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ABSTRACT

Motivated by its important role in the collisional growth of dust particles in protoplanetary disks,
we investigate the probability distribution function (PDF) of the relative velocity of inertial particles
suspended in turbulent flows. Using the simulation from our previous work, we compute the relative
velocity PDF as a function of the friction timescales, τp1 and τp2, of two particles of arbitrary sizes.
The friction time of particles included in the simulation ranges from 0.1τη to 54TL, with τη and TL the
Kolmogorov time and the Lagrangian correlation time of the flow, respectively. The relative velocity
PDF is generically non-Gaussian, exhibiting fat tails. For a fixed value of τp1, the PDF is the fattest
for equal-size particles (τp2 = τp1), and becomes thinner at both τp2 < τp1 and τp2 > τp1. Defining
f as the friction time ratio of the smaller particle to the larger one, we find that, at a given f in
1
2 ∼< f ∼< 1, the PDF fatness first increases with the friction time, τp,h, of the larger particle, peaks

at τp,h ≃ τη, and then decreases as τp,h increases further. For 0 ≤ f ∼< 1
4 , the PDF shape becomes

continuously thinner with increasing τp,h. The PDF is nearly Gaussian only if τp,h is sufficiently large
(≫ TL). These features are successfully explained by the Pan & Padoan model. Using our simulation
data and some simplifying assumptions, we estimated the fractions of collisions resulting in sticking,
bouncing, and fragmentation as a function of the dust size in protoplanerary disks, and argued that
accounting for non-Gaussianity of the collision velocity may help further alleviate the bouncing barrier
problem.

1. INTRODUCTION

This is the third paper of a series on turbulence-
induced relative velocity of dust particles. The study
is mainly motivated by the problem of dust particle
growth and planetestimal formation in protoplanetary
disks (e.g., Dullemond and Dominik 2005; Zsom et al.
2010, 2011; Birnstiel et al. 2011; Windmark et al. 2012a,
2012b; Garaud et al. 2013, Testi et al. 2014). In the
first two papers of the series (Pan & Padoan 2013, Pan,
Padoan & Scalo 2014; hereafter Paper I and Paper II,
respectively), we conducted an extensive investigation of
the root-mean-square or variance of the relative velocity
of inertial particles in turbulent flows using both analyt-
ical and numerical approaches. In particular, we showed
that the prediction of the Pan & Padoan (2010) model
for the rms relative velocity is in satisfactory agreement
with the simulation data, confirming the validity of its
physical picture. In Paper I, we also explored the col-
lision kernel for the case of equal-size particles, known
as the monodisperse case, and analyzed the probability
distribution function (PDF) of the turbulence-induced
relative velocity as a function of the particle inertia. The
main goal of the current paper is to study the relative
velocity PDF in the bidisperse case for particles of arbi-
trarily different sizes.
The collision velocity of dust particles in protoplane-

tary disks plays an important role in coagulations mod-
els of particle growth, which is crucial for understanding
the challenging problem of planetesimal formation. The
collision velocity determines not only the collision rate,
but also the collision outcome. As the size grows, the
particles become less sticky, and, depending on the par-
ticle properties and the collision energy, the collisions
may lead to bouncing or fragmentation (Blum & Wurm
2008, Güttler et al. 2010). Due to the stochastic nature
of turbulence-induced relative velocity, the collision out-
comes for dust particles with exactly the same sizes and
properties may be completely different. It is thus not
sufficient to use an average or mean collision velocity to
predict the size evolution of dust particles. Instead, an
accurate prediction would require the PDF of the colli-
sion velocity to evaluate the fractions of collisions result-
ing in sticking, bouncing or fragmentation.
The effect of the collision velocity PDF on particle co-

agulation has been considered by several recent studies
(Windmark et al. 2012b, Garaud et al. 2013). These
studies assumed a Maxwellian distribution for the 3D
amplitude of the collision velocity, or equivalently a
Gaussian distribution for each component1. Implement-

1 For simplicity, we will not distinguish “Maxwellian” for the 3D
amplitude and “Gaussian” for one component, and refer to both
as Gaussian.
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ing the distribution into coagulation models, they found
important differences in the prediction of the dust size
evolution. In particular, they showed that accounting for
the distribution of the collision velocity can soften the
fragmentation barrier and overcome the bouncing bar-
rier (Windmark et al. 2012b). The maximum particle
size that can be reached by collisional growth appears to
be significantly larger than the case using only a mean
collision velocity. This alleviates the so-called meter-size
barrier for planetesimal formation via collisional growth
of dust particles.
The assumption of a Gaussian PDF made in the above-

mentioned papers is not justified for the collision velocity
induced by turbulent motions. For equal-size particles,
turbulence-induced relative velocity has been found to
be highly non-Gaussian, exhibiting extremely fat tails
(Sundaram & Collins 1997, Wang et al. 2000, Cate et al.
2004, Gustavsson et al. 2008, Bec et al. 2010, 2011, de
Jong 2010, Gustavsson et al. 2012, Gustavsson & Mehlig
2011, 2014, Lanotte et al. 2011, Gualtieri et al. 2012,
Hubbard 2012, Salazar & Collins 2012). The earlier
works showed that the PDF for equal-size particles may
be fit by exponential or stretched exponential distribu-
tions (e.g., Sundaram & Collins 1997, Wang et al. 2000,
Cate et al. 2004). A stretched exponent PDF with an in-
dex of -4/3 was predicted theoretically for inertial-range
particles under the assumption of exactly Gaussian flow
velocity and Kolmogorov scaling (Gustavsson et al. 2008,
Paper I). Lanotte et al. (2011) found that the relative ve-
locity for small particles of equal size shows a power-law
PDF in the limit of small particle distance. A power-law
PDF was predicted by recent theoretical models based
on a Gaussian smooth velocity field with rapid temporal
decorrelation (e.g., Gustavsson & Mehlig 2011, 2014).
In Paper I, we conducted a systematic study for the

PDF of equal-size particles as a function of the parti-
cle inertia, and showed that the behavior of the PDF
shape was successfully explained by the model of Pan &
Padoan (2010, hereafter PP10). In this work, we further
analyze the PDF for particles of different sizes, and show
that non-Gaussianity is a generic feature of turbulence-
induced relative velocity, which should be incorporated
into coagulation models for an accurate prediction of the
dust size evolution.
Despite extensive studies on the variance or rms of the

relative velocity of different-size particles (e.g., Völk et
al. 1980, Markiewicz et al. 1991, Zhou et al. 2001, Cuzzi
& Hogan 2003, Ormel & Cuzzi 2007, Zaichik et al. 2006,
2008, Zaichik & Alipchenkov 2009), the PDF in the gen-
eral bidisperse case has received little investigation (see,
however, Johansen et al. 2007). A recent work by Hub-
bard (2013) explored the PDF for particles of different
sizes using a synthetic or “model” flow velocity filed.
However, the results obtained from such an approach
are clearly not accurate because the artificial velocity
field does not correctly account for the non-Gaussianity
or intermittency of turbulent flows, which does leave an
imprint on the relative velocity of inertial particles (Pa-
per I). The commonly-adopted models for the rms rela-
tive velocity (Völk et al. 1980, Ormel & Cuzzi 2007) in
the astronomy community are based on the responses of
particles to turbulent eddies in Fourier space, and do not
provide adequate insight for understanding or predict-
ing the distribution of the relative velocity. A physical

weakness of these models was pointed out and discussed
in PP10 and Paper I. On the other hand, the PP10 model
is based on the statistics of the flow velocity structures
in real space, and we have shown in Paper I that the
physical picture revealed by the model offers a satisfac-
tory explanation for the PDF behavior in the case of
equal-size particles. In Paper II, we further developed
the model, and established physical connections between
the particle relative velocity and the temporal and spa-
tial velocity structures of the carrier flow. In this paper,
we will continue to use the picture of PP10 to interpret
the trend of the relative velocity PDF shape as a function
of the particle friction times in the bisdisperse case.
We use the same simulation as in Papers I and II.

It is carried out using the Pencil code (Brandenburg
& Dobler 2002) with a periodic 5123 box. The sim-
ulated flow is driven and maintained by a large-scale
force, fi, which is generated in Fourier space using all
modes with wave length ≥ half box size. Each mode
gives an independent contribution to the driving force.
At each time step of the simulation, the direction of each
mode is random, and the amplitudes of each mode in
three spatial directions are independently drawn from a
Gaussian distribution. This conventional method of driv-
ing produces a turbulent flow with the broadest inertial
range at a given resolution and with the maximum de-
gree of statistical isotropy. At steady state, the 1D rms
flow velocity is u′ ≃ 0.05, in units of the sound speed,
corresponding to a (3D) rms Mach number of 0.085.
The Taylor Reynolds number of the flow is estimated
to be Reλ ≃ 200, and the regular Reynolds number is
Re ≃ 1000. The integral length, L, of the flow is 1/6
of the box size, and the Komlogorov scale is η ≃ 0.6
times the size of a computational cell, so that L ≃ 140η.
The Kolmogorov scale, η, is computed from its definition,
η ≡ (ν3/ǭ)1/4, using the viscosity, ν, and the average
dissipation rate, ǭ, in the simulated flow. Using tracer
particles, we estimated the Lagrangian correlation time
of the flow, TL, which is relevant for the particle dynam-
ics than the large-eddy turnover time, Teddy(≡ L/u′).
We found TL ≃ 14.4τη, where the Kolmogorov timescale,

τη (≡ (ν/ǭ)1/2), corresponds to the turnover time of the
smallest eddies. The large eddy turnover time, Teddy,
is estimated to Teddy = 20τη. The Kolmogorov velocity

scale, uη (≡ (νǭ)1/4), is related to the 1D rms velocity of

the flow, u′, by u′ = (Reλ/
√
15)1/2uη ≃ 7uη.

The simulated flow evolved 14 species of inertial par-
ticles of different sizes, each containing 33.6 million par-
ticles. We integrated the trajectory of each particle by
solving the momentum equation for the particle velocity,

dv

dt
=

1

τp
[u (X(t), t) − v] (1)

where u(X(t), t) is the flow velocity at the particle po-
sition, X, at time t. The friction timescale, τp, of the
smallest particles in the simulation is ≃ 0.1τη, while that
of the largest particles is ≃ 54TL Defining a Stokes num-
ber as St ≡ τp/τη, this range corresponds to 0.1 ≤ St ≤
795. Spanning 4 orders of magnitude, this range of τp
covers all the length scales of interest in the simulated
turbulent flow. When integrating the particle trajec-
tories, we interpolated the flow velocity inside compu-
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tational cells using the triangular-shaped-cloud (TSC)
method (Johansen and Youdin 2007). Our simulation
run lasted 26Teddy (or 35TL). At the end of the run, all
the statistical measures reached a quasi steady-state and
the dynamics of all particles was relaxed. For our sta-
tistical analysis, we use three well-separated snapshots
toward the end of the run.
Following Paper II, we name two nearby particles un-

der consideration as particles (1) and (2), and denote
their friction times as τp1 and τp2. The particle po-
sition, their velocity and the flow velocity at the par-

ticle position are denoted by X
(1,2)(t), v

(1,2)(t), and

u
(1,2)(t)(≡ u(X(1,2)(t), t)), respectively. We set the

time at which the relative velocity is measured to be
time zero, i.e., t = 0. The particle separation and
the relative velocity at t = 0 are denoted by r(=

X
(2)(0) − X

(1)(0)) and w(= v
(2)(0) − v

(1)(0)). The
separation of the two particles as a function of time is

d(t) = X
(2)(t) − X

(1)(t), and d(0) = r. The spatial
flow velocity difference across the particle distance is de-
noted by ∆u(d(t)) = u

(2)(t) − u
(1)(t). We denote as

∆
(1,2)
T u(∆τ) = u

(1,2)(t + ∆τ) − u
(1,2)(t) the temporal

flow velocity difference at a time lag of ∆τ along the tra-
jectories of particles (1) and (2), respectively. We also
consider the relative velocity, wf = v(0) − u(X(0), 0),
between a particle and the flow element at the particle
location. For convenience, we denote the friction times
(Stokes numbers) of the smaller and larger particles as
τp,l and τp,h (Stℓ and Sth), where the subscripts “l”
(or “ℓ”) and “h” (or “h”) stand for low and high, re-
spectively. We define a friction time or Stokes ratio as
f ≡ τp,l/τp,h = Stℓ/Sth. By definition, 0 ≤ f ≤ 1. It
is also convenient to define the ratio, Ω ≡ τp/TL, of the
friction time to the Lagrangian correlation time.
In §2, we review the physical picture of the PP10 model

for turbulence-induced relative velocity in the bidisperse
case. In §3, we discuss several interesting limits, and,
in particular, we present our simulation result for the
PDF of the particle-flow relative velocity, wf . In §4, we
compute the particle relative velocity PDF for all friction
time (or Stokes number) pairs available in our simulation,
and interpret the results using the physical picture of
PP10. The implications of our results for dust particle
collisions in protoplanetary disks are discussed in §5. We
summarize the main conclusions of this study in §6.

