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Habitat filtering at multiple scales: a case study with crab-associated 
microbial communities 

 

Catalina Cuellar-Gempeler, Ph.D. 

The University of Texas at Austin, 2016 

 

Supervisor:  Mathew A. Leibold 

 

Local diversity is the result of colonization from a species pool and local habitat 

filters. The relative contribution of these processes delineates our ability to predict 

changes in biodiversity, key in a changing world. Although theory suggests that these 

interactions are critical for the maintenance of biodiversity, empirical work has been 

restricted by limitations of studies across biogeographical regions and laboratory 

microcosms. Alternatively, host-associated microbial communities represent discrete, 

tractable and replicable assemblages. Hosts provide distinct habitat patches with different 

habitat filters and are surrounded by environmental bacteria that determine the regional 

species pools. My dissertation focuses on colonization and habitat filtering processes 

driving species composition of microbial communities associated with coastal crabs.  

First, I investigated colonization from the water column and filtering associated 

with the striped shore crab (Pachygrapsus transversus). Using a field experiment I asked 

whether species pool size interacts with habitat filters to structure microbial communities. 

Results indicated that the carapace was a stronger filters than the surrounding surfaces 

and are thus less influenced by changes in the regional species pool. Next, I examined 

whether the temporal scale of convergence and divergence in community composition 

was habitat dependent. In a mesocosm experiment, gut communities converged in 



 viii 

community composition while carapace communities converged at day 8 and diverged 

thereafter. These findings indicate that the gut represents a strong filter when compared to 

carapace habitats, whose communities were driven by species interactions during biofilm 

formation.  

Second, I investigated whether multiple colonist pools can influence microbial 

communities. In a field study, I found that surface and burrow sediment colonize fiddler 

crab gut and carapace communities To better understand the interaction between multiple 

colonist pools and habitat filters, I used a mesocosm experiment where I manipulated 

sediment bacteria. While carapace communities were influenced by burrow sediment, 

removing bacteria from the surface also impacted carapace microbial composition. In 

contrast, gut communities responded weakly to colonist pool manipulations suggesting 

strong filtering. 

These findings highlight complex interactions between local communities and 

colonist pools. Importantly, identifying when multiple colonist pools or habitat filters 

drives community composition should lead to a more predictive community ecology. 
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Chapter 1: Regional species pool size and habitat filters drive community 
similarity in shore crab-associated microbial communities 

ABSTRACT 

Community structure results from the interaction between random colonization 

from the species pool and habitat filters defined by local environmental conditions. When 

local conditions are beneficial, the number of species available for colonization is 

hypothesized to limit community diversity, yet few studies have explored how harsh 

conditions limit recruitment of unfit species and constrain community diversity, regardless 

of the number of colonists. With a field experiment, we compared the responses of crab 

carapace and tile surfaces microbial communities to seasonal changes in available colonists 

from the water column. Since colonization of carapaces is constrained by crab immunity 

and chitin structure, we expected to find stronger responses to colonist number on tile than 

on crab-associated communities. Bacterial diversity in the water column increased by 10% 

as salinity and temperature decreased from early August to late September in the Texas 

coast. Increased bacterial availability coincided with increased beta diversity in tile but not 

in carapace-associated microbial communities. Richness in carapace and tile communities 

was unaffected by bacterial diversity in the water column. Beta diversity responses to 

regional species pool in tile communities denote the prevalence of colonization over 

filtering processes while the opposite is true for carapace communities. Our results are 

consistent with the hypothesis that colonist pool size increases beta diversity but only on 

habitats with weak filtering. 

 

INTRODUCTION 

Central to community ecology is to integrate the traditional view of niche factors 

shaping community composition with the influence of colonization from the regional 

species pool (Chase and Myers 2011, Harrison and Cornell 2008, Ricklefs 1987). The niche 

view of community assembly highlights strong habitat filters that restrict recruitment to 
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species with sufficient tolerance or competitive traits to maintain viable populations at the 

local scale (Chesson 2000, Leibold 1995). In contrast, the colonization view describes 

assembly as a series of random colonization and demographic stochasticity events (Adler et 

al 2007, Hubbell 2001). While its clear that communities fall along a continuum from the 

niche to the colonization view, the current challenge lies in identifying the factors 

mediating the relative contribution of habitat filters and colonization. Theory indicates that 

communities under weak habitat filters should be more susceptible to changes in the 

regional species pool than communities under strong habitat filters (Chase 2007, Chase and 

Myers 2011), yet few studies address the interaction between the size of the species pool 

and local habitat filtering (Chase and Myers 2011). Given expected changes in species 

pools due to contemporary extinction and species invasion rates, this represents an 

important gap in understanding when changes in available species affect local diversity 

patterns (Cornell and Harrison 2014, Fukami 2004, Grman and Brudvig 2014, Myers and 

Harms 2009, Questad and Foster 2008). 

A useful approach to understand processes underlying community structure is to 

focus on variation in community composition across sites, known as beta diversity (Chase 

and Myers 2011). These beta diversity patterns have been fundamental in investigating 

factors shaping diversity across latitudinal, altitudinal, environmental and productivity 

gradients (Korhonen et al 2010, Kraft et al 2011, Myers et al 2013, Soininen et al 2007). In 

addition to these empirical advances, theory makes clear predictions regarding the role of 

habitat filters and regional species pools in shaping beta diversity patterns. In spatially 

structured and homogeneous landscapes, theory indicates that, since communities receive a 

portion of the species pool, larger pools result in additional portions, and thus, in higher 

beta diversity (Chase and Myers 2011). However, strong habitat filters should constrain 

beta diversity by selecting only those species able to tolerate local harsh conditions, like 

temperature extremes, pollutants or low resource availability (Chase 2007). Strong 

evidence of the interaction between species pool size and habitat filters comes from large 
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scale observational studies. For example, the latitudinal gradient in diversity, one of the 

most robust patterns in biology may be explained by a combination of larger species pools 

at the tropics and stronger environmental filters in temperate regions (Kraft et al 2011, 

Myers et al 2013, Qian and Ricklefs 2000). However, these observational studies cannot 

directly test the role of the species pool in driving community structure, and a more useful 

approach is to use manipulative experiments (Grman and Brudvig 2014).  

Although studies that manipulate species arrivals are fundamental to reveal 

mechanisms driving community structure (Myers and Harms 2009, Tilman 1997, Turnbull 

et al 2000), most of these studies focus on whether local communities are saturated or 

dispersal-limited. Thus, seed addition rarely attempts to replicate realistic species pool sizes 

and instead often doubles or triples local seed density, overestimating the importance of 

species pools (Myers and Harms 2009, Myers and Harms 2011). In contrast, few studies 

focus on the influence of realistic species pools and their interaction with local habitat 

filters. 

We used a field experiment to test the hypothesis that bacterial richness in the water 

column interacts with habitat filters in shaping community structure of microbial 

communities associated with crab carapaces and tile surfaces. This system provides an 

alternative to traditional plant and animal communities offering two important advantages. 

First, hosts provide distinct habitat patches that differ in their habitat filters from the 

surrounding environment (Christian et al 2015, Sachs et al 2004). For example, bacterial 

colonization of the crab’s carapace is mediated by its chitin structure and the crab’s 

immunity (Moret and Moreau 2012). Second, environmental bacteria around the host 

represent tractable species pools. In benthic habitats, the pool of bacterial colonists from the 

water column changes according to the environmental conditions in the water such as 

salinity and temperature (Apple et al 2006, Bouvier and del Giorgio 2002, Hatosy et al 

2013, Sunagawa et al 2015).  
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We conducted a field experiment to determine the interaction between species pool 

size and local habitat filters. First, we compare the filtering strength of host-associated 

habitats to abiotic, tile surfaces. Second, we tested the hypothesis that beta diversity will 

increase with species pools size, but only under weak habitat filters. Our results support the 

hypothesis that stronger filters in the crab’s carapace preclude beta diversity responses to 

species pool size, while tile surfaces, under weaker filters showed an increase in beta 

diversity.  

METHODS 

To evaluate the interaction between bacterial richness in the water column and host-

associated habitat filters, we conducted a field experiment in August and September, 2012, 

near Port Aransas, Texas (27.8275° N, 97.0722° W). At this location, adult striped shore 

crabs (Pachygrapsus crassipes) were collected from an oyster reef composed of 

Crassostrea virginica and brought to the laboratory where they were kept for 2 weeks in 

flow-through tanks prior to experimentation. These crabs are common herbivores in the 

rocky intertidal (Abele et al 1986), where they are exposed to bacterial colonization from 

the water column.  

Experimental design 

Our field experiment consisted of 3 species pool and 2 habitat filter treatments. To 

assess the effect of species pool sizes, we ran the experiment on August 7th, August 30th 

and September 19th, encompassing one of the periods of most drastic change in salinity and 

temperature in Texas bays (Applebaum et al 2005). Based on known responses of bacteria 

to temperature and salinity (Sunagawa et al 2015), we expect these changes in 

environmental conditions to increase bacterial richness. The effect of these different 

bacterial pool sizes was assessed on bacterial communities associated with two distinct 

habitat filters: crab carapaces and tile surfaces. Prior to the experiment, carapaces and tiles 

were swabbed with alcohol and bleach to disturb the associated bacterial communities. We 
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sampled these surfaces after the cleaning procedure to assess its effect. To initiate 

community assembly, crabs and tiles were suspended next to the oyster reef at a depth of 

1m, within individual PVC enclosures. Sampling was done after 4 and 8 days of 

deployment. At each sampling date, 3 crabs and 3 tiles were selected at random and taken 

to the lab in sterile containers for further processing. In addition to surface samples, we 

took 3 water samples (400 mL) at each sample date as a measure of the regional species 

pool. At every sampling date, we determined salinity and temperature as explanatory 

factors of bacterial diversity in the water using a handheld salinity, conductivity and 

temperature probe (YSI, Model 30). 

Sample processing and DNA extraction was conducted at the Marine Science 

Institute of the University of Texas. Crabs were rinsed with sterile deionized water to 

remove unattached bacteria. We swabbed and scraped crab carapaces and tiles for bacterial 

DNA profiling. Although tiles measured 10 x10 cm, we only sampled a 2.5 x 2.5 cm region 

to account for area effects on diversity. These dimensions correspond to the average P. 

transversus adult size (Abele et al 1986). Water samples were filtered using a 0.45 μm pore 

filter (MoBio) to facilitate filtering of coastal water samples of high particulate content. 

Although we may lose some bacteria using this larger pore size, 0.45 μm are equally 

efficient at recovering bacterial cells as smaller pore sized filters (Carter 1996). 

We extracted total microbial DNA from swabs and filters using PowerWater DNA 

extraction kit (MoBio). To eliminate humic acids and reduce PCR inhibition, we used a 

DNA Clean Up kit (Qiagen) prior to amplification. DNA was amplified with a two-step 

PCR enrichment of the 16S V4 hypervariable region. This 292 bp long sequence 

encompasses positions 515-801 in Escherichia coli and specifically avoids amplifying 

host’s DNA (Laurie et al 2010, Wang and Qian 2009). We used an Illumina MiSeq 

platform for sequencing at the Genomic Sequencing Analysis Facility at the University of 

Texas at Austin.  
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To process sequence data, we used the Quantitative Insights Into Microbial Ecology 

pipeline (QIIME, version 1.8.0, (Caporaso et al 2010). We used FLASH to align the 250 bp 

paired end reads (Magoc and Salzberg 2011). Sequences were clustered into OTUs 

(Operational Taxonomic Units) based on 97% similarity in 16S rRNA DNA. We used an 

open-reference OTU picking protocol based on UCLUST’s open reference algorithm 

(Edgar 2010). The GreenGenes database (version 12.10 (DeSantis et al 2006) was used as 

reference for OTU picking and taxonomic classification. For analysis, we retained only 

those OTUs representing more than 0.01% of sequences per sample and occurring in more 

than 3 samples, to reduce the effect of rare OTUs and sequencing errors  (Bokulich et al 

2013).   

Data analysis 

Our analysis consists of three parts. First, we evaluated seasonal changes in 

environmental conditions and OTU richness. Second, we assessed the strength of the 

habitat filters. Lastly, and most importantly, we determined the effect of species pool size 

and habitat filters on community similarity (beta diversity). 

To determine seasonal differences in bacterial pools in the water column, we 

assessed changes in OTU richness and rarefied richness with ANOVA tests. We calculated 

species accumulation curves to determine whether richness patterns reflect similar sampling 

effort across samples. We used linear regressions to assess the seasonal change in 

temperature and salinity. 
To assess the strength of habitat filters acting on colonizing bacteria, we compare 

bacterial diversity on crab carapaces and tile surfaces. Differences in OTU rarefied richness 
between crab and tile associated communities were assessed with two-way ANOVA tests 

with habitat filter (tile or carapace) and month as factors. To evaluate differences in 
sampling depth across habitats, we constructed sample-based rarefaction curves using the 

specaccum function from the vegan package (Oksanen 2007). We used Redundancy 
Analysis (RDA) on Hellinger transformed OTU data to assess compositional differences 

between water species pools, crab carapaces and tile surfaces using temperature and salinity 
as environmental data (Legendre and Gallagher 2001). This analysis minimizes the effect 

of rare species and facilitates the visualization of group differences (Legendre and 
Gallagher 2001). We assessed significance in compositional differences between carapaces, 



 7 

tiles and water samples using perMANOVA on RDA scores (Anderson and Walsh 2013). 
We assessed convergence and divergence in community composition in carapaces and tiles 

using the multivariate homogeneity of group dispersions on Hellinger transformed data, 
calculated for day 4 and 8. (Anderson 2006). While convergence in community 

composition through time suggests strong habitat filters acting on local assemblages, 
divergence suggests weak filters open to colonization. 

 

Figure 1.1. Boxplot of seasonal change in bacterial pool richness. *** indicates significant 
differences from other groups as shown by a Tukey test.  

Table 1.1. Summary of an ANOVA on rarefied richness differences between surface 
habitats (crab carapace and tile surfaces) and month of sampling. Although there is a 
significant effect of habitat, these differences are lost after a Tukey test. 

 d.f. F p 
Month 2 0.629 0.540 
Habitat 1 4.277 0.047* 
Month*Habitat 2 1.086 0.350 

* indicates significance of p<0.05 

To evaluate the effect of species pool size and habitat filters on community 

similarity (beta diversity), we used the multivariate homogeneity of group dispersions on 

Hellinger transformed relative abundance data (Anderson 2006, Legendre and Gallagher 

2001) calculated for each month and each habitat (carapace and tile). We then evaluated the 

individual taxa driving these community wide responses. We assessed the effect of habitat 

filter and species pool on relative abundance of individual OTU using two-way ANOVAs.  
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RESULTS 

We obtained 9442± 1080 reads per sample for a total of 660 994 DNA reads. Of the 

original samples, some were discarded because of low DNA yield (less than 0.5 ng/μL) or 

low read count (less than 5000 reads), leaving 54 samples suitable for analysis. For 

example, we did not recover sufficient DNA from crabs or tiles after the cleaning 

procedure, thus these samples were excluded from the analysis. After accounting for 

sequence quality and removing low-abundance OTUs, we identified 656 OTUs distributed 

across 14 phyla and 79 families. 

 

Figure 1.2.  Seasonal change in temperature (a) and salinity (b). A summary of the results 
of a linear regression are indicated for each plot.  

The bacterial community in the water column increased from August to September 

(d.f.=2, F=8.634, p= 0.003, Figure 1.1). We found equivalent patterns from raw richness 

and rarefied richness, and we only show raw richness results. In the August 7th and 30th 

experiments, OTU richness averaged 392±13 and 383±15 OTUs respectively while, in 

September 15th, we found an average of 423±13 OTUs. These changes are paralleled by 
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salinity and temperature, which decreased drastically between August and September 

(Figure 1.2).  

 

Figure 1.3. Redundancy analysis (RDA) of bacterial communities associated with crab 
carapaces (light grey triangles), tile surfaces (dark gray squares) and water samples (black 
circles). 

Overall, bacterial communities on crab carapaces, tile surfaces and water samples 

differed in community composition (Fig 1.3, perMANOVA: d.f.=2, R2=0.198, p=0.003). 

These differences were partially due to beta diversity patterns. While water communities 

remained strongly similar to each other (low beta diversity), carapace-associated 

communities were intermediate in community composition (intermediate beta diversity), 

and tile-associated communities were the most variable (high beta diversity, d.f.=2, 

ANOSIM R=0.778, p=0.001). Differences in diversity between carapaces and tiles were not 

due to richness differences (Table 1.1, Fig S1.1) or patterns of divergence or convergence 

in community composition (Fig S1.2). Species accumulation curves from carapace, tile and 

water samples differed, but they were all near saturated (Fig S1.3). Beta diversity remained 

unchanged between day 4 and 8 across tile surfaces (d.f.=1, F=2.295, p=0.149), crab 

carapaces (d.f., F=1.015, p=0.418) and water samples (d.f.=1, F=0.060, p=0.759). 

-0.5

0.0

0.5

1.0

-0.4 0.0 0.4 0.8
RDA1

R
D
A2



 10 

 

Figure 1.4. Boxplot illustrating seasonal changes in distance to centroid of microbial 
communities associated with crab carapaces (a) and tile surfaces (b). Distance to group 
centroid was calculated from hellinger transformed data for each month. *** indicates 
significant differences from other groups as shown by a Tukey test. 

Importantly, beta diversity increased with increasing richness in water bacteria, but 

only on tile surfaces. Beta diversity across tile-associated bacteria increased from August to 

September (Fig 1.4, d.f.=2, F=12.69, p=0.0005). In contrast, beta diversity remained 

constant throughout our study in crab-associated communities (Fig 1.4, d.f.=2, F=0.665, 

p=0.531) and in the water column (permutes: d.f. =2, F=25.117, p=0.001). OTUs driving 

these differences in beta diversity were identified among those with average relative 

abundance higher than 0.005 in either carapace or tiles (Table 1.2, Fig 1.5). We highlight 

here patterns of selected OTUs as example of some general patterns. For example, OTUs 

like Tenacibaculum sp (Flavobacteriaceae) were consistently higher on the carapace (Fig 

1.5a, Table 1.2). Some OTUs, such as Prochlorococcus marinus, were consistently higher 

on tiles (Fig 1.5b, Table 1.2). In contrast, members of Rhodobacteraceae and Vibrio sp 

showed seasonal patterns, particularly on the tiles (Fig 1.5c and 1.5d, Table 1.2).  
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Figure 1.5. Boxplots of relative abundance of selected OTUs. Relative abundance of each 
OTU is shown for crab carapaces (shape), tile surfaces (shape) and water (shape), across 
each month of sampling.   

