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Abstract

Global Convection in Earth’s Mantle:
Advanced Numerical Methods and Extreme-Scale Simulations

Johann Rudi, Ph.D.
The University of Texas at Austin, 2018

Supervisors: Omar Ghattas and Georg Stadler

The thermal convection of rock in Earth’s mantle and associated plate tectonics are modeled by
nonlinear incompressible Stokes and energy equations. This dissertation focuses on the development
of advanced, scalable linear and nonlinear solvers for numerical simulations of realistic instantaneous
mantle flow, where we must overcome several computational challenges. The most notable challenges
are the severe nonlinearity, heterogeneity, and anisotropy due to the mantle’s rheology as well as a wide
range of spatial scales and highly localized features. Resolving the crucial small scale features efficiently
necessitates adaptive methods, while computational results greatly benefit from a high accuracy per
degree of freedom and local mass conservation. Consequently, the discretization of Earth’s mantle
is carried out by high-order finite elements on aggressively adaptively refined hexahedral meshes
with a continuous, nodal velocity approximation and a discontinuous, modal pressure approximation.
These velocity–pressure pairings yield optimal asymptotic convergence rates of the finite element
approximation to the infinite-dimensional solution with decreasing mesh element size, are inf-sup
stable on general, non-conforming hexahedral meshes with “hanging nodes,” and have the advantage of
preserving mass locally at the element level due to the discontinuous pressure. However, because of the
difficulties cited above and the desired accuracy, the large implicit systems to be solved are extremely
poorly conditioned and sophisticated linear and nonlinear solvers including powerful preconditioning
techniques are required.

The nonlinear Stokes system is solved using a grid continuation, inexact Newton–Krylov method.
We measure the residual of the momentum equation in the H−1-norm for backtracking line search
to avoid overly conservative update steps that are significantly reduced from one. The Newton

vi



linearization is augmented by a perturbation of a highly nonlinear term in mantle’s rheology, resulting
in dramatically improved nonlinear convergence.

We present a new Schur complement-based Stokes preconditioner, weighted BFBT, that exhibits
robust fast convergence for Stokes problems with smooth but highly varying (up to 10 orders of
magnitude) viscosities, optimal algorithmic scalability with respect to mesh refinement, and only a
mild dependence on the polynomial order of high-order finite element discretizations. In addition, we
derive theoretical eigenvalue bounds to prove spectral equivalence of our inverse Schur complement
approximation.

Finally, we present a parallel hybrid spectral–geometric–algebraic multigrid (HMG) to approximate
the inverses of the Stokes system’s viscous block and variable-coefficient pressure Poisson operators
within weighted BFBT. Building on the parallel scalability of HMG, our Stokes solver demonstrates
excellent parallel scalability to 1.6 million CPU cores without sacrificing algorithmic optimality.
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1

Introduction and Key Ideas

1.1 Motivation and challenges

Geophysical fluid flows constitute an important class of creeping flows of non-Newtonian fluids [54,92].
The incompressible Stokes equations with power-law rheology have become a prototypical continuum
mechanical description for creeping flows occurring in such applications as mantle convection [116],
magma dynamics [86], and ice flow [68]. This dissertation in particular targets Earth’s mantle
convection coupled with plate tectonics at global scale [110]. We employ realistic flow models that
exhibit extreme mathematical and computational challenges due to severe nonlinearities in the
constitutive law and a highly heterogeneous viscosity stemming from its dependence on temperature
and strain rate and from incorporating sharp gradients in narrow regions modeling tectonic plate
boundaries.

Earth is a dynamic system in which mantle convection drives plate tectonics and continental drift
and, in turn, controls much activity ranging from the occurrence of earthquakes and volcanoes to
mountain building and long-term sea level change. Despite the central role of mantle convection in
solid Earth dynamics, first-order knowledge gaps remain, with questions that are as basic as what
are the principal driving and resisting forces on plate tectonics to what is the energy balance of the
planet as a whole. Indeed, understanding mantle convection has been designated one of the “10
Grand Research Questions in Earth Sciences” in a National Academies report [37]. We seek to address
such fundamental questions as: (i) What are the main drivers of plate motion—negative buoyancy
forces or convective shear traction? (ii) What are key processes governing the occurrence of great
earthquakes—the material properties between the plates or the tectonic stress? (iii) What role do
subducting slab geometries play? (iv) How well can the mantle’s rheology be extrapolated from
laboratory experiments?

Addressing these questions requires, on the one hand, global models of Earth’s mantle convection
and associated plate tectonics, where interactions between localized phenomena and longer ranging flow
play out on the whole sphere. On the other hand, high resolutions down to faulted plate boundaries
are crucial. Historically, modeling at this scale and resolution simultaneously has been infeasible due to
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the enormous computational complexity associated with numerical solution of the underlying mantle
flow equations. However, with the advent of multi-petaflops supercomputers as well as significant
advances in seismic tomography and space geodesy placing key observational constraints on mantle
convection, we now have the opportunity to address these fundamental questions.

Solid rock in the mantle flows like a viscous fluid on time scales of millions of years [104]; therefore
we model instantaneous mantle flow by the nonlinear incompressible Stokes equations:

−∇ ·
[
µ(u) (∇u+∇uT)

]
+∇p = f , (1.1a)

−∇ · u = 0, (1.1b)

where u and p are the velocity and pressure fields, respectively; the right-hand side force, f , is derived
from the Boussinesq approximation; and the temperature- and strain rate-dependent effective viscosity,
µ, is characterized by the constitutive law

µ(u) = µ(T, ε̇(u)) = µmin + min

(
τyield

2ε̇ii
, w (x) min

(
µmax, a (T ) ε̇

1−n
n

ii

))
. (1.2)

The effective viscosity depends (nonlinearly) on a power (1− n)/n, n ≥ 1, of the square root of the
second invariant of the strain rate tensor, ε̇ii := (1

2 ε̇ : ε̇)1/2, where “:” represents the inner product of
second-order tensors and ε̇ := 1

2(∇u+∇uT). The viscosity decays exponentially with temperature
via the Arrhenius relationship, symbolized by a (T ). The constitutive relation incorporates (nonlinear)
plastic yielding with yield strength τyield, lower/upper bounds on viscosity µmin and µmax, and a
decoupling factor w (x) to model plate boundaries. For whole Earth mantle flow models, (1.1) are
augmented with free-slip conditions (i.e., no tangential traction, no normal flow) at the core–mantle
and top surface boundaries.

Solution of the nonlinear Stokes equations (1.1) entails solution of a sequence of linearized Stokes
problems. The linearization alters the coefficient (1.2) and right-hand sides in (1.1). Discretization
of velocity and pressure fields and the partial differential equations (PDE’s) is carried out by high-
order finite elements on (aggressively adaptively refined) hexahedral meshes with velocity–pressure
pairings Qk × Pdisc

k−1 of polynomial order k ≥ 2 with a continuous, nodal velocity approximation Qk

and a discontinuous, modal pressure approximation Pdisc
k−1. These pairings yield optimal asymptotic

convergence rates of the finite element approximation to the infinite-dimensional solution with
decreasing mesh element size, are inf-sup stable on general, non-conforming hexahedral meshes with
“hanging nodes,” and have the advantage of preserving mass locally at the element level due to the
discontinuous pressure [46,62,111]. While these properties have been recognized to be important for
geophysics applications (e.g., see [83, 84]), the high-order discretization, adaptivity, and discontinuous
pressure approximation present significant additional difficulties for iterative solvers (relative to low
order, uniform grid, continuous discretizations). Our locally adaptively refined hexahedral meshes
generate extreme local refinement—critical to resolve plate boundaries down to a few hundred meters—
while simultaneously permitting significantly coarser meshes away from these regions to efficiently
capture global-scale behavior. Parallel adaptive forest-of-octrees algorithms, implemented in the p4est
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parallel adaptive mesh refinement library, are used for efficient parallel refinement, coarsening, mesh
balancing, and repartitioning [26,30,70].

Successful solution of realistic mantle flow problems must overcome a number of computational
challenges due to the severe nonlinearity and heterogeneity of Earth’s rheology; moreover, the large
algebraic systems exhibit anisotropies upon linearization with Newton’s method. Nonlinear behavior
at narrow plate boundary regions influences the motion of whole plates at continental scales, resulting
in a wide range of spatial scales. Crucial features are highly localized with respect to Earth’s radius
(∼6371 km), including plate thickness of order ∼50 km and shear zones at plate boundaries of order
∼5 km. Desired resolution at plate boundaries is below ∼1 km. However, a mesh of Earth’s mantle
with uniform resolution of 0.5 km would result in O(1013) degrees of freedom (DOF), which would
be prohibitive for our mantle models with the complexity cited above. Thus adaptive methods are
essential. Six orders of magnitude viscosity contrast is characteristic of the shear zones at plate
boundaries, yielding sharp viscosity gradients and leading to severely poorly conditioned algebraic
systems. Furthermore, the viscosity’s dependence on a power of the second invariant of the strain rate
tensor and plastic yielding phenomena lead to strongly nonlinear behavior.

This work builds directly on major advances in adaptivity [26], where global models exhibited 20 km
wide plate boundaries, nonlinear viscosity, and yielding, and in turn demonstrated an unanticipated
level of coupling between plate motion and the deep mantle [5], bounds on energy dissipation within
plates [110], and rapid motion of small tectonic plates adjacent to large ones [6]. Nevertheless, such
models did not close the gap between the fine-scale (∼1 to 10 km) patterns of earthquakes, stress,
and topography along plate boundaries with plate motions. Narrowing the local-to-global divide is
essential for extracting the key observations allowing one to reach a new understanding of the physics
of solid Earth processes.

The central computational challenge to reach these next steps in scientific discovery is to design
implicit solvers and implementations for high-resolution global mantle flow models that can handle
the extreme degrees of nonlinearity and poor conditioning that arise, the wide ranges of length scales
and material properties, and the highly adapted meshes and necessary advanced discretizations. Such
nonlinear and linear iterative solvers need robust and effective preconditioners with optimal (or nearly
optimal) algorithmic scalability, while also scaling in parallel to the O(106) cores characteristic of
leadership class supercomputers. While the conventional view has been that these goals are too
difficult or even impossible to achieve, we aim to make them possible through a careful redesign of
discretization, algorithms, solvers, and implementation.

1.2 Contributions

The first key contribution of this dissertation is weighted BFBT (w-BFBT), a viscosity variation-
robust preconditioner for the Schur complement of the linearized and discretized Stokes system. The
second major contribution are, hybrid spectral–geometric–algebraic multigrid (HMG) methods, which
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constitute a core component of the Stokes solver and are essential for preconditioning efficacy and
algorithmic and parallel scalability. Third, the w-BFBT preconditioner and HMG linear solver are
complemented by inexact Newton–Krylov methods to solve the highly nonlinear mantle convection
problems; these nonlinear solves constitute the third major contribution.

We outline the key ideas of these contributions in the order they are used in solving (1.1).

Inexact Newton–Krylov methods

We employ an inexact Newton–Krylov method [42,89] for the nonlinear Stokes equations (1.1), i.e.,
we use a sequence of linearizations of (1.1) and inexactly solve the resulting linearized and discretized
systems using a preconditioned Krylov method. The rheology described by the constitutive law (1.2)
is modified such that it incorporates viscosity upper and lower bounds in a differentiable manner,
permitting the use of Newton’s method. To compute a Newton update (û, p̂), we find the (inexact)
solution of the linearized Stokes system,

−∇ ·
[
µ′(u) (∇û+∇ûT)

]
+∇p̂ = −rmom, (1.3a)

−∇ · û = −rmass, (1.3b)

with coefficient

µ′(u) = µ(u) I + ε̇ii
∂µ

∂ε̇ii

(∇u+∇uT)⊗ (∇u+∇uT)

|∇u+∇uT|2F
, (1.4)

where the current velocity is u and the residuals of the momentum and mass equations appear on
the right-hand side of (1.3). Note that what plays the role of viscosity in the Newton step is an
anisotropic fourth-order tensor (1.4), where “⊗” is the outer product of two second-order tensors and
| · |F denotes the Frobenius norm.

Additionally, during the initial Newton iterations, grid continuation is performed between Newton
steps, where the mesh is adapted to variations in the viscosity (1.2) that arise from the nonlinear
dependence on the velocity. The residual of the momentum equation rmom is measured in the H−1-
norm for the purposes of backtracking line search. This avoids overly conservative update step sizes
that are significantly reduced from unity, especially when the current velocity–pressure pair is far from
the solution.

The standard Newton linearization as presented in Equation (1.3) exhibits prohibitively poor
convergence in the presence of the plastic yielding term, τyield/(2ε̇ii), of the mantle’s rheology (1.2).
This is addressed by a linearization modification by means of introducing an additional perturbation
equation along with system (1.3). The effective computational cost of solving the perturbed linearized
system is reduced such that it is essentially the same as for the standard linearization, but Newton
convergence improves dramatically. This together with the entire inexact Newton–Krylov method is
presented in Chapter 5.

4



Weighted BFBT (w-BFBT) preconditioner for the Schur complement

Discretizing the linearized system (1.3) and preconditioning with an upper triangular block matrix as
explained in Chapter 4 yields the following iterative scheme for the algebraic Stokes system:[

A BT

B 0

]
︸ ︷︷ ︸

Stokes operator

[
Ã BT

0 S̃

]−1

︸ ︷︷ ︸
Preconditioner

[
ũ

p̃

]
=

[
−rmom

−rmass

]
, (1.5)

where A, BT, and B denote the discretized viscous stress, gradient, and divergence operators,
respectively. When solving (1.5) with an iterative Krylov method, an effective approximation of the
Schur complement, S := BA−1BT, is an essential ingredient for attaining fast convergence of Schur
complement-based iterative solvers. More precisely, a sufficiently good and fast-to-apply approximation
of the inverse Schur complement S̃−1 ≈ S−1 is sought, together with an approximation of the inverse
viscous block Ã−1 ≈ A−1.

BFBT or Least Squares Commutator methods [43,44,105] derive such an approximation S̃−1 by
seeking a commutator matrix X such that the following commutator nearly vanishes,

AD−1BT −BTX ≈ 0, (1.6)

for a given diagonal matrix D−1. The motivation for seeking a near-commutator X is that (1.6) can
be rearranged to obtain

S ≈
(
BD−1BT

)
X−1, (1.7)

where the closer the commutator is to zero, the more accurate the approximation [46]. The goal of
finding a vanishing commutator can be recast as solving a least-squares minimization problem, whose
solution gives us

X =
(
BC−1BT

)−1(
BC−1AD−1BT

)
(1.8)

for a given diagonal matrix C−1. Finally, substituting (1.8) into (1.7) and inverting yields the BFBT
approximation of S−1.

The choice of diagonal weighting matrices C, D is crucial for the efficacy of BFBT, especially
in the presence of a heterogeneous viscosity. This is demonstrated in [85, 97], where the weighting
matrices are based on diag(A). However, drawbacks with such choices of weighting matrices include
convergence issues for some combinations of viscosities and meshes, problems with higher discretization
orders, and limited possibilities for analytical analysis due to the heuristic approach of using matrix
entries of A. To overcome these drawbacks, we propose the following weighted BFBT approximation
for the inverse Schur complement:

S̃−1
w-BFBT :=

(
BC−1

wl
BT
)−1(

BC−1
wl

AD−1
wrB

T
)(
BD−1

wrB
T
)−1

, (1.9)

where Cwl = M̃u(wl) and Dwr = M̃u(wr) are lumped velocity space mass matrices that are weighted
by the square root of the viscosity, i.e., usually wl(x) =

√
µ(x) = wr(x), x ∈ Ω. w-BFBT results in a
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highly robust implicit solver and represents a significant improvement over the previous state of the
art Schur preconditioners in terms of both viscosity variation-robustness and algorithmic scalability.

Chapter 6 contains a detailed derivation of w-BFBT and a theoretical analysis that estimates
its efficacy by means of providing bounds on the ratio of maximal to minimal eigenvalues of the
preconditioned system S̃−1

w-BFBTS. The theoretical discussions are supported by extensive numerical
experiments ranging from eigenvalue calculations, robustness tests with challenging benchmark
problems, modifications such that wl 6= wr, and algorithmic and parallel scalability (Chapter 8).

Hybrid spectral–geometric–algebraic multigrid (HMG)

Approximate inversion of the viscous block A, an elliptic differential operator in the iterative
scheme (1.5), is well suited for multigrid V-cycles, which we denote as Ã−1. To this end, we
developed a hybrid spectral–geometric–algebraic multigrid (HMG) method, which exhibits extreme
parallel scalability and retains nearly optimal algorithmic scalability. HMG initially reduces the
discretization order (spectral multigrid); after arriving at order one, it continues by coarsening mesh
elements (geometric multigrid); once the degrees of freedom fall below a threshold, algebraic multi-
grid (AMG) carries out further coarsening until a direct solve can be computed efficiently. Parallel
forest-of-octrees algorithms of the p4est parallel adaptive mesh refinement (AMR) library are used
for efficient, scalable mesh coarsening, mesh balancing, and repartitioning in the geometric HMG
phase. During parallel geometric coarsening, the number of compute cores and the size of the MPI
communicator is reduced successively to minimize communication. Re-discretization of the differential
equations is performed on each coarser spectral and geometric level, where a coarse viscosity field is
formed via L2-projection. The transition to AMG is done at a sufficiently small core count and small
MPI communicator.

Other elliptic differential operators that require approximate inversion are found in the w-BFBT
approximation of the inverse Schur complement (1.9). The operators

(
BC−1

wl
BT
)
and

(
BD−1

wrB
T
)
can

be viewed as discrete, variable-coefficient Poisson operators acting on the pressure in the discontinuous
space Pdisc

k−1 with Neumann boundary conditions. Therefore, multigrid V-cycles can also be employed
to approximate their inverses. However, it turned out to be problematic to apply multigrid coarsening
directly due to the discontinuous, modal discretization of the pressure. We took a novel approach in [97]
by considering the underlying infinite-dimensional, variable-coefficient Poisson operator, where the
coefficient is derived from the diagonal weighting matrix (here, C−1

wl
and D−1

wr ). Then we re-discretize
with continuous, nodal high-order finite elements in Qk, borrowed from the discretization of the
velocity. This continuous, nodal discretization of the pressure Poisson operator is then approximately
inverted with an HMG V-cycle that is similar to the one described above for the inverse viscous block
approximation Ã−1. Additional smoothing is applied in the discontinuous pressure space to account
for high frequency modes that are introduced through projections between Qk and Pdisc

k−1.
Our hybrid multigrid method combines high-order L2-restriction and interpolation operators and

employs Chebyshev-accelerated point-Jacobi smoothers (from PETSc [10]). This results in optimal
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(or nearly optimal) algorithmic multigrid performance, i.e., iteration numbers are independent of
mesh size (and only mildly dependent on discretization order), while maintaining robustness with
respect to highly heterogeneous coefficients. In addition, the efficacy of the HMG preconditioner
does not deteriorate with increasing core counts, because the spectral and geometric multigrid is by
construction independent of the number of cores and AMG (from PETSc [10]) is invoked for prescribed
small problem sizes on essentially fixed small core counts. All of these properties of HMG are crucial
for overall Stokes solver performance and scalability.

Chapter 7 presents abstract derivations regarding multigrid methods and discusses in detail the
design of our HMG algorithms, its parallel implementation, and optimizations. Parallel scalability
involving benchmark problems and global mantle flow simulations with aggressively adapted meshes
is highlighted in Chapter 8 on multiple supercomputers and hardware architectures.

1.3 Classifying research under CSEM Ph.D. program disciplinary
areas

Area A – Applicable mathematics. All of the major contributions in this dissertation, Newton–
Krylov nonlinear solver, w-BFBT preconditioner, and HMG linear solver, are introduced through
rigorous mathematical analysis. For Newton’s method, a perturbed linearization is derived systemati-
cally in an abstract form. This generalizes results from the literature on modified linearizations for
image restoration problems and, additionally, introduces ideas from constrained optimization. Thanks
to our general derivations, the results are then straightforwardly applied to multiple problems including
image restoration and nonlinear mantle convection. The weighting matrices of BFBT preconditioners
were originally based on heuristic arguments. This dissertation and [99] propose the first theoretical
analysis of the spectrum of the w-BFBT-preconditioned Schur complement such that robustness
optimality is established, which advances the understanding of BFBT-type methods in the context of
Stokes problems. Finally, an abstract framework for multigrid methods and its mathematical analysis
yields representations of error operators that drive the development of our HMG methods. By starting
with this theoretical foundation, we achieve the high solver efficacy as well as algorithmic and parallel
scalability that are crucial to addressing the challenges of mantle flow problems.

Area B – Numerical analysis and scientific computation. The new parallel HMG methods
for high-order discretizations on locally adapted meshes feature algorithmic optimality that is combined
with excellent parallel scalability. The efficacy of HMG does not depend on the number of processors
by design, the setup cost is negligibly low compared to the solve time even at extreme scale, and the
multigrid smoothers at the spectral and geometric multigrid levels are matrix-free and thus make
efficient use of memory. Our careful parallel implementation of sophisticated algorithms targets
distributed and shared memory architectures of leadership-class supercomputers and involves various
code optimizations, e.g., overlapping of communication with computation and speeding up of low-level
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kernels of matrix-free smoothers. Many numerical experiment throughout this dissertation test and
document different aspects of our solvers in the form of convergence rates, setup and solver runtimes,
and time-to-accuracy. Our w-BFBT method for approximating the inverse Schur complement is based
on results from the literature on BFBT/Least Squares Commutator methods. Different from previous
formulations, however, we propose an HMG-based approach that does not require matrix assembly
but is based on scalable, efficient, matrix-free HMG V-cycles. These HMG and Schur complement
preconditioners allow excellent parallel scalability of our Stokes solver to 1.6 million CPU cores as we
demonstrate in this dissertation and [97].

Area C – Mathematical modeling and applications. The mathematical and computational
advances in this dissertation are driven by the multifaceted challenges of our target problem, the
global simulation of Earth’s instantaneous mantle convection and associated plate tectonics with
realistic parameters and high resolutions down to faulted plate boundaries. Careful attention is
given to modeling mantle convection and inversion of model parameters. Numerical simulations are
carried out using real data describing temperature distribution and plate boundaries. The output of
these simulations is matched to observations, e.g., from plate velocity data sets, in order to validate
simulation results.
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2

Forward Problem:
Modeling Earth’s Mantle Convection

This chapter introduces the governing equations and constitutive relations for our mantle convection
models. It is mainly based on the literature on geodynamics and Earth mantle physics [5,104,116],
mathematical treatment of geosciences [51], and fundamentals of continuum mechanics [4, 56].

2.1 Conservation of mass and momentum

Given a velocity field u that takes on values in R3 and denoting time as t, we introduce the total (or
convective) derivative for a physical quantity,

D

Dt
:=

∂

∂t
+ u · ∇,

to formulate the mass conservation law:

∂ρ

∂t
+∇ · (ρu) =

1

ρ

Dρ

Dt
+∇ · u = 0, (2.1)

where ρ is the density per unit volume. This is the differential form of mass conservation for an
infinitesimal volume element. In case of an incompressible fluid,

Dρ

Dt
≡ 0, (2.2)

and the conservation of mass (2.1) reduces to

∇ · u = 0,

which is also known as the continuity equation.
The stress tensor is composed of a normal stress component and a viscous stress component:

σ = −pI + τ . (2.3)
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The pressure, −pI, where I is the second-order identity tensor, is thermodynamic in origin and is
maintained by molecular collisions. The viscous stress tensor, τ , depends on gradients of the velocity
and is due to relative motion on the continuum scale. For an isotropic fluid, the viscous (or deviatoric)
stress tensor is of the following form:

τ = µ
(
∇u+∇uT

)
+ λ

(
∇ · u

)
I,

where µ is called the (shear) viscosity and λ the bulk viscosity. If a fluid is also incompressible, i.e.,
∇ · u = 0, the viscous stress tensor simplifies to

τ = µ
(
∇u+∇uT

)
= 2µε̇, (2.4)

where we defined the strain rate tensor as ε̇ := 1
2

(
∇u+∇uT

)
. With these definitions and given a

body force f that is a vector field in R3 acting on a unit volume, the law of momentum conservation
requires the balance of forces:

ρ
Du

Dt
= −∇p+∇ · τ + f , (2.5)

which, for an incompressible fluid, can be written as

ρ
Du

Dt
= −∇p+∇ ·

(
2µε̇

)
+ f .

Summarizing Equations (2.1) and (2.5), we obtain a set of Navier–Stokes equations that govern
the flow of an incompressible, isotropic fluid:

∂ρ

∂t
+∇ · (ρu) = 0 (conservation of mass) (2.6a)

ρ
Du

Dt
= −∇p+∇ ·

(
2µε̇

)
+ f (conservation of momentum) (2.6b)

If the viscosity µ is independent of the velocity u or its derivatives, then the relation between the
viscous stress tensor τ and the strain rate tensor ε̇ is linear and such fluids are called Newtonian.
Otherwise fluids are referred to as non-Newtonian.

2.2 Conservation of energy

Specifying the thermodynamic state variables, pressure p, specific volume v = 1/ρ, and temperature
T , we define the coefficient of thermal expansion (or thermal expansivity of a material)

α :=
1

v

∂v

∂T

∣∣∣∣
p

= −1

ρ

∂ρ

∂T

∣∣∣∣
p

,

where the subscript p means that this variable is held fixed. Let q denote the internal heat, then the
specific heat at constant pressure is defined by

cp :=
δq

δT

∣∣∣∣
p

,
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i.e., it is the ratio of the increment of heat added to the material δq to the change in temperature δT .
Given the thermal conductivity, k, and the rate of internal heat production per unit mass, H, the
conservation of energy requires, for an infinitesimal volume element of a fluid, that

ρcp
DT

Dt
− αT Dρ

Dt
= ∇ ·

(
k∇T

)
+ τ : ∇u+ ρH, (2.7)

where “:” represents the inner product of second-order tensors. The three terms on the right-hand
side of Equation (2.7) represent, respectively, thermal conduction, volumetric heat production due to
viscous dissipation, and internal heat generation. For an incompressible fluid satisfying Equations (2.2)
and (2.4) and due to the symmetry of τ , the thermal energy equation (2.7) takes the form

ρcp
DT

Dt
= ∇ ·

(
k∇T

)
+ 2µ

(
ε̇ : ε̇

)
+ ρH.

2.3 Approximations for mantle convection

In this section, we simplify the general equations for conservation of mass and momentum (2.6) as
well as energy (2.7) for their application to thermal convection in Earth’s mantle. The density of the
mantle is mainly a function of temperature and pressure. Moreover, most of the density change in the
mantle is due to hydrostatic compression, whereas density changes associated with convection are
small compared to the spherically averaged density of the mantle. Therefore, after separating the
variables for density, temperature, and pressure into reference states and departures from it,

ρ = ρ̄+ ρ′, T = T̄ + T ′, p = p̄+ p′,

we assume that the mantle density, ρ = ρ (T, p), is linearized in the convecting state and of the form:

ρ = ρ̄
(
T̄ , p̄

)
+ ρ′ = ρ̄

(
T̄ , p̄

)
− ρ̄ᾱT ′ + ρ̄χ̄T p

′, (2.8)

where χ̄T is the reference state of the isothermal compressibility of a material at constant temperature,
which is defined by

χT := −1

v

∂v

∂p

∣∣∣∣
T

=
1

ρ

∂ρ

∂p

∣∣∣∣
T

.

Definition 2.3.1 (Nondimensionalization). We define the following scaling factors used for nondi-
mensionalization:

representative thermal expansivity: αr

representative isothermal compressibility: χTr

representative specific heat at constant pressure: cpr

representative density: ρr

characteristic temperature difference: T ′r

representative thermal conductivity: kr
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representative viscosity: µr

representative gravitational acceleration: gr

depth of convecting region: b

and let the thermal diffusivity be κr := kr/ρrcpr . The scaling factors between dimensional and
dimensionless variables, which are denoted with an asterisk, are

ρ = ρrρ
∗, T ′ = T ′rT

∗,

α = αrα
∗, χT = χTrχ

∗
T ,

x = bx∗, t =
ρrcprb

2

kr
t∗ =

b2

κr
t∗

and

u =
kr

ρrcprb
u∗ =

κr
b
u∗, p′ =

µrkr
ρrcprb

2
p∗ =

µrκr
b2

p∗.

However, we will drop the asterisk in the equations that follow for simplicity. Note that the viscous
stress has the same scaling factor as the pressure, which can be seen from Equation (2.3).

With these definitions, we rewrite Equation (2.8) in its dimensionless form (omitting the asterisk):

ρ

ρ̄
= 1− ᾱT ′εT + χ̄T p

′εp,

where

εT := αrT
′
r, εp :=

k2
rχTr

ρrc2
prb

2
Pr, Pr :=

µrcpr
kr

.

The dimensionless parameter Pr is called the Prandtl number. For the mantle, we can estimate
the factors εT and εp to be sufficiently small, that is, εT ≈ 3 × 10−2 and εp ≈ 2 × 10−10 [104]. In
addition, the dimensionless quantities ᾱT ′ and χ̄T p

′ are of order unity or smaller. Thus, the density
perturbations due to mantle convection are small compared to the reference hydrostatic density and
we can assume that ρ′/ρ̄� 1.

Dynamically, phenomena in seismology and mantle convection do not overlap, since they occur on
vastly different time scales. The anelastic form of the mass conservation equation eliminates seismic
waves from the equations governing mantle convection, i.e., ∂ρ′

∂t ≡ 0. With the assumptions from
above, εT , εp � 1, the conservation of mass from Equation (2.1) reduces to

∇ · (ρ̄u) = 0.

If we further assume that the effects of compressibility are not dominant in mantle convection [104],
we can eliminate variations in density ρ̄ across the mantle and adopt the incompressible continuity
equation

∇ · u = 0.
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This incompressible form is called the Boussinesq approximation.
We consider gravity to be the only body force in the momentum conservation equation (2.5),

f(x) = −ρger(x), (2.9)

where g denotes the gravitational acceleration and er ∈ R3, |er| = 1, is the radial direction. First, we
assume the variations in gravitational acceleration due to convection to be negligible. Second, if the
reference state pressure satisfies a hydrostatic equation, i.e., when u ≡ 0,

0 = −∇p̄− ρ̄ger,

then the hydrostatic pressure p̄ can be eliminated from Equation (2.5),

ρ
Du

Dt
= −∇p+∇ · τ + f = −∇(p̄+ p′) +∇ · τ − (ρ̄+ ρ′)ger = −∇p′ +∇ · τ − ρ′ger.

Third, we assume the Prandtl number Pr to be sufficiently large such that the inertial force term can
be eliminated, i.e., ρDu

Dt ≈ 0. Finally, we apply the Boussinesq approximation of incompressibility and
obtain the following simplified dimensionless form of the momentum equation:

0 = −∇p′ +∇ ·
(
2µε̇

)
+Ra ρ̄ᾱT ′er. (2.10)

In this form, we incorporated the assumption that variations in temperature are the major driving
force for thermal convection; hence, the deviation ρ′ from the reference density ρ̄ in Equation (2.8)
reduces to ρ′ = −ρ̄ᾱT ′εT . To obtain Equation (2.10) above, we define the Rayleigh number,

Ra :=
αrT

′
rρ

2
rgrb

3cpr
µrkr

=
αrT

′
rρrgrb

3

µrκr
(2.11)

with the representative gravitational acceleration gr. The Rayleigh number multiplies the buoyancy
force term and controls the vigor of convection.

For the energy conservation, we take the anelastic limit and apply the Boussinesq approximation.
Then the nondimensional form of the energy equation simplifies to

ρ̄c̄p
DT ′

Dt
= ∇ ·

(
k̄∇T ′

)
+ ρ̄H

(
b2Hrρr
krT ′r

)
,

where we introduced a representative internal heating rate Hr (see [104] for more details). We
summarize the results in the following corollary and provide our set of representative parameters used
for nondimensionalization in Table 2.1 as well as typical values from the literature in Table 2.2.

Corollary 2.3.2 (Mantle approximation). The thermal convection in Earth’s mantle is modeled by the
anelastic, Boussinesq, infinite Prandtl number approximations of the conservation of mass, momentum,
and energy equations (2.6) and (2.7). The non-hydrostatic form of the governing equations is a set of
Stokes equations with an additional energy equation:

∇ · u = 0 (conservation of mass / continuity) (2.12a)

−∇ ·
(
2µε̇

)
+∇p′ = Ra ρ̄ᾱT ′er (conservation of momentum) (2.12b)

ρ̄c̄p
DT ′

Dt
−∇ ·

(
k̄∇T ′

)
= ρ̄H

(
b2Hrρr
krT ′r

)
(conservation of energy) (2.12c)
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Table 2.1: Mantle convection parameters for nondimensionalization and temperature-driven buoyancy.

Parameter Symbol [Unit] Value

Thermal expansivity αr [K−1] 2× 10−5

Density ρr [kgm−3] 3300
Temperature difference T ′r [K] 1400
Thermal diffusivity κr [m2 s−1] 10−6

Representative viscosity µr [Pa s] 1020

Gravitational acceleration gr [m s−2] 9.81
Depth of convecting region b [m] 6371× 103

Rayleigh number Ra – 2.34× 109

Table 2.2: Mantle convection parameters from literature.