2. THE PHYSICAL PICTURE OF THE PP10 MODEL

In Papers I and II, we introduced and further devel-
oped the formulation of Pan & Padoan (2010, PP10)
for the relative velocity of inertial particles induced by
turbulent motions. We showed in Paper II that the
model prediction for the root-mean-square relative ve-
locity agrees well with our simulation results for particles
of arbitrarily different sizes. Here, we briefly review the
physical picture revealed by the PP10 model, and refer
the reader to Papers I and II for further details. The
physical picture will be used to qualitatively interpret
the trend of the relative velocity PDF measured from
our simulation data.
In the formulation of PP10, the relative velocity, w, for

particles of different sizes can be approximately written
as the sum of two terms, w = wa+ws, where wa and ws

are named the generalized acceleration and shear con-

tributions, respectively. The two contributions reduce
to the corresponding terms in the formula of Saffman &
Turner (1956) in the limit of small particles with τp much
smaller than the Kolomogorov time of the flow, τη. The
generalized acceleration term reflects different responses
of particles of different sizes to the flow velocity. In Pa-
per II, we showed that wa is physically associated with
the temporal flow velocity difference, ∆Tu, on individual
particle trajectories (see Fig. 1 of Paper II for an illus-
tration). Based on a calculation of the contribution of
the acceleration term to the rms relative velocity, we es-
tablished in Paper II an approximate expression for wa,

wa ≃ 1− f

[(1 + Ωl)]1/2
∆uT(τp,h) (2)

where f is the friction time ratio and Ωl = τp,l/TL. The
factor, 1 − f , indicates that wa depends on the friction
time difference, and it vanishes for equal-size particles.
The equation connects wa to ∆Tu(∆τ) at a time lag,
∆τ , equal to the friction time, τp,h, of the larger par-
ticle. The probability distribution of the acceleration
contribution is thus related to the PDF of ∆uT. In eq.
(2), we ignored the possible difference in the statistics of

∆u
(1)
T and ∆u

(2)
T along the trajectories of two different

particles, and ∆Tu here should be viewed as the average

of ∆u
(1)
T and ∆u

(2)
T (Paper II). In the limit τp,h → 0,

the particle trajectories are close to the Lagrangian tra-
jectories, and we have ∆uT(τp,h) → ∆uL(τp,h) → aτp,h,
where ∆uL is the Lagrangian temporal flow velocity dif-
ference and a is the local flow acceleration. Therefore,
eq. (2) gives wa ≃ a(τp,h − τp,l) for small particles with
τp,l, τp,h ≪ τη, consistent with the Saffman-Turner for-
mulation (see also Weidenschilling 1980).
Physically, the generalized shear term represents the

particles’ memory of the spatial flow velocity difference,
∆u(d(t)), across the distance, d(t), of the two particles
at given times t ≤ 0 in the past (see Fig. 1 of Paper I
and Fig. 2 of Paper II for illustrations for the mono- and
bi- disperse cases, respectively). In the case of equal-size
particles, the generalized shear term is the only contribu-
tion to the relative velocity. As discussed in Paper I, the
relative velocity of a particle pair of equal size can be
approximated by w ≃ ∆u(rp)[tp/(tp + τp,h)]

1/2, where
rp, named the primary distance, is defined as the sep-
aration of the particle pair at a friction timescale ago,
i.e., rp ≡ d(−τp). This distance is of particular impor-
tance because it is the largest distance before the particle
memory cutoff takes effect at t ∼< − τp. The estimate of
rp depends on how the particle pair separates backward
in time. Due to the particle inertia, an initial ballistic
separation is expected, and, assuming that the duration
of the ballistic behavior is ≃ τp, the primary distance is

estimated as rp = (r2 + w2τ2p)
1/2, where r is the parti-

cle distance at the current time. Note that the primary
distance rp of a particle pair depends on their relative
velocity, w, at t = 0, which has important implications
for the relative velocity PDF (see Paper I and discus-
sions in §3.2). The timescale tp is the correlation time
of the flow velocity structures at the scale rp, which is
essentially the turnover time of turbulent eddies of size
rp. The [tp/(tp+τp)]

1/2 factor is due to the cutoff by the
flow “memory”, which in effect causes a reduction in the
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time range of the particle memory that can contribute to
the relative velocity when tp ∼< τp (see Paper I).
Similar to the monodisperse case, Paper II proposed

an approximate equation for ws for particles of different
sizes. Based on eq. (37) in Paper II, we have2,

ws ≃ ∆u(rp)

(
tp

tp + τp,h

)1/2

. (3)

As discussed in Paper II, the primary distance rp for the
bidisperse case is mainly determined by the smaller par-
ticle, and a rough estimate is rp = (r2+w2τ2p,l)

1/2, where

w = (w2
a +w2

s )
1/2 is the 3D amplitude of the relative ve-

locity of the particle pair including both the acceleration
and shear contributions3 Since rp depends on the am-
plitude of ws, eq. (3) is an implicit equation. As in the
monodisperse case, the last factor in eq. (3) represents
the effect that the flow memory cutoff may reduce the
range of the larger particle’s memory (around the mem-
ory time of the smaller particle) that can contribute to
the relative velocity. The direction of rp with respect
to r is stochastic due to the “turbulent” separation of
the particle pair backward in time. In the small par-
ticle limit τp,h, τp,l → 0, we have rp → r, and ws is
approximately equal to ∆u(r), meaning that the shear
term follows the spatial flow velocity difference across the
particle distance (Saffman & Turner 1956). For r below
the Kolmorgorov scale, the flow velocity is smooth and
∆u(r) is linear with r, i.e., ∆ui ≃ ∂juirj , with ∂jui the
local velocity gradients. The distribution of ws in the
small particle limit is thus related to the PDF of ∆u(r)
or equivalently the PDF of the velocity gradients.
There are several interesting qualitative differences be-

tween the generalized acceleration and shear terms. A
fundamental difference is that the acceleration term is
determined by the flow velocity along individual particle
trajectories, while the shear term depends on the trajec-
tories of the two particles relative to each other, as seen
from the dependence of ws on rp. The shear contribu-
tion is thus more complicated. For example, for small
particles, ws has a r−dependence, and it also depends
on whether the particles are approaching or separating
from each other. In contrast, the generalized accelera-
tion term is independent of the particle distance r or the
relative motion of the two particles. Also, the direction
of ∆uT in eq. (2) is random with respect to r, and thus
wa provides equal contributions to the radial (wr) and
tangential (wt) components of the relative velocity along
and perpendicular to r, respectively. On the other hand,

2 Here, we replaced Rp and Tp in eq. (37) of Paper II by rp
and tp, respectively. In Paper II, Rp denotes the average primary
distance over all particle pairs at a given distance, r, and the same
average is implied in the timescale Tp. Therefore, eq. (37) of Paper
II is an approximation for the overall average shear contribution.
Here, in order to understand the PDF of the relative velocity, we are
interested in individual particle pairs, and thus used the primary
distance rp and the timescale tp for a single particle pair to replace
Rp and Tp. With this replacement, ws in eq. (3) corresponds to
the generalized shear contribution for each individual pair.

3 Since the rate of the ballistic backward separation in the bidis-
perse case has a contribution from the acceleration term, the dis-
tribution of ws is complicated. Rigorously, for particles of different
sizes, it depends not only on the sptatial flow velocity structures
but also on the statistics of wa. On the other hand, the distribu-
tion of wa is simpler, as it is completely controlled by ∆Tu (see
eq. (2)).

the shear contributions to the two components may dif-
fer for small particles because the longitudinal (∆ur) and
transverse (∆ut) velocity difference in a turbulent flow
across a small distance are nonequal (Papers I and II).

3. THREE LIMITING CASES

In this section, we consider three special cases of in-
terest, i.e., the particle-flow relative velocity, the relative
velocity between equal-size particles, and a case where
one of the particles is extremely large with τp → ∞.
These limiting cases are helpful for the understanding of
the general behavior of the relative velocity PDF in the
bidisperse case.

3.1. The Particle-flow Relative Velocity

The relative velocity, wf , between an inertial parti-
cle and the instantaneous local flow velocity is a special
bidisperse case with one of the particles, say particle (2),
being a tracer particle with τp2 = 0, and at the same po-
sition as particle (1). We refer to this limiting case with
St2 → 0 as Limit I. In this limit, only the generalized
acceleration term contributes4, and it thus gives useful
information for the distribution of wa for particles of dif-
ferent sizes. As discussed in Paper II, for a particle with
a friction time τp, wf can be approximately estimated by
the temporal flow velocity difference, ∆Tu(∆τ), on the
particle trajectory at ∆τ ≃ τp. This can be seen from
eq. (2) with f = 0, Ωl = 0, and τp,h = τp.
Using our simulation data, we computed the PDF of

wf . The flow velocity at the position of each particle
was obtained by the same interpolation method (TSC)
used in the simulation. The computed relative velocity
is at zero particle-flow distance. In the left panel of Fig.
1, we plot the PDF, P (wf , τp), of one component, wf ,
of the particle-flow relative velocity for 6 particles with
St = 0.1, 0.39, 1.55, 6.21, 24.9, and 795. Note that here
wf is not the 3D amplitude of wf . Each curve shows the
PDF averaged over the three components ofwf along the
base directions of the simulation grid. The PDF of wf is
symmetric for all particles, as expected from isotropy for
a 1-point statistical quantity. The width or rms of the
PDF increases with St, corresponding to the increase of
∆uT with the time lag (see Paper II). The dotted black
line is the Gaussian fit to the St = 795 case.
To see the PDF shape more clearly, the right panel of

Fig. 1 plots the normalized PDF, P (w̃f , τp), with unit
variance, where w̃f ≡ wf/w

′
f , with w′

f the rms of wf . For
clarity, we briefly introduce our terminology for the de-
scription of the PDF shape. Following Paper I, we use
“fat” or “thin” to specifically describe the shape of the
PDF, while the extension or width of the PDF, corre-
sponding to the rms, will be described as “broad” or
“narrow”. Conventionally, the fatness of a PDF is used
as a measure of the departure from a Gaussian distri-
bution, and in particular, it refers to higher probabilities
than a Gaussian distribution at the tail part of the PDF.

4 The generalized shear term is determined by the flow velocity
differences the two particles saw within their friction times. Due
to the zero memory time of the tracer particle, the shear term
depends on the flow velocity difference across the particle distance
at time zero. It thus vanishes if the tracer particle is at the same
position as the inertial particle at time zero. This can also be also
be seen from eq. (3), as the primary distance rp → 0 in this case.
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Fig. 1.— The PDF of one component, wf , of the particle-flow relative velocity as a function of St. In the left panel, wf is normalized
to uη and u′ on the bottom and top X-axes, respectively. In the right panel, wf is normalized to its rms value (i.e., w̃f ≡ wf/w

′
f
), so that

each PDF has a variance of unity. The top curve in this panel plots the actual PDF values for St = 0.1, and, for clarity, each curve below
is shifted downward by a factor of 4. The black dashed line is the stretched exponential fit with α = 4/3 to the PDF tails of St = 12.4
particles. In both panels, the black dotted line is the Gaussian fit for the largest particle (St = 795) in our simulation.

The fatness of a PDF may be quantified, e.g., by its kur-
tosis, and a fatter PDF has a larger kurtosis. Typically,
a larger kurtosis corresponds to a fatter tail part, and
at the same time a sharper or thinner shape at the in-
ner part of the PDF. Despite a sharper inner part, the
convention is to describe the PDF with a larger kurtosis
as fatter based on the tail part. In the right panel of
Fig. 1, we see that, for small particles, the PDF is highly
non-Gaussian with fat tails. For example, for St = 0.1,
the kurtosis of the PDF is ≃ 5.6. As St increases, the
PDF shape becomes thinner and thinner. The bottom
line in the right panel corresponds to the largest parti-
cles (St = 795) in our simulation, and the PDF for these
particles is Gaussian (the black dotted line). In fact,
P (wf , τp) becomes close to Gaussian at St ∼> 99.4 (or
Ω ∼> 6.9).
From the PP10 picture, the PDF of wf is controlled

by the distribution of ∆Tu, which, however, is unknown.
For very small particles with τp ≪ τη, one may ap-
proximate ∆Tu(∆τ) by the temporal velocity difference,
∆Lu(∆τ), along Lagrangian trajectories of tracers. On
the other hand, due to their slow motions, the flow veloc-
ity seen by large particles with τp ≫ TL may be better
described as Eulerian, and ∆Tu(∆τ) is likely close to
the Eulerian temporal flow velocity difference ∆Eu(∆τ)
at fixed points. In Appendix A, we compute the PDFs
of ∆Lu and ∆Eu in our simulated flow and show that
both PDFs are non-Gaussian at small time lags ∆τ . The
PDF tails of both ∆Lu and ∆Eu have a thinning trend
with increasing ∆τ and reach Gaussianity at ∆τ ≫ TL

(see, e.g., Mordant et al. 2001, Chevillard et al. 2005).
The non-Gaussianity of ∆Lu and ∆Eu and their trend
with ∆τ is a well-known phenomenon in turbulent flows,
usually referred to as intermittency (e.g., Frisch 1995).
The behavior of the PDFs of ∆Lu and ∆Eu explains
the non-Gaussianity of wf and the thinning of P (wf , τp)
with increasing St. In this sense, the particle-flow rela-
tive velocity “inherits” non-Gaussianity from the turbu-
lent flow. From eq. (2), the PDF trend of wf suggests

that the distribution of the acceleration contribution wa

becomes thinner and thinner with increasing τp,h.
A comparison of the normalized PDF of wf with that

of ∆Lu (Appendix A) at a time lag ∆τ = τp shows that,
for St ∼< 6.21, the tails of P (w̃f , τp) are thinner than

P (∆̃Lu, τp). The physical reason is that inertial particles
do not exactly follow the fluid elements. In particular,
inertial particles tend to be pushed out of regions of high
vorticity by a centrifugal force arising from the rotation
(e.g., Pan et al. 2011). Therefore, they do not experience
the flow velocity in strong vortex tubes at small scales,
which are intense structures responsible for the high non-
Gaussianity (or intermittency) of ∆Lu in turbulent flows
(Bec et al. 2006). This effect contributes to make the
PDF of wf thinner. For particles with St ∼> 6.21, the
PDF shape for wf and ∆Lu(∆τ = τp) are close to each
other, and this is because both the dynamics of these
larger particles and the temporal flow velocity structures
at larger timescales are less sensitive to the intense, co-
herent vortices at small scales.
For all particles, the innermost part of the PDF of

wf shows a smooth Gaussian-like shape, suggesting that
the PDF of trajectory temporal velocity difference, ∆Tu,
also takes a similar shape in the inner part. This is sup-
ported by the observation in Appendix A that the central
parts of the PDFs of ∆Lu and ∆Eu have a more-or-less
Gaussian shape. The fat non-Gaussian PDF tails of wf

can be fit by stretched exponential functions defined as,

Pse(x) =
α

2βΓ(1/α)
exp

[
−
( |x|

β

)α]
, (4)

where Γ is the Gamma function (Paper I). The variance
of Pse is given by β2Γ(3/α)/Γ(1/α). The parameter α
controls the fatness of the PDF, and a smaller α corre-
sponds to fatter tails. As expected, the α value for the
tails of P (wf , τp) increases with increasing τp or St. For
the eight lines shown in the right panel of Fig. 1, the
best-fit α for the PDF tails are 0.7, 0.78, 0.95, 1.23, 1.33,
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1.7, 1.95 and 2 for St = 0.10, 0.39, 1.55, 6.21, 12.4, 24.9,
99.4, and 795, respectively.
The black dashed line in Fig. 1 is the stretched expo-

nential function with α = 4
3 that best fits the PDF tail of

St = 12.4 particles. The friction time of these particles
is close to the Lagrangian correlation time TL of the flow.
In Paper I, we found that this stretched exponential can
also well fit the relative velocity PDF of equal-size par-
ticles with St = 12.4 and St = 24.7 (see also §3.2). This
similarity in the shape of the PDF tails for wf and the
monodisperse relative velocity of τp ≃ TL particles is of
particular interest. Its implication will be discussed in
§4.2.1.
Finally, we point our that, if the flow velocity were ex-

actly Gaussian, then the temporal flow velocity difference
would be Gaussian, and our model picture indicates that
the PDF of the particle-flow relative velocity would be
Gaussian for particles of any sizes. In that case, the rela-
tive velocity PDF between different particles approaches
Gaussian once the generalized acceleration contribution
dominates. This suggests that using a Gaussian model
flow velocity (see, e.g., Hubbard 2013) to study the parti-
cle relative velocity PDF would underestimate the degree
of non-Gaussianity.

