("Error in Clonotype_Usearch: error writing FASTA input file for Usearch!") 
  return None 
 
 usearch_call = "{0} --cluster_fast {1}".format(usearch_loc, cluster_seqs_file) 
 usearch_call += " --id {0} --maxaccepts {1} --maxrejects {2}".format(identity, 
max_accepts, max_rejects) 
 usearch_call += " --minseqlength {0} --top_hit_only --uc {1}".format(min_len, uc_file) 
 os.system(usearch_call) 
 
 if not os.path.exists(uc_file): 
  print("Error in Clonotype_Usearch: Usearch .uc results file was not found, error 
occurred during clonotyping!") 
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  return None 
 
 clones = pandas.read_csv(uc_file, sep = "\t", header = None, names = uc_col_names, dtype = 
uc_col_dtypes) 
 
 if delete_temp: 
  os.remove(cluster_seqs_file) 
  os.remove(uc_file) 
 
 if not for_rarefaction: 
  clones = clones[clones["Type"] != "C"] 
  clones = clones[["Clone_ID", "Read_ID"]] 
  total_clones = len(clones) 
  reads_per_clone = len(seqs) / total_clones 
 
  print("{0} clonotypes identified; average of {1:.1f} reads per 
clone.".format(total_clones, reads_per_clone)) 
 
  clones = clones.set_index("Read_ID") 
  return clones 
 
 else: 
  total_clones = len(clones[clones["Type"] == "S"]) 
  return total_clones 
 
 
#########Mass Spec utilities 
 
import os 
 
def DataFrame_to_FASTA(seq_df, filename, header_prefix = None, seq_col = "Sequence", header_cols = 
"ReadID", overwrite = False): 
 """ 
 
 Parameters 
 ---------- 
 
 Returns 
 ---------- 
 success: bool 
  Whether the FASTA file was successfully written or not. 
 """ 
 
 if os.path.exists(filename) and not overwrite: 
  print("Error in DataFrame_to_FASTA: " + filename + " already exists!") 
  print("Pick a new file name, or run DataFrame_to_FASTA with overwrite = True.") 
  return False 
 
 if seq_col not in seq_df.columns: 
  print("Error in DataFrame_to_FASTA: sequence column \"" + seq_col + "\" not found 
in DataFrame!") 
  return False 
 
 if header_prefix is None: 
  header_prefix = ">" 
 
 elif isinstance(header_prefix, str): 
  if not header_prefix.startswith(">"): 
   header_prefix = ">" + header_prefix 
 
 else: 
  print("Error in DataFrame_to_FASTA: header_prefix must be a string or left as the 
default None for no prefix!") 
  return False 
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 fasta_df = seq_df[[seq_col]] 
 fasta_df["Header"] = header_prefix 
 
 if hasattr(header_cols, "__iter__") and not isinstance(header_cols, str): 
  for field in header_cols: 
   if field in seq_df.columns: 
    pass 
 
   else: 
    pass 
 
 elif isinstance(header_cols, "str") and header_cols in seq_df.columns: 
  pass 
 
 with open(filename, "w", newline = "\n") as fasta: 
  for header, seq in zip(seq_df[header_cols], seq_df[seq_col]): 
   fasta.write(">" + header + "\n") 
   fasta.write(seq + "\n") 
 
 success = os.path.exists(filename) 
 return success 
 
 
#########Constants 
#Constant region VH-only primer sequences used to identify additional isotypes missed during 
annotation 
VHonly_primer_IgG = "TCCACCAAGGGCCCAT" 
VHonly_primer_IgA = "CTTCTTCCCCCAGGAG" 
VHonly_primer_IgM = "AGTGCATCCGCCCCAA" 
 
#Constant region pairing primer sequences used to identify additional isotypes missed during 
annotation 
pairing_primer_IgA = "ACCAGCCCCAAGCAGGGCCC" 
pairing_primer_IgG = "TCCACCAAGGGCCCATC" 
pairing_primer_IgM = "AGTGCATCCGCCCCAACCCA" 
 
#By default, remove sequences with a stop codon in any gene region or a frameshift in any region 
but FR4 (primer site) 
no_stop_feats = ("FR1_AA", "CDR1_AA", "FR2_AA", "CDR2_AA", "FR3_AA", "CDR3_AA", "FR4_AA") 
no_frameshift_feats = ("FR1_AA", "CDR1_AA", "FR2_AA", "CDR2_AA", "FR3_AA", "CDR3_AA") 
 
#Columns and data types to parse USEARCH tab-separated .uc output files 
usearch_col_names = ("Type", "ClusterID", "Len_Size", "Identity_to_Centroid", "Orientation", 
      "NA1", "NA2", "NA3", "Query_Label", "Centroid_Label") 
 
usearch_col_dtypes = { 
 "Type": str, 
 "ClusterID": int, 
 "Len_Size": int, 
 "Identity_to_Centroid": str, 
 "Orientation": str, 
 "NA1": str, 
 "NA2": str, 
 "NA3": str, 
 "Query_Label": int, 
 "Centroid_Label": str 
} 
 
MIXCR_header_dtypes = { 
 "cloneId": float, 
 "descrR1": str, 
 "bestVGene": str, 
 "bestDGene": str, 
 "bestJGene": str, 
 "bestCGene": str, 
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 "vBestIdentityPercent": float, 
 "jBestIdentityPercent": float, 
 "nSeqFR1": str, 
 "nSeqFR2": str, 
 "nSeqFR3": str, 
 "nSeqFR4": str, 
 "nSeqCDR1": str, 
 "nSeqCDR2": str, 
 "nSeqCDR3": str, 
 "aaSeqFR1": str, 
 "aaSeqFR2": str, 
 "aaSeqFR3": str, 
 "aaSeqFR4": str, 
 "aaSeqCDR1": str, 
 "aaSeqCDR2": str, 
 "aaSeqCDR3": str 
} 
 
MIXCR_headers_renamed = { 
 "cloneId": "CloneID", 
 "descrR1": "ReadID", 
 "bestVGene": "VGene", 
 "bestDGene": "DGene", 
 "bestJGene": "JGene", 
 "bestCGene": "CGene", 
 "vBestIdentityPercent": "V_Identity", 
 "dBestIdentityPercent": "D_Identity", 
 "jBestIdentityPercent": "J_Identity", 
 "nSeqFR1": "FR1_NT", 
 "nSeqFR2": "FR2_NT", 
 "nSeqFR3": "FR3_NT", 
 "nSeqFR4": "FR4_NT", 
 "nSeqCDR1": "CDR1_NT", 
 "nSeqCDR2": "CDR2_NT", 
 "nSeqCDR3": "CDR3_NT", 
 "aaSeqFR1": "FR1_AA", 
 "aaSeqFR2": "FR2_AA", 
 "aaSeqFR3": "FR3_AA", 
 "aaSeqFR4": "FR4_AA", 
 "aaSeqCDR1": "CDR1_AA", 
 "aaSeqCDR2": "CDR2_AA", 
 "aaSeqCDR3": "CDR3_AA" 
} 
 
#All Homo sapiens heavy/light V and J genes, as recorded by IMGT as of 06-17-2017 
human_VH_genes = ( 
 "IGHV1-12", "IGHV1-14", "IGHV1-17", "IGHV1-18", "IGHV1-2", "IGHV1-24", "IGHV1-3", "IGHV1-
38-4", 
 "IGHV1-45", "IGHV1-46", "IGHV1-58", "IGHV1-67", "IGHV1-68", "IGHV1-69", "IGHV1-69-2", 
"IGHV1-69D", 
 "IGHV1-8", "IGHV2-10", "IGHV2-26", "IGHV2-5", "IGHV2-70", "IGHV2-70D", "IGHV3-11", "IGHV3-
13", 
 "IGHV3-15", "IGHV3-16", "IGHV3-19", "IGHV3-20", "IGHV3-21", "IGHV3-22", "IGHV3-23", 
"IGHV3-23D", 
 "IGHV3-25", "IGHV3-29", "IGHV3-30", "IGHV3-30-3", "IGHV3-30-5", "IGHV3-32", "IGHV3-33", 
"IGHV3-33-2", 
 "IGHV3-35", "IGHV3-36", "IGHV3-37", "IGHV3-38", "IGHV3-38-3", "IGHV3-41", "IGHV3-42", 
"IGHV3-42D", 
 "IGHV3-43", "IGHV3-43D", "IGHV3-47", "IGHV3-48", "IGHV3-49", "IGHV3-50", "IGHV3-52", 
"IGHV3-53", 
 "IGHV3-54", "IGHV3-57", "IGHV3-6", "IGHV3-60", "IGHV3-62", "IGHV3-63", "IGHV3-64", "IGHV3-
64D", 
 "IGHV3-65", "IGHV3-66", "IGHV3-69", "IGHV3-7", "IGHV3-71", "IGHV3-72", "IGHV3-73", "IGHV3-
74", 



 115 

 "IGHV3-75", "IGHV3-76", "IGHV3-79", "IGHV3-9", "IGHV3-NL1", "IGHV4-28", "IGHV4-30-1", 
"IGHV4-30-2", 
 "IGHV4-30-4", "IGHV4-31", "IGHV4-34", "IGHV4-38-2", "IGHV4-39", "IGHV4-4", "IGHV4-55", 
"IGHV4-59", 
 "IGHV4-61", "IGHV4-80", "IGHV5-10", "IGHV5-10-1", "IGHV5-51", "IGHV5-78", "IGHV6-1", 
"IGHV7-27", 
 "IGHV7-40", "IGHV7-40D", "IGHV7-4-1", "IGHV7-56", "IGHV7-77", "IGHV7-81" 
) 
 
human_VL_genes = ( 
 "IGKV1-12", "IGKV1-13", "IGKV1-16", "IGKV1-17", "IGKV1-27", "IGKV1-33", "IGKV1-39", 
"IGKV1-5", 
 "IGKV1-6", "IGKV1-8", "IGKV1-9", "IGKV1-NL1", "IGKV1D-12", "IGKV1D-13", "IGKV1D-16", 
"IGKV1D-17", 
 "IGKV1D-33", "IGKV1D-39", "IGKV1D-43", "IGKV1D-8", "IGKV2-24", "IGKV2-28", "IGKV2-29", 
"IGKV2-30", 
 "IGKV2-40", "IGKV2D-26", "IGKV2D-28", "IGKV2D-29", "IGKV2D-30", "IGKV2D-40", "IGKV3-11", 
"IGKV3-15", 
 "IGKV3-20", "IGKV3D-11", "IGKV3D-15", "IGKV3D-20", "IGKV3D-7", "IGKV4-1", "IGKV5-2", 
"IGKV6-21", 
 "IGKV6D-21", "IGLV1-36", "IGLV1-40", "IGLV1-44", "IGLV1-47", "IGLV1-51", "IGLV10-54", 
"IGLV2-11", 
 "IGLV2-14", "IGLV2-18", "IGLV2-23", "IGLV2-8", "IGLV3-1", "IGLV3-10", "IGLV3-12", "IGLV3-
16", "IGLV3-19", 
 "IGLV3-21", "IGLV3-22", "IGLV3-25", "IGLV3-27", "IGLV3-9", "IGLV4-3", "IGLV4-60", "IGLV4-
69", "IGLV5-37", 
 "IGLV5-39", "IGLV5-45", "IGLV5-52", "IGLV6-57", "IGLV7-43", "IGLV7-46", "IGLV8-61", 
"IGLV9-49" 
) 
 
human_JH_genes = ("IGHJ1", "IGHJ2", "IGHJ3", "IGHJ4", "IGHJ5", "IGHJ6") 
 
human_JL_genes = ("IGKJ1", "IGKJ2", "IGKJ3", "IGKJ4", "IGKJ5", "IGLJ1", "IGLJ2", "IGLJ3", "IGLJ6", 
"IGLJ7") 
 