Parameter Symbol [Unit] Schubert et al. [104] Alisic et al. [5] Ratnaswamy et al. [93]

Thermal expansivity αr [K−1] 3× 10−5 2× 10−5 2× 10−5

Isothermal compressibility χTr
[Pa−1] 3× 10−12 – –

Specific heat cpr [kJ kg−1 K−1] 1 – –
Density ρr [kgm−3] 4000 3300 3300
Temperature difference T ′r [K] 1000 1400 1400
Thermal conductivity kr [Wm−1 K−1] 4 – –
Thermal diffusivity κr [m2 s−1] 10−6 10−6 10−6

Representative viscosity µr [Pa s] 1021 1020 1020

Gravitational acceleration gr [m s−2] 9.81 9.81 9.81
Depth of convecting region b [m] 3000× 103 6371× 103 1500× 103

Rayleigh number Ra – 3.18× 107 2.34× 109 3.06× 107

The conservation of momentum equation (2.12b) can also be expressed in a form without eliminating
the hydrostatic relation, namely:

−∇ ·
(
2µε̇

)
+∇p = Ra ρ̄

(
ᾱT ′ − 1

αrT ′r

)
er.

Note that the variables ρ̄, ᾱ, and c̄p are constant (and typically ρ̄ = ᾱ = 1), but neither the anelastic
approximation nor the Boussinesq approximation require the viscosity µ or the thermal conductivity
k̄ to be constant.

2.4 Temperature variations in the mantle

Earth’s mantle encompasses the globe’s upper ∼3000 km, and our computational domain is an ideal
spherical shell denoted by Ω ⊂ Rd, d = 3, with a smooth boundary ∂Ω. We denote the boundary at
the surface by Γsurf ⊂ ∂Ω and the core–mantle boundary at 2867 km depth by Γcore ⊂ ∂Ω.

The lithosphere is a fundamental feature of the plate tectonics theory and describes an outer shell
in the mantle that remains rigid during long time scales ∼106 yr. The lithosphere of oceanic plates
has an average thickness of 100 km whereas the continental lithosphere is typically estimated to be
about 200 km thick. The asthenosphere is the region of the mantle beneath the lithosphere with a
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lower viscosity due to higher temperatures. The boundary between lithosphere and asthenosphere
can be defined in terms of mechanical, thermal, or elastic properties of the lithosphere [104]. The
mechanical lithosphere is defined by an upper layer of rock that deforms slowly over geological time
scales. The definition of the thermal lithosphere, on the other hand, prescribes a thermal boundary
layer that constitutes the lithosphere. The base of this thermal boundary layer is typically chosen to
be the depth at which the temperature has increased by 90% toward the asthenosphere’s temperature.

The half-space cooling model provides an adequate first-order model for the temperature of oceanic
plates of ages less than about 80Myr. It is discussed in the remainder of this section because it is
useful to describe the hydrostatic component of the body force (2.9). The governing (2-dimensional)
convection-conduction equation for the temperature inside the plate is

upl
∂T

∂x
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
, (2.13)

where upl is the velocity of seafloor spreading and κ is the thermal diffusivity [104]. Let L be a typical
distance from the ocean ridge, then we can define the Peclét number by Pe := uplL/κ. Typical values
for the oceanic lithosphere are

L ≈ 1000 km, upl ≈ 50mmyr−1, κ ≈ 10−6 m2 s−1

and we find the Peclét number to be Pe ≈ 1600.
For a large Peclét number, the horizontal temperature is convection-dominated, thus it is appro-

priate to neglect horizontal heat conduction, i.e., κ∂
2T
∂x2
≈ 0. The boundary layer approximation of

Equation (2.13) then becomes

upl
∂T

∂x
= κ

∂2T

∂y2

and, since t = x/upl, we can write
∂T

∂t
= κ

∂2T

∂y2
. (2.14)

The partial differential equation (2.14) is augmented with boundary conditions

T = T0 at y = 0 (at the surface), (2.15a)

T → T1 as y →∞ (at infinite depth), (2.15b)

where 0 ≤ T0 < T1, and the initial condition at t = 0

T =

T0 0 = y,

T1 0 < y.
(2.16)

Lemma 2.4.1 (Half-space cooling model). The solution of the partial differential equation (2.14) with
boundary conditions (2.15) and initial condition (2.16) is given by

T1 − T
T1 − T0

= erf c

(
y

2
√
κt

)
. (2.17)
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Proof. We introduce the nondimensional similarity variables

θ :=
T1 − T
T1 − T0

, η :=
y

2
√
κt
. (2.18)

Partial derivatives of (2.14) with respect to variables t and y transform to ordinary derivatives with
respect to η:

∂θ

∂t
=
dθ

dη

∂η

∂t
=
dθ

dη

(
− y

2
√
κt

1

2t

)
=
dθ

dη

(
− η

2t

)
, (2.19)

∂θ

∂y
=
dθ

dη

∂η

∂y
=
dθ

dη

1

2
√
κt

thus
∂2θ

∂y2
=
d2θ

dη2

1

2
√
κt

∂η

∂y
=
d2θ

dη2

1

4κt
. (2.20)

Substituting (2.19) and (2.20) into Equation (2.14) gives the ordinary differential equation

− η dθ
dη

=
1

2

d2θ

dη2
(2.21)

with the boundary conditions

θ = 1 at η = 0, θ = 0 as η →∞.

Now, it remains to solve an ordinary differential equation. First, let

φ :=
dθ

dη
, (2.22)

then Equation (2.21) becomes

−ηφ =
1

2

dφ

dη
⇒ −η dη =

1

2

1

φ
dφ.

Integration yields
−η2 = lnφ− ln c1,

where we introduced the constant of integration − ln c1. It follows, using definition (2.22), that

dθ

dη
= c1 e−η

2 ⇒ dθ = c1 e−η
2
dη

and upon integration we obtain

θ(η)− 1 = c1

∫ η

0
e−ξ

2
dξ, (2.23)

where we evaluated the constant of integration using the boundary condition θ(0) = 1. Further, since
the following definite integral satisfies ∫ ∞

0
e−ξ

2
dξ =

√
π

2

and exploiting the boundary condition θ(η →∞) = 0, we find the constant c1 = −2/
√
π. Substituting

c1 into Equation (2.23), we get the solution of Equation (2.21)

θ(η) = 1− 2√
π

∫ η

0
e−ξ

2
dξ = 1− erf (η) = erf c (η) .

The solution (2.17) in terms of the original variables is obtained by replacing the similarity variables
with their definitions in (2.18).
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Definition 2.4.2 (Thermal boundary layer). Based on the notion of the thermal lithosphere and the
result from Lemma 2.4.1, we define the thermal boundary layer constituting the oceanic lithosphere
to have a thickness yTBL ∈ (0,∞) such that

erf c

(
yTBL

2
√
κt

)
= θTBL := 0.1,

which means we set the increase in temperature to 90%. This, in turn, results in ηTBL = erf c−1(θTBL)

and the thickness of the thermal boundary layer depending on the plate’s age t is

yTBL(t) = 2 ηTBL

√
κt = 2 erf c−1(θTBL)

√
κt ≈ 2.32

√
κt.

In the mantle approximation of the momentum equation (2.12b), the hydrostatic relation is
eliminated and hence the temperature-driven right-hand side forcing excludes the adiabatic temperature
that only changes with depth but not laterally. In practice, we eliminate the adiabatic temperature
from the forcing by subtracting a background temperature on the right-hand side, which is derived
from the half-space cooling model.

Definition 2.4.3 (Background temperature). The background temperature Ttpl corresponding to a
plate of age tpl is derived from the solution (2.17) of the half-space cooling model with T0 = 0 and
T1 = 1 in Lemma 2.4.1. It is thus defined by:

Ttpl (r) := erf

(
R− r

2
√
κtpl

)
for 0 ≤ r ≤ R,

where R = 6371 km denotes Earth’s radius.

Definition 2.4.4 (Temperature dependent viscosity component). The viscosity depends on the
temperature via an Arrhenius relationship and this temperature dependent term is defined by:

a (T ) := ca exp (Ea (0.5− T )) for 0 ≤ T ≤ 1, (2.24)

where the parameter Ea assumes the role of an activation energy and ca is a constant scaling factor.

2.5 Decoupling of plates via weak zones

The surface of the earth is subdivided into plates. An example for a set of plates and their boundaries
is shown in Figure 2.1. In order to model the decoupling of adjacent plates in mantle’s rheology, we
incorporate trenches, fracture zones, and ridges via thin low-viscosity layers. These layers are called
weak zones and they are described geometrically by manifolds, i.e., two-dimensional surfaces, that
extend from Earth’s surface into its interior with a corresponding layer width.
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Figure 2.1: Plate boundaries (red lines) and plate geometries employed for MORVEL plate motion
data set [36]. Patterned red areas show diffuse plate boundaries. Plate names are abbreviated by two
letters. (Credit: DeMets, Gordon, Argus).

Definition 2.5.1 (Weak zone). Given the geometric representation of weak zone manifolds and
parameters

weak zone width: dw,

plate boundary width: dmin,

minimum weak zone factor: wmin ∈ (0, 1],

the weak zone at any point x in the mantle domain Ω requires the distance d(x) of x to the nearest
manifold. Then the weakening factor is computed by

w (x) := 1− (1− wmin) exp

(
−ξ(x)2

2σ2

)
∈ (0, 1], x ∈ Ω, (2.25)

where
ξ(x) := max (0, d(x)− dmin) and σ :=

dw − dmin

2
.

Note that Equation (2.25) incorporates a Gaussian-like mollifier that yields smooth weak zones.
Furthermore, the minimum weak zone factor wmin is assumed for all points inside of the plate boundary
layer of width dmin. An example of a profile of a weak zone is shown in Figure 2.2. From a geodynamics
perspective, areas of interesting activity around plate boundaries are about 40 km thick, within which
we need to embed weak zones. It is desired that the weak zone is sufficiently thin such that we can
observe dynamic behavior without imposing it through weak zones that are too wide. Weak zones at
subduction zones need to be sufficiently thin such that the bending plate remains coherent. Therefore,
acceptable choices for the weak zone width dw are in the range 10–20 km. In case of weak zones that
are too wide, unfortunately, the physical factors that govern the strength of weak zones (essentially
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wmin

1
dminσ σ

dw = dmin + 2σ

Figure 2.2: Weak zone profile with weak zone width dw = 20 km, plate boundary width dmin = 5 km,
and weak zone factor wmin = 10−5.

the seismic megathrust) and the bending plate are not resolved. The megathrust and the bending
plate are independent physical entities with a host of processes, which independently govern their
strength.

2.6 A composite nonlinear viscosity model

The mantle’s rheology can be modeled as a composite of linear viscosity (Newtonian rheology) and
nonlinear viscosity (non-Newtonian rheology) [5, 110]. To describe the viscosities, first recall the
definitions of the strain rate and viscous stress tensors, ε̇ = 1

2

(
∇u+∇uT

)
and τ = 2µε̇, and next

we define their second invariants.

Definition 2.6.1 (Second invariants). The (square root of the) second invariant of the strain rate
tensor is (using the Einstein summation convention)

ε̇ii =

(
1

2

(
ε̇ij ε̇ij − ε̇2

kk

)) 1
2

=
(
ε̇2

12 + ε̇2
13 + ε̇2

23 − (ε̇11ε̇22 + ε̇11ε̇33 + ε̇22ε̇33)
) 1

2

The (square root of the) second invariant of the viscous stress tensor is

τii =

(
1

2

(
τijτij − τ2

kk

)) 1
2

=

(
1

2

(
4µ2ε̇ij ε̇ij − 4µ2ε̇2

kk

)) 1
2

= 2µε̇ii.

In case of incompressible fluids, the second invariants become

ε̇ii =

(
1

2
ε̇ij ε̇ij

) 1
2

=

(
1

2
ε̇ : ε̇

) 1
2

and

τii =

(
1

2
τijτij

) 1
2

=

(
1

2
τ : τ

) 1
2

.
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The mantle can be subdivided into two regions. The upper mantle is the outer shell of the mantle
ranging from the surface Γsurf to ∼660 km depth and the lower mantle is the inner shell between core
Γcore and upper mantle. In the lower mantle, the dominant rheological mechanism is linear diffusion
creep, whereas in the upper mantle nonlinear dislocation creep dominates.

Definition 2.6.2 (Diffusion creep and dislocation creep). Given the parameters (assumed to be
positive unless noted otherwise)

grain size: d

grain size exponent: p

pre-exponent: A

water content: COH

water content exponent: r

stress exponent: n ≥ 1

activation energy: Ea

activation volume: Va

lithostatic pressure: P

gas constant: R

we define the linear diffusion creep viscosity

µdf(T ) :=

(
dp

ACrOH

)
exp

(
Ea + PVa

RT

)
(2.26)

and the nonlinear dislocation creep viscosity

µds(T, ε̇ii) :=

(
dp

ACrOH

) 1
n

ε̇
1−n
n

ii exp

(
Ea + PVa
nRT

)
= (µdf(T ) ε̇ii)

1
n ε̇−1

ii . (2.27)

Note that the diffusion creep viscosity (2.26) is a special case of the dislocation creep viscosity (2.27)
if n = 1. Hence, Equation (2.27) is a general form of the viscosity that allows for strain rate weakening
if n > 1.

In addition, the upper mantle is subdivided into lithosphere and asthenosphere, which is based on
thermal or mechanical properties of the rock (see Section 2.4). The temperature of the lithosphere is
relatively low and, since the lithosphere moves mostly like a rigid body far away from plate boundaries,
it is subjected to little strain. Therefore (linear) diffusion creep is the dominating mechanism in the
lithosphere, which corresponds to the case n = 1 in Equation (2.27). Closer to a plate boundary,
however, strain rates in the lithosphere increase such that deformations occur due to high stresses. In
such regions, dislocation creep is activated with n ≈ 3 in (2.27) and, additionally, a yielding law is
introduced.
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Definition 2.6.3 (Yielding law). The yielding law requires that the viscous stress is bounded from
above by a given yield strength τyield > 0, i.e.,

τii ← min (τii, τyield) = min (2µε̇ii, τyield) .

Yielding results in a new viscosity

µ← min

(
µ,
τyield

2ε̇ii

)
.

With the definitions above, we are able to construct a composite formulation of the viscosity as
follows (see [5] for more details).

Definition 2.6.4 (Composite viscosity model). Given are lower and upper viscosity bounds 0 <

µmin < µmax <∞, yield strength τyield > 0, and a yielding regularization 0 ≤ εreg < 1. We first define
the harmonic mean of diffusion and dislocation creep according to [13] that is bounded from above:

µdf,ds(T, ε̇ii) := min

(
µdf(T )µds(T, ε̇ii)

µdf(T ) + µds(T, ε̇ii)
, µmax

)
.

Our composite viscosity is more involved,

µcomp(T, ε̇ii) := max

(
µmin, w (x)

[
(1− εreg) min

(
µdf,ds(T, ε̇ii),

τyield(x)

2ε̇ii

)
+ εregµdf,ds(T, ε̇ii)

])
,

incorporating plastic yielding, regularization for yielding, and a viscosity lower bound. This means
that the composite viscosity is computed by the following sequence of steps:

“Viscosity = Upper bound → Yielding →Weak zone → Lower bound”

and we refer to this sequence as the UYWL model of the composite viscosity.

2.7 The nonlinear viscosity model of choice

In this section, we formulate the model for the nonlinear viscosity that will be used in the remainder of
this work as the constitutive relation in our mantle convection models. As in the composite viscosity
model from Definition 2.6.4, we consider the (nonlinear) dislocation creep (2.27) in the upper mantle
with n > 1. In the lower mantle, the nonlinear component in Equation (2.27) is eliminated by setting
n = 1. To model the temperature dependence in the rheology, the diffusive component in (2.27) is
replaced by the Arrhenius relationship from Definition 2.4.4 as in [93]. We describe the viscosity
model in the following definition and illustrate it in Figure 2.3.

Definition 2.7.1 (Viscosity model). Given lower and upper viscosity bounds 0 < µmin < µmax <∞,
stress exponent 1 ≤ n, and yield strength 0 < τyield, the nonlinear viscosity is defined by

µ(T, ε̇ii) := max

(
µmin,min

(
τyield

2ε̇ii
, w (x) min

(
µmax, a (T ) ε̇

1−n
n

ii

)))
(2.28)

This means that the viscosity is computed by the following sequence of steps:
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µmax µmin plate decoupling

strain ratestrain rate
weakeningweakening

plasticplastic
yieldingyielding

Figure 2.3: Cross section through a subducting slab (i.e., lithosphere subducting into mantle) of the
Pacific plate showing effective mantle viscosity (colors) from Definition 2.7.1. Effective viscosity of
plates reaches µmax (dark blue), except at the hinge zone due to plastic yielding. In the thin plate
boundary region, viscosity drops to µmin (dark red) creating a contrast of 106. Strain rate weakening
reduces the viscosity underneath the plates in the asthenosphere and, combined with plastic yielding,
is the reason for Earth’s highly nonlinear rheology.

“Viscosity = Upper bound →Weak zone → Yielding → Lower bound”

and we refer to this sequence as the UWYL model of the viscosity.

In Definition 2.7.1, both the stress exponent n as well as the scaling factor ca in the Arrhenius
relationship (2.24) take different values depending on the spatial location x being either in the lower
or in the upper mantle. Moreover, note that even though the terms τyield/(2ε̇ii) and ε̇

(1−n)/n
ii are

unbounded as ε̇ii → 0, the viscosity (2.28) stays bounded because it incorporates the upper bound
µmax < ∞. In practice, we compute the viscosity as in Algorithm 2.7.1 and Table 2.3 lists typical
values for the parameters of the constitutive relationship used in our numerical simulations.

Algorithm 2.7.1 Computing the viscosity µ from Equation (2.28)

1: Input fields: T ∈ [0, 1], ε̇ii ∈ [0,∞), and w ∈ (0, 1]
2: Input constants: 0 < µmin < µmax <∞, 0 < Ea, ca, τyield, and 1 ≤ n
3: a← ca exp (Ea (0.5− T )) . compute temperature dependent component

4: µ← a ε̇
1−n
n

ii . compute strain-rate weakening component
5: µ← min (µ, µmax) . apply upper bound
6: µ← wµ . multiply in weak zone
7: if τyield < 2µε̇ii then
8: µ← τyield/(2ε̇ii) . apply yielding law
9: end if

10: µ← max (µmin, µ) . apply lower bound

22



Table 2.3: Typical constitutive parameters for mantle convection.

Parameter Symbol [Unit] Value

Activation energy Ea [Jmol−1] 204× 103

Viscosity scaling in lower mantle calm – 4× 105

Viscosity scaling in upper mantle caum – 1× 106

Minimum weak zone factor wmin – 10−5

Viscosity lower bound µmin [Pa s] 1018

Viscosity upper bound µmax [Pa s] 1024

Stress exponent n – 3
Yielding stress τyield [Pa] 123× 106

2.8 Regularizing the nonlinear viscosity

Our goal is to use the viscosity model from Definition 2.7.1 in our mantle convection forward solver,
where we will linearize the nonlinear differential equations with Newton’s method. This requires
to take the derivative of the viscosity µ in Equation (2.28) with respect to the second invariant of
the strain rate ε̇ii, i.e., computing ∂µ

∂ε̇ii
. The current form of the viscosity, presents three potential

sources for discontinuities in this derivative: (i) applying the upper bound µmax, (ii) applying the
lower bound µmin, and (iii) applying the yielding law. These discontinuities can cause convergence
issues for Newton’s method, therefore a regularized version of the viscosity model in Equation (2.28)
is presented next.

When the upper bound µmax is applied to the viscosity (2.28), the nonlinear relationship between

the second invariants of strain rate and viscous stress, which is originally τii(ε̇ii) = 2aε̇
1
n
ii , becomes

linear: τii = 2µmaxε̇ii. This switch can cause discontinuities in the derivative of the second invariant
of the viscous stress, ∂τii∂ε̇ii

, which implies a discontinuous viscosity derivative, ∂µ
∂ε̇ii

. In order to obtain a
continuously differentiable viscosity derivative, we employ a shift in the relationship between strain
rate and viscous stress.

First, we want to find the value of the (second invariant of the) strain rate where the derivative of
the nonlinear (second invariant of the) viscous stress matches the derivative of the linear viscous stress,
which is a constant. This strain rate value will implicitly depend on the temperature component of
the viscosity, a = a (T ). Thus we seek the solution of the problem:

Find ε̇deriv s.t.
∂τii
∂ε̇ii

(ε̇deriv) = 2µmax.

Let us postulate the equality

2µmax
!

=
∂τii
∂ε̇ii

(ε̇ii) =
2

n
a ε̇

1−n
n

ii

and then solve for the strain rate to find

ε̇deriv ← ε̇ii =
(nµmax

a

) n
1−n

.

23



Second, we derive the minimum strain rate where the transition between linear and nonlinear viscous
stress with matching derivatives occurs by solving the problem:

Find ε̇min s.t. τii (ε̇deriv) = 2µmaxε̇min.

Therefore consider

2µmaxε̇ii
!

= τii (ε̇deriv) = 2a ε̇
1
n
deriv = 2a

(nµmax

a

) 1
1−n

,

which has the solution

ε̇min ← ε̇ii =
τii (ε̇deriv)

2µmax
=

a

µmax

(nµmax

a

) 1
1−n

.

Finally, we define the strain rate shift

d := ε̇min − ε̇deriv

and the shifted viscous stress τd (ε̇ii) := τii (ε̇ii − d) = 2 a (ε̇ii − d)
1
n that is now continuously differ-

entiable at the transition between linear and nonlinear viscosity caused by the upper bound. This
allows us to define a viscosity with regularized upper bound:

µu(T, ε̇ii) := min
(
a (T ) (ε̇ii − d)

1
n ε̇−1

ii , µmax

)
=

µmax ε̇ii < ε̇min,

a (T ) (ε̇ii − d)
1
n ε̇−1

ii ε̇min ≤ ε̇ii.
(2.29)

Corollary 2.8.1. The viscosity with regularized upper bound, µu(T, ε̇ii), in Equation (2.29) is contin-
uously differentiable with respect to ε̇ii.

Proof. The derivative of the viscosity with regularized upper bound in Equation (2.29) for the case
ε̇min ≤ ε̇ii is

∂µu

∂ε̇ii
(T, ε̇ii) = a (T ) (ε̇ii − d)

1−n
n

(
1

n
− 1 + dε̇−1

ii

)
ε̇−1
ii . (2.30)

To show that the derivative (2.30) is continuous, it is sufficient to show the following:

1

n
− 1 + dε̇−1

ii → 0 as ε̇ii → ε̇min, ε̇min ≤ ε̇ii.

Hence, we consider
1

n
− 1 + dε̇−1

min =
1

n
− 1 +

ε̇min − ε̇deriv

ε̇min
=

1

n
− ε̇deriv

ε̇min
, (2.31)

where we used the definition of d. Further, substituting the definitions of ε̇deriv and ε̇min yields

ε̇deriv

ε̇min
=
(nµmax

a

) n
1−n µmax

a

(nµmax

a

) −1
1−n

=
µmax

a

(nµmax

a

)−1
=

1

n
. (2.32)

Combining Equations (2.31) and (2.32) gives the result.
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The yielding law that is incorporated in the viscosity model (2.28) is another source for a
discontinuous derivative, ∂µ

∂ε̇ii
. We do not modify this feature of the viscosity. However, note that the

application of the lower viscosity bound enforces that the viscosity is always bounded away from zero,
i.e., 0 < µmin ≤ µ.

Finally, when the lower bound µmin is applied to the viscosity (2.28), we can simply introduce a
regularization by avoiding the maximum

µ← max (µmin, µ)

and instead applying the lower bound via addition:

µ← µmin + µ.

We summarize the derivations in the following Corollary 2.8.2, provide Algorithm 2.8.1 to describe
the computation of the viscosity in practice, and illustrate the regularization in Figure 2.4.

Corollary 2.8.2 (Regularized viscosity model). With the same assumption as in Definition 2.7.1,
the regularized nonlinear viscosity is

µreg(T, ε̇ii) := µmin + min

(
τyield

2ε̇ii
, w (x) min

(
µmax, a (T ) (ε̇ii − d)

1
n ε̇−1

ii

))
, (2.33)

where

d = max

(
0, ε̇min −

(
nµmax

a (T )

) n
1−n
)

and ε̇min =
a (T )

µmax

(
nµmax

a (T )

) 1
1−n

.

Algorithm 2.8.1 Computing the regularized viscosity µreg from Equation (2.33)

1: Input fields: T ∈ [0, 1], ε̇ii ∈ [0,∞), and w ∈ (0, 1]
2: Input constants: 0 < µmin < µmax <∞, 0 < Ea, ca, τyield, and 1 ≤ n
3: a← ca exp (Ea (0.5− T )) . compute temperature dependent component
4: ε̇min ← a

µmax

(nµmax

a

) 1
1−n . set min strain rate of nonlinear regime

5: d← max
(
0, ε̇min −

(nµmax

a

) n
1−n
)

. set strain rate shift; enforce non-negativity

6: µ←

{
a (ε̇ii − d)

1
n ε̇−1

ii , ε̇min < ε̇ii

∞, otherwise
. compute strain-rate weakening component

7: µ← min (µ, µmax) . apply upper bound
8: µ← wµ . multiply in weak zone
9: if τyield < 2µε̇ii then

10: µ← τyield/(2ε̇ii) . apply yielding law
11: end if
12: µ← µ+ µmin . apply lower bound
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Figure 2.4: Temperature & strain rate vs. viscous stress relationships for viscosity model from
Definition 2.7.1 (left) and its regularized version (right). The regularized model incorporates upper
and lower bounds for the viscosity in a continuously differentiable manner. The white labels in the left
graph point out different regimes in the rheology, which form distinct planes in the graph.
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3

Inverse Problem: Inferring Uncertain Parameters
in Mantle Flow Models

This chapter describes the computational methods toward the goal of inferring uncertain parameters
in Earth’s mantle. We define the parameters that are of interest for the inversion and incorporate
them into our mantle convection models. The available observational data that can be used in mantle
convection inversions is described. Moreover, the observation operators and data misfit functionals
are introduced. Finally, foreseeable challenges pertaining to the statistical inversion of parameters in
Earth’s mantle are presented and possible solutions are proposed. We begin with an introduction to
inverse problems in a Bayesian framework, where the solution of a PDE establishes the connection
between inversion parameters and observations.

3.1 Bayesian inverse problems governed by PDEs

Inverse problems are encountered where one makes indirect observations of a quantity of interest. In
this dissertation this means that given observational data, we are interested in finding parameters of a
physical model, where the observations from the model involve solving a PDE imposed by the model.
The model PDE is also called forward problem. The particular model we are targeting is Earth’s
mantle convection introduced in Chapter 2. While forward problems are typically well posed by
design, inverse problems are generally ill-posed since they do not satisfy the criteria for well-posedness:
existence of a unique solution and continuous dependence of the observational data on parameter
perturbations.

We consider inverse problems in a statistical setting, in particular we take the Bayesian approach
toward inverse problems [31, 74, 112, 114]. In this approach, both the given observational data and
the unknown model parameters are treated as random variables, and the solution of the Bayesian
inverse problem (BIP) is a probability distribution for the parameters. Note that by restating the
inverse problem as a well-posed extension in a larger space of probability distributions, we expose
prior information on the parameters, while these would likely be hidden behind regularization schemes
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in a deterministic setting [74].
To define a BIP, assume a finite-dimensional parameter spaceX and a finite-dimensional observation

space Y . Let the state (or forward) variable u = u(m) ∈ V be in a Hilbert space V and depend on
parameters m ∈ X through the solution of a model PDE referred to as the forward problem,

A(m,u) = f, A : X × V → V ′, f ∈ V ′, (3.1)

where V ′ is the dual space of V and A(m,u) is generally considered to be nonlinear with respect to
both m and u. In order to compare the solution of the forward model u(m) to observational data
in Y , assume the existence of an observation operator F : X × V → Y . The observation operator
implicitly depends on the model PDE (3.1) through the dependence of u(m) on the parameters and it
can, in general, be nonlinear with respect to both of its arguments. The observational data d ∈ Y is
given and we assume that it contains normally distributed additive noise such that(

d−F(m,u(m))
)
∼ N (0,Cnoise)

with covariance Cnoise. Moreover, the prior distribution of the parameters is assumed to be Gaussian,
N (mpr,Cpr), with mean mpr ∈ X and covariance Cpr. As a consequence of these assumptions and of
properties of conditional probability densities, we obtain the posterior density from Bayes’ formula

πpost(m) := π (m | d) =
π (d | m)π (m)

π (d)
. (3.2)

Finally, if we incorporate that noise, represented by likelihood π (d | m), and prior, represented by
prior density π (m), are normally distributed, then Equation (3.2) becomes

πpost(m) ∝ exp

(
−1

2
‖d−F(m,u(m))‖2

C−1
noise
− 1

2
‖m−mpr‖2C−1

pr

)
. (3.3)

In this framework, the major computational challenge lies in exploring the posterior, which typically
is defined over a high-dimensional space due to large numbers of parameters. In order to characterize
πpost, our first goal will be to find an estimate for the maximum point of πpost and the second goal will
be to approximate πpost in a neighborhood around this maximum, which amounts to a local Gaussian
approximation of the posterior, sometimes referred to as Laplace approximation.

The maximum a posteriori (MAP) estimate of the posterior density is defined by

mMAP := arg max
m∈X

πpost(m),

which can be rewritten as a minimization problem governed by the model PDE (3.1):

mMAP = arg min
m∈X

J (m,u(m)) subject to A(m,u(m)) = f, (3.4)

where the objective functional J is proportional to the negative log of πpost,

J (m,u(m)) :=
1

2
‖d−F(m,u(m))‖2

C−1
noise

+
1

2
‖m−mpr‖2C−1

pr
. (3.5)
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We aim to solve the minimization problem (3.4) for mMAP with Newton’s method, which requires
derivatives (gradients and Hessians). These operations will be performed in a scalable way using
adjoint methods [15], which are described in Section 3.2.

Once the maximum a posteriori estimate mMAP is computed, a Gaussian approximation about
mMAP can be used to quantify parameter uncertainties. This is a tractable approach to explore
statistical properties of posteriors that correspond to computationally expensive forward models [24], as
opposed to, e.g., sampling techniques that approximate the full non-Gaussian posterior. Furthermore,
these Gaussian approximations can be used to accelerate sampling algorithms [82, 91]. To obtain
a Gaussian approximation of the posterior, we linearize F at mMAP. Then the resulting Gaussian
measure of the posterior is associated to the normal distribution N (mMAP,Cpost) with mean mMAP

and covariance matrix given by

Cpost :=
(
F ∗C−1

noiseF + C−1
pr

)−1
, (3.6)

where F is the Fréchet derivative of the observation operator F evaluated at mMAP and F ∗ is denoting
its adjoint with respect to a suitable inner product on X.

Explicitly constructing the posterior covariance matrix (3.6) is prohibitively expensive in case of
large numbers of parameters, because of storage requirements of the generally dense Cpost and since it
would require as many solves of the incremental forward and adjoint problems as there are parameters.
However, a low-rank approximation of Cpost is often possible [48], in which the computational cost
corresponds to the amount of information encoded in the data.

3.2 Gradient and Hessian computation with adjoint methods

When solving the nonlinear optimization problem (3.4) for the MAP estimate, we need to compute
gradients and Hessians of the objective functional (3.5) if we want to use Newton’s method. To
compute the gradient of (3.5) with respect to m, we define the Lagrangian for the gradient as the
sum of J (m,u) and the variational form of the residual of the forward problem (3.1),

Lg(m,u, v) := J (m,u) + [(A(m,u) , v)− (f , v)] .

We take variations of the Lagrangian with respect to v, u, and m and set the former two to zero, i.e.,

δv[Lg](ṽ)
!

= 0, δu[Lg](ũ)
!

= 0, δm[Lg](m̃),

where, e.g., δv[Lg](ṽ) denotes a variation with respect to v in direction ṽ defined by

δv[Lg](ṽ) = δv[Lg(m,u, v)](ṽ) :=
∂Lg(m,u, v + εṽ)

∂ε

∣∣∣∣
ε=0

.

This results in a sequence of three steps to compute the gradient. First, we solve the (generally
nonlinear) forward problem for u:

(A(m,u) , ṽ) = (f , ṽ) for all ṽ ∈ V, (3.7)
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and then the linear adjoint problem for v:

(δu[A](ũ) , v) = (δu[F ](ũ) , d−F(m,u))C−1
noise

for all ũ ∈ V. (3.8)

After computing the state u and the adjoint state v, the gradient is found to be

G(m̃) = (δm[A](m̃) , v) + (m̃ , m−mpr)C−1
pr
− (δm[F ](m̃) , d−F(m,u))C−1

noise
for m̃ ∈ X. (3.9)

We repeat the Lagrange multiplier approach to find expressions for applying the Hessian to a
vector. The Lagrangian for the Hessian is the sum of the gradient (3.9) and the variational forms of
the residuals of the forward (3.7) and adjoint (3.8) problems, respectively,

LH(m,u, v, m̃, ũ, ṽ) := G(m,u, v, m̃) + [(A(m,u) , ṽ)− (f , ṽ)]

+
[
(δu[A](ũ) , v)− (δu[F ](ũ) , d−F(m,u))C−1

noise

]
.

Similar to the procedure for the gradient, to apply the Hessian to a direction m̃, we perform the steps

δv[LH ](v̂)
!

= 0, δu[LH ](û)
!

= 0, δm[LH ](m̂),

Hence, we first need to solve the linear incremental forward problem for ũ:

(δu[A](ũ) , v̂) = − (δm[A](m̃) , v̂) for all v̂ ∈ V,

and then the linear incremental adjoint problem for ṽ:

(δu[A](û) , ṽ) =− (δuδu[A](ũ)(û) , v)

+ (δuδu[F ](ũ)(û) , d−F(m,u))C−1
noise

− (δu[F ](ũ) , δu[F ](û))C−1
noise

− (δuδm[A](m̃)(û) , v)

+ (δuδm[F ](m̃)(û) , d−F(m,u))C−1
noise

− (δm[F ](m̃) , δu[F ](û))C−1
noise

for all û ∈ V.