DISCUSSION 

Although broad biogeographical studies indicate that species pool size and habitat 

filters interact in driving patterns of community structure (Freestone and Inouye 2015, 

Kraft et al 2011, Myers et al 2013), few studies address this relationship experimentally 

(Grman and Brudvig 2014). Our results are consistent with the hypothesis that colonist pool 

size increases beta diversity but only on habitats with weak filtering.  In the September 15th 

experiment, we found high OTU richness in the water column and increased beta diversity 

on tile but not on crab surfaces (Fig 1.3). In contrast, in August 7th and 30th, OTU richness 

in the water column was low and beta diversity on tile surfaces was comparable to crab 

carapaces.   
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These results contribute to our understanding of factors mediating the importance of 

colonization from the species pool and local habitat filters (Chase and Myers 2011, Lessard 

et al 2012). To our knowledge, only two studies have experimentally tested for this 

relationship. Grman and collaborators (2014) found that beta diversity was higher when 

restored prairies were treated with more diverse seed mixes. Their results depended on soil 

moisture, similar to our findings of habitat-dependent regional species pool effects.  

Questad and Foster (2008) found that species pool size interacted with disturbance to create 

higher beta-diversity in grasslands. These studies differ from ours in the choice of species 

for the species pool. While in Grman and collaborators (2014)’s study, seed cost 

determined species pool composition and Questad and Foster (2008) built species pools 

according to species traits, our study provides evidence of habitat filters interacting with 

natural species pools shaped by seasonal changes in the marine environment.  

Seasonal changes in salinity and temperature in the water column may explain shifts 

in species pool richness (Fig 1.1, 1.2). These variables are major drivers of bacterial 

diversity in the marine environment (Sunagawa et al 2015, Zinger et al 2011) suggesting 

that microbial diversity in the water column is decoupled from local community dynamics 

shaping surface associated biofilms (Harrison and Cornell 2008). This resembles the classic 

mainland-island model where the species pool is a species reservoir that remains unaffected 

by processes shaping local communities (MacArthur and Wilson 1967). However, instead 

of the stable species reservoir portrayed in this classic model, our species reservoir shifts in 

richness and composition due to seasonal changes in environmental conditions. Likewise, 

broad climate and landscape patterns can result in shifts in regional species pool diversity 

for animals and plants (Harrison and Cornell 2008, McPeek and Brown 2000). Whether 

these shifts have strong impacts on local communities depends on the strength of local 

habitat filters. 

We found that the crab carapace represents a distinct habitat for bacterial 

communities with stronger filters than found on tile surfaces. Importantly, beta diversity 
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was consistently lower within crab carapaces than within tile surfaces (Fig 1.3, 1.4). This 

suggests that filtering mechanisms on the carapace constrain colonist establishment, 

reducing the influence of random colonization, ecological drift and priority effects on 

community assembly. While colonization of tile surfaces depends merely on attachment 

and biofilm development (Jackson et al 2001, Siboni et al 2007), colonization of the 

carapace is constrained by chitin chemistry and crab immunity (Moret and Moreau 2012). 

For example, we found that the opportunistic chitin-degrading pathogen Vibrio sp (Pruzzo 

et al 2008) was abundant on tiles in early August, but was excluded from carapace 

communities (Fig 1.5c). This particular result support the hypothesis that colonization of 

host-associated microbial habitats is constrained by evolutionarily determined filters that 

aim at excluding pathogens and enhancing fitness (Robinson et al 2010).  

We found little evidence of richness differences in surface-associated microbial 

communities (Table S1.1, Fig S1.1). Bacteria within the biofilm matrix is protected from 

physical, chemical and environmental stress by extracellular polymeric secretions (EPS, 

Decho 2000). Thus, even though factors like temperature or salinity can alter the regional 

species pool and early biofilm assembly, they should not influence later stages of mature 

biofilms. Even though richness differences were subtle, community composition differed 

between surfaces reflecting the strong influence of colonist on weakly filtered tiles. For 

example, Prochlorococcus sp and Rhodobacteraceae, common to the water column, were 

consistently higher in the tile surfaces (Fig 1.5, Table 1.2). These taxa suggest strong 

influences from the colonist pools. In contrast, Tenacibaculum sp, and other 

Flavobacteraceae had consistently higher abundances in the carapace (Fig 1.5, Table 1.2).  

Using realistic colonist pools drawn from seasonal changes in bacterial richness, our 

study provides evidence of habitat-dependent effects of species pool size. These findings 

resonate with studies observing beta-diversity patterns at large spatial scales plant and 

animals (Freestone and Inouye 2015, Myers et al 2013). Integrating patterns at broad spatial 

scales with experimental manipulations advances our understanding of the relationship 
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between colonist species pools and habitat filters (Grman and Brudvig 2014, Questad and 

Foster 2008).  

 



 15 

Chapter 2: Habitat filters determine temporal scale in community 
assembly of crab-associated microbial communities 

ABSTRACT 

A useful approach to distinguish between the relative contribution of habitat 

filters and stochastic processes for community assembly is to study patterns of 

convergence and divergence in community composition under different conditions. These 

patterns reveal important trends that can depend on the temporal scale of study. We 

contrasted temporal patterns in community assembly of host-associated microbial 

communities on the carapace and gut of the striped shore crab (Pachygrapsus 

transversus) to ask if they differed in the degree to which they diverged or converged 

from the source pool (water column bacteria) in a controlled mesocosm experiment. 

Because of the degree of connectance with water column bacteria and likely differences 

in physical and chemical conditions, we hypothesized that the carapace would act as a 

weaker habitat filter than the gut. We found that the gut communities differ from the 

source pool more and converge with each other earlier than carapace communities. They 

also maintain similar composition throughout the experiment whereas the carapace 

communities did so only to a lesser degree. In addition to defining local richness and 

variability in community composition, habitat filters can determine the temporal scale of 

assembly. 

INTRODUCTION 

Central to community ecology is to understand the interaction between ecological 

processes that select for different species during the process of community assembly from 

those that cause stochastic changes instead (Vellend 2010). The relative contribution of 

these processes delineates our ability to predict changes in biodiversity, key in a changing 
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world. At one extreme, communities assemble completely through selection and should 

often converge towards a predictable species composition (Leibold 1995, Poff 1997). In 

theory, if we know the species requirements, we can also predict which species should 

fail to establish viable populations and which species dominate a given environment due 

to any given habitat filter (defined by local disturbances, stress or low resource 

availability - (Chase 2003, McGill et al 2006, Samuels and Drake 1997). At the other 

extreme, communities assemble through stochastic colonization and diverge in species 

composition through population drift and colonization history, creating many possible 

outcomes (Hubbell 2001). Stochastic processes counteract the effects of selection and 

show less convergence to habitat filters. Most communities fall somewhere in between 

selection and stochasticity (Chase and Myers 2011). The temporal dynamics and degree 

of convergence among replicate communities following disturbance thus represents an 

fundamental way to study the relative importance of selection and stochasticity in 

determining community structure of different habitats. 

An important way to study patterns of convergence and divergence among 

communities is to study ambient levels of variation in species composition between 

localities with similar environmental conditions, known as beta diversity (Chase 2007, 

Chase and Myers 2011). This framework has been influential in revealing how ecological 

processes may differ along environmental gradients and across biogeographical regions 

(Freestone and Inouye 2015, Myers et al 2013, Soininen et al 2007). Furthermore, this 

framework assumes that enough time has passed that differences between the effects of 

stochastic and selection processes on community structure are near steady state. 

However, these effects can change during the process of community assembly and 

develop over different time scales. For instance, while long-term vegetation studies 

following disturbance report that early divergence trends are replaced by convergence in 
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community composition (Inouye and Tilman 1995), bird communities seem to diverge in 

the long-term instead (Bengtsson et al 1997). Evidence from microcosm experiments 

suggests that parameters determining this temporal scale of convergence or divergence in 

community composition include invasion frequency, disturbance rate, and duration of the 

study (Grover and Lawton 1994), yet, to our knowledge, the role of habitat filters on 

temporal changes in convergence and divergence has not been explored. 

The concept of habitat filters has a long history in community ecology describing 

environmental conditions and species interactions as metaphorical sieves that determine 

which species recruit to a local community (Kraft et al 2015). Central to this concept is 

the difference in assembly mechanisms that govern communities under strong and weak 

filters (Leps and Rejmanek 1991). Convergence in harsh conditions (strong filter) 

depends on the time it takes to eliminate poor competitors with low tolerance (Chesson 

and Huntly 1997, del Moral 2009). In contrast, divergence under benign conditions (weak 

filter) depends on colonization rate and ecological drift. Therefore, whether the time scale 

of convergence and divergence coincide depends on filtering and colonization rates (Leps 

and Rejmanek 1991). An independent and often underappreciated component of filtering 

is species interactions (Callaway et al 2002, Kraft et al 2015). This biotic filtering 

component can operate independently or interact with environmental filtering (Kraft et al 

2015).  

Community assembly also depends on properties of the species pool, such as its 

size, composition and the rate of colonization. The size of the species pool (the number of 

different species) outlines the potential for different assembly trajectories for weak-

filtered communities. The composition of the species pool determines the proportion of 

tolerant species able to survive in strong-filtered communities. The rate of colonization 

from the species pool may also influence assembly outcomes. While low colonization 
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rates are conducive to convergence or alternative stable states, high colonization rates 

lead to transient dynamics (Robinson and Edgemon 1988, Schroder et al 2005). For 

convergence to occur, initial recruitment of species from the species pool has to be 

followed by filtering of the least competitive or tolerant species (Macarthur and Levins 

1967). In contrast, for divergence to occur, sufficient time has to pass for distinct 

combinations to accumulate due to random sampling, ecological drift or historical effects. 

The temporal scale could depend on whether assembly leads to a stable point, such as a 

climax community or alternative stable states, or to transient dynamics, such as 

alternative transient states, fluctuating equilibrium or purely stochastic assembly 

(Robinson and Edgemon 1988, Schroder et al 2005).  

Host-associated microbial communities represent an ideal system to explore the 

interaction between habitat filters and temporal trends in community composition. These 

communities are highly diverse and assemble rapidly (time frames, refs) making them 

amenable for experimentation. Each host represents a distinct patch for community 

assembly and is colonized by tractable species pools. By retaining natural dispersal from 

this species pool, they differ from traditional microcosm experiments. Within each host, 

separate habitats available for colonization differ in filtering imposed by host tissue, 

physiology, immunity and behavior (Robinson et al 2010). For example, studies suggest 

that strong, selective filters characterize animal guts (Jeraldo et al 2012, Levy and 

Borenstein 2013), while systems that are more open to colonization, like the human skin, 

are often driven by stochastic processes (Bouslimani et al 2015, Grice et al 2009).  

In the present study, we examine the role of habitat filters in determining the 

temporal scale of variation in community composition. For this purpose, we used a 

mesocosm where we tracked the assembly of bacterial communities in the gut and on the 

carapace of the striped shore crab, Pachygrapsus transversus. Because of strong physical 
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and chemical filtering (Brosing 2010, Vogt et al 1989, Wang et al 2014), microbial 

communities in the gut are expected to converge in species composition. In contrast, 

microbial communities in the carapace are open to colonization and expected to diverge 

in community composition. We hypothesized that convergence in the gut will occur 

earlier in assembly than divergence in the carapace, indicating fast filtering rates. This 

hypothesis assumes that the crab’s gut and carapace represent stable habitat filters 

unchanged by time and an alternative hypothesis is that filter strength changes through 

time due to species interactions or changes in the environmental filter. Our results 

confirm fast filtering rates that result in quick convergence in gut bacterial communities. 

However, we found that colonization and filtering interacted in structuring carapace 

communities, which initially converged and later diverged in composition.  

METHODS 

Adult female shore crabs (Pachygrapsus transversus) were collected on the rocky 

intertidal along channels west of Port Aransas, TX in May 2013. Upon collection, crabs 

were transported to the University of Texas Marine Science Institute. For two weeks 

before the experiment, crabs were kept in a holding tank under flowing seawater and fed 

sterile shrimp pellets (Brine Shrimp Direct) daily. Seawater was obtained from Corpus 

Christi shipping channel, strained (0.5cm nylon mesh), allowed to settle and recovered by 

syphoning to avoid major debris and large marine life. Prior to the beginning of the 

experiment, crabs were washed with sterile deionized water, swabbed with alcohol (95%) 

and bleach (90%) and isolated in a sterile container for 48 hours to reduce their initial 

bacterial load in the carapace and gut. To evaluate these cleaning procedures, we sampled 

crab carapaces and guts from freshly collected specimens and post-cleaning specimens. 

Although this cleaning procedure may not eliminate all bacteria, this disturbance is 
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sufficient to induce colonization from the water column and re-assembly of crab 

microbial communities. 

To assess the effect of time on beta diversity, we established a mesocosm 

experiment, created as described below, that induced community assembly on crab guts 

and carapaces. The mesocosm experiment consisted on inserting cleaned crabs in 

individual sterile containers filled with 1 L of filtered seawater. At 2, 4, 8, 12 and 16 days 

after the beginning of the experiment, 9 mesocosms were selected at random and samples 

of the bacterial communities from guts, carapaces and water were taken for a total of 135 

samples. 

Carapaces were swabbed and scraped with sterile scalpels to mechanically 

separate bacteria adhering to its surface. After the samples were taken from the carapace, 

crabs were sacrificed by freezing (10 mins) and dissected to obtain the cardiac and 

pyloric stomachs. Bacterial communities from water samples were obtained by filtering 

400 mL through 0.22 μm polythersulfone filters (MoBio). Samples were stored with 180 

μL of ATL Buffer (Qiagen) at -80 °C until downstream processing.  

During the experiment, we attempted to control environmental conditions and 

species pool size as much as possible. Crabs were fed every two days with 4 flakes of 

autoclaved shrimp pellets (121°C, for 15 minutes). To avoid the accumulation of waste 

products, we removed crab feces, waste and 100 mL from each container daily. The 

water level was replenished with UV sterilized filtered seawater to avoid introducing new 

bacteria to the mesocosm. Mesocosm water was monitored daily to keep temperature and 

salinity at ambient levels (27 °C, 35ppt). 
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DNA Extraction and Sequencing 

We extracted DNA from water, carapace and gut samples using the Qiagen Blood 

and Tissue DNA extraction kit with minor modifications that aim at increasing DNA 

yield (Fierer et al 2008). In short, samples were physically lysed by vortexing at 

maximum speed for 1 minute with 0.5 mL sterile microbeads and incubated with 

proteinase K at 57°C for 15 minutes. DNA was amplified with a two-step PCR 

enrichment of the 16S V4 hypervariable region, a 292 bp long sequence (positions 515-

801 in Escherichia coli). We chose this region because it avoids amplifying host’s DNA 

(Laurie et al 2010, Wang and Qian 2009). Libraries were sequenced using the Illumina 

MiSeq platform at the Genomic Sequencing Analysis Facility at the University of Texas 

at Austin.  

To process sequence data, we used the Quantitative Insights Into Microbial 

Ecology pipeline (QIIME, version 1.8.0, (Caporaso et al 2010). First, we aligned the 250 

bp paired end reads with FLASH (Magoc and Salzberg 2011). Second, sequences with 

more than 97% similarity in 16S rRNA DNA sequences were clustered into OTUs 

(Operational Taxonomic Units). We used an open-reference OTU picking protocol based 

on UCLUST’s open reference algorithm (Edgar 2010) and matching sequences against 

the GreenGenes database (version 12.10 (DeSantis et al 2006). Similarly, using this same 

database, representative sequences from each OTU were given a taxonomic 

classification. To reduce the effect of rare OTUs and sequencing errors, we retained only 

those OTUs representing more than 0.01% of sequences per sample and occurring in 

more than 3 samples (Bokulich et al 2013).  

Although we did not directly profile the functional roles of bacteria in these 

communities, we explored their functional profiles using Picrust. Assuming that there is 

an association between gene content and phylogenetic affiliation, this bioinformatics tool 
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predicts gene family abundances based on 16S data using a genomic database for 

reference (Langille et al 2013). OTUs were close-reference picked with QIIME to predict 

the metagenome. Using the nearest sequenced taxon index (NSTI) scores, we checked the 

availability of closely related reference genomes and excluded samples with low 

representation (NSTI < 0.15).  

Data and statistical analysis 

To determine the effect of habitat and time on the variation community 

composition (beta diversity), we analyzed the similarity of bacterial communities from 

the mesocosms. Then, we evaluate whether compositional effects are associated with 

species replacements or richness differences, or with the influence from the species pool 

in the water column. Finally, we consider the temporal changes in OTUs and Picrust 

KOGs relative abundance to identify the taxa and functions underlying community 

assembly. 

We assessed the temporal patterns in community similarity with Redundancy 

Analysis (RDA) on Hellinger transformed data. This analysis facilitates the visualization 

of group differences (Anderson and Willis 2003, Ramette 2007) and minimizes the effect 

of rare species (Legendre and Gallagher 2001). To estimate the pure and combined 

effects of time and habitat on bacterial community composition, we calculated partial 

RDAs (pRDA) and tested their significance with a Monte Carlo permutation test with 

999 permutations (Anderson 2006). We tested the significance of effects of time and 

habitat on distances to centroid using the multivariate analogue of Levene’s test for 

homogeneity of variances (function betadisper in vegan, (Anderson 2006).  