#Gene names to (int, int) indicating its relative start and end position in the human IGH locus 
(see NCBI NG_001019) 
human_VH_gene_locations = { 
 "IGHVIII-82": (501, 792), "IGHV7-81": (5328, 5764), "IGHV4-80": (7159, 7562), "IGHV3-79": 
(12253, 12705), 
 "IGHVII-78-1": (14450, 14724), "IGHV5-78": (28799, 29233), "IGHVIII-76-1": (48276, 48582), 
 "IGHV3-76": (52035, 52484), "IGHV3-75": (56198, 56667), "IGHVII-74-1": (58935, 59103), 
"IGHV3-74": (69450, 69905), 
 "IGHV3-73": (77192, 77653), "IGHV3-72": (89192, 89653), "IGHV3-71": (104727, 105188), 
"IGHV2-70": (109325, 109768), 
 "IGHV1-69D": (117815, 118253), "IGHV1-69-2": (142798, 143235), "IGHV3-69-1": (151730, 
152182), 
 "IGHV2-70D": (156328, 156771), "IGHV1-69": (165225, 165663), "IGHV1-68": (176059, 176538), 
 "IGHVIII-67-4": (184948, 185253), "IGHVIII-67-3": (187457, 187731), "IGHVIII-67-2": 
(193145, 193243), 
 "IGHVII-67-1": (193803, 193952), "IGHV1-67": (199303, 199742), "IGHV3-66": (204880, 
205330), 
 "IGHVII-65-1": (208301, 208573), "IGHV3-65": (213813, 214307), "IGHV3-64": (222167, 
222622), 
 "IGHV3-63": (227665, 228132), "IGHVII-62-1": (229557, 229829), "IGHV3-62": (236760, 
237215), 
 "IGHV4-61": (240789, 241226), "IGHVII-60-1": (242372, 242640), "IGHV3-60": (248692, 
249148), 
 "IGHV4-59": (252665, 253096), "IGHV1-58": (257551, 257988), "IGHV3-57": (261131, 261436), 
 "IGHV7-56": (270149, 270583), "IGHV4-55": (273794, 274229), "IGHV3-54": (278553, 279009), 
 "IGHVII-53-1": (280421, 280690), "IGHV3-53": (287219, 287669), "IGHV3-52": (293519, 
293969), 
 "IGHVII-51-2": (295369, 295631), "IGHVIII-51-1": (296538, 296844), "IGHV5-51": (301168, 
301603), 
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 "IGHV3-50": (313790, 314245), "IGHVII-49-1": (315747, 316017), "IGHV3-49": (322948, 
323409), 
 "IGHV3-48": (342080, 342535), "IGHVIII-47-1": (348909, 349212), "IGHV3-47": (361311, 
361766), 
 "IGHVII-46-1": (364221, 364509), "IGHV1-46": (368793, 369230), "IGHV1-45": (372912, 
373349), 
 "IGHVII-44-2": (385964, 386200), "IGHVIV-44-1": (390575, 391003), "IGHVIII-44": (401952, 
402128), 
 "IGHVII-43-1": (407345, 407554), "IGHV3-43": (409625, 410082), "IGHV3-42": (416657, 
417091), 
 "IGHV3-41": (436761, 437216), "IGHVII-40-1": (439335, 439411), "IGHV7-40": (454784, 
454986), 
 "IGHV4-39": (458198, 458636), "IGHVIII-38-1": (462035, 462327), "IGHV3-38": (469402, 
469851), 
 "IGHV3-37": (483231, 483680), "IGHV3-36": (487114, 487576), "IGHV3-35": (490502, 490955), 
 "IGHV7-34-1": (502612, 503045), "IGHV4-34": (506252, 506684), "IGHV3-33-2": (510799, 
511247), 
 "IGHVII-33-1": (512681, 512954), "IGHV3-33": (520101, 520554), "IGHV3-32": (523743, 
524200), 
 "IGHVII-30-21": (525641, 525897), "IGHV4-30-2": (530625, 531062), "IGHV3-30-2": (535512, 
535960), 
 "IGHVII-30-1": (537392, 537665), "IGHV3-30": (544812, 545265), "IGHV3-29": (548782, 
549239), 
 "IGHVII-28-1": (550659, 550913), "IGHV4-28": (555657, 556091), "IGHV7-27": (562109, 
562522), 
 "IGHVII-26-2": (565385, 565697), "IGHVIII-26-1": (570633, 570939), "IGHV2-26": (578507, 
578950), 
 "IGHVIII-25-1": (586538, 586779), "IGHV3-25": (590866, 591319), "IGHV1-24": (603362, 
603799), 
 "IGHV3-23": (611284, 611739), "IGHVIII-22-2": (615472, 615659), "IGHVII-22-1": (616717, 
616985), 
 "IGHV3-22": (622122, 622583), "IGHV3-21": (644830, 645283), "IGHVII-20-1": (667521, 
667559), 
 "IGHV3-20": (668954, 669409), "IGHV3-19": (683355, 683647), "IGHV1-18": (695010, 695446), 
 "IGHV1-17": (705567, 706003), "IGHVIII-16-1": (709294, 709599), "IGHV3-16": (714689, 
715142), 
 "IGHVII-15-1": (716541, 716811), "IGHV3-15": (726262, 726723), "IGHV1-14": (734214, 
734463), 
 "IGHVIII-13-1": (737761, 738059), "IGHV3-13": (750353, 750805), "IGHV1-12": (757636, 
757925), 
 "IGHVIII-11-1": (759870, 760056), "IGHV3-11": (763261, 763710), "IGHV5-10-1": (771832, 
772373), 
 "IGHV3-64D": (791772, 792262), "IGHV3-7": (817741, 818196), "IGHV3-6": (824347, 824801), 
 "IGHVIII-5-2": (834485, 834745), "IGHVIII-5-1": (840581, 840679), "IGHV2-5": (842000, 
842443), 
 "IGHV7-4-1": (854764, 855200), "IGHV4-4": (867989, 868423), "IGHV1-3": (874813, 875250), 
 "IGHVIII-2-1": (878510, 878811), "IGHV1-2": (893326, 893763), "IGHVII-1-1": (934954, 
935407), 
 "IGHV6-1": (940144, 940591) 
} 
 
human_JH_gene_locations = { 
 "IGHJ1": (1014887, 1014940), "IGHJ2": (1015094, 1015148), "IGHJ2P": (1015493, 1015552), 
"IGHJ3": (1015709, 1015760), 
 "IGHJ4": (1016083, 1016132), "IGHJ5": (1016481, 1016533), "IGHJ3P": (1016880, 1016930), 
"IGHJ6": (1017085, 1017149) 
} 
 
#Regex for potentially N-linked glycosylation sites with the mammalian consensus sequence: Asn + 
NOT Pro + Ser or Thr 
N_linked_gly_consensus = "N[^P][ST]" 
 
 
#########Repertoire Graphing / Visualization Dashboard 
import numpy 
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import json 
import pandas 
import math 
from scipy.stats import gaussian_kde 
from squarify import squarify 
from itertools import cycle, combinations 
 
from bokeh.plotting import figure 
from bokeh.models import (Range1d, HoverTool, ColumnDataSource, CustomJS, ColorBar, 
LinearColorMapper, 
        NumeralTickFormatter, FixedTicker, 
BasicTickFormatter) 
from bokeh.models.widgets import Select 
from bokeh.colors import RGB 
from bokeh.palettes import viridis, all_palettes 
from bokeh.io import save, show, output_file 
from bokeh.io.export import export_png 
from bokeh.embed import components 
from bokeh.layouts import column, layout, gridplot, Spacer 
from bokeh.transform import linear_cmap 
from bokeh.util.hex import hexbin 
 
vgene_colors = { 
 "IGHV1-17": RGB(255, 0, 0), 
 "IGHV1-18": RGB(255, 24, 0), 
 "IGHV1-2": RGB(255, 47, 0), 
 "IGHV1-24": RGB(255, 71, 0), 
 "IGHV1-3": RGB(255, 95, 0), 
 "IGHV1-45": RGB(255, 118, 0), 
 "IGHV1-46": RGB(255, 142, 0), 
 "IGHV1-58": RGB(255, 165, 0), 
 "IGHV1-67": RGB(255, 195, 0), 
 "IGHV1-68": RGB(255, 219, 0), 
 "IGHV1-69": RGB(254, 241, 0), 
 "IGHV1-8": RGB(244, 255, 0), 
 "IGHV2-10": RGB(221, 255, 0), 
 "IGHV2-26": RGB(197, 255, 0), 
 "IGHV2-5": RGB(173, 255, 0), 
 "IGHV2-70": RGB(150, 255, 0), 
 "IGHV3-11": RGB(120, 255, 0), 
 "IGHV3-13": RGB(97, 255, 0), 
 "IGHV3-15": RGB(73, 255, 0), 
 "IGHV3-16": RGB(49, 255, 0), 
 "IGHV3-19": RGB(26, 255, 0), 
 "IGHV3-20": RGB(6, 255, 4), 
 "IGHV3-21": RGB(0, 255, 22), 
 "IGHV3-22": RGB(0, 255, 45), 
 "IGHV3-23": RGB(0, 255, 75), 
 "IGHV3-25": RGB(0, 255, 98), 
 "IGHV3-30": RGB(0, 255, 122), 
 "IGHV3-33": RGB(0, 255, 146), 
 "IGHV3-35": RGB(0, 255, 169), 
 "IGHV3-36": RGB(0, 255, 193), 
 "IGHV3-38": RGB(0, 255, 217), 
 "IGHV3-43": RGB(0, 255, 246), 
 "IGHV3-47": RGB(0, 240, 255), 
 "IGHV3-48": RGB(0, 217, 255), 
 "IGHV3-49": RGB(0, 193, 255), 
 "IGHV3-52": RGB(0, 169, 255), 
 "IGHV3-53": RGB(0, 146, 255), 
 "IGHV3-60": RGB(0, 122, 255), 
 "IGHV3-62": RGB(0, 99, 255), 
 "IGHV3-64": RGB(0, 69, 255), 
 "IGHV3-65": RGB(0, 45, 255), 
 "IGHV3-66": RGB(0, 22, 255), 
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 "IGHV3-7": RGB(6, 4, 255), 
 "IGHV3-71": RGB(25, 0, 255), 
 "IGHV3-72": RGB(49, 0, 255), 
 "IGHV3-73": RGB(73, 0, 255), 
 "IGHV3-74": RGB(96, 0, 255), 
 "IGHV3-76": RGB(126, 0, 255), 
 "IGHV3-9": RGB(149, 0, 255), 
 "IGHV4-28": RGB(173, 0, 255), 
 "IGHV4-31": RGB(197, 0, 255), 
 "IGHV4-34": RGB(220, 0, 255), 
 "IGHV4-39": RGB(244, 0, 255), 
 "IGHV4-4": RGB(254, 0, 241), 
 "IGHV4-55": RGB(255, 0, 219), 
 "IGHV4-59": RGB(255, 0, 189), 
 "IGHV4-61": RGB(255, 0, 166), 
 "IGHV5-51": RGB(255, 0, 142), 
 "IGHV5-78": RGB(255, 0, 118), 
 "IGHV6-1": RGB(255, 0, 95), 
 "IGHV7-27": RGB(255, 0, 71), 
 "IGHV7-81": RGB(255, 0, 47) 
} 
 
vfamily_colors = { 
 "IGHV1": RGB(254, 131, 0), 
 "IGHV2": RGB(185, 255, 0), 
 "IGHV3": RGB(27, 164, 172), 
 "IGHV4": RGB(232, 0, 229), 
 "IGHV5": RGB(150, 0, 210), 
 "IGHV6": RGB(255, 0, 95), 
 "IGHV7": RGB(35, 140, 20) 
} 
 
jgene_colors = { 
 "IGHJ1": RGB(57, 59, 121), 
 "IGHJ2": RGB(82, 84, 163), 
 "IGHJ3": RGB(107, 110, 207), 
 "IGHJ4": RGB(156, 158, 222), 
 "IGHJ5": RGB(99, 121, 57), 
 "IGHJ6": RGB(140, 162, 82), 
 "IGHJ2P": RGB(181, 207, 107) 
} 
 
isotype_colors = { 
 "IgG": RGB(55, 126, 184), 
 "IgG1": RGB(55, 126, 184), 
 "IgG2": RGB(55, 126, 184), 
 "IgG3": RGB(55, 126, 184), 
 "IgG4": RGB(55, 126, 184), 
 "IGHG": RGB(55, 126, 184), 
 "IGHG1": RGB(55, 126, 184), 
 "IGHG2": RGB(55, 126, 184), 
 "IGHG3": RGB(55, 126, 184), 
 "IGHG4": RGB(55, 126, 184), 
 "IgA": RGB(228, 26, 28), 
 "IgA1": RGB(228, 26, 28), 
 "IgA2": RGB(228, 26, 28), 
 "IGHA": RGB(228, 26, 28), 
 "IGHA1": RGB(228, 26, 28), 
 "IGHA2": RGB(228, 26, 28), 
 "IgM": RGB(77, 175, 74), 
 "IGHM": RGB(77, 175, 74), 
 "IgD": RGB(152, 78, 163), 
 "IGHD": RGB(152, 78, 163), 
 "IgE": RGB(255, 127, 0), 
 "IGHE": RGB(255, 127, 0) 
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} 
 
def Shannon_Wiener_Index(clone_counts): 
 total_clone_counts = float(sum(clone_counts)) 
 sw_index = 0.0 
 for clone in clone_counts: 
  clone_freq = clone / total_clone_counts 
  sw_index -= (clone_freq * numpy.log(clone_freq)) 
 return sw_index 
 
def Hill_Diversity_Index(clone_counts, N = (0.0, 10.0), step = 0.1): 
 if hasattr(N, "__iter__"): 
  if len(N) != 2 or N[1] <= N[0]: 
   print("Error in Hill_Diversity_Index: if N is an iterable it must be of 
length 2 for the start/end orders.") 
   return None 
  chunks = numpy.floor(N[1] / step) + 1 
  orders = numpy.linspace(start = N[0], stop = N[1], num = chunks) 
 else: 
  orders = [N] 
 total_clone_counts = float(sum(clone_counts)) 
 hill_indices = [] 
 for order in orders: 
  hill_index = 0.0 
  if order == 0.0: 
   hill_index = len(clone_counts) #Hill index at zero is simply the species 
richness (total number of clones) 
  elif order == 1.0: 
   sw_index = Shannon_Wiener_Index(clone_counts) 
   hill_index = numpy.exp(sw_index) #Hill index at one is the exponential of 
the Shannon-Wiener index 
  else: 
   for clone in clone_counts: 
    clone_freq = clone / total_clone_counts 
    hill_index += (clone_freq ** order) 
   order_exponent = 1.0 / (1.0 - order) 
   hill_index = hill_index ** order_exponent 
  order_index = (order, hill_index) 
  hill_indices.append(order_index) 
 if len(hill_indices) == 1: 
  return hill_indices[0] 
 else: 
  return hill_indices 
 
class Cyrcos_Repertoire_Comparison_Plot(object): 
 def __init__(self, clone_dfs, title = "", top_clones = None, normalize_segments = True, 
gap_size = 10, 
     start_pos = "top", clockwise = True, offset_segments = None, 
segment_face_colors = "Category10", 
     segment_outline_colors = None, fade_segments = True, clone_col = 
"CloneID", count_col = "Clustered", 
     sample_col = "Sample", figsize = (1000, 1000)): 
  """Creates a Circos-like Chord graph for comparing multiple immune repertoire 
clonotype profiles.""" 
 