After computing the so-called incremental state ũ and the incremental adjoint state ṽ, the Hessian
application to m̃ is computed as

H(m̃)(m̂) = (δm[A](m̂) , ṽ) + (m̃ , m̂)C−1
pr

+ (δmδu[A](ũ)(m̂) , v)

− (δmδu[F ](ũ)(m̂) , d−F(m,u))C−1
noise

+ (δu[F ](ũ) , δm[F ](m̂))C−1
noise

+ (δmδm[A](m̃)(m̂) , v)

− (δmδm[F ](m̃)(m̂) , d−F(m,u))C−1
noise

+ (δm[F ](m̃) , δm[F ](m̂))C−1
noise

for m̂ ∈ X.

(3.10)
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Corollary 3.2.1 (Simplified observation operator). If the observation operator F(m,u(m)) is linear
in u(m) and independent of m, the equations for the gradient computation and Hessian application
simplify to the following. The forward and adjoint problems are

(A(m,u) , ṽ) = (f , ṽ) for all ṽ ∈ V,

(δu[A](ũ) , v) = (F ũ , d−Fu)C−1
noise

for all ũ ∈ V,

and the gradient is

G(m̃) = (δm[A](m̃) , v) + (m̃ , m−mpr)C−1
pr

for m̃ ∈ X.

The incremental forward and adjoint problems are

(δu[A](ũ) , v̂) = − (δm[A](m̃) , v̂) for all v̂ ∈ V,

(δu[A](û) , ṽ) = − (δuδu[A](ũ)(û) , v)− (F ũ , F û)C−1
noise
− (δuδm[A](m̃)(û) , v) for all û ∈ V.

The Hessian in direction m̃ is

H(m̃)(m̂) = (δm[A](m̂) , ṽ) + (m̃ , m̂)C−1
pr

+

(δmδu[A](ũ)(m̂) , v) + (δmδm[A](m̃)(m̂) , v) for m̂ ∈ X.

3.3 Review of developments in inverse problems applied to mantle
convection

Driving and resisting forces for plates at subduction zones are evaluated with inverse models in [50].
There, an inversion for the long-wavelength distribution of mantle buoyancy is performed using plate
motion as data and with a radial viscosity. However, the essential character of slabs as stress guides
while resisting plate motion through bending is not included. The inclusion is possible by incorporating
constitutive relationships with thermally activated diffusion and dislocation creep and plastic yielding,
which gives rise to essential processes within the bending plates with the result of producing plate-like
motion at the surface [5, 6, 110].

Adjoint methods for the inference of mantle properties and initial temperature distributions in the
mantle are developed in [72, 80, 109] for regional models and in [25, 67] for global models. All of these
models rely on simplified rheologies that do not incorporate essential nonlinear physics of strain rate
weakening and plastic yielding.

Inverse problems with a strain rate weakening rheology are solved in [119]. There, the setup
of the problems consists of two- and three-dimensional cross sectional domains and includes simple
subduction models with a single slab. Through solving deterministic inverse problems with Tikhonov
or total variation (TV) regularization, constant parameters and spatially-varying fields in the rheology
are recovered. The instantaneous nonlinear mantle convection forward problem is solved with Newton’s
method, whereas quasi-Newton is used as an inverse solver.
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Building on results from [119], a strain rate weakening rheology with plastic yielding is considered
in [93]. In a two-dimensional Cartesian domain with multiple slabs, inversions for plate boundary
strength and constant rheological parameters are performed. Manufactured plate velocities at the
surface serve as observational data. The inverse problems are solved deterministically and also
within a Bayesian framework, where uncertainties in the parameters are quantified with Gaussian
approximations about the MAP estimate and with Markov Chain Monte Carlo (MCMC) sampling
methods.

3.4 Parametrization of the mantle convection model

We are interested in globally constant as well as locally varying parameters in the constitutive
relationship (2.28). The global parameters are constants affecting the viscosity in the upper mantle,
which is ∼660 km deep and includes the lithosphere and the asthenosphere. These constants are the
scaling factor µum > 0, the stress exponent n ≥ 1, and the yield stress τyield > 0. Additionally, we aim
to infer local spatially-varying parameters, which describe plate boundary strength. The coupling
strength between plates is modeled through a plate decoupling factor in the viscosity (2.28). The
decoupling is performed by prescribing thin regions of low viscosity between plates, called weak zones
0 < w(x) ≤ 1, x ∈ Ω, see Section 2.5.

We transform the rheological and geometrical parameters of the mantle convection model into
inversion parameters that are collected in the vector m := [mglo,mweak]. The global rheological pa-
rameters are related to the inversion parameters mglo := [m1,m2,m3] ∈ R3 through a parametrization
that enforces lower bounds:

µum = µum(m1) = exp(m1), n = n(m2) = 1 + exp(m2), τyield = τyield(m3) = exp(m3).

The spatially varying weak zones are associated with the parameter vector mweak := [mi]i, mi ∈ R, of
dimension greater or equal one. To parametrize the weak zone from Definition 2.5.1, we extend the
definition of the minimum factor of the weak zone to

wmin(mweak,x) := exp

−(∑
i

mi θi(x)

)2
 ∈ (0, 1], x ∈ Ω. (3.11)

Here, the functions θi : Ω→ [0, 1] are indicator functions that are one near associated plate boundary
manifolds and zero otherwise. For example in the simplest case, θi(x) for each i is discontinuous
and equals one if x is a near plate boundary i. Alternatively, if a finer resolution of the weak zone
factors is desired, the functions θi can represent components of a piecewise linear curve along plate
boundaries. In that case, the number of indices i, and with it the dimension of mweak, increases.
Finally, using the weak zone factor wmin from Equation (3.11), the parametrized weak zone is modeled
as in Equation (2.25),

w (x) = w (mweak,x) = 1− (1− wmin(mweak,x)) exp

(
−ξ(x)2

2σ2

)
, x ∈ Ω. (3.12)
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3.5 Observational data and observation operators

The available observational data that we can fit to output from our instantaneous mantle convection
model includes: (i) plate motion, (ii) plate deformation, (iii) average upper mantle viscosity, and
(iv) topography data.

As plate motion data, one angular velocity vector (also called Euler vector or Euler pole) is given
per plate. It describes the rotation of the plate, which is assumed to be a rigid body, on the surface
of a sphere about the corresponding Euler pole. This data is obtained from seafloor spreading rates
based on magnetic anomalies as well as from Global Positioning System (GPS) station velocities. Our
main data source is a global plate motion model called NNR-MORVEL56 [7], which includes 56 plates
and corresponding angular velocities that are given in a no-net-rotation (NNR) frame. The plate
boundaries and velocities of the NNR-MORVEL56 data set are illustrated in Figure 3.1.

Plate deformation data is gathered with dense GPS networks as displacement data and processed
into deformations within plates in form of horizontal velocity fields [77]. These displacements are also
influenced by short-term effects from seismic cycles, which are not appropriate to be considered for
mantle convection models. Therefore, short-term displacements have to be removed from the data.
Another form of observations of plate deformations at the surface comes from strain rate models.
These can be incorporated as a data misfit for the second invariant of the strain rate at the surface.
However, the available data sets are based on older plate models that do not include important small
plates [14]. This may render the strain rate data as not suitable for the inversion using our mantle
model.

Information about average upper mantle viscosities exists for certain regions of the upper mantle
where one can infer an average viscosity from post-glacial rebound of the surface topography [32,60,
88,107].

Finally, Earth’s topography is influenced by plate dynamics [64, 121]. One use of such topography
data would be possible using a free surface in the model. This approach is outside the scope of this
work. However, as an alternative the topography data can be compared to a dynamic topography from
the model, which is derived from the surface normal stress. Whether fitting the dynamic topography
to the topography data is a feasible approach in an inverse problem is ongoing research.

After reviewing the available data, we discuss how to obtain observations from the model and
compare it to the data. The motion of a single plate is modeled as motion of a rigid body on a
sphere, therefore the observational data is an angular velocity vector rplate ∈ R3. This vector is
transformed into a spatially distributed field at the surface, uobs(x) := rplate×x for x ∈ Γplate ⊆ Γsurf

and uobs(x) = 0 for x /∈ Γplate, where Γplate is the area of Earth’s surface encompassing plate-like (i.e.,
rigid) motion. This process is repeated for each plate. Let Cplate be a suitable covariance operator
that provides sufficient smoothing, for instance a Laplacian (see [112]), and let Πsurf : Ω → Γsurf

restrict a volume field to the surface, then we define the data misfit functional∫
Γplate

(
uobs(x)−Πsurf u(x)

)
C−1

plate

(
uobs(x)−Πsurf u(x)

)
dx. (3.13)
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Figure 3.1: Top: Plate boundaries (blue & red lines) and plate geometries employed for NNR-
MORVEL56 plate motion data set [7]. Bottom: The blue arrows and numerals depict the horizontal
plate velocities in mmyr−1; green and red arrows show deviations from previous data sets. (Credit:
Argus, Gordon, DeMets).
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In addition to plate-like motion as in (3.13), plate deformation observations are available. For
certain regions of the earth, where plates are not moving rigidly, plate deformations can be modeled
in the form of displacement vectors. This data provides further observations of the velocity at the
surface, complementing rigid plate motion data. It consists of spatially distributed fields and a similar
data misfit functional as (3.13) can be used.

For a region with data about the average upper mantle viscosity from post-glacial rebound
observations, we assume the average viscosity µrebound > 0 to be given for a column of the upper
mantle, Ωrebound ⊆ Ω. Let γrebound > 0 be the misfit weight, then we define the data misfit functional
based on a geometric average

γ−1
rebound

(
µrebound − exp

(∫
Ωrebound

ln
(
µ(m, ε̇ii(u))

)
|Ωrebound|

dx

))2

. (3.14)

Note that the resulting observation operator depends on m and u and is nonlinear with respect to
both arguments.

To compute the normal stress acting on Earth’s surface, we take the residual of the momentum
equation of the Stokes system, where we apply the viscous stress operator A without enforcing Dirichlet
boundary conditions, denoted by ADir−free. Thus the normal stress at the surface is computed as

sn(m,u) := n ·Πsurf (ADir−free(m,u) +B∗p− f) ,

with projector Πsurf defined as above. Given topography observations tn(x), x ∈ Γtopo on sub-regions
of the surface Γtopo ⊆ Γsurf , we define the data misfit functional∫

Γtopo

(
tn(x)− ctopo sn(m,u)

)
C−1

topo

(
tn(x)− ctopo sn(m,u)

)
dx, (3.15)

with a suitable covariance operator Ctopo (e.g., a Laplacian) and an appropriate scaling ctopo ∈ R to
generate the dynamic topography from the normal surface stress.

3.6 Inversion challenges and inverse solver challenges

This section outlines the potential challenges toward the goal to infer uncertain parameters in global
mantle convection models. We also propose ideas to tackle those challenges.

In Section 3.5, we have seen that observational data is only available at Earth’s surface and,
additionally, it is often sparse, e.g., the plate velocity data provides only one velocity vector per plate.
This limited amount of observational data poses a challenge on the choice of parameters within mantle
models. Namely, we want to find a set of parameters that is sufficiently well informed by the data,
i.e., we want the posterior distribution to have a sufficiently narrow variance. Initial inversions could
be carried out using constant weak zone factors (3.11) for each plate boundary. Subsequently, it is of
interest whether the observational data is sufficiently informative to allow for higher fidelity in the
parameters, e.g., piecewise linear weak zone factors with variability within a plate boundary.
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Furthermore, related to the parameters, is the definition of the prior. We propose to assume a set
of discrete, uncorrelated, finite-dimensional parameters equipped with a Gaussian prior informed by
knowledge from geophysics. In cases of higher-resolution weak zone factors, sufficient smoothing has
to be incorporated into the prior in order to arrive at a well-defined BIP. Similarly as for the prior,
the covariance operators in the misfit functionals in Section 3.5 have to exhibit sufficient smoothing in
the cases of spatially distributed observation fields.

A significant computational challenge is the cost for solving the BIP for the MAP estimate (3.4).
One aspect of this is to find an effective preconditioner for the Hessian of the objective functional (3.5)
associated to the MAP estimate. The typical approach is to use the prior as a preconditioner, but
this can turn out to be insufficient for certain problems. It is an open research question how a more
effective Hessian preconditioner can be constructed.

Another aspect pertaining to the computational cost is the solution of forward/adjoint and
incremental forward/adjoint equations (see Section 3.1). We would like to reduce the accuracy of
these solves and adjust the inexactness based on progress of the “outer” solver for the MAP estimate.
As a consequence, we propose to use an inexact Newton–CG method for the MAP estimate. This
method requires gradients (3.9) and Hessian-vector products (3.10) of the objective functional (3.5),
which, in turn, are found by inexact “inner” solves for forward/adjoint and incremental forward/adjoint
variables, respectively. These inner solves allow for inexactness at several levels. First, the Hessian-
vector products can be performed inexactly to reduce the computational cost [2, 3, 66], which is
analyzed in detail in [63]. These ideas are connected to the broader question of inexactness in Krylov
methods [106,117]. Second, the gradient computation can be performed inexactly [61, 79], which may
enable a significant reduction in cost because it involves the nonlinear forward solution of the mantle
convection problem.
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4

Stokes Solver for the Forward Problem

This chapter begins with the presentation of our numerical methods to solve the mantle convection
forward problem introduced in Chapter 2. Subsequent chapters will focus on specific parts of the
nonlinear and linear solvers and preconditioners that are crucial for the parallel, scalable solution of
the forward problem of global nonlinear mantle convection.

Earth’s mantle convection is one of a large number of complex PDE problems that require implicit
solution on extreme-scale systems. The complexity arises from the presence of a wide range of length
scales and strong heterogeneities, as well as localizations and anisotropies. Complex PDE problems
often require aggressive adaptive mesh refinement, such as that provided by the parallel forest-of-
octree library p4est [30]. They also often require advanced discretizations, such as the high-order,
hanging-node, mixed continuous-velocity/discontinuous-pressure element pair employed here. The
physics complexities combined with the discretization complexities conspire to present enormous
challenges for the design of solvers that are not only algorithmically optimal, but also scale well in
parallel. These challenges are well documented in a number of blue ribbon panel reports (e.g., [40]).

In our context of time-independent non-Newtonian flows, implicit solvers means a combination of
nonlinear and linear solvers and preconditioners. We employ Newton’s method as our nonlinear solver.
It can deliver asymptotic quadratic convergence, independent of problem size, for many problems.
However, differentiating complex constitutive laws such as (2.33) to obtain the linearized Newton
operator creates an even more complex system to be solved. Combining the Newton method with
an appropriately truncated Krylov linear solver permits avoidance of oversolving far from the region
of fast convergence [42]. The crucial point is then the preconditioner within Krylov, which must
simultaneously globalize information to maximize algorithmic efficiency, while localizing it to maximize
parallel performance. For preconditioning, we target multilevel solvers, which are algorithmically
optimal for many problems (i.e., they require O(n) work, where n is the number of unknowns) and
parallelize well (requiring O(log n) depth), at least for simple elliptic PDE operators.

When O(105) cores and beyond are needed for implicit solution of such complex PDE problems,
the usual approach has been to retreat to algorithmically suboptimal but easily-parallelizable solvers
(such as explicit or simply-preconditioned implicit). This is clearly not a tenable situation, and the
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Figure 4.1: Comparison of algorithmic performance of previous state of the art (dashed lines) vs.
new (solid lines) Stokes solver for a sequence of increasingly difficult problems (indicated by colors),
reflecting increasingly narrower plate boundary regions.

performance gap between optimal and suboptimal solvers only increases as problems grow larger.
Thus our goal here is to present an implicit solver (going beyond [26,27,113]) that delivers optimal
algorithmic complexity while scaling with high parallel efficiency to the full size of leadership-class
supercomputers for the class of complex PDE problems targeted here, with particular application to
our driving global mantle convection problem.

Figure 4.1 illustrates the power of algorithmically optimal solvers for our mantle convection
problem. The curves show the reduction in residual as a function of Krylov iterations for a sequence
of increasingly difficult problems (different colors). The dashed curves represent a contemporary,
well-regarded solver, such as that found in the community mantle convection code ASPECT [78].
This combines algebraic multigrid (AMG) to precondition the (1,1) block of the Stokes system
along with a diagonal mass matrix approximation of the (2,2) Schur complement. Our new solver
combines a sophisticated hybrid spectral–geometric–algebraic multigrid (HMG) along with a novel
HMG-preconditioned improved Schur complement approximation. The massive enhancement in
algorithmic performance (over 4 orders of magnitude lower residual for the same number of iterations)
seen in the figure is due to the improvement of the Schur complement. This is what makes the solution
of the high-fidelity mantle flow models we are targeting tractable. It increases however the algorithmic
complexity, but as we will see in Chapter 8, we are still able to obtain excellent scalability out to 1.6M
cores, to go with the several orders of magnitude improvement in run time. Key to achieving this
scalability is: Avoiding AMG setup/communication costs with a spectral and geometric multigrid
approach; eliminating AMG’s requirement for matrix assembly and storage for differential operators
and intergrid transfer operations.

The three key solver contribution are: First, a robust preconditioner for the Schur complement
of the linearized and discretized Stokes system, which is presented in Chapter 6. Second, hybrid
spectral–geometric–algebraic multigrid methods constitute a core preconditioning component of the
Stokes solver and are essential for preconditioning efficacy and algorithmic and parallel scalability
(see Chapter 7). Third, the aforementioned linear iterative methods are complemented by inexact
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Newton–Krylov methods to solve the highly nonlinear mantle convection problems (see Chapter 5).

4.1 Finite element discretization

We want to recall the governing equations for mantle convection from Chapter 2 and state them in a
form that is well suited for the development and analysis of numerical methods. Given are a bounded
domain Ω ⊂ Rd, d ∈ {2, 3}, with a smooth boundary ∂Ω and right-hand side forcing f ∈ V ′, which
lies in the dual of the velocity space found below in Equation (4.2). In addition, we have a generally
nonlinear, spatially-varying, sufficiently regular, and bounded viscosity µ ≥ µmin > 0. In accordance
with the geophysical model (2.12), we consider the incompressible Stokes equations with free-slip and
no-normal flow boundary conditions:

−∇ ·
[
µ(u) (∇u+∇uT)

]
+∇p = f in Ω, (4.1a)

−∇ · u = 0 in Ω, (4.1b)

T
[
µ(u) (∇u+∇uT)− pI

]
n = 0 on ∂Ω, (4.1c)

u · n = 0 on ∂Ω, (4.1d)

where u ∈ V and p ∈ Q are the unknown velocity and pressure fields, respectively. For the boundary
conditions (4.1c) and (4.1d), we define outward normal vectors n ∈ Rd and tangential projectors
T := I− nnT. The function space for the velocity is

V :=
{
u ∈ (H1(Ω))d | n · u = 0 on ∂Ω

}
, (4.2)

which incorporates Dirichlet boundary conditions in normal direction, and the function space for the
pressure is Q := L2(Ω)/R, which is the subspace of L2(Ω) not containing non-zero constant functions.

In the context of mantle convection problems, we assume the nonlinear viscosity to be

µ(u) = µreg(T, ε̇ii(u)) = µmin + min

(
τyield

2ε̇ii
, w (x) min

(
µmax, a (T ) (ε̇ii − d)

1
n ε̇−1

ii

))
, (4.3)

which was defined previously in Corollary 2.8.2. This viscosity is highly heterogeneous, which stems
from its dependence on temperature T and strain rate ε̇ii, it exhibits sharp viscosity gradients in narrow
regions (six orders of magnitude drop in ∼5 km) modeling tectonic plate boundaries as described
in Section 2.5. This leads to a wide range of spatial scales since small localized features at plate
boundaries of size O(1 km) influence plate motion at continental scales of O(1000 km). Furthermore,
the strain rate dependence in (4.3) develops challenging anisotropies upon linearization with Newton’s
method (more in Chapter 5). Therefore, when aiming to simulate realistic Earth’s mantle convection
at a global scale, the complex character of the flow presents severe computational challenges for
iterative solvers due to poor conditioning of the nonlinear and linear systems that arise.
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To derive the variational formulation of the Stokes system (4.1), formally, multiply with test
functions v ∈ V and q ∈ Q,∫

Ω
−∇ ·

[
µ(x) (∇u+∇uT)

]
· v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
(∇ · u)q dx = 0,

and integrate by parts to obtain

A(u , v) +B(v , p) + E(p , u , v) = F (v) ,

B(u , q) = 0,

where we defined the following linear forms

A(u , v) :=

∫
Ω

µ(x)

2
(∇u+∇uT) : (∇v +∇vT) dx,

B(u , q) := −
∫

Ω
(∇ · u)q dx,

E(p , u , v) :=

∫
∂Ω

[(
pI− µ(x) (∇u+∇uT)

)
n
]
· v dS(x),

F (v) :=

∫
Ω
f · v dx.

The boundary conditions (4.1c) and (4.1d) eliminate boundary integrals, thus E(p , u , v) = 0. This
leaves the following variational formulation for the Stokes system corresponding to the strong form (4.1):

A(u , v) +B(v , p) = F (v) for all v ∈ V, (4.4a)

B(u , q) = 0 for all q ∈ Q. (4.4b)

In general, our Stokes system in Equations (4.1) and (4.4) is nonlinear, therefore the nonlinear infinite
dimensional system is first linearized and then discretized. The linearization is discussed later in
Chapter 5 and we proceed here assuming a linear (or linearized) Stokes problem.

We approximate the solution of the (now linear) infinite dimensional variational problem (4.4)
using finite elements [16, 23, 46, 53]. Consequently, we choose finite dimensional subspaces V h ⊂ V

and Qh ⊂ Q with (finite) sets of basis functions {φi}i ⊂ V h and {ψk}k ⊂ Qh, respectively, and define
the discretized Stokes problem1: Find (uh, ph) ∈ V h ×Qh such that

A
(
uh , vh

)
+B

(
vh , ph

)
= F

(
vh
)

for all vh ∈ V h, (4.5a)

B
(
uh , qh

)
= 0 for all qh ∈ Qh. (4.5b)

1Note that after linearization, e.g., with Newton’s or Picard’s method, the right-hand side becomes the negative
Stokes residual and the velocity and pressure are Newton/Picard steps.
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We identify the corresponding linear algebraic Stokes system as[
A BT

B 0

][
u

p

]
=

[
f

0

]
, (4.6)

where the entries of the discretized viscous stress operator, A, and the discretized divergence, B, are

A = [ai,j ], ai,j := A
(
φi , φj

)
=

∫
Ω

µ(x)

2
(∇φi +∇φT

i ) : (∇φj +∇φT
j ) dx,

B = [bk,j ], bk,j := B
(
φj , ψk

)
= −

∫
Ω

(∇ · φj)ψk dx,

and the discretized gradient, BT, is the transpose of matrix B. The discretization is carried out
by high-order finite elements on aggressively adaptively refined hexahedral meshes with velocity–
pressure pairings V h ×Qh = Qk × Pdisc

k−1 of polynomial order k ≥ 2 with a continuous, nodal velocity
approximation Qk and a discontinuous, modal pressure approximation Pdisc

k−1. These pairings yield
optimal asymptotic convergence rates of the finite element approximation to the infinite-dimensional
solution with decreasing mesh element size, are inf-sup stable on general, non-conforming hexahedral
meshes with “hanging nodes,” and have the advantage of preserving mass locally at the element level
due to the discontinuous pressure [46, 62,111].

While these properties have been recognized to be important for geophysics applications (e.g.,
see [83, 84]), the high-order discretization, adaptivity, and discontinuous pressure approximation
present significant additional difficulties for iterative solvers (relative to low order, uniform grid,
continuous discretizations). Finally, a number of frontier geophysical problems, such as global mantle
convection with plate boundary-resolving meshes and continental ice sheet models with grounding
line-resolving meshes, result in billions of degrees of freedom (u,p), demanding efficient execution and
scalability on leading edge supercomputers [27, 97,110].

To complete the discussion on discretizations, we mention other popular choices for finite element
spaces V h × Qh. First, the stable high-order velocity–pressure pairing Qk × Qdisc

k−2 of polynomial
order k ≥ 2 uses a continuous, nodal velocity approximation Qk and a discontinuous, nodal pressure
approximation Qdisc

k−2. This finite element pairing can exhibit better approximation properties for
distorted elements [71], but does not provide the asymptotically optimal approximation property as
Pdisc
k−1. Second, stabilized tri-linear Q1 ×Q1 pairings employ continuous velocity and pressure spaces of

equal order. To achieve stability, the linear algebraic Stokes system (4.6) is modified:[
A BT

B −C

][
u

p

]
=

[
f

0

]
.

The stabilization matrix C, which relaxes the incompressibility condition and thereby weakens mass
conservation, is generated via the bilinear form

C (p , q) :=
∑
Ωe

∫
Ωe

1

µ(x)
(p−Π p) (q −Π q) dx,

where Ωe ⊂ Ω denotes an element with index e and Π is the L2-projection onto the space of element-wise
constant functions.
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4.2 Iterative methods for the linear algebraic Stokes system

The discretization of the Stokes system in the context of mantle convection applications results in a
very poorly conditioned algebraic system (4.6) with up to hundreds of billions of unknowns, which
requires a preconditioned Krylov iterative method. Such a Krylov method needs only the application
of the left hand side operator in Equation (4.6) to vectors, which we implement in a matrix-free
fashion using elemental loops. This exploits the tensor-product structure of the element-level basis
functions {φi}i in Qk, resulting in a reduced number of operations [38].

We derive an alternative form of (4.6) by performing blockwise Gaussian elimination[
A BT

0 BA−1BT

][
u

p

]
=

[
A BT

0 S

][
u

p

]
=

[
f

BA−1f

]
,

where we identified the (2,2) block of the matrix as the (negative2) Schur complement, S := (BA−1BT).
This motivates the use of an upper triangular block matrix within GMRES as the Krylov solver [102]
with right preconditioning: [

A BT

B 0

][
Ã BT

0 S̃

]−1 [
ũ

p̃

]
=

[
f

0

]
. (4.7)

Note that the original solution to (4.6) is recovered by applying the preconditioner once to the solution
of (4.7). Here, approximations of the inverse of the viscous block, Ã−1 ≈ A−1, and the inverse of the
Schur complement, S̃−1 ≈ (BA−1BT)−1, are required. This particular combination of Krylov method
and preconditioner is known to converge in just two iterations for exact choices of Ã−1 and S̃−1 [12].
The approximation of the inverse of the viscous block Ã−1 is computed by a V-cycle of our hybrid
spectral–geometric–algebraic multigrid method as detailed in Chapter 7. For the approximative inverse
of the Schur complement S̃−1, we developed a method called weighted BFBT, which is described in
Chapter 6.

Null space due to unconstrained mean pressure

The infinite-dimensional Stokes system (4.1) and therefore also its discretized forms in Equations (4.5)
and (4.6) all have a non-trivial null space for the pressure component,

Ker(BT) = span(1),

spanned by the vector, 1, which is the coefficient vector for a basis {ψk}k of Qh representing the
constant function with value 1 everywhere. Note that for a nodal discretization space Qh, the vector
has ones in all entries, but for modal discretizations the entries of 1 generally differ from one. In order
to avoid possible computational issues in the iterative methods arising from an unconstrained null
space, one can enforce the pressure component to have zero mean. This is enabled by projecting out
the mean value of the pressure.

2Our definition is the negative Schur complement. However, as in [46], we prefer to work with positive-definite
operators and thus define the Schur complement to be positive rather than negative definite.
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We begin by observing that we can compute the integrals∫
Ω
pdx = 1TMp p and |Ω| =

∫
Ω

1 dx = 1TMp 1,

where Mp is the mass matrix of the pressure space, p ∈ Qh, p is the vector containing the degrees of
freedom corresponding to p, and 1 describes the unit function of the pressure space. These integrals
are used to define the projection operator

Πp-NSP := I− (1TMp 1)−11(Mp 1)T, (4.8)

where I is the identity matrix. The projector Πp-NSP then has the desired property that applying it to
a vector p of pressure degrees of freedom yields

p := Πp-NSPp =
(
I− (1TMp 1)−11(Mp 1)T

)
p = p− 1

1TMp p

1TMp 1

and the resulting vector p has zero mean because∫
Ω
p dx = 1TMp p = 1TMp

(
p− 1

1TMp p

1TMp 1

)
= 1TMp p− 1TMp p = 0.

Null space due to unconstrained mean velocity rotations

While the null space for the pressure component generally occurs in Stokes problems as long as
boundary conditions for the pressure are not prescribed, the Stokes operator on the left-hand side of
Equation (4.1) can additionally have a non-trivial null space for the velocity component in mantle
convection applications. If the domain Ω has spherical boundaries, which is the case for a global
mantle domain with spherical surface and core–mantle boundaries (Γsurf and Γcore, respectively), the
boundary conditions for the velocity (4.1d) leave a three-dimensional null space of mean velocity
rotations.

To project out nonzero mean velocity rotations with respect to a given center of rotation, c =[
cx, cy, cz

]T, we first define three vector fields, rx, ry, rz, each of which describe a rotation about one
coordinate axis:

rx(x) = rx(x, y, z) :=
[
0,−(z − cz), (y − cy)

]T
,

ry(x) = ry(x, y, z) :=
[
(z − cz), 0,−(x− cx)

]T
,

rz(x) = rz(x, y, z) :=
[
−(y − cy), (x− cx), 0

]T
,

where points x = [x, y, z]T correspond to the discretization nodes of the velocity. In addition to the
center of rotation, we require the moment of inertia corresponding to domain Ω, which is denoted as
m =

[
mx,my,mz

]T. Due to derivations for integrals and mean values analogous to the mean pressure
above, we define the projection operator

Πu-NSP := I− 1

mx
rx(Mu rx)T − 1

my
ry(Mu ry)

T − 1

mz
rz(Mu rz)

T, (4.9)
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Figure 4.2: Improvement in convergence stability if nonzero mean velocity rotations are projected
out during iterations (blue curve). If mean rotations are ignored, the corresponding null space causes
sections of stagnating residual reduction (red curve).

which removes mean rotations from vectors that represent velocity fields.
Finally, we demonstrate the effect of a non-trivial rotational null space on the convergence of

iterative Krylov methods. To this end, we prescribe velocity boundary conditions (4.1d), where only
the normal component is constrained by Dirichlet boundary conditions. Additionally, we consider a
constant viscosity and the sub-system corresponding to the (1,1) block of the Stokes system; hence, we
want to compute solution u in Au = f . We apply right-preconditioning as in (4.7) and use GMRES
as a Krylov solver. In the reference calculations, we do not apply any projections,

AÃ−1ũ = f ,

and in the second case, we remove rotations from Ran(A) as well as before and after applying the
preconditioner Ã−1, (

ΠT
u-NSPA

)(
Πu-NSPÃ

−1ΠT
u-NSP

)
ũ = ΠT

u-NSPf .

For both cases the same multigrid V-cycle is used as a preconditioner. The improvement in stability
for the convergence of the Krylov solver can be observed in Figure 4.2. The relative residual reduction
with projections (blue curve) is fast and stable as is expected for a simple elliptic problem. Without
projections (red curve), however, the GMRES solver takes twice as many iterations—for a very simple
low-resolution, constant viscosity problem setup—because the residual reduction is stagnating during
some iterations and resembles a staircase shape. The performance gap is expected to increase with
larger and more complex problems. This shows that the Krylov subspaces cause GMRES to iterate
over the null space in Ran(A), in which the residual cannot be reduced. The projections avoid this,
because Ran(ΠT

u-NSP) excludes non-trivial mean rotations. Furthermore, the projections around the
preconditioner are most likely necessary for consistency between matrix A and its approximation Ã.
While these projection tests include only the critical Stokes block that is generating the null space, we
also performed numerical experiments with the whole Stokes system and obtained similar results on
convergence stability.
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5

Inexact Newton–Krylov Methods

Newton’s method is used to iteratively approximate solutions of nonlinear problems by means of
subsequent approximations of the nonlinearities using derivatives. In a nutshell, given some real
valued function J(u) that we like to minimize over all possible arguments u, Newton’s method uses a
truncated Taylor series at u as an approximation for J(u+ û) in a neighborhood around u, expressed
as u+ û. While u is the known current iterate, û is the Newton step to improve the iterate such that
J(u+û) < J(u). From the Taylor series we obtain a linear system for û, namely H(u)û = −g(u), which
we call linearized system or linearization. In this system g(u) is the first-order variation (gradient)
of J(u) and H(u) is the second-order variation (Hessian) of J(u). What follows in this chapter are
derivations of gradients and Hessians for specific challenging nonlinear problems, modifications to
Newton’s linearization, and its numerical solution.

5.1 Inexact Newton–Krylov methods for nonlinear Stokes

The Stokes system (4.1) for mantle convection becomes nonlinear through the dependence of the
viscosity (4.3) on the second invariant of the strain rate. We employ an inexact Newton–Krylov
method [41, 42, 89] for the nonlinear Stokes equations, i.e., we use a sequence of linearizations of (4.1)
and approximately solve the resulting linearized systems using a preconditioned Krylov method as
described in Chapter 4, 6 and 7. The rheology (4.3) is modified such that it incorporates upper
and lower bounds for the viscosity in a differentiable manner (see Section 2.8), permitting the use
of Newton’s method. To compute a Newton update, we find the (inexact) solution of the linearized
Stokes system presented in the following lemma.

Lemma 5.1.1 (General linearized Stokes system). Given a current iterate, a velocity–pressure pair
(u, p), the Newton step (û, p̂) is computed by solving the linearized Stokes system

−∇ · (2µ′(u)∇sû) +∇p̂ = −rmom, (5.1a)

−∇ · û = −rmass, (5.1b)
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with coefficient

µ′(u) := µ(u) I + ε̇ii
∂µ

∂ε̇ii

∇su⊗∇su

|∇su|2F
, (5.2)

where the residuals of the nonlinear Stokes momentum and mass equations, Equations (4.1a) and (4.1b),
respectively appear on the right-hand side of (5.1). We also introduced the notation for the symmetric
gradient, ∇su := 1

2(∇u+∇uT), and the Frobenius norm, |∇su|F :=
√
∇su : ∇su.