3.2. Equal-size Particles

The relative velocity PDF of equal-size particles has
been discussed in details in Paper I. For convenience,
we refer to this monodisperse case with St2 = St1 as
Limit II. In Paper I, we found that the relative veloc-
ity PDF of identical particles is extremely non-Gaussian.
We identified two sources of non-Gaussianity, i.e., the
imprint of the non-Gaussianity (or intermittency) of the
turbulent flow and an intrinsic contribution arising from
the particle dynamics. Our simulation data showed that
the fatness of the monodisperse PDF first increases with
St, reaches a peak at St ≃ 1, and then continuously
decreases as St increases above 1. In the following, we
briefly review the explanation for this behavior based on
the PP10 picture.
For equal-size particles, only the shear term con-

tributes, and the relative velocity, w, can be estimated by
eq. (3) for ws. For a particle pair with τp ∼< TL, the factor
tp/(tp+ τp) in eq. (3) is of oder unity, and, qualitatively,
w can be approximated by the spatial flow velocity differ-
ence, ∆u(rp), across the primary distance, rp (Paper I).

At a given r, the primary distance, rp ≃ (r2 +w2τ2p )
1/2,

of particle pairs with |w| ∼< r/τp is close to r. Therefore,
the inner part of the PDF with |w| ∼< r/τp follows ∆u at
a distance of r. The distribution of ∆u at small scales is
already non-Gaussian (e.g., Frisch 1995), and it leaves a
non-Gaussian imprint on the PDF of w. Particle pairs ly-
ing at higher PDF tails separate faster backward in time
and have larger rp, so their relative velocity “remembers”
∆u(ℓ) at larger scales ℓ. Here, ∆u(ℓ) denotes a compo-
nent of ∆u(ℓ) ≡ u(x + ℓ, t) − u(x, t) at a separation ℓ.
Since the PDF of ∆u is wider at larger ℓ, this leads to
an enhancement at the tail part of the PDF. The effect,
named as a self-amplification in Paper I, corresponds to
the sling effect or caustic formation that occurs in flow re-
gions with large velocity gradients, ∂jui (Falkovich et al.
2002, Wilkinson & Mehlig 2005, Wilkinson et al. 2006,
Falkovich & Pumir 2007, Bewley et al. 2013). As St

increases, the self-amplification proceeds from the tails
toward smaller |w|, while the innermost part of the PDF
remains unchanged at first. As a result, the overall shape
of the PDF becomes fatter.
The fattening trend ends at St ≃ 1. As St increases

above 1, the amplification moves deeper toward the cen-
tral part, and the PDF at the same value of w samples
∆u at larger scales. Since the PDF shape of ∆u(ℓ) is
progressively thinner with increasing ℓ (see Appendix B
of Paper I), this causes the overall fatness of the PDF of
w to decrease continuously at St ∼> 1. The PDF shape
is thus the fattest at St ≃ 1.
For particles with τp close to TL, the PDF tails of

w were found to be well described by a 4/3 stretched
exponential distribution (see eq. (4)). Such a distribu-
tion were obtained in Paper I from a phenomenolog-
ical argument based on the PP10 picture. Assuming
exactly Gaussian flow velocity and Kolmogorov scaling
for ∆u(ℓ)2 ∝ C(ǭℓ)2/3 with C the Kolmogorov constant,
the probability of finding a particle pair with a relative
velocity of w is estimated as ∝ exp[−w2/(2Cǭ2/3(r2 +
w2τ2p)

1/3)], which is a 4/3 stretched exponential at w ≫
r/τp (see also Gustavsson et al. 2008). Using the same
argument, one can show that non-Gaussianity is an in-
trinsic feature of the particle dynamics: Even if the flow
velocity were exactly Gaussian, the particle relative ve-
locity would be non-Gaussian for any scaling behavior of
∆u(ℓ) with ℓ (unless it is constant with ℓ as in the case
of a white noise).
Finally, for τp ≫ TL, the flow correlation or memory

time is typically shorter than the particle memory, and
the last factor in eq. (3) reduces the PDF width by a
factor of (TL/τp)

1/2. In the limit τp → ∞, the par-
ticle motions are similar to Brownian motion, because
even the largest eddies in the flow act as random noise
when viewed over the friction time of these large par-
ticles. Therefore, the relative velocity PDF is expected
to approach Gaussian as τp → ∞. A Gaussian shape is
almost reached for the largest particles with τp = 54TL

in the simulation of Paper I.
The comparison between Limits I and II at equal τp is

useful to understand the PDF trend in the general bidis-
perse case (see §4). For a small particle with τp → 0,
the PDFs of its relative velocity with respect to the local
flow velocity and to a nearby particle of the same size are
determined by the distributions of the flow acceleration,
a, and the velocity gradients, ∂jui, respectively (see §2).
In Appendix B, we compute the normalized PDFs of a
and ∂jui in our simulated flow, and show that the distri-
bution of a is generally fatter, consistent with previous
studies (e.g., Ishihara et al. 2007). This suggests that,
in the St → 0 limit, the PDF of wf has a fatter shape
than the relative velocity of equal-size particles. As St
increases toward ≃ 1, the PDF for equal-size particles
fattens significantly due to the tail amplification (see dis-
cussion above), while the PDF for the particle-flow rela-
tive velocity becomes thinner continuously (see Fig. 1).
The opposite trends of the two PDFs for St ∼< 1 have an
important consequence. The PDF for equal-size parti-
cles is found to be already fatter than the distribution of
wf at the smallest Stokes number, St = 0.1, in our sim-
ulation, and, at St ≃ 1, the former has a much stronger
non-Gaussianity than the latter. For St above 1, the
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PDF fatness for both cases decreases with increasing St,
and we will show in §4.1.1 that the relative velocity PDF
of equal-size particles remains to be significantly fatter
than wf at all St ∼> 1. Thus, for all particle species in
our simulation, the PDF for Limit II has a higher degree
of non-Gaussianity than for Limit I.

3.3. The τp2 → ∞ Limit and the One-particle Velocity

If one of the two particles, say particle (2), is extremely
large with τp2 ≫ TL, its velocity is tiny, and the relative
velocity with respect to the smaller particle (1) is essen-
tially the one-particle velocity, v(1), of particle (1). We
refer to this case as Limit III, corresponding to St2 → ∞.
Paper I found that the PDF of the one-particle velocity,
v, for particles of any size is Gaussian. As discussed in
Paper I, this is easy to see in the small and large par-
ticle limits. Small particles closely follow the local flow
velocity, and the PDF of v is approximately given by
the 1-point PDF of the flow velocity, u, which is known
to be approximately Gaussian. On the other hand, the
motions of large particles with τp ≫ TL are similar to
Brownian motion, because, for these particles, turbulent
eddies of all sizes act as random noise when viewed over
a timescale of ≃ τp. Therefore, the one-particle velocity
PDF in the large particle limit is also Gaussian. The
Gaussianity of the one-particle velocity v for particles of
any size suggests that, for any given St1, the bidisperse
relative velocity PDF approaches Gaussian as St2 → ∞.

4. THE PDF OF THE PARTICLE RELATIVE VELOCITY

We analyze the probability distribution function of the
particle relative velocity for all Stokes number pairs in
our simulation. To compute the relative velocity statis-
tics, we search pairs of particles from all species at given
distances, r. We will consider r = 1, 1

2 , and 1
4η. It

would be useful to measure the PDF at even smaller r
because the size of dust particles in protoplanetary disks
is much smaller than the Kolmogorov scale of protoplan-
etary turbulence. However, the number of particle pairs
available in the simulation decreases with decreasing r,
and, at r ≪ 1η, the number is too limited to provide
sufficient statistics. We will thus show simulation results
for 1

4η ≤ r ≤ 1η, and discuss the r−dependence (or con-
vergence) of the PDF in this range.
For each particle (1), we locate particles (2) in a dis-

tance shell [r − dr/2, r + dr/2]. The shell thickness, dr,
is set to 0.08r, 0.08r, and 0.16r for r = 1, 1

2 , and
1
4η,

respectively. For r = 1
4η with dr = 0.16r, the number of

particle pairs for any two species is ∼> 104, about suffi-
cient for the PDF measurement. We examine the PDFs
of the radial and tangential components, as well as the
3D amplitude, of the relative velocity. The 3D amplitude
is of practical interest as it determines the total collision
energy and hence the collision outcome. The PDFs of
the radial and tangential components, on the other hand,
are helpful for a thorough understanding of the under-
lying physics. In particular, the features of the radial
and tangential PDFs provide very useful tests for the
PP10 picture. To obtain the radial and tangential com-
ponents, we set up a local coordinate system for each se-
lected pair. In terms of the grid base vectors, e1, e2, and
e3, the local system is taken to be e

′
1 = cos θ cosφe1 +

cos θ sinφe2 + sin θe3, e
′
2 = − sinφe1 + cosφe2 and

e
′
3 = − sin θ cosφe1 − sin θ sinφe2 + cos θe3. The Euler

angles are defined as sin θ = r3/r, cos θ = (r21 + r22)
1/2/r,

cosφ = r1/(r
2
1 + r22)

1/2, and sinφ = r2/(r
2
1 + r22)

1/2, with
r1, r2 and r3 the components of r in the grid coordinate.
We decompose w as wr = w · e′1, wt2 = w · e′2, and
wt3 = w ·e′3. The tangential PDF, P (wt;St1, St2), is set
to the average of P (wt2;St1, St2) and of P (wt3;St1, St2).
The analysis is the same as in Paper I for equal-size par-
ticles. In §4.1, we fix the Stokes number, St1, of particles
(1), and examine the trend of the relative velocity PDF
as a function of St2. In §4.2, we will show the PDFs at
fixed Stokes number ratios, f ≡ Stℓ/Sth. We will pay
particular attention to the non-Gaussianity of the PDF,
and discuss how the PDF shape changes with the Stokes
numbers. As a reminder, in our terminology, a “fat” (or
“thin” ) PDF shape refers to higher (or lower) probabil-
ities specifically at the tail part of the PDF.

4.1. The PDF at Fixed St1

If one of the Stokes numbers is fixed at St1, the three
interesting limits, i.e., St2 → 0, St2 = St1, and St2 →
∞, discussed in §3 are useful to confine the trend of the
PDF shape as a function of St2. These cases were named
as limits I, II, and III, respectively. The shape of the PDF
for 0 ≤ St2 ≤ St1 is expected to lie in between Limit I
and Limit II, while St1 ≤ St2 < ∞ corresponds to a
range between Limits II and III.

4.1.1. The PDFs of the radial and tangential relative speeds

In Fig. 2, we plot the PDFs, P (wr;St1, St2), of the
radial relative velocity for St1 fixed at 1.55. The rela-
tive velocity is measured at r = 1η. The left and right
panels show results for St2 ≤ St1 and St2 ≥ St1, re-
spectively. In both panels, the solid black line is the
PDF for identical particles with St = 1.55, correspond-
ing to Limit II. The monodisperse PDF at St = 1.55 is
highly non-Gaussian, and the physical origin of the non-
Gaussianity has been explained in §3.2 using the PP10
picture. This PDF is also negatively skewed. The left
and right wings of the PDF correspond to approaching
and separating particle pairs. The asymmetry of the two
wings indicates faster relative velocity for approaching
pairs. As discussed in Paper I, there are two reasons
for this asymmetry. First, the radial relative speed PDF
for small equal-size particles inherits a negative skewness
from the PDF of the longitudinal flow velocity difference
or gradients of the flow (see Appendix B and Paper I).
Second, approaching particle pairs have a larger separa-
tion in the near past than separating pairs. This suggests
that, for small particles, the primary distance, rp, of ap-
proaching pairs is larger than separating ones, which en-
hances the asymmetry as St increases at small St ∼< 1.
As St keeps increasing, the particle distance (rp) at a
friction time ago is less dependent of the particle separa-
tion in the near past, and the asymmetry decreases (see
Figs. 4 and 5).
The black dashed line in the left panel plots the PDF

of the radial component, wf,r, of the relative velocity be-
tween St = 1.55 particles and the flow element, corre-
sponding to Limit I with St1 = 1.55 and St2 → 0. For
a consistent comparison with the particle-particle case,
here the PDF of wf,r is measured at the same distance,
r = 1η. It is thus not the same as the particle-flow rela-
tive velocity PDFs shown in Fig. 1 at zero distance. To
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Fig. 2.— PDF of the radial relative speed at r = 1η as a function of St2 for St1 = 1.55. The left and right panels show results for
St2 ≤ St1 and St2 ≥ St1, respectively. The solid black curves in both panels correspond to the same monodisperse PDF at St = 1.55.
Note that, for clarity of the PDF shapes for St2 ≤ St1, the left panel shows a narrower range of wr than in the right panel. The dashed
black line in the left panel is the PDF of the particle-flow relative velocity of St = 1.55 particles, while the dashed line in the right panel
shows the best-fit Gaussian PDF for St1 = 1.55 and St2 = 795.
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Fig. 3.— PDF of the tangential relative velocity for approaching particle pairs (wr < 0) with one of the Stokes number St1 fixed at 1.55.
The figure is plot in the same way as Figure 2.

compute wf,r at a finite distance, we used the TSC in-
terpolation to obtain the flow velocities at a separation
of r from the position of each particle in the three base
directions of the simulation grid. We then averaged the
PDFs of wf,r measured from the three directions. Unlike
the particle-flow relative velocity at zero distance, here
the PDF of wf,r at r = 1η for St = 1.55 is asymmet-
ric. This is because, at a finite distance, the generalized
shear term has a nonzero contribution (see eq. 3) to the
relative velocity, which gives rise to a noticeable nega-
tive skewness in the PDF of wf,r for small particles with
St ∼< 3.11.
As expected, the bidisperse PDFs in the left panel of

Fig. 2 lie in between Limit II (black solid line) and Limit
I (dashed solid line). Since a negative skewness exists in
both limits, the PDF is asymmetric for all St2 ≤ St1.