  #Plot visual aspect definitions 
  segment_width = 0.07 #Thickness of the circle arc segments 
  offset_shift_amount = 0.1 #Increase in radius for segments to offset 
  min_segment_alpha = 0.2 
 
  #Gather the samples and their respective DataFrames 
  df_cols = [clone_col, count_col] 
  self.samples = [] 
  comparison_dfs = [] 
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  if isinstance(clone_dfs, dict): #Input is a dictionary of {sample_name: 
DataFrame} 
   for sample in clone_dfs: 
    self.samples.append(sample) 
    clone_df = clone_dfs[sample][df_cols].sort_values([count_col], 
ascending = [False]) 
 
    if top_clones is not None: 
     clone_df = clone_df.head(top_clones) 
 
    comparison_dfs.append(clone_df) 
 
  else: #Input is a single DataFrame with all samples; sample_col gives the sample 
to split on 
   df_cols.append(sample_col) 
   for sample, df in clone_dfs[df_cols].groupby([sample_col]): 
    self.samples.append(sample) 
    clone_df = df.sort_values([count_col], ascending = [False]) 
 
    if top_clones is not None: 
     clone_df = clone_df.head(top_clones) 
 
    comparison_dfs.append(clone_df) 
 
  self.total_samples = len(self.samples) 
 
  #Create the figure plot 
  self.Create_Plot(title = title, figsize = figsize) 
 
  sample_clone_counts = [len(df) for df in comparison_dfs] 
  total_gap_size = gap_size * self.total_samples 
  total_segment_len = 360 - total_gap_size 
 
  if normalize_segments: 
   self.segment_lengths = [total_segment_len / self.total_samples] * 
self.total_samples 
  else: 
   total_clones = sum(sample_clone_counts) 
   self.segment_lengths = [clones / total_clones * total_segment_len for 
clones in sample_clone_counts] 
 
  #Convert description of the first segment's start location to the angular 
position in degrees: 
  start_pos = start_pos.lower() 
  if "top" in start_pos or "north" in start_pos: 
   start_position = 90 
  elif "right" in start_pos or "east" in start_pos: 
   start_position = 0 
  elif "bottom" in start_pos or "south" in start_pos: 
   start_position = -90 
  elif "left" in start_pos or "west" in start_pos: 
   start_position = -180 
  else: 
   start_position = 90 
 
  #Shift the start position to align the first gap's center with the start 
position. 
  self.direction = "clock" if clockwise else "anticlock" 
  start_position -= gap_size / 2 if clockwise else 0 
 
  radius = 0.8 
  self.inner_radii = [radius] * self.total_samples 
 
  if offset_segments is not None: 
   if isinstance(offset_segments, int): 
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    self.inner_radii[offset_segments] += offset_shift_amount 
 
   elif hasattr(offset_segments, "__iter__") and not 
isinstance(offset_segments, str): 
    for seg in offset_segments: 
     self.inner_radii[seg] += offset_shift_amount 
 
  self.outer_radii = [r + segment_width for r in self.inner_radii] 
 
  if isinstance(segment_face_colors, str): 
   if segment_face_colors in all_palettes: 
    self.segment_face_colors = 
all_palettes[segment_face_colors][self.total_samples] 
   else: 
    self.segment_face_colors = [segment_face_colors] * 
self.total_samples 
  elif hasattr(segment_face_colors, "__iter__") and not 
isinstance(segment_face_colors, str): 
   if len(segment_face_colors) == self.total_samples: 
    self.segment_face_colors = segment_face_colors 
   else: 
    raise IndexError("List provided to segment_face_colors is not the 
same length as total segments!") 
  else: 
   print("Warning: segment_face_colors should be a colormap or list of 
colors for each segment!") 
   print("Defaulting to \"Category10\"...") 
   self.segment_face_colors = all_palettes["Category10"][self.total_samples] 
 
  if segment_outline_colors is None: 
   self.segment_outline_colors = ["transparent"] * self.total_samples 
  elif isinstance(segment_outline_colors, str): 
   self.segment_outline_colors = [segment_outline_colors] * 
self.total_samples 
  elif hasattr(segment_outline_colors, "__iter__") and not 
isinstance(segment_outline_colors, str): 
   self.segment_outline_colors = segment_outline_colors 
  else: 
   raise TypeError("segment_outline_colors should be a color name, list of 
colors, or None!") 
 
  #Add the repertoire circle segments to the figure 
  self.Create_Segments(start_position, gap_size, clockwise, fade_segments, 
min_alpha = min_segment_alpha) 
 
  #Add rank and segment position columns to the clone DataFrames 
  for idx, _ in enumerate(comparison_dfs): 
   #Rank clones by total count / frequency (largest clone being rank 0, 
second largest rank 1, etc.) 
   clone_ranks = comparison_dfs[idx][count_col].rank(method = "first", 
ascending = False).astype(int) 
   comparison_dfs[idx]["Rank"] = clone_ranks - 1 
 
   #Convert the rank to a relative position from 0.0 to 1.0 for placement 
along the segments 
   comparison_dfs[idx]["Position"] = comparison_dfs[idx]["Rank"] / 
len(comparison_dfs[idx]) 
 
  #Iterate through all combinations of two samples and create the links from clone 
to clone 
  for comb in combinations(range(self.total_samples), 2): 
   idx1 = comb[0] 
   idx2 = comb[1] 
   sample1 = self.samples[idx1] 
   sample2 = self.samples[idx2] 
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   sample_df1 = comparison_dfs[idx1].set_index([clone_col]) 
   sample_df2 = comparison_dfs[idx2].set_index([clone_col]) 
 
   #Join the samples into a DataFrame containing only the shared clones and 
their positions 
   joined_df = sample_df1.join(sample_df2, how = "inner", lsuffix = "1", 
rsuffix = "2") 
 
   #Calculate the angular position for the clones (segment start location + 
clone position * segment length) 
   #If the plot is drawn clockwise, subtract the segment start instead of 
adding it 
   seg1_start = -self.segment_starts[idx1] if self.direction == "clock" else 
self.segment_starts[idx1] 
   seg2_start = -self.segment_starts[idx2] if self.direction == "clock" else 
self.segment_starts[idx2] 
   pos1 = joined_df["Position1"] * self.segment_lengths[idx1] + seg1_start 
   pos2 = joined_df["Position2"] * self.segment_lengths[idx2] + seg2_start 
 
   #Convert the positions to the start and end xy coordinates 
   inner_rad1 = self.inner_radii[idx1] 
   inner_rad2 = self.inner_radii[idx2] 
   xy1 = self.Angle_to_XY(angles = pos1, radius = inner_rad1) 
   xy2 = self.Angle_to_XY(angles = pos2, radius = inner_rad2) 
   #Convert the list of (x, y) tuples to a list of xs and a list of ys 
   xs1, ys1 = zip(*xy1) 
   xs2, ys2 = zip(*xy2) 
 
   link_data = { 
    "x0": xs1, 
    "y0": ys1, 
    "x1": xs2, 
    "y1": ys2 
   } 
   link_source = ColumnDataSource(link_data) 
 
   #Plot the links matching clone positions between repertoires; control 
points are the center of the circle 
   self.plot.quadratic(x0 = "x0", y0 = "y0", x1 = "x1", y1 = "y1", cx = 0.5, 
cy = 0.5, source = link_source, 
        color = "black", line_width = 1) 
 
 def Create_Plot(self, title, figsize): 
  plot_params = { 
   "plot_width": figsize[0], 
   "plot_height": figsize[1], 
   "x_range": Range1d(-0.5, 1.5, bounds = (-1.0, 2.0)), 
   "y_range": Range1d(-0.5, 1.5, bounds = (-1.0, 2.0)), 
   "title": title, 
   "tools": "pan, wheel_zoom, box_zoom, save, reset, help", 
   "active_scroll": "wheel_zoom", 
   "toolbar_location": "right", 
   "outline_line_alpha": 0.0 
  } 
  self.plot = figure(**plot_params) 
  self.plot.grid.visible = False 
  self.plot.axis.visible = False 
 
 def Create_Segments(self, start_position, gap_size, clockwise, fade_segments, fade_steps = 
1000, min_alpha = 0.01): 
  self.segment_starts = [] 
  self.segment_ends = [] 
 
  if clockwise: 
   segment_deltas = [-seg_len for seg_len in self.segment_lengths] 
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   gap_delta = -gap_size 
  else: 
   segment_deltas = [seg_len for seg_len in self.segment_lengths] 
   gap_delta = gap_size 
 
  cur_position = start_position 
 
  segment_border_starts = [] 
  segment_border_ends = [] 
 
  for seg_len in segment_deltas: 
   segment_border_starts.append(cur_position) 
   cur_position += seg_len 
   segment_border_ends.append(cur_position) 
   cur_position += gap_delta 
 
  border_source_dict = { 
   "start_angle": segment_border_starts, 
   "end_angle": segment_border_ends, 
   "inner_radius": self.inner_radii, 
   "outer_radius": self.outer_radii, 
   "line_color": self.segment_outline_colors 
  } 
  border_data = ColumnDataSource(data = border_source_dict) 
 
  self.borders = self.plot.annular_wedge(x = 0.5, y = 0.5, start_angle = 
"start_angle", end_angle = "end_angle", 
              
inner_radius = "inner_radius", outer_radius = "outer_radius", 
              
fill_color = None, line_color = "line_color", line_width = 1, 
              
direction = self.direction, start_angle_units = "deg", 
              
end_angle_units = "deg", source = border_data) 
 
  cur_position = start_position 
  cur_seg_starts = [] 
  cur_seg_ends = [] 
 
  if fade_segments: 
   self.segment_alphas = [] 
 
   #Extend the radius and fill color lists to account for the extra alpha 
segments: 
   inner_seg_radii = [r for r in self.inner_radii for _ in 
range(fade_steps)] 
   outer_seg_radii = [r for r in self.outer_radii for _ in 
range(fade_steps)] 
   self.segment_face_colors = [seg_color for seg_color in 
self.segment_face_colors for _ in range(fade_steps)] 
 
   for segment_delta in segment_deltas: 
    alpha_segment_delta = segment_delta / fade_steps 
    alpha_delta = (1.0 - min_alpha) / fade_steps 
    cur_alpha = 1.0 
 
    self.segment_starts.append(cur_position) 
 
    for _ in range(fade_steps): 
     cur_seg_starts.append(cur_position) 
     cur_position += alpha_segment_delta 
     cur_seg_ends.append(cur_position) 
 
     self.segment_alphas.append(cur_alpha) 
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     cur_alpha -= alpha_delta 
 
    self.segment_ends.append(cur_position) 
    cur_position += gap_delta 
 
   cur_legend = [label for label in self.samples for _ in range(fade_steps)] 
 
  else: 
   self.segment_alphas = [1.0] * self.total_samples 
   inner_seg_radii = self.inner_radii 
   outer_seg_radii = self.outer_radii 
 
   for segment_delta in segment_deltas: 
    self.segment_starts.append(cur_position) 
    cur_seg_starts.append(cur_position) 
 
    cur_position += segment_delta 
    self.segment_ends.append(cur_position) 
    cur_seg_ends.append(cur_position) 
 
    cur_position += gap_delta 
 
   cur_legend = self.samples 
 
  source_data_dict = { 
   "start_angle": cur_seg_starts, 
   "end_angle": cur_seg_ends, 
   "inner_radius": inner_seg_radii, 
   "outer_radius": outer_seg_radii, 
   "fill_color": self.segment_face_colors, 
   "fill_alpha": self.segment_alphas, 
   "legend": cur_legend 
  } 
  source_data = ColumnDataSource(data = source_data_dict) 
 
  self.wedges = self.plot.annular_wedge(x = 0.5, y = 0.5, direction = 
self.direction, start_angle = "start_angle", 
             
end_angle = "end_angle", inner_radius = "inner_radius", 
             
outer_radius = "outer_radius", fill_color = "fill_color", 
             
fill_alpha = "fill_alpha", line_color = None, start_angle_units = "deg", 
             
end_angle_units = "deg", legend = "legend", source = source_data) 
 
 def Angle_to_XY(self, angles, radius, angles_in_degrees = True, offset = (0.5, 0.5)): 
  """Converts an angular position to X, Y coordinates. 
 
  Parameters 
  ---------- 
  angles: int/float or iterable of int/float 
   Angle(s) to convert to X, Y coordinate(s). 
  radius: int/float 
   Radius of the circle for which the X, Y coordinates map to. 
  angles_in_degrees: bool 
   Whether the provided angle(s) are in degrees or radians; default is True. 
  offset: tuple of (float, float) 
   The x and y location of the center of the circle; default is (0.5, 0.5). 
 