Proof. We calculate the first-order variation of the following Frobenius norm:

δu[|∇su|F ](û) = δu[
√
∇su : ∇su](û) =

∇su : ∇sû

|∇su|F
.

Using this together with the product rule, chain rule, and the identity ε̇ii = 1√
2
|∇su|F , we get

δu[µ(ε̇ii(u))∇su](û) = δu[µ(ε̇ii(u))](û)∇su+ µ(ε̇ii)∇sû

=
∂µ

∂ε̇ii
δu[ε̇ii(u)](û)∇su+ µ(ε̇ii)∇sû

=
∂µ

∂ε̇ii

1√
2

∇su : ∇sû

|∇su|F
∇su+ µ(ε̇ii)∇sû.

Observing the outer product identity

(∇su : ∇sû)∇su = (∇su⊗∇su)∇sû

and using the relation between Frobenius norm and second invariant one more time gives us (5.2).

Note that what plays the role of viscosity in the Newton step (5.1a) is an anisotropic fourth-order
tensor (5.2). Our multigrid method from Chapter 7 allows treatment of the full fourth-order tensor
anisotropic coefficient of a Newton step. In order to fully describe the linearized Stokes system for
mantle’s rheology, we need to calculate the derivative of the viscosity with respect to ε̇ii, which is
done in the next lemma.

Lemma 5.1.2 (Derivative of mantle’s viscosity). Consider the regularized viscosity model from
Equation (2.28) rewritten in the four possible cases:

µ(ε̇ii) =



w (x)µmax (upper viscosity bound reached),

w (x) a (T ) ε̇
1−n
n

ii (strain rate weakening),
τyield
2ε̇ii

(plastic yielding),

µmin (lower viscosity bound reached).

Its derivative with respect to ε̇ii is

∂µ

∂ε̇ii
= µ(ε̇ii) ε̇

−1
ii θ where θ :=



0 (upper viscosity bound reached),
1−n
n (strain rate weakening),

−1 (plastic yielding),

0 (lower viscosity bound reached).

(5.3)
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Corollary 5.1.3 (Linearized Stokes system for mantle convection). Given a current iterate, a velocity–
pressure pair (u, p), the Newton step (û, p̂) is computed by solving the linearized Stokes system

−∇ ·

(
2µ(u)

(
I + θ

∇su⊗∇su

|∇su|2F

)
∇sû

)
+∇p̂ = −rmom, (5.4a)

−∇ · û = −rmass, (5.4b)

where we use −1 ≤ θ ≤ 0 from (5.3).

Note that for θ = −1 the coefficient in Equation (5.4a) resembles an orthogonal projector, therefore
generating a null space for the linearized system (5.4). In practice, however, we choose the regularized
viscosity (2.33) with the effect that θ is bounded away from −1. The (now near) orthogonal projector
in (5.4a) still remains a challenge for plastic yielding rheologies, where θ is close to −1, and causes issues
with Newton convergence. Therefore, the remaining sections in this chapter analyze the corresponding
issues and present alternative linearizations.

A Newton step (û, p̂) computed as the inexact solution of (5.4) is only accepted if the norm of the
updated momentum and mass residuals is reduced. If this is not the case, the step length is reduced
by a factor 0 < α < 1 via a backtracking line search algorithm [89], the update therefore being

(u, p)← (u, p) + α(û, p̂).

The residual of the momentum equation generally satisfies rmom ∈ H−1(Ω) and we measure its norm
in the H−1-norm for backtracking line search, as opposed to the more common L2-norm. The norm
corresponding to the space of lower regularity functions, H−1, avoids overly conservative Newton
steps that are significantly reduced from one. We observed these overly conservative steps for mantle
convection problems during initial nonlinear iterations, whenever an iterate (u, p) was far away from
the nonlinear solution. The next Lemma 5.1.4 determines how the H−1-norm can be computed in
practice.1

Lemma 5.1.4 (H−1-norm). Let u′ ∈ H−1(Ω) be given, then its norm satisfies∥∥u′∥∥
H−1 =

(
u′ , u

)1/2
L2 , (5.5)

where u ∈ H1
0 (Ω) is the unique solution of the elliptic PDE with homogeneous Dirichlet boundary

conditions,
−∆u+ u = u′. (5.6)

Proof. For an arbitrary u ∈ H1
0 (Ω), the H1-norm is defined by

‖u‖2H1 = (u , u)H1 = (∇u ,∇u)L2 + (u , u)L2 . (5.7)
1Lemma 5.1.4 describes the H−1-norm for a scalar valued function. To compute the norm of a vector valued velocity

field, we apply the result of the lemma to each component of the velocity.
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If u satisfies the boundary value problem (5.6), the H−1-norm of u′ has the form∥∥u′∥∥
H−1 = sup

v∈H1
0

(u′ , v)L2

‖v‖H1

= sup
v∈H1

0

((−∆ + 1)u , v)L2

‖v‖H1

,

where we implicitly assume ‖v‖H1 6= 0. Since the supremum is reached for v ≡ u, we substitute and
integrate by parts∥∥u′∥∥

H−1 =
((−∆ + 1)u , u)L2

‖u‖H1

=
1

‖u‖H1

(
(∇u ,∇u)L2 +

∫
∂Ω

(∇u · n)udx+ (u , u)L2

)
and use (5.7) to arrive at∥∥u′∥∥

H−1 = ‖u‖H1 +
1

‖u‖H1

∫
∂Ω

(∇u · n)udx = ‖u‖H1 ,

where the boundary term vanishes because u ∈ H1
0 (Ω). Finally, Equation (5.7), relation (5.6), and

integration by parts yield ∥∥u′∥∥2

H−1 = ‖u‖2H1 =
(
u′ , (−∆ + 1)−1u′

)
L2 ,

which shows claim (5.5).

Algorithm 5.1.1 Inexact Newton–Krylov for nonlinear Stokes flow

1: input initial guess (u0, p0) and corresponding residual R0 = (‖rmom,0‖2H−1 + ‖rmass,0‖2L2)1/2, max.
Krylov relative tolerance εmax ∈ (0, 1), parameters β = (1 +

√
5)/2, γ = 10−4

2: for k = 0, 1, . . . until convergence do
3: if k = 0 then
4: ε← εmax . set initial Krylov rel. tol.
5: else
6: ε← εmax

(
Rk
Rk−1

)β
. set adaptive Krylov rel. tol.

7: end if
8: Solve inexactly to rel. tol. ε for (ûk, p̂k) in Equation (5.4) . compute Newton step
9: α← 1

10: (uk+1, pk+1)← (uk, pk) + α(ûk, p̂k)
11: Rk+1 ← (‖rmom,k+1‖2H−1 + ‖rmass,k+1‖2L2)1/2

12: while Rk+1 > (1− γ(1− ε))Rk do . backtracking line search
13: α← α/2
14: (uk+1, pk+1)← (uk, pk) + α(ûk, p̂k)
15: Rk+1 ← (‖rmom,k+1‖2H−1 + ‖rmass,k+1‖2L2)1/2

16: end while
17: end for

We summarize our inexact Newton–Krylov method in Algorithm 5.1.1, where the choice of the
parameters that control inexactness is motivated by [42]. Additionally, during the initial Newton
iterations, grid continuation is performed in between Newton steps, where the mesh is adapted to
variations in the viscosity that arise from the nonlinear dependence on the velocity.
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5.2 Abstract derivation of perturbed Newton linearizations

Many applications in computational science and engineering are modelled by optimization problems
with Hessians that exhibit a problematic (near) null space upon linearization with Newton’s method.
The null space we will investigate here is caused by a projector-type coefficient in the Hessian expression,
which, in turn, is created by terms in the objective functional that resemble the L1-norm. One example
is nonlinear Stokes flow in the mantle with plastic yielding discussed previously in Section 5.1. Another
example is total variation regularization for inverse problems, which is a popular choice for image
restoration problems due to its edge preserving properties [100]. In this section, we analyze issues
with the standard Newton linearization in an abstract setting and propose an improved linearization.
The next Section 5.3 applies these ideas to example problems and applications, which include Stokes
flow with yielding and total variation regularization.

Basic definitions

We denote a general inner product 〈· , ·〉 : Rn × Rn → R for n ∈ {1, d, d× d}, d ∈ N, that means for
scalar, vector, and matrix valued functions by

〈U , V 〉 = 〈U(x) , V (x)〉 :=


U(x)V (x) for U, V : Ω→ R,

U(x) · V (x) for U, V : Ω→ Rd,

U(x) : V (x) for U, V : Ω→ Rd×d,

operating pointwise on values of functions U(x) and V (x) at x ∈ Ω, where Ω ⊆ Rd. The norm induced
by this inner product,

|U | := |U(x)| =
√
〈U(x) , U(x)〉 =

√
〈U , U〉,

is thus understood as the magnitude of U(x). Further, we write the L2-inner product of functions
U, V ∈ L2(Ω) as

(U , V ) :=

∫
Ω
〈U , V 〉 =

∫
Ω
〈U(x) , V (x)〉 dx.

The space L1(Ω)n, n ∈ {1, d, d× d}, is equipped with the following norm, assuming U ∈ L1(Ω)n,

‖U‖L1 = ‖U‖L1(Ω)n :=

∫
Ω
|U | =

∫
Ω
|U(x)| dx

and for ΩNZ := Ω \ {x ∈ Ω | |U(x)| = 0} we can write

‖U‖L1 =

∫
Ω
|U | =

∫
ΩNZ

|U | =
∫

ΩNZ

|U |2

|U |
=

∫
ΩNZ

〈
U ,

U

|U |

〉
. (5.8)

The L1-norm also satisfies the definition using its dual space L∞,

‖U‖L1 = sup
S∈L∞

(U , S)

‖S‖L∞
= sup

S∈L∞

1

‖S‖L∞

∫
Ω
〈U , S〉 , (5.9)
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where we implicitly assume ‖S‖L∞ 6= 0. Thus, combining (5.8) and (5.9),

0 ≤ ‖U‖L1 −
∫

Ω
〈U , S〉 =

∫
Ω
|U | − 〈U , S〉 =

∫
ΩNZ

〈
U ,

U

|U |
− S

〉
,

which is minimized by

S∗ =
U

|U |
in ΩNZ. (5.10)

Model for the L1-norm and model perturbation

Motivated by the formulations for the L1-norm that involve a dual variable, we define the following
functions.

Definition 5.2.1. Let U, S ∈ L2(Ω)n, n ∈ {1, d, d× d}, and define the real-valued function

c(U, S) := |U | − 〈U , S〉 in Ω.

Further, define the following functions with values in Rn:

E(U, S) :=
U

|U |
− S in ΩNZ (model error) (5.11)

and
D(U, S) := U − |U |S in Ω (model perturbation) (5.12)

that we name model error and model perturbation, respectively due to their intended uses below.

Note that E(U, S) in (5.11) is not well-defined where U = 0, while c(U, S) and D(U, S) are
well-defined and continuous. The current goal is to create a model for the L1-norm. Based on (5.10),
we formulate an equation that has to be satisfied for a pair (U, S) such that S is the minimizing dual
variable. Therefore, we assume for the remainder of this section that U ∈ L2(Ω)n and S ∈ L∞(Ω)n,
‖S‖L∞ ≤ 1, which implies U ∈ L1(Ω)n and S ∈ L2(Ω)n for appropriate assumptions on Ω. Our model
for the L1-norm in variational form is(

D(U, S) , S̃
)

=

∫
Ω

〈
U − |U |S , S̃

〉
= 0 for all S̃ ∈ L2(Ω)n. (5.13)

The choice to include D(U, S) in the model (5.13), as opposed to, e.g., E(U, S), is motivated by its
continuity where U = 0. We call D(U, S) model perturbation because we now consider (5.13) to be
not exactly satisfied:

D(U, S) 6= 0 ⇔ ∃ S̃ ∈ L2(Ω)n such that
(
D(U, S) , S̃

)
6= 0. (5.14)

To compute a correction, Ŝ, for the perturbed model, we employ Newton’s method and consider the
linearized system(

δU [D(U, S)](Û) + δS [D(U, S)](Ŝ) , S̃
)

= −
(
D(U, S) , S̃

)
for all S̃ ∈ L2(Ω)n. (5.15)
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By plugging-in the variations of D(·, ·), which are (“⊗” denoting the outer product)

δU [D(U, S)](Û) =

(
I− U ⊗ S

|U |

)
Û , δS [D(U, S)](Ŝ) = − |U | Ŝ,

we obtain for (5.15)∫
ΩNZ

〈(
I− U ⊗ S

|U |

)
Û − |U | Ŝ , S̃

〉
=

∫
ΩNZ

〈
|U |S − U , S̃

〉
for all S̃ ∈ L2(Ω)n. (5.16)

Note that the linearization (5.16) is an underdetermined system since we have one equation for two
unknowns, Û and Ŝ. Furthermore, it allows the explicit expression for the dual step,

Ŝ =
U

|U |
− S +

1

|U |

(
I− U ⊗ S

|U |

)
Û in ΩNZ, (5.17)

hence, the Newton update for the dual variable S is computed as

S ← S + Ŝ =
U

|U |
+

1

|U |

(
I− U ⊗ S

|U |

)
Û . (5.18)

An interesting observation from Equation (5.18) is that the updated dual variable depends on the
previous U and on the step Û applied to the linearization of the model. It can therefore be interpreted
as the Newton prediction for (or tracking of) S, in contrast to setting S exactly using (5.10) and the
updated U .

Abstract nonlinear problem and standard Newton linearization

Consider the following minimization problem: Find U∗ ∈ L2(Ω)n minimizing

min
U
J(U), J(U) :=

∫
Ω
|U | − F (U), U ∈ L2(Ω)n, (5.19)

where F : L2(Ω)n → R is a given operator that is linear and bounded. To apply Newton’s method,
we need to derive the gradient and Hessian operators of the functional J , which are the first- and
second-order variations of J :

g(U)Ũ := δU [J(U)](Ũ) =

∫
ΩNZ

〈
U

|U |
, Ũ

〉
− F (Ũ), (5.20)(

H(U)Û , Ũ
)

:= δUδU [J(U)](Ũ)(Û) =

∫
ΩNZ

〈
1

|U |

(
I− U ⊗ U

|U |2

)
Û , Ũ

〉
, (5.21)

for Ũ , Û ∈ L2(Ω)n. Hence, computing the Newton update, U+ ← U + Û , requires solving the following
linearized system for step Û :∫

ΩNZ

〈
1

|U |

(
I− U ⊗ U

|U |2

)
Û , Ũ

〉
= −

∫
ΩNZ

〈
U

|U |
, Ũ

〉
− F (Ũ) for all Ũ ∈ L2(Ω)n. (5.22)

If one would solve the system (5.22) numerically, typically a regularization is incorporated to
the inverse magnitude of U in order to avoid numerical instabilities that arise when dividing by
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values near zero. The regularization ε > 0 is included in the objective functional of the minimization
problem (5.19) in the following way

Jε(U) :=

∫
Ω

√
〈U , U〉+ ε2 − F (U) =

∫
Ω
|U |ε − F (U) with |U |ε :=

√
〈U , U〉+ ε2. (5.23)

This functional gives rise to a linearized system different from Equation (5.22), namely∫
Ω

〈
1

|U |ε

(
I− U ⊗ U
|U |2 + ε2

)
Û , Ũ

〉
= −

∫
Ω

〈
U

|U |ε
, Ũ

〉
− F (Ũ) for all Ũ ∈ L2(Ω)n. (5.24)

The properties of the Hessian operator of the standard Newton linearization in Equation (5.24) are
summarized in the next corollary.

Corollary 5.2.2 (Properties of the standard Hessian). The coefficient of the left-hand side Hessian
operator in Equation (5.24) includes an anisotropic second-order or fourth-order tensor depending on
n ∈ {d, d× d}. The tensor component,

Πε : Rn → Rn, Πε := I− U ⊗ U
|U |2 + ε2

, (5.25)

of the Hessian’s coefficient approaches an orthogonal projector as ε→ 0. Moreover, the eigenvalue of
the Hessian associated to U is

ε2(
|U |2 + ε2

)3/2
(5.26)

and, for a function U with non-trivial magnitude, the eigenvalue (5.26) approaches zero as ε→ 0.

The projection-type property of the Hessian coefficient and the arbitrarily small eigenvalue cause
the Hessian operator to have a near null space. While null spaces can be accommodated by Krylov
methods as seen previously in Section 4.2, Newton updates execute less control over this subspace.
This causes instabilities in Newton convergence as long as U is not within a small region of the
exact solution U∗. The instabilities are observed in numerical experiments in Section 5.4 and in the
literature, the problematic Newton step in the initial iterations of the nonlinear solve can significantly
delay fast Newton convergence locally around the solution. For challenging problems, even stagnating
convergence is observed due to very small step sizes, which are reduced in backtracking algorithms.

Another issue with steps Û from standard Newton linearizations manifests itself if the objective
functional includes switching between different terms depending on |U |, e.g., for more complex physical
phenomena as we see for mantle’s rheology. As an example, let α > 0 and add a quadratic term, |U |2,
to the objective, which by itself would be addressed effectively with Newton’s method:

Jα(U) :=

∫
Ω
χα≤|U | |U |ε + χ|U |<α

1

2
|U |2 − F (U), (5.27)

where the indicator functions

χα≤|U | :=

1, α ≤ |U | ,

0, otherwise,
and χ|U |<α :=

1, |U | < α,

0, otherwise,
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subdivide the domain Ω with respect to the magnitude of U . Since we expect the Newton step Û to
exhibit instabilities in the subspace span{U}, the behavior of the updated indicators χα≤|U+Û| and
χ|U+Û|<α are largely uncontrollable by the nonlinear solver. This propagates to the evaluation of the

updated functional Jα(U + Û) and hence affects Newton convergence.

Perturbed and reduced Newton linearization

When deriving Equation (5.22), we implicitly assume that the dual variable S of the L1-norm solves
the model (5.13) exactly. This assumption can be relaxed, especially far from the solution U∗. To
accommodate the model error (5.11), we augment the gradient (5.20) by the perturbation of the model
from Equation (5.14)

g(U)Ũ =

∫
Ω

〈
S , Ũ

〉
− F (Ũ),(

D(U, S) , S̃
)

=

∫
Ω

〈
U − |U |ε S , S̃

〉
,

where we regularized the magnitude of U as in (5.23) using ε > 0. At first, this results in an increase
in degrees of freedom and hence a larger system to solve:∫

Ω

〈
Ŝ , Ũ

〉
= −

∫
Ω

〈
S , Ũ

〉
− F (Ũ) for all Ũ ∈ L2(Ω)n,∫

Ω

〈(
I− U ⊗ S

|U |ε

)
Û − |U |ε Ŝ , S̃

〉
= −

∫
Ω

〈
U − |U |ε S , S̃

〉
for all S̃ ∈ L2(Ω)n.

However, Equation (5.17) provides an explicit form for the step of the dual variable Ŝ. The initially
larger linearized system can therefore be reduced to its size prior to the perturbation, i.e., we have
only to solve for Û in∫

Ω

〈
1

|U |ε

(
I− U ⊗ S

|U |ε

)
Û , Ũ

〉
= −

∫
Ω

〈
U

|U |ε
, Ũ

〉
− F (Ũ) for all Ũ ∈ L2(Ω)n. (5.28)

Comparing the standard linearization (5.22) from above with the perturbed and reduced lineariza-
tion (5.28) here, we find that the right-hand sides are identical and that only the coefficient in the
left-hand side Hessian operator has changed. The effects of this change are summarized in the next
corollary.

Corollary 5.2.3 (Properties of the perturbed Hessian). The anisotropic second-order or fourth-order
tensor component (depending on n = d or n = d × d) of the left-hand side Hessian operator in
Equation (5.28) is

Ξε : Rn → Rn, Ξε := I− U ⊗ S
|U |ε

= Πε +
U ⊗ E(U, S)

|U |ε
, (5.29)

where we used definition (5.25) of Πε and definition (5.11) of the model error E(U, S). The oblique
projector Ξε approaches the near orthogonal projector Πε,

Ξε → Πε as E(U, S)→ 0,
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and the magnitude of Ξε is bounded by |Ξε| ≤ 2+|S|. Moreover, the perturbed Hessian in Equation (5.28)
maps U to the model error E(U, S) as ε→ 0.

Proof. Substituting the model error (5.11) gives

Ξε = I− U ⊗ S
|U |ε

= I− U

|U |ε
⊗
(

U

|U |ε
− E(U, S)

)
= I− U ⊗ U

|U |2ε
+
U ⊗ E(U, S)

|U |ε
,

which is the alternate form of Ξε in (5.29) due to the definition of Πε in (5.25). To derive a bound for
the magnitude of Ξε, let V ∈ Rn be arbitrary such that |V | = 1 and consider

〈E(U, S) , V 〉 =
〈U , V 〉
|U |ε

− 〈S , V 〉 ≤ 1 + |S|

and, additionally, the near orthogonal projector Πε has a magnitude bounded by one. To show the
mapping of U to the model error E(U, S) by the perturbed Hessian, we use property (5.26) of the
unperturbed Hessian and obtain

1

|U |ε

(
I− U ⊗ U

|U |2ε
+
U ⊗ E(U, S)

|U |ε

)
U =

ε2U(
|U |2 + ε2

)3/2
+
|U |2

|U |2ε
E(U, S)→ E(U, S) as ε→ 0.

The properties of the perturbed Hessian from Corollary 5.2.3 describe a regularization of the
unperturbed Hessian that is adapted to the model error E(U, S). Since the model error is decreasing
as U gets closer to the solution U∗, we find that the regularization is more pronounced while U is
far from U∗ and gets smaller as U → U∗. Thus the regularization is adapting to the model error. In
addition, the regularization is not isotropic but it is directed parallel to the model error. This results
in improvements of the numerical stability of Newton’s method, less backtracking at initial Newton
steps, while maintaining a super-linear Newton convergence in a sufficiently small region around the
solution U∗. The numerical evidence is presented in Section 5.4.

We close this section with practical notes. First, the perturbed Newton linearization only alters
the coefficient in the left-hand side Hessian while keeping the right-hand side of the unperturbed
linearization. This is advantageous for implementing the linearization into existing Newton solvers.
Second, it is not required to allocate additional storage to track the dual variable S during nonlinear
iterations, because it is not explicitly required in the update (see Equation (5.18) and the corresponding
comment). Third, as a starting value for S, we can simply assume no model perturbation, E(U, S) = 0,
and set S = U/ |U |ε.

5.3 Applications and examples of perturbed linearizations

Example in 1D

We formulate a one-dimensional minimization problem: Find x∗ ∈ R minimizing

min
x∈R

J(x), J(x) :=
a

1 + θ
|x|1+θ

ε − bx, (5.30)
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Figure 5.1: Objective functional in left graph and gradient in right graph of the 1D minimization
problem (5.30) with constants a, b = 1, ε = 0.01, and θ = 0.1. The gradient varies slowly far away
from x = 0, thereby far away from the solution x∗ ≈ 1, but it changes rapidly around x = 0.

where a, b ∈ R are given constants and 0 ≤ θ ≤ 1 is a constant parameter. θ controls the nonlinearity
such that J(x) is governed by a quadratic term for θ = 1, therefore well-behaved, and by a term
of norm-type for θ = 0 with properties as discussed in Section 5.2. The gradient and Hessian for
problem (5.30) are

g(x) := J ′(x) =
ax

|x|1−θε

− b, H(x) := J ′′(x) =
a

|x|1−θε

(
1− (1− θ) x

2

|x|2ε

)
.

They constitute the standard Newton linearization for step x̂, namely:

H(x) x̂ = −g(x) ⇔ a

|x|1−θε

(
1− (1− θ) x

2

|x|2ε

)
x̂ = −

(
ax

|x|1−θε

− b

)
. (5.31)

Figure 5.1 shows the objective functional J(x) and the gradient g(x). The gradient varies slowly away
from x = 0, which is also far away from the solution x∗ ≈ 1, but it changes rapidly around x = 0.
This property of the gradient indicates why the standard linearization (5.31) produces steps that are
highly inaccurate in predicting the nonlinearities.

To derive the perturbed Newton linearization, we follow the procedure from the abstract framework
in Section 5.2. Hence, we initially define the model error

E(x, y) :=
x

|x|1−θε

− y

and the corresponding model perturbation

D(x, y) := x− |x|1−θε y
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Figure 5.2: Magnitude of the perturbed (2D) gradient of (5.32) shown as a surface (left) and as contours
(right). The arrows in the right plot give direction and magnitude of the perturbed gradient. The
magenta curve in both plots represents the absolute value of the unperturbed gradient in (x, y)-space
such that E(x, y) = 0.

for x, y ∈ R. This leads to the perturbed Newton linearization for step x̂ and dual step ŷ,

aŷ = − (ay − b) , (5.32a)(
1− (1− θ) xy

|x|1+θ
ε

)
x̂− |x|1−θε ŷ = −

(
x− |x|1−θε y

)
, (5.32b)

and by substituting for ŷ analogously to Equation (5.17), we obtain the perturbed and reduced Newton
linearization for step x̂:

a

|x|1−θε

(
1− (1− θ) xy

|x|1+θ
ε

)
x̂ = −

(
ax

|x|1−θε

− b

)
. (5.33)

This simple 1D example allows us to visualize the perturbed linearization in Figure 5.2. We depict
the magnitude of the perturbed (2D) gradient of (5.32) as a surface in the left plot and as contours in
the right plot of Figure 5.2. Additionally on the right, the arrows give direction and magnitude of the
perturbed gradient. The magenta curve represents the absolute value of the unperturbed gradient
g(x), i.e., on the manifold where E(x, y) = 0. It can be observed that the perturbation relaxes the
rapid changes of the unperturbed g(x) around x = 0, which can improve numerical stability for the
computed Newton steps and convergence of the nonlinear solver.

Application to total variation (TV) regularization

Image restoration problems typically assume a given blurred and noisy image as observational data
and a giving blurring operator. The goal is to find a solution that approximates the true image as well
as possible. This problem is one example of an inverse problem. As discussed in Chapter 3, we need
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to include a regularization term in order for the image restoration problem to be well posed. Total
variation (TV) regularization offers the advantage that edges in the restored image are preserved [100],
it has therefore been a popular choice.

We interpret an image as a function u : Ω → R, supported on a domain Ω ⊂ R2. Given are
observational data d ∈ L2(Ω) and a blurring operator B : L2(Ω)→ L2(Ω) that is linear and bounded.
Further, we define the TV operator by

TV(u) :=

∫
Ω
|∇u|ε =

∫
Ω

√
|∇u|2 + ε2.

Note that for ε = 0 the TV operator becomes a norm, called TV-norm, in fact TV(u)→ ‖∇u‖L1(Ω)

as ε→ 0. We formulate the minimization problem for image restoration: Find u∗ minimizing

min
u
J(u), J(u) :=

1

2
‖Bu− d‖2L2 + γ TV(u), (5.34)

where the regularization γ > 0 was introduced.
We aim to solve (5.34) with Newton’s method, which requires the gradient and Hessian operator

to form the linearized system for a Newton step. Since our intention is to highlight analogies between
the TV operator and derivations in Section 5.2, we focus on the first- and second-order variations of
TV(u). These are

δu[TV(u)](ũ) =

∫
Ω

∇u
|∇u|ε

· ∇ũ =

(
∇u
|∇u|ε

,∇ũ
)

and
δuδu[TV(u)](ũ)(û) =

(
1

|∇u|ε

(
I− ∇u⊗∇u
|∇u|2 + ε2

)
∇û ,∇ũ

)
.

Taking variations of the remaining terms in (5.34), we obtain the standard linearized system for the
Newton step û:(

γ

|∇u|ε

(
I− ∇u⊗∇u
|∇u|2 + ε2

)
∇û ,∇ũ

)
+ (B∗Bû , ũ) = −

(
γ
∇u
|∇u|ε

,∇ũ
)
− (B∗(Bu− d) , ũ) . (5.35)

Equation (5.35) has a Poisson operator on the left-hand side with an anisotropic second-order tensor
coefficient with a projection-type property (see Corollary 5.2.2). This Poisson coefficient is problematic
for the same reasons as we documented in an abstract setting for system (5.22) in Section 5.2. In that
section, we also derived and analyzed a perturbed regularization (5.28) with improved properties.

We can now simply use the procedure for the abstract framework in Section 5.2. Hence, we begin
by defining the model error for the TV operator

E(u, S) :=
∇u
|∇u|ε

− S

and the corresponding model perturbation

D(u, S) := ∇u− |∇u|ε S
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for S ∈ L∞(Ω), ‖S‖L∞ ≤ 1. This leads to the perturbed and reduced linearized system for the Newton
step û:(

γ

|∇u|ε

(
I− ∇u⊗ S

|∇u|ε

)
∇û ,∇ũ

)
+ (B∗Bû , ũ) = −

(
γ
∇u
|∇u|ε

,∇ũ
)
− (B∗(Bu− d) , ũ) . (5.36)

The perturbed linearization (5.36) can dramatically improve Newton convergence for image restoration
problems with TV regularization [33,65]. Since its first presentation in [33], a different and less general
derivation as in Section 5.2 was used and the procedure was called the primal-dual Newton method.

Application to yielding rheology in nonlinear Stokes flow

We went through the process of deriving a linearized Stokes system to solve for a Newton step in
Section 5.1. In Equation (5.4) when yielding is active, i.e., θ = −1, we encountered a case analogous
to the Newton linearization in an abstract setting (Section 5.2). The standard linearization of the
momentum equation (5.4a) in the yielding case is

−∇ ·

(
2µ(u)

(
I− ∇su⊗∇su

|∇su|2F

)
∇sû

)
+∇p̂ = −rmom, (5.37)

where we assume that 0 < |∇su|F . Our previous observations implicate the same issues for (5.37) as
discussed in Corollary 5.2.2 and that we can formulate an improved linearization by augmenting (5.37)
with a perturbed model for the norm, which is |∇su|F here.

Therefore, analogously to the procedure for the abstract framework in Section 5.2, we define a
model error

E(u,S) :=
∇su

|∇su|F
− S

and the corresponding model perturbation

D(u,S) := ∇su− |∇su|F S

for u ∈ H1(Ω)d and S ∈ L∞(Ω)d×d, ‖S‖L∞ ≤ 1. This leads to the perturbed and reduced linearized
momentum equation:

−∇ ·
(

2µ(u)

(
I− ∇su⊗ S

|∇su|F

)
∇sû

)
+∇p̂ = −rmom. (5.38)

The improvement in Newton convergence using the perturbed linearization (5.38) is show in Section 5.4.
Finally, when solving the whole linearized Stokes system with momentum equation (5.38) using

a Krylov iterative method, we enforce positive definiteness of the fourth-order tensor coefficient by
projecting S into the unit ball such that |S|F ≤ 1. In addition, it can be advantageous to the
convergence of the linear solver, to symmetrize the outer product ∇su⊗ S by replacing it with

1

2
(∇su+ S)⊗ 1

2
(∇su+ S).
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5.4 Numerical experiments for nonlinear Stokes flow

This section presents a benchmark model problem with a challenging yielding rheology, which we
utilize in numerical experiments. The model problem is defined on the (open) unit cube domain
Ω = (0, 1)3, with a linear viscosity component a (x) ∈ [0, µmax], x ∈ Ω, 0 < µmin < µmax <∞, which
is generated by rescaling a C∞ indicator function χn(x) ∈ [1, 2] that accumulates n plumes via a
product of modified Gaussian functions:

a (x) := (µmax − µmin)(χn(x)− 1), x ∈ Ω,

χn(x) :=

n∏
i=1

1 + exp

(
−δmax

(
0, |ci − x| −

ω

2

)2
)
, x ∈ Ω,

where ci ∈ Ω, i = 1, . . . , n, are the centers of the plumes, δ > 0 controls the exponential decay of the
Gaussian smoothing, and ω ≥ 0 is the diameter of a plume where µmin is attained. Since all plumes
are equal in size, inserting more of them inside the domain will eventually result in overlapping with
each other and possible intersections with the domain’s boundary. Throughout the section, we fix
parameters n = 4, δ = 100, ω = 0.1, µmin = 10−2, µmax = 10+2, and use the same set of precomputed
random points ci in all numerical experiments. Note that we use a similar model viscosity when
developing the weighted BFBT Schur complement preconditioner (see Section 6.2). The difference
here is that plumes are inserted into the domain instead of sinkers and that the variations in the
viscosity are not as severe since we focus on the nonlinearity and Newton convergence.

The right-hand side forcing is defined by f(x) := (0, 0, β(χn(x)− 1)), β = 100 constant, such that
it forces the low-viscosity plumes upward, similarly to a buoyancy that forces the rise of low-density
inclusions within a medium of higher density.

The background viscosity of the medium surrounding the plumes attains the maximum value µmax.
In this part of the domain plastic yielding phenomena get activated by introducing the nonlinear
viscosity

µ(x, ε̇ii) := min

(
τyield

2ε̇ii
, a (x)

)
+ µmin ∈ [µmin, µmax], (5.39)

which contains a yield strength τyield > 0. In our numerical experiments, we vary the yield strength to
increase the yielding volume in the domain, i.e., where yielding is active, by lowering τyield.