Variation in species composition can be caused by species replacements (also 

known as turnover) or richness differences (also called nestedness, (Harrison et al 1992, 
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Williams 1996). To distinguish between replacement and richness effects, we 

decomposed the total variation in species composition (D) into the replacement (repl) and 

richness (richdiff) components using Ružička dissimilarities in the Podani family 

(Legendre 2014). To test for the influence of habitat and time on these components of 

species composition, we calculated a dbRDA F-test on the root transformed repl and 

richdiff (Legendre et al 2014). Podani and collaborators (2011) suggest that triangular 

plots better portray these components given that repl + richdiff = D and that the 

similarity S = (1-D), thus S +  repl +  richdiff = 1(Podani and Schmera 2011). Therefore, 

we calculate S, repl and richdiff for each habitat and represent their relationships in a 

triangular graph. In addition, we calculated raw and rarefied OTU richness to test its 

response to habitat and time with a two-way ANOVA. Since we found similar results, 

only rarefied richness is presented here. Sample-based rarefaction curves were 

constructed using the specaccum function from the vegan package (Oksanen) to evaluate 

differences in sampling depth across habitats.  

We estimated the influence of the species pools from the multivariate distance 

from each crab-associated community and the water communities. Given our 

experimental design, we can measure the distances within each mesocosm and determine 

the similarity between each crab community and the water column around it. We assessed 

the effect of time and habitat on the multivariate distance to the pool using a two-way 

ANOVA. 

We tested whether time and habitat influenced the relative abundance of each 

microbial taxon. Within each habitat, we selected the most abundant OTUs (more than 

5% mean relative abundance) for a total of 24 OTU in the carapace, 14 OTUs in the gut 

and 36 OTUs in the water. To test whether the number of sequences for the OTU 

depended on time, each independent OTU was evaluated with a GLM with quasibinomial 
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distribution. Quasibinomial error distribution is less sensitive to outliers and 

recommended in overdispersed data such as host-associated microbial communities. We 

used time (days) and abundance in the water as co-factors to determine whether each 

OTU changed in abundance through time and whether it was influenced by abundance in 

the water. A second GLM was used on the occurrence of functional groups as described 

by the PiCrust analysis. We used a partial RDA analysis to test for the contribution of 

time and habitat to variability in gene relative abundance. 

All analyses described in this section were performed in the statistical 

environment of R, with functions contained in the packages phyloseq (McMurdie and 

Holmes 2013), vegan (Oksanen et al 2015) and mvabund (Wang et al 2012) as well as 

custom scripts. 

RESULTS 

We obtained 8000±1200 reads per sample for a total of 34 958 DNA reads. Of the 

original samples, 54 were suitable for analysis. Samples were discarded because of crab 

mortality (17.85%), or low DNA yield (less than 0.5 ng/μL). For example, samples taken 

from crabs at 2 days after cleaning procedure were consistently low in DNA 

concentration, thus were not included in the analyses. After accounting for sequence 

quality and removing low-abundance OTUs, we identified 761 OTUs distributed across 

13 phyla and 62 families. 
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Figure 2.1. Redundancy Analysis (RDA) illustrating similarity in OTU composition 
between bacterial communities. Each point represents a bacterial community from a 
crab’s carapace (grey squares), gut (dark grey triangles) or from the water column (black 
circles). 

Table 2.1. Percentage contribution of beta diversity components. F-value was calculated 
from a dbRDA on root transformed repl, richdiff and D data.  
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2.2a, Multivariate test for homogeneity of variances F3=8.266, p=0.002). In the gut, 

distance to centroid was constant throughout the duration of this study even though there 

is slight, albeit not significant, temporal variation (Fig 2.2b, F3=1.293, p=0.335). In the 

water, distance to centroid decreased from day 8 to day 12 and increased between day 12 

and day 16 (Fig 2.2c, F3=3.209, p=0.007).  

 

Figure 2.2. Temporal changes in distance to centroid from RDA scores in a) carapace, b) 
gut and c) water samples. Letters indicate significant differences resulting form a 
tukeyHSD test. 

This variation in community composition was better explained by the replacement 

than by the richness difference component of similarity. Partitioning of total community 

similarity reveals that replacement accounts for 61.6% while richness differences only 

account for 38.3% (Table 2.1, Fig 2.3). This result coincides with the lack of significant 

temporal change in OTU richness, even though it differed between habitats  (Table 2.2, 

Fig 2.4). The gut had the lowest mean richness value (74.66± 33.04 OTUs) when 

compared to the carapace (323.33 ± 87.75) or the water (224.63 ± 40.82). Even though a 

two-way ANOVA indicates that richness differences were driven by habitat and time 

(Table 2.2) the Tukey HDS test indicated that these differences were only significant for 
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habitat and not for time. Even though they differed in magnitude, species accumulation 

from carapace, gut and water were all near saturated, (Fig 2.4a).  

 

Figure 2.3. Triangular plots representing the components of community variability in 
carapace (grey squares), gut (dark grey triangles) and water samples (black circles). Each 
point’s position is determined by a triplet of values: similarity (S), replacement (Repl) 
and richness differences (RichDiff). Small points represent the triplet of values between a 
pair of samples. Large points represent the means for each habitat. 

Table 2.2. Summary of a two-way ANOVA assessing the effects of time and habitat on 
OTU richness. 
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Figure 2.4. Richness differences among habitats. a) species accumulation curves. Box 
plots of temporal changes in rarefied richness during bacterial assembly in b) carapace, c) 
gut and d) water samples. 

The multivariate distance from crab-associated communities to the water column 

was habitat-dependent (Fig 2.5). We found that carapace communities were more similar 

to the species pool in the water than gut communities (Figure 2.5, Table 2.3). This 

relationship did not change with time (Table 2.3). 

We identified OTUs driving differences in community composition among those 

with average relative abundance higher than 0.001 (Fig 2.6, Table S2.1 and S2.2). For 

example, members of Mycoplasmataceae, were dominant in the gut and increased 

smoothly towards day 16 (Fig 2.6a, Table S2). In the carapace, early colonizers found at 

day four, such as Vibrio sp, disappeared sharply by day 8 (Fig 2.6b, Table S2.1). These 

early taxa are replaced by late succession OTUs such as members of Rhodobacteraceae in 
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the carapace (Fig 2.6c, Table S2.1) or Oceanospirillaceae in the carapace and gut (Fig 

2.6d, Table S2.1 and S2.2). A third group of taxa did not change much in abundance 

throughout our experiment, such as members of Vibrio sp in the gut (Fig 2.6b, Table 

S2.2). When we evaluated the influence of additional recruitment from the water column, 

we found significant relationships between abundance in the water and most OTUs 

abundance in the carapace, but fewer OTUs in the gut (Table S2.1).  

Table 2.3. Summary of a two-way ANOVA evaluating the effects of time and habitat on 
multivariate distance between crab-associated communities to water column 
assemblages. 

 
 
 
 
 

* indicates significance of p<0.05 

Temporal changes in OTU abundance coincided with community functional 

components as shown by the Picrust analysis. After excluding 4 samples that were not 

well represented in the databases, we retained 50 samples characterized by 0.097± 0.19 

NSTI. Temporal patterns in functional abundance differed in time and across habitats 

(Table S2.3). Carapaces sampled earlier carried more genes associated with flagellar 

assembly and less genes associated with oxidative phosphorylation when compared with 

later carapace communities. In contrast, early gut samples carried more genes associated 

with nitrogen and methane metabolism, and less DNA and RNA replication genes than 

late gut communities. Notably, peptidase genes were found to be abundant in the 

carapace and water throughout the experiment, and to increase in the gut until 

comparable levels at day 16. Nonetheless, only 16.8% of gene abundance varied 

 d.f. F-value p 
Habitat 1 11.244 0.004 * 
Time 3 1.015 0.413 
Habitat*Time 3 0.448 0.722 
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according to time and only 8.25% were driven by habitat (permutation test, F=4.78, df= 

7, p=0.01). 

 

Figure 2.5. Multivariate distance from crab communities and colonist pools in the water 
column for a) carapace and b) gut assemblages. 

DISCUSSION 

The study of temporal changes in community structure can reveal the processes 

underlying ecological assembly. However, the rate of habitat filtering and colonization 

may differ resulting in disjoint trajectories in community assembly. We found that the 

time frames of convergence and divergence of crab-associated microbial communities 

were habitat dependent. Under strong filters, gut communities remained constant 

throughout the experiment (Fig 2.2). This result suggests early convergence, consistent 

with a fast and constant filtering rate. In contrast, carapace communities shifted from 

convergence to divergence at day 8, and diverged thereafter (Fig 2.2). Although differing 

from our expectations, these patterns in the carapace are coherent with biofilm 

development driven by the interaction between colonization, interspecific interactions 

and species interactions with the environment (Jackson 2003).    
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Figure 2.6. Selected examples of temporal changes in microbial relative abundance. Data 
points represent OTU relative abundance found in carapace (grey squares), gut (dark grey 
triangles) and water (black circles). Furthermore, lines represent quasibinomial general 
lineal models as calculated for each type of habitat (carapace with dotted lines, gut with 
solid lines and water with dashed lines). Titles indicate the lowest taxonomical 
identification found and were selected to illustrate: a) late colonists in the gut, b) early 
colonist in the carapace, but constant in the gut, c) early colonist in the gut but late in the 
carapace and d) late colonists in the carapace and gut.  

In our study, both habitats showed three different signs of influence of 
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crab-habitats represent 93% of species within the carapace and 96.2% within the gut. For 

example, members of Alteromonadaceae, Oceanospirillaceae and Rhodobacteraceae are 

common free-living bacteria in the ocean and were found within both carapace and gut 

communities (Dang and Lovell 2000, Jones et al 2007). Second, temporal changes in 

OTU relative abundance are influenced by water abundance in both habitats (Table S2.1 

and S2.2). For example, the relative abundance of Methylotenera sp and members of 

Oceanospirillaceae and Saprospiraceae in the carapace and Microbulbifer sp in the gut 

are influenced by their abundance in the water.  Third, the magnitude of species 

replacement in the carapace and gut suggests sequential addition of species from the 

species pool (Fig 2.3). This sequential addition is consistent with species replacements 

happening within the water column, likely driven by species interactions and changes in 

nutrient levels (Muscarella et al 2014). Although some studies indicate that sequential 

arrival should result in divergence in community composition (Lockwood et al 1997), in 

our study habitat filters were more important in determining assembly trajectory.  

The shifting pattern in the carapace suggests that species interactions play an 

important role in driving community assembly in this habitat. In particular, this pattern 

coincides with the general model of biofilm development (Jackson et al 2001, Jackson 

2003). In brief, initial colonization of submerged surfaces rapidly increases richness and 

results in strong competition for attachment space and attached organic carbon that 

subsequently decreases richness (Bruhn et al 2005, Costerton et al 1987, Jackson et al 

2001, O'Toole and Kolter 1998, Pruzzo et al 2008, Rao et al 2005, Siboni et al 2007). 

Next, the resulting competitive community secrete polysaccharides and proteins forming 

a complex matrix that provides three dimensional habitat and additional niches that 

facilitate the attachment of new recruits from the water column (Branda et al 2005). In 

contrast to previous studies that focused on richness patterns (Jackson 2003), we find that 
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patterns of community similarity and species replacements reflect these interactions (Fig 

2.2, 2.3). For example, early colonizers of the carapace such as members of 

Alteromonadaceae and Vibrio sp, known for their successful association with chitin 

surfaces (Pruzzo et al 2008), are replaced by members of Oceanospirillaceae, 

Rhodobacteraceae and Saprospiraceae, important taxa in mature biofilms (Yoon et al 

2012) Fig 2.6). In the gut, there is a weak yet not significant pattern in similarity that 

indicates that this process may not be as important (Fig 2.2), potentially overridden by the 

strength of the filtering processes precluding recruitment. However, we did find evidence 

of species replacements in the gut (Fig 2.3), likely due to the interplay between species 

interactions and colonization from free-living environmental bacteria. For example, early 

Microbulbifer sp. and members of Rhodobacteraceae, known free-living sediment 

oxidizers (Kviatkovski and Minz 2015, Templeton et al 2005) Fig 2.6), were replaced by 

Mycoplasmatales, permanent members of the arthropod gut (Shinzato et al 2005, Yang et 

al 2005). These replacements likely contribute to early nitrogen and methane metabolism 

and later peptidase and glycerol-phospholipid activity detected from 16S sequences (data 

not shown). Although we lack direct measurements of species interactions, it is clear that 

species interactions at the local scale can produce distinct assembly trajectories (Kraft et 

al 2015, Kreyling et al 2011, Ottosson et al 2014). Species interactions have been at the 

center of ecological theory for filtering unfit species (Macarthur and Levins 1967) but 

also for facilitating survival of other poor competitors, through direct interaction or by 

modifying surrounding environmental conditions (Connell and Slatyer 1977). However, 

this biotic aspect of filtering and its temporal shifting has yet to be fully integrated with 

environmental filtering (Kraft et al 2015), an important step in understanding the 

temporal scales of filtering and stochastic processes.  
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In the wild, carapace and gut undergo complete renewal upon crab molting 

resulting in reassembly of the associated microbial communities (Becker and Wahl 1996, 

Givens et al 2013, Middlemiss et al 2015, Trevisan et al 2014). Instead, our study focused 

on post-disturbance community assembly. Some of the successional patterns we observed 

may be driven by surviving species, untouched by our disturbance treatment. Although 

we did not quantify this effect, we found that we were unable to detect bacterial DNA 

sufficient for sequencing after our disturbance treatments. Therefore, we consider these 

procedures sufficient disturbance to reduce the bacterial load significantly and promote 

re-assembly. Even if this re-assembly is representative to post-molt assembly in the wild, 

crabs undergo molting at different stages resulting in asynchronous crab-associated 

bacterial communities. This scenario reflects other systems undergoing periodic 

disturbance and increases variability in community composition relative to synchronous 

metacommunities (Feio et al 2015), unless its frequency and strength have the effect of 

harsh conditions and result in community convergence (Hawkins et al 2015, Lepori and 

Malmqvist 2009). 

Other studies focusing on ecological processes driving convergence and 

divergence provide evidence on the parameters defining assembly trajectory. In 

controlled environments, microcosm experiments have shown that factors increasing the 

influence of stochastic assembly are invasion frequency, and sequence of arrival (Drake 

et al 1993, Grover and Lawton 1994). This line studies has also revealed some of the 

conditions necessary for alternative stable states, alternative transient states and 

fluctuating equilibirium (Robinson and Edgemon 1988, Schroder et al 2005). Although 

these studies have provided fundamental understanding of these factor’s isolated effects, 

they are based on arbitrarily defined colonization levels, which is likely unrepresentative 

of natural communities and the effects of natural colonization. In contrast, field studies 
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on community assembly have found evidence of convergence, divergence, and mixed 

patterns (del Moral 2009, Matthews and Spyreas 2010, Prach et al 2014, Suter et al 2010, 

Wassenaar et al 2005). Yet these often lack control over environmental factors, which 

may underlie changes in community composition (Leps and Rejmanek 1991). Our study 

falls somewhere in between, were we control for changes in salinity and temperature but 

we allow for natural colonization of host habitats. Our findings highlight the effect of 

continuous colonization and complex habitat filters on the temporal scale of community 

assembly (Robinson and Edgemon 1988).  

The most significant aspect of our study is that our interpretation of assembly 

patterns depends on the window of observation. Particularly, our understanding of 

processes governing assembly on the carapace would have differed if the study was only 

8 days long. Our study adds to this long standing discussion (Leps and Rejmanek 1991, 

Levin 1992) by showing that when comparing across habitat filter effects on community 

assembly, care must be taken when choosing this observation window. In other systems, 

less drastic differences in habitat filters have weak early influences but are eventually 

overridden by colonist pool influences (Prach et al 2014). In particular, the complex 

filters are known to act on multiple traits and thus alter assembly outcome further than 

filters acting on a single trait (Trisos et al 2014). For host-associated bacterial 

communities, habitat filters are complex and encompass a variety of filtering mechanisms 

(Robinson et al 2010). Our findings are informative when determining the relative 

temporal scale of other systems with complex filters, such as some anthropogenic effects 

(Eskelinen and Harrison 2015, Hawkins et al 2015). Studies taking into account the 

temporal scale of assembly are extremely useful in studying the interactions between 

colonization rate, environmental filtering rate and species interactions. Future studies 
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should aim at disentangling the temporal aspect of the interactions between these 

mechanisms.  
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Chapter 3: Multiple colonist pools interact with host filters in shaping 
fiddler crab-associated microbial communities 

ABSTRACT 

To understand the mechanisms maintaining diversity, there is a need to integrate 

filtering processes at the local scale and colonization from the regional species pool.  

Traditionally, the regional species pool concept is based on evolutionary processes, 

overlooking that distinct sources of colonists colonize many real communities. In this 

study, we identified distinct colonist pools of bacteria in the surface, subsurface and 

burrow sediment and their contribution to fiddler crab-associated microbial communities. 

We expected burrow bacteria to influence the carapace during the crab’s burrowing 

behavior while surface bacteria should influence the gut during crab’s feeding from the 

marsh sediment. Using nearest distance to multivariate pool centroid, we found that 

burrow sediment bacteria influenced carapace communities, while both burrow and 

surface sediment bacteria influenced gut communities. The similarity between gut 

communities and burrow bacteria suggests fiddler crabs, in addition to feeding from the 

surface, can feed from within these refuges. These findings suggest that a single species 

pool influences carapace communities while the gut is influenced by multiple species 

pools. To contrast the influence of colonist pools with local habitat filters, we evaluate 

the importance of host factors in filtering microbial communities using clustering 

analysis. Host factors such as sex and species contributed to community structure in the 

carapace but not in the gut. It remains unclear if community composition in the gut is 

driven by conserved filters, equal across crab species and sexes, or if the influence from 

multiple colonist pools interacts with host factors in generating variation in community 

composition. These findings highlight the interaction between influences from the 
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colonist pools and local filters in shaping local communities. Importantly, our results 

suggest that recognizing multiple species pools may expand our understanding of 

processes driving community structure and diversity.  