  Returns 
  ---------- 
  xy_coords: tuple of (float, float) or list of tuples (float, float) 
   X and Y coordinate(s) of the angles provided on a circle with provided 
radius. 
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  """ 
 
  if angles_in_degrees: 
   x = radius * numpy.sin(numpy.deg2rad(angles)) + offset[0] 
   y = radius * numpy.cos(numpy.deg2rad(angles)) + offset[1] 
  else: 
   x = radius * numpy.sin(angles) + offset[0] 
   y = radius * numpy.cos(angles) + offset[1] 
 
  #Return a tuple of (x, y) if a single angle was provided, or a list of (x, y) 
tuples if multiple angles 
  if hasattr(x, "__iter__") and hasattr(y, "__iter__"): 
   xy_coords = list(zip(x, y)) 
  else: 
   xy_coords = (x, y) 
 
  return xy_coords 
 
 def Show(self): 
  """Call Bokeh show function to display the current plot in a browser window.""" 
 
  show(self.plot) 
 
 def Get_Plot_Components(self): 
  """Call Bokeh components function to get the HTML script and div elements 
representing the current plot. 
 
  Returns 
  ---------- 
  plot_script: str 
   The HTML code for the Bokeh JavaScript plot to display. 
  plot_div: str 
   The HTML code for the div element used to place the plot in a page. 
  """ 
 
  plot_script, plot_div = components(self.plot) 
  return plot_script, plot_div 
 
 def Save_HTML(self, filename, title = "Repertoire Comparison Cyrcos Graph"): 
  """Calls Bokeh save function to save an HTML file containing the current plot. 
 
  Parameters 
  ---------- 
  filename: str 
   The desired filename / filepath for the output HTML file. 
  title: str 
   A title to use for the HTML file; default is "Repertoire Comparison 
Cyrcos Graph". 
  """ 
 
  save(self.plot, filename = filename, title = title) 
 
class Repertoire_Upset_Plot(object): 
 def __init__(self, clone_dfs, title = "", min_shared = 2, max_shared = None, 
overlap_bounds = None, 
     clone_col = "CloneID", sample_col = None, highlighted_sets = 
None, figsize = (1200, 900)): 
  """Creates a Repertoire comparison UpSet overlap plot.""" 
 
  df_cols = [clone_col] 
 
  if isinstance(clone_dfs, dict): 
   df_dict = {sample: clone_dfs[sample][df_cols] for sample in clone_dfs} 
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   comparison_df = pandas.concat(list(df_dict.values()), ignore_index = 
True) 
   samples = [i for i in df_dict] 
 
  else: 
   df_cols.append(sample_col) 
 
   comparison_df = clone_dfs[df_cols] 
   samples = clone_dfs[sample_col].drop_duplicates().tolist() 
 
  #Collapse by clone IDs and concatenate the multiple repertoire sample names 
containing each clone using JSON 
  serializer = lambda x: json.dumps(x.tolist()) 
  grouped_df = comparison_df.groupby([clone_col])[sample_col].agg({serializer, 
"count"}) 
  grouped_df = grouped_df.rename(columns = {"<lambda>": "Samples", "count": 
"Sample_Count"}) 
 
  if min_shared is not None: 
   grouped_df = grouped_df[grouped_df["Sample_Count"] >= min_shared] 
  if max_shared is not None: 
   grouped_df = grouped_df[grouped_df["Sample_Count"] <= max_shared] 
 
  #Calculate the total number of clones shared by each combination of samples 
  overlap_counts = grouped_df["Samples"].value_counts() 
  if overlap_bounds is not None: 
   overlap_counts = overlap_counts[overlap_counts >= overlap_bounds[0]] 
   overlap_counts = overlap_counts[overlap_counts <= overlap_bounds[1]] 
 
  total_sets = len(overlap_counts) 
  total_samples = len(samples) 
  MAIN_BAR_WIDTH = 0.5 
  set_colors = ("#82C882", "#BEB4D2", "#FABE82", "#FFFF96", "#326EB4", "#F00082", 
"#BE5A14", "#646464") 
 
  main_plot_params = { 
   "plot_width": int(figsize[0] * 0.6), 
   "plot_height": int(figsize[1] * 0.75), 
   "x_range": Range1d(-MAIN_BAR_WIDTH, total_sets - 1 + MAIN_BAR_WIDTH), 
   "title": title, 
   "tools": "save, reset, help", 
   "outline_line_alpha": 0.0 
  } 
  self.main_plot = figure(**main_plot_params) 
  self.main_plot.grid.visible = False 
  self.main_plot.xaxis.visible = False 
  largest_overlap = overlap_counts.max() 
  self.main_plot.yaxis.bounds = (0, largest_overlap) 
  self.main_plot.yaxis.axis_label_text_font_size = "12pt" 
 
  sample_sets_xs = [i for i in range(total_sets)] 
  default_bar_color = "#96AAC8" 
  sample_sets_colors = [] 
  cur_color_idx = 0 
  cur_color = default_bar_color 
 
  if highlighted_sets is not None: 
   for main_bar_set in overlap_counts.index: 
    for highlighted_subset in highlighted_sets: 
     cur_set = json.loads(main_bar_set) 
     if set(cur_set) == set(highlighted_subset): 
      cur_color = set_colors[cur_color_idx] 
      cur_color_idx += 1 
      break 
     else: 
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      cur_color = default_bar_color 
    sample_sets_colors.append(cur_color) 
  else: 
   sample_sets_colors += [default_bar_color] * len(overlap_counts) 
 
  main_bars_data = { 
   "x": sample_sets_xs, 
   "top": overlap_counts.tolist(), 
   "color": sample_sets_colors 
  } 
  main_bars_source = ColumnDataSource(main_bars_data) 
  self.main_bars = self.main_plot.vbar(x = "x", top = "top", width = 
MAIN_BAR_WIDTH, bottom = 0, 
            color = 
"color", source = main_bars_source) 
  self.main_plot.yaxis.axis_label = "Total Shared Clones" 
 
  sample_sets_plot_params = { 
   "plot_width": int(figsize[0] * 0.6), 
   "plot_height": int(figsize[1] * 0.25), 
   "x_range": self.main_plot.x_range, 
   "y_range": Range1d(-MAIN_BAR_WIDTH, total_samples - 1 + MAIN_BAR_WIDTH, 
bounds = (0, total_samples)), 
   "tools": "save, reset, help", 
   "background_fill_color": "#C8C896", 
   "background_fill_alpha": 0.1, 
   "outline_line_alpha": 0.0 
  } 
  self.sample_sets_plot = figure(**sample_sets_plot_params) 
  self.sample_sets_plot.grid.visible = False 
  self.sample_sets_plot.xaxis.visible = False 
  self.sample_sets_plot.yaxis.axis_label = " "  #Helps keep plot at the same width 
as the main plot dimensions 
  self.sample_sets_plot.yaxis.axis_label_text_font_size = "12pt" 
 
  #Used to pad the Y axis to align properly with the main bar graph 
  self.sample_sets_plot.yaxis[0].ticker = [i for i in range(total_samples)] 
  self.sample_sets_plot.yaxis.major_label_overrides = {"0": str(largest_overlap)} 
 
  #"Draw" invisible axis line / labels / ticks to match main plot width 
  self.sample_sets_plot.yaxis.axis_label_text_color = None 
  self.sample_sets_plot.yaxis.axis_line_color = None 
  self.sample_sets_plot.yaxis.major_tick_line_color = None 
  self.sample_sets_plot.yaxis.major_label_text_color = None 
 
  sample_set_circle_radius = MAIN_BAR_WIDTH * 0.3 
 
  sample_sets_data = { 
   "x": sample_sets_xs * total_samples, 
   "y": [i for i in range(total_samples) for _ in range(total_sets)] 
  } 
  sample_sets_source = ColumnDataSource(sample_sets_data) 
  self.sample_sets_plot.circle(x = "x", y = "y", radius = sample_set_circle_radius, 
fill_color = "#787878", 
          line_color = None, 
alpha = 0.5, source = sample_sets_source) 
 
  #Get the total clones per sample for the total clone counts bar graph 
  clone_counts = comparison_df[sample_col].value_counts() 
 
  #Create the linked circles that mark the compared samples 
  ypos_to_sample = clone_counts.reset_index()["index"].to_dict() 
  sample_to_ypos = {ypos_to_sample[key]: key for key in ypos_to_sample} 
  cur_set_color = "black" 
  cur_color_idx = 0 
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  for x_pos, cur_set in enumerate(overlap_counts.index): 
   sample_set = json.loads(cur_set) 
   cur_set_count = len(sample_set) 
   set_ys = [sample_to_ypos[sample] for sample in sample_set] 
 
   if highlighted_sets is not None: 
    for subset in highlighted_sets: 
     if set(sample_set) == set(subset): 
      cur_set_color = set_colors[cur_color_idx] 
      cur_color_idx += 1 
      break 
     else: 
      cur_set_color = "black" 
 
   #Draw the bars linking the sample set circles 
   min_circle_y = min(set_ys) 
   max_circle_y = max(set_ys) 
   self.sample_sets_plot.line(x = [x_pos, x_pos], y = [min_circle_y, 
max_circle_y], 
            line_width = 5, 
line_color = cur_set_color) 
   #Draw the sample set circles 
   self.sample_sets_plot.circle(x = [x_pos] * cur_set_count, y = set_ys, 
radius = sample_set_circle_radius, 
           fill_color = 
cur_set_color, line_color = None) 
 
  largest_repertoire_clones = clone_counts.max() 
  clone_bar_plot_params = { 
   "plot_width": int(figsize[0] * 0.4), 
   "plot_height": int(figsize[1] * 0.25), 
   "x_range": Range1d(largest_repertoire_clones, 0), 
   "tools": "save, reset, help", 
   "outline_line_alpha": 0.0, 
   "y_axis_location": "right" 
  } 
  self.clone_bar_plot = figure(**clone_bar_plot_params) 
  self.clone_bar_plot.grid.visible = False 
  self.clone_bar_plot.xaxis.axis_label_text_font_size = "12pt" 
  self.clone_bar_plot.yaxis[0].ticker = [i for i in range(total_samples)] 
  sample_ticks_to_labels = {tick_y: sample for tick_y, sample in 
enumerate(clone_counts.index.tolist())} 
  self.clone_bar_plot.yaxis.major_label_overrides = sample_ticks_to_labels 
  self.clone_bar_plot.yaxis.major_tick_line_color = None 
  self.clone_bar_plot.yaxis.major_label_text_baseline = "middle" 
  self.clone_bar_plot.yaxis.major_label_text_font_size = "12pt" 
 
  clone_bars_data = { 
   "y": [i for i in range(total_samples)], 
   "right": clone_counts.tolist() 
  } 
  clone_bars_source = ColumnDataSource(clone_bars_data) 
  self.clone_bars = self.clone_bar_plot.hbar(y = "y", right = "right", height = 
0.5, left = 0, 
               
color = "#96AAC8", source = clone_bars_source) 
  self.clone_bar_plot.xaxis.axis_label = "Total Clones" 
 
  top_left_spacer = Spacer(width = int(figsize[0] * 0.4), height = int(figsize[1] * 
0.75)) 
  self.plots_grid = gridplot([top_left_spacer, self.main_plot, self.clone_bar_plot, 
self.sample_sets_plot], 
           ncols = 2, tools = "save, 
reset, help", toolbar_location = "right") 
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 def Show(self): 
  """Call Bokeh show function to display the current plot in a browser window.""" 
 
  show(self.plots_grid) 
 
 def Get_Plot_Components(self): 
  """Call Bokeh components function to get the HTML script and div elements 
representing the current plot. 
 
  Returns 
  ---------- 
  plot_script: str 
   The HTML code for the Bokeh JavaScript plot to display. 
  plot_div: str 
   The HTML code for the div element used to place the plot in a page. 
  """ 
 
  plot_script, plot_div = components(self.plots_grid) 
  return plot_script, plot_div 
 
 def Save_HTML(self, filename, title = "Repertoire Comparison UpSet Graph"): 
  """Calls Bokeh save function to save an HTML file containing the current plot. 
 
  Parameters 
  ---------- 
  filename: str 
   The desired filename / filepath for the output HTML file. 
  title: str 
   A title to use for the HTML file; default is "Repertoire Comparison UpSet 
Graph". 
  """ 
 
  save(self.plots_grid, filename = filename, title = title) 
 
def VJ_Gene_Plot(clone_df, png = None, title = "", vgene_col = "VGene", jgene_col = "JGene", 
count_col = "Clustered", 
     vgene_colors = vgene_colors, vfamily_colors = vfamily_colors, 
jgene_colors = jgene_colors, 
     vj_gap = 0.008, vgene_gap = 0.0, line_width = 0.4, figsize = 
(800, 800), hover_tooltip = True): 
 """Creates a donut (??) chart for prevalence of all V/J gene pairs in a Repertoire. 
 