The numerical results in Table 5.1 show a comparison of nonlinear Stokes solver convergence for the
standard and the perturbed Newton linearizations found in Equations (5.37) and (5.38), respectively.
For the viscosity (5.39), we vary the nonlinearity via yield strength τyield, which is expressed in different
relative yielding volumes in the table. To additionally test for algorithmic scalability, the level ` of
refinement of the uniform mesh is refined. We utilize the Q2 × Pdisc

1 finite element pairing for velocity
and pressure. We observe for the perturbed linearization that the yielding volume only moderately
affects the number of Newton iterations until convergence (10−7 nonlinear residual reduction) and
that the iteration count is largely unaffected by the mesh refinement level. Accordingly, also the
total sum of backtracking iterations remains stable across refinements. In contrast, the standard
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Table 5.1: Comparison of standard and perturbed Newton linearizations using the nonlinear viscos-
ity (5.39) while varying yield strength τyield, expressed in different relative yielding volumes, and level
` of refinement of the uniform mesh (Q2 × Pdisc

1 finite element pairing). For each type of linearization
we state the number of Newton iterations until convergence (10−7 nonlinear residual reduction), the
total count of backtracking iterations (each reducing a Newton step by the factor 0.5), and the total
number of GMRES iterations. The perturbed linearization demonstrates a significant improvement in
stability of Newton’s method and overall computational cost (total GMRES iterations).

Yielding Mesh Regular Newton Perturbed Newton
volume level ` It. Newton #backtr. It. GMRES It. Newton #backtr. It. GMRES

∼45% 4 33 20 1469 10 0 379
∼45% 5 36 25 2255 12 0 664
∼45% 6 57 49 4255 13 0 876

∼65% 4 29 21 1559 18 10 965
∼65% 5 37 26 2464 17 9 1245
∼65% 6 48 39 3892 20 9 1707

∼90% 4 35 25 1505 19 11 872
∼90% 5 40 32 2147 21 11 1267
∼90% 6 32 21 2312 23 11 1811

Newton linearization behaves in an unstable manner with fluctuating Newton iteration counts and
vastly more backtracking. Therefore, the overall computational cost, which is determined by the total
count of GMRES iterations, is significantly higher than for the perturbed linearization. The numerical
experiments confirm the previous theoretical analysis that the perturbation adds stability to Newton’s
method, improves the computed Newton step directions, and results in a robust and fast convergence
for these class of problems.

60



6

Schur Complement Preconditioning with
Weighted BFBT

The global mantle convection applications we target exhibit the difficulties and computational challenges
described above in Chapter 4 (severe heterogeneity, very large scale, need for aggressively-adapted
meshes, need for high-order, mass-conserving discretization). Hence, they demand robust and effective
preconditioners for (4.6), resulting in iterative solvers with optimal (or nearly optimal) algorithmic
and parallel scalability. This chapter and [98,99] describes the design of such a preconditioner and its
analysis and performance evaluation for Stokes problems with highly heterogeneous viscosity. The
preconditioner—which we call weighted BFBT (w-BFBT)—is of Schur complement type, and we
study its robustness as well as its algorithmic and parallel scalability.

6.1 Introduction to Schur complement approximations

An effective approximation of the Schur1 complement S := BA−1BT is an essential ingredient for
attaining fast convergence of Schur complement-based iterative solvers for the linear algebraic Stokes
system in Equation (4.6). More precisely, a sufficiently good approximation of the inverse Schur
complement, S̃−1 ≈ S−1, is sought. As we have outlined in Section 4.2, approximation S̃−1 is combined
with an approximation of the inverse viscous block, Ã−1 ≈ A−1, in an iterative scheme with right
preconditioning based on an upper triangular block matrix:[

A BT

B 0

][
Ã BT

0 S̃

]−1 [
ũ

p̃

]
=

[
f

0

]
. (6.1)

Note that the original solution to (4.6) is recovered by applying the preconditioner once to the solution
of (6.1).

The most widely used approximation of the Schur complement (for variable viscosity Stokes
systems) is the inverse viscosity-weighted mass matrix of the pressure space [29,71,78,84], denoted

1Strictly speaking, our definition is the negative Schur complement. However, as in [46], we prefer to work with
positive-definite operators and thus define the Schur complement to be positive rather than negative definite.
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by Mp(1/µ), with entries [Mp(1/µ)]i,j =
∫

Ω qi(x) qj(x)/µ(x) dx, where qi, qj ∈ Pdisc
k−1 are global basis

functions of the finite dimensional space Pdisc
k−1. Since the basis functions of Pdisc

k−1 are modal and not
orthogonal to each other, the mass matrix is not diagonal, and thus Mp(1/µ) is typically diagonalized
to further simplify its inversion. One common way to obtain a diagonalized version is mass lumping.
For nodal discretizations, the corresponding diagonal elements are computed by summation of the
entries of each matrix row, i.e., Mp(1/µ)1, where 1 is the vector with ones in all entries. For modal
discretizations, we generalize the lumping procedure by using the coefficient vector, 1{qi}i , representing
the constant function having value 1 in the associated basis {qi}i, i.e.,

M̃p(1/µ) := diag(Mp(1/µ)1{qi}i). (6.2)

Provided that µ is sufficiently smooth, Mp(1/µ) can be an effective approximation of S in numerical
experiments [28] and spectral equivalence can be shown [57]. However, it has been observed in
applications with highly heterogeneous viscosities µ (e.g., mantle convection [85,97]) that convergence
slows down significantly due to a poor Schur complement approximation by Mp(1/µ). Therefore, we
propose a new approximation, w-BFBT, that remains robust when Mp(1/µ) fails.

Preconditioners based on BFBT approximations for the Schur complement were initially proposed
in [43] for the Navier–Stokes equations. Over the years, these ideas were refined and extended
[44,45,47,76,105] to arrive at a class of closely related Schur complement approximations: Pressure
Convection–Diffusion, BFBT, and Least Squares Commutator. The underlying principle, now in a
Stokes setting, is that one seeks a commutator matrix X such that the following commutator nearly
vanishes,

AD−1BT −BTX ≈ 0, (6.3)

for a given diagonal matrix D−1. The Navier–Stokes case differs from Stokes in that the viscous stress
matrix A contains an additional convection term. The motivation for seeking a near-commutator X is
that (6.3) can be rearranged by multiplying (6.3) with BA−1 from the left and, provided the inverse
exists, with X−1 from the right to obtain S ≈ BD−1BTX−1, where the closer the commutator is to
zero, the more accurate the approximation [46]. The goal of finding a vanishing commutator can be
recast as solving the following least-squares minimization problem:

Find matrix X minimizing
∥∥∥AD−1BTej −BTXej

∥∥∥2

C−1
for all j, (6.4)

where ej is the j-th Cartesian unit vector and the norm arises from a symmetric and positive definite
matrix C. The solution is given by X = (BC−1BT)−1(BC−1AD−1BT). Then the BFBT approxi-
mation of the inverse Schur complement is derived by algebraic rearrangement of the commutator
(6.3):

S̃−1
BFBT :=

(
BC−1BT

)−1 (
BC−1AD−1BT

)(
BD−1BT

)−1
. (6.5)

In the literature cited above (which addresses preconditioning of Navier–Stokes equations with constant
viscosity), the diagonal weighting matrices are chosen as C = D = M̃u, i.e., a diagonalized version of
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the velocity space mass matrix; hence we call this the Mu-BFBT approximation of the Schur comple-
ment. Mu-BFBT can be used for Stokes problems with constant viscosities providing convergence
similar to Mp(1/µ). However, the computational cost of applying (6.5) is significantly higher than
the (cheap) application of a possibly diagonalized inverse of Mp(1/µ). Moreover, Mu-BFBT is not
an option for heterogeneous viscosities because convergence becomes extremely slow or stagnates,
as observed in [85]. Instead, in [85] for finite element and in [52] for staggered grid finite difference
discretizations, a re-scaling of the discrete Stokes system (4.6) was performed, which essentially alters
the diagonal weighting matrices C, D. By choosing entries from A for these weighting matrices, it
was possible to demonstrate improved convergence with BFBT compared to Mp(1/µ) for certain
benchmark problems with strong viscosity variations. Building on ideas from [85], [97] chose the
weighting matrices such that C = D = diag(A), which led to superior performance compared to
Mp(1/µ) for highly heterogeneous mantle convection problems. Hence we refer to this approach as
diag(A)-BFBT.

However, even diag(A)-BFBT can fail to achieve fast convergence for some problems and/or
discretizations, as shown below (Section 6.2). Moreover, choosing the weighting matrices as diag(A) is
problematic for high-order discretizations, where diag(A) becomes a poor approximation of A. These
drawbacks lead us to propose the following w-BFBT approximation for the inverse Schur complement:

S̃−1
w-BFBT :=

(
BC−1

wl
BT
)−1 (

BC−1
wl

AD−1
wrB

T
)(

BD−1
wrB

T
)−1

, (6.6)

where Cwl = M̃u(wl) and Dwr = M̃u(wr) are lumped velocity space mass matrices (lumping
analogously to (6.2)) that are weighted by the square root of the viscosity, wl(x) =

√
µ(x) = wr(x),

x ∈ Ω.

Outline and summary of key results

After defining a class of benchmark problems (Section 6.2), we compare the convergence obtained with
different Schur complement approximations to motivate preconditioning with w-BFBT (Section 6.2).
Theoretical estimates for spectral equivalence of w-BFBT are derived in Section 6.3. This is followed
by a detailed numerical study showing when w-BFBT is advantageous over Mp(1/µ) (Section 6.4),
and a discussion of boundary modifications for w-BFBT that accelerate convergence (Section 6.5).
In Section 7.2 we describe an algorithm for w-BFBT-based Stokes preconditioning, which uses
hybrid spectral–geometric–algebraic multigrid (HMG). Finally, in Chapter 8, we provide numerical
evidence for near-optimal algorithmic and parallel scalability. In particular, we demonstrate that the
preconditioner’s parallel efficiency remains high when weak scaling out to tens of thousands of threads
and even millions of threads.

To motivate our study of w-BFBT, we give an example for a possible improvement in convergence
in Figure 6.1. There, a comparison is drawn between the Mp(1/µ) and w-BFBT approximations
for the Schur complement. The Stokes problem that is being solved is the multi-sinker benchmark
problem from Section 6.2. The difficulty of the problem can be increased by adding more and more
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Figure 6.1: Left image shows the improvement in convergence obtained with the proposed w-BFBT
preconditioner over a preconditioner using the inverse viscosity-weighted pressure mass matrix as Schur
complement approximation. The number of randomly placed sinkers (high viscosity inclusions in low
viscosity medium) increases along the horizontal axis. The vertical axis depicts the number of GMRES
iterations required for 106 residual reduction for the most popular Mp(1/µ) and the proposed w-BFBT
preconditioner. Fixed problem parameters are the dynamic ratio DR(µ) = max(µ)/min(µ) = 108,
discretization order k = 2, and the mesh refinement level ` = 7, resulting in 1283 finite elements. Right
image shows an example viscosity field with 16 sinkers (blue spheres depict highly viscous centers of
Gaussian-like sinkers, low viscosity medium in red color) and the streamlines of the computed velocity
field.

high-viscosity inclusions, called sinkers, into a low-viscosity background medium, which, as a result,
introduces more variation in the viscosity. As can be seen in the figure, the number of GMRES
iterations remain flat when preconditioning with w-BFBT, whereas the number of GMRES iterations
increases significantly for higher sinker counts when using Mp(1/µ), rendering Mp(1/µ) inefficient for
these types of difficult problems. Therefore we propose w-BFBT as an alternative Schur complement
approximation for Stokes flow problems with a highly varying viscosity.

6.2 Benchmark problem and comparison of Schur complement ap-
proximations

This section further motivates the need for more effective Schur complement preconditioners. We
first present a class of benchmark problems that range from relatively mild viscosity variations to
severely heterogeneous. Then a challenging problem is used to compare Stokes solver convergence with
different Schur complement approximations to demonstrate the limitations of established methods
and motivate the development of w-BFBT.

Multi-sinker benchmark problem

The design of suitable benchmark problems is critical to conduct studies that can give useful convergence
estimates for challenging applications. We seek complex geometrical structures in the viscosity that

64



generate irregular, nonlocal, multiscale flow fields. Additionally, the viscosity should exhibit sharp
gradients and its dynamic ratio DR(µ) := max(µ)/min(µ) (also commonly referred to as viscosity
contrast) can be six orders of magnitude or higher in demanding applications. As in [83], we use a
multi-sinker test problem with randomly positioned inclusions (e.g., as in Figure 6.1, right image) to
study solver performance. We find that the arising viscosity structure is a suitable test for challenging,
highly heterogeneous coefficient Stokes problems, and that the solver performance observed for such
models can be indicative of the performance for other challenging applications.

In the (open) unit cube domain Ω = (0, 1)3, we define the viscosity coefficient µ(x) ∈ [µmin, µmax],
x ∈ Ω, 0 < µmin < µmax < ∞, with dynamic ratio DR(µ) = µmax/µmin by means of rescaling a
C∞ indicator function χn(x) ∈ [0, 1] that accumulates n sinkers via a product of modified Gaussian
functions:

µ(x) := (µmax − µmin)(1− χn(x)) + µmin, x ∈ Ω,

χn(x) :=
n∏
i=1

1− exp

(
−δmax

(
0, |ci − x| −

ω

2

)2
)
, x ∈ Ω,

where ci ∈ Ω, i = 1, . . . , n, are the centers of the sinkers, δ > 0 controls the exponential decay of
the Gaussian smoothing, and ω ≥ 0 is the diameter of a sinker where µmax is attained. Since all
sinkers are equal in size, inserting more of them inside the domain will eventually result in overlapping
with each other and possible intersections with the domain’s boundary. Throughout the chapter,
we fix δ = 200, ω = 0.1, and use the same set of precomputed random points ci in all numerical
experiments. Two parameters are varied: (i) the number of sinkers n at random positions (the label
Sn-rand indicates a multi-sinker problem with n randomly positioned sinkers) and (ii) the dynamic
ratio DR(µ) which in turn determines µmin := DR(µ)−1/2 and µmax := DR(µ)1/2. The right-hand
side of (4.6), f(x) := (0, 0, β(χn(x)− 1)), β = 10 constant, is such that it forces the high-viscosity
sinkers downward, similarly to a gravity that pulls on high-density inclusions within a medium of
lower density.

Comparison of Schur complement approximations

We compare convergence of the Stokes solver using the Schur complement approximation Mp(1/µ)

with diag(A)-BFBT and with the proposed w-BFBT. The problem parameters are held fixed to
S16-rand and DR(µ) = 108. The numerical experiments are carried out using different levels of mesh
refinement ` = 5, . . . , 7 (for fixed order k = 2) and different discretization orders k = 2, . . . , 5 (for fixed
level ` = 5). A level ` corresponds to a mesh of 23` elements due to uniform refinement. Note that
for these tests, the applications of A−1,

(
BC−1

wl
BT
)−1, and

(
BD−1

wrB
T
)−1 are approximated using a

multigrid method (introduced in Section 7.2). These approximations are sufficiently accurate, such that
the comparison is indicative of the effectiveness of the different Schur complement approximations. In
particular, improving the approximation does not change the results, which are presented in Figure 6.2.
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Figure 6.2: Comparison of Stokes solver convergence with Mp(1/µ) (left column), diag(A)-BFBT
(middle column), and w-BFBT (right column) preconditioning. We fix the problem S16-rand, DR(µ) =
108 while varying mesh refinement level ` (top row) and discretization order k (bottom row). This
comparison shows that w-BFBT combines robust convergence of diag(A)-BFBT with improved
algorithmic scalability when k is increased.

In the left two plots, the poor Schur complement approximation by Mp(1/µ) for this problem setup
can be observed clearly. Convergence stagnates (similar results are found in [83,97]).

Preconditioner diag(A)-BFBT (Figure 6.2, middle) is able to achieve fast convergence for dis-
cretization order k = 2. A limitation of diag(A)-BFBT is a strong dependence on the order k. This
can be explained by the decreasing diagonal dominance in the viscous block A with increasing order
k: for higher k the approximation of A by diag(A) deteriorates. Note that numerical experiments
with Mu-BFBT are not presented, because it performs poorly in the presence of spatially-varying
viscosities. This leads to the conclusion that the choice of the weighting matrices C, D in S̃−1

BFBT

crucially affects the quality of the Schur complement approximation.
The w-BFBT approximation delivers convergence that is nearly as fast as in the diag(A)-BFBT,

k = 2 case, but without the severe deterioration when k is increased (see Figure 6.2, right). Thus,
w-BFBT exhibits the robustness of diag(A)-BFBT and additionally shows superior algorithmic
scalability with respect to k. Having illustrated the efficacy of w-BFBT for certain problem parameters,
we next establish spectral equivalence of w-BFBT (Section 6.3) and then analyze in more detail how
crucial parameters influence convergence in Section 6.4.

6.3 Spectral equivalence of w-BFBT

Before we show spectral equivalence, we introduce notation and basic definitions.
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Basic definitions

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω. We denote as L2(Ω) the class of
real-valued square-integrable functions, equipped with the usual L2-inner product (u , v)L2(Ω) and
induced norm ‖u‖L2(Ω), u, v ∈ L2(Ω). We also consider corresponding spaces of d-dimensional vector-
valued functions and (d× d)-dimensional tensor-valued functions with component-wise multiplication,
denoted by L2(Ω)d and L2(Ω)d×d. The subspace of L2(Ω) that does not contain constant functions is
denoted by L2(Ω)/R. A bounded function, say α = α(x), belongs to the space L∞(Ω) by satisfying
the following finite norm: ‖α‖L∞(Ω) := ess supx∈Ω |α(x)| <∞. We generalize the L2-norms to classes
of weighted L2

α-norms for functions f ∈ L2(Ω)n, n ∈ {1, d, d× d}, defined by

‖f‖L2
α(Ω)n :=

∥∥∥α 1
2 f
∥∥∥
L2(Ω)n

for α ∈ L∞(Ω), 0 < α(x) a.e. in Ω.

Next, we introduce Hm(Ω), with m ≥ 0, which is the Sobolev space of m derivatives in L2(Ω), and
for m = 1 we use the inner product (u , v)H1(Ω) := (u , v)L2(Ω) + (∇u ,∇v)L2(Ω) , inducing the norm
‖u‖H1(Ω). Functions in H

m(Ω) with vanishing trace on the boundary ∂Ω belong to the space Hm
0 (Ω).

Finally, we say that a function belongs to the class of C∞(Ω) if it has partial derivatives of any order
in Ω, and these derivatives are continuous.

We transition from abstract definitions to fluid mechanics. The differential operators acting on
velocity u ∈ H1(Ω)d and pressure p ∈ L2(Ω) within the Stokes equations are defined in the sense of
distributions:

∇su :=
1

2
(∇u+∇uT), Bu := −∇ · u, B∗p := ∇p.

Moreover, assume a sufficiently regular, bounded viscosity µ ∈ H1(Ω) ∩ L∞(Ω) such that 0 < µmin ≤
µ(x) a.e. in Ω and then define the viscous stress tensor τ := 2µ∇su. We denote the function space for
velocity by

V :=
{
u ∈ (H1(Ω))d | n · u = 0 on ∂Ω

}
, (6.7)

where n ∈ Rd is the outward unit normal vector at the boundary ∂Ω, and the function space for
pressure by Q := L2(Ω)/R, and we introduce the viscous stress operator with a heterogeneous viscosity

Aµ : V → V ′, Aµu := −∇ · (2µ∇su) = −∇ · τ .

Given exterior forces acting on the fluid f ∈ V ′, we consider the incompressible Stokes problem with
free-slip and no-normal flow boundary conditions:

Aµu+B∗p = f in Ω, (6.8a)

Bu = 0 in Ω, (6.8b)

T [τ − pI]n = 0 on ∂Ω, (6.8c)

u · n = 0 on ∂Ω, (6.8d)

in which we seek the velocity u ∈ V and pressure p ∈ Q. On the boundary, we have outward unit
normal vectors n ∈ Rd and tangential projectors T := I− nnT.
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For the definition of the w-BFBT approximation of the Schur complement, we introduce a Poisson
operator for higher regularity pressure functions

K∗w : H2(Ω)→ L2(Ω), K∗wp := BwB∗p, (6.9)

with an appropriate coefficient w (see below) and augmented with homogeneous Neumann boundary
conditions, n · B∗p = 0. The L2-adjoint of K∗w is denoted by Kw. Finally, we define the w-BFBT
approximation of the Schur complement S = BA−1

µ B∗ by:

S̃w-BFBT := K∗wr(BwlAµwrB
∗)−1Kwl , (6.10)

with sufficiently regular, bounded weight functions wl, wr ∈ H1(Ω) ∩ L∞(Ω) such that 0 < wmin ≤
wl(x), wr(x) a.e. in Ω. Note that the definitions of the w-BFBT weight functions in the discrete
case (6.6) are reciprocal to definitions in (6.9) and (6.10), because in the discrete case the weight
functions were embedded into inverses of mass matrices.

Main theorem on spectral equivalence of w-BFBT

One measure for the efficacy of a preconditioner consists of the ratio of the maximal to minimal
eigenvalues of the preconditioned system S̃−1

w-BFBTS. This section establishes inequalities for spectral
equivalence of w-BFBT by providing bounds on that ratio. The derivations are carried out in an
infinite-dimensional setting. We begin by stating the main result of this section in Theorem 6.3.1 and
continue with proving this result using a sequence of lemmas.

Theorem 6.3.1 (Main result). Let Q̂ = L2(Ω)/R ∩ H1(Ω). If the left and right w-BFBT weight
functions are equal to

wl(x) = µ(x)−
1
2 = wr(x) for a.a. x ∈ Ω,

then the exact Schur complement is equivalent to the w-BFBT approximation such that(
S̃w-BFBT q , q

)
≤ (Sq , q) ≤ Cw-BFBT

(
S̃w-BFBT q , q

)
for all q ∈ Q̂,

where
Cw-BFBT :=

(
1 +

1

4
‖∇µ‖2L∞(Ω)d

)(
C2
P,µ + 1

)
C2
K,µ

and the constants CP,µ, CK,µ > 0 stem from weighted Poincaré–Friedrichs’ and Korn’s inequalities,
respectively (see Remark 6.3.7 for more information); the viscosity µ assumes the role of the weight
function in the weighted inequalities.

If the viscosity and the w-BFBT weight functions are constant,

µ ≡ 1, wl ≡ 1 ≡ wr,

then the exact Schur complement is equivalent to the w-BFBT approximation such that(
S̃w-BFBT q , q

)
≤ (Sq , q) ≤ (C2

P + 1)C2
K

(
S̃w-BFBT q , q

)
for all q ∈ Q̂

with constants CP , CK > 0 stemming from (the classical) Poincaré–Friedrichs’ and Korn’s inequalities,
respectively.
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Proofs

The proof of Theorem 6.3.1 is established in the remainder of this section. In what follows, suprema
are understood over spaces excluding operator kernels that would cause a supremum to blow up. The
following basic, but hereafter frequently used, result is shown for completeness of the discussion.

Lemma 6.3.2 (sup-form of inverse operator). Let V be a complete Hilbert space and W ⊆ V be a
dense subspace. Assume the linear operator T : V → V ′ to be bounded, invertible, symmetric, and
positive definite. Then for any f ∈ V ′ follows

(
T−1f , f

)
= sup

w∈W

(w , f)2

(Tw , w)
.

Proof. Let w ∈W , then with Hölder’s inequality follows

(w , f)2 =
(
T 1/2w , T−1/2f

)2
≤
∥∥∥T 1/2w

∥∥∥2 ∥∥∥T−1/2f
∥∥∥2

= (Tw , w)
(
T−1f , f

)
.

Additionally, let v = T−1f and since W ⊆ V dense, there exists a sequence {wk}k ⊂ W such that
wk → v = T−1f ∈ V , hence

(wk , f)2

(Twk , wk)
→ (v , f)2

(Tv , v)
=

(
T−1f , f

)2
(f , T−1f)

=
(
T−1f , f

)
,

which shows that equality is achieved in the limit.

The next lemma establishes Schur complement properties that are essential for deriving lower and
upper bounds in the spectral equivalence estimates.

Lemma 6.3.3 (sup-form of Schur complement). With the definitions from Section 6.3, the following
two equalities hold: (

S̃w-BFBT q , q
)

= sup
p∈P̂

(B∗p , wrB
∗q)2

(wlAµwrB∗p , B∗p)
for all q ∈ Q̂, (6.11)

where P̂ := C∞(Ω) and Q̂ := L2(Ω)/R ∩H1(Ω), and

(Sq , q) = sup
v∈V

(v , wrB
∗q)2

(wlAµwrv , v)
for all q ∈ Q. (6.12)

Proof. For q ∈ Q̂, we use integration by parts on the left hand side of (6.11) to obtain(
S̃w-BFBT q , q

)
=

∫
Ω

(
wrB

∗(BwlAµwrB
∗)−1Kwlq

)
(B∗q) dx+ b1(q)

=

∫
Ω

(
(BwlAµwrB

∗)−1Kwlq
)

(Kwrq) dx+ b1(q) + b2(q)
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with boundary terms

b1(q) := −
∫
∂Ω

(
n · wrB∗(BwlAµwrB∗)−1Kwlq

)
q dx,

b2(q) :=

∫
∂Ω

(
(BwlAµwrB

∗)−1Kwlq
)

(n · wrB∗q) dx.

Using that P̂ ⊂ H2(Ω) is dense, application of Lemma 6.3.2 and further integration by parts yields(
S̃w-BFBT q , q

)
= sup

p∈P̂

(p , Kwrq)
2

(BwlAµwrB∗p , p)
+ b1(q) + b2(q)

= sup
p∈P̂

((B∗p , wrB
∗q) + b3(p, q))2

(wlAµwrB∗p , B∗p) + b4(p)
+ b1(q) + b2(q)

with boundary terms

b3(p, q) := −
∫
∂Ω
p (n · wrB∗q) dx,

b4(p) := −
∫
∂Ω

(n · wlAµwrB∗p) p dx.

Because the operator K∗wr from (6.9) is augmented with homogeneous Neumann boundary conditions,
n · B∗p = 0, the boundary terms b1(q), b2(q), and b3(p, q) vanish. In addition, p ∈ P̂ is sufficiently
regular for the term b4(p) to be well-defined and it equals to zero because the velocity u satisfies
n · u = 0 on ∂Ω. Hence, (6.11) follows.

To show (6.12), let q ∈ Q, then for the exact Schur complement we apply integration by parts
with a vanishing boundary term

(Sq , q) =
(
BA−1

µ B∗q , q
)

=
(
A−1
µ B∗q , B∗q

)
=
(
w−1
r A−1

µ w−1
l wlB

∗q , wrB
∗q
)

and (6.12) follows from Lemma 6.3.2.

A direct consequence of Lemma 6.3.3 is the following lower bound.

Corollary 6.3.4 (Lower bound, S̃w-BFBT . S). The exact Schur complement is bounded by the
w-BFBT approximation from below, i.e.,(

S̃w-BFBT q , q
)
≤ (Sq , q) for all q ∈ Q̂, (6.13)

where Q̂ := L2(Ω)/R ∩H1(Ω).

Proof. Let P̂ = C∞(Ω) and q ∈ Q̂. Since B∗ maps P̂ into V , we combine (6.11) and (6.12) to get(
S̃w-BFBT q , q

)
= sup

p∈P̂

(B∗p , wrB
∗q)2

(wlAµwrB∗p , B∗p)
≤ sup

v∈V

(v , wrB
∗q)2

(wlAµwrv , v)
= (Sq , q) ,

and obtain the result (6.13).
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We begin the derivation of an upper bound for the case of constant viscosity µ ≡ 1. Note that
S̃w-BFBT is scaling invariant with respect to constants multiplied to the w-BFBT weight functions
wl, wr. Hence, it always assumes the correct scaling of S independent of the viscosity constant. The
result for constant viscosity presented below in Lemma 6.3.5 is generalized to variable viscosity in
Lemma 6.3.6. While Lemma 6.3.5 is a special case of Lemma 6.3.6, we first prove the result for
constant viscosity as the arguments are less technical and easier to follow. In the proof of the result
for variable viscosity, we build on some of the arguments from the constant viscosity case and thus
avoid unnecessary duplication.

Lemma 6.3.5 (Upper bound, S . S̃w-BFBT, for constant µ). Assume a constant viscosity µ ≡ 1

and constant w-BFBT weight functions wl ≡ 1 ≡ wr, and, as before in Lemma 6.3.3, let Q̂ =

L2(Ω)/R ∩H1(Ω). Then the exact Schur complement is bounded by the w-BFBT approximation from
above by

(Sq , q) ≤ (C2
P + 1)C2

K

(
S̃w-BFBT q , q

)
for all q ∈ Q̂ (6.14)

with constants CP , CK > 0 stemming from Poincaré–Friedrichs’ and Korn’s inequalities, respectively.

Proof. Let P̂ = C∞(Ω) and q ∈ Q̂, then due to (6.11) we can write

(
S̃w-BFBT q , q

)
= sup

p∈P̂

(B∗p , B∗q)2

‖B∗p‖2H1(Ω)d

‖B∗p‖2H1(Ω)d

(A1B∗p , B∗p)
. (6.15)

To estimate the second factor on the right-hand side of (6.15), note that

(A1B
∗p , B∗p) = 2 (∇sB

∗p ,∇sB
∗p) = 2 (∇B∗p ,∇B∗p) = 2 ‖∇B∗p‖2L2(Ω)d×d ,

where we used that n ·B∗p = 0 on the boundary and that ∇B∗p is symmetric. Thus,

(A1B
∗p , B∗p) ≤ 2 ‖B∗p‖2H1(Ω)d . (6.16)

For the first factor on the right-hand side of (6.15), observe that for any v ∈ V there exists a sequence
{pi}i ⊂ P̂ ⊂ H2(Ω) such that K∗1pi = BB∗pi → Bv, since K∗1 is invertible, where convergence is with
respect to the L2-norm. Thus,

sup
p∈P̂

(B∗p , B∗q)

‖B∗p‖H1(Ω)d
= sup

v∈V

(v , B∗q)

‖v‖H1(Ω)d
= ‖B∗q‖H−1(Ω)d . (6.17)

Combining (6.16) and (6.17) provides the following estimate for the w-BFBT Schur complement
approximation (6.15): (

S̃w-BFBT q , q
)
≥ 1

2
‖B∗q‖2H−1(Ω)d . (6.18)

The exact Schur complement, on the other hand, in the form (6.12) from Lemma 6.3.3, can be bounded
by

(Sq , q) = sup
v∈V

(v , B∗q)2

(A1v , v)
≤ sup

v∈V

‖v‖2H1(Ω)d ‖B∗q‖
2
H−1(Ω)d

2 ‖∇sv‖2L2(Ω)d×d
. (6.19)
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With Poincaré–Friedrichs’ inequality,

‖v‖L2(Ω)d ≤ CP ‖∇v‖L2(Ω)d×d ,

where the constant CP > 0 depends on the domain Ω, and Korn’s inequality,

‖∇v‖L2(Ω)d×d ≤ CK ‖∇sv‖L2(Ω)d×d ,

with constant CK > 0, we obtain

1

(C2
P + 1)

‖v‖2H1(Ω)d ≤ ‖∇v‖
2
L2(Ω)d×d ≤ C

2
K ‖∇sv‖2L2(Ω)d×d ,

and substituting this into (6.19) gives

(Sq , q) ≤
(C2

P + 1)C2
K

2
‖B∗q‖2H−1(Ω)d . (6.20)

Together with (6.18), this yields the desired result (6.14).

We complete the presentation of spectral equivalence by deriving an upper bound for problems
with variable viscosities.

Lemma 6.3.6 (Upper bound, S . S̃w-BFBT, for variable µ). As before in Lemma 6.3.3, let Q̂ =

L2(Ω)/R ∩H1(Ω). If the left and right w-BFBT weight functions are equal to

wl(x) = µ(x)−
1
2 = wr(x) for a.a. x ∈ Ω, (6.21)

then the exact Schur complement is bounded by the w-BFBT approximation from above by

(Sq , q) ≤
(

1 +
1

4
‖∇µ‖2L∞(Ω)d

)(
C2
P,µ + 1

)
C2
K,µ

(
S̃w-BFBT q , q

)
for all q ∈ Q̂ (6.22)

with constants CP,µ, CK,µ > 0 stemming from weighted Poincaré–Friedrichs’ and Korn’s inequalities,
respectively, where µ assumes the role of the weight function.