At the smallest St2 (= 0.1; the blue line) shown in the
figure, the radial PDF, P (wr;St1, St2), approaches Limit
I. As St2 decreases below St1, the central part of the
PDF widens, and the rms of the PDF increases (Paper
II). This corresponds to the increase in the contribution
of the generalized acceleration term, wa. As discussed in
§2, wa is related to the temporal flow velocity difference,
∆Tu, on the particle trajectory. Applying eq. (2) to
the Stokes number pairs in the left panel of Fig. 2, we
have wa ≃ (1 − f)∆Tu(τp1), where f = St2/St1 for
St2 ≤ St1. Clearly, as St2 decreases, f decreases and
the contribution of wa increases. On the other hand,
it can be seen from eq. (3) that the shear contribution
decreases with decreasing St2 (see Paper II).
The black solid line for Limit II has a fatter overall

shape than the black dashed line for Limit II (see the
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discussion at the end of §3.2), suggesting that the dis-
tribution of the generalized acceleration contribution is
thinner than the shear contribution. As wa increases
with decreasing St2, the overall fatness of the relative ve-
locity PDF decreases. Interestingly, despite the increase
in the rms width, the probability at the far tails of the
relative velocity PDF becomes smaller at smaller St2, in-
dicating a lower probability of finding particle pairs that
collide with extremely high velocity. In general, whether
the probability at the far tails increases or decreases with
decreasing St2 is determined by the competition of two
effects. First, if the PDF shape is given, an increase in
the rms tends to give a larger probability at the far tails.
On the other hand, if the rms is fixed, the thinning of
the PDF shape would lead to a lower probability at high
tails. It appears that the effect of thinning PDF shape
wins in the case of St1 = 1.55 and St2 ≤ St1.
The right panel of Fig. 2 shows the radial relative

speed PDF for St2 ≥ St1 = 1.55. As St2 increases,
the PDF becomes wider, and its shape becomes thin-
ner. This is again due to the increase in the contribution
from the acceleration term. Using eq. (2) here, we have
wa ≃ (1 − f)∆Tu(τp2), where f = St1/St2. As St2 in-
creases, both the time lag in ∆Tu and the factor 1 − f
increase, leading to the increase of the rms width of the
PDF. The PDF shape of ∆Tu(τp2) is expected to become
thinner with increasing τp2. This is based on the observa-
tion of the thinning trend of the Eulerian and Lagrangian
temporal velocity differences with increasing time lag ∆τ
(see Appendix A). The argument was used earlier to ex-
plain the thinning trend of the particle-flow relative ve-
locity with particle inertia (see §3.1). The thinning of
the distribution of ∆Tu(τp2) with increasing St2 makes
the PDF of the relative velocity thinner. At St2 ≥ 49.7,
the PDF is close to Gaussian, consistent with the expec-
tation for Limit III (§2.3). The black dashed line in the
figure is the Gaussian fit to the St2 = 795 case. We note
that the PDF becomes symmetric for St2 ∼> 6.21.
Since the PDF shape becomes thinner for St2 both

above or below St1, the fatness of the PDF peaks at
equal-size particles. The PDF shapes in both limits I
and III are thinner than Limit II. A computation of the
skewness of the radial PDFs shows that it decreases as
the Stokes number difference increases. This is because
the generalized acceleration is independent of the rela-
tive motions of the two particles and thus provides a
symmetric contribution to the two wings of the radial
relative velocity PDF (see discussion in §2).
In Fig. 3, we show the PDF of the tangential relative

speed, P (wt|wr ≤ 0;St1, St2) at a distance of r = 1η for
St1 = 1.55. The conditioning on a negative radial rela-
tive speed (wr ≤ 0) indicates that only particle pairs ap-
proaching each other are counted. Since only approach-
ing particles may lead to collisions, it is of practical in-
terest to separate them out from the pairs moving away
from each other. Fig. 3 is plot in the same way as Fig.
2. The trend of P (wt|wr ≤ 0;St1, St2) as a function
of St2 is similar to that of P (wr;St1, St2). Unlike the
radial component, the two wings of the tangential PDF
are symmetric, as expected from statistical isotropy. We
find that, for any St2, the left wing of P (wr;St1, St2)
coincides with that of P (wt|wr ≤ 0;St1, St2). The coin-
cidence in the monodisperse case was found in Paper I for

all particles with St ∼> 0.1 in our simulation.5 For the
bidisperse case, the generalized acceleration term gives
equal contributions to wr and wt (§2), and it thus en-
hances the equalization of the radial and tangential PDF.
The central part of the monodipserse PDF is very

sharp with a cusp-like shape6 (see also Fig. 4 for the
St1 = 6.21 case, where the cusp in the monodisperse
PDF is even sharper). In the bidisperse case, the cen-
tral cusp smoothes rapidly as the Stokes number differ-
ence increases. This is caused by the contribution of
the acceleration term. As argued in §3.1, the PDF of the
temporal trajectory velocity difference, ∆Tu, is expected
to take a smooth, Gaussian-like shape in the innermost
part. Then, since wa ∝ ∆Tu (eq. (2)), the bidisperse
PDF would have a smoother central part, when the ac-
celeration contribution increases.
Fig. 4 plots the PDF of the radial relative velocity for

St1 = 6.21. The figure is plot in the same way as Fig.
2 for the radial PDF for St1 = 1.55. As found in Pa-
per I, the fatness of the PDF shape for identical parti-
cles decreases with St for St ∼> 1, and the tails of the
monodisperse PDF (the black solid lines) for St ≥ 6.21
are thinner than the St1 = 1.55 case shown in Fig. 2
(see explanation in §3.2). At St ≥ 6.21, the skewness
for the monodisperse radial PDF disappears. An expla-
nation for the recovery of the symmetry at large St was
discussed earlier in this section.
Similar to the St1 = 1.55 case, the rms width of the

PDF increases as St2 decreases below or increases above
St1, while the overall shape of the PDF becomes thinner.
Interestingly, in the left panel, the high PDF tails almost
coincide for all St2 below St1. In particular, the far tails
in the dashed black line for Limit I (i.e., the particle-
flow relative velocity) happen to be close to those in the
black solid line for equal-size particles. As mentioned
earlier, two effects, i.e., the increase of the rms and the
thinning of the overall PDF shape with decreasing St2,
determine the trend of the probability at the far tails.
The coincidence of the far tails suggests that, at St1 =
6.21, these two effects roughly cancel out. In the right
panel, as St2 increases above St1 = 6.21, the PDF keeps
widening, and the PDF shape approaches Gaussian (the
black dashed line) at St2 ∼> 99.4.
Fig. 5 plots the PDF of the radial relative velocity for

St1 = 49.7. In the left panel, we see that the PDF width
increases with decreasing St2. The widening of the PDF
width wins over the thinning trends of the overall PDF

5 Because the longitudinal (∆ur) and transverse (∆ut) flow ve-
locity differences in a turbulent flow are not equal, as ∆ut > ∆ur,
the coincidence of the radial and tangential PDFs for approaching
particle pairs of equal size are not trivial. As discussed in Paper I,
the equalization of wr and wt is essentially caused by the random-
ization of the direction of the primary separation, rp, with respect
to r, due to the deviation of the particle trajectories from the flow
elements and the turbulent separation of particle pairs backward
in time (see §3.2).

6 The formation of the sharp cusp in the monodisperse PDF can
be explained by the picture described in §3.2. For small particles,
the faster backward separation of particle pairs at higher PDF
tails causes a self-amplification of the tails, while the innermost
part remains unchanged. As the amplification proceeds toward the
center of the PDF with increasing St, the range of the unaffected
central part is narrower, and the inner part would appear sharper
relative to the outer parts. As St increases further, the innermost
part of the PDF would eventually be affected, and the cusp then
shrinks and finally disappears for τp ∼> TL.
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Fig. 4.— PDF of the radial relative speed as a function of St2 for St1 = 6.21. The figure is plot in the same way as Fig. 2. The dashed
black line in the right panel shows the best Gaussian fit to the bidisperse PDF for St2 = 795.
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Fig. 5.— Same as Figure 4, but for St1 = 49.7.

shape with decreasing St2, and thus the probability at
the far tails keeps increasing with decreasing St2. In the
right panel, the PDF becomes thinner as St2 increases
above St1, and finally approaches Gaussian, as expected
for Limit III. The rms width of all PDFs shown in this
panel is almost the same.
To summarize, for a given St1, the tail shape of the

relative velocity PDF is the fattest for the monodisperse
case with St2 = St1. As St2 increase above or decreases
below St1, the generalized acceleration contribution in-
creases, and the overall PDF shape becomes thinner.
An important conclusion of theoretical interest is that

the distribution of the generalized shear contribution,
ws, is fatter than the acceleration term, wa. This is seen
from a comparison of Limits I (black dashed lines) and
II (black solid lines) in Figs. 2, 4 and 5, which are dom-
inated by the generalized acceleration and shear terms,
respectively. Since wa and ws are related to the tem-
poral (∆Tu) and spatial (∆u) flow velocity differences,

respectively, one may understand their distributions by
considering the statistics of spatial and temporal velocity
structures in turbulence. We first note that the spatial
velocity structures in turbulent flows do not have a higher
degree of non-Gaussianity than the temporal structures.
In fact, the Lagrangian temporal structures are known
to be more intermittent than the Eulerian spatial struc-
tures (see Appendix A). Therefore, the finding that the
distribution ofws is fatter thanwa cannot be interpreted
by a simple comparison of the temporal and spatial in-
termittency. A key to understand the fatter distribution
of ws is that ws and wa sample the temporal and spa-
tial flow velocity differences in different ways. Unlike the
PDF of wa, which roughly samples ∆Tu(∆τ) at a single
time lag ∆τ ≃ τp,h, ws is not controlled by the spatial
flow velocity difference, ∆u, at a single length scale. In
fact, different parts of the distribution of ws sample the
flow velocity at different scales. For example, in the case
of equal-size particles with a friction time of τp, the PDF
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Fig. 7.— Similar to Fig. 6, but for St1 = 6.21.

at relative velocities below/above the rms value, i.e., at
|w| ≶ 〈w2〉1/2, depends on the flow velocity at scales
ℓ ≶ (r2 + 〈w2〉τ2p )1/2, respectively. Considering that the
PDF width of ∆u increases with increasing ℓ, this implies
that the PDF shape of ws is significantly fatter than the
PDF of ∆u at a single scale ℓ ≃ (r2 + 〈w2〉τ2p )1/2. This
fattening effect is responsible for why the distribution of
ws has a higher degree of non-Gaussianity than wa, even
though the spatial flow velocity structures are not more
intermittent than the temporal ones.

4.1.2. The PDF of the 3D amplitude

In Fig. 6, we show the PDF of the 3D amplitude, |w|, of
the relative velocity of approaching particles with wr < 0.
In both panels, St1 is fixed at 1.55, and the left and

right panels plot the PDFs for St2 ≤ St1 and St2 ≥ St1,
respectively. We normalized |w| to its rms value, i.e.,

|̃w| ≡ |w|/〈w2〉1/2− , where 〈w2〉1/2− is the 3D rms relative
velocity of approaching particle pairs with negative wr.
As discussed in Paper I, |w| is related to the particle
collisional energy and its PDF plays an important role
in determining the collision outcome.
In both panels of Fig. 6, the solid and dashed black

curves show the PDFs of equal-size particles with St =
1.55 at r = 1 and 1

2η, respectively. The black dotted
lines correspond to the normalized PDF for the ampli-
tude of a 3D Gaussian vector. As shown in Paper I, the
monodipserse PDF is extremely non-Gaussian, with large
probabilities distributed at both very small and large rel-

ative speeds. The large probabilities at small |̃w|(≪ 1)
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Fig. 8.— PDF of the radial relative velocity at r = 1η for a Stokes ratio f = 1
2
. Left and right panels show Sth ≤ 12.4 and Sth > 12.4,

respectively. All PDFs are normalized to the central peak values. The black dashed line in the left panel corresponds to the PDF of tracer
particles, while the long dashed line is the stretched exponential fit with α = 4/3 to the PDF tails for Sth = 12.4. The black dashed line
in the right panel is the Gaussian fit to the PDF of the two largest particles in our simulation.
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Fig. 9.— The PDF of the tangential relative velocity at r = 1η for a Stokes ratio of f = 1
2
. The figure is plot in the same way as Fig. 8

for the radial PDF.

correspond to the sharp cusps at the central parts of the
radial and tangential PDFs (see Figs. 2 and 3). The solid
and dashed color curves are bidisperse PDFs at r = 1 and
1
2η, respectively. As St2 moves away from St1, the degree
of non-Gaussianity in the PDF decreases, consistent with
the results in §4.1.1. When the Stokes numbers differ by
a factor of 2, there is a rapid decrease in the probability
at the left tail. This is because, due to the acceleration
contribution, the central parts of the radial and tangen-
tial PDFs become smooth and the sharp central cusps
disappear (see §4.1.1). As the Stokes number difference

increases, the right PDF tail of |̃w| become thinner, and
we also see that the peak of the PDF moves to the right

toward |̃w| ≃ 1, meaning that more probabilities are
distributed around the rms relative velocity. In the left
panel, as St2 decreases to 0.1, the PDF shape approaches

that of the particle-flow relative velocity (brown lines),
which is still fatter than Gaussian (the black dotted line).
In the right panel, the PDF of |w| approaches Gaussian
in the limit of large St2. At St2 ∼> 398, the PDF coin-
cides with the Gaussian distribution. The trend of the
PDF shape as a function of St2 is again consistent with
the expectation that it lies in between the three limits,
St2 → 0, St2 = St1 and St2 → ∞. Fig. 7 shows the
simulation result for St1 = 6.21, which is similar to Fig.
6 for the St1 = 1.55 case.
In the monodisperse case, the PDF converges with de-

creasing r already at r ≃ 1η, for particles with St ∼> 6.21
(see black solid and dashed lines in Fig. 7). However, for
smaller particles of equal-size with St ∼< 3.11, the PDF
shape has an r−dependence at r ≃ 1

2η (see Fig. 6). The
convergence for the PDF of identical particles of small
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size is very challenging to reach, e.g., in the study of
Lanotte et al. (2011), the convergence is barely reached
at r ≃ 0.086η for particles with St = 3.3. In the bidis-
perse case, the convergence is easier to achieve because
the contribution from the generalized acceleration term
is r−independent (see §2 and Paper II). All the bidis-
perse PDFs for different particles shown in Figs. 6 and
Fig. 7 already converge at 1

2η. In fact, we find that, ex-
cept for the two smallest particles with St1 = 0.1 and
St2 = 0.19 in our simulation (see Fig. 14 in §4.2.4), the
convergence of the PDF shape is reached at r ≃ 1

2η for
all non-equal Stokes pairs.