 Parameters 
 ---------- 
 clone_df: pandas DataFrame 
 
 Returns 
 ---------- 
 script: str 
 div: str 
 """ 
 
 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  #"sizing_mode": "scale_both", 
  "x_range": Range1d(-0.5, 1.5, bounds = (-1.5, 2.5)), 
  "y_range": Range1d(-0.5, 1.5, bounds = (-1.5, 2.5)), 
  #"outline_line_alpha": 0.0, 
  "title": title, 
  "tools": "pan, wheel_zoom, box_zoom, tap, save, reset, help", 
  "active_scroll": "wheel_zoom", 
  "toolbar_location": "right" 
 } 
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 plot = figure(**figure_params) 
 plot.grid.visible = False 
 plot.axis.visible = False 
 
 if hover_tooltip: 
  hover_tool = HoverTool(tooltips = [("Gene", "@legend"), ("Percent", 
"@percent{(0.00%)}")], 
            point_policy = 
"snap_to_data") 
  plot.add_tools(hover_tool) 
 
 gene_df = clone_df[[vgene_col, jgene_col, count_col]].groupby([vgene_col, 
jgene_col]).agg({count_col: sum}) 
 #Sort by V gene ascending, then J gene ascending 
 gene_df = gene_df.sort_index() 
 gene_df = gene_df.reset_index() 
 
 total_vgenes = len(gene_df[vgene_col].drop_duplicates()) 
 total_gapsize = total_vgenes * vgene_gap 
 remaining_size = 360.0 - float(total_gapsize) 
 gap_size = float(vgene_gap) 
 
 total_counts = gene_df[count_col].sum() 
 gene_df["Arc_Length"] = gene_df[count_col] / total_counts * remaining_size 
 #Starting at 90 degrees (top center of the circle) plus half the gap size 
 #cur_v_start = -90.0 + (gap_size / 2.0) 
 cur_v_start = 90.0 + (gap_size / 2.0) 
 
 v_start_angles = [] 
 v_end_angles = [] 
 vgene_facecolors = [] 
 vgene_hover_colors = [] 
 vfamily_facecolors = [] 
 vfamily_hover_colors = [] 
 v_legend_text = [] 
 v_legend_percent = [] 
 
 j_start_angles = [] 
 j_end_angles = [] 
 jgene_facecolors = [] 
 jgene_hover_colors = [] 
 j_legend_text = [] 
 j_legend_percent = [] 
 
 for vgene in gene_df[vgene_col].drop_duplicates(): 
  cur_vgene_df = gene_df[gene_df[vgene_col] == vgene] 
  vfamily = vgene.split("-")[0] 
 
  vgene_color = vgene_colors[vgene] 
  vgene_hover_color = vgene_color.darken(0.05) 
  vfamily_color = vfamily_colors[vfamily] 
  vfamily_hover_color = vfamily_color.darken(0.05) 
 
  v_arc_length = cur_vgene_df["Arc_Length"].sum() 
  cur_v_end = cur_v_start + v_arc_length 
 
  v_start_angles.append(cur_v_start) 
  v_end_angles.append(cur_v_end) 
 
  vgene_facecolors.append(vgene_color) 
  vgene_hover_colors.append(vgene_hover_color) 
  vfamily_facecolors.append(vfamily_color) 
  vfamily_hover_colors.append(vfamily_hover_color) 
 
  v_legend_text.append(vgene) 
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  cur_vgene_counts = cur_vgene_df["Clustered"].sum() 
  v_legend_percent.append(cur_vgene_counts / total_counts) 
 
  cur_j_start = cur_v_start 
  for jgene, jgene_arc_length in zip(cur_vgene_df[jgene_col], 
cur_vgene_df["Arc_Length"]): 
   cur_j_end = cur_j_start + jgene_arc_length 
 
   jgene_color = jgene_colors[jgene] 
   jgene_hover_color = jgene_color.darken(0.05) 
 
   j_start_angles.append(cur_j_start) 
   j_end_angles.append(cur_j_end) 
 
   jgene_facecolors.append(jgene_color) 
   jgene_hover_colors.append(jgene_hover_color) 
 
   cur_j_start = cur_j_end 
 
   j_legend_text.append(jgene) 
   cur_jgene_counts = cur_vgene_df[cur_vgene_df[jgene_col] == 
jgene]["Clustered"].sum() 
   j_legend_percent.append(cur_jgene_counts / cur_vgene_counts) 
 
  cur_v_start = cur_v_end + gap_size 
 
 v_wedge_data = { 
  "start_angle": v_start_angles, 
  "end_angle": v_end_angles, 
  "fill_color": vgene_facecolors, 
  "legend": v_legend_text, 
  "percent": v_legend_percent, 
  "vgene_facecolors": vgene_facecolors, 
  "vfamily_facecolors": vfamily_facecolors, 
  "hover_fill_color": vgene_hover_colors, 
  "vgene_hover_colors": vgene_hover_colors, 
  "vfamily_hover_colors": vfamily_hover_colors 
 } 
 v_source = ColumnDataSource(v_wedge_data) 
 
 v_inner_rad = 0.4 
 v_outer_rad = 0.692 
 
 plot.annular_wedge(x = 0.5, y = 0.5, start_angle = "start_angle", end_angle = "end_angle", 
        fill_color = "fill_color", selection_fill_color = 
"fill_color", 
        nonselection_fill_color = "fill_color", 
selection_fill_alpha = 1.0, 
        nonselection_fill_alpha = 0.2, hover_fill_color = 
"hover_fill_color", inner_radius = v_inner_rad, 
        outer_radius = v_outer_rad, line_color = "black", 
line_width = line_width, source = v_source, 
        legend = "legend", start_angle_units = "deg", 
end_angle_units = "deg") 
 
 j_wedge_data = { 
  "start_angle": j_start_angles, 
  "end_angle": j_end_angles, 
  "fill_color": jgene_facecolors, 
  "legend": j_legend_text, 
  "percent": j_legend_percent, 
  "hover_fill_color": jgene_hover_colors 
 } 
 
 j_source = ColumnDataSource(j_wedge_data) 
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 j_inner_rad = v_outer_rad + vj_gap 
 j_outer_rad = j_inner_rad + 0.15 
 
 plot.annular_wedge(x = 0.5, y = 0.5, start_angle = "start_angle", end_angle = "end_angle", 
        fill_color = "fill_color", selection_fill_color = 
"fill_color", 
        nonselection_fill_color = "fill_color", 
selection_fill_alpha = 1.0, 
        nonselection_fill_alpha = 0.2, hover_fill_color = 
"hover_fill_color", inner_radius = j_inner_rad, 
        outer_radius = j_outer_rad, line_color = "black", 
line_width = line_width, source = j_source, 
        legend = "legend", start_angle_units = "deg", 
end_angle_units = "deg") 
 
 if png is not None: 
  export_png(plot, png) 
 
 change_v_color = CustomJS(args = {"source": v_source}, code = """ 
  var selection = cb_obj.value; 
  var new_color_array; 
  var new_hover_array; 
  if(selection.toLowerCase().indexOf("gene") !== -1) { 
   new_color_array = source.data["vgene_facecolors"]; 
   new_hover_array = source.data["vgene_hover_colors"]; 
  } else { 
   new_color_array = source.data["vfamily_facecolors"]; 
   new_hover_array = source.data["vfamily_hover_colors"]; 
  } 
  var fill_color = source.data["fill_color"]; 
  var hover_fill_color = source.data["hover_fill_color"]; 
  for(idx = 0; idx < fill_color.length; idx++) { 
   fill_color[idx] = new_color_array[idx]; 
   hover_fill_color[idx] = new_hover_array[idx]; 
  } 
  source.change.emit(); 
 """) 
 
 v_data_color_by = Select(title = "Color by:", options = ["V Gene", "V Family"], 
        value = "V Gene", callback = 
change_v_color) 
 
 plot_layout = column(v_data_color_by, plot) 
 return plot_layout 
 
def Violin_SHM_Plot(clone_df, png = None, title = "", vshm_col = "V_SHM", jshm_col = "J_SHM", 
split_col = None, 
     quads = True, violin_width = 0.8, line_width = 0.4, 
figsize = (1000, 600), hover_tooltip = True): 
 """Creates a SHM violin plot that can be used to compare multiple categories in a 
Repertoire. 
 
 Parameters 
 ---------- 
 clone_df: pandas DataFrame 
 
 Returns 
 ---------- 
 script: str 
 div: str 
 """ 
 
 figure_params = { 
  "plot_width": figsize[0], 
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  "plot_height": figsize[1], 
  "y_range": Range1d(-0.005, 0.3, bounds = (-0.01, 0.31)), 
  "title": title, 
  "tools": "pan, wheel_zoom, box_zoom, save, reset, help", 
  "active_scroll": "wheel_zoom", 
  "toolbar_location": "right" 
 } 
 
 plot = figure(**figure_params) 
 plot.grid.visible = False 
 plot.xaxis.minor_tick_line_color = None 
 plot.xaxis.major_label_text_font_size = "10pt" 
 plot.yaxis.axis_label = "V/J Gene SHM" 
 plot.yaxis.major_label_text_font_size = "10pt" 
 plot.yaxis.formatter = NumeralTickFormatter(format = "0.00%") 
 
 if hover_tooltip: 
  hover_tooltips = [("Mean SHM", "@mean{(0.00%)}"), ("Max SHM", "@max{(0.00%)}"), 
        ("25th Percentile", "@quantile25{(0.00%)}"), 
("75th Percentile", "@quantile75{(0.00%)}")] 
  hover_tool = HoverTool(point_policy = "follow_mouse", tooltips = hover_tooltips) 
  plot.add_tools(hover_tool) 
 
 shm_cols = [] 
 if vshm_col is not None: 
  shm_cols.append(vshm_col) 
 if jshm_col is not None: 
  shm_cols.append(jshm_col) 
 
 #To compare samples, add the sample column to split on to the DataFrame 
 if split_col is not None: 
  shm_cols.append(split_col) 
  shm_df = clone_df[shm_cols] 
 
  samples = [] 
  shm_dfs = [] 
  for sample, df in shm_df.groupby([split_col]): 
   samples.append(sample) 
   shm_dfs.append(df) 
 
 else: 
  samples = ["Repertoire"] 
  shm_dfs = [clone_df[shm_cols]] 
 
 vshm_violin_color = "lightgreen" 
 jshm_violin_color = "slateblue" 
 violin_xs = [] 
 violin_ys = [] 
 violin_colors = [] 
 violin_legends = [] 
 hover_means = [] 
 hover_maxes = [] 
 hover_25quantiles = [] 
 hover_75quantiles = [] 
 x_location_to_category = {} 
 violin_x_offset = 0 
 
 for sample, df in zip(samples, shm_dfs): 
  #Create the density functions 
  if vshm_col in df.columns: 
   vshm_mean = df[vshm_col].mean() 
   vshm_max = df[vshm_col].max() 
   hover_means.append([vshm_mean]) 
   hover_maxes.append([vshm_max]) 
   hover_25quantiles.append([df[vshm_col].quantile(0.25)]) 
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   hover_75quantiles.append([df[vshm_col].quantile(0.75)]) 
 
   y_points = numpy.linspace(0.0, vshm_max, 300)  #Create the y range of 300 
points from min to max 
   reversed_y_points = numpy.flipud(y_points) 
   v_kernel = gaussian_kde(df[vshm_col], "scott") 
   vshm_x_points = v_kernel(y_points) 
 
   #Normalize the x range to standard width; negate V SHM points to place it 
on the left half of the violin 
   vshm_x_points = -vshm_x_points / vshm_x_points.max() * violin_width / 2.0 
 
   #Return to the patch starting points if a different violin is drawn for 
the other half, or mirror data 
   if jshm_col in df.columns: 
    vshm_x_points = numpy.append(vshm_x_points, 
abs(vshm_x_points).min()) 
    vshm_y_points = numpy.append(y_points, y_points.min()) 
   else: 
    reversed_vshm_x = numpy.flipud(-vshm_x_points) 
    vshm_x_points = numpy.append(vshm_x_points, reversed_vshm_x) 
    vshm_y_points = numpy.append(y_points, reversed_y_points) 
 
   violin_xs.append(vshm_x_points + violin_x_offset) 
   violin_ys.append(vshm_y_points) 
   violin_colors.append(vshm_violin_color) 
   violin_legends.append("V Gene SHM") 
 
  if jshm_col in df.columns: 
   jshm_mean = df[jshm_col].mean() 
   jshm_max = df[jshm_col].max() 
   hover_means.append([jshm_mean]) 
   hover_maxes.append([jshm_max]) 
   hover_25quantiles.append([df[jshm_col].quantile(0.25)]) 
   hover_75quantiles.append([df[jshm_col].quantile(0.75)]) 
 
   y_points = numpy.linspace(0.0, jshm_max, 300)  #Create the y range of 300 
points from min to max 
   reversed_y_points = numpy.flipud(y_points) 
   j_kernel = gaussian_kde(df[jshm_col], "scott") 
   jshm_x_points = j_kernel(y_points) 
 
   #Normalize the x range to standard width 
   jshm_x_points = jshm_x_points / jshm_x_points.max() * violin_width / 2.0 
 
   #Return to the patch starting points if a different violin is drawn for 
the other half, or mirror data 
   if vshm_col in df.columns: 
    jshm_x_points = numpy.append(jshm_x_points, 
abs(jshm_x_points).min()) 
    jshm_y_points = numpy.append(y_points, y_points.min()) 
   else: 
    reversed_jshm_x = numpy.flipud(-jshm_x_points) 
    jshm_x_points = numpy.append(jshm_x_points, reversed_jshm_x) 
    jshm_y_points = numpy.append(y_points, reversed_y_points) 
 
   violin_xs.append(jshm_x_points + violin_x_offset) 
   violin_ys.append(jshm_y_points) 
   violin_colors.append(jshm_violin_color) 
   violin_legends.append("J Gene SHM") 
 
  if quads: 
   pass 
 
  x_location_to_category[violin_x_offset] = sample 
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  violin_x_offset += violin_width * 1.2 
 
 violin_data = { 
  "xs": violin_xs, 
  "ys": violin_ys, 
  "fill_color": violin_colors, 
  "legend": violin_legends, 
  "mean": hover_means, 
  "max": hover_maxes, 
  "quantile25": hover_25quantiles, 
  "quantile75": hover_75quantiles 
 } 
 violin_source = ColumnDataSource(violin_data) 
 
 plot.patches(xs = "xs", ys = "ys", fill_color = "fill_color", line_color = "black", 
line_width = line_width, 
     legend = "legend", source = violin_source) 
 