Proof. Let the weight functions be equal, wl ≡ w ≡ wr, but (for now) otherwise arbitrary subject to
the condition 0 < wmin ≤ w(x) for a.a. x ∈ Ω. At the end of this proof we will argue the special
role of the choice (6.21) for the weight functions. In addition, let P̂ = C∞(Ω) and q ∈ Q̂, then due
to (6.11) we can write

(
S̃w-BFBT q , q

)
= sup

p∈P̂

(B∗p , wB∗q)2

‖B∗p‖2H1(Ω)d

‖B∗p‖2H1(Ω)d

(wAµwB∗p , B∗p)
. (6.23)

We begin by estimating the second factor on the right-hand side of (6.23). For an arbitrary v ∈ H1(Ω)d,
observe that ∇s(wv) = w∇sv +∇w ⊗ v, where “⊗” denotes the outer product of two vectors in Rd,
and thus

(wAµwv , v) = 2 (µ∇s(wv) ,∇s(wv)) = 2 ‖√µw∇sv +
√
µ∇w ⊗ v‖2L2(Ω)d×d .
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Applying the triangle inequality and then Hölder’s inequality to the resulting terms,

‖√µw∇sv‖2L2(Ω)d×d ≤ ‖
√
µw‖2L∞(Ω) ‖∇sv‖2L2(Ω)d×d ,

‖√µ∇w ⊗ v‖2L2(Ω)d×d ≤ ‖
√
µ∇w‖2L∞(Ω)d ‖v‖

2
L2(Ω)d ,

and thus we obtain the estimate

(wAµwv , v) ≤ 2CA,µ,w ‖v‖2H1(Ω)d ,

where
CA,µ,w := ‖√µw‖2L∞(Ω) + ‖√µ∇w‖2L∞(Ω)d . (6.24)

Similarly to (6.17) and (6.18), we obtain the following estimate for the w-BFBT Schur complement
approximation (6.23): (

S̃w-BFBT q , q
)
≥ 1

2CA,µ,w
‖wB∗q‖2H−1(Ω)d . (6.25)

Proceeding with the exact Schur complement, we obtain from (6.12) in Lemma 6.3.3 that

(Sq , q) = sup
v∈V

(
w−1v , wB∗q

)2
(Aµv , v)

≤ sup
v∈V

∥∥w−1v
∥∥2

H1(Ω)d
‖wB∗q‖2H−1(Ω)d

2
∥∥√µ∇sv

∥∥2

L2(Ω)d×d

. (6.26)

We require a weighted Poincaré–Friedrichs’ inequality (see Remark 6.3.7 for details),

‖v‖L2
w−2 (Ω)d ≤ CP,w−2 ‖∇v‖L2

w−2 (Ω)d×d , (6.27)

and also a weighted Korn’s inequality (see Remark 6.3.7 for more information),

‖∇v‖L2
µ(Ω)d×d ≤ CK,µ ‖∇sv‖L2

µ(Ω)d×d . (6.28)

With (6.27) and (6.28), we are able to bound (6.26) from above:

(Sq , q) ≤

(
C2
P,w−2 + 1

)
C2
K,µ

2

(
sup
v∈V

‖∇v‖L2
w−2 (Ω)d×d

‖∇v‖(L2
µ(Ω))d×d

)
‖wB∗q‖2H−1(Ω)d . (6.29)

The supremum term in (6.29) and the constant CA,µ,w in (6.24) motivate the choice for the weight
w to be

w := µ−
1
2 .

Then the supremum in (6.29) vanishes and (6.24) simplifies to

CA,µ,w = 1 +
1

4
‖∇µ‖2L∞(Ω)d .

Substituting this into (6.25) together with inequality (6.29) yields the desired result (6.22).
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Remark 6.3.7. In the proof of Lemma 6.3.6 we utilized a weighted Poincaré–Friedrichs’ inequality, for
which the optimal constant is

CP,µ = sup
v∈V

‖v‖L2
µ(Ω)d

‖∇v‖L2
µ(Ω)d×d

,

where the viscosity takes the role of the weight function. While weighted Poincaré and Friedrichs’
inequalities have been investigated in the literature numerous times, usually they are proven by
contradiction and scaling arguments, which does not provide information about the constants. If
explicit constants are found, they depend, in general, on the weight such that the resulting estimates
are too pessimistic, e.g., CP,µ = O(DR(µ)). Knowledge of constants that are robust with respect
to weight functions is limited. In the context of a posteriori error estimates for finite elements,
weight-independent constants could be found for convex domains and weights that are a positive
power of a non-negative concave function [34]. These results were refined for star-shaped domains
under certain assumptions for the weights [118]. For another class of weights, namely quasi-monotone
piecewise constant weight functions, robust constants were derived in [90].

In addition to weighted Poincaré–Friedrichs’, we utilized a weighted Korn’s inequality in the proof
of Lemma 6.3.6. The optimal constant for this inequality is

CK,µ = sup
v∈V

‖∇v‖L2
µ(Ω)d×d

‖∇sv‖L2
µ(Ω)d×d

.

As for CP,µ, straightforward estimation results in an overly pessimistic weight-dependent constant,
namely CK,µ = O(DR(µ)), [73]. Other work utilizing weighted Korn’s inequalities usually aims to
derive inequalities for special domain shapes, e.g., [1].

In summary, robust constants for weighted Poincaré–Friedrichs’ and Korn’s inequalities for general
weight functions are difficult to obtain and limitations exist in the form of assumptions on the weights.
Further research on this topic could improve the constants for the spectral equivalence of w-BFBT
but is beyond the scope of this work.

6.4 Robustness of w-BFBT

In this section, we analyze the robustness properties of the widely used Schur complement approxi-
mation Mp(1/µ) and the new w-BFBT via numerical experiments. Furthermore, we calculate the
spectra for both approaches and thus support the discussion in Section 6.3 about theoretical eigenvalue
bounds with numerical results. The comparison of Mp(1/µ) and w-BFBT is of particular importance,
because of the widespread use of the inverse viscosity-weighted mass matrix. It is therefore of interest
to determine when convergence with Mp(1/µ) deteriorates and using w-BFBT becomes beneficial.
A comparison with diag(A)-BFBT was not performed because Section 6.2 already showed that
diag(A)-BFBT performs similarly or worse than w-BFBT, hence there are no advantages in using
diag(A)-BFBT over w-BFBT.
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Table 6.1: Robustness classification for Schur complement approximations (a) Mp(1/µ) and
(b) w-BFBT in terms of number of GMRES iterations (10−6 residual reduction, GMRES restart every
100 iterations). Number of randomly placed sinkers (#sinkers) is increased across rows, while dynamic
ratio (DR(µ)) is increased across columns. Discretization is fixed at k = 2, ` = 7.

(a) Mp(1/µ)

#sinkers \DR(µ) 104 106 108 1010

S1-rand 29 31 31 29
S4-rand 53 63 71 80
S8-rand 64 79 93 165

S12-rand 70 86 99 180
S16-rand 85 167 231 891
S20-rand 84 167 380 724
S24-rand 117 286 3279 5983
S28-rand 108 499 2472 >10000

(b) w-BFBT

#sinkers \DR(µ) 104 106 108 1010

S1-rand 29 31 31 29
S4-rand 53 63 71 80
S8-rand 64 79 93 165

S12-rand 70 86 99 180
S16-rand 85 167 231 891
S20-rand 84 167 380 724
S24-rand 117 286 3279 5983
S28-rand 108 499 2472 >10000

For the numerical experiments in this section, we return to the definitions and setup from Section 6.2.
To apply the inverse of Mp(1/µ), we diagonalize the mass matrix of the discontinuous, modal pressure
space by forming its lumped version (6.2). Moreover, to apply the approximate inverse of the viscous
block in (6.1) we use the same multigrid method for each of the two Schur approximations; this
multigrid method is also used for the inverse operators of w-BFBT in (6.6). The details of the multigrid
method are provided in Section 7.2. To compare the robustness, we vary two problem parameters:
(i) the number of randomly placed sinkers n and (ii) the dynamic ratio DR(µ). The parameter n
influences the geometric complexity of the viscosity µ while DR(µ) controls the magnitude of viscosity
gradients.

Tables 6.1a and 6.1b present the number of GMRES iterations for a 10−6 residual reduction in the
Euclidean norm. Observe that for the S1-rand problem, the iteration count is essentially the same for
both Mp(1/µ) and w-BFBT, and that it stays stable across all dynamic ratios DR(µ) = 104, . . . , 1010.
Hence for this simple problem, w-BFBT has no advantages and its additional computational cost
makes it less efficient than Mp(1/µ). However, the limitations of the Mp(1/µ) approach become
apparent by increasing the number of randomly positioned sinkers. Two observations for Mp(1/µ)

can be made from Table 6.1a. First, the number of GMRES iterations rises with increasing number
of sinkers (factor ∼80 increase for n = 1, . . . , 28, DR(µ) = 108). Second, in a multi-sinker setup the
dependence on DR(µ) becomes more severe (factor ∼50 increase for n = 24, DR(µ) = 104, . . . , 1010).
This demonstrates that Mp(1/µ) is a poor approximation of the Schur complement for certain classes
of problems with highly heterogeneous viscosities.

The advantages in robustness of the w-BFBT preconditioner are demonstrated in Table 6.1b.
Compared to Mp(1/µ), the number of GMRES iterations is stable and the increase over the whole
range of problem parameters is just a factor of 2. Only 60 iterations are needed for the most extreme
problem, namely S28-rand, DR(µ) = 1010, for which convergence with Mp(1/µ) essentially stagnated.

More insight concerning the different convergence behaviors can be gained from the eigenvalues
in Figure 6.3. The plots in that figure are for two-dimensional multi-sinker problems, which are
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analogous to the three-dimensional benchmark problems from Section 6.2. We discretize the problems
on triangular meshes utilizing the FEniCS library [81]. We choose Pbubble

2 ×Pdisc
1 finite elements [35,39]

because they represent a close analog to the Q2 × Pdisc
1 elements, which are employed on (three-

dimensional) hexahedral meshes. Each plot shows the eigenvalues of the exact Schur complement and
the eigenvalues of the preconditioned Schur complement for the Mp(1/µ) and w-BFBT approximations,
where all inverse matrices, e.g., the viscous block matrix A and the pressure Poisson matrices within
w-BFBT, are inverted with a direct solver. Effective preconditioners exhibit a strong clustering of
eigenvalues, whereas the convergence of Krylov methods deteriorates if the eigenvalues are spread
out. We recognize different characteristics in the spectra associated with Mp(1/µ) and w-BFBT
preconditioning. For Mp(1/µ), the dominant eigenvalues are clustered around one while smaller
eigenvalues, i.e., eigenvalues � 1, are spread out. The behavior for w-BFBT is the opposite: the
dominant eigenvalues are spread out and the smaller eigenvalues are tightly clustered around one.
Now, as the problem difficulty is increased by introducing more viscosity anomalies in the domain, the
spreading of smaller eigenvalues associated with Mp(1/µ) becomes more severe (compare in Figure 6.3
the top row of plots and the bottom row of plots). We postulate that this is the property that is
responsible for the deteriorating convergence with Mp(1/µ) that was observed in Table 6.1a. With
w-BFBT on the other hand, the spectrum remains largely unaffected by increased sinker counts.
The clustering of smaller eigenvalues around one remains stable, which is likely the reason for the
robustness of w-BFBT. The lower bound on the eigenvalues that we observe here numerically supports
the theoretical estimates on spectral equivalence in Section 6.3. Therefore we find the lower bound to
be sharp and, moreover, to be essential for the robustness of the w-BFBT preconditioner.

Remark 6.4.1. In addition to the Pbubble
2 × Pdisc

1 discretization used for the results in Figure 6.3, we
also calculated the spectra using P2×P1 Taylor-Hood finite elements. We obtained very similar results
for this discretization, which uses continuous elements to approximate the pressure. Therefore, both
the efficacy of w-BFBT as a preconditioner and the issues with Mp(1/µ) seem to be largely unaffected
by the specific type of discretization, at least for the two cases that we tested.

Remark 6.4.2. The convergence of the Stokes solver with the Mp(1/µ) preconditioner can be improved
by approximating the heterogeneous viscosity µ(x) with elementwise constants, computed by averaging
µ over each element [11]. The benefit of faster convergence comes at the cost of slower asymptotic
convergence of the discrete finite element solution and an altered constitutive relationship, which might
be a less accurate representation of the physics; this is, however, problem-dependent. Moreover, for a
nonlinear (e.g., power-law) rheology, elementwise averaging of µ can introduce non-physical, artificial
disturbances in the effective viscosity during Newton or Picard-type nonlinear solves. We observed
such a behavior in mantle convection simulations, which are governed by a nonlinear power-law
rheology. Here, viscosity averaging led to non-physical checkerboard-like patterns upon convergence of
the nonlinear Newton solver.

Remark 6.4.3. In practice, the convergence of w-BFBT can be improved for coarse meshes, where the
viscosity variations over elements are large. This is achieved by alternative choices for the diagonal
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Figure 6.3: Spectra of the Schur complement (gray), Mp(1/µ)-preconditioned Schur complement (red),
and w-BFBT-preconditioned Schur complement (blue); zero eigenvalues corresponding to the null
space of the Schur complement matrix are omitted. Results for viscosities with one sinker (S1-rand)
are shown in top row, and with four sinkers (S4-rand) in the bottom row of plots; DR(µ) = 104 in
the left column and DR(µ) = 106 in the right column. The two-dimensional Stokes equations are
discretized with Pbubble

2 ×Pdisc
1 finite elements on a uniform triangular mesh consisting of 512 triangles

using the FEniCS library. As the problem difficulty increases from one to four sinkers, the spreading of
small eigenvalues for Mp(1/µ) becomes more severe, which is disadvantageous for solver convergence.
For w-BFBT, the spectrum remains largely unaffected by increased sinker counts, which contributes
to convergence that is robust with respect to viscosity variations.

weighting matrices Cwl and Dwr from (6.6) with the weights

wl(x) =
(
µ2(x) + |∇µ(x)|2

) 1
4

= wr(x) for all x ∈ Ω,

where |·| denotes the Euclidean norm in Rd. These viscosity gradient-based w-BFBT weights have the
advantage of performing at least as well as the pure viscosity-based weights, proposed in Section 6.1,
but they exhibit superior robustness on coarser meshes. They are, however, challenging to analyze
theoretically.

6.5 Modifications for Dirichlet boundary conditions

In Section 6.2, deteriorating approximation properties of w-BFBT for increasing discretization order
and mesh refinement level could be observed. The numerical experiments in Figure 6.2, right
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did show slightly slower convergence when k and ` were increased. This can stem from w-BFBT
representing a poor approximation to the exact Schur complement at the boundary ∂Ω in the presence
of Dirichlet boundary conditions for the velocity. This section investigates modifications to w-BFBT
near a Dirichlet boundary and aims at obtaining mesh independence and only a mild dependence on
discretization order in terms of Stokes solver convergence.

Consider the commutator that leads to the w-BFBT formulation in an infinite-dimensional form:
AB∗ − B∗X ≈ 0, where A represents the viscous stress operator, B∗ the gradient operator and X
the sought commuting operator. In case of an unbounded domain Ω = Rd and constant viscosity
µ ≡ 1, this commutator is exactly satisfied since (∇ · ∇)∇−∇(∇ · ∇) = 0. For Dirichlet boundary
conditions, the commutator does not, in general, vanish at the boundary. Therefore a possible source
for deteriorating Schur complement approximation properties of w-BFBT is a commutator mismatch
for mesh elements that are touching the boundary ∂Ω. A similar observation was also made in [46,47].
A possible remedy is to modify the norm in the least-squares minimization problem (6.4), which is
represented by the matrix C−1, such that a damping factor is applied to the matrix entries near the
boundary. By damping the influence of the boundary in the minimization objective, more emphasis is
given to the domain interior, and the w-BFBT approximation is improved.

Damping near Dirichlet boundaries can be incorporated by modifying the matrices C−1
wl

or D−1
wr of

the w-BFBT inverse Schur complement approximation (6.6). A similar idea for BFBT in a Navier–
Stokes setting is presented in [47], where a damping to the weighting matrix D−1 in (6.5) is introduced
to achieve mesh independence (C−1 is not changed). There, damping affects the normal components
of the velocity space inside mesh elements touching ∂Ω and simply a constant damping factor of 1/10

is set regardless of mesh refinement `. Also, only the discretization order k = 2 was considered (in
addition to Q2 ×Q1 and MAC discretizations).

Now, we attempt to enhance our understanding of how modifications at a Dirichlet boundary ∂Ω

influence convergence and therefore the efficacy of w-BFBT as a Schur complement approximation.
Let ΩD :=

⋃
e∈D Ωe, D := {e | Ωe ∩ ∂Ω 6= ∅} be the set of all mesh elements Ωe touching the Dirichlet

boundary. Given values al, ar ≥ 1, extend the previous definition of the weights wl = wr =
√
µ (see

Section 6.1) to a version with boundary modification:

wl(x) :=

al
√
µ(x) x ∈ ΩD,√

µ(x) x /∈ ΩD,
and wr(x) :=

ar
√
µ(x) x ∈ ΩD,√

µ(x) x /∈ ΩD.
(6.30)

We obtain matrices Cwl = M̃u(wl) and Dwr = M̃u(wr) in (6.6) that may differ at boundary elements
in ΩD due to possibly different values for al and ar. Note that amplifying the weight functions wl, wr
at the boundary is similar to damping at the boundary after taking the inverses C−1

wl
, D−1

wr .
The Stokes solver convergence under the influence of boundary amplifications al, ar is summarized

in Table 6.2. The table shows that the boundary amplification is most effective when performed
non-symmetrically, i.e., either al > 1 or ar > 1 but not both. Further, we deduce that with higher
mesh refinement level `, the boundary amplification should increase roughly proportional to 2` (or
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Table 6.2: Influence of boundary modification factors al, ar on the Stokes solver convergence with
w-BFBT for discretizations: k = 2, ` = 5, . . . , 7 (see (a), (c), (e)) and k = 2, . . . , 5, ` = 5 (see (a),
(b), (d), (f)). Reported are the number of GMRES iterations for 10−6 residual reduction for the
problem S16-rand, DR(µ) = 106. Colors highlight solves within ∼5% of iterations above the lowest
iteration count. Increase of mesh refinement level ` or discretization order k demands larger boundary
amplification ar or al to maintain fast convergence.

(a) k = 2, ` = 5

al \ ar 1 2 4 8 16 32

1 33 33 34 34 34 35
2 33 33 34 34 34 34
4 33 34 34 36 38 39
8 34 34 36 39 43 44
16 34 34 38 43 46 49
32 34 34 39 44 49 53

(b) k = 3, ` = 5

al \ ar 1 2 4 8 16 32

1 41 38 37 37 37 37
2 38 37 38 38 39 39
4 37 38 40 42 44 46
8 36 38 42 47 50 51

16 37 39 44 50 53 56
32 37 39 45 51 56 59

(c) k = 2, ` = 6

al \ ar 1 2 4 8 16 32

1 37 34 33 34 34 34
2 34 34 34 34 34 34
4 33 33 34 35 36 37
8 34 34 35 38 39 39

16 34 34 36 39 40 41
32 34 34 37 39 41 42

(d) k = 4, ` = 5

al \ ar 1 2 4 8 16 32

1 44 39 36 36 36 36
2 39 39 39 40 41 41
4 36 39 43 47 49 51
8 36 40 47 52 56 58

16 36 41 49 56 60 63
32 36 41 50 58 63 66

(e) k = 2, ` = 7

al \ ar 1 2 4 8 16 32

1 45 37 34 34 34 34
2 37 36 35 36 36 36
4 34 36 38 39 40 41
8 34 36 39 42 44 44
16 34 36 40 44 45 46
32 34 36 41 44 46 47

(f) k = 5, ` = 5

al \ ar 1 2 4 8 16 32

1 63 53 46 43 43 44
2 53 51 51 51 52 53
4 47 51 55 59 62 64
8 44 51 59 65 69 72

16 43 52 62 69 75 78
32 44 53 64 72 78 82

proportional to the reciprocal element size, here h−1 = 2`). Similar observations can be made for the
discretization order k, i.e., amplification needs to increase for larger k to avoid higher iteration counts.
These implications were made based on extensive numerical experiments for which Table 6.2 serves as
a representative summary.

Remark 6.5.1. The theoretical derivations of spectral equivalence from Section 6.3 and the necessity
for damping at Dirichlet boundaries appear inconsistent. However, spectral equivalence was shown in
infinite dimensions whereas boundary damping is applied to the discretized problem. Therefore, we
believe that the necessity for damping is introduced through the discretization. It still remains an
open question what might be causing the slowdown in convergence that is avoided by damping.
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7

Multigrid Preconditioning with HMG

For approximative inverses of the elliptic differential operators that arise within our Schur complement-
based Stokes preconditioner, we develop multigrid methods that exhibit extreme parallel scalability and
retain nearly optimal algorithmic scalability, which is demonstrated in Chapter 8 and also documented
in [96,97,113]. Generally, multigrid methods are based on the fundamental idea that effective and
computationally efficient solvers can be constructed for a relatively narrow spectrum of the solution
space. A multigrid method then combines these sub-solvers, which typically operate on a hierarchy of
grids, in a clever way, resulting in a powerful solver for the full solution space.

We use multigrid V-cycles in our Stokes preconditioner to approximate the inverse viscous block
required in (4.7), i.e., computing Ã−1, and to approximate the inverses of the discrete pressure Poisson
operators in (6.6),

K̃−1
l ≈ K−1

l := (BC−1
wl

BT)−1 and K̃−1
r ≈ K−1

r := (BD−1
wrB

T)−1. (7.1)

These approximations are crucial for overall Stokes solver performance and scalability and are addressed
in this chapter. For brevity, we limit our discussion to K̃−1 := K̃−1

r since the results also hold for
K̃−1
l .
The state of the art in extreme-scale multilevel solvers is exemplified by the Hybrid Hierarchical

Grids (HHG) geometric multigrid (GMG) method [55], the GMG solver underlying the UG package [94],
the algebraic multigrid (AMG) solver BoomerAMG from the hypre library [9], the multilevel balancing
domain decomposition solver in FEMPAR [8], and the AMG solver for heterogeneous coefficients
from the DUNE project [69]. These multigrid solvers have all been demonstrated to scale up to
several hundred thousand cores (458K cores in some cases), but only for constant coefficient linear
operators, uniformly-refined meshes, and low-order discretizations (with the exception of the DUNE
solver, which has demonstrated scalability on a problem with heterogeneous coefficients but otherwise
with uniform and low order grids). The complex PDE problems we target—characterized by advanced
high-order discretizations, highly-locally adapted meshes, extreme (six orders-of-magnitude variation)
heterogeneities, anisotropies, and severely nonlinear rheology—are significantly more difficult.
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7.1 An abstract multigrid method

This section introduces fundamental ideas and concepts behind multigrid methods in an abstract
framework. It will arrive at an error operator describing the discrepancy between exact solution and a
multigrid approximation of the solution. This will guide the development of our multigrid methods in
a subsequent section. The derivations presented here are based on the extensive literature around
the topic of multigrid and multilevel solvers, notably [17,20], which build on [18,19,21,120], and the
references therein. Other valuable sources for introductions to multigrid, in-depth treatment, and
applications are [22, 58,115].

General iterative processes

Let V be a Hilbert space of functions with the inner product denoted as (· , ·) ≡ (· , ·)V and let
V ′ = B(V,R) be the dual space to V , where B(V,R) denotes the set of all linear bounded functionals
from V to R. On these spaces we define the operator

A : V → V ′

to be symmetric,
〈Au , v〉V ′×V = 〈u , Av〉V×V ′ for all u, v ∈ V,

and positive definite,
0 < 〈Av , v〉V ′×V for all v ∈ V \ {0}.

We define the bilinear form associated to A by

A(u , v) := 〈Au , v〉V ′×V for u, v ∈ V

and, since A is symmetric and positive definite, it induces an inner product with an associated norm:

‖u‖A := A(u , u)1/2 for u ∈ V.

For any right-hand side f ∈ V ′, the goal is to find a solution u ∈ V of the linear system of equations

Au = f.

Equivalent ways to formulate the problem are

〈Au , φ〉V ′×V = 〈f , φ〉V ′×V and A(u , φ) = 〈f , φ〉V ′×V

for all φ ∈ V . Furthermore, we define an approximate inverse operator to A by

Ã−1 : V ′ → V

and its dual operator,
(Ã−1)′ : V ′ → V,
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is defined via the relationship〈
(Ã−1)′f , g

〉
V×V ′

=
〈
f , Ã−1g

〉
V ′×V

for all f, g ∈ V ′.

Next, we introduce the general concepts of a Picard iteration, error propagation operators, and
iterative processes and link them together in Lemma 7.1.4.

Definition 7.1.1 (Preconditioned Picard iteration). Given operator A defined as above, a right-hand
side f ∈ V ′, and an initial guess u0, a preconditioned Picard fixed-point iteration seeks to approximate
the solution of the preconditioned linear system

Ã−1Au = Ã−1f

via the iteration process

un+1 ← un − Ã−1(Aun − f) = (I − Ã−1A)un + Ã−1f,

where I denotes the identity operator.

Definition 7.1.2 (Error operator). If u∗ ∈ V denotes the exact solution of Au = f , then we can
define the error at the n-th iteration by

en := un − u∗ ∈ V

and we call a linear map
E : V → V s.t. en = E en−1

that propagates the error from one iteration to the next the error operator.

Definition 7.1.3 (Iterative process). Given a right-hand side f ∈ V ′ and an initial guess u0, define
an iterative process for solving for u ∈ V in Au = f by the map

I : V × V ′ → V s.t. un = I
(
un−1 , f

)
, 0 < n.

I (· , ·) is called consistent with Au = f if the exact solution u∗ is a fixed point,

I (u∗ , f) = u∗.

I (· , ·) is linear if

I (u+ v , f + g) = I (u , f) + I (v , g) for all u, v ∈ V, f, g ∈ V ′

and
I (µu , µf) = µ I (u , f) for all u ∈ V, f ∈ V ′, µ ∈ R.
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Lemma 7.1.4 (Iterative process equivalence). Let I (· , ·) be an iterative process as in Definition 7.1.3.
The following statements are equivalent:

(i) I (· , ·) is linear and consistent.

(ii) The error en ∈ V at iteration n is connected to the error at the previous iteration via an error
operator

E : V → V s.t. en = E en−1

(iii) The map I (· , ·) is given by a preconditioned Picard iteration

I (un , f) = (I − Ã−1A)un + Ã−1f

Proof. See [20, p. 183].

The following two corollaries analyze properties of the error operator and provide estimates for
the error. The result of the first corollary follows directly from the definitions above.

Corollary 7.1.5. The error operator E of a linear and consistent iterative process I (· , ·) has the
form

E (·) = I (· , 0) = (I − Ã−1A) (·).

Corollary 7.1.6 (Error reduction estimates). Let Ã−1 be an approximation of the inverse of A and
let E = I − Ã−1A be the error operator of the iterative process induced by Ã−1.

(i) For general Ã−1, the following error reduction estimate is satisfied

‖en‖A ≤ ‖E‖
n
A

∥∥e0
∥∥
A

=
∥∥∥I − Ã−1A

∥∥∥n
A

∥∥e0
∥∥
A
. (7.2)

(ii) If Ã−1 is symmetric the estimate becomes

‖en‖A ≤ sup
λ∈σ(Ã−1A)

|1− λ|n
∥∥e0
∥∥
A
, (7.3)

where σ(Ã−1A) is the spectrum of Ã−1A. For convergence, it is essentially required that
supλ∈σ(Ã−1A) |λ| is bounded by a constant, and if Ã−1A is positive definite we can omit taking the
absolute value. If this constant exists, we simply rescale Ã−1A such that supλ∈σ(Ã−1A) |1− λ| < 1.

(iii) The error reduction can be stated in the form

‖en‖A ≤ ρ
n
∥∥e0
∥∥
A
, (7.4)

where ρ > 0 is found through the estimate

A(Ev , v) ≤ ρ2A(v , v) for all v ∈ V.

Therefore, the iterative process is convergent if ρ < 1.

83



(iv) Given a tolerance ε > 0, the number of iterations n for a convergent (i.e., ρ < 1) iterative process
to reduce the error relative to the initial error by

‖en‖A
‖e0‖A

≤ ε

can be estimated by

n ≤ log(1/ε)

log(1/ρ)
. (7.5)

Proof. Note that estimate (7.4) is equivalent to (7.2). To prove (7.2), consider

‖en‖A ≤
∥∥∥I − Ã−1A

∥∥∥
A

∥∥en−1
∥∥
A
,

where ∥∥∥I − Ã−1A
∥∥∥
A

:= sup
v∈V \{0}

∥∥∥(I − Ã−1A) v
∥∥∥
A

‖v‖A
.

Then Equation (7.2) follows by applying the upper estimate multiple times:

‖en‖A ≤
∥∥∥I − Ã−1A

∥∥∥
A

∥∥en−1
∥∥
A
≤ . . . ≤

∥∥∥I − Ã−1A
∥∥∥n
A

∥∥e0
∥∥
A
.

If Ã−1 is symmetric, then Ã−1A is symmetric with respect to the A(· , ·) inner product and we
obtain ∥∥∥I − Ã−1A

∥∥∥2

A
= sup

v∈V \{0}

∣∣∣A((I − Ã−1A)2v , v
)∣∣∣

A(v , v)
= sup

λ∈σ(Ã−1A)

|1− λ|2

giving result (7.3).
For the iterations count estimate (7.5), let ε > 0, then seek n such that

‖en‖A
‖e0‖A

≤ ρn ≤ ε.

Taking the logarithm leads to

n ≤ logρ(ε) =
log(ε)

log(ρ)
=

log(1/ε)

log(1/ρ)
,

which shows (7.5).

Many iterative methods—including multigrid—successively apply several different iterative pro-
cesses. The error operator of these composites is considered in the following lemma.

Lemma 7.1.7 (Composition of iterative processes). Let I1 and I2 be linear and consistent iterative
processes with associated error operators E1 and E2. Then the iterative process

I := I2 ◦ I1

is linear and consistent and its error operator satisfies

E = E2 E1.
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Proof. By Lemma 7.1.4 we can write the linear, consistent iterative processes in the form

Ii(u , f) = (I − Ã−1
i A)u+ Ã−1

i f for i = 1, 2

yielding

I (u , f) = I2 ◦ I1(u , f) = (I − Ã−1
2 A)

(
(I − Ã−1

1 A)u+ Ã−1
1 f

)
+ Ã−1

2 f

= (I − Ã−1
2 A) (I − Ã−1

1 A)u+ (Ã−1
1 + Ã−1

2 − Ã
−1
2 AÃ−1

1 ) f.

This implies that I (· , ·) is linear and consistent and we find its error operator by evaluating

E = I2 ◦ I1(· , 0) = (I − Ã−1
2 A) (I − Ã−1

1 A) = E2 E1.

Framework for multigrid methods

This section introduces essential components of multigrid methods and shows their properties. These
components constitute a framework that is later used to define specific multigrid methods. Two
fundamental components of multigrid methods are a sequence of grids, typically a hierarchy of
subspaces, and a corresponding sequence of operators defined on these grids.

Definition 7.1.8 (Multigrid hierarchy). The multigrid hierarchy is composed of a nested sequence of
finite dimensional subspaces Vk, 1 ≤ k ≤ J , such that

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ V.

Definition 7.1.9 (Auxiliary operators). For 1 ≤ k ≤ J and v ∈ V define the auxiliary operators to
be

Ak : Vk → V ′k s.t. 〈Akv , φ〉V ′×V = 〈Av , φ〉V ′×V = A(v , φ) for all φ ∈ Vk.

In order to formulate iterative processes at each subspace, or level, of the multigrid hierarchy, each
auxiliary operator is accompanied by an approximative inverse, called smoothing operator.

Definition 7.1.10 (Smoothing operator). A smoothing operator is a linear map

Rk : V ′k → Vk

that is an approximation to the inverse of Ak. Therefore, it induces an iterative process

un+1 ← (I −RkA)un +Rkf,

which is called smoothing or relaxation (hence the letter R). We automatically obtain the dual of the
smoothing operator

R′k : V ′k → Vk s.t.
〈
R′kf , g

〉
V×V ′ = 〈f , Rkg〉V ′×V for all f, g ∈ V ′k.
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Transitions in between subsequent levels of the multigrid hierarchy are facilitated by projection
operators, which are described by the following definitions.

Definition 7.1.11 (A(· , ·)-orthogonal projector). For 1 ≤ k ≤ J , the linear map

Πk : V → Vk s.t. A(Πkv , φ) = A(v , φ) for all φ ∈ Vk

projects v ∈ V onto Vk orthogonally to AVk. This projector is also called Galerkin projector.
Equivalently to the definition we can also write

Πk : V → Vk s.t. (I −Πk) ⊥A(·,·) Vk.

The dual operator is

Π′k : V ′k → V ′ s.t.
〈
Π′kAv , φ

〉
V ′×V = 〈Av , φ〉V ′×V for all φ ∈ V,

where v ∈ Vk.

Definition 7.1.12 ((· , ·)-orthogonal projector). For 1 ≤ k ≤ J , the linear map

Pk : Vk → V s.t. (Pkv , φ) = (v , φ) for all φ ∈ V

projects v ∈ Vk onto V orthogonally to V . It projects from a lower- to a higher-dimensional space and
is therefore called interpolation or prolongation (hence the letter P ). Equivalently to the definition we
can also write

Pk : Vk → V s.t. (I − Pk) ⊥(·,·) V.

This implies the dual operator

P ′k : V ′ → V ′k s.t.
〈
P ′kg , φ

〉
V ′×V = 〈g , φ〉V ′×V for all φ ∈ Vk,

where g ∈ V . The dual projector is also called restriction.

To project between more than one level of the multigrid hierarchy, the projection operators from
above have to be applied consecutively. Properties of these compositions are discussed next.

Lemma 7.1.13 (Composition of projectors). Let Πk and Pk be projectors as in Definitions 7.1.11
and 7.1.12. Then

(i) “Prolongation then Galerkin projection” gives the identity operator,

ΠkPk = I : Vk → Vk. (7.6)

(ii) “Galerkin projection then prolongation,”

PkΠk : V → Vk (7.7)

gives a projector that is A(· , ·)-orthogonal.
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(iii) Its perpendicular projector
I − PkΠk : V → V

⊥A(·,·)
k (7.8)

gives a projector that is A(· , ·)-orthogonal, where

V
⊥A(·,·)
k := {v ∈ V | A(v , φ) = 0 for all φ ∈ Vk} ,

Proof. First, let v, φ ∈ Vk and derive using the definition of the Galerkin projector

A(ΠkPkv , φ) = A(Pkv , φ) = 〈APkv , φ〉V ′×V .

This yields, with the definition of the dual to the prolongation,

〈APkv , φ〉V ′×V =
〈
v , P ′kAφ

〉
V×V ′ = 〈v , Aφ〉V×V ′ = A(v , φ) ,

which proves (7.6).
Next, we can show that PkΠk is a projector,

(PkΠk)
2 = PkΠkPkΠk = Pk(ΠkPk)Πk = PkΠk,

since it is idempotent and using result (7.6). The range of PkΠk satisfies Ran(PkΠk) = Vk since, for
v ∈ V ,

u := Πkv ∈ Vk ⇒ Pku = u ∈ Vk.