4.2. The Relative Velocity PDF at Fixed Stokes Ratios

In this subsection, we examine the relative velocity
PDF for particle pairs with fixed Stokes number ratios,
f ≡ Stℓ/Sth, and show how the PDF changes with Sth.
As a reminder, Stℓ and Sth are the Stokes numbers of the
smaller and larger particles, respectively. With a fixed
f , it is easier to compare the bidisperse PDF with that
of equal-size particles (f = 1) discussed in Paper I. At
a given f , there are two interesting limits, Sth → 0 and
Sth → ∞. For Sth → 0, both particles become tracers,
and the particle relative velocity PDF approaches the
PDF, Pu(r), of the flow velocity difference, ∆u, across
the particle distance, r. In the opposite limit Sth → ∞,
the relative velocity is essentially the 1-particle velocity
of the smaller particle, and its PDF approaches Gaussian
(§3.3). A particularly interesting result we find is that,
if the friction time τph of the larger particle is close to
the Lagrangian correlation time TL of the flow, the PDF
tails can be approximately described by a 4/3 stretched
exponential for any value of f .

4.2.1. The PDFs of the radial and tangential relative speeds

In Fig. 8, we show the PDF, P (wr; f, Sth), of the radial
relative velocity at r = 1η for a Stokes ratio of f = 1

2 .
The left and right panels plot results for Sth ≤ 12.4
and Sth ≥ 24.9, respectively. Each PDF is normalized
to its value at the central peak (i.e., at w = 0). In
the left panel, the black short-dashed line is the PDF
of the radial relative velocity between tracer particles
(i.e., Sth = 0) at r = 1η, and the long-dashed line is the
stretched exponential function with α = 4/3 (see eq. (4))
that best fits the PDF tails for Sth = 12.4. The dashed
line in the right panel is the Gaussian fit for Stℓ = 397
and Sth = 795. The figure is plot in the same way as
Fig. 10 of Paper I for the monodisperse case (i.e., f = 1).
The PDF width first increases with Sth, corresponding
to the increase of ∆Tu(τp,h) with τp,h in the generalized
acceleration term (eq. (2)) and the increase of rp with
τp,l in the shear term (eq. (3)). But for large τp,l and

τp,h, the (1 + Ωl)
−1/2 and [tp/(tp + τp,h)]

1/2 factors in
eqs. (2) and (3) take effect, leading to the decrease of
the PDF width at τp,h ≫ TL ≃ 14.4τη (the right panel).
The behavior of the width or rms of the PDF at fixed f
as a function of Sth has been studied and explained in
Paper II in the context of the PP10 picture. The left and
right wings are asymmetric due to the shear contribution.
The asymmetry first increases with Sth as Sth increases
to 0.39, then decreases at larger Sth. This is similar
to the case of equal-size particles (f = 1; see Paper I)
and consistent with the expected behavior of the shear
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Fig. 10.— Radial relative velocity PDF for Sth = 12.4 and f = 1,
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. The friction time of Sth = 12.4 particles is close

to the Lagrangian correlation time, TL, of the flow. Black dashed
lines are stretched exponential fits with α = 4/3 to the PDF tails

for f = 1 and 1
128

, respectively.

contribution (see a physical discussion in §4.1.1). The
PDF reaches symmetry at Sth ∼> 3.11.
A comparison of the left panel of Fig. 8 with that of

Fig. 10 in Paper I for identical particles reveals an inter-
esting difference. As explained in §3.2 (see Paper I for
details), in the monodisperse case, the innermost part of
the PDF closely follows the flow velocity difference PDF
(the short-dashed line for tracers in Fig. 10 of Paper I).
On the other hand, the central part of the bidisperse
PDF at any Sth in the left panel of Fig. 8 is wider than
the short-dashed line for tracers. This is because the gen-
eralized acceleration term, which is absent for equal-size
particles, contributes to the central part of the bidisperse
PDF. Also, at the same Sth, the PDF shape for f = 1

2
is thinner than for the case of equal-size particles with
f = 1 (see §4.1.1 and also §4.2.3 below).
In Fig. 9, we show the PDF of the tangential relative

velocity, P (wt|wr ≤ 0; f, Sth), for approaching particle
pairs with f = 1

2 . The figure is plot in the same way
as Fig. 8 for the radial case. The two wings of the tan-
gential PDF are symmetric for any Sth. The tangential
PDF as a function of Sth shows a similar trend as the
case of the radial relative speed (Fig. 8). We find again
that the left wings of the radial PDF and the tangential
PDF, P (wt|wr ≤ 0; f, Sth), of approaching pairs coincide
(see §4.1.1). In Appendix C, we consider the tangential
PDF, P (wt|wr > 0; f, Sth), of separating particle pairs
(with wr > 0), and compare it with P (wt|wr ≤ 0; f, Sth).
Similar to the asymmetric wings of the radial PDF, for
small particles of similar sizes there is a difference be-
tween P (wt|wr ≤ 0; f, Sth) and P (wt|wr > 0; f, Sth) for
approaching and separating pairs.
We also examined the PDFs for other values of f . The

qualitative behavior of the PDF for different f with in-
creasing Sth is similar to the case of f = 1

2 . In §4.2.3,
we will carry out a detailed quantitative analysis of the
fatness of the PDF shape as a function of Sth at a few
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Fig. 11.— The radial relative velocity PDF for particle pairs with f = 1
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8
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values of f .
In Paper I, we showed that the PDF tails for identical

particles with St = 12.4 and 24.9 (τp ∼ TL) can be well
described by a stretched exponential function with α =
4/3. A phenomenological argument for this stretched
exponential based on the PP10 model was given in §3.2
(see also Paper I). From Figs. 8 and 9, we see that such
a stretched exponential fits well the PDF tails also in
the bidisperse case with f = 1

2 and Sth = 12.4. The
applicability of the 4/3 stretched exponential is actually
even more general. In Fig. 10, we show the radial PDFs
for Sth = 12.4 at 4 values of f in the range 1

128 ≤ f ≤
1. The shape of the PDF tails is more or less invariant
with f , and can be generally approximated by the 4/3
stretched exponential. In other words, a 4/3 stretched
exponential applies as long as the friction time of the
larger particle is close to TL. However, note that, despite
the invariance of the tail shape, the central part and
hence the overall shape do vary with f .
In §3.1, we observed that the particle-flow relative ve-

locity, wf , (corresponding to f = 0) for St = 12.4 par-
ticles (see Fig. 1) shows 4/3 stretched exponential tails.
Since wf is largely controlled by the temporal flow ve-
locity difference, ∆uT, along the particle trajectory, this
suggests that, for particles with τp ≃ TL, the PDF tails
of ∆uT(∆τ) at ∆τ ≃ TL are close to a 4/3 stretched
exponential. Then, one may infer from eq. (2) that the
acceleration term wa (∝ ∆uT) would have 4/3 stretched
exponential tails if the friction time of the larger parti-
cle, τp,h, is close to TL. Considering that it fits well also
the PDF tails of the generalized shear term, ws, in the
monodisperse case (f = 1) with τp ≃ TL, we would ex-
pect that the 4/3 stretched exponential applies to any
f as long as τp,h ≃ TL. The general validity of the 4/3
stretched exponential for τp,h ≃ TL may have a profound
physical origin, which, however, is currently not clear to
us.

4.2.2. The r−dependence of the radial relative velocity PDF

Fig. 11 shows the r−dependence of the radial PDF for
f = 1

2 (left panel) and f = 1
8 (right panel). As dis-

cussed in §2, the generalized acceleration contribution
only depends on individual trajectories of the two par-
ticles and is thus r−independent. The r−dependence of
the relative velocity PDF comes only from the shear con-
tribution. In the left panel for f = 1

2 , the PDF width
decreases with decreasing r for the smallest Sth (= 0.19).
For small particles, the shear term depends on the local
flow velocity difference, and thus decreases with decreas-
ing r. As Sth increases, the r−dependence of the PDF
width becomes weaker, and in both panels the PDF is
almost r−independent for Sth ∼> 3.11. For larger Stℓ and
Sth, the particle memory time is longer, and the particle
distance at a friction/memory time ago is less sensitive
to r. Therefore, the shear contribution becomes less de-
pendent on r. At the same time, the increase of the ac-
celeration contribution with Sth also tends to reduce the
r−dependence. A comparison of the left and right panels
shows that, at the same Sth, the r−dependence of the
PDF is weaker for smaller f , again due to the relatively
larger acceleration contribution. The r−dependence for
f = 1

2 and 1
8 shown here is much weaker than the equal-

size case (f = 1). It appears that, for f = 1
8 , the PDF

already converges at r = 1
4η for all Sth ∼> 0.78.

At a given f and Sth, the left and right tails of the
radial PDF tend to be more symmetric as r decreases.
In particular, for Sth = 0.78 and 1.55 in both panels, the
right tail slightly increases with decreasing r, while the
left wing becomes narrower. The opposite trends of the
two tails both reduce the negative skewness of the PDF.
The increase in the right tail for these values of Sth with
decreasing r is due to the shear contribution. The right
wing corresponds to separating pairs, and, backward in
time, the distance of these pairs first decreases in near
past and then starts to increase as the two particles move
past each other. At smaller r, it takes a shorter time
for the distance of these pairs to switch from decreas-
ing to increasing. Therefore, the primary distance, rp,
of separating pairs at a friction time ago could increase
with decreasing r, leading to a larger shear contribution
and the increase in the right wing. On the other hand,
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Fig. 12.— The normalized PDF of the tangential relative velocity, wt, for approaching pairs with f = 1
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of approaching tracer particles at r = 1η and the Gaussian fit for Sth = 795, respectively.
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Fig. 13.— The normalized tangential relative velocity PDF for approaching pairs with f = 1
4

(left panel) and f = 1
8

(right panel) at

r = 1 (solid), 1
2
(dashed) and 1

4
η (dotted). The bottom lines for Sth = 795 show the actual values of the PDF, while the PDFs for each

smaller Sth is shifted upward by a factor of 16 for clarity. The black dotted and dashed lines in both panels are the PDF of tracer particles
at r = 1η and the Gaussian fit for Sth = 795, respectively.

for approaching pairs, rp always tends to be smaller at
smaller r, and the width of the left wing decreases with
decreasing r. Overall, as r decreases, the difference of
rp between approaching and separating pairs decreases,
reducing the asymmetry of the two wings.
We attempted to check how the shape of the left wing

for approaching particles changes with decreasing r by
normalizing the wing to its own rms. It turns out that,
except for f = 1

2 and Sth = 0.19, the shape of the
left wing is almost invariant with r, indicating that the
r−dependence of the shape is weaker than that of the
width or rms. The trend of the shape of the left wing
with f and Sth is the same as the tangential PDF of

approaching pairs, which we discuss in the next section.

4.2.3. The normalized PDF of the tangential relative velocity

In Fig. 12, we show the normalized PDF, P (w̃t|wr <
0; f, Sth), of the tangential relative speed for approaching
particle pairs (wr < 0) with a Stokes ratio of f = 1

2 . We

normalized wt to its rms value, i.e., w̃t ≡ wt/〈w2
t 〉

1/2
− ,

where the subscript “-” indicates that only approaching
pairs are counted. All the normalized PDFs have a unit
variance. The normalization gives a clearer comparison
of the PDF shape. The black dotted line in the left panel
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is the PDF of approaching tracer particles7 at r = 1η,
corresponding to Sth = 0. As Sth increases to 0.78, the
tails of P (w̃t|wr < 0; f, Sth) show a slow fattening trend.
The fattening appears to be weak, but is verified by a
computation of the kurtosis. Then, starting from Sth =
1.55, the PDF shape becomes continuously thinner (the
right panel). Similar to the monodisperse case, the PDF
fatness peaks at Sth ≃ 1.
We tried to obtain a quantitative estimate of the PDF

shape for f = 1
2 by fitting the tails of P (wt|wr ≤

0; f, Sth) with stretched exponential functions (eq. (4)).
We find that, as Sth increases from 0.19, to 0.39 and
0.78, the best-fit value of α decreases from 0.7(r = 1η),
to 0.67 and 0.6, indicating a slight tail fattening of the
PDF. As Sth increases further, α starts to increase. The
best-fit α is 0.65, 0.8, 1.15, 1.33, 1.45, 1.55,1.65, 1.7, 1.75
and 1.9 for Sth = 1.55, 3.11, 6.21, 12.4, 24.9, 49.7, 99.4,
199, 397 and 795, respectively. For Sth = 795, the PDF
is close to Gaussian (the black dotted line in the right
panel), but the best-fit α is 1.9, slightly smaller than 2.
The measured α values also apply to the left wing of
the radial PDF for f = 1

2 , which coincides with the left
wing of P (wt|wr < 0; f, Sth) (see §4.2.1). These values
are generally larger than those obtained in Paper I for
the monodisperse PDF with St equal to Sth listed here.
This is due to the effect of the acceleration contribution
which tends to make the PDF tails thinner.
To understand the trend of the PDF shape at f = 1

2 ,
we consider again the behavior of the generalized acceler-
ation (wa) and shear (ws) contributions to the PDF. As
discussed earlier, the PDF shape of wa would become
thinner continuously with increasing τp,h (see §3.1 and
§4.1.1). Using the monodisperse case as a guideline for
the generalized shear contribution, the distribution of ws

would first fatten as Sth increases toward 1, and then
become thinner as the Stokes number increase further
above 1. Therefore, at small Sth ∼< 1, the distributions
of wa and ws have opposite trends with increasing Sth,
and their competition determines the fatness of the rel-
ative velocity PDF. For f = 1

2 , it appears the fattening
trend by ws wins, and the PDF of w becomes fatter as
Sth increases to 0.78. Since the acceleration contribution
tends to counteract the fattening trend, the increase of
the tail fatness in the range 0.19 ≤ Sth ≤ 0.78 is signif-
icantly weaker than in the monodisperse case. As Sth
increases above 1, the PDF of ws starts the thinning
trend, and, together with the thinning effect by the ac-
celeration term, wa, and the fatness of the PDF of w
decreases, as observed in Fig. 12.
Fig. 13 plots the normalized tangential PDF for f = 1

4

(left panel) and f = 1
8 (right panel). In both panels, the

black dotted line is the PDF for tracer particles (Sth = 0)
at r = 1η, and the black dashed line is the Gaussian fit
to Sth = 795. For f = 1