 #Replace / remap the X axis tickers to the categorical samples 
 plot.xaxis.ticker = FixedTicker(ticks = [loc for loc in x_location_to_category]) 
 plot.xaxis.major_label_overrides = x_location_to_category 
 plot.x_range.bounds = (min(x_location_to_category.keys()) - 1, 
max(x_location_to_category.keys()) + 1) 
 
 if png is not None: 
  export_png(plot, png) 
 
 return plot 
 
def Mosaic_Plot(clone_df, png = None, title = "", top_clones = 5000, count_col = "Clustered", 
vgene_col = "VGene", 
    jgene_col = "JGene", isotype_col = "Isotype", vshm_col = "V_SHM", 
jshm_col = "J_SHM", 
    vgene_colors = vgene_colors, vfamily_colors = vfamily_colors, 
jgene_colors = jgene_colors, 
    isotype_colors = isotype_colors, line_width = 0.3, figsize = 
(600, 600), hover_tooltip = True): 
 """""" 
 
 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  #"sizing_mode": "scale_both", 
  "x_range": Range1d(-0.1, 1.1, bounds = (-1.0, 2.0)), 
  "y_range": Range1d(-0.1, 1.1, bounds = (-1.0, 2.0)), 
  #"outline_line_alpha": 0.0, 
  "title": title, 
  "tools": "pan, wheel_zoom, box_zoom, save, reset, help", 
  "active_scroll": "wheel_zoom", 
  "toolbar_location": "right" 
 } 
 
 plot = figure(**figure_params) 
 plot.grid.visible = False 
 plot.axis.visible = False 
 
 hover_tooltips = [("Clone ID", "@CloneID")] 
 
 info_cols = [count_col] 
 if vgene_col is not None: 
  info_cols.append(vgene_col) 
  hover_tooltips.append(("V Gene", "@" + vgene_col)) 
 if jgene_col is not None: 
  info_cols.append(jgene_col) 
  hover_tooltips.append(("J Gene", "@" + jgene_col)) 
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 if isotype_col is not None: 
  info_cols.append(isotype_col) 
  hover_tooltips.append(("Isotype", "@" + isotype_col)) 
 if vshm_col is not None: 
  info_cols.append(vshm_col) 
  hover_tooltips.append(("V Gene SHM", "@" + vshm_col + "{(0.00%)}")) 
 if jshm_col is not None: 
  info_cols.append(jshm_col) 
  hover_tooltips.append(("J Gene SHM", "@" + jshm_col + "{(0.00%)}")) 
 
 if hover_tooltip: 
  hover_tool = HoverTool(point_policy = "snap_to_data", tooltips = hover_tooltips) 
  plot.add_tools(hover_tool) 
 
 mosaic_df = clone_df[info_cols] 
 mosaic_df = mosaic_df.sort_values([count_col], ascending = [False]) 
 
 if top_clones: 
  mosaic_df = mosaic_df.head(top_clones) 
 
 total_area = float(mosaic_df[count_col].sum()) 
 mosaic_df["Clone_Frequencies"] = mosaic_df[count_col].astype(float) / total_area 
 
 hover_tooltips.append(("Clone Frequency", "@Clone_Frequencies{(0.00%)}")) 
 
 mosaic_rects = squarify(mosaic_df["Clone_Frequencies"].tolist(), 0.0, 0.0, 1.0, 1.0) 
 #Add half width/height to x/y position for center points 
 mosaic_df["x"] = [rect["x"] + rect["dx"] / 2.0 for rect in mosaic_rects] 
 mosaic_df["y"] = [rect["y"] + rect["dy"] / 2.0 for rect in mosaic_rects] 
 mosaic_df["width"] = [rect["dx"] for rect in mosaic_rects] 
 mosaic_df["height"] = [rect["dy"] for rect in mosaic_rects] 
 
 #By default there is no legend text, since colors are alternating and non-informative 
 mosaic_df["legend"] = "" 
 mosaic_df["Empty_Legend"] = "" 
 
 alternating_colors = [RGB(102, 194, 165), RGB(252, 141, 98), RGB(141, 160, 203)] 
 alt2_color_cycle = cycle(alternating_colors[0:2]) 
 alt3_color_cycle = cycle(alternating_colors) 
 mosaic_df["alternating2_colors"] = [next(alt2_color_cycle) for _ in mosaic_rects] 
 mosaic_df["alternating3_colors"] = [next(alt3_color_cycle) for _ in mosaic_rects] 
 #Default color scheme is alternating 3 colors 
 mosaic_df["fill_color"] = mosaic_df["alternating3_colors"] 
 
 #Set up various mosaic coloring options and associated legends 
 color_select_options = ["Alternating (2)", "Alternating (3)"] 
 if vgene_col in mosaic_df.columns: 
  mosaic_df["vgene_colors"] = mosaic_df[vgene_col].map(vgene_colors) 
  vfamilies = mosaic_df[vgene_col].str.split("-").str[0] 
  mosaic_df["vfamily_colors"] = vfamilies.map(vfamily_colors) 
  color_select_options.append("V Gene") 
  color_select_options.append("V Family") 
  mosaic_df["VGene_Legend"] = mosaic_df[vgene_col] 
  mosaic_df["VFamily_Legend"] = mosaic_df[vgene_col].str.split("-").str[0] 
 if jgene_col in mosaic_df.columns: 
  mosaic_df["jgene_colors"] = mosaic_df[jgene_col].map(jgene_colors) 
  color_select_options.append("J Gene") 
  mosaic_df["JGene_Legend"] = mosaic_df[jgene_col] 
 if isotype_col in mosaic_df.columns: 
  mosaic_df["isotype_colors"] = mosaic_df[isotype_col].map(isotype_colors) 
  color_select_options.append("Isotype") 
  mosaic_df["Isotype_Legend"] = mosaic_df[isotype_col] 
 
 #Using viridis as a quantitative heatmap color scheme for SHM values 
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 #The SHM values are binned into 180 groups; viridis in >180 bins uses some values twice, 
which pandas.cut can't use 
 shm_viridis = list(viridis(180)) 
 colorbar_tick_formatter = NumeralTickFormatter(format = "0.00%") 
 
 if vshm_col in mosaic_df.columns: 
  vshm_min = mosaic_df[vshm_col].min() 
  vshm_max = mosaic_df[vshm_col].max() 
  #Use pandas.cut to bin the V gene SHM values into the heatmap colors 
  mosaic_df["vshm_colors"] = pandas.cut(mosaic_df[vshm_col], bins = 180, labels = 
shm_viridis) 
  color_select_options.append("V Gene SHM") 
 
  vshm_color_mapper = LinearColorMapper(palette = shm_viridis, low = vshm_min, high 
= vshm_max) 
  vshm_ticks = FixedTicker(ticks = numpy.linspace(vshm_min, vshm_max, 8)) 
  vshm_colorbar = ColorBar(color_mapper = vshm_color_mapper, location = (0, 0), 
name = "vshm_colorbar", 
         label_standoff = 12, formatter 
= colorbar_tick_formatter, ticker = vshm_ticks) 
  plot.add_layout(vshm_colorbar, "right") 
 
 if jshm_col in mosaic_df.columns: 
  jshm_min = mosaic_df[jshm_col].min() 
  jshm_max = mosaic_df[jshm_col].max() 
  #Use pandas.cut to bin the J gene SHM values into the heatmap colors 
  mosaic_df["jshm_colors"] = pandas.cut(mosaic_df[jshm_col], bins = 180, labels = 
shm_viridis) 
  color_select_options.append("J Gene SHM") 
 
  jshm_color_mapper = LinearColorMapper(palette = shm_viridis, low = jshm_min, high 
= jshm_max) 
  jshm_ticks = FixedTicker(ticks = numpy.linspace(jshm_min, jshm_max, 8)) 
  jshm_colorbar = ColorBar(color_mapper = jshm_color_mapper, location = (0, 0), 
name = "jshm_colorbar", 
         label_standoff = 12, formatter 
= colorbar_tick_formatter, ticker = jshm_ticks) 
  plot.add_layout(jshm_colorbar, "right") 
 
 mosaic_source = ColumnDataSource(mosaic_df) 
 
 plot.rect(x = "x", y = "y", width = "width", height = "height", fill_color = "fill_color", 
legend = "legend", 
     line_color = "black", line_width = line_width, source = mosaic_source) 
 
 #By default, the plot legend and ColorBar should be turned off (since the color is 
repeating and uninformative) 
 plot.legend[0].visible = False 
 vshm_colorbar = plot.select("vshm_colorbar")[0] 
 jshm_colorbar = plot.select("jshm_colorbar")[0] 
 vshm_colorbar.visible = False 
 jshm_colorbar.visible = False 
 
 if png is not None: 
  export_png(plot, png) 
 
 change_args = { 
  "source": mosaic_source, 
  "legend_obj": plot.legend[0], 
  "vshm_colorbar_obj": vshm_colorbar, 
  "jshm_colorbar_obj": jshm_colorbar 
 } 
 change_rect_color = CustomJS(args = change_args, code = """ 
  var selection = cb_obj.value.toLowerCase(); 
  var new_color_array; 



 138 

  var new_legend_array; 
 
  if(selection.indexOf("v gene shm") !== -1) { 
   new_color_array = source.data["vshm_colors"]; 
   new_legend_array = source.data["Empty_Legend"]; 
   legend_obj.visible = false; 
   vshm_colorbar_obj.visible = true; 
   jshm_colorbar_obj.visible = false; 
  } else if(selection.indexOf("j gene shm") !== -1) { 
   new_color_array = source.data["jshm_colors"]; 
   new_legend_array = source.data["Empty_Legend"]; 
   legend_obj.visible = false; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = true; 
  } else if(selection.indexOf("v gene") !== -1) { 
   new_color_array = source.data["vgene_colors"]; 
   new_legend_array = source.data["VGene_Legend"]; 
   legend_obj.visible = true; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } else if(selection.indexOf("v family") !== -1) { 
   new_color_array = source.data["vfamily_colors"]; 
   new_legend_array = source.data["VFamily_Legend"]; 
   legend_obj.visible = true; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } else if(selection.indexOf("j gene") !== -1) { 
   new_color_array = source.data["jgene_colors"]; 
   new_legend_array = source.data["JGene_Legend"]; 
   legend_obj.visible = true; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } else if(selection.indexOf("isotype") !== -1) { 
   new_color_array = source.data["isotype_colors"]; 
   new_legend_array = source.data["Isotype_Legend"]; 
   legend_obj.visible = true; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } else if(selection.indexOf("2") !== -1) { 
   new_color_array = source.data["alternating2_colors"]; 
   new_legend_array = source.data["Empty_Legend"]; 
   legend_obj.visible = false; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } else { 
   new_color_array = source.data["alternating3_colors"]; 
   new_legend_array = source.data["Empty_Legend"]; 
   legend_obj.visible = false; 
   vshm_colorbar_obj.visible = false; 
   jshm_colorbar_obj.visible = false; 
  } 
 
  var fill_color = source.data["fill_color"]; 
  var legend = source.data["legend"]; 
  for(idx = 0; idx < fill_color.length; idx++) { 
   fill_color[idx] = new_color_array[idx]; 
   legend[idx] = new_legend_array[idx]; 
  } 
  source.change.emit(); 
 """) 
 
 patch_coloring_select = Select(title = "Color by:", options = color_select_options, value 
= "Alternating (3)", 
         callback = change_rect_color) 
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 plot_layout = column(patch_coloring_select, plot) 
 
 return plot_layout 
 
def Burtin_VGene_SHM_Plot(clone_df, png = None, title = "", vgene_col = "VGene", vshm_col = 
"V_SHM", split_col = None, 
        vfamily_colors = vfamily_colors, label_arc = 
20, figsize = (900, 900)): 
 """""" 
 
 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  "x_axis_type": None, 
  "y_axis_type": None, 
  "x_range": Range1d(-45, 45, bounds = (-50, 50)), 
  "y_range": Range1d(-45, 45, bounds = (-50, 50)), 
  "title": title, 
  "tools": "pan, wheel_zoom, box_zoom, save, reset, help", 
  "active_scroll": "wheel_zoom", 
  "toolbar_location": "right", 
  "background_fill_color": RGB(216, 216, 216) 
 } 
 
 plot = figure(**figure_params) 
 plot.grid.visible = False 
 plot.axis.visible = False 
 
 label_offset = 90 #Offset the SHM % labels to the top of the plot 
 plot_data_degrees = 360 - label_arc 
 initial_angle = label_offset + label_arc / 2 
 ending_angle = label_offset + 360 - label_arc / 2 
 plot_inner_rad = 10 
 plot_outer_rad = 35 
 plot_thickness = plot_outer_rad - plot_inner_rad 
 
 df_cols = [vgene_col, vshm_col] 
 #If comparing multiple samples, add the sample column to split on to the DataFrame 
 if split_col is not None: 
  df_cols.append(split_col) 
 
 vgene_shm_df = clone_df[df_cols].sort_values([vgene_col]) 
 
 total_vgenes = len(vgene_shm_df[vgene_col].drop_duplicates()) 
 vgene_arc_degrees = plot_data_degrees / total_vgenes 
 