Further, Ker(PkΠk) = V
⊥A(·,·)
k because the kernel of the A(· , ·)-orthogonal projector Πk satisfies

Ker(Πk) = V
⊥A(·,·)
k by definition. Then we have that

Ran(PkΠk) = Ker(PkΠk)
⊥A(·,·) ,

since Vk is a closed subspace of V , which proves that PkΠk in (7.7) is A(· , ·)-orthogonal.
The result for the perpendicular projector (7.8) is obtained by fundamental properties of projectors.

We conclude this section by discussing relationships between projections and differentiation
operators.

Lemma 7.1.14 (Commutator relationship between projection and differentiation). Let

1 ≤ i < j ≤ J or 1 ≤ i ≤ J and j =∞.

Then
P ′iAj = AiΠi : Vj → V ′i ,

where in case of j =∞, Aj ≡ A and Vj ≡ V .
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Proof. Let v ∈ Vj , φ ∈ Vi and consider〈
P ′iAjv , φ

〉
V ′×V = 〈Ajv , φ〉V ′×V = A(v , φ) = A(Πiv , φ) = 〈AiΠiv , φ〉V ′×V ,

where we used Definitions 7.1.11 and 7.1.12.

Corollary 7.1.15 (Auxiliary operator projection). For 1 ≤ k ≤ J ,

P ′kAPk = Ak : Vk → V ′k.

Proof. Result follows from Lemma 7.1.14 and (7.6).

A multigrid method with correction scheme

The multigrid V-cycle is a recursive iterative process. Algorithm 7.1.1 and Definition 7.1.16 state this
V-cycle with one smoothing iteration before and one after the coarse grid correction. In practice it
is common to perform multiple smoothing iterations, in which case it is straightforward to extend
Algorithm 7.1.1. However, for the analysis of multigrid in this section we fix the number of smoothing
iterations to one.

Algorithm 7.1.1 Multigrid V-cycle, MGk : V ′k → Vk

1: input g ∈ V ′k
2: if k = 1 then
3: v ←MG1g := A−1

1 g . direct solve
4: else
5: v ← 0
6: v ← v −R′k(Akv − g) . smoothing iteration
7: v ← v − Pk−1MGk−1P

′
k−1(Akv − g) . coarse correction

8: v ← v −Rk(Akv − g) . smoothing iteration
9: end if

10: return v ∈ Vk

Definition 7.1.16 (Multigrid V-cycle operator and iterative process). From Algorithm 7.1.1 we can
deduce the multigrid V-cycle operator

MGk = Rk +R′k −RkAkR′k + (I −RkAk)Pk−1MGk−1P
′
k−1 (I −R′kAk)

= Rk +R′k −RkAkR′k + (I −RkAk)Ck−1 (I −R′kAk),

where we defined the coarse correction operator

Ck−1 := Pk−1MGk−1P
′
k−1.

These lead to the definition of the multigrid V-cycle iterative process

IMGk (v , g) = v −MGk(Akv − g) = (I −MGkAk) v +MGkg. (7.9)
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The next lemma and corollary discuss the error of the V-cycle and allow us to deduce practical
guidelines for designing multigrid methods.

Lemma 7.1.17 (Multigrid V-cycle error operator). The error operator for the multigrid V-cycle
iterative process is

Ek = ERk ECk−1
ER′k = (I −RkAk) (I − Pk−1MGk−1P

′
k−1Ak) (I −R′kAk) (7.10)

with the definitions
ERk := I −RkAk and ER′k := I −R′kAk

and
ECk−1

:= I − Pk−1MGk−1P
′
k−1Ak. (7.11)

Proof. This is a direct consequence of (7.9) and Lemma 7.1.7.

Corollary 7.1.18 (Multigrid V-cycle error recursion). The error operator for the multigrid V-cycle
satisfies the recursion relationship

Ek = ERk (I − Pk−1Πk−1 + Pk−1Ek−1Πk−1) ER′k . (7.12)

Proof. Consider the coarse correction error operator (7.11) and apply the commutator relationship
between projection and differentiation from Lemma 7.1.14

ECk−1
= I − Pk−1MGk−1P

′
k−1Ak = I − Pk−1MGk−1Ak−1Πk−1.

Then by including a zero term, we get

ECk−1
= I − Pk−1Πk−1 + Pk−1 (I −MGk−1Ak−1) Πk−1

= I − Pk−1Πk−1 + Pk−1Ek−1Πk−1,

which shows the result after substitution into Equation (7.10).

The error operator of the multigrid V-cycle in Equation (7.12) is an important guide for implement-
ing and applying multigrid methods in practice. It shows how errors from smoothing iterations, ERk
and ER′k , and coarse correction, ECk−1

, interact and the role of the projection operators, Pk−1 and Πk−1,
when these errors are combined. Initially, the smoothing iterations reduce the error for a relatively
narrow high-frequency part of the spectrum within the space Vk, where spectrum refers to modes or
eigenvalues of the differential operator Ak. Afterwards, the coarse correction reduces the error in the
remaining lower-frequency part of the spectrum, which acts within the space Vk−1. For the projection
operators, accuracy and filtering properties between spaces Vk and Vk−1 are important. It is desired
that Πk−1 separates low frequencies as well as possible when restricting the residual onto Vk−1 and, in
turn, Pk−1 introduces as little high-frequency pollution as possible when interpolating the correction
into the space Vk. The accuracy of the projections contributes to the error in Equation (7.12) by
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means of the term (I − Pk−1Πk−1). The final smoothing iteration after the coarse correction accounts
for inaccuracies in the projections by reducing high-frequency errors in the interpolated correction.

When designing a multigrid method, the efficacy of the preconditioner, which we can express by
the error (7.12), as well as the computational complexity are important. Typically, improving efficacy
increases computational cost and vice versa, hence, a feasible balance needs to be found. With this
discussion we want to demonstrate that the interaction between smoothers and projection operators
plays a central part in the design of a multigrid method rather than its individual components in
isolation. Hence, we aim for balancing the trade-offs between efficacy and computational cost. An
additional and significant challenge to designing an overall efficient method is added through large-scale
parallelism. The next section presents a multigrid method with a hierarchy that is generated by
spectral, geometric, and algebraic coarsening. It operates on locally adaptively refined, high-order
finite element discretizations and is capable of effective preconditioning in the presence of highly
varying coefficients. Furthermore, we demonstrate parallel scalability to extreme scales.

7.2 Hybrid spectral–geometric–algebraic multigrid (HMG)

In this section, we develop a hybrid spectral–geometric–algebraic multigrid method, which exhibits
extreme parallel scalability and retains nearly optimal algorithmic scalability (see Chapter 8 for
scalability results).

While traversing the HMG hierarchy shown in Figure 7.1, HMG initially reduces the discretization
order (spectral multigrid); after arriving at order one, it continues by coarsening mesh elements
(geometric multigrid); once the degrees of freedom fall below a threshold, algebraic multigrid (AMG)
carries out further coarsening until a direct solve can be computed efficiently. During parallel geometric
coarsening, the number of compute cores and the size of the MPI communicator is reduced successively
to minimize communication. Re-discretization of the differential equations is performed on each
coarser spectral and geometric level. The viscosity values in each element are stored at the quadrature
points of the velocity discretization, and are thus local to each element. The viscosity coarsening is
done level-by-level during the setup phase. The coarsening operator is the adjoint of the refinement
operator, which performs element-wise interpolation. This adjoint is computed with respect to the
L2-inner products, and since viscosity values are not shared amongst elements, this does not require
(an approximation of) a global mass matrix solve. The transition from geometric to algebraic multigrid
is done at a sufficiently small core count and small MPI communicator. AMG continues to further
reduce problem size (via Galerkin coarse grid projection) and the number of cores down to a single
core for the direct solver.

The approximation of the inverse viscous block Ã−1 is well suited for multigrid V-cycles. The
operator K = Kr (see Equation (7.1)) is regarded as a discrete, variable-coefficient Poisson operator
on the discontinuous pressure space Pdisc

k−1 with Neumann boundary conditions. Therefore, multigrid V-
cycles can also be employed to approximate the inverse K̃−1. However, it turned out to be problematic
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Figure 7.1: Hybrid spectral–geometric–algebraic multigrid (HMG). Left : Illustration of multigrid
hierarchy. From top to bottom, first, the multigrid levels are obtained by spectral coarsening (dark
blue). Next, the mesh is geometrically coarsened and repartitioned on successively fewer cores to
minimize communication (light blue). Finally, AMG further reduces problem size and core count (light
red). The multigrid hierarchy for the pressure Poisson operator K additionally involves smoothing in
the discontinuous, modal pressure space (green). The projection from the discontinuous, modal to
a continuous finite element nodal basis uses a lumped mass matrix in the nodal space to avoid the
global mass matrix system solve. Right : The multigrid V-cycle consists of smoothing at each level of
the hierarchy (circles) and intergrid transfer operators (arrows downward for restriction and arrows
upward for interpolation). To enhance efficacy of the the V-cycle as a preconditioner, different types
of projection operators are employed for these operators depending on the phase within the V-cycle.

to apply multigrid coarsening directly due to the discontinuous, modal discretization of the pressure.
We take a novel approach (see also [97]) by considering the underlying infinite-dimensional, variable-
coefficient Poisson operator, where the coefficient is derived from the diagonal weighting matrix (here,
C−1
wl

or D−1
wr ). Then we re-discretize with continuous, nodal high-order finite elements in Qk. An

alternative would be to use Qk−1, but we prefer to use Qk since the corresponding data structures
are readily available from the discretization of the velocity. Hence, this choice avoids the setup cost
related to discretization-specific parameters and their storage. Additionally, the HMG hierarchy of the
preconditioner acting on the velocity can be partially reused, again saving setup time and memory.
This continuous, nodal discretization of the Poisson operator is then approximately inverted with an
HMG V-cycle that is similar to the one described above for the inverse viscous block approximation
Ã−1. Additional smoothing is applied in the discontinuous pressure space (Figure 7.1, green level)
to account for high frequency modes in residuals that are introduced through projections between
Qk and Pdisc

k−1. Moreover, when mapping residuals and updates between the continuous, nodal and
discontinuous, modal spaces, the null space of constant mean pressure is enforced via projections as
described in Section 4.2.

Our hybrid multigrid method combines high-order L2-restriction and interpolation operators and
employs Chebyshev-accelerated point-Jacobi smoothers. The choice of intergrid projections with high
accuracy that matches the polynomial order of the finite element shape functions is motivated by the
discussion of design guidelines in Section 7.1 and the observations regarding the multigrid error (7.12).
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It enables a computationally more efficient and simpler smoother. While the implementation and
parallelization of the point-Jacobi smoother is straightforward, we carefully designed our parallel
intergrid projections and carried out numerous optimizations of the implementation to reduce com-
putational costs and communication overheads (see Section 7.3). This results in optimal or nearly
optimal algorithmic multigrid performance (see Section 8.1), i.e., iteration numbers are independent
of mesh size and only mildly dependent on discretization order, while maintaining robustness with
respect to highly heterogeneous coefficients. In addition, the efficacy of the HMG preconditioner
does not deteriorate with increasing core counts, because the spectral and geometric multigrid is by
construction independent of the number of cores and AMG is invoked for prescribed small problem
sizes on essentially fixed small core counts.

For all numerical experiments presented here and in Chapter 8, three pre- and post-smoothing
iterations with a Chebyshev accelerated point-Jacobi smoother are performed. PETSc’s [10] im-
plementations of Chebyshev acceleration, direct solver, AMG (called GAMG), and GMRES are
used.

7.3 Implementation and optimization

The construction of the HMG hierarchy requires parallel geometric coarsening. Recall that we discretize
Earth’s mantle using locally adaptively refined hexahedral meshes. Extreme local refinement is critical
to resolve plate boundaries down to a few hundred meters, while away from these regions significantly
coarser meshes can be used that still capture global-scale behavior.

Parallel adaptive forest-of-octrees algorithms, implemented in the p4est parallel AMR library, are
used for efficient parallel mesh refinement and coarsening, mesh balancing, and repartitioning [26,30,70].
The representation of the mesh as an octree topology (see top left graph in Figure 7.2) enables fast
refinement and coarsening, which is performed locally on each processor core without communication.
Moreover, the octree structure allows for efficient 2:1 mesh balancing, for which communication
is necessary. Space filling curves transform elements of a two- or three-dimensional space into a
(one-dimensional) sequence (see top right mesh in Figure 7.2). This sequence is used for an efficient
partitioning of mesh elements in parallel with the desirable property of clustering neighboring elements
in the sequence.

During parallel geometric coarsening, repartitioning of locally adapted meshes across compute
cores has to be performed for load balancing. As the number of elements in the mesh is decreasing,
the number of cores that contain elements is reduced successively to minimize communication during
multigrid cycles. Simultaneously, we reduce the MPI communicator such that it contains only
non-empty cores. We refer to this procedure as “core-thinning.” To ensure coarsening across core
boundaries, we partition a family of elements that can be coarsened in the next sweep on the same
core. The geometric coarsening is visualized in Figure 7.3.

From a high-level perspective, the challenge of a parallel multigrid implementation is to balance
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Figure 7.2: Top: A forest-of-octree topology with two octrees, k0 and k1, is shown in the top left
graph including a space filling curve connecting the leaves of the octrees. The corresponding mesh
with space filling curve is depicted in the top right. The three colors label different processor cores, p0,
p1, p2. Bottom: A three-dimensional mesh wireframe and two example partitions (colors). (Credit:
Burstedde, et al.)

36 38 36 38 9 14 27 17 0 35 32 0

coarsen,
2:1 bal. partition

Figure 7.3: HMG geometric coarsening with repartitioning and core-thinning. Colors depict four
different processor cores, numbers indicate element count on each core. In the first step, an evenly
distributed locally refined mesh is coarsened and balanced on each processor core without communica-
tion, resulting in varying numbers of elements. In the second step, the mesh elements are partitioned
evenly across processor cores leaving two of the cores empty due to the coarseness of the mesh.
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the performance of two critical components: (i) application of differential operators during smoothing,
commonly referred to as MatVecs, and (ii) intergrid transfer operators that perform restriction and
interpolation between multigrid levels. Further, this balance has to be maintained as the number
of cores grows to extreme scales. Both MatVecs and intergrid operators rely on point-to-point
communication such that optimizing the runtime of one deteriorates the performance of the other:
MatVecs benefit from even parallel distribution and clustering of local degrees of freedom, while
intergrid operators benefit from bundling degrees of freedom on fewer cores to reduce the amount of
communication. In the case of our complex mantle flow solver, we deal with four different kinds of
MatVecs (viscous stress A, divergence/gradient B/BT, continuous nodal Poisson operator K, and
Stokes operator) and six different intergrid operators (restriction and interpolation for each of: modal
to nodal projection, p-projection in spectral multigrid, and h-projection in geometric multigrid).
Optimization efforts have to target all of these operators to be successful. Additionally, this task
becomes even more complex because the HMG V-cycle has to be performed on unstructured, highly
locally-adapted meshes.

In order to obtain optimal load balance for MatVecs during the V-cycle, we repartition the coarser
multigrid levels uniformly across the cores and gradually reduce the size of the MPI communicators
as we progress through the coarser levels. The reduction of the MPI size is done such that neither
MatVecs nor intergrid transfer operations become a bottleneck at large scale. Moreover, point-to-point
communication is overlapped with computations for optimal scalability. No collective communication
is used in the V-cycle. The HMG setup cost is minimized with a matrix-free approach for differential
and intergrid operators, which additionally produces a lightweight memory footprint.

These key principles were at the foundation of our extreme-scale multigrid implementation.
Further improvements of time-to-solution and performance were carried out in a number of successive
optimization steps (see Figure 7.4a). Overall, we decreased the time to solution for the BG/Q
hardware architecture (see Section 8.2) by a factor of over 1000 and increased performance on a BG/Q
compute node by a factor of ∼200. Therefore, our complex mantle flow solver as a whole, including
spectral, geometric and algebraic multigrid phases on highly adaptively refined meshes, performs
similarly to a routine for sparse matrix-vector multiplications. This is supported by the roofline model
analysis [95], from which we obtain an optimal performance of approximately 8 GFlops for sparse
MatVecs (Figure 7.4b). Note that implicit solvers for PDEs inherently exhibit a sparsity structure
and hence performance will always be memory-bound, which suggests that our memory-bound solver’s
computational performance is close to optimal. This is further supported by numerical results in
Chapter 8.

Further optimizations regarding the multigrid hierarchy setup at scale were performed by means of
changing the distribution of mesh elements at coarser levels across cores. In particular, we focused on
the runtime of mesh coarsening and 2:1 balancing algorithms followed by repartitioning (see Figure 7.3).
Among these, the 2:1 balancing turned out to be a bottleneck. Mesh balancing requires information
from neighboring elements to adjust the level of mesh refinement such that it differs by mostly one.
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Optimization phase
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Figure 7.4: (a) Performance improvement and time-to-solution reduction over a sequence of optimiza-
tion steps (time is normalized by GMRES iterations per 1024 BG/Q nodes per billion DOF). Pt. A
is base performance before optimization. Pt. B: reduction of blocking MPI communication. Pt. C:
minimizing integer operations in inner MatVec for-loops and reducing the number of cache misses.
Pt. D: computation of derivatives by applying precomputed CSR-matrices at the element level and
SIMD vectorization. Pt. E: OpenMP threading of major loops in MatVecs. Pt. F: MPI communication
reduction, overlapping with computations, and OpenMP threading in intergrid operators. Pt. G:
low-level optimization of finite element kernels via improving flop-byte ratio and consecutive memory
access, and better pipelining of floating point operations. Pt. H: various low-level optimizations
including enforcement of boundary conditions and interpolation of hanging finite element nodes.
(b) BG/Q node roofline model (theoretical peak performance) and SpMV performance with max
flop-byte ratio of 0.25 [75].

Table 7.1: HMG’s geometric hierarchy setup runtimes (in seconds) of mesh coarsening and 2:1 balancing
algorithms followed by repartitioning. The threshold of elements per core that triggers repartitioning
of coarse multigrid levels is lower in the left half of columns and higher in the right half of columns.
Note that runtimes correspond to element counts one row lower, however, the number of cores involved
in coarsening, 2:1 balancing, and partitioning are found in the same row as the times.

Low elements/core threshold Improved elements/core threshold

h-MG #elems #cores elements coarsen, partition #elems #cores elements coarsen, partition
level [×106] w/ elems per core 2:1 bal. [×106] w/ elems per core 2:1 bal.

0 114.59 32,768 3497 0.21 0.05 114.59 32,768 3497 0.22 0.05
1 25.47 32,768 777 0.19 0.05 25.47 32,768 777 0.28 0.44
2 5.81 32,768 177 10.56 0.15 5.81 23,230 177 6.95 0.99
3 1.49 11,624 45 0.80 0.13 1.49 5,952 64 0.29 0.11
4 .36 2,853 31 0.13 0.02 .37 1,461 61 0.07 0.01
5 .12 931 42 – – .12 477 81 – –

0 231.26 65,536 3529 0.32 0.10 240.81 65,536 3674 0.22 0.09
1 64.89 65,536 990 0.73 0.10 30.10 65,536 459 0.28 0.56
2 17.95 65,536 274 56.86 0.10 6.67 26,672 102 1.00 1.08
3 4.55 65,536 69 42.70 0.14 1.69 6,745 63 0.22 0.13
4 1.15 8,963 18 0.98 0.08 .44 1,780 66 0.05 0.01
5 .33 2,548 36 0.09 0.02 .12 498 70 – –
6 .11 866 43 – –
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As the mesh gets coarser, the neighboring elements’ information has to be communicated between
increasing numbers of cores. This communication, when performed at large scales, eventually leads to
congestions in the network. Our experiments in Table 7.1 report two problem setups (top and bottom
set of rows) differing by the number of elements at the fine multigrid level (∼115M and ∼240M) and
the number of BG/Q cores (32K and 64K). In addition, we change the threshold of elements per core
that triggers repartitioning at coarse multigrid levels: a low threshold (i.e., fewer elements/core) in the
left half of columns and a higher threshold (i.e., more elements/core) in the right half of columns. The
experiments show increasing runtimes (in seconds) for balancing at coarser multigrid levels highlighted
in red. The increase becomes more pronounced in the 64K core run, taking up to ∼50 s. At the same
time the average number of elements/core at the time of balancing is below 50 and reaching only 18
at its lowest.1 Increasing those thresholds means that more elements are assigned to reside on fewer
cores, which at the same time keeps more cores idle. Its effect on balancing times are observed in
the right half of columns of Table 7.1, where the previous ∼50 s on 64K cores are reduced2 to ∼1 s
(highlighted in blue).

7.4 HMG convergence rate and time-to-accuracy

We evaluate convergence properties of HMG when it is used as solver for Laplace’s equation. Even
though the Laplace operator is a simple problem relative to mantle convection, convergence for it is
well understood and documented in the literature. It will serve as a verification of our HMG algorithms
and implementation. The goal is to measure HMG’s convergence rate and its computational cost
for increasing resolutions in the discretization by means of both mesh refinement and higher finite
element orders.

The model problem we utilize in this section’s numerical experiments is defined on the open unit
cube domain Ω = (0, 1)3, which is discretized with continuous, nodal finite elements of polynomial
order k on a uniform mesh of refinement level `. We consider the boundary value problem consisting
of the Laplace differential operator with homogeneous Dirichlet boundary conditions:

−∆u = f in Ω, (7.13a)

u = 0 on ∂Ω. (7.13b)

Since the Laplace operator is symmetric with respect to the L2-inner product and positive definite, it
induces the following inner product and norm

(u , u)A := (∇u ,∇u)L2(Ω) and ‖u‖A :=
√

(u , u)A ,

1Note that runtimes for coarsening, 2:1 balancing, and partitioning correspond to the mesh sizes one row lower,
however, the number of cores involved are found in the same row as the times.

2Note that since also the mesh size is different in the slower performing result, there can be other factors at play
too. Still, throughout all our numerical experiments the higher elements/core threshold showed better performance for
multigrid hierarchy setups, which resulted in the extreme scalability presented in Section 8.4.

96



where ‖ · ‖A is referred to as energy norm.
Given integers i, j, k ∈ N, we define an analytic solution for problem (7.13) by

uanl(x, y, z) := sin(πix) sin(πjy) sin(πkz) for [x, y, z] ∈ Ω

and the corresponding manufactured right-hand side

fanl(x, y, z) = −∆uanl(x, y, z) = π2
(
i2 + j2 + k2

)
sin(πix) sin(πjy) sin(πkz) for [x, y, z] ∈ Ω.

In order to to measure the error of a numerical solution in the energy norm ‖ · ‖A, as it is common
(e.g., see [46]), we calculate the exact energy of the analytic solution, Eanl, using integration by parts

Eanl := ‖uanl‖2A =

∫
Ω
∇uanl · ∇uanl =

∫
Ω
fanl uanl =

π2

8

(
i2 + j2 + k2

)
.

The first numerical error that influences the accuracy of a computed solution is the discretization
error:

εdiscr :=

√
‖udiscr‖2A − ‖uanl‖

2
A

‖uanl‖A
=

(
‖udiscr‖2A − Eanl

Eanl

)1/2

, (7.14)

which measures the discrepancy between the analytic solution uanl and the (nearly) best possible
solution udiscr within the space spanned by a finite element basis.3 Here, the discretization error εdiscr
depends on the polynomial order k of the finite element shape functions and the level of refinement `
of the uniform mesh. Related to the discretization error is the rate of error reduction between coarser
and finer meshes with element side lengths H and h, respectively,

log (εdiscr,H/εdiscr,h)

log (H/h)
for h < H,

which is the discretization’s convergence rate. Due to the uniform meshes we are considering in this
section, the element sizes are H = 2−L for the coarse mesh with level L and h = 2−` for the fine mesh
with level ` > L.

The second numerical error contribution stems from the truncation error:

εtrunc :=
‖utrunc − udiscr‖A
‖udiscr‖A

, (7.15)

which measures the discrepancy between the discrete solution udiscr and the computed (or truncated)
solution utrunc, which we solve for using an iterative method down to a relative tolerance that is driven
by the discretization error (7.14). If the number of iterations until reaching that relative tolerance is
n, then the solver’s convergence rate is defined by

ε
1/n
trunc.

3In practice, we compute an approximation to udiscr by solving problem (7.13) with an excessive amount of iterations.
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Table 7.2: Convergence rates, runtimes, and time-to-accuracy for HMG V-cycles (damped Jacobi
(1,1)-smoother), which are used as an iterative solver for problem (7.13). Four discretization orders
k = 1, 2, 3, 4 shown in four sets of rows, where each row differs by the mesh refinement level `. HMG
solver converges largely independent of level ` and order k. This results in improved time-to-accuracy
for higher k due to increased accuracy per DOF.

Mesh DOF Discr. error Discr. Trunc. error HMG solver Solve time Time to
k l [×103] (energy norm) Conv. rate (energy norm) It. Conv. rate [sec] accuracy

1 2 .1 5.49e-1 – 3.89e-2 2 1.97e-1 0.00067 3.70e-4
...

3 .7 2.93e-1 0.91 1.78e-2 3 2.61e-1 0.00328 9.63e-4
4 4.9 1.49e-1 0.98 5.92e-3 4 2.77e-1 0.02454 3.66e-3
5 35.9 7.49e-2 0.99 6.27e-3 4 2.81e-1 0.19065 1.43e-2
6 274.6 3.75e-2 1.00 1.80e-3 5 2.82e-1 1.8607 6.98e-2
7 2146.7 1.87e-2 1.00 1.80e-3 5 2.83e-1 14.802 2.79e-1

2 1 .1 2.03e-1 – 1.36e-2 2 1.17e-1 0.00061 1.24e-4
...

2 .7 5.32e-2 1.93 1.55e-3 4 1.99e-1 0.00329 1.75e-4
3 4.9 1.34e-2 1.99 1.16e-3 5 2.59e-1 0.02167 2.92e-4
4 35.9 3.37e-3 2.00 1.24e-4 7 2.77e-1 0.21500 7.24e-4
5 274.6 8.42e-4 2.00 3.91e-5 8 2.81e-1 1.9410 1.64e-3
6 2146.7 2.11e-4 2.00 1.14e-5 9 2.82e-1 17.387 3.67e-3

3 1 .3 2.63e-2 – 4.75e-3 2 6.89e-2 0.00118 3.14e-5
...

2 2.2 3.38e-3 2.96 2.20e-4 5 1.86e-1 0.01553 5.26e-5
3 15.6 4.26e-4 2.99 1.77e-5 8 2.55e-1 0.16650 7.09e-5
4 117.6 5.33e-5 3.00 2.52e-6 10 2.76e-1 1.6232 8.66e-5
5 912.7 6.66e-6 3.00 2.42e-7 12 2.81e-1 15.457 1.03e-4

4 1 .7 2.55e-3 – 9.10e-4 5 2.46e-1 0.00398 1.08e-5
...

2 4.9 1.63e-4 3.97 8.13e-5 8 3.08e-1 0.04315 7.87e-6
3 35.9 1.03e-5 3.99 5.78e-6 11 3.34e-1 0.43819 5.16e-6
4 274.6 6.40e-7 4.00 5.35e-7 13 3.29e-1 4.1636 3.47e-6
5 2146.7 6.83e-8 3.23 4.29e-8 15 3.23e-1 38.362 3.09e-6

Finally, combining discretization (7.14) and truncation errors (7.15), we define the (total) error of
the numerical solution by

εtotal :=
√
ε2
trunc + ε2

discr . (7.16)

The quantity of interest to evaluate the computational cost of a numerical solver is typically the time
to solution. In the context of solvers for high-order discretizations, however, reporting only the runtime
of the solver, tsolve, is not satisfactory since increasing order k delivers higher accuracy per DOF.
Therefore, we choose to report a quantity that we regard as more suitable to describe computational
cost, which we call the time to accuracy and define as follows:

tsolve εtotal.

The iterative solver in this section is designed to focus on the properties of HMG V-cycles. Thus,
an iteration of the solver consists of applying one HMG V-cycle to the current residual, where on each
level of the HMG hierarchy pre- and post-smoothing is performed via one iteration of damped Jacobi
with damping set to 0.75. Cholesky factorization is used on the coarsest level in the hierarchy as the
direct solver. The computations were performed on a single core of an Intel Westmere CPU (Xeon
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E5620) and the results are summarized in Table 7.2. There, for each discretization order k = 1, 2, 3, 4

the mesh refinement level ` is varied. We first observe that the convergence rate of the discretization
approximates the desired value of order k, which is in accordance with asymptotic finite element
convergence results from the literature [46]. Further, comparing the discretization errors of elements
with lower and higher orders confirms that the same amount of DOF yields smaller errors if k is
higher, as mentioned above. Note that the mesh with k = 4, ` = 5 does not attain the theoretical
convergence rate of 4 because of the double precision arithmetic of our implementation together with
Equation (7.14) for the discretization error. Namely, the roundoff error of the difference in (7.14) at
double precision is ∼10−16, hence taking the square root yields ∼10−8 for the least possible value for
εdiscr. Truncation errors are shown to be of the same orders of accuracy as discretization errors, which
follows from our choice of relative tolerance to terminate the iterative solver. Since this tolerance
is reduced as the mesh is refined and order k increases, the numbers of iterations (column It. in
Table 7.2) are growing. The convergence rate demonstrates a fast and stable performance of the HMG
solver throughout varying levels ` and orders k. This shows that the residual reduction per HMG
V-cycle is largely independent of mesh refinement and discretization order, demonstrating the (nearly)
ideal algorithmic convergence properties of HMG in the context of problem (7.13). The last column of
Table 7.2, titled Time to accuracy, states the computational cost of the solver. It clearly shows the
advantage of higher order k if combined with an effective solver as HMG. While for linear order, k = 1,
the time to accuracy is decreasing as ` grows, this trend reduces for k = 2, 3 and eventually inverts
for k = 4. This indicates that high-order discretizations paired with capable solvers are reducing the
overall computational cost to approximate a solution with specified accuracy.

7.5 Robustness of HMG-based Stokes solver for mantle flow

The important physical parameter that determines the difficulty of the problem is the viscosity field
(see Equation (4.3)). We extend our previous demonstration of Stokes solver robustness in Section 6.4.
In this section, we generate a physically realistic representation of the mantle’s viscosity using real
Earth data. The viscosity varies over six orders of magnitude globally. However, what makes the poor
conditioning of realistic mantle flow problems even more severe is the extremely thin layer in which
this contrast develops. The viscosity drops by six orders of magnitude within a thin layer between
two plates (the plate boundary, see Section 2.5). To assess the robustness of HMG and the Stokes
solver as a whole, we generate plate boundaries down to a width of 5 km and a factor of 106 viscosity
drop over 7 km as shown in Figure 7.5.

The robustness of our preconditioners for the Stokes system (4.6) is assessed in Table 7.3 by
observing the number of GMRES iterations required for convergence, while decreasing the width of the
plate boundaries (Figure 7.5, bottom right images). Our mesh refinement algorithm, which is based
on the norm of viscosity gradients, locally refines the mesh to resolve the extreme viscosity variations.
This results in an overall increase in the number of DOF. The third column in Table 7.3 demonstrates
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the robustness of the solver for the (1,1) Stokes block, Au = f , therefore providing numerical evidence
for the efficacy of our HMG preconditioner. The fourth column in Table 7.3 shows robustness of
the complete Stokes solver with HMG for the (1,1) block and using HMG-based diag(A)-BFBT to
approximate the inverse Schur complement (see Chapter 6). The GMRES iterations are seen to scale
independently of the plate boundary width and thus viscosity gradient.
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Figure 7.5: Top image: Viscosity field (colors) in cross sections of the mantle showing a subducting
plate (i.e., high viscosity in blue). Local refinement of mesh elements resolves high gradients in
viscosity. Bottom images: Model viscosity of a subducting plate on a thin cross section of Earth’s
spherical domain. The boundary width between subducting and overriding plate is decreased (15 km,
10 km, 5 km in right three images) to demonstrate solver robustness in Table 7.3.

Table 7.3: Robustness w.r.t. plate boundary width of HMG-preconditioned GMRES solver for the
(1,1) block of Stokes, Au = f , and the linear (full) Stokes solver (diag(A)-BFBT Schur preconditioner,
see Chapter 6). GMRES iterations to reduce the residual by 10−6 are reported.

Plate boundary DOF GMRES iterations GMRES iterations
width [km] [×109] to solve Au = f to solve Stokes

15 1.16 115 461
10 1.41 129 488
5 3.01 123 445
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8

Computational Performance and
Algorithmic & Parallel Scalability

After establishing the robustness of the Stokes solver with w-BFBT preconditioning in theory and
numerically (Chapter 6) and introducing an effective and scalable multigrid method (Chapter 7), this
chapter finally studies the scalability of the Stokes solver building on HMG+w-BFBT. One aspect of
scalability is algorithmic scalability, i.e., the dependence of Newton and Krylov iterations on the mesh
resolution and the discretization order. The second aspect is parallel scalability of the implementation,
i.e., runtime measured on increasing numbers of compute cores. Studying both aspects is required to
fully assess the performance of a solver at scale.

The cost of solving a nonlinear Earth mantle flow problem is dominated by the cost of the
combined linear solves across Newton steps (see Section 5.1). The cost of a linear solve is determined
by the number of MatVecs and HMG intergrid operations. MatVecs are encountered in the Krylov
method and in the HMG smoothers. In all subsequently reported performance results, we use three
Chebyshev-accelerated smoothing iterations for pre- and post-smoothing within the HMG V-cycle
for both the viscous block Ã−1 (see Section 4.2) and in the Schur complement S̃−1 (see Section 6.1),
which amounts to three V-cycles per application of the Stokes preconditioner. Therefore each Krylov
iteration has the same cost and it is sufficient to compare the number of Krylov iterations. GMRES is
used as the Krylov method throughout this chapter.