4 , the minimum Sth available
in our simulation is 0.39, and, for this Sth, the PDF
shape is close to that of the tracers. It turns out that,
for f = 1

4 , the PDF shape remains roughly unchanged

7 The PDF shape of the relative velocity of trace particles al-
ready converges at r = 1η, even though its width decreases with
decreasing r. The tracer particle follows the local flow velocity,
and, as discussed in Appendix B, the PDF shape of the flow ve-
locity difference approaches the velocity gradient distribution at
sufficiently small r.

as Sth increases to 0.78, and fitting the PDFs for Sth ≤
0.78 with stretched exponentials gives α = 0.78. This
invariance of the PDF shape is probably due to the fact
that the fattening effect of the shear term cancels out the
thinning trend of the acceleration term in this range of
Sth. For larger Sth ( ∼> 1), the PDF becomes thinner
with increasing Sth, and the best-fit α increases from
≃ 0.8 at Sth = 1.55 to 2 at Sth ∼> 397.
For f = 1

8 , the minimum Sth we have is 0.78, and, as
Sth increases above 0.78, the PDF shape becomes contin-
uously thinner (right panel). For f = 1

8 and Sth ∼> 0.78,
the acceleration term, wa, dominates the contribution
to the relative velocity, and the PDF of wa is thinner at
larger τp,h.
From Fig. 12 and Fig. 13, we see that the PDF shape

is almost independent of r. Except for f = 1
2 and

Sth = 0.19, the shape of all the PDFs in these figures
already converges at r ≃ 1

2η. The r−dependence of the
PDF shape is much weaker than the monodisperse case,
and the dependence decreases with decreasing f . As ex-
plained before, this is due to the acceleration contribu-
tion in the bidisperse case, which is independent of r.
In the case with f = 1

2 and Sth = 0.19, corresponding
to the two smallest particles in our simulation, the PDF
tails become slightly fatter with decreasing r. For this
Stokes pair, the relative velocity at r ∼> 1

4η still has a
significant r−dependent shear contribution. To achieve
convergence for this case, a resolution below r ∼< 1

4η is
needed.
In Appendix C, we compare the tangential PDFs for

approaching and separating pairs, which is of theoretical
interest. We show that, because the generalized accel-
eration term is independent of the relative motions of
the two particles, the difference between the PDFs of
approaching and separating pairs decreases when wa in-
creases with decreasing f .

4.2.4. The PDF of the 3D amplitude

In Fig. 14, we show the normalized PDF, P (|̃w||wr <
0; f, Sth), of the 3D amplitude, |w|, of the relative ve-
locity for approaching particle pairs with a Stokes ratio
f = 1

2 . For each PDF, we normalized |w| to its rms,

〈w2〉1/2− . The figure is plot in a similar way as Fig. 14
of Paper I. But unlike that figure, which shows the PDF
only at one distance (r = 1η), here we plot the results
for r = 1η and 1

2η. In the left panel, we see that, as Sth
increases from 0.19 (red) to 1.55 (blue), the PDF around

the rms value (i.e., |̃w| ≃ 1) slightly decreases, and more
probabilities are transferred to the left and right parts

of the PDF at |̃w| ≪ 1 and |̃w| ≫ 1, respectively. This
trend corresponds to the fattening of the PDFs of the
radial and tangential relative speeds with increasing Sth
at small Sth (see Fig. 12 and discussions in §4.2.3). Note
that the far right PDF tail for Sth = 1.55 already be-
comes thinner than that for Sth = 0.78, consistent with
the observation in Fig. 12 that the thinning of the tan-
gential PDF tails starts at Sth ∼> 0.78.
For Sth above 3.11, the PDF shape has an opposite

trend. With increasing Sth, the probability is more con-
centrated around the rms value, and the PDF at very
small and large relative velocities decreases, as expected
from the thinning of the radial and tangential PDFs for
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Fig. 14.— The PDF of the 3D relative velocity amplitude for approaching particle pairs at r = 1η (solid) and 1
2
η (dashed). The Stokes

ratio is fixed at f = 1
2
. The 3D amplitude, |w|, is normalized to the rms value, i.e., |̃w| = |w|/〈w2〉
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− , so that each PDF in the figure

has unit variance. The left and right panels show Sth ≤ 1.55 and Sth ≥ 3.11, respectively. In both panels, the black dotted line is the
normalized PDF of the amplitude of a 3D Gaussian vector.
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Sth in this range. In the limit Sth → ∞, the PDF is
expected to approach Gaussian (black dotted line), but
for the largest Sth (= 795) in the simulation, the PDF

is still slightly non-Gaussian, especially at |̃w| ≪ 1. The
general trend of the 3D amplitude PDF for f = 1

2 as a
function of Sth is similar to the monodisperse case shown
in Fig. 14 of Paper I. Comparing with that figure, we see
again that the PDF tails in the bidisperse case are sig-
nificantly less fat than for equal-size particles.
The left panel Fig. 15 shows the normalized PDF of the

3D amplitude for f = 1
8 . The minimum Sth available is

0.78, and, consistent with the early results (see the right
panel of Fig. 13) for the tangential PDF, the right tail of

P (|̃w||wr < 0; f, Sth) at large |̃w| keeps thinning for all

Sth ≥ 0.78. The PDF becomes close to Gaussian (dotted
black line) for Sth ∼> 199. The PDF for f = 1

32 in the
right panel has the same trend.
Although the bidispserse PDF is thinner than the case

of equal-size particles, significant non-Gaussianity still
exists, especially if both particles are small. The PDF is
close to Gaussian only if one or both particles are suf-
ficiently large. It is of practical interest to examine the
particle size range in which the relative velocity PDF
can be approximated by Gaussian. For a given Sth or
τph, the PDF becomes thinner and closer to Gaussian
as f decreases. Interestingly, we find that, for a fixed
τph, the shape of the PDF barely changes as f decreases
from 1

16 to 0. The reason is that, for f in this range,
the particle relative velocity, w, is dominated by the
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generalized acceleration term, whose distribution is con-
trolled by ∆uT(τph). In the f → 0 (Stℓ → 0) limit, w
approaches the particle-flow relative velocity, wf , and,
based on our results in §3.1, the PDF of wf is close to
Gaussian if the particle friction time is larger than 3.5TL.
It follows that, for any f in the range 0 ≤ f ≤ 1

16 , the
particle relative velocity PDF is approximately Gaussian
if τph ∼> 3.5TL (corresponding to Sth ∼> 49.7 in our flow).
The condition for the relative velocity PDF to have a
Gaussian shape is stronger for 1

16 < f ≤ 1. For exam-

ple, at f = 1
8 and f = 1

4 , Gaussianity is reached only

for τph ∼> 14TL and τph ∼> 27TL, respectively. For f = 1
2

(Fig. 14) and f = 1 (Fig. 14 of paper I), the PDF still
shows some (slight) degree of non-Gaussianity even for
the largest particles (τph = 54TL) in our simulation.
In Figs. 14 and 15, we see that the shape of the nor-

malized PDF for the 3D amplitude already converges at
r = 1

2η, except for the relative velocity between the two
smallest particles in our simulation (the red lines in the
left panel of Fig. 14). The convergence is also found
for other f values not shown here. The r−dependence
of the relative velocity PDF is stronger in the monodis-
perse case, and it does not converge at r ≃ 1η for equal-
size particles with St ∼< 3.11 (see Fig. 6). In the bidis-
perse case, the generalized acceleration contribution is
independent of r (§2) and its presence helps reduce the
r−dependence of the relative velocity statistics. This
finding is of particular interest for applications to dust
particle collisions in protoplanetary disks. Dust particles
should be viewed as nearly-point particles (e.g., Hubbard
2012), and one needs to examine the collision velocity
PDF in the r → 0 limit. The weaker r−dependence of
the bidisperse PDF makes it easier to resolve the relative
velocity or collision statistics at r → 0.
In comparison to a Gaussian distribution, the PDFs

measured in our simulation have more probabilities at
both extremely small and large collision speeds. Clearly,
the fat high tails of the PDF may lead to significantly
higher probability of fragmentation than predicted un-
der the Gaussian assumption (Windmark et al. 2012b,
Garaud et al. 2013). On the other hand, the PDF at
low collision velocity is also considerably higher than a
Gaussian distribution, which would favor sticking of the
particles. The competition of these two effects is impor-
tant for understanding how the non-Gaussianity of the
collision velocity affects the growth of dust particles in
protoplanetary disks. In next section, we give some spec-
ulations using our simulation results, but a definite an-
swer requires evolving the particle size distribution with
a coagulation model that accounts for the non-Gaussian
collision velocity.

5. IMPLICATIONS OF NON-GAUSSIANITY ON DUST
PARTICLE COLLISONS

5.1. Parameters and Assumptions

We discuss the effect of the non-Gaussianity of
turbulence-induced collision velocity on dust particle col-
lisions in protoplanetary disks. Using the probability dis-
tribution measured in our simulation, we will roughly
estimate the fractions of collisions leading to sticking,
bouncing and fragmentation, as the particle size grows.
We adopt a minimum mass solar nebula. The pro-
files of the gas density, sound speed and scale height

are set to ρ = 1.7 × 10−9(R/AU)−2.75 g cm−3, Cs =
1.0(R/AU)−0.25 km s−1, and H = 5 × 106(R/AU)1.25

km, with R the distance to the central star. As our main
purpose is to give a simple illustrating example, we pri-
marily consider R = 1 AU. At 1AU, the mean free path,
λ, of the gas is ≃ 1 cm, and, using the Epstein and Stokes
formulae, we find the friction time τp = 6×103(ap/cm) s
and τp = 2.3× 103(ap/cm)2 s for particle size, ap, below
and above λ, respectively. The two formulae connect at
ap ≃ 2.6 cm.
We use the prescription of Cuzzi et al. (2001) to specify

turbulence conditions in protoplanetary disks with the
Shakura-Sunyaev parameter αt. The large-eddy turnover
time is set to Teddy = Ω−1

K = 5 × 106(R/AU)3/2 s with
ΩK the Keplerian rotation frequency. The turbulent rms

velocity and integral scale are given by U = α
1/2
t Cs and

L = α
1/2
t H , respectively. Note that here U is the 3D rms

velocity, different from u′ given earlier for the 1D rms
of our simulated flow. Taking a fiducial value of 10−4

for αt, we have U = 10(αt/10
−4)1/2 m s−1, and L =

5 × 104(αt/10
−4)1/2 km at 1AU. Adopting a dynamical

viscosity of 9× 10−5 g cm−1 s−1 for molecular hydrogen
at≃ 300 K, the Reynolds number is estimated to be Re ≃
108(αt/10

−4). The Kolmogorov time and length scales
are given by τη ≃ TeddyRe−1/2 = 500(αt/10

−4)−1/2 s,

and η ≃ LRe−3/4 = 0.05(αt/10
−4)−1/4 km. At 1AU,

particles of mm size have τp ≃ τη or St ≃ 1. We also
define a Stokes number based on the large-eddy time as
Steddy ≡ τp/Teddy, and, at 1AU, Steddy ≃ 1 corresponds
to ap ≃ 50 cm.
The collision outcome for particles over a wide size

range is complicated, and its dependence on the collision
velocity and the particle internal structure is subject
of ongoing investigations. A summary of experimental
results is given by Güttler et al. (2010). Here we adopt
the assumption of Windmark et al. (2012b) and Garaud
et al. (2013) to determine the collision outcome of
silicate particles. Particles are assumed to stick if the
3D amplitude of the collision velocity, |w|, is below a
bouncing threshold wb of 5 cm s−1, while fragmentation
takes place for |w| above a threshold wf ≃ 1 m s−1.
Between wb and wf , the colliding particles bounce
off each other. Following Garaud et al. (2013), we
compute the fractions of sticking, bouncing and frag-
mentation as Fs =

∫ wb

0
|w|P (|w|; f, Sth)d|w|/〈|w|〉,

Fb =
∫ wf

wb

|w|P (|w|; f, Sth)d|w|/〈|w|〉, and

Ff =
∫∞

wf

|w|P (|w|; f, Sth)d|w|/〈|w|〉, respectively,

where P (|w|; f, Sth) is the PDF of |w|, and
〈|w|〉 ≡

∫∞

0 |w|P (|w|; f, Sth)d|w| is the mean of
|w|. Unlike the fractions defined in Windmark et al.
(2012b), a weighting factor ∝ |w| is included in these
equations, accounting for higher collision frequency for
particle pairs with larger relative velocity (Garaud et al.
2013). The weighting factor used here is based on the
cylindrical formulation of the collision kernel8, where

8 There is a different and perhaps more accurate kernel formula-
tion, named the spherical formulation (Wang et al. 2000, Paper I),
which depends on the radial component of the relative velocity and
only counts approaching particle pairs. The collision-rate weighted
fractions Fs, Fb and Ff in the spherical formulation will be studied
in a later work.
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the collision rate ∝ |w| (see Paper I).
In our calculation, we adopt PDFs measured at r = 1

2η.
It is desirable to use PDFs at smaller r because the rel-
ative velocity statistics of small particles (St ∼< 1) of
similar sizes (f = 1 or 1

2 ) have not converged at r = 1
2η.