INTRODUCTION 

To identify the mechanisms that control biodiversity, it is fundamental to 

understand the processes shaping community composition. During all stages of 

community assembly, colonization from the regional species pool can influence 

community composition (Freestone and Osman 2011, Fukami 2004, Kraft et al 2011, 

Ricklefs 1987, Shipley et al 2012). This regional influence was recognized early and 

popularized when the theory of Island Biogeography described how island species 

diversity strongly depends on immigration from a mainland species pool (MacArthur and 

Wilson 1967). Recently, studies on regional pool influences have emphasized how 

species pools size and composition can regulate local richness (Karger et al 2015, Myers 

and Harms 2011), influence species composition (Lessard et al 2012), trait distribution 

(Lessard et al 2012), and ecosystem function (Belmaker and Jetz 2012). These studies 

highlight the important role of regional influences in understanding disturbance prone 

communities (Belote et al 2009, Collins et al 2002, Heino et al 2003, Myers and Harms 

2011), communities dominated by rare or transient species (Belmaker et al 2008, White 

and Hurlbert 2010), dispersal limited localities (Roslin 2001) and neutrally assembled 

communities (Hubbell 2001). Despite this central role of regional influences, empirical 

evidence has advanced slowly, mostly due to methodological challenges in delineating an 

operational definition of the regional species pool (Carstensen et al 2013, Lessard et al 

2016, Zobel 2016). Overcoming this methodological constraint is important to understand 
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the contribution of regional influences to local diversity and its interaction with local 

scale processes, including species interactions and environmental filtering. 

The traditional view of the regional species pool emphasizes the role of historical 

effects, including evolutionary and biogeographical processes (Cornell and Harrison 

2014, Godfray and Lawton 2001, Zobel 2016). According to this historical view, the 

regional species pool is constant over timescales and spatial scales relevant to community 

assembly. However, this view of an overarching single regional species pool frequently 

overlooks the effect of dispersal limitation and large-scale environmental filtering in 

shaping the set of species that arrives to colonize a locality. Many real communities are 

colonized by multiple colonist pools, defined as sources of colonists shaped by distinct 

evolutionary and large-scale filtering processes (Zobel 1992). For example, Graves and 

Gotelli (1983) suggest that bird communities from individual Caribbean islands can be 

influenced by colonist pools from the West Indies mainland, South American mainland 

or from other islands and archipelagos (Graves and Gotelli 1983). Each of these colonist 

pools will differ in species number and composition according to large-scale 

environmental filters imposed within each mainland or archipelago area (Poff 1997). At 

the local scale, communities sharing strong connectivity and similar environmental filters 

with a certain colonist pool will become more similar in community composition 

(Lessard et al 2012, Partel 2002, Partel et al 2007, Zobel 1992). Because said colonist 

pool will have strong consequences at the local scale, recognizing these influences is an 

important goal for basic ecology and applied fields like conservation and restoration.  

To accurately quantify the interaction between colonization and ecological 

processes shaping communities at the local scale, it is first necessary to identify the 

relevant colonist pools. Traditional approaches to assess regional influences are 
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unsuitable to assess multiple colonist pool influences because they assume a single and 

unchanging regional pool (reviewed by (Carstensen et al 2013, Cornell and Harrison 

2014, Grace 2001). One way to infer the influence of distinct species pools is to compare 

geographically replicated experiments focusing on community assembly, but this 

approach is costly and logistically complex (Lessard et al 2012). Alternatively, controlled 

laboratory microcosms could be used to test the relationship between multiple colonist 

pools and local diversity, yet arbitrary choices in dispersal rates and habitat conditions 

can cause artificial results that differ from natural systems (Drake et al 1993, Grover and 

Lawton 1994). A third alternative is to focus on discrete, tractable and numerous 

microbial communities (Srivastava et al 2004) as found on pitcher plants, (Harvey and 

Miller 1996, Kneitel and Miller 2003), tree holes, (Srivastava and Lawton 1998), pen 

shells (Munguia 2004), or host-associated microbial communities (Amend et al 2012, 

Loudon et al 2014). 

Host-associated microbial communities are ideal to identify the species pools that 

influence local communities and to evaluate the interaction between multiple species 

pools and host filters. Recent advances in sequencing technology have increased interest 

in the diversity and function of host-associated microbial communities (Mardis 2008). 

These studies have shown that distinct habitats, such as the human gut (Costello et al 

2012, Ngom-Bru and Barretto 2012) or the skin (Bouslimani et al 2015), represent filters 

equivalent to environmental conditions that structure species composition in animal and 

plant communities (Keddy 1992). Despite this attention, the extent to which multiple 

species pools influence community structure has rarely been specifically investigated. 

Host- associated microbial communities are exposed to colonization from bacterial pools 

in the surrounding environment. Here, we focus on fiddler crab-associated microbial 



 
 

41 

communities. Crab carapaces and guts are composed of chitin (Duneau and Ebert 2012) 

and colonized from distinct pools of bacteria in the surrounding marsh sediment. Based 

on these crab’s natural history, we expect the crab guts to be colonized by bacteria from 

the surface sediment as the crab feeds on organic matter, microalgae and bacteria that 

they scrape off the surface sediment (Dye and Lasiak 1987). In contrast, we expect the 

carapace to be colonized from the sediment within the “J” shaped burrows used for 

mating and as refuge from predation and extreme temperatures (Kristensen 2008). 

Importantly, only some bacteria from the sediment establish viable populations on the 

crab because of local habitat filters within guts and carapaces (Brosing 2010, Vogt et al 

1989, Wang et al 2014). Filtering within the host may depend on species-specific habitat 

filters (Meziane et al 2002, Meziane and Tsuchiya 2002) or sex-specific activity budgets 

(Caravello and Cameron 1991). Gut and carapace microbial communities should thus be 

the result of the interaction between local filters and colonization from the sediment 

pools.  

This study aims to identify the role of multiple species pools and local filters in 

generating local-scale diversity patterns in fiddler crab-associated communities. 

Specifically, we aim at identifying relevant colonist pool influences to microbial 

communities on the crab’s carapace and gut. Next, we ask whether host factors, such as 

species and sex, influence community structure by driving habitat filtering. Integrating 

multiple colonist pools and local scale filtering aspects of community structure should 

improve our understanding of processes underlying assembly of fiddler crab-associated 

communities. Results indicate that, colonist source influences community assembly in the 

gut while host factors drive community composition in the carapace. Importantly, our 
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results suggest it is important to recognize the role of multiple species pools influencing 

community diversity and structure. 

METHODS 

We conducted our study between June and August 2014, in a salt marsh near 

Aransas Pass, Texas (27° 53’ 13.56” N, -97° 7’ 0.07 W). These marshes are co-inhabited 

by two species of fiddler crabs, Uca panacea and Uca rapax, ideal for the study of 

multiple species pools influencing host-associated bacterial communities due to their 

similar behavior, habitat, diet and immunology (Thurman 1987). All samples were 

collected from a 150x150 m2 marsh area influenced by Redfish Bay waters and vegetated 

by black mangrove (Avicenia germinans), saltmarsh cordgrass (Spartina alterniflora) and 

woody glasswort (Salicornia sp). 

Adult Uca panacea and Uca rapax (18 males and 18 females) were collected by 

hand and stored in individual sterile containers. To profile potential sources of bacterial 

colonists, we collected 10 samples of each sediment type with sterile spatulas. 

Approximately 20 gr of surface, subsurface and burrow sediment were collected on 

sterile containers. Surface sediment was scraped from the top layer (0 to 1 cm deep). For 

subsurface samples, we mixed sediment from 7 to 15 cm in depth. Although microbial 

community composition can vary significantly with depth (Bertics and Ziebis 2009), 

crabs are exposed to all bacteria over this depth range when burrowing. Likewise, burrow 

samples were obtained from this depth range but along the surface of fiddler crab 

burrows. We selected only burrows that extended beyond 15 cm in depth and were wider 

than 2 cm. Crab and sediment samples were transported to the Marine Science Institute 

from the University of Texas at Austin for further processing.  
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Upon arrival to the lab, samples were prepared for DNA extraction. Each sample 

from the sediment was homogenized and 2 gr were separated for DNA extraction. Crabs 

were rinsed with sterile deionized water to remove debris and unattached 

microorganisms. Then, carapaces were swabbed and scraped to profile the surface 

community. To obtain gut samples, crabs were sacrificed by freezing and dissected. To 

avoid food bolus interference and to remove unattached bacteria, guts were rinsed with 

sterile deionized water. All samples were kept in MoBio PowerSoil bead tubes at -80°C 

and were processed within 2 months of collection. DNA was extracted using the 

PowerSoil DNA extraction kit (MoBio). Samples with less than 0.1 ng/μL DNA yield 

were excluded from the study to avoid sample bias. To avoid host DNA amplification, we 

targeted the V4 hypervariable region of bacterial 16S using the 515F/806R primer pair 

(Ong et al 2013, Wang and Qian 2009). Sequencing was done at the University of Texas 

Genome Sequencing and Analysis Facility (GSAF) using the MiSeq Illumina platform.  

The resulting sequences were processed using custom bash scripts and QIIME 

(Caporaso et al 2010) with Greengenes as reference databank (DeSantis et al 2006). 

OTUs (Operational Taxonomic Units) were defined at the 97% sequence similarity and 

were picked with an open frame. We removed OTUs assigned to Archaea or unassigned 

and those found in less than 3 times in less than 1% of the samples.  

Data analysis 

To evaluate the differences between species pools, we compared the OTU 

diversity of surface, subsurface and burrow sediments. We used an ANOVA to assess the 

differences in richness and evenness between the sediment communities. To determine 

whether these results reflect similar sampling effort across samples, we calculated species 

accumulation curves. To assess compositional differences, the three types of sediment 
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communities were assessed with CCA analysis (Legendre and Gallagher 2001). 

Significance of the differences in composition was assessed with a permutational 

MANOVA based on the CCA scores (Anderson and Walsh 2013).  

We determined sediment pool contributions to each crab-associated community 

based on community similarity. We used the function predict (Oksanen et al 2015) to find 

the crab sample scores based on the sediment CCA. Based on these scores, we assigned 

each crab-associated community to a species pool based on the distance to nearest pool 

centroid in multivariate CCA space. This approach is useful to estimate similarity 

between crab and sediment samples without the bias of including all samples in the 

calculation of the original ordination axis (Petraitis et al 2009). Based on these scores, we 

calculated a perMANOVA to evaluate if crab-associated communities were significantly 

different in composition when compared to sediment bacteria.  

To determine the role of host factors on community structure, we examined 

richness, evenness, and community composition. We used ANOVAs to assess the role of 

host factors and pool influences on richness and evenness. These data were square root 

transformed to meet parametric assumptions. We used cluster analysis to identify 

significant groups based on community composition and asked whether these clusters 

correspond to host-factors or pool assignments. This analysis was done separately on 

carapaces and guts, to emphasize patterns within habitats. We used a hierarchical 

clustering analysis with the “ward” method (hclust function, (Murtagh and Legendre 

2014) and estimated the significant number of clusters using k-means and the gap statistic 

(Tibshirani et al 2001).  

To identify the OTUs that contribute to the above diversity patterns, we first used 

SIMPER analysis (Clarke 1993) comparing relative abundance between samples from 
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burrows, surface, carapaces and guts. Based on the SIMPER analysis, we identified 

OTUs explaining 80 % of the variation between carapace, gut, surface, subsurface and 

burrow bacteria. We used Picrust to infer whether these patterns correspond to functional 

diversity. Picrust is a bioinformatics tool used to identify functional diversity based on 

16S sequence abundance (Langille et al 2013). Quality of representative pathways was 

assessed with NSTI scores (Nearest Sequenced Taxon Index) and we discarded samples 

with less than 0.15 NSTI score. The relative representation of each pathway within 

carapace, gut, surface and burrow bacteria was tested with an ANOVA.  

 

Figure 3.1. Boxplot of OTU richness (a) and evenness (b) in sediment pools. (***) 
indicates significant differences (p<0.0001).  

RESULTS 

Of the original samples, 65 samples were suitable for analysis. To standardize 

sampling effort, we discarded samples with low DNA yield (< 0.5 ng/μL) or low read 

count (< 4000). After accounting for sequence quality and removing low-abundance 

OTUs, we identified 639 individual OTUs distributed across 17 phyla and 86 families. 
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Although we had to discard subsurface samples from the Picrust analysis due to low 

NSTI values, we identified 68 metabolic pathways.  

Table 3.1. Summary of ANOVA tests evaluating diversity among sediment bacterial 
pools (surface, subsurface and burrow). 

 d.f. F-value p 
Richness 2 10.73 0.0003 *** 
Evenness 2 22.84 <0.0001*** 

*** indicates significance of p<0.001 

 

Figure 3.2. CCA of sediment (a) and crab (b) communities. Polygons in (a) indicate 
samples from different sediment types: surface (black triangles), burrow (light grey 
circles) and subsurface (dark grey diamonds). Crab community scores in (b) were 
calculated with the predict function. Grey polygons in (b) show the position of sediment 
types as reference. Black polygons in (b) indicate distinct crab habitats: gut (solid line), 
carapace (dashed line). Color in (b) indicates pool assignment for each crab sample: 
surface (black), or burrow (light grey). No crab samples were assigned to subsurface 
sediment. 

Sediments contained a total of 597 OTUs distributed across three distinct pools 

differing in richness and composition (Fig 3.1, Table 3.1, Fig 3.2). Burrow sediments had 

the lowest richness among the pools with only 192 OTUs of which 31 (5.4%) were 
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unique to the burrow. Surface and subsurface had comparable richness levels with 234 

and 228 OTUs respectively. We only found 8 unique OTUs (1.4%) in the subsurface and 

no unique taxa in the surface. Differences between pools were strongly represented by 

relative abundance of individual OTUs. For example, burrow communities were more 

even than in surface or subsurface sediment communities (Fig 3.1, Table 3.1) and the 

CCA resulted in significant distinctions in OTU composition between sediment types 

(d.f.= 2, F=183.54, R2=0.92, p=0.01, Fig 3.2). The first two axes of the CCA explained 

26.9% of the variation in community composition. Differences in OTU composition 

between sediment pools was explained by high abundance of Halanaerobiaceae in the 

surface, high abundance of Bacteroidetes and low abundance of Chloroflexi bacteria in 

burrow sediments (Fig 3.5, Table S3.1). In contrast, subsurface sediment harbored high 

abundance of Anaerolinaea and low abundance of Bacteroidetes and Planctomycetes (Fig 

3.5, Table S3.1).  

Table 3.2. Summary of perMANOVA results on crab samples comparing effect of 
habitats, host species and host sex.  

 d.f. R2 Pr(>F) 
Habitat 1 0.408 0.003 ** 
Host species 1 0.047 0.053 
Host sex 1 0.047 0.054 
Habitat*Host species 1 0.018 0.275 
Habitat*Host sex 1 0.000 0.970 
Host species*Host sex 1 0.058 0.019* 
Habitat*Host species*Host sex 1 0.099 0.033* 

* indicates significance of p<0.05 
** indicates significance of p<0.01 

Community composition in the gut and carapace showed significant effects from 

crab-habitat and interactions between host factors and habitat according to a 

perMANOVA (Table 3.2). These crab-associated communities were all assigned to 
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burrow and surface sediment sources, and none to subsurface sediment sources. Carapace 

communities were all (100%) assigned to burrow communities (Fig 3.2). In contrast, 44 

% of the gut-associated communities were assigned to burrow and 56% surface 

sediments. Crab-associated communities differed from sediment bacteria due to higher 

relative abundance of Rhodobacteraceae, Saprospiraceae and Vibrionaceae (Fig 3.5, 

Table S3.1). Carapace communities were characterized by higher Oceanospirillcaeae 

bacteria. These patterns correspond to decreased carbon fixation and methane metabolism 

pathways and increased transcription factors, valine and leucine degradation and fatty 

acid metabolism pathways in crabs, compared to sediment functional profiles (Table 

S3.1, Fig S3.2). 

Cluster analysis showed a contrasting effect of host factors on carapace and gut 

microbial communities. Gap analysis indicated that carapace communities cluster in 6 

significant groups (Fig 3.3). These groups loosely correspond to host factors. For 

example, the first cluster on the left is composed 80% of males, 80% from U. rapax. The 

two clusters on the far right are composed of females and males, respectively. In contrast, 

gap analysis indicated only one cluster comprising all gut communities. In other words, 

neither host factors nor pool assignments were associated with significant clusters in the 

gut. We did not find any significant relationships between host factors on richness or 

evenness (Fig 3.4, Table 3.3).  
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Figure 3.3. Cluster analysis (a, c) and gap statistic calculation results (b, d) for carapace 
(a,b) and gut (c, d) samples. Height in the y axis represents the distance at which the 
cluster was formed. Dashed lines show the clustering threshold indicating which sample 
groups represent significant clusters. Color indicates host species with U. rapax in black 
and U. panacea in grey. Shapes indicate host sex: females (triangles), and males 
(squares). Rectangles at the bottom indicate pool assignment with surface in dark grey 
and burrow sediment in light grey. The gap statistic plot indicates the gap statistic for 
different number of clusters (k).  
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Figure 3.4. Boxplot of OTU richness in carapace (a), and gut samples (b) as well as gut 
sample richness according to assignment (c). Coloration in panels a and b represent 
females (dark grey) and males (light grey).  

DISCUSSION 

Determining the contribution of local environmental conditions, species 

interactions and regional diversity to community assembly is critical to understand 

patterns of community structure and diversity (Cornell and Harrison 2014, White and 

Hurlbert 2010). To accurately quantify the interaction between colonization and 

ecological filtering shaping communities, it is first necessary to identify the relevant 

colonist pools. Our results indicate that the influence of multiple species pools is habitat 

dependent. Specifically, we found that carapace communities were consistently more 

similar to burrow bacteria than to other sources of sediment bacteria, suggesting that 

burrow bacteria are the main source of colonists for carapace communities. In contrast, 

half of gut communities were similar to the surface, but the other half, contrary to our 

expectations, were similar to burrow sediment bacteria (Fig 3.2). These results suggest 

that surface and burrow bacteria influence gut communities. 
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Table 3.3. Summary of ANOVA tests evaluating diversity differences among crab 
bacterial communities. We include habitat (carapace or gut), host species (U. panacea  or 
U. rapax) and host sex as factors explaining OTU richness and evenness. Richness and 
evenness data were square root transformed to meet parametric assumptions.  