 #Create and color arc backgrounds by V family 
 vgene_family_df = vgene_shm_df[[vgene_col]].drop_duplicates().reset_index(drop = True) 
 vgene_family_df["VFamily"] = vgene_family_df[vgene_col].str.split("-").str[0] 
 vgene_family_df["fill_color"] = vgene_family_df["VFamily"].map(vfamily_colors) 
 vfamily_arc_length = plot_data_degrees / total_vgenes 
 vgene_family_df["start_angle"] = vgene_family_df.index * vfamily_arc_length + 
initial_angle 
 vgene_family_df["end_angle"] = vgene_family_df["start_angle"] + vfamily_arc_length 
 
 vfamily_source = ColumnDataSource(vgene_family_df) 
 plot.annular_wedge(x = 0, y = 0, start_angle = "start_angle", end_angle = "end_angle", 
fill_color = "fill_color", 
        inner_radius = plot_inner_rad, outer_radius = 
plot_outer_rad, line_color = None, 
        source = vfamily_source, start_angle_units = "deg", 
end_angle_units = "deg") 
 
 if split_col in vgene_shm_df: 
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  vgene_shm_dfs = [sample_df_tup for sample_df_tup in 
vgene_shm_df.groupby([split_col])] 
 
  samples = [] 
  grouped_vgene_shm_dfs = [] 
  for sample, df in vgene_shm_dfs: 
   samples.append(sample) 
  
 grouped_vgene_shm_dfs.append(df.groupby([vgene_col])[vshm_col].agg({"mean"})) 
 
  #Add the V genes that may be present in one sample but not in the current one 
  all_vgenes = vgene_shm_df[vgene_col].drop_duplicates().tolist() 
  grouped_vgene_shm_dfs = [df.reindex(all_vgenes).reset_index() for df in 
grouped_vgene_shm_dfs] 
 
  vshm_min = min([df["mean"].min() for df in grouped_vgene_shm_dfs]) 
  vshm_max = max([df["mean"].max() for df in grouped_vgene_shm_dfs]) 
 
 else: 
  grouped_vgene_shm_df = 
vgene_shm_df.groupby([vgene_col])[vshm_col].agg({"mean"}).reset_index() 
  grouped_vgene_shm_df = 
grouped_vgene_shm_df.sort_values([vgene_col]).reset_index(drop = True) 
 
  vshm_min = grouped_vgene_shm_df["mean"].min() 
  vshm_max = grouped_vgene_shm_df["mean"].max() 
 
  samples = ["All"] 
  grouped_vgene_shm_dfs = [grouped_vgene_shm_df] 
 
 #Create the labels and radial axis lines for the SHM data 
 shm_labels = ["{0:.1%}".format(shm) for shm in numpy.linspace(vshm_min, vshm_max, 7)] 
 shm_label_radii = numpy.linspace(plot_inner_rad, plot_outer_rad, 7) 
 plot.circle(x = 0, y = 0, radius = shm_label_radii, fill_color = None, line_color = 
"white") 
 plot.text(x = 0, y = shm_label_radii[1:], text = shm_labels[1:], text_font_size = "10pt", 
     text_align = "center", text_baseline = "middle") 
 
 #Create line-width annular wedges to separate V genes 
 sep_angles = numpy.linspace(initial_angle, ending_angle, total_vgenes + 1) 
 sep_inner_radius = plot_inner_rad - 1 
 sep_outer_radius = plot_outer_rad + 1 
 plot.annular_wedge(x = 0, y = 0, start_angle = sep_angles, end_angle = sep_angles, 
fill_color = None, 
        inner_radius = sep_inner_radius, outer_radius = 
sep_outer_radius, line_color = "black", 
        start_angle_units = "deg", end_angle_units = "deg") 
 
 #Gene text labels; text angle location is the midpoint of the V gene separation lines 
 text_radius = plot_outer_rad + 3.5 
 text_radian_locs = numpy.deg2rad((sep_angles[1:] + sep_angles[:-1]) / 2) 
 text_x = text_radius * numpy.cos(text_radian_locs) 
 text_y = text_radius * numpy.sin(text_radian_locs) 
 #Angle the text based on the position around the circle; reverse the left half so the text 
isn't upside-down 
 mid_graph_radian = numpy.deg2rad(label_offset + 180) 
 text_angles = [rad if rad > mid_graph_radian else rad + numpy.pi for rad in 
text_radian_locs] 
 plot.text(x = text_x, y = text_y, text = vgene_family_df[vgene_col], angle = text_angles, 
     text_font_size = "10pt", text_align = "center", text_baseline = 
"middle") 
 
 #Finally draw the bars and legend for the mean SHM values for all clones of a specific V 
gene 
 total_samples = len(grouped_vgene_shm_dfs) 
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 vgene_arc_radians = numpy.deg2rad(vgene_arc_degrees) 
 bar_width = vgene_arc_radians / (total_samples + 1) 
 spacer_width = bar_width / (total_samples + 1) 
 sample_colors = (RGB(60, 60, 60), RGB(130, 40, 40), RGB(60, 60, 130), RGB(10, 50, 100), 
RGB(150, 100, 20)) 
 sample_label_ys = numpy.linspace(-total_samples, total_samples, total_samples) 
 arc_starts = text_radian_locs - (vgene_arc_radians / 2) + spacer_width 
 
 for sample, cur_df in enumerate(grouped_vgene_shm_dfs): 
  bar_start_angles = arc_starts + sample * (bar_width + spacer_width) 
  bar_end_angles = bar_start_angles + bar_width 
  cur_df["Normalized_SHM"] = cur_df["mean"] / vshm_max 
 
  shm_bars = cur_df["Normalized_SHM"] * plot_thickness + plot_inner_rad 
  plot.annular_wedge(x = 0, y = 0, start_angle = bar_start_angles, end_angle = 
bar_end_angles, line_color = None, 
        inner_radius = plot_inner_rad, outer_radius = 
shm_bars, fill_color = sample_colors[sample]) 
 
  if total_samples > 1: 
   plot.rect(x = -2, y = sample_label_ys[sample], width = 2.5, height = 1.5, 
color = sample_colors[sample]) 
   plot.text(x = 0, y = sample_label_ys[sample], text = {"value": 
samples[sample]}, text_font_size = "10pt", 
       text_baseline = "middle") 
 
 if png is not None: 
  export_png(plot, png) 
 
 return plot 
 
def Diversity_Plot(clone_df, png = None, title = "", count_col = "Clustered", split_col = None, 
line_width = 3, 
       add_control_diversities = True, y_axis_type = "log", figsize = 
(1000, 700)): 
 """""" 
 
 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  "x_range": Range1d(0, 10), 
  "y_axis_type": y_axis_type, 
  "title": title, 
  "tools": "save, help", 
  "toolbar_location": "right" 
 } 
 
 plot = figure(**figure_params) 
 plot.xgrid.grid_line_alpha = 0.0 
 plot.xaxis.axis_label = "Order (N)" 
 plot.yaxis.axis_label = "Hill Diversity Constant" 
 plot.yaxis.formatter = BasicTickFormatter() 
 
 #If comparing multiple samples, add the sample column to split on to the DataFrame 
 if split_col is not None: 
  diversity_df = clone_df[[count_col, split_col]] 
 
  samples = [] 
  diversity_dfs = [] 
  for sample, df in diversity_df.groupby([split_col]): 
   samples.append(sample) 
   diversity_dfs.append(df) 
 
 else: 
  samples = ["Repertoire"] 
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  diversity_dfs = [clone_df[[count_col]]] 
 
 sample_colors = (RGB(30, 160, 120), RGB(220, 90, 0), RGB(120, 110, 180), RGB(230, 40, 
140)) 
 for sample, df, line_color in zip(samples, diversity_dfs, sample_colors[:len(samples)]): 
  hill_indices = Hill_Diversity_Index(df[count_col]) 
  n_orders = [i[0] for i in hill_indices] 
  order_diversities = [i[1] for i in hill_indices] 
 
  #ADD MORE LINE STYLES (dotted, etc.) 
  plot.line(x = n_orders, y = order_diversities, color = line_color, line_width = 
line_width, legend = sample) 
 
 if add_control_diversities: 
  total_clones = max([len(i) for i in diversity_dfs]) 
  total_counts = max([df[count_col].sum() for df in diversity_dfs]) 
 
  #Very highly polarized data creates a sample in which the top 20 clones are 20% 
of the total by prevalence 
  top20_20_data = [total_counts * 0.2 / 20] * 20 
  top20_20_data += [total_counts * 0.8 / (total_clones - 20) for _ in 
range(total_clones - 20)] 
  #Highly polarized data has the top 20 clones at 15% of the total 
  top20_15_data = [total_counts * 0.15 / 20] * 20 
  top20_15_data += [total_counts * 0.85 / (total_clones - 20) for _ in 
range(total_clones - 20)] 
  #Moderately polarized data has the top 20 clones at 10% of the total 
  top20_10_data = [total_counts * 0.1 / 20] * 20 
  top20_10_data += [total_counts * 0.9 / (total_clones - 20) for _ in 
range(total_clones - 20)] 
  #Lowly polarized data has the top 20 clones at 5% of the total 
  top20_5_data = [total_counts * 0.05 / 20] * 20 
  top20_5_data += [total_counts * 0.95 / (total_clones - 20) for _ in 
range(total_clones - 20)] 
 
  top20_20_diversities = [i[1] for i in Hill_Diversity_Index(top20_20_data)] 
  top20_15_diversities = [i[1] for i in Hill_Diversity_Index(top20_15_data)] 
  top20_10_diversities = [i[1] for i in Hill_Diversity_Index(top20_10_data)] 
  top20_5_diversities = [i[1] for i in Hill_Diversity_Index(top20_5_data)] 
  plot.line(x = n_orders, y = top20_20_diversities, color = RGB(160, 200, 230), 
alpha = 0.8, line_dash = (12,), 
      line_width = line_width, legend = "Very Highly Polarized (Top 
20 Clones 20%)") 
  plot.line(x = n_orders, y = top20_15_diversities, color = RGB(30, 120, 180), 
alpha = 0.8, line_dash = (12,), 
      line_width = line_width, legend = "Highly Polarized (Top 20 
Clones 15%)") 
  plot.line(x = n_orders, y = top20_10_diversities, color = RGB(180, 220, 140), 
alpha = 0.8, line_dash = (12,), 
      line_width = line_width, legend = "Moderately Polarized (Top 20 
Clones 10%)") 
  plot.line(x = n_orders, y = top20_5_diversities, color = RGB(50, 160, 40), alpha 
= 0.8, line_dash = (12,), 
      line_width = line_width, legend = "Lowly Polarized (Top 20 
Clones 5%)") 
 
 if png is not None: 
  export_png(plot, png) 
 
 return plot 
 
def CDR_Length_Histogram_Plot(clone_df, png = None, title = "", cdr_col = "CDR3_AA", split_col = 
None, 
         quantile_boundries = (0.0001, 0.9999), 
figsize = (800, 600)): 
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 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  "title": title, 
  "tools": "pan, wheel_zoom, box_zoom, save, reset, help", 
  "active_scroll": "wheel_zoom", 
  "toolbar_location": "right" 
 } 
 
 plot = figure(**figure_params) 
 plot.grid.visible = False 
 plot.xaxis.minor_tick_line_color = None 
 plot.xaxis.axis_label = "CDR3 Length" 
 plot.xaxis.axis_label_text_font_size = "12pt" 
 plot.xaxis.major_label_text_font_size = "12pt" 
 plot.yaxis.axis_label = "P(x)" 
 plot.yaxis.axis_label_text_font_size = "12pt" 
 plot.yaxis.major_label_text_font_size = "12pt" 
 
 #To compare samples, add the sample column to split on to the DataFrame 
 if split_col is not None: 
  cdr3_df = clone_df[[cdr_col, split_col]] 
 
  samples = [] 
  cdr3_lens = [] 
  for sample, df in cdr3_df.groupby([split_col]): 
   samples.append(sample) 
   cdr3_lens.append(df[cdr_col].str.len()) 
 
 else: 
  samples = ["Repertoire"] 
  cdr3_lens = [clone_df[cdr_col].str.len()] 
 
 bin_min = min([cdr_len_series.min() for cdr_len_series in cdr3_lens]) 
 bin_max = max([cdr_len_series.max() for cdr_len_series in cdr3_lens]) + 1 
 bin_range = [i for i in range(bin_min, bin_max)] 
 
 bar_colors = ["#A0C8E6", "#32A032", "#1E78B4", "#B4DC8C"] 
 bar_offset = 0.0 
 bar_width = 1 / len(samples) 
 
 upper_y = 0.0 
 
 for idx, (sample, cdr_len_series) in enumerate(zip(samples, cdr3_lens)): 
  heights, lefts = numpy.histogram(cdr_len_series, density = True, bins = 
bin_range) 
 
  #Ensure proper Y axis scrolling boundaries are set 
  if heights.max() > upper_y: 
   upper_y = heights.max() 
 