8.1 Algorithmic scalability

This section presents the algorithmic scalability of our linear and nonlinear Stokes solvers by means of
increasing spatial resolution, which is performed by both refinement of mesh elements and increasing
the polynomial order of the finite element discretization. Recall that we can study algorithmic
scalability independently of parallel scalability, because the parallel distribution of a Stokes problem
across cores does not alter the efficacy of the solver.

Our main goal is to achieve the best possible scalability for the whole Stokes solver, which combines
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our multigrid and Schur complement preconditioners, but we also want to assess the scalability of
HMG alone. Therefore we present results for sub-systems of the Stokes system by reporting iteration
numbers for solving only for the velocity vector field u in Au = f and for computing only the
(scalar) pressure solution p in Kp = g, where K = Kr =

(
BD−1BT

)
denotes a pressure Poisson

matrix as introduced in Section 6.1. Studying these individual components allows us to observe
HMG performance in isolation and to compare it to the scalability of the full Stokes system, which is
indicative of the quality of the BFBT Schur complement approximation.

Algorithmic scalability of HMG+w-BFBT linear Stokes preconditioners

We consider the model problem with multiple randomly distributed sinkers from Section 6.2 and
the w-BFBT approximation (6.6) for the inverse Schur complement. The algorithmic scalability
in Table 8.1 shows results for the Stokes solver as well as its individual components Au = f and
Kp = g. All systems are solved with preconditioned GMRES down to a relative tolerance of 10−6.
The preconditioners for A and K are HMG-V-cycles as described in Section 7.2. For the w-BFBT
preconditioner, we set a constant left boundary amplification al = 1 and vary the right boundary
amplification ar according to results from Section 6.5. The iteration counts in Table 8.1a show
textbook mesh independence when increasing the level of refinement ` of the uniform mesh. This
holds for each component, A and K, and also the whole Stokes solver. Hence we conclude that the
approximation of the of inverses of A and K via HMG and the Schur complement approximation by
w-BFBT are mesh-independent. When the discretization order k is increased, the iteration counts
presented in Table 8.1b increase mildly. The convergence of both components A and K exhibits a
moderate dependence on k. Since the increase in number of iterations is sightly larger for the full
Stokes solve than for A and K, we suspect a mild deterioration of w-BFBT as a Schur complement
approximation.

Algorithmic scalability for nonlinear mantle flow

To study algorithmic scalability in a realistic mantle flow setting, we consider a nonlinear problem
with one subducting slab as in Section 7.5, discretize velocity and pressure fields with Q2 × Pdisc

1

finite elements, and use the diag(A)-BFBT approximation for the inverse Schur complement (see
Section 6.1). The plate boundary region between the subducting plate and the overriding plate has a
width of 5 km. We refine the mesh locally in the regions of highest viscosity variations by tightening
the refinement criterion, which is based on the viscosity gradient. Thus the total number of degrees
of freedom grows slowly, though significantly greater resolution is obtained in these regions. The
required numbers of linear and nonlinear iterations are shown in Table 8.2, where the cost of the
nonlinear solver is measured by the total number of GMRES iterations across nonlinear iterations.
The linear solver with diag(A)-BFBT Schur preconditioner requires a number of iterations that is
largely independent of the resolution. In the numerical experiments for this cross-sectional model
problem, we employed a standard Newton linearization. For mantle flow problems of global scale, the
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Table 8.1: Algorithmic scalability of Stokes solver with HMG+w-BFBT preconditioning while (a)
varying mesh refinement level ` and (b) varying discretization order k (problem S16-rand, DR(µ) = 106

from Section 6.2). Computational cost is expressed in number of GMRES iterations (abbreviated
by It.) for 10−6 residual reduction. Left boundary amplification for Cwl is fixed to al = 1; right
boundary amplification ar for Dwr varies. Additionally, the numbers of GMRES iterations for solving
only the sub-systems Au = f and Kp = g are given for demonstration of HMG efficacy (here, f is
the right-hand side of the momentum equation and g is the discreet representation of ∇ · f ; however,
random right-hand sides would give similar convergence results).

(a) Algorithmic scalability (fixed order k = 2)

` u-DOF It. p-DOF It. DOF It.
[×106] A [×106] K [×106] Stokes

4 0.11 18 0.02 8 0.12 40
5 0.82 18 0.13 7 0.95 33
6 6.44 18 1.05 6 7.49 33
7 50.92 18 8.39 6 59.31 34
8 405.02 18 67.11 6 472.12 34
9 3230.67 18 536.87 6 3767.54 34
10 25807.57 18 4294.97 6 30102.53 34

(b) Algorithmic scalability (fixed level ` = 5)

k u-DOF It. p-DOF It. DOF It.
[×106] A [×106] K [×106] Stokes

2 0.82 18 0.13 7 0.95 33
3 2.74 20 0.32 8 3.07 37
4 6.44 20 0.66 7 7.10 36
5 12.52 23 1.15 12 13.67 43
6 21.56 23 1.84 12 23.40 50
7 34.17 22 2.75 10 36.92 54
8 50.92 22 3.93 10 54.86 67

nonlinearities of the mantle’s rheology become significantly more challenging mainly due to plastic
yielding. In this case, the perturbed Newton linearization proposed in Chapter 5 enables global mantle
convection simulations at a feasible computational cost.

We have demonstrated how the combination of our preconditioner and linear and nonlinear solvers
yields an implicit method whose number of iterations scales (largely) independent of model fidelity.
Here, fidelity is understood as the resolution of the mesh with finite element discretization and the size
of the smallest-scale features, which are the plate boundary regions. This results in an algorithmically
optimal method, despite the severely nonlinear rheology, high viscosity gradients, effective anisotropy,
and large heterogeneities. Moreover, the cost of the solver is reduced by adaptive mesh refinement,

Table 8.2: Algorithmic scalability of inexact Newton–Krylov method for solving a nonlinear mantle
flow problem with one subducting slab and 5 km plate boundary. Simulation cost expressed in total
number of GMRES iterations is largely independent of the maximal resolution of the adaptive mesh
(10−7 Newton residual reduction used as stopping criterion). A two times higher resolution increases
the DOF of the adaptively refined mesh only by about a factor of 2–3. In contrast, the factor would
be eight with uniform refinement.

Max level of Finest resolution DOF Newton GMRES
refinement [m] [×106] iterations iterations

10 2443 0.96 14 1408
11 1222 2.67 18 1160
12 611 5.58 21 1185
13 305 11.82 21 1368
14 153 36.35 27 1527

104



Table 8.3: Texas Advanced Computing Center’s supercomputers.

System name Compute node Nodes Cores Peak [PFlops/s]

Stampede (CPU) 2x Intel Xeon (Sandy Bridge) 8-core CPU 6400 102,400 2+
Lonestar 5 2x Intel Xeon (Haswell) 12-core CPU 1252 30,048 1+
Stampede 2 (KNL) 1x Intel Xeon Phi (Knights Landing), 68 cores 4200 285,600 18
Stampede 2 (SKX) 2x Intel Xeon (Skylake) 24-core CPU 1736 83,328 N/A

which reduces the number of DOF—in this case by four orders of magnitude, from the O(1013) needed
for a uniform mesh of Earth’s mantle, to about O(109) required here using aggressive refinement.
Further reducing the number of DOF are the third-order accurate finite elements Q2 employed here,
along with a mass-conserving discretization Pdisc

1 . The algorithmic scalability and the greatly-reduced
number of DOF exhibited by our solver are critical for the overall goal of reducing time-to-solution
(for a given accuracy). The remaining component is parallel scalability, which we study next.

8.2 Parallel systems and architectures

The systems and architectures used in this dissertation for large-scale simulations and to assess parallel
scalability are Intel-based and IBM BlueGene-based. The supercomputers using Intel processors
and accelerators are (or were) housed at the Texas Advanced Computing Center (TACC) and are
summarized in Table 8.3.

The now decommissioned Stampede multi peta-scale supercomputer began production in 2013 as
a 6400+ node cluster of Dell PowerEdge nodes. Each node contained two Intel Sandy Bridge 8-core
CPUs (Xeon E5-2680), 32 GBytes of main memory, and the coprocessor (or accelerator) Intel Xeon
Phi (Knights Corner) with 61 cores. The FDR InfiniBand interconnect provided 56 GBytes/s of
bandwidth between nodes. The aggregate peak performance of the CPUs was 2+ PFlops/s, while the
coprocessors delivered an additional aggregate peak performance of 7+ PFlops/s. We utilized only
the CPUs of Stampede in our runs.

The Lonestar 5 supercomputer entered production in January 2016 and is a Cray XC40 system
consisting of 1252 compute nodes. Each node is equipped with two Intel Haswell 12-core processors
(Xeon E5-2680v3) and 64 GBytes of memory. Inter-node communication is based on an Aries Dragonfly
topology network that provides dynamic routing and thus enables optimal use of the system bandwidth.

Currently the newest supercomputer at TACC, Stampede 2, started full production in Fall 2017
with 18 PFlops/s peak performance. Phase 1 of Stampede 2 consists of 4200 nodes, each of which
is equipped with Intel’s second generation Xeon Phi (Knights Landing) architecture and a total of
112 GBytes of memory per node. Knights Landing (KNL) is a stand-alone processor with 68 cores
and supports up to 4 H/W threads per core. The interconnect is a 100 GBytes/s Intel Omni-Path
network with a fat tree topology. In Phase 2, additional 1736 Intel Skylake CPU nodes were added.
Each Skylake (SKX) node contains two sockets with Intel Skylake (Xeon Platinum 8160) 24-core
processors and 192 GBytes of memory.
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Table 8.4: IBM BlueGene/Q supercomputers. Each rack has 1024 nodes with 16-core CPUs.

System name Racks Cores H/W threads Peak [PFlops/s]

AMOS 5 81,920 327,680 1.0
Vulcan 24 393,216 1,572,864 5.0
JUQUEEN 28 458,752 1,835,008 5.8
Sequoia 96 1,572,864 6,291,456 20.1

In addition to Intel-based systems at TACC, we used IBM BlueGene/Q (BG/Q) supercomputers [87]
that are summarized in Table 8.4 to analyze performance in detail, carry out numerous optimizations
(see Section 7.3), and demonstrate scalability to extreme scales. The smaller systems were used
for testing, optimization, scaling, and science runs. The largest runs have been performed on the
Sequoia supercomputer at the Lawrence Livermore National Laboratory (LLNL). Sequoia consists of
96 IBM Blue Gene/Q racks, reaching a theoretical peak performance of 20.1 PFlops/s. Each rack
consists of 1024 compute nodes, which host an 18 core A2 chip that runs at 1.6 GHz. Of these
18 cores, 16 are devoted to computation, one for the lightweight O/S kernel, and one for redundancy.
Every core supports 4 H/W threads, thus, in total Sequoia has 1,572,864 cores and can support up
to 6,291,456 H/W threads. The total available system memory is 1.458 PBytes. BG/Q nodes are
connected by a five-dimensional (5D) bidirectional network, with a network bandwidth of 2 GBytes/s
for sending and receiving data. Each BG/Q rack features dedicated I/O nodes with 4 GBytes/s I/O
bandwidth. The system implements optimized collective communication and allows specialized tuning
of point-to-point communication. We obtained all timing and performance measurements by means of
the IBM HPC Toolkit for BG/Q. The toolkit retrieves performance information about the processor,
memory hierarchy, and interconnect. All runs involved double-precision arithmetic and the code is
compiled using the IBM XL C compilers for BG/Q, version 12.1.10.

8.3 Parallel scalability on Intel-based systems

We present parallel weak and strong scalability of our linear Stokes solver, where we measure the
runtime of GMRES with HMG preconditioning for the viscous block and within w-BFBT as well
as diag(A)-BFBT preconditioners for the Schur complement. Since applying the preconditioners
consumes the bulk of overall nonlinear solver runtime, the results here indicate the scalability of
the full nonlinear Stokes solver. Note that the methods w-BFBT and diag(A)-BFBT for Schur
complement preconditioning are comparable in terms of parallel scalability, because they exhibit the
same computational complexity per GMRES iteration and our parallel scalability runs report time
per GMRES iteration.

This section’s results were obtained on the Intel-based clusters, Stampede, Lonestar 5, and
Stampede 2, which are described in Section 8.2. Whereas in the following section, we utilized IBM’s
BlueGene/Q architecture.
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Weak and strong scalability on Stampede for global mantle flow

The parallel scalability on Stampede is performed for a realistic Earth mantle convection problem
at global scale, where we employ the Q2 × Pdisc

1 velocity–pressure pairing of finite elements and the
diag(A)-BFBT approximation for the inverse Schur complement. We refine the mesh locally in the
regions of highest viscosity variations resulting in up to six refinement levels difference.

For the weak scalability in Figure 8.1a, we maintain the DOF/core at ∼0.2 millions over a 128-fold
increase in cores. The blue curve in the figure shows the computational speedup of the Stokes solver
in degrees of freedom processed per runtime of one preconditioned GMRES iteration. The solver
achieves 88% parallel efficiency at the highest core count of 16,384. The setup of the Stokes solver is
performed once before the solve and is dominated by the generation of the HMG hierarchies for the
viscous block and the pressure Poisson operators within BFBT. Its weak scalability (green curve)
documents the computational speedup in degrees of freedom per seconds of setup runtime and reaches
over 50% parallel efficiency at 4096 cores, but then reduces to 24% efficiency. Note that for the overall
time to solution, the contribution of the solve is significantly larger than setup runtime.

Figure 8.1b demonstrates strong scalability on Stampede for a Stokes solve. Here, the overall
number of degrees of freedom stays fixed at 97 million and the curve in the figure represents the
speedup in baseline runtime (128 cores) over runtime. The parallel efficiency is gradually decreasing
as the core count grows, which is expected for an implicit solver due to growing point-to-point
communication, and reaches 52% at the largest run.

Finally, note that these results were obtained at an earlier stage of the solver’s implementation,
when not all of the optimizations described in Section 7.3 were completed.

Weak and strong scalability on Lonestar 5 for sinker model problem

We switch to the sinker model problem from Section 6.2 (S16-rand, DR(µ) = 106 as in Table 8.1a)
and the w-BFBT Schur preconditioner. The discretization with the Q2 × Pdisc

1 finite element pairing
is carried out on a uniform mesh. Results in Figure 8.2a for weak scalability on the full Lonestar 5
peta-scale system, where we fixed the DOF/core to ∼1 million, show that the Stokes solver with
w-BFBT (blue curve) maintains 90% parallel efficiency over a 618-fold increase in degrees of freedom
along with cores. Even for the setup of the Stokes solver (green curve), which mainly involves
generation of the HMG hierarchy, we observe 71% parallel efficiency. These are excellent results for
such a complex implicit multilevel solver with optimal algorithmic performance (when the mesh is
refined, or nearly algorithmically optimal when the order is increased) and with convergence that is
independent of the number of cores.

Figure 8.2b reports strong scalability results (overall DOF fixed to 59 million) and how the number
of OpenMP (OMP) threads substituting MPI ranks influences speedup.1 Over the 78-fold increase
from 48 to 3744 cores, efficiency reduces moderately, to a worst-case 68% for 24×OMP1. However,

1Even though the processors of Lonestar 5 support two threads per physical core (Intel Hyper-Threading Technology),
assigning more than one OpenMP thread per core did not improve performance.
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Figure 8.1: Parallel scalability on Stampede running our Stokes solver with HMG+diag(A)-BFBT
preconditioning for a global mantle convection problem. (a) Weak scalability of setup (green) and
solve phases (blue); solve speed is normalized w.r.t. deviations from const. DOF/core. Ideal weak
scalability for solve is depicted by the gray line. Numbers along the graph lines indicate weak parallel
efficiency w.r.t. ideal weak scalability (efficiency baseline is 128 cores result). The largest problem size
on 16,384 cores has 3 billion DOF. (b) Strong scalability of solve phase; numbers along the graph lines
indicate strong efficiency w.r.t. ideal speedup (baseline is 128 cores result).
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note that in the largest run with 29,640 cores, the granularity is only ∼2000 DOF/core, which is
extremely challenging for strong scalability. In this case, due to the increased communication volume,
overlapping with decreased amounts of computation becomes impossible and communication dominates
the runtime. This behavior is expected for an implicit solver, especially for a multilevel method that
does not sacrifice algorithmic optimality for parallel scalability.

Weak and strong scalability on Stampede 2 for sinker model problem

The Stampede 2 supercomputer is composed of 68-core Intel Xeon Phi (KNL) nodes and dual 24-core
Intel Xeon CPU (SKX) nodes. We report parallel weak and strong scalability for each node type in
Figure 8.3, where the left two axes correspond to KNL and the right two axes correspond to SKX. As
before, we carry out simulations of the sinker model problem from Section 6.2, use uniform meshes with
the Q2 × Pdisc

1 finite element pairing, and w-BFBT for the inverse Schur complement approximation.
Weak scalability results for the Stokes solve and setup are shown as blue and green curves in

Figure 8.3a over a 512-fold increase in cores along with degrees of freedom. The number of DOF/core
differs due to a larger memory capacity on SKX nodes, allowing for ∼1.2 million DOF per SKX core
and about one third less DOF per KNL core. The parallel efficiency on Stampede 2’s CPU nodes is
comparable with Lonestar 5, demonstrating remarkable 90% at peak core count of 24,576. The KNL
nodes are more difficult to scale and reach just under 70%. A comparison of the solver’s performance
on KNL and SKX nodes shows that execution time on one SKX node is about similar to two KNL
nodes.

Strong scalability in Figure 8.3b reveals a relatively high 28% parallel efficiency on 24,576 SKX
cores, which is better than ∼8% strong efficiency on KNL over the same 512-fold increase in cores and
also better than on Lonestar 5 (see Figure 8.2b). We tested the effect of substituting OpenMP (OMP)
threads for MPI ranks on KNL nodes and see in Figure 8.3b, left that speedup remains largely the
same.
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Figure 8.2: Parallel scalability on Lonestar 5 running our Stokes solver with HMG+w-BFBT
preconditioning (sinker problem S16-rand, DR(µ) = 106 as in Table 8.1a). (a) Weak scalability of
setup and solve phases (normalized w.r.t. deviations from const. DOF/core). Numbers along the graph
lines indicate weak parallel efficiency w.r.t. ideal weak scalability (efficiency baseline is 48 cores result).
The largest problem size on 29,640 cores has 30 billion DOF. (b) Strong scalability of solve phase for
different configurations of OpenMP threads (OMP) substituting MPI ranks on each node consisting
of 24 cores. Numbers along the graph lines indicate strong efficiency w.r.t. ideal speedup (baseline is
48 cores result).
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Figure 8.3: Parallel scalability on Stampede 2 nodes with Intel Xeon Phi (KNL) on left and with
Intel Xeon CPU (SKX) on right running our Stokes solver with HMG+w-BFBT preconditioning
(sinker problem S16-rand, DR(µ) = 106 as in Table 8.1a). (a) Weak scalability of setup and solve
phases (normalized w.r.t. deviations from const. DOF/core); numbers along the graph lines indicate
weak parallel efficiency w.r.t. ideal weak scalability. (b) Strong scalability of solve phase; numbers
along the graph lines indicate strong efficiency w.r.t. ideal speedup.
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8.4 Parallel scalability and performance on IBM BG/Q systems

This section presents extreme scalability and performance results utilizing IBM’s BlueGene/Q archi-
tecture. We achieve 97% weak parallel efficiency over a 96-fold core increase up to 1.6 million cores
for the solve phase of the HMG+diag(A)-BFBT preconditioned Stokes solver with the additional
difficulty of handling highly adapted meshes for realistic simulations of global-scale mantle flow with
plates.

The important physical parameter that determines the difficulty of the problem is the viscosity
field. In our subsequent performance analysis, we use real Earth data to generate a physically realistic
representation of viscosity. The viscosity varies over six orders of magnitude globally. However, what
makes realistic mantle flow problems even more poorly conditioned as well as nonlinear is the extremely
thin layer in which this contrast develops. The viscosity drops by six orders of magnitude within a
thin layer between two plates (the plate boundary).

To assess our solver’s weak and strong scalability, the 106 factor viscosity drop occurs within just
3 km. Since tectonic plates (the largest surface structures) are 2000–14,000 km across, and Earth’s
circumference is 40,075 km, this results in a very wide range of length scales of interest. To capture the
viscosity variation, the mesh is refined to ∼75m local resolution in our largest simulations, resulting
in a mesh with 9 levels of local refinement. For all performance results, we use a velocity discretization
with polynomial order k = 2.

Weak and strong scalability for global mantle flow

We present weak and strong scalability results on the Vulcan and Sequoia BG/Q supercomputers from
1 rack with 16,384 cores up to 96 racks with 1,572,864 cores (see Section 8.2). Scalability measurements
corresponding to 1, 2, and 4 racks were obtained on Vulcan, whereas the remaining runs on 8–96 racks
were performed on Sequoia.

The cost of our large-scale nonlinear mantle convection simulations is overwhelmingly dominated
by the cost of the GMRES iterations during a linear Stokes solve. These GMRES iterations include
one HMG V-cycle for the (1,1) Stokes block and two V-cycles in the Schur complement approximation,
as explained earlier. For the extreme-scale runs on Sequoia, we had limited access to the system, which
allowed us to run 10 representative GMRES iterations. However, we extrapolate that the influence of
I/O and setup costs are marginal compared to the cost of the combined GMRES iterations that are
required for a nonlinear mantle convection simulation at global scale. Moreover, if multiple linear
Stokes solves are performed in a sequence of Newton steps, then the setup cost drops further, because
we reuse the part of HMG hierarchy data associated with a non-changing mesh and only re-discretize
differential operators on each level of the hierarchy. Finally, note that in our observations the setup
time for HMG is largely bounded independent of the number of cores for a constant problem size.

The main result is the weak scalability shown in Figure 8.4. The solver maintained 97% parallel
efficiency (blue curve) over a 96-fold increase in problem size, from 16K to 1.6M cores of the full
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Sequoia system. The largest problem involved 602 billion DOF. The I/O for writing output data
has to be performed only once at the end of a nonlinear solve. The problem sizes used in the weak
scalability runs would produce ∼8.5 GBytes of output per BG/Q I/O node. With an I/O bandwidth
of 4 GBytes/s we can also consider the writing of the output to be negligible for overall runtime
(note that we did not output solution fields, since the full nonlinear simulation could not be run to
completion due to limited access). The negligible time for I/O and problem setup stem from the
advantages of adaptive implicit solvers: adaptivity results in the problem itself being generated online
as part of the solver; implicit means that fewer outputs/checkpoints would be required.

In Figure 8.5, we show strong scalability results for a mantle convection simulation with 8.3 billion
DOF. Starting from one rack with 16,384 cores (granularity of 506K DOF/core), we achieve a 32-fold
speedup on 96 racks with 1,572,864 cores (granularity of 5K DOF/core), indicating 33% solver efficiency
in strong scalability.

Contrary to conventional wisdom, this work shows that algorithmically optimal implicit finite
element solvers for highly nonlinear, severely poorly conditioned, heterogeneous, indefinite PDEs can
be designed to scale to O(106) cores.

Node performance analysis

The performance results on BG/Q compute nodes further support our scalability results. The top pie
charts of Figure 8.6 decompose the overall runtime into the largest contributors. We can observe that
the (highly optimized) matrix-free apply routines dominate with 80.6% in the 1 rack case. Furthermore,
their portion remains very stable with 78% on 96 racks. This result demonstrates a key component
of a highly scalable, parallel multigrid implementation. The percent runtime for intergrid transfer
operations is low compared to MatVecs and stays low even at 1.6 million cores. Hence, we have
achieved a balance between MatVecs and intergrid operations that results in nearly optimal scalability.

MatVecs represent the portion of the code where the maximal performance in terms of flops can
be achieved. With their dominance in runtime we are able to increase total performance close to its
maximum. That way our implementation is performing at the limits of the roofline model as predicted
in Figure 7.4b.

MPI communication analysis

Figure 8.7 summarizes MPI communication time measured during weak and strong scalability runs:
tasks with minimum, median, and maximum communication time are displayed. Indeed, for weak
scalability, we clearly observe that percentage of time spent in MPI communication remains nearly
constant relative to runtime (Figure 8.7a). This contributes to the nearly perfect scalability results
presented in Figure 8.4. The increase in median and maximum communication time in the 64 racks
case can be justified by the lack of 5D torus connectivity in that particular configuration (due to
specific job partitioning). Another reason can be found in a more aggressive repartitioning of coarser
multigrid levels, which leaves a greater amount of cores idle during a short period of time in the
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Figure 8.4: Weak scalability results on Vulcan and Sequoia from 1 to 96 racks. Performance is
normalized by time and number of GMRES iterations. Numbers along the graph lines indicate
efficiency w.r.t. ideal speedup (efficiency baseline is the 1 rack result). We report both the weak
scalability of the linear solver’s iterations (blue) and the one-time setup cost of the linear solver (green).
The largest problem size on 96 racks has 602 billion DOF.

16,384
(505,821)

32,768
(252,910)

65,536
(126,455)

131,072
(63,228)

262,144
(31,614)

524,288
(15,807)

1,048,576
(7903)

1,572,864
(5269)

1

2

4

8

16

32

64

1.03

1.00

0.88

0.76
0.61

0.43 0.33

Number of cores (average DOF/core)

Sp
ee

du
p

[b
as

el
in

e
se

c/
se

c] Ideal speedup
Solve 4×OMP16

Figure 8.5: Strong scalability results on Vulcan and Sequoia from 1 to 96 racks. Numbers along the
graph lines indicate efficiency with respect to ideal speedup (baseline is the 1 rack result). We report
the strong scalability of the linear solver (purple curve).

114



1 rack
(7.5 TFlops/s)

32 racks
(239 TFlops/s)

64 racks
(445 TFlops/s)

96 racks
(687 TFlops/s)

25.9%

14.1%
37.0%

3.6%

8.6%

25.9%

14.0%
37.4%

3.7%

8.8%

25.6%

13.6%
35.6%

3.5%

9.1%
25.1%

13.7%
35.7%

3.5%

9.8%

1 2 4 8 16 32 64 96
0
2
4
6
8
10
12

BlueGene/Q racks

G
F
lo

ps
/s

pe
r

no
de

A Stokes B/BT K Inter-grid Total

Figure 8.6: Analysis of MatVecs and intergrid operators within the Stokes solves of the weak scalability
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V-cycle. This is suggested by the higher percentage of MPI_Waitall time on 64 racks in Figure 8.8.
However, this does not need to affect scalability in a negative way since fewer cores may perform the
same task quicker because of higher granularity of DOF.

For the strong scalability runs, we observe a gradual increase of relative MPI communication
time (Figure 8.7b), as is expected for implicit solvers. Note that the increase begins only at 4 racks.
Communication time exceeds 50% of overall runtime only at about 1 million cores. At its maximum,
communication time is still below 30%.
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Figure 8.7: MPI communication time relative to total runtime for (a) weak scalability and (b) strong
scalability on Vulcan and Sequoia.
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9

Conclusions

9.1 Mathematical and computational contributions

Even though the properties of the Stokes equations and their numerical solution have been studied over
many years, simulating Earth’s mantle convection at global scale while resolving thin plate boundaries
has remained sufficiently challenging that computational solutions were intractable. The challenges are
due to the mantle’s complex constitutive relationship, which is characterized by severe nonlinearities
(due to shear thinning and plastic yielding), six orders of magnitude viscosity variations modeling
plate boundary regions, and a wide range of spatial scales (from narrow trenches to continent-sized
plates). Accommodating the required DOF for a globally uniform mesh at the resolution demanded
by small-scale features has been infeasible even on today’s largest supercomputers. Major advances
in parallel adaptive mesh refinement using octrees and space-filling curves have made high-fidelity
discretization of the mantle feasible with the current generation of supercomputers. However, this
was only one step toward the goal of realistic mantle convection simulations. Even after the efficiency
improvements due to adaptivity, the resulting algebraic systems demanded large-scale parallel resources.
Further, the severe nonlinearities and heterogeneities of mantle flow problems lead to extremely poor
conditioning, resulting in prohibitive computational costs in the past for accurate solutions. With the
advances introduced here in numerical methods, parallel algorithms, and computationally efficient
implementation in the areas of multigrid methods, Schur complement approximation, inexact Newton–
Krylov methods, and nonlinear preconditioning, we have made significant strides toward the goal
of realistic mantle convection simulation. We achieved fast convergence, robustness with respect to
highly heterogeneous coefficients and severe nonlinearities, and excellent parallel scalability, which now
enables us to study the physics of mantle flow in detail and to constrain parameters in the constitutive
relationship.

We demonstrate in this dissertation how successive barriers of intractability were overcome: (i)
p4est for parallel AMR (DOF reduction, scalable mesh generation), (ii) HMG for parallel multigrid
(algorithmic optimality, scalability of setup and solve), (iii) HMG-based weighted BFBT for Schur
complement preconditioning (robustness for heterogeneous viscosities), and (iv) inexact Newton–
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Krylov with nonlinear preconditioning (fast and robust nonlinear solve). Our advances are driven by
mantle convection problems, but the methods we develop are applicable across a variety of problems
since heterogeneity, anisotropy, multiple scales, and nonlinearities analogous to those stemming from
the mantle’s rheology are prevalent in many applications.

Our inexact Newton–Krylov nonlinear solver uses grid continuation to resolve viscosity variations
caused by the nonlinear rheology and employs the H−1-norm for backtracking line search. The
perturbations that we introduced to the Newton linearization result in better Newton step directions
in the presence of plastic yielding. This significantly improves nonlinear convergence with effectively
no additional computational cost.

Schur complement preconditioning is critical for Stokes systems with highly heterogeneous vis-
cosities. We developed weighted BFBT approximations of the inverse Schur complement that exhibit
robustness for up to ten orders of magnitude viscosity contrast. In our analysis of BFBT methods,
spectral equivalence is derived theoretically and supported by numerical computation of eigenvalues.
Additionally, detailed numerical experiments document viscosity-variation robustness over a wide
range of benchmark problems and optimal or near optimal algorithmic scalability is reported when
mesh elements are refined or discretization order increases.

Both our BFBT preconditioner and the viscous block preconditioner are based on our parallel
multigrid, HMG. The combination of high-order accurate intergrid interpolations and restrictions
together with efficient smoothers and their careful implementation results in algorithmic optimality
for high-order discretizations and locally adapted meshes. We demonstrate the optimality throughout
this work in the form of convergence rates, setup and solver runtimes, and time-to-accuracy. HMG is
central to achieving excellent performance and parallel scalability, which we achieve due to algorithm
design, computationally efficient implementation, overlap of communication with computation, and
code optimizations down to low-level kernels.

In essence, the computational challenges of mantle convection can be addressed with innovations at
the intersection of sophisticated numerical mathematics, algorithm design for shared and distributed
memory parallel architectures, careful implementation, and detailed numerical experimentation and
performance assessment.

9.2 Implications for mantle flow modeling

Building on algorithmic innovations for implicit solvers described in this dissertation, we are able to
represent the depth and distribution of oceanic trenches—the most extreme topographic features on
Earth’s surface. Trench depth reflects both the downward pull from plate-driving forces [121] and
the variable resistance associated with seismic coupling from great earthquakes [108]. We are able to
forward-predict the width (∼50 km) and depth (∼10 km) of oceanic trenches on a global scale while
predicting plate motions (Figure 9.1). The simultaneous prediction of these quantities—large-scale
flow and fine-scale stress at plate boundaries—in a model with realistic, nonlinear rheology employing
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scalable, robust solvers opens new directions for geophysical research. Solver robustness to thin plate
boundaries is crucial, as can be seen in Figure 9.2, where we observe great sensitivity of the simulation
outcome (in terms of plate velocities) to the width of plate boundary regions. Our scalable solver
in combination with adjoints, which are a byproduct of the Newton solver, will allow systematic
inference of uncertain parameters in global mantle flow systems with tectonic plates. For regional
mantle models, a systematic inference approach for the nonlinear constitutive parameters n and τyield,
and plate coupling factors w (x), for several subduction zones was illustrated [93]. Adjoint-based
inversions will require thousands of forward model solutions, so that availability of the scalable implicit
solver presented here is paramount.

Bringing observations of topography (trench depth), plate motions, and others into a global inversion
will allow the merging of two distinct geophysical approaches at different scales addressing different
questions. First, what is the degree of coupling associated with great earthquakes? In particular, we
seek to determine whether that coupling is due to the frictional properties of the incoming plate or the
magnitude of normal stress across the fault driven by tectonic processes [101,103]. The second question
concerns the forces driving and resisting global plate motion and the degree to which inter-plate
coupling governs plate motions [49, 59, 110]. These questions have eluded solution over the past three
decades. Bridging the local-to-global scales, with modern data sets, will arguably allow us to make an
important leap toward the simultaneous solution of two of the most fundamental questions in Earth
sciences.
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Figure 9.1: Surficial visualization of nonlinear mantle flow simulation: View centered on 180◦W (left)
and 90◦W (right) showing north–westward motion of the Pacific Plate (black arrows) and the total
normal stress field (color coded). This stress is proportional to the dynamic topography and for the
first time we are able to forward predict narrow (∼50 km in width) ocean trenches (narrow lines with
dark blue color) along plate boundaries in a global model with plate motions.

Figure 9.2: Comparison of Earth plate velocities of a low-fidelity model (left) and a high-fidelity model
(right) with thinner plate boundaries. Significant sensitivity of velocities of the Cocos Plate (in center)
are observed. This illustrates the importance of the solver’s ability to handle a wide range of values
for plate boundary width.
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