 

  d.f. F-
value p  

Richness Species 1 11.281 0.002 ** 
 Sex 1 0.196 0.661 
 Habitat 1 34.312 <0.001 *** 
 Species*Sex 1 0.316 0.579 
 Species*Habitat 1 2.386 0.134 
 Sex*Habitat 1 0.148 0.703 
 Species*Sex*Habitat 1 0.397 0.534 
Evenness Species 1 4.773 0.038 * 
 Sex 1 0.264 0.612 
 Habitat 1 14.120 <0.001 *** 
 Species*Sex 1 0.025 0.875 
 Species*Habitat 1 2.706 0.112 
 Sex*Habitat 1 0.124 0.727 
 Species*Sex*Habitat 1 0.528 0.474 

* indicates significance of p<0.05 
** indicates significance of p<0.01 

*** indicates significance of p<0.001 
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Figure 3.5. Differences in average relative abundance of taxa on carapace, gut, surface 
and burrow bacteria. Error bars represent standard deviation. Bar color indicate the 
different bacterial substrates with crab communities in lighter grey and sediment bacteria 
in darker grey.  

Many studies have addressed the impact of colonization on local diversity. 

Although providing fundamental contributions to our understanding of broad spatial and 
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temporal scaled processes impacting ecology, the large majority of these studies focus on 

the traditional evolutionary definition of the regional species pool (Bengtsson et al 1997, 

Knapp et al 1993, Mora et al 2003). Our findings suggest that distinct colonist pools at 

small spatial scales can influence local communities. Few studies have addressed colonist 

pools but they differ substantially from our study. Some studies focusing on plant 

communities define colonist pools within the same region according to their evolutionary 

history. In these scenarios, local richness is higher when local conditions match the 

evolutionary history of the region, such as pH or nutrient availability (Grace 2001, Grace 

et al 2011, Partel 2002, Partel et al 2007, Zobel 1992). Another group of studies 

highlights colonist pools with distinct dispersal strategies. For example, plant seeds 

dispersing in space have stronger influence during community succession after strong 

disturbances, while seed bank species dispersing in time are more important for 

community development after small disturbances (Bekker et al 2000, Eskelinen and 

Virtanen 2005, Kalamees and Zobel 1998, Willems and Bik 1998). However, these 

studies rarely integrate the joint effect of multiple colonist pools. Our study provides 

evidence of multiple colonist pools influencing fiddler crab associated communities and 

suggests that pools shaped by different processes can jointly influence local assembly. 

Importantly, identifying and tracking changes in each colonist pool may improve our 

understanding of the interactions between distinct habitat filters and colonist pools.  

Processes shaping colonist pools in the sediment differ noticeably from crab-

associated habitat filters. The surface, subsurface and burrow were distinct bacterial pools 

(Fig 3.1, 3.2) concurrent with the expected responses of microbial diversity to these 

habitats’ environmental conditions. Of all the bacteria available in the marsh, the subsets 

of taxa adapted to survive at the salinity, nutrient availability (Ikenaga et al 2010), 
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biogeochemistry (Bertics and Ziebis 2009) and bioturbation (Fanjul et al 2015) levels of 

surface, subsurface and burrow sediments constitute the colonist pool that interacts with 

the crab’s carapace and guts (Fig 5). Other studies have developed the concept of 

hierarchical filters at different scales, shaping the colonist pool. In stream habitats, 

environmental filters at the basin and catchment scale shape colonist pools influencing 

fish and invertebrate communities (Frissell et al 1986, Poff 1997). If colonist pools result 

from a combination of regional evolutionary and biogeographical forces and filtering at 

various scales (Cornell and Harrison 2014, Poff 1997, Zobel 2016), multiple colonist 

pools are likely to appear where distinct filters or evolutionary histories operate on a 

landscape. Nonetheless, their effect at the local scale depends on how the colonist pool 

interacts with filters at the local scale (Partel 2002, Zobel 1992).  

We found that local, host habitats structure microbial communities associated 

with the fiddler crabs. Furthermore, host factors structure variability among carapace 

communities (Fig 3.3a). Consistent with microbiome studies (Smith et al 2015), this 

result suggests that behavior, immunology and physiology differences associated with 

crab species and sexual differentiation constitute important filters for bacterial 

colonization of the carapace. Our results indicate that cluster analysis informs of local 

processes shaping communities under a single species pool. Although previous work 

suggested clustering analysis could be used to infer distinct species pools (Carstensen et 

al 2013), our findings suggest that this method should be used with care when inferring 

mechanistic explanations of community structure. 

Surprisingly, we did not detect any effects of host-factors among gut bacterial 

communities (Fig 3.3b). Given the gut’s important role in digestion and its strong 

physical and chemical filters (Vogt et al 1989, Wang et al 2014), this result may suggest 
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that the gut’s habitat filter is conserved across fiddler crab sexes and species. 

Alternatively, this lack of clustering for gut samples can result from the combined effects 

of multiple species pools and habitat filtering. We didn’t find richness or diversity effects 

on gut communities (Fig 3.4) that would reflect differences in diversity between burrow 

and surface communities (Fig 3.1). To unravel the interaction between local filters, 

burrow and surface bacteria on gut communities may require a manipulative approach 

that reveals the degree of connectivity and overall fit between species traits in the pool 

and local filters (Zobel 1992, Chapter 4).  

Our method uses assignments based on similarity to determine species pool 

influences. A major limitation of this method is the absence of a direct measure of 

dispersal, which results in two main issues. First, other sources of colonists may influence 

fiddler crab-associated communities. Nonetheless, in comparison with tidal seawater, 

plants, or conspecific interactions, marsh sediment has a stronger relationship with crab-

associated habitats suggesting these are the major contributors to colonization. Second, 

assuming that similarity indicates major contribution neglects the possibility of important 

colonists recruiting from a species pool that differs in composition. Even with these 

limitations, the method used here allows us to identify likely sources of colonists from 

the host’s surrounding environment with no previous knowledge from species lists or 

functional traits.  

Our study highlights the importance of developing a species pool definition that 

embraces multiple colonist pools influencing local communities. These findings add to 

the work that calls for a standardized method to define colonist pools that make these 

studies comparable. Our contribution highlights habitat-specific colonization from 

distinct species pools. Importantly, communities within the same habitat type may 
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receive colonists from different colonist pools, or jointly, from several species pools. If 

this represents an important trend, studying the relationship between species pools and 

local community structure should integrate the mixing of distinct pools (Livingston et al 

2013, Rillig et al 2015), differential dispersal rates (Munguia 2015) and habitat filters 

(Kraft et al 2015).  Widening the regional species pool framework to include contribution 

from different forms of dispersal and distinct colonist pools will improve our 

understanding of regional contributions to community diversity and structure. 
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Chapter 4: The relative contribution of multiple colonists pools is 
regulated by habitat filters in fiddler crab-associated microbial 
communities  

ABSTRACT 

Community structure can be influenced by multiple sources of colonists shaped 

by different large-scale ecological and evolutionary processes. The consequences of 

multiple colonist pools for local community diversity should depend on the relative 

contribution of each colonist pool and the strength of the local habitat filter. To identify 

the contribution of distinct colonist pools of bacteria to fiddler crab-associated microbial 

communities, we manipulated bacterial pools in surface and subsurface sediments and 

compared the community-level responses of carapace and gut microbial assemblages. We 

combined normal and sterilized surface and subsurface sediment in a factorial mesocosm 

experiment. After four days of crabs feeding from and burrowing in the sediment, we 

obtained samples of carapace, gut, surface sediment and burrow sediment and performed 

next generation sequencing on the 16S ribosomal region. We evaluate two aspects of 

colonist pools influences on local communities: (1) community-level response to colonist 

pool manipulation and (2) similarity in community composition between local 

communities and colonist pools. Compared to carapace-associated communities in 

mesocosms with normal sediment, composition changed and became less similar between 

one carapace and the other in mesocosms with modified surface and subsurface 

sediments. In contrast, the composition of gut-associated microbial communities showed 

no response to bacterial pool manipulation. In mesocosms with normal sediment, 

carapace and gut community composition was more similar to burrow than to surface 

sediment bacteria. We conclude that burrow sediment bacteria influences carapace and 

gut communities. However, surface bacteria also influenced carapace communities 
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suggesting this secondary pool provides key colonists that contribute to community 

assembly. In contrast, limited response of gut communities suggests strong filters 

characterize this habitat. These findings provide a first step to understand how multiple 

colonist pools influence community assembly and to incorporate dynamic and multiple 

species pools into the contemporary concept of species pools. 

INTRODUCTION 

A central goal of community ecology is to understand how patterns in diversity 

result from interactions between local processes like resource availability, abiotic 

conditions and species interactions, and large-scale processes like regional evolutionary 

and biogeographical history (Ricklefs 1987, Zobel 1997). In an effort to describe the 

influence of regional and historical processes on local diversity, the species pool concept 

is defined as the set of all species available to colonize local communities within a region 

(Cornell and Harrison 2014, Taylor et al 1990, Zobel 2016). Local community deviations 

in terms of richness and composition from regional species pool can be interpreted as 

local processes operating as filters and only species with traits required for survival are 

able to colonize and recruit (Chase and Myers 2011). Despite the potential usefulness of 

the concept, a consensus on a clear definition and use of the species pool is missing 

(Lessard et al 2016, Zobel 2016). A potential reason behind this disagreement is the 

underlying assumption that the species pool is a static entity (Cornell and Harrison 2014). 

Evidence shows that species pools can vary along gradients in latitude, altitude, 

heterogeneity and abiotic conditions (Freestone and Osman 2011, Graves and Rahbek 

2005, Kraft et al 2011, Lessard et al 2012, Myers et al 2013, Partel 2002, Pither and 

Aarssen 2005, Tello et al 2015), as well as due to contemporary evolution (Fukami et al 

2007, Fukami 2015, Loeuille and Leibold 2008, Pantel et al 2015, Terhorst et al 2010). A 
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definition of a dynamic species spool may contribute to a complete integration in our 

understanding of local and regional aspects of community ecology.  

A useful approach proposed by Frissell (1990) and later developed by Poff 

(1997), recognizes that, of all the species available for colonization in a region, only a 

subset of colonists arrives at each location. This framework views the colonization 

process as a series of filters at different scales (Frissell et al 1986, Poff 1997). 

Environmental conditions characteristic of each level represent filters, which species with 

traits matching the environment can pass (Leibold 1995, Tonn et al 1990). For example, 

when describing stream communities, large-scale filters operate at the watershed level, 

while lower level filters will define each catchment and pool (Poff 1997). Ultimately, the 

colonist pool that interacts with the local-scale depends on the traits that have been 

filtered at higher scales. Although this approach seems straightforward in the context of 

stream systems, local communities can also be exposed to colonist pools shaped by 

distinct large-scale filters. For example, Gotelli and Graves (1983) suggested that 

individual Caribbean islands could be influenced by colonist pools from the West Indies 

mainland, South American mainland or from other islands and archipelagos (Graves and 

Gotelli 1983). Each of these colonist pools will differ in species number and composition 

according to large-scale environmental filters imposed within each mainland or 

archipelago area (Poff 1997). Defined as sources of colonists shaped by distinct 

evolutionary and large-scale filtering processes (Zobel 1992), multiple colonist pools 

could influence many natural communities such as plant communities resulting from an 

interaction between seed rain and seed banks (Bekker et al 2000, Eskelinen and Virtanen 

2005, Kalamees and Zobel 1998, Willems and Bik 1998) and multiple sources of bacteria 

colonizing host-associated microbial communities (Chapter 3). Because each pool can 
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have strong consequences on diversity and structure at the local scale, recognizing 

multiple colonist pool influences is an important goal for basic ecology and applied fields 

like conservation and restoration. 

 

Figure 4.1.  Conceptual model of multiple colonist pool influences on local 
communities. Regional species pools, shaped by evolutionary and biogeographical 
processes, are filtered at large scales, resulting in 2 distinct colonist pools. Differences in 
composition between colonist pools are represented by distinct colors (dark grey and 
white). Colonization is illustrated with arrows connecting the colonist pools and the local 
community. Colonization rate and frequency are represented by the arrow type with 
white, thick arrows denoting frequent and abundant colonization and black, dashed 
arrows denoting weak or infrequent colonization. Coloration at the local scale indicates 
community composition and its similarity with each colonist pool. A strong filter is 
represented in (d) by a sieve blocking colonization. Each scenario describes one of the 
four types of multiple colonist pool influence. 

The effect of colonization from a regional species pool depends on the frequency 

of arrival and how the colonist pool interacts with filters at the local scale (Partel 2002, 

Zobel 1992). In addition to arrival frequency and habitat filters, consequences of multiple 

colonist pools on local community assembly depend on each pool’s degree of 

contribution. In this study, we focus in four alternative scenarios based on (1) the effect 

on local communities of manipulating colonist pools, and (2) the similarity between 
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colonist pools and local communities (Fig 4.1). First, if dispersal limitation or strong 

habitat filtering constrain colonization of other colonist pools, a single pool will influence 

local communities even if multiple sources of colonist co-occur (Fig 4.1a). In this simple 

scenario, once the relevant colonist pool has been identified, evaluating the influence of 

species pools can proceed with traditional methods (Carstensen et al 2013, Chase and 

Myers 2011). Second, if two colonist pools influence community assembly but their 

relative contribution is unequal, a main species pool will supply most colonists and an 

accessory species pool will supply few, but key colonists (Fig 4.1b). This scenario 

resembles the keystone species concept (Paine 1995) where a species causes a 

disproportionate effect on the community’s diversity given its low abundance. A colonist 

pool that contributes few species that are fundamental for community assembly and 

radically impact local diversity is a key colonist pool. Third, if two or more colonist pools 

jointly contribute colonists for assembly, the resulting local community will be a mixture 

of the two sources shaped by habitat filters and species interactions (Fig 4.1c). Predicting 

the outcome of community assembly in this case depends on the similarity between the 

large scale and the local filters, the temporal dynamics of colonization and the relative 

contribution of each pool (Fukami 2015, Rillig et al 2015). Fourth, under strong local 

habitat filters, local assemblages are expected to maintain the same composition and 

structure regardless of the source of colonists (as long as the main components are 

present, Fig 4.1d). Although these may not represent all possible relationships between 

multiple species pools and local communities, we focus on these in an attempt to 

investigate the colonization of fiddler crab gut and carapace microbial communities from 

distinct colonist pools within the marsh sediment. 
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Fiddler crab-associated microbial communities are colonized by bacteria from 

distinct colonist pools of bacteria in the surface and burrow marsh sediment (Chapter 3). 

These bacterial pools in the sediment are amenable for experimental manipulation 

(Cuellar-Gempeler and Munguia 2013), ideal to identify their relationship with local, 

crab-associated communities. In addition, crab carapace and gut represent distinct 

microbial habitats. While the carapace is open to colonization, the gut represents a strong, 

selective filter (Chapter 2, Brosing 2010, Vogt et al 1989, Wang et al 2014). Furthermore, 

in a prior study, it was found that burrow bacteria influenced the crab’s carapace while 

both surface and burrow sediment were influential for the gut (Chapter 3). However, 

these findings were based exclusively on compositional similarity between local 

communities and colonist pools.  

Our objective in this study is to evaluate the relative contribution of multiple 

colonist pools to local community composition. To distinguish between the four proposed 

scenarios of multiple colonist pool influence on fiddler crab-associated microbial 

communities, we combined normal and sterilized surface and subsurface sediment in a 

factorial mesocosm experiment. We evaluated (1) local community responses to colonist 

pools manipulation, and (2) similarity in composition between colonist pools and local 

communities. Based on prior findings and on fiddler crab natural history, we hypothesize 

that carapace communities will be influenced by a single colonist pool (Fig 4.1a). 

Therefore, carapaces should remain similar to burrow sediment bacteria and respond to 

burrow but not to surface sediment sterilization. In contrast, gut communities are 

expected to respond to both sterilization procedures and to either be the result of the 

interaction between the main and a key colonist pool (Fig 4.1b) or of colonist pool 

coalescence (Fig 4.1c). Alternatively, the strong filter in the gut could result in 
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communities that remain mostly unaffected by the colonist pool treatments (Fig 4.1d). 

Our results conflicted with our expectations for carapace and gut microbial communities. 

Carapace assemblages responded to pool manipulations in the surface and burrows while 

gut assemblages were robust to the treatments. These findings highlight the importance of 

the habitat filter in regulating the influence of multiple colonist pools.   

METHODS 

Adult female fiddler crabs (Uca panacea) and sediment were collected from a 150 

x150 m2 salt marsh area near Aransas Pass, Texas (27° 53’ 13.56” N, -97° 7’ 0.07 W) in 

August 2014. Crabs were taken to the Marine Science Institute at the University of Texas 

were they were kept in a holding tank under flowing seawater. The tanks contained sand 

from the collection site and were inclined such that one-quarter of the tank was 

submerged. Crabs were fed every two days with sterile shrimp pellets (Brine Shrimp 

Direct) and were added to the mesocosms 2 weeks after collection. We collected 

sediment samples from the same marsh area for the mesocosm the before the start of the 

mesocosm experiment. Sediment was collected from the surface (0 to 2cm deep) and 

subsurface (5 to 15 cm deep) of the marsh and stored in sterile autoclave bags for 

transport to the laboratory. We aimed at maintaining the distinct pools from the marsh for 

our mesocosm experiment. 

Experimental design 

We used a mesocosm where we experimentally removed bacterial pools from the 

sediment to determine the influence of surface and burrow bacterial pools on fiddler crab-

associated microbial communities. To replicate these distinct bacterial pools, each 

mesocosm consisted of a tank (30.2 cm length, 19.8 cm width, and 20.5 cm depth) filled 



 
 

64 

with a 7 cm deep subsurface sediment layer and a 2 cm deep surface sediment layer. The 

sterile surface treatment (-\+) had a subsurface layer of normal sediment while the surface 

sediment layer was sterile. The sterile subsurface treatment (+\-) had a sterile subsurface 

layer and a normal surface layer. In addition, we had a sterile control treatment (-\-) with 

sterile surface and subsurface, and a normal control treatment, with normal sediment 

layers (+\+). Fifteen tanks were set up for each treatment for a total of 60 mesocosms. 

Although we manipulate subsurface sediment directly, we focus instead on the 

influence of burrow sediment bacteria, because these have distinct bacterial assemblages 

and direct influence on crab-associated communities (Chapter 3). Burrow sediment 

bacteria result from crab burrowing on experimental subsurface sediment.  

Bacteria were removed from the species pool by autoclaving with a 20 min, 

121°C solid cycle. The autoclave procedure consisted on laying a shallow layer (3cm) of 

sediment within an autoclave bag and onto a metal sheet. Each set of sediment was 

autoclaved 3 times, and mixed thoroughly in between cycles. This procedure improves 

the sterilization of sediments and soil (Trevors 1996).  