However, the measured PDFs at smaller r(≤ 1
4η) are

very noisy because the number of particle pairs available
in our simulation becomes too limited at r ≤ 1

4η. The

choice of using the PDF data at r = 1
2η is sufficient for

an illustration purpose, especially as we are more con-
cerned with the collisions of inertial-range particles with
St considerably above 1 (corresponding to ap ≫ 1 mm
at 1AU). The PDFs for these relatively large particles
already converge at r = 1

2η. For small, similar-size parti-
cles, our estimates for the fractions need to be improved
by future simulations that can accurately measure the
PDFs at smaller r.
The inertial range of our simulated flow is short, and

one needs to be careful when applying the measured
statistics to protoplanetary turbulence. Since the realis-
tic Re(≃ 108) in the disk cannot be reached by currently
available computation power, the best solution is to ex-
trapolate the simulation results to high Re. The extrap-
olation requires the Re−dependence of the PDF, which
is currently unknown. We are thus forced to use rather
strong assumptions. For a clear description of our as-
sumptions, we distinguish the Stokes numbers in our sim-
ulated flow and in the real disk. We use Sts and Stseddy to
denote the Stokes numbers based on τη and Teddy in our
simulation, while Std and Stdeddy are the corresponding
numbers in the disk. In our flow, Teddy ≃ 20τη and thus
Sts ≃ 20Stseddy. Due to a much broader inertial range in

the disk, we have Std ≃ 104Stdeddy at 1AU.
The only species of particles that definitely lie in

the inertial range of our simulated flow are those with
Sts = 6.21 (or equivalently Stseddy = 0.31). Larger

particles with Sts ≥ 12.4 (Stseddy ≥ 0.62) and smaller

ones with Sts ≤ 3.11 (Stseddy ≤ 0.16) are affected by
the flow structures at driving and dissipation scales,
respectively. Accordingly, we divide dust particles in
the disk into three ranges, i.e, the driving range with
Stdeddy ≥ 0.62 (Std ≥ 6.2 × 103), the dissipation range

with Std ≤ 3.11 (Stdeddy ≤ 3.1 × 10−4), and the iner-

tial range with 3.11 × 10−4 < Stdeddy < 0.62 (3.11 <

Std < 6.2 × 103). Our measurement for Stseddy ≥ 0.62
particles can be directly applied to corresponding par-
ticles with Stdeddy ≥ 0.62 in the disk because collisions
of these particles are determined by large-scale struc-
tures that are resolved in our simulation. For particles
in the inertial range, we make a strong simplification.
We use the PDF shape of the only inertial-range particle
(Stseddy = 0.31) in our flow for all inertial-range particles

(3.11 × 10−4 < Stdeddy < 0.62) at 1AU in the disk. Fi-

nally, for dissipation-range particles with Std ≤ 3.11 in
the disk, we assume the PDF shape at each Std is the
same as the PDF of particles with Sts = Std in our flow.
For the rms width of the PDF, we make use of the

prediction of the PP10 model (Papers I & II) with a
Reynolds number (Re ≃ 108) appropriate for the disk.

In particular, the model predicts a (Std)1/2 scaling for
equal-size particles in the inertial range (3.11 < Std <
6.2× 103). Similar approximations are used for different
particles with a fixed Stokes ratio, f ≡ Stℓ/Sth. We
divide particle pairs at a given f into the same three
ranges based on the Stokes number, Stdh (or Stdeddy,h), of
the larger particle. We then take the same procedure for
the PDF shape as a function of Stdh using the simulation
data for the three ranges. Again, the rms relative velocity
at fixed f is taken from our model, which predicts a
(Stdh)

1/2 scaling for Stdh in the inertial range for any value
of f .

5.2. Fractions of Sticking, Bouncing and Fragmentation

Fig. 16 shows the fractions of sticking, bouncing and
fragmentation as a function of the size of the larger parti-
cle, ap,h, at different Stokes ratios, f . Each panel is plot
in a similar way as Fig. 1 in Windmark et al. (2012b).
As the particles grow, the collision velocity increases, and
bouncing and finally fragmentation take place. The ver-
tical brown and black dotted lines correspond to particle
sizes, at which the rms collision velocities, 〈w2〉1/2 , be-
come equal to the bouncing (wb) and fragmentation (wf )
thresholds. If we ignore the collision velocity distribution
and assume that, for each size pair, the collision velocity
is single-valued with P (|w|; f, Sth) = δ(|w| − 〈w2〉1/2),
these vertical lines mark instantaneous transitions to
bouncing and fragmentation, which occur typically at
millimeter and decimeter sizes, respectively. In this case,
the growth would stop once the size reaches the brown
line, a problem known as the bouncing barrier for plan-
etesimal formation. If the particle growth somehow man-
ages to pass the bouncing barrier, it would eventually
be frustrated by the fragmentation barrier (black dotted
line). As f decreases from 1 (top panel) toward 0 (bot-
tom panel), the vertical lines shift toward smaller sizes
because the rms relative velocity increases with decreas-
ing f (see Fig. 7 in Paper II).
Assuming a Maxwellian distribution for |w|, Wind-

mark et al. (2012b) and Garaud et al. (2013) examined
the effect of the collision velocity PDF on particle growth.
As shown in Fig. 1 of Windmark et al. (2012b), account-
ing for the PDF leads to gradual transitions from sticking
to bouncing and to fragmentation. The reason is clear:
With a probability distribution, there are always possi-
bilities for sticking (or bouncing), corresponding to the
low (or high) tail of the |w| PDF, even if the rms colli-
sion velocity is already above (or still below) the bounc-
ing threshold, wb. The same applies to the bouncing-to-
fragmentation transition. For comparison with the esti-
mates based on our simulation data, the dashed lines in
Fig. 16 show the fractions computed from a Maxwellian
PDF for |w| using the PP10 model prediction for the rms
width. An interesting result of Windmark et al. (2012b)
was that, accounting for the |w| distribution, the bounc-
ing barrier may be overcome. The sticking probability
beyond the barrier size allows further growth, and the
peak of the particle size distribution, p(ap), can move
past the vertical brown line. Intuitively, a large parti-
cle can from if, by “luck”, it kept encountering sticking
events and enjoyed continuous growth.
The transition from bouncing to fragmentation is also

gradual, and of particular interest is the finite probability
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Fig. 16.— Sticking (green), bouncing (blue) and fragmentation
(red) fractions as a function of the size, ap,h, of the larger particle.

The four panels show fixed Stokes number ratios at f = 1, 1
2
, 1

4
,

and f → 0. Vertical brown and black dotted lines correspond to
critical ap,h at which the rms relative velocity reaches bouncing
and fragmentation thresholds, respectively. Dashed lines assume
a Maxwellian distribution. Results for f → 0 are based on the
particle-flow relative velocity (§3.1).

of fragmentation before ap reaches the black dotted line,
corresponding to the high tail of the PDF of |w|. These
fragmentation events would replenish particles of small
sizes, increasing the size distribution, p(ap), at small ap
(Windmark et al. 2012b). Under the assumption of a
Maxwellian PDF, the decrease of the sticking probabil-
ity is rather fast (the green dashed lines), and the growth
past the bouncing barrier turns out to be slow. Wind-
mark et al. (2012b) showed that it takes ∼ 104 yr to
reach centimeter size. The growth by sticking toward
the fragmentation barrier (if not impossible) would take
significantly longer than 104 yr. Note that, after the
bouncing-to-fragmentation transition, the bouncing frac-
tion (blue lines) in the top three panels start to increase
at ap,h ≃ 0.5− 1 m. The reason is that the rms relative
velocity for a given Stokes ratio f starts to decrease at
τp,h/Teddy ∼> 1/f (see Fig. 7 of paper II).
The solid lines in Fig. 16 are the fractions based on

our simulation data for the collision velocity PDF. These
lines show more gradual transitions than the dashed ones
for a Maxwellian distribution. This is because the colli-
sion PDF measured in our flow is fatter than a Gaussian
distribution. As mentioned earlier, in our terminology a
fat PDF shape typically corresponds to a sharper inner
part and a fatter tail part. In Figures 14 and 15, we

see that the measured PDFs have higher probabilities at
both extremely small and large |w| than a Maxwellian
distribution. Consider, for example, the switch from
sticking to bouncing. The higher probability at small |w|
is responsible for the slower decrease of Fs with the size of
the larger particle, while the earlier rise of the bouncing
curves, Fb, at smaller ap,h is due to higher probability of
large |w| at the right tail.
Interestingly, in the top panel for equal-size particles,

the decrease of Fs past the bouncing barrier is quite slow,
and it even extends to the fragmentation barrier (black
dotted line). This can be understood from Fig. 14 in Pa-
per I for equal-size particles, which shows that the PDF
at extremely small |w| is orders of magnitude larger than
a Gaussian distribution. An immediate implication of
the persistence of significant sticking fraction is that it
further helps alleviate the problem of the bouncing bar-
rier. With significantly higher sticking probabilities, the
growth beyond the bouncing barrier would proceed faster
than predicted with a Maxwellian distribution. The peak
size of the distribution p(ap) would increase faster. In
the f = 1 and 1

2 cases (top two panels), accounting for
non-Gaussianity may accelerate the growth by a factor
of ∼> 10.
Due to the fat non-Gaussian PDF tail, the solid red

lines for fragmentation rise earlier than the dashed ones,
suggesting that fragmentation can occur at smaller sizes
and at a higher rate. One consequence is that it pro-
vides faster replenishment of smaller particles than the
Maxwellian case, increasing the size distribution p(ap) at
small ap. Together with the significantly higher sticking
fraction, we speculate that this would lead to a broader
size distribution p(ap) around the peak size. Another
consequence of the earlier start of fragmentation is that it
may begin to impede the growth at smaller sizes. As the
peak of p(ap) moves closer to the fragmentation barrier,
coagulational growth will finally end at a size where the
fragmentation fraction, Ff , exceeds the sticking fraction,
Fs. We see in Fig. 16 that the solid green and red lines
tend to cross at smaller particle sizes than the dashed
lines, meaning that, with non-Gaussian PDFs, fragmen-
tation may start to compete with sticking earlier than the
Maxwellian case. However, we argue this is a secondary
effect in comparison to much higher sticking/growth rate
between the bouncing and fragmentation barriers. We
expect that the non-Gaussianity effect makes the growth
toward the fragmentation barrier size considerably easier.
Once the fragmentation fraction dominate over sticking,
the possibility of further growth of some particles toward
or above the fragmentation barrier requires alternative
mechanisms, such as the sweep-up process discussed be-
low.
As f decreases from 1 toward 0, the solid lines becomes

closer to the dashed ones. This is consistent with our re-
sults in §4.2 that, at a given Sth, the PDF shape becomes
thinner with decreasing f . In particular, the degree of
non-Gaussianity decreases very rapidly as f goes from 1
to 1

2 , as can be seen by comparing Fig. 14 of Paper I and
Fig. 14 in §4.2.4. The effect of non-Gaussianity is thus
weaker for collisions between particles of very different
sizes. The faster particle growth due to the effect of non-
Gaussianity in between the bouncing and fragmentation
barriers may occur mainly for particles of similar sizes.
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The bottom panel for f → 0 in Fig. 16 corresponds
to particles of very different sizes. The computation is
based on the particle-flow relative velocity discussed in
§3.1. As the collision statistics change only slightly as f
decreases from 1

16 to 0, this panel can be approximately

used for any f in the range 0 ≤ f ∼< 1
16 . The f → 0

case is imporant for a particle growth mechanism called
the mass transfer by fragmentation (see Windmark et al.
2012a). Laboratory experiments showed that, when col-
liding with a much larger particle, a small particle may
break up and leave some fragments on the larger parti-
cle. In effect, the larger particle sweeps up masses from
small particles, and it can thus keep growing even if its
size already exceeds the fragmentation barrier size9. The
sweep-up mechanism was suggested as a possible path to
planetesimal formation (Windmark et al. 2012a, 2012b;
Garaud et al. 2013). The solid red line in the bottom
panel can be viewed as representing the probability of
such mass transfer or sweep-up events. In comparison to
the Maxwellian case, the mass transfer can start earlier,
suggesting that the sweep-up mechanism can operate at
smaller ap,h.
We argue that, when the non-Gaussian collision statis-

tics is included, the sweep-up growth is likely more effi-
cient than the Maxwellian case because a larger number
of seed particles of large sizes would be available to sweep
up small particles. As discussed above, the formation of
these particles is expected to be easier due to larger stick-
ing probability in between the bouncing and fragmenta-
tion barriers. Also, the earlier start and higher rate of
fragmentation from collisions of similar-size particles be-
tween the two barriers could help provide more small
particles for the seed particles to sweep up. However,
we emphasize these are only speculations, and a definite
answer requires including the non-Gaussian PDFs into a
coagulation model.

5.3. Discussions

We have shown that the non-Gaussianity of the colli-
sion velocity leads to more gradual transitions from stick-
ing to bouncing and to fragmentation. The probability of
sticking past the mean bouncing barrier is significantly
larger than expected from a Maxwell distribution, and
we argued this would further help alleviate the bouncing
barrier, and help provide seed particles for the sweep-up
process in a possible mechanism for planetesimal forma-
tion.
We point out that our assumption for the PDF of |w|

underestimates the degree of non-Gaussianity for parti-
cles with Stdeddy ∼< 0.31 (ap ∼< 26 cm) in the disk. As
discussed in §2, the relative velocity of smaller particles
samples the flow velocity at smaller scales, ℓ. As the flow
structures are more intermittent at smaller ℓ, the PDF of
|w| would become fatter as Stdeddy decreases. Thus, using
the PDF shape of Stseddy = 0.31 particles in our flow for
all inertial-range particles in the disk underestimates the
non-Gaussianity at Stdeddy < 0.31. The PDF for particles

in the dissipation range (Std ∼< 1) of the disk would also

9 Windmark et al. (2012b) assumed that this mass transfer
occurs only for particle mass ratio larger than 50. This corresponds
to a size ratio of ∼> 3.7, or a Stokes ratio of ∼> 14 for particles with
ap ∼> 2.6 cm.

be fatter than the corresponding particles (Sts ∼< 1) in
our flow, because the degree of turbulent intermittency
at dissipation-range scales increases with Re. Therefore,
the non-Gaussianity effects discussed above on the par-
ticle growth should be viewed as a lower limit. With
more accurate PDF shape at Stdeddy ∼< 0.31, the tran-
sitions to bouncing and fragmentation would appear to
be more gradual. In a future work, we will examine the
Re−dependence of the collision statistics using a 10243

simulation, extrapolate the measured PDFs to large Re,
and provide fitting functions that can be implemented in
coagulation models.
We finally discuss some caveats in our results. Un-

like our simulated flow, turbulence in a rotating disk is
anisotropic at large scales. For example, in magneto-
rotational disks, nearly axisymmetric structures, known
as zonal flows (e.g., Johansen et al. 2009), emerge. Tur-
bulent structures at large scales are highly elongated
in the azimuthal (or zonal) direction. Based on Kol-
mogorov’s similarity hypothesis (e.g., Monin & Yaglom
1975), we expect the statistical isotropy to be restored at
small scales where the eddy time is significantly smaller
than the rotation period. Therefore, our results for the
collision velocity PDF are applicable for small particles
that couple to eddies far below the large zonal structures.
On the other hand, large particles with friction time,

τp, near or above the rotation period, Ω−1
K , would be

affected by the anisotropic zonal flow, where azimuthal
turbulent motions are more intense than in the radial di-
rection. Stronger zonal structures indicate that the par-
ticle collision velocity primarily lies in the azimuthal di-
rection, and the separation of nearby particle pairs back-
ward in time would also proceed mainly in that direction.
From the PP10 picture, the relative velocity of these large
particles would mainly sample the flow structures in the
zonal direction. Therefore, to understand the collision
velocity PDF, we need to know the scaling behavior and
the probability distribution of the zonal turbulent struc-
tures as a function of length and time scales, which, to
our knowledge, are currently unavailable in the litera-
ture. It is thus unclear how the anisotropy in a rotating
disk exactly affects the collision velocity PDF for parti-
cles with τp close to Ω−1

K . A direct comparison of the
PDFs measured in our flow with simulation results for
rotating disks in future studies would help reveal the ef-
fects of large-scale zonal flows on the particle collision
statistics10.
In addition to its effects on the flow structures, rota-

tion could also directly affect the particle collision veloc-
ity. For example, the rotation velocities of particles of
different sizes are different, and this gives rise to a mean
azimuthal collision velocity, which may be important for
very large particles (e.g., Fig. 3 of Testi et al. 2014). Dif-
ferential rotation (or shear) can also contribute to the
collision velocity. Although weaker than the zonal ed-

10 If the zonal flow is driven by an inverse cascade, as suggested
by Johansen et al. (2009), the non-Gaussianity of zonal structures
may be lower, due to the lower degree of intermittency in an inverse
cascade (e.g., Paret & Tabeling 1998). In that case, the collision
PDF of large particles coupled to the zonal eddies may be less
non-Gaussian. Johansen et al. (2007) showed simulation results
for the particle collision velocity PDF in magneto-rotational disks.
However, form their linear-linear plots, it is hard to tell the fatness
or non-Gaussianity of the PDF.
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dies, turbulent motions in the radial direction can cause
a radial separation of nearby particle pairs backward in
time. The particle pair would thus have a memory of
different rotation speeds of the gas at different radii in
the past, leading to a contribution to the collision veloc-
ity in the azimuthal direction. Combined with the ra-
dial separation, the differential rotation can enhance the
backward separation of particle pairs in the azimuthal di-
rection. This also tends to increase the collision velocity,
as the particles’ memory would sample the zonal tur-
bulent structures at large scales. The strength of these
effects depends on the amplitude of the radial turbulent
motions and thus on the degree of anisotropy. A definite
estimate for the effects is beyond the scope of this work.