  #Shift bars if multiple samples are being plotted 
  lefts = lefts.astype(float) 
  lefts += bar_offset 
 
  bar_lefts = lefts[:-1] 
  bar_rights = bar_lefts + bar_width 
 
  plot.quad(top = heights, bottom = 0, left = bar_lefts, right = bar_rights, 
fill_color = bar_colors[idx], 
      line_color = None, legend = sample) 
 
  bar_offset += bar_width 
 
 plot.y_range.start = -0.001 
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 plot.y_range.end = upper_y 
 plot.y_range.bounds = (-0.05, upper_y * 1.5) 
 
 if quantile_boundries is not None: 
  lower_x = clone_df[cdr_col].str.len().quantile(quantile_boundries[0]) 
  upper_x = clone_df[cdr_col].str.len().quantile(quantile_boundries[1]) 
 
  plot.x_range.start = lower_x 
  plot.x_range.end = upper_x 
 
 plot.x_range.bounds = (0, bin_max + 4) 
 
 if png is not None: 
  export_png(plot, png) 
 
 return plot 
 
def Rarefaction_Plot(align_df, png = None, title = "", cdr_col = "CDR3_AA", split_col = None, 
cdr_identity = 0.96, 
      steps = 50, reads = None, figsize = (800, 600), 
hover_tooltip = True, save_to_file = False): 
 figure_params = { 
  "plot_width": figsize[0], 
  "plot_height": figsize[1], 
  "title": title, 
  "tools": "save, help", 
  "toolbar_location": "right" 
 } 
 plot = figure(**figure_params) 
 plot.xgrid.grid_line_color = None 
 plot.xaxis.axis_label = "Total Sampled Reads" 
 plot.yaxis.axis_label = "Total Clonotypes" 
 plot.axis.formatter = NumeralTickFormatter(format = "0") 
 
 tooltips = [("Total Sampled Reads", "@xs"), ("Total Clones", "@ys")] 
 if hover_tooltip: 
  hover_tool = HoverTool(point_policy = "snap_to_data", tooltips = tooltips, mode = 
"hline", names = ["rar_line"]) 
  plot.add_tools(hover_tool) 
 
 #If comparing multiple samples, add the sample column to split on to the DataFrame 
 if split_col is not None: 
  reads_df = align_df[[cdr_col, split_col]] 
 
  samples = [] 
  reads_dfs = [] 
  for sample, df in reads_df.groupby([split_col]): 
   samples.append(sample) 
   reads_dfs.append(df) 
 
  if hover_tooltip and len(samples) > 1: 
   tooltips.append(("Sample", "@sample")) 
 
 else: 
  samples = ["Repertoire"] 
  reads_dfs = [align_df[[cdr_col]]] 
 
 sample_colors = ["#1EA078", "#DC5A00", "#786EB4", "#E6288C", "#B4D28C", "#A028B4"] 
 for sample, df, color in zip(samples, reads_dfs, sample_colors[:len(samples)]): 
  total_reads = len(df) 
  subsamp_sizes = [] 
  cur_total = 0 
 
  if reads is not None: 
   subsamp_steps = reads 
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  else: 
   subsamp_steps = math.floor(total_reads / steps) 
 
  #Create the list of all read subsample counts to clonotype 
  while cur_total < total_reads: 
   if cur_total != 0: 
    subsamp_sizes.append(cur_total) 
 
   cur_total += subsamp_steps 
 
  subsamp_sizes.append(total_reads) 
 
  subsamp_clones = [] 
  for n in subsamp_sizes: 
   sub_read_df = df.sample(n) 
   sub_total_clones = Clonotype_Usearch(sub_read_df[cdr_col], identity = 
cdr_identity) 
   subsamp_clones.append(sub_total_clones) 
 
  rarefaction_data = { 
   "reads": subsamp_sizes, 
   "clones": subsamp_clones, 
   "sample": [sample if len(samples) > 1 else None] * len(subsamp_sizes) 
  } 
  rar_source = ColumnDataSource(rarefaction_data) 
 
  plot.line(x = "reads", y = "clones", color = color, line_width = 3, source = 
rar_source, 
      legend = "sample", name = "rar_line") 
  plot.scatter(x = "reads", y = "clones", color = color, source = rar_source) 
 
  if save_to_file: 
   with open(sample + "_Rarefaction_Data.txt", "w") as 
rarefaction_text_file: 
    rarefaction_text_file.write("Reads\tClones\n") 
    for read_count, clone_count in zip(subsamp_sizes, 
subsamp_clones): 
    
 rarefaction_text_file.write("{0}\t{1}\n".format(read_count, clone_count)) 
 
 if png is not None: 
  export_png(plot, png) 
 
 return plot 
 
def Repertoire_Dashboard(clone_dfs, filename = None, title = "Repertoire Analysis Dashboard", 
plot_title_prefix = "", 
       mosaic_top_clones = 5000, cyrcos_top_clones = 
1000, upset_highlighted_sets = None, 
       clone_col = "CloneID", vgene_col = "VGene", 
jgene_col = "JGene", isotype_col = "Isotype", 
       count_col = "Clustered", vshm_col = "V_SHM", 
jshm_col = "J_SHM", cdr_col = "CDR3_AA", 
       sample_col = None, sizing_mode = "scale_width", 
show_plots = True, bokeh_resources = "cdn"): 
 """Creates an interactive dashboard HTML page displaying all the comparative 
visualizations. 
 
 Parameters 
 ---------- 
 clone_dfs: pandas DataFrame or dict of {str: DataFrame} 
  Input repertoire(s) with sample names; input should be formatted as a dict of 
sample name: DataFrame or a single 
  concatenated pandas DataFrame with a column sample_col specifying the samples of 
origin 
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 filename: str or None 
  Name for the saved output HTML file, or None if user wishes to save manually; 
default is None 
 title: str 
  Page title for the output HTML file; default is "Repertoire Analysis Dashboard" 
 plot_title_prefix: str 
  Optional prefix added to the title of each plot, for example to prefix titles 
with a Donor name; default is "" 
 mosaic_top_clones: int 
  Limit for the total clones to display for Mosaic plots (over 5000 is often 
visually jarring); default is 5000 
 cyrcos_top_clones: int 
  Limit for the total clones to display for Cyrcos plots; default is 1000 
 upset_highlighted_sets: list of tuples or None 
  Specific shared sample sets to highlight in different colors for the UpSet 
comparison plot; default is None 
 clone_col: str 
  Header / name for the column containing the sample clone IDs; default is 
"CloneID" 
 vgene_col: str 
  Header / name for the column containing the sample V genes; default is "VGene" 
 jgene_col: str 
  Header / name for the column containing the sample J genes; default is "JGene" 
 isotype_col: str 
  Header / name for the column containing the sample isotypes; default is "Isotype" 
 count_col: str 
  Header / name for the column containing the sample clone counts or frequencies; 
default is "Clustered" 
 vshm_col: str 
  Header / name for the column containing the sample clone V gene SHMs; default is 
"V_SHM" 
 jshm_col: str 
  Header / name for the column containing the sample clone J gene SHMs; default is 
"J_SHM" 
 cdr_col: str 
  Header / name for the column containing the sample clone CDR3 amino acid 
sequences; default is "CDR3_AA" 
 sample_col: str or None 
  Header / name for the column containing sample names if all samples are in one 
DataFrame; default is "Sample" 
 sizing_mode: str 
  How to scale the plots in the dashboard layout (see Bokeh layout function); 
default is "scale_width" 
 show_plots: bool 
  Whether the dashboard page will be immediately shown upon creation; default is 
True 
 bokeh_resources: str 
  BokehJS resource location used for the dashboard (see Bokeh output_file 
documentation); default is "cdn" 
  "cdn" gets the required files from the Bokeh CDN (requires internet connection) 
  "inline" adds all necessary stylesheets and scripts to the HTML page itself 
 
 Returns 
 ---------- 
 dashboard: bokeh nested layout of Column and Row 
  The output dashboard Layout object representing the final plots and their 
placements 
 """ 
 
 #Set up output file if user wants to save the dashboard page 
 if filename is not None: 
  output_file(filename = filename, title = title, mode = bokeh_resources) 
 
 repertoire_cols = [clone_col, vgene_col, jgene_col, isotype_col, count_col, vshm_col, 
jshm_col, cdr_col] 
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 if isinstance(clone_dfs, dict): 
  if sample_col is None: 
   sample_col = "Sample" 
 
  dfs = [] 
  for sample in clone_dfs: 
   clone_df = clone_dfs[sample][repertoire_cols] 
   clone_df[sample_col] = sample 
   dfs.append(clone_df) 
 
  comparison_df = pandas.concat(dfs, ignore_index = True) 
 
 elif isinstance(clone_dfs, pandas.DataFrame): 
  if sample_col is not None: 
   repertoire_cols.append(sample_col) 
   comparison_df = clone_dfs[repertoire_cols] 
  else: 
   raise KeyError("No sample-name column header was found in the repertoire 
DataFrame!") 
 
 ############################################# 
 ##    Paired V-J Gene Usage Donut Plots    ## 
 ############################################# 
 vj_gene_plots = [] 
 for sample, df in comparison_df.groupby([sample_col]): 
  plot_title = "{0} {1} Paired V-J Gene Usage".format(plot_title_prefix, sample) 
  vj_gene_plot = VJ_Gene_Plot(df, title = plot_title, vgene_col = vgene_col, 
jgene_col = jgene_col, 
         count_col = count_col, 
vgene_colors = vgene_colors, jgene_colors = jgene_colors, 
         vfamily_colors = 
vfamily_colors) 
  vj_gene_plots.append(vj_gene_plot) 
 
 ############################################# 
 ##        V/J Gene SHMs Violin Plot        ## 
 ############################################# 
 vj_shm_plot = Violin_SHM_Plot(comparison_df, title = plot_title_prefix + " Gene SHM 
Levels", vshm_col = vshm_col, 
          jshm_col = jshm_col, split_col 
= sample_col) 
 
 ############################################# 
 ## Repertoire Clone Frequency Mosaic Plots ## 
 ############################################# 
 mosaic_plots = [] 
 for sample, df in comparison_df.groupby([sample_col]): 
  plot_title = "{0} {1} Clonotype Frequencies Mosaic".format(plot_title_prefix, 
sample) 
  mosaic_plot = Mosaic_Plot(df, title = plot_title, top_clones = mosaic_top_clones, 
vgene_col = vgene_col, 
          jgene_col = jgene_col, 
isotype_col = isotype_col, count_col = count_col, 
          vshm_col = vshm_col, jshm_col 
= jshm_col, vgene_colors = vgene_colors, 
          jgene_colors = jgene_colors, 
vfamily_colors = vfamily_colors, 
          isotype_colors = 
isotype_colors) 
  mosaic_plots.append(mosaic_plot) 
 
 ############################################# 
 ##      Clonal V Gene SHM Burtin Plot      ## 
 ############################################# 
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 clonal_vgene_shm_plot = Burtin_VGene_SHM_Plot(comparison_df, title = plot_title_prefix + " 
Clonal V Gene Mean SHM", 
              
vgene_col = vgene_col, vshm_col = vshm_col, split_col = sample_col, 
              
vfamily_colors = vfamily_colors) 
 
 ############################################# 
 ##        Repertoire Diversity Plot        ## 
 ############################################# 
 diversity_plot = Diversity_Plot(comparison_df, title = plot_title_prefix + " Repertoire 
Diversity & Polarization", 
         count_col = count_col, 
split_col = sample_col) 
 
 ############################################# 
 ##  CDR3 Amino Acid Length Histogram Plot  ## 
 ############################################# 
 cdr_len_plot = CDR_Length_Histogram_Plot(comparison_df, title = plot_title_prefix + " CDR3 
Length Spectratype", 
            cdr_col 
= cdr_col, split_col = sample_col) 
 
 ############################################# 
 ## Shared Repertoire Clonotypes UpSet Plot ## 
 ############################################# 
 upset_plot = Repertoire_Upset_Plot(comparison_df, title = plot_title_prefix + " Shared 
Clone Set UpSet Plot", 
            clone_col = 
clone_col, sample_col = sample_col, 
            highlighted_sets = 
upset_highlighted_sets) 
 
 ############################################# 
 ## Shared Clone Rank/Frequency Circos Plot ## 
 ############################################# 
 cyrcos_plot = Cyrcos_Repertoire_Comparison_Plot(comparison_df, title = " Shared Repertoire 
Clonal Frequency", 
            
 top_clones = cyrcos_top_clones, clone_col = clone_col, 
            
 count_col = count_col, sample_col = sample_col) 
 
 dashboard_layout = [[upset_plot.plots_grid], [vj_shm_plot, clonal_vgene_shm_plot], 
[cdr_len_plot, diversity_plot]] 
 
 #Arrange the mosaic and V-J gene plots into two columns 
 mosaic_plots = [list(plots) for plots in numpy.array_split(mosaic_plots, 
numpy.ceil(len(mosaic_plots) / 2))] 
 vj_gene_plots = [list(plots) for plots in numpy.array_split(vj_gene_plots, 
numpy.ceil(len(vj_gene_plots) / 2))] 
 
 dashboard_layout += mosaic_plots 
 dashboard_layout += vj_gene_plots 
 
 dashboard_layout += [[cyrcos_plot.plot]] 
 dashboard = layout(children = dashboard_layout, sizing_mode = sizing_mode) 
 
 if show_plots: 
  show(dashboard) 
 else: 
  save(dashboard) 
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