Prior to the beginning of the experiment, crabs were washed with sterile deionized 

water, swabbed with alcohol (95%) and bleach (90%) and isolated in a sterile container 

for 48 hours to reduce their initial bacterial load in the carapace and gut. To evaluate 

these cleaning procedures, we sampled crab carapaces and guts from freshly collected 

specimens and post-cleaning specimens. Although this cleaning procedure may not 

eliminate all bacteria, this disturbance is sufficient to induce colonization from the 

sediment and re-assembly of crab microbial communities. After the cleaning procedure, 

we were unable to recover sufficient bacterial DNA for sequencing from crab carapaces 

or guts. 
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Crabs were allowed to burrow and interact with the sediment for 4 days. Daily, 

we added 10 mL sterile water to the surface and bottom of the mesocosm. This procedure 

enhances crab feeding (Dye and Lasiak 1987, Robertson and Newell 1982) and reduces 

mortality. To add water to the bottom of the mesocosm, we placed a sterile rubber tube 

(0.5 cm diameter) on one corner of each tank.  

Samples were taken after 4 days. Crabs were rinsed with sterile deionized water to 

remove unattached bacteria. Crabs were swabbed and scraped to obtain carapace bacterial 

communities. Then they were sacrificed by freezing and dissected under sterile 

conditions to obtain gut samples. To avoid food bolus interference and to remove 

unattached bacteria, guts were rinsed with sterile deionized water. Sediment samples 

consisted of 5 gr of sediment from the surface or burrow sediment. This sample was 

homogenized and 2 gr were used for DNA extraction.  

All samples were kept in MoBio PowerSoil bead tubes at -80°C and were 

processed within a month of collection. DNA was extracted using the PowerSoil DNA 

extraction kit (MoBio). Samples with less than 0.1 ng/μL DNA yield were excluded from 

the study to avoid sample bias. To avoid host DNA amplification, we targeted the V4 

hypervariable region of bacterial 16S using the 515F/806R primer pair (Ong et al 2013, 

Wang and Qian 2009). Sequencing was done at the University of Texas Genome 

Sequencing and Analysis Facility (GSAF) using the MiSeq Illumina platform.  

The resulting sequences were processed using custom bash scripts and QIIME 

(Caporaso et al 2010) with Greengenes as reference databank (DeSantis et al 2006). 

OTUs (Operationa Taxonomical Units) were defined at the 97% sequence similarity and 

were picked with an open frame. We removed OTUs assigned to Archaea or unassigned 

and those found in less than 3 times in less than 1% of the samples.  
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Data analysis 

To determine the influences of multiple species pools on crab carapace and gut 

communities we evaluated the effect of the sterilization treatments on the sediment 

species pools and on crab-associated microbial communities. First, we evaluate the 

treatment effects on diversity and composition of the sediment and then on the crab-

associated communities. Lastly, to determine the similarity between sediment pools and 

crab-associated assemblages, we calculated the multivariate distance from each crab-

associated community to the sediment community within its own experimental mesocosm 

tank. 

To determine the effect of the sterilization treatments on sediment bacteria, we 

evaluated diversity in the 2 layers of sediment throughout the treatments. OTU richness 

was evaluated with a two-way ANOVA. Community composition effects of our 

treatments were assessed with an RDA on Hellinger transformed data (Legendre and 

Gallagher) and evaluated with a perMANOVA on RDA scores (Anderson et al 2006). 

To evaluate the effect of our treatments on crab-associated communities, we 

calculated richness and compositional effects. We used a two-way ANOVA to estimate 

the effect of the sterilization treatments on OTU richness of crab-associated communities. 

We used the function predict (Oksanen et al 2015) on crab-associated communities 

Hellinger transformed data to find crab sample ordination scores based on the sediment 

RDA. We used a perMANOVA on the scores resulting from the predict function to 

determine effects of sterilization treatments on OTU composition in crab communities. 

To tease out these results we looked into three response variables - effects along the first 

and second RDA axis and community similarity effect. We assessed effects along the 

RDA axis with two-way ANOVAs and the similarity effect with a multivariate 
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homogeneity of group dispersions test (Anderson et al 2006) on Hellinger transformed 

OTU relative abundances.  

We calculated the distance from each crab-associated community to the sediment 

bacterial pools for each mesocosm tank. We tested the effect of he sterilization treatments 

on carapace and gut communities with two-way ANOVA. 

We compared patterns in OTU relative abundance using SIMPER analysis 

(Clarke 1993) to identify taxa contributing to differences between carapace, gut, surface, 

subsurface and burrow bacteria. We show OTU explaining 90% of the variation between 

these substrates. 

Analyses in this section were performed using R statistical environment. Most of 

the analyses were performed using functions contained in the packages phyloseq 

(McMurdie and Holmes 2013), vegan (Oksanen et al 2015) and mvabund (Wang et al 

2012) as well as custom scripts.  
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Figure 4.2. Boxplot of rarefied richness effects of treatments for sediment pools (a, b) and 
crab-associated communities (c, d).  Letters denote significant differences between 
groups as indicated by a Tukey HSD test.  

Table 4.1. Summary of results from a two-way ANOVA assessing the effects of the 
sterilization treatments on sediment (surface and burrow) and crab-associated (carapace 
and gut) substrates rarefied richness. 

 d.f. F p 
Treatment 3 13.425 <0.001 *** 
Substrate 3 29.878 <0.001 *** 
Treatment*Substrate 9 7.221 <0.001 *** 

*** indicates significance of p<0.001 
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RESULTS 

We obtained 2593±1314 reads per sample for a total of 350054 DNA reads 

distributed across 135 samples that were suitable for analysis. Samples were discarded 

because of crab mortality (43.75% of total samples), or low DNA yield (less than 0.1 

ng/μL). After accounting for sequence quality and removing low-abundance OTUs, we 

identified 311 individual OTUs distributed across 12 phyla and 50 families.  

 

Figure 4.3. RDA of OTU composition responses to treatments in the sediment. Effects of 
sterile surface (-/+, diamonds), sterile subsurface (+/-, triangles), sterile control (-/-, 
squares) and normal control (+/+, circles) are shown for surface (a, black) and burrow (b, 
grey). RDA scores for surface and burrow are presented separately for better 
visualization.  
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Figure 4.4. Average relative abundance of selected taxa on carapace, gut, burrow and 
surface. Bars indicate standard error.  

The sterilization treatments had effects on the richness and OTU composition of 

sediment pool bacteria (Fig 4.2a, 4.2b). While there was insufficient DNA for sequencing 
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in sediments after the 3rd autoclave cycle, we found reduced richness in treated sediment 

at the end of the mesocosm experiment (Table 4.1). Sterilized surface and sterile control 

had, in average, 62.4±20.8 and 35.2±6.75 OTUs respectively, while normal surface 

sediment had an average of 77.6±13.3 OTUs. Burrow sediment had an average of 

92.8±11.5 OTUs in the normal control while sterilized burrow and control had 77.7±15.9 

and 59.3±8.37 OTUs respectively. Sterilization treatments also had significant effects on 

OTU composition in the sediment (Fig 4.3, Table 4.2). For example, Desulfobacteraceae 

bacteria had strong relative abundance responses to sterilization treatments (Fig 4.4e, 

Table S4.1). However, taxa like Pseudoalteromonadaceae increased their abundances in 

treated sediment (Fig 4.4f, Table S4.1). 

Table 4.2. Summary of results from a perMANOVA assessing the effects of the 
sterilization treatments on sediment (surface and burrow) and crab-associated (carapace 
and gut) substrate OTU composition.  

 d.f. F R2 p 
Treatment 3 3.314 0.063 0.01 * 
Substrate 3 10.398 0.198 0.01 * 
Treatment*Substrate 9 1.452 0.083 0.01 * 
* indicates significance of p<0.05 
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Figure 4.5. RDA scores for crab samples as obtained with the function predict. Effects of 
sterile surface (-/+, diamonds), sterile subsurface (+/-, triangles), sterile control (-/-, 
squares) and normal control (+/+, circles) are shown for carapace (a, grey) and burrow (b, 
black). RDA scores for carapace and gut samples are presented separately for better 
visualization. 

Sediment sterilization treatments had compositional but no richness effects on 

crab-associated communities (Fig 4.2c, 4.2d, Fig 4.5). Rarefied richness was higher in the 

carapace (64.14±14.52 OTUs) than in the gut (41.57±26.33 OTUs) but was not affected 

by the sediment sterilization treatments (Table 4.1). Overall, richness in crab-associated 

communities was significantly lower than in the sediment (Fig 4.2). Sterilization 

treatments had significant effects on OTU composition in the crab-associated 

communities (Fig 4.5, Table 4.2). Some OTUs were not affected by sediment treatments, 

like Chitinophagaceae in the gut (Fig 4.4a) or Flavobacteraceae in the carapace (Fig 

4.4d). In contrast, taxa like Cryomorphaceae or Micrococcaceae decreased in relative 

abundance when sediment bacterial pools were manipulated (Fig 4.4g, 4.4h). 
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Figure 4.6. Carapace-associated communities response variables to sediment sterilization 
treatments. Boxplots are shown for a) RDA1, b)RDA2, c) distance to centroid. 

 

Figure 4.7. Gut-associated communities response variables to sediment sterilization 
treatments. Boxplots are shown for a) RDA1, b) RDA2, c) distance to centroid. 
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the first axis were higher in the control (+/+, -0.01±0.01) than when any of the sediment 

pools were removed (Fig 4.6a, Table 4.3). RDA scores along the first and second axes 

were higher when the surface sediment pool was removed (-/+, -0.01±0.04) than in the 

A

B B B

-0.125

-0.100

-0.075

-0.050

-0.025

0.000

(+/+) (-/+) (+/-) (-/-)
Treatment

R
D
A1

a

A

B

A A

-0.20

-0.15

-0.10

-0.05

0.00

0.05

(+/+) (-/+) (+/-) (-/-)
Treatment

R
D
A2

b

A

B

C

A

0.03

0.06

0.09

(+/+) (-/+) (+/-) (-/-)
Treatment

D
is

ta
nc

e 
to

 c
en

tro
id

c

-0.10

-0.05

0.00

(+/+) (-/+) (+/-) (-/-)
Treatment

R
D
A
1

a

-0.10

-0.05

0.00

(+/+) (-/+) (+/-) (-/-)
Treatment

R
D
A
2

b

0.02

0.04

0.06

(+/+) (-/+) (+/-) (-/-)
Treatment

D
is

ta
nc

e 
to

 c
en

tro
id

c



 
 

74 

other treatments (Fig 4.6b, Table 4.3). Compared with both controls (+/+, -/-), variation 

in carapace community composition doubled when surface sediment pool was removed (-

/+) and tripled when the burrow sediment pool was removed (+/-, Fig 4.6c, d.f.=3, 

F=15.72, p=0.001). In contrast, gut communities were unresponsive to the sediment 

sterilization treatments (Fig 4.7). There were no significant differences in the first RDA 

axis scores (Fig 4.7a, Table 4.3), the second RDA axis scores (Fig 4.7b, Table 4.3) or in 

variation in community composition (Fig 4.7c, d.f.=3, F=0.987, p=0.386).  

Table 4.3. Summary of two-way ANOVA evaluating the community composition 
response to sterilization treatments along the first and second RDA axis.  

 
  d.f. F p 
RDA1 Treatment 3 2.932 0.044   * 
 Substrate 1 3.263 0.077  
 Treatment*Substrate 3 1.857 0.151  
RDA2 Treatment 3 9.625 <0.001 

***  
 Substrate 1 6.293 0.016   *  
 Treatment*Substrate 3 3.473 0.024   *  

* indicates significance of p<0.05 
*** indicates significance of p<0.001 

Table 4.4. Summary of results from a two-way ANOVA assessing Euclidean distance 
between crab-associated substrate (carapace and guts) and sediment pools (burrow and 
surface). Data was inversely transformed to meet parametric assumptions. 

 
 d.f. F p 
Pool 1 10.387 0.004 ** 
Substrate 1 0.131 0.720 
Pool*Substrate 1 0.057 0.813 

              ** indicates significance of p<0.01 
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Figure 4.8. Boxplot of multivariate distance between crab-associated communities and 
bacterial sediment pools. Results are shown for carapace (a) and gut (b) samples.  

 

Crab-associated communities were more similar in composition to burrow than to 

surface sediment bacteria (Fig 4.8, Table 4.4). Although the differences between groups 

were lost after the Tukey HSD test, this trend is consistent with the percent overlap 

between carapace and gut with burrow communities. While carapace and gut 

communities share 79.3% and 81.9% unique OTUs with burrow sediment, respectively, 

they only share 63.0% and 70.3% OTUs with the surface sediment. This is most evident 

with OTUs with high relative abundance in the carapace and burrow sediments, such as 

members of Alteromonadaceae and Flavobacteraceae (Fig 4.4c, 4.4d, Table S4.1). 
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large-scale filters (Chapter 3, (Kalamees and Zobel 1998, Partel 2002, Zobel 1992). The 

consequences of multiple colonist pools at the local scale should depend on the relative 

contribution of each colonist pool and the strength of the local habitat filter (Fig 4.1). Our 

results show that carapace associated communities are more similar in composition to 

burrow than to surface sediment bacteria, but were influenced by manipulation of both 

bacterial pools (Fig 4.4, 4.6). In contrast, the gut communities showed little influence 

from the experimental treatments, suggesting strong habitat filters in the gut structure 

microbial community assembly (Fig 4.5). Results from gut and carapace communities 

contrasted with our expectations based on previous findings and fiddler crab natural 

history, suggesting complex interactions between multiple colonist pools in sediment 

bacteria and fiddler crab-associated microbial communities. Importantly, weak habitat 

filters in the carapace and strong filters in the gut were strong indicators of colonist pool 

influences.  

Responses of carapace communities suggest that multiple colonist pool influences 

are stronger where local habitat filters are weak and open to colonization from the 

sediment. When sediment bacterial pools were manipulated, carapace communities 

showed responses along both RDA axes and in community similarity (Fig 4.4, 4.6, Table 

4.3, 4.4). OTU relative abundance of taxa like Cryomorphaceae reflected patterns in 

surface sediment (Fig 4.8g), while members of Alteromonadaceae responded to patterns 

in burrow sediments (Fig 4.8c). These are common members of microbial communities in 

seawater and coastal sediments, thus likely representing common patterns of colonization 

(Bowman 2014, Lopez-Perez and Rodriguez-Valera 2014). This finding echoes previous 

work emphasizing strong regional influences in more benign conditions, known as weak 

habitat filters (Chase 2007, Chase and Myers 2011). The strength of habitat filters 
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depends on the degree to which large-scale filters shaping the colonist pool matches local 

filters (Zobel 1992). For example, high pH soils have been common evolutionary drivers 

for plant species due to glacial refugia and thus, for the resulting regional species pool in 

temperate regions, low pH represents strong filters, while the opposite is true for tropical 

forests due to the effect of carbonate leaching from the soil (Partel et al 2007). Conditions 

on the crab’s carapace are a better match to the nutrient availability, biochemistry and 

other environmental conditions in the sediment (Bertics and Ziebis 2009, Ikenaga et al 

2010) than conditions in the gut. Nonetheless, colonizing carapace surface requires 

attachment and is mediated by chitin structure and crab’s immunity (Moret and Moreau 

2012). OTUs like Flavobacteriaceae, common environmental bacteria, were consistently 

dominant in the carapace, regardless of the treatment (Fig 4.8d, Bernardet and Nakagawa 

2006). Although differing in the degree of filtering, both habitats constrained 

colonization from the sediment resulting in less variation in community composition than 

found in the sediment (Fig 4.3, 4.4).  

Microbial communities in the gut responded weakly to colonist pool 

manipulation, coherent with expectations based on strong physical and chemical filtering 

in this bacterial habitat (Brosing 2010, Vogt et al 1989, Wang et al 2014). This result 

contrasts with previous findings where the gut was influenced by both surface and 

burrows, and with the crab’s natural history that suggests feeding is exclusive to the 

surface (Chapter 3, Meziane et al 2002, Thurman 1987). There are two possible 

explanations for these inconsistencies. First, lab mesocosms were depleted in OTU 

richness when compared to sediment from the marsh (Chapter 3), which was reflected in 

low richness within the gut (Fig 4.2d). Second, some OTUs could have survived our 
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cleaning procedure and driven community assembly. Nonetheless, these scenarios still 

highlight the limited influences from colonization on gut community assembly.  

Surprisingly, we found that the manipulation of a sediment bacterial pool had a 

strong effect on the other. Surface and burrow pools had 216 OTUs common across all 

treatments. We found that, when we manipulated a sediment layer by autoclaving, several 

OTUs that were rare in the control mesocosm were able to successfully colonize 

sterilized sediment. For example, members of Pseudoalteromonadaceae and 

Idiomarinaceae become dominant within treated sediment (Fig 4.8b, 4.8e). Although it is 

possible that these bacteria survived three autoclave cycles, bacteria from the unaltered 

pool likely colonized the open habitat. Sterilized sediment retains resources like organic 

carbon and can thus represents open, empty habitat, ready for colonization. Migration 

from one pool to another can result from interstitial water flow (Bernhard et al 2015), 

bioturbation (Fanjul et al 2015) and crab feces (Cuellar-Gempeler and Munguia 2013). 

This finding suggests that colonist pools can have different degrees of interactions. The 

importance of multiple colonist pool effects should be expected to be stronger in more 

independent colonist pools.  