6. SUMMARY AND CONCLUSIONS

Motivated by the important role of the collision ve-
locity distribution in modeling dust particle growth,
we investigated the probability distribution function of
turbulence-induced relative velocity of inertial particles,
extending our earlier work on equal-size particles (Pan &
Padoan 2013; Paper I) to the case of different particles
of arbitrary sizes. We used the numerical simulation of
Paper I. The simulation evolved inertial particles with
friction time, τp, ranging from 0.1τη (St = 0.1) to 54TL

(St = 795), with τη and TL the Kolmogorov time and
the Lagrangian correlation timescale of the flow, respec-
tively. We computed the PDF for all Stokes number pairs
(St1, St2) available in the simulation, and interpreted the
results using the physical picture of the Pan & Padoan
(2010) model for the bidisperse case.
In the PP10 picture, the particle relative velocity con-

sists of two contributions, named the generalized accel-
eration term and the generalized shear term. The gen-
eralized acceleration corresponds to different responses
of particles of different sizes to the flow velocity, and is
connected to the temporal flow velocity difference, ∆uT,
along individual particle trajectories. The acceleration
term thus “inherits” the non-Gaussianity of the tempo-
ral velocity structures in turbulent flows. The general-
ized shear term represents the particles’ memory of the
spatial flow velocity difference across the separation of
the two particles at given times in the past. As shown
in Paper I, the shear term does not simply “inherit” the
non-Gaussianity of the spatial flow velocity structures;
instead it reaches a significantly higher level of non-
Gaussianity by a self-amplification mechanism. Based
on the statistics of temporal and spatial flow velocity
structures, we analyzed the contributions of the acceler-
ation and shear terms to the PDF of the particle relative
velocity. Our simulation results for the relative veloc-
ity PDF are successfully explained by the behavior of
the two contributions. The main conclusions from our
statistical analysis of the numerical simulation are the
following:

1. As a special bidisperse case, we studied the rela-
tive velocity, wf , between inertial particles and the
flow velocity at the particle position. The PDF
shape of wf becomes continuously thinner with in-
creasing St, and approaches Gaussian for τp ∼> 7TL.
This corresponds to the thinning trend of the dis-
tribution of ∆uT with increasing time lag, as in-
ferred from the PDFs of the Lagrangian and Eule-

rian temporal flow velocity differences.

2. The PDF of turbulence-induced relative velocity
of inertial particles is generally non-Gaussian, ex-
hibiting fat tails. We found that, at a fixed St1, the
PDF shape is the fattest for the monodisperse case,
i.e., at St2 = St1. The PDF shape becomes thinner
as St2 increases above or decreases below St1. As
St2 → 0, the PDF approaches that of the particle-
flow relative velocity wf . In the limit St2 → ∞,
the relative velocity is approximated by the one-
particle velocity of particle (1), and its PDF ap-
proaches Gaussian. At a given St1, the PDF be-
havior as a function of St2 is confined by three
useful limits, St2 → 0, St2 = St1, and St2 → ∞.

3. We also examined the trend of the PDF shape with
varying Sth at fixed Stoke ratios, f . At f = 1

2 , the
PDF tails slightly fatten as Sth increases to 0.78,
and then become continuously thinner for larger
Sth. For f ≤ 1

4 , the PDF fatness is found to de-
crease continuously with increasing Sth for all Sth
( ∼> 0.1/f ) available in our simulation. For a given
Sth, the PDF shape is almost invariant with f for
0 ≤ f ≤ 1

16 . If the friction time, τp,h, of the larger
particle is close to TL, the PDF tails of both the
radial and tangental relative velocities are fit well
by a 4/3 stretched exponential function for any
value of f . The particle relative velocity PDF ap-
proaches a Gaussian distribution only if the friction
timescale, τp,h, of the larger particle is sufficiently
large. For 0 ≤ f ≤ 1

16 , the PDF reaches Gaussian
only if τp,h ∼> 7TL. The condition is stronger at
larger f . For f = 1

8 ,
1
4 , and

1
2 ≤ f ≤ 1, the PDF

becomes nearly Gaussian at τp,h ∼> 14TL, 27TL and
54TL, respectively.

4. The r-dependence of the PDF for small particles is
significantly weaker than in the monodisperse case,
making it easier to achieve numerical convergence.
The shape of the relative velocity PDF already con-
verges at r ≃ 1

2η for all bidisperse cases in our sim-
ulation, except for the smallest two particles with
St = 0.1 and 0.19.

5. We discussed the implications of the non-
Gaussianity of the particle collision velocity on the
dust growth in protoplanetary disks. With some
simplifying assumptions, we calculated the frac-
tions of collisions resulting in sticking, bouncing
and fragmentation as a function of the particle
size, and showed that, when non-Gaussianity is ac-
counted for, the transitions from sticking to bounc-
ing and to fragmentation become more gradual.
In particular, the non-Gaussianity leads to much
larger sticking probabilities past the bouncing bar-
rier, which we argue could help further alleviate the
bouncing barrier for dust particle growth.

The PDF of the particle collision velocity plays an im-
portant role in the modeling of dust particle growth, and
the non-Gaussianity of turbulence-induced collision ve-
locity needs to be accounted for in order to accurately
predict the size evolution of dust particles in protoplan-
etary disks. In a followup work, we will provide fitting
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functions and tables of our results for the relative velocity
PDF as a function of the Stokes pair, for a straightfor-
ward implementation in dust coagulation models. Our
study could be improved in several aspects with larger
simulations. For example, increasing the number of small
particles per species would allow to measure the PDF at
smaller particle distances and help resolve the issue of
the convergence for the PDF of small particles (St ∼< 0.1)
of similar sizes. With simulations at higher resolutions,
we could also advance our understanding of the collision
statistics for particles in the inertial range of the flow,
and examine the possibility of a Reynolds number de-
pendence of the velocity PDF.
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APPENDIX

A. THE PDFS OF LAGRANGIAN AND EULERIAN TEMPORAL VELOCITY DIFFERENCES

In Fig. 17, we show the PDFs of the Lagrangian (∆uL, left panel) and Eulerian (∆uE, right panel) temporal velocity
differences at different time lags, ∆τ . ∆uL(∆τ) is computed as u(XL(t+∆τ), t+∆τ)−u(XL(t), t) by following the
trajectories, XL(t), of tracers, while ∆uE(∆τ) = u(x, t+∆τ)−u(x, t) is measured at fixed points, x. Each line in the
figure corresponds to the PDF of one component, ∆uL or ∆uE, of the vector ∆uL or ∆uE. All PDFs are normalized
to have unit variance. The bottom curves in both panels correspond to ∆τ = 49.7τη (3.3TL), and, at this ∆τ , the
PDFs of ∆uL and ∆uE are Gaussian (the dotted black lines).
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Fig. 17.— The normalized PDFs of the Lagrangian (left) and Eulerian (right) temporal velocity differences, ∆uL,E(∆τ), as functions of

the time lag. In each curve, the velocity difference is normalized to its rms value, i.e., ∆̃uL,E ≡ ∆L,Eu/〈(∆L,Eu)
2〉1/2. In both panels, the

top lines plot the actual values of the PDFs for ∆τ = 0.39τη , while each lower line for larger ∆τ is shifted downward by a factor of 4 for
clarity. The dotted black line corresponds to a Gaussian PDF.

As ∆τ decreases, the central part of the PDF keeps a Gaussian-like shape, but the PDF tails become fatter and
fatter. The overall PDF shape is highly non-Gaussian at ∆τ ∼ τη. Fattening of the PDF of ∆uL corresponds to
turbulent intermittency in the Lagrangian frame. A comparison of the two panels shows that, at ∆τ ∼< 6.21τη, the
PDF tails for ∆uL are significantly fatter than ∆uE. This is consistent with the results of previous studies (e.g.,
Chevillard et al. 2005) that the degree of intermittency in Lagrangian structures is higher than the Eulerian temporal
velocity difference.
As the friction time τp increases, the flow velocity seen by the particle may make a transition from Lagrangian-like

to Eulerian-like. This transition is expected to occur at τp ∼ TL ≃ 15τη. Interestingly, the PDF shapes of ∆uL and
∆uE are very similar at ∆τ ∼> 12.4τη. This implies that one may use the PDF of ∆uL for all particles to understand
the particle-flow relative velocity or the generalized acceleration contribution in the general bidisperse case.
In isotropic turbulence, ∆uE can be related to the spatial velocity difference, ∆u(ℓ) (≡ u(x+ ℓ, t)−u(x, t)), by the

so-called random Taylor hypothesis (e.g., Tennekes 1975). In this hypothesis, ∆Eu(∆τ) is estimated by ∆u(ℓ) at a
scale of ℓ ≃ u′∆τ , where it is assumed that the sweeping speed at which the energy-containing eddies advect small-scale
eddies across a given point is given by the rms flow velocity, ∼ u′. The hypothesis is supported by a comparison of the
PDF shape of ∆Eu(∆τ) with the spatial velocity increment ∆ut(ℓ) in the transverse direction at ℓ ≃

√
3u′∆τ in our
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Fig. 18.— The normalized PDFs of the acceleration (red), and the longitudinal and transverse velocity gradients, ∂‖u and ∂⊥u.

flow. We also find that the intermittency of temporal structures in the Lagrangian frame is stronger than the Eulerian
spatial structures, consistent with previous studies (e.g., Chevillard et al. 2005). The normalized PDF of ∆ut(ℓ) has
been examined in details in Appendix B (right panel of Fig. 21) of Paper I.

B. THE ACCELERATION AND VELOCITY GRADIENT PDFS OF THE SIMULATED FLOW

In the small particle limit with τp → 0, the generalized acceleration and the generalized shear contributions are
related to the acceleration, a, and the spatial gradient, ∂jui, of the flow velocity, respectively (see §2). It is therefore of
interest to compare the PDF shape of the acceleration and velocity gradients. Since a = lim∆τ→0∆Lu/∆τ , the PDF of
a can be obtained from the Lagrangian velocity difference ∆Lu(∆τ) at small ∆τ . In our simulated flow, the PDF shape
of ∆Lu(∆τ) is found to be invariant at ∆τ ≤ 0.19τη, and we can thus measure the PDF of a at ∆τ ≃ 0.19τη. Similarly,
the velocity gradient can be obtained from ∆u(ℓ) at small ℓ. We consider the longitudinal (∆ur) and transverse (∆ut)
components of ∆u(ℓ) along and perpendicular to ℓ, and define the longitudinal and transverse velocity gradients as
∂‖u ≡ limℓ→0 ∆ur(ℓ)/ℓ and ∂⊥u ≡ limℓ→0 ∆ut(ℓ)/ℓ, respectively. We compute the PDFs of the two gradients from
∆ur(ℓ) and ∆ut(ℓ) across a distance of ℓ ≃ 1.7η, below which the PDF shape converges. In Fig. 18, we show the
measured PDFs of a (red), ∂‖u and ∂⊥u (blue), respectively. All the PDFs are normalized to have unit variance.
The acceleration PDF shown here is for one component of a. Clearly, the acceleration PDF is slightly fatter than the
transverse velocity gradient. The longitudinal velocity gradient is skewed toward negative values, and, as discussed in
Paper I, this asymmetry is related to the dissipative nature of turbulence.

C. THE TANGENTIAL PDFS OF APPROACHING AND SEPARATING PAIRS AT FIXED STOKE RATIOS

In Fig. 19, we compare the PDFs, P (wt|wr ≶ 0; f, Sth), of the tangential relative velocity for approaching (solid)
and separating (dashed) particle pairs at a distance of 1η. The left and right panels plot the results for f = 1

2 and 1
8 ,

respectively. The two panels are plot in a similar way as the right panel of Fig. 13 in Paper I for equal-size particles
(f = 1), which showed that, for St ∼< 6.21, the PDF tails for approaching particles (wr < 0) are broader than the
separating ones (wr < 0). As discussed in Paper I, one reason for this asymmetry is that the particle distance for
approaching pairs backward in time tends to be larger than that for separating ones, especially in the near past.
As seen in Fig. 19, the asymmetry is present also in the bidisperse case. The difference between the tangential PDFs

conditioned on wr < 0 and wr > 0 comes only from the shear contribution, as the acceleration contribution does not
depend on the relative motions of the two particles (see §2). A comparison of the right panel of Fig. 13 in Paper I for
the monodisperse case and the two panels in Fig. 19 here shows that, at the same Sth, the difference in the tangential
PDFs for wr < 0 and wr > 0 is smaller for smaller values of f . This is because the generalized acceleration term makes
a larger contribution when the Stokes number difference increases. The presence of the acceleration contribution makes
it easier for the tangential PDFs of approaching and separating pairs to equalize in the bidisperse case.
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