Community composition in the carapace responded to manipulation of bacteria in 

surface and burrow sediment (Fig 4.4) and was more similar to burrow bacteria (Fig 

4.6a). These results suggest that the carapace is influenced by a main bacterial source 

from the burrow and key colonist pool from the carapace (Fig 4.1b). It is possible for 

surface bacteria to colonize the carapace when the crab burrows through the surface layer 

or when the surface sediment is disturbed. However, influences from one colonist pool to 

the other indicate that burrow bacteria mediated carapace community responses to 

surface pool manipulation. In other words, changes in surface bacterial composition 
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impacts bacteria in the burrow sediment, which, in turn, influences carapace 

communities. Feedbacks between sediment pools may be important ecological processes 

shaping bacterial community structure. For example, sediment chemistry and bacterial 

composition can be altered by environmental conditions like drought or pollution (Tam 

1998), resulting in altered carapace microbial communities. Regardless of whether the 

influence of surface bacteria occurs directly or indirectly, our results suggest that 

bacterial composition of two distinct colonist pools have consequences for local carapace 

communities. For example, relative abundance of OTU like Cryomorphaceae diminished 

when the surface sediment was removed (Fig 4.8g). Importantly, colonist pool influences 

can manifest directly as relative abundance patterns of contemporary coexistent taxa or 

indirectly, through the impact on assembly of taxa that later become locally extinct 

(Miller et al 2009).  

Many studies have addressed regional effects on local diversity, yet few recognize 

that colonist pools are often shaped by distinct large-scale processes. Few studies have 

addressed colonist pools but they differ substantially from our study. Focusing on 

hierarchical scales of environmental filtering, some studies show that the influence of 

colonist pools depends on the mobility of focal organisms (Bajer et al 2015, Poff 1997, 

Sydenham et al 2015). Yet these studies define a single overarching pool as opposed to 

multiple colonist pools. Another group of studies highlights colonist pools contrast plant 

seeds dispersing in space with seed bank species dispersing in time. Although these 

studies rarely integrate the joint effect of multiple colonist pools, they show that seed rain 

dispersing in space has a stronger influence during community succession after strong 

disturbances, while seed bank species dispersing in time are more important for 

community development after small disturbances, such as herbivore activity (Bekker et al 
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2000, Eskelinen and Virtanen 2005, Kalamees and Zobel 1998, Willems and Bik 1998). 

Our results coincide with other work suggesting that distinct sources of colonists are 

rarely completely independent. Although this effect is likely a result of our experimental 

design, coexisting multiple colonist pools can fall along a gradient of independence, from 

completely filtered and independent to a single regional species pool. Understanding the 

degree of pool independence would improve our understanding of the interaction 

between multiple colonist pools and local habitat filters in driving communities 

composition.  

Our study provides evidence of multiple species pools interactions with local 

habitat filters. We demonstrated multiple species pool influences on communities under 

weak habitat filters in the carapace, and contrasted this effect with robust filtering in the 

gut. Although many systems may be colonized from a single and coherent evolutionary 

regional species pool, we argue that the effects of hierarchical filters, dispersal limitation 

and local-regional feedback may be more complex in most natural communities (Cornell 

and Harrison 2014). Importantly, multiple colonist pool influences will be important 

when pools are distinct and local habitat filters are weak. To fully integrate these 

processes and make studies comparable, a definition of the colonist pool that 

encompasses all the effects of dispersal on community diversity and structure. These 

advances are bound to have critical implications for basic ecology, leading towards a 

more predictive field. Furthermore, acknowledging the role of multiple colonist pools 

may contribute to conservation ecology, leading to a better integration of dispersal on 

management and restoration plans.  
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Appendix 

CHAPTER 1: SUPPLEMENTAL INFORMATION 

 

Figure S1.1 Boxplot illustrating OTU rarefied richness of microbial communities 
associated with crab carapaces (a) and tile surfaces (b).  

 

 

Figure S1.2. Boxplot illustrating temporal changes in distance to centroid of microbial 
communities associated with crab carapaces (a) and tile surfaces (b). Distance to group 
centroid was calculated separately from hellinger transformed data for samples collected 
on day 4 and 8. 
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Figure S1.3 Species accumulation curves for carapace (circles), tiles (triangles) and water 
samples (squares).  
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Table S1.1. Summary of two-way ANOVAs assessing the effect of month and habitat type on OTU relative abundance. 
Results are shown for OTUs with more than 0.005 average relative abundance in either carapaces or tile. 

      
Av. relative 
abundance Month Habitat Month*Habitat 

Phylum Family Genus Carapace Tile df 
F 

value p df F value p df F value p 
Bacteroidetes Flavobacteriaceae Tenacibaculum 0.0439 0.0011 2 0.062 0.940 1 26.564 0.000 2 0.167 0.847 
Proteobacteria Erythrobacteraceae - 0.0425 0.0005 2 0.375 0.690 1 6.780 0.014 2 0.370 0.694 
Proteobacteria Alteromonadaceae Alteromonas 0.0307 0.0023 2 1.859 0.174 1 8.176 0.008 2 1.478 0.245 
Proteobacteria Rhodobacteraceae - 0.0236 0.0024 2 4.277 0.024 1 22.215 0.000 2 6.713 0.004 
Proteobacteria Rhodobacteraceae - 0.0148 0.0022 2 0.656 0.527 1 11.601 0.002 2 0.843 0.441 
Bacteroidetes Flavobacteriaceae - 0.0134 0.0001 2 3.529 0.042 1 9.683 0.004 2 3.340 0.050 
Proteobacteria Erythrobacteraceae - 0.0131 0.0009 2 0.697 0.506 1 16.601 0.000 2 0.625 0.542 
Cyanobacteria Synechococcaceae Prochlorococcus 0.0130 0.0010 2 0.911 0.413 1 0.920 0.345 2 0.978 0.388 
Cyanobacteria - - 0.0126 0.0062 2 0.705 0.503 1 1.985 0.169 2 0.168 0.846 
Cyanobacteria - - 0.0126 0.0062 2 0.705 0.503 1 1.985 0.169 2 0.168 0.846 
Bacteroidetes Flavobacteriaceae - 0.0121 0.0023 2 2.220 0.127 1 7.577 0.010 2 0.979 0.388 
Actinobacteria Intrasporangiaceae - 0.0112 0.0000 2 1.063 0.359 1 2.080 0.160 2 1.047 0.364 
Bacteroidetes Flavobacteriaceae - 0.0111 0.0004 2 0.940 0.402 1 6.183 0.019 2 0.957 0.396 
Bacteroidetes Flavobacteriaceae - 0.0102 0.0001 2 0.237 0.790 1 6.153 0.019 2 0.202 0.818 
Proteobacteria - - 0.0096 0.0004 2 3.469 0.045 1 25.291 0.000 2 4.364 0.022 
Proteobacteria Erythrobacteraceae - 0.0095 0.0001 2 0.723 0.494 1 2.161 0.152 2 0.707 0.501 
Bacteroidetes Flavobacteriaceae - 0.0088 0.0644 2 1.112 0.343 1 7.564 0.010 2 0.820 0.450 
Proteobacteria Erythrobacteraceae - 0.0072 0.0202 2 1.523 0.235 1 22.627 0.000 2 1.080 0.353 
Proteobacteria Rhodobacteraceae - 0.0061 0.0268 2 0.511 0.605 1 3.761 0.062 2 0.645 0.532 
Proteobacteria Rhodobacteraceae - 0.0056 0.0082 2 3.193 0.056 1 0.710 0.406 2 1.017 0.374 
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Table S1.1. Continued 

      
Av. relative 
abundance Month Habitat Month*Habitat 

Phylum Family Genus Carapace Tile df 
F 

value p df F value p df F value p 
Cyanobacteria - - 0.0054 0.0134 2 0.255 0.777 1 2.812 0.104 2 1.048 0.363 
Cyanobacteria - - 0.0053 0.0155 2 0.839 0.443 1 2.289 0.141 2 1.136 0.335 
Proteobacteria Vibrionaceae Vibrio 0.0047 0.0431 2 2.545 0.096 1 3.149 0.086 2 1.623 0.215 
Proteobacteria Rhodobacteraceae - 0.0032 0.0331 2 0.468 0.631 1 4.078 0.053 2 0.401 0.673 
Proteobacteria Rhodobacteraceae - 0.0029 0.0247 2 0.220 0.804 1 3.538 0.070 2 0.244 0.785 
Proteobacteria Vibrionaceae Vibrio 0.0022 0.0146 2 1.381 0.267 1 1.243 0.274 2 0.455 0.639 
Bacteroidetes Flavobacteriaceae - 0.0019 0.0115 2 1.601 0.219 1 29.936 0.000 2 0.831 0.446 
Proteobacteria - - 0.0018 0.0097 2 1.648 0.210 1 2.126 0.156 2 0.513 0.604 
Proteobacteria Rhodobacteraceae - 0.0017 0.0087 2 1.211 0.312 1 1.237 0.275 2 0.910 0.414 
Bacteroidetes Flavobacteriaceae - 0.0017 0.0078 2 3.398 0.047 1 7.603 0.010 2 1.331 0.280 
Cyanobacteria - - 0.0011 0.0076 2 0.976 0.389 1 1.200 0.282 2 0.633 0.538 
Proteobacteria Colwelliaceae Thalassomonas 0.0009 0.0143 2 1.088 0.350 1 1.511 0.229 2 0.992 0.383 
Proteobacteria Alteromonadaceae - 0.0005 0.0091 2 1.202 0.315 1 1.822 0.188 2 1.122 0.339 
Proteobacteria Erythrobacteraceae Erythrobacter 0.0003 0.0098 2 1.001 0.380 1 1.091 0.305 2 0.887 0.423 
Proteobacteria Rhodobacteraceae - 0.0002 0.0100 2 0.573 0.570 1 3.059 0.091 2 0.571 0.571 
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CHAPTER 2: SUPPLEMENTAL INFORMATION 

Table S2.1. Summary of GLMs assessing the effect of time and water abundance on OTU abundance on the carapace. 

      Average Intercept     Days     Water     
Phylum Family Genus rel.abund Estimate s.e p Estimate s.e p Estimate s.e p 
Proteobacteria Vibrionaceae Vibrio 0.470 -1.510 2.563 0.569 -0.068 0.207 0.748 46.3 123.3 0.715 
Proteobacteria Alteromonadaceae Alteromonas 0.130 -0.981 0.963 0.333 -0.439 0.175 0.031 116.7 329.3 0.730 
Proteobacteria Rhodobacteraceae 

 
0.068 -3.616 0.533 0.000 0.101 0.039 0.026 4.2 3.2 0.219 

Proteobacteria Rhodobacteraceae 
 

0.042 -2.736 0.376 0.000 -0.271 0.078 0.006 2.8 35.5 0.939 
Proteobacteria Rhodobacteraceae 

 
0.032 -3.256 0.593 0.000 -0.254 0.073 0.006 12.3 6.2 0.077 

Proteobacteria Rhodobacteraceae 
 

0.032 -1.233 0.963 0.230 -0.164 0.063 0.027 -17.0 14.5 0.269 
Proteobacteria Rhodobacteraceae 

 
0.027 -3.224 0.684 0.001 -0.220 0.062 0.005 25.9 39.8 0.530 

Proteobacteria Methylophilaceae Methylotenera 0.013 -7.796 0.911 0.000 0.280 0.061 0.001 3991.3 705.7 0.000 
Bacteroidetes Flavobacteriaceae 

 
0.005 -3.886 1.367 0.017 -0.193 0.137 0.189 60.9 57.0 0.311 

Bacteroidetes Flavobacteriaceae 
 

0.004 -3.459 0.521 0.000 -0.241 0.078 0.007 - - - 
Bacteroidetes Flavobacteriaceae NA 0.003 -4.761 0.471 0.000 -0.010 0.042 0.822 12.8 6.6 0.080 
Proteobacteria Oceanospirillaceae 

 
0.002 -4.043 0.824 0.001 0.047 0.075 0.546 5.6 1.9 0.015 

Bacteroidetes Flavobacteriaceae 
 

0.002 -5.244 0.859 0.000 0.005 0.083 0.956 - - - 
Proteobacteria Colwelliaceae Thalassomonas 0.002 -4.889 0.492 0.000 -0.048 0.053 0.388 14.0 13.0 0.305 
Proteobacteria Erythrobacteraceae 

 
0.002 -4.108 0.458 0.000 -0.055 0.049 0.277 - - - 

Bacteroidetes Flavobacteriaceae Kordia 0.002 -3.383 1.011 0.007 -0.034 0.149 0.824 1.6 5.6 0.787 
Proteobacteria Rhodobacteraceae 

 
0.001 -3.994 0.503 0.000 -0.070 0.055 0.223 - - - 

Bacteroidetes Flavobacteriaceae 
 

0.001 -6.567 1.222 0.000 -0.020 0.121 0.873 51.9 14.4 0.005 
Proteobacteria Oceanospirillaceae 

 
0.001 -8.502 2.230 0.003 -0.013 0.221 0.955 37.1 6.2 0.000 
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Table S2.1. Continued. 

      Average Intercept     Days     Water     
Phylum Family Genus rel.abund Estimate s.e p Estimate s.e p Estimate s.e p 
Bacteroidetes Flavobacteriaceae 

 
0.000 -6.263 0.845 0.000 0.152 0.067 0.039 - - - 

Proteobacteria Rhodospirillaceae 
 

0.000 -5.721 0.551 0.000 0.063 0.049 0.218 - - - 
Proteobacteria Rhodobacteraceae 

 
0.000 -5.262 0.609 0.000 0.075 0.053 0.178 - - - 

Bacteroidetes Saprospiraceae 
 

0.000 -6.796 0.903 0.000 0.203 0.064 0.010 787.0 230.1 0.007 
Proteobacteria Alteromonadaceae   0.000 -5.225 0.975 0.000 0.037 0.090 0.688 - - - 

Table S2.2. Summary of GLMs assessing the effect of time and water abundance on OTU abundance in the gut. 

      Average Intercept     Days     Water     
Phylum Family Genus rel.abund Estimate s.e p Estimate s.e p Estimate s.e p 
Tenericutes - - 0.618 -2.825 1.328 0.071 0.105 0.097 0.312 2905.1 1239.0 0.051 
Proteobacteria Vibrionaceae Vibrio 0.142 -2.379 3.143 0.474 0.038 0.215 0.866 -10.6 166.5 0.951 
Proteobacteria Rhodobacteraceae - 0.128 4.967 3.598 0.210 -0.402 0.198 0.082 -73.7 55.2 0.223 
Proteobacteria Alteromonadaceae Microbulbifer 0.039 -4.114 1.126 0.008 -0.118 0.106 0.300 1166.7 480.1 0.045 
Proteobacteria Rhodobacteraceae - 0.029 -0.369 1.709 0.835 -0.574 0.321 0.117 -1.7 14.0 0.906 
Proteobacteria Rhodobacteraceae - 0.013 -2.876 1.230 0.052 0.060 0.098 0.560 -8.8 9.1 0.366 
Proteobacteria Rhodobacteraceae - 0.003 -4.701 1.025 0.003 0.067 0.097 0.515 -54.4 491.5 0.915 
Bacteroidetes Flavobacteriaceae - 0.000 -6.276 2.575 0.033 0.108 0.195 0.592 - - - 
Planctomycetes Planctomycetaceae Planctomyces 0.000 -6.023 1.476 0.002 0.085 0.115 0.477 - - - 
Cyanobacteria - - 0.000 -13.432 7.341 0.095 0.623 0.466 0.208 - - - 
Proteobacteria Rhodobacteraceae - 0.000 -5.900 1.644 0.004 0.066 0.131 0.628 - - - 
Tenericutes - - 0.000 -6.611 2.221 0.013 0.127 0.165 0.457 - - - 
Tenericutes - - 0.000 -12.030 2.697 0.003 0.241 0.165 0.186 20330.5 3298.1 0.000 
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Table S2.3. Summary of GLMs assessing the effect of time and substrate (carapace and gut) on functional pathways as indicated by 
the Picrust analysis. 

  Intercept   Days   Carapace   Gut   

Pathway Estimate 
p 

value Estimate 
p 

value Estimate 
p 

value Estimate 
p 

value 
Benzoate degradation -5.109 0 -0.013 0.094 -0.01 0.896 -0.255 0.003 
beta Alanine metabolism -5.155 0 -0.006 0.178 0.001 0.99 -0.241 0 
Fructose and mannose metabolism -5.309 0 -0.002 0.531 0.034 0.246 0.178 0 
Fatty acid biosynthesis -5.053 0 -0.006 0.364 -0.041 0.508 -0.55 0 
Pantothenate and CoA biosynthesis -5.129 0 -0.005 0.126 -0.023 0.491 -0.218 0 
Glycerophospholipid metabolism -5.478 0 0.012 0.025 0.024 0.662 0.403 0 
Peptidoglycan biosynthesis -5.000 0 -0.008 0.185 -0.054 0.343 -0.566 0 
Bacterial chemotaxis -5.094 0 -0.011 0.316 0.15 0.169 -0.159 0.203 
Protein export -5.314 0 0.009 0.088 -0.058 0.31 0.251 0 
Lysine biosynthesis -4.989 0 -0.004 0.468 -0.034 0.573 -0.512 0 
Histidine metabolism -4.984 0 -0.003 0.222 -0.063 0.027 -0.389 0 
Flagellar assembly -4.987 0 -0.028 0.008 0.32 0.003 0.089 0.437 
Lysine degradation -4.960 0 -0.004 0.422 -0.059 0.228 -0.382 0 
Phenylalanine  tyrosine and tryptophan 
biosynthesis -4.886 0 -0.005 0.376 -0.03 0.611 -0.529 0 
DNA replication -5.425 0 0.021 0.045 -0.076 0.519 0.608 0 
Replication  recombination and repair 
proteins -5.091 0 0.009 0 -0.031 0.079 -0.054 0.005 
Pentose phosphate pathway -5.146 0 0.005 0.268 0.02 0.693 0.304 0 
Membrane and intracellular structural 
molecules -4.855 0 -0.007 0.188 0.045 0.389 -0.313 0 
Nitrogen metabolism -4.736 0 -0.014 0.043 -0.01 0.874 -0.345 0 
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Table S2.3. Continued. 

  Intercept   Days   Carapace   Gut   

Pathway Estimate 
p 

value Estimate 
p 

value Estimate 
p 

value Estimate 
p 

value 
Tryptophan metabolism -4.774 0 -0.005 0.175 -0.052 0.174 -0.312 0 
Valine  leucine and isoleucine biosynthesis -4.877 0 -0.001 0.504 -0.023 0.252 -0.057 0.008 
Fatty acid metabolism -4.761 0 -0.007 0.197 0.02 0.715 -0.231 0.001 
Lipid biosynthesis proteins -4.807 0 -0.001 0.816 -0.004 0.863 -0.234 0 
Glyoxylate and dicarboxylate metabolism -4.694 0 -0.015 0.024 0.025 0.695 -0.153 0.037 
Cysteine and methionine metabolism -4.795 0 -0.001 0.384 -0.021 0.221 -0.173 0 
Homologous recombination -5.076 0 0.015 0.068 -0.057 0.526 0.419 0 
Transcription machinery -4.901 0 0.01 0.037 -0.003 0.947 0.071 0.154 
Translation proteins -4.845 0 0.008 0.052 -0.083 0.058 0.017 0.709 
Alanine  aspartate and glutamate 
metabolism -4.558 0 -0.006 0.202 -0.034 0.476 -0.415 0 
Chaperones and folding catalysts -4.709 0 0.005 0.037 -0.009 0.724 0.004 0.882 
Butanoate metabolism -4.464 0 -0.009 0.053 0.011 0.811 -0.198 0 
Methane metabolism -4.585 0 -0.003 0.029 0.026 0.1 0.05 0.002 
Propanoate metabolism -4.491 0 -0.004 0.149 -0.011 0.708 -0.176 0 
Carbon fixation pathways in prokaryotes -4.418 0 -0.005 0.152 -0.005 0.889 -0.297 0 
Glycolysis   Gluconeogenesis -4.715 0 0.01 0.055 -0.024 0.669 0.348 0 
Glycine  serine and threonine metabolism -4.276 0 -0.012 0.017 -0.042 0.373 -0.325 0 
Pyruvate metabolism -4.448 0 -0.001 0.17 -0.015 0.061 0.049 0 
Arginine and proline metabolism -4.199 0 -0.005 0.295 -0.049 0.293 -0.4 0 
Oxidative phosphorylation -4.394 0 0.005 0.001 0.037 0.016 0.007 0.678 
Bacterial motility proteins -4.213 0 -0.013 0.239 0.227 0.035 -0.076 0.524 
Peptidases -4.237 0 0.005 0.003 -0.021 0.199 -0.138 0 
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CHAPTER 3: SUPPLEMENTAL INFORMATION 

Table S3.1. Pairwise comparisons between carapace and gut communities, and surface and burrow sediment bacteria using SIMPER 
analysis. Average relative abundance is shown for each sediment type (first column corresponds to the first type in the compared pair, 
second column for the second). Taxonomic classification are shown to the deepest assignment for each OTU. OTUs representing 
approximately 30% of the variation are shown fro each comparison. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Surface vs. 
burrow 

Firmicutes Halanaerobiaceae - 0.229 0.007 0.163 0.264 
Proteobacteria Desulfobacteraceae Desulfobacterium 0.053 0.113 0.055 0.353 
Bacteroidetes Balneolaceae KSA1 0.089 0.034 0.048 0.431 
Proteobacteria Rhodobacteraceae - 0.035 0.096 0.048 0.507 
Proteobacteria Desulfohalobiaceae Desulfovermiculus 0.036 0.001 0.026 0.550 
Bacteroidetes Flavobacteriaceae - 0.030 0.052 0.021 0.584 
Proteobacteria Helicobacteraceae - 0.000 0.020 0.015 0.640 
Proteobacteria OM60 - 0.001 0.019 0.013 0.662 
Proteobacteria Alteromonadaceae Marinobacter 0.010 0.022 0.011 0.679 
Proteobacteria Halomonadaceae Halomonas 0.006 0.019 0.011 0.697 
Proteobacteria Desulfobulbaceae - 0.019 0.026 0.010 0.712 
Firmicutes Clostridiaceae - 0.013 0.007 0.009 0.727 
Proteobacteria Thiohalorhabdaceae - 0.013 0.000 0.009 0.742 
Proteobacteria Syntrophobacteraceae - 0.002 0.012 0.008 0.755 
Proteobacteria Rhodospirillaceae Inquilinus 0.014 0.015 0.008 0.769 
Proteobacteria Methylococcaceae - 0.001 0.010 0.008 0.781 
Bacteroidetes Rhodothermaceae Salisaeta 0.012 0.005 0.007 0.792 
Thermi Deinococcaceae Deinococcus 0.013 0.004 0.007 0.803 
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Table S3.1. Continued. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Surface vs. Gut Proteobacteria Rhodobacteraceae - 0.035 0.292 0.178 0.208 
Firmicutes Halanaerobiaceae - 0.229 0.005 0.152 0.386 
Bacteroidetes Balneolaceae KSA1 0.089 0.002 0.059 0.455 
Bacteroidetes Saprospiraceae - 0.006 0.074 0.048 0.511 
Bacteroidetes Flavobacteriaceae - 0.030 0.086 0.046 0.564 
Proteobacteria Desulfobacteraceae Desulfobacterium 0.053 0.002 0.036 0.606 
Proteobacteria Xanthobacteraceae - 0.003 0.042 0.028 0.639 
Proteobacteria Desulfohalobiaceae Desulfovermiculus 0.036 0.001 0.024 0.667 
Proteobacteria Caulobacteraceae Caulobacter 0.000 0.031 0.021 0.692 
Proteobacteria Enterobacteriaceae - 0.000 0.022 0.015 0.709 
Proteobacteria Erythrobacteraceae - 0.001 0.019 0.012 0.724 
Proteobacteria Desulfobulbaceae - 0.019 0.004 0.011 0.737 
Proteobacteria Pseudoalteromonadaceae Pseudoalteromonas 0.000 0.015 0.011 0.750 
Proteobacteria Rhodospirillaceae Inquilinus 0.014 0.001 0.009 0.761 
Proteobacteria Thiotrichaceae Thiothrix 0.000 0.013 0.009 0.771 
Firmicutes Clostridiaceae - 0.013 0.001 0.009 0.781 
Thermi Deinococcaceae Deinococcus 0.013 0.000 0.009 0.791 
Tenericutes Anaeroplasmataceae - 0.000 0.012 0.009 0.801 
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Table S3.1. Continued 2. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Surface vs. 
Carapace 

Proteobacteria Rhodobacteraceae - 0.035 0.284 0.175 0.205 
Firmicutes Halanaerobiaceae - 0.229 0.000 0.162 0.395 
Bacteroidetes Balneolaceae KSA1 0.089 0.002 0.062 0.467 
Bacteroidetes Flavobacteriaceae - 0.030 0.100 0.052 0.527 
Bacteroidetes Saprospiraceae - 0.006 0.065 0.042 0.577 
Proteobacteria Desulfobacteraceae Desulfobacterium 0.053 0.002 0.037 0.620 
Proteobacteria Desulfohalobiaceae Desulfovermiculus 0.036 0.000 0.026 0.651 
Proteobacteria Alteromonadaceae Marinobacter 0.010 0.040 0.024 0.678 
Proteobacteria Pseudoalteromonadaceae Pseudoalteromonas 0.000 0.029 0.019 0.700 
Proteobacteria Erythrobacteraceae - 0.001 0.027 0.018 0.722 
Proteobacteria Vibrionaceae Vibrio 0.000 0.020 0.013 0.737 
Proteobacteria Desulfobulbaceae - 0.019 0.002 0.013 0.752 
Proteobacteria Xanthobacteraceae - 0.003 0.016 0.012 0.766 
Bacteroidetes Cryomorphaceae - 0.000 0.016 0.010 0.778 
Proteobacteria Rhodospirillaceae Inquilinus 0.014 0.001 0.010 0.789 
Firmicutes Clostridiaceae - 0.013 0.000 0.009 0.800 
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Table S3.1. Continued 3. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Burrow vs. Gut Proteobacteria Rhodobacteraceae - 0.096 0.292 0.145 0.200 
Proteobacteria Desulfobacteraceae Desulfobacterium 0.113 0.002 0.079 0.309 
Bacteroidetes Saprospiraceae - 0.009 0.074 0.047 0.375 
Bacteroidetes Flavobacteriaceae - 0.052 0.086 0.040 0.430 
Proteobacteria Xanthobacteraceae - 0.001 0.042 0.028 0.468 
Bacteroidetes Balneolaceae KSA1 0.034 0.002 0.022 0.499 
Proteobacteria Caulobacteraceae Caulobacter 0.001 0.031 0.021 0.528 
Actinobacteria koll13 - 0.032 0.002 0.021 0.557 
Proteobacteria Desulfobulbaceae - 0.026 0.004 0.015 0.579 
Proteobacteria Enterobacteriaceae - 0.000 0.022 0.015 0.599 
Proteobacteria Helicobacteraceae - 0.020 0.000 0.014 0.619 
Proteobacteria Alteromonadaceae Marinobacter 0.022 0.010 0.014 0.638 
Proteobacteria Erythrobacteraceae - 0.005 0.019 0.012 0.655 
Proteobacteria Pseudoalteromonadaceae Pseudoalteromonas 0.004 0.015 0.011 0.687 
Proteobacteria Halomonadaceae Halomonas 0.019 0.006 0.011 0.702 
Proteobacteria Rhodospirillaceae Inquilinus 0.015 0.001 0.010 0.717 
Proteobacteria Thiotrichaceae Thiothrix 0.000 0.013 0.009 0.729 
Proteobacteria Syntrophobacteraceae - 0.012 0.000 0.009 0.741 
Tenericutes Anaeroplasmataceae - 0.000 0.012 0.009 0.753 
Proteobacteria Vibrionaceae Vibrio 0.008 0.011 0.009 0.765 
Cyanobacteria Synechococcaceae Prochlorococcus 0.009 0.008 0.008 0.776 
Planctomycetes Pirellulaceae - 0.013 0.009 0.008 0.787 
Proteobacteria Methylococcaceae - 0.010 0.000 0.007 0.797 
Proteobacteria Comamonadaceae - 0.000 0.010 0.007 0.807 
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Table S3.1. Continued 4. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Burrow vs. 
Carapace 

Proteobacteria Rhodobacteraceae - 0.096 0.284 0.141 0.203 
Proteobacteria Desulfobacteraceae Desulfobacterium 0.113 0.002 0.083 0.322 
Bacteroidetes Flavobacteriaceae - 0.052 0.100 0.043 0.384 
Bacteroidetes Saprospiraceae - 0.009 0.065 0.041 0.444 
Proteobacteria Alteromonadaceae Marinobacter 0.022 0.040 0.027 0.482 
Bacteroidetes Balneolaceae KSA1 0.034 0.002 0.023 0.515 
Actinobacteria koll13 - 0.032 0.002 0.022 0.546 
Proteobacteria Pseudoalteromonadaceae Pseudoalteromonas 0.004 0.029 0.018 0.573 
Proteobacteria Desulfobulbaceae - 0.026 0.002 0.017 0.598 
Proteobacteria Erythrobacteraceae - 0.005 0.027 0.017 0.622 
Proteobacteria Helicobacteraceae - 0.020 0.000 0.015 0.643 
Proteobacteria Vibrionaceae Vibrio 0.008 0.020 0.013 0.663 
Proteobacteria Halomonadaceae Halomonas 0.019 0.007 0.012 0.680 
Proteobacteria OM60 - 0.019 0.004 0.011 0.697 
Proteobacteria Rhodospirillaceae Inquilinus 0.015 0.001 0.011 0.713 
Proteobacteria Xanthobacteraceae - 0.001 0.016 0.011 0.728 
Bacteroidetes Cryomorphaceae - 0.001 0.016 0.010 0.743 
Proteobacteria Syntrophobacteraceae - 0.012 0.000 0.009 0.756 
Proteobacteria Oceanospirillaceae Marinomonas 0.010 0.011 0.008 0.768 
Actinobacteria - - 0.000 0.011 0.008 0.779 
Planctomycetes Pirellulaceae - 0.013 0.003 0.008 0.790 
Proteobacteria Thiotrichaceae Thiothrix 0.000 0.011 0.008 0.801 
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Table S3.1. Continued 5. 

Comparison Phylum Family Genus 
Average 

abundances 
Contribution 

(%) 
Cumulative 
contribution 

Gut vs. 
Carapace 

Proteobacteria Rhodobacteraceae - 0.292 0.284 0.092 0.191 
Bacteroidetes Saprospiraceae - 0.074 0.065 0.047 0.289 
Bacteroidetes Flavobacteriaceae - 0.086 0.100 0.041 0.373 
Proteobacteria Xanthobacteraceae - 0.042 0.016 0.034 0.444 
Proteobacteria Alteromonadaceae Marinobacter 0.010 0.040 0.025 0.495 
Proteobacteria Pseudoalteromonadaceae Pseudoalteromonas 0.015 0.029 0.021 0.538 
Proteobacteria Caulobacteraceae Caulobacter 0.031 0.004 0.020 0.580 
Proteobacteria Erythrobacteraceae - 0.019 0.027 0.016 0.614 
Proteobacteria Enterobacteriaceae - 0.022 0.003 0.015 0.645 
Proteobacteria Vibrionaceae Vibrio 0.011 0.020 0.014 0.674 
Bacteroidetes Cryomorphaceae - 0.008 0.016 0.011 0.698 
Actinobacteria - - 0.010 0.011 0.010 0.719 
Proteobacteria Thiotrichaceae Thiothrix 0.013 0.011 0.009 0.739 
Tenericutes Anaeroplasmataceae - 0.012 0.002 0.009 0.757 
Proteobacteria Comamonadaceae - 0.010 0.008 0.007 0.772 
Actinobacteria Propionibacteriaceae Propionibacterium 0.010 0.007 0.007 0.786 
Proteobacteria Oceanospirillaceae Marinomonas 0.003 0.011 0.007 0.800 
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Table S3.2. Summary of ANOVA tests performed on each pathway assessing the 
differences in relative representation in carapace, gut, surface and burrow sediments. 
Subsurface sediments were removed due to low NSTI scores. Average relative 
representation and standard deviation is shown for each pathway.  

Pathway d.f. F p Average Standard 
Deviation 

Transporters 3 1.548 0.218 0.056 0.008 
ABC  transporters 3 1.476 0.236 0.036 0.006 
DNA  repair  and  recombination  proteins 3 3.468 0.025 0.022 0.001 
Purine  metabolism 3 21.006 0.000 0.020 0.001 
Two  component  system 3 14.721 0.000 0.019 0.002 
Ribosome 3 53.006 0.000 0.018 0.002 
Function  unknown 3 11.871 0.000 0.017 0.002 
Secretion  system 3 4.584 0.008 0.015 0.002 
Peptidases 3 1.117 0.354 0.015 0.001 
Pyrimidine  metabolism 3 53.261 0.000 0.014 0.002 
Bacterial  motility  proteins 3 2.009 0.129 0.014 0.002 
Oxidative  phosphorylation 3 29.745 0.000 0.014 0.001 
Transcription  factors 3 13.440 0.000 0.014 0.001 
Arginine  and  proline  metabolism 3 8.043 0.000 0.013 0.001 
Amino  acid  related  enzymes 3 24.435 0.000 0.013 0.001 
Chromosome 3 7.700 0.000 0.012 0.001 
Pyruvate  metabolism 3 0.175 0.913 0.011 0.000 
Ribosome  Biogenesis 3 1.245 0.307 0.011 0.001 
Carbon  fixation  pathways  in  prokaryotes 3 24.737 0.000 0.011 0.001 
Glycine    serine  and  threonine  metabolism 3 1.503 0.229 0.011 0.001 
Methane  metabolism 3 76.452 0.000 0.011 0.001 
Butanoate  metabolism 3 5.756 0.002 0.011 0.001 
Others 3 5.171 0.004 0.011 0.001 
Porphyrin  and  chlorophyll  metabolism 3 1.772 0.168 0.011 0.001 
Other  ion  coupled  transporters 3 19.586 0.000 0.010 0.001 

Glycolysis      Gluconeogenesis 3 
113.40
5 0.000 0.010 0.001 

Valine    leucine  and  isoleucine  degradation 3 32.638 0.000 0.010 0.002 
Propanoate  metabolism 3 23.416 0.000 0.010 0.001 

Aminoacyl  tRNA  biosynthesis 3 
127.95
7 0.000 0.010 0.001 

Alanine    aspartate  and  glutamate  metabolism 3 11.120 0.000 0.009 0.000 



 96 

Table S3.2. Continued. 

Pathway d.f. F p Average Standard 
Deviation 

Amino  sugar  and  nucleotide  sugar  metabolism 3 20.386 0.000 0.009 0.001 
Energy  metabolism 3 5.695 0.002 0.009 0.001 
Chaperones  and  folding  catalysts 3 3.068 0.039 0.009 0.001 
DNA  replication  proteins 3 28.171 0.000 0.009 0.001 
Glyoxylate  and  dicarboxylate  metabolism 3 22.080 0.000 0.008 0.001 
Protein  folding  and  associated  processing 3 12.453 0.000 0.008 0.000 
Fatty  acid  metabolism 3 29.394 0.000 0.008 0.001 

Cysteine  and  methionine  metabolism 3 
215.15
2 0.000 0.008 0.001 

Transcription  machinery 3 39.762 0.000 0.008 0.001 
Lipid  biosynthesis  proteins 3 19.529 0.000 0.008 0.000 
Citrate  cycle    TCA  cycle   3 67.099 0.000 0.008 0.001 
Valine    leucine  and  isoleucine  biosynthesis 3 80.605 0.000 0.007 0.000 
Translation  proteins 3 18.640 0.000 0.007 0.001 
Nitrogen  metabolism 3 0.380 0.768 0.007 0.000 
Replication    recombination  and  repair  proteins 3 31.002 0.000 0.007 0.001 
Phenylalanine    tyrosine  and  tryptophan  
biosynthesis 3 69.961 0.000 0.007 0.001 
Tryptophan  metabolism 3 33.874 0.000 0.007 0.001 
Pentose  phosphate  pathway 3 18.076 0.000 0.007 0.000 
Bacterial  secretion  system 3 12.533 0.000 0.007 0.001 
Homologous  recombination 3 4.706 0.007 0.006 0.001 
Membrane  and  intracellular  structural  
molecules 3 55.803 0.000 0.006 0.001 

Lysine  biosynthesis 3 
147.24
2 0.000 0.006 0.001 

Histidine  metabolism 3 15.350 0.000 0.006 0.000 
Mismatch  repair 3 5.271 0.004 0.006 0.000 
Lysine  degradation 3 37.371 0.000 0.006 0.001 
Pantothenate  and  CoA  biosynthesis 3 2.572 0.068 0.006 0.000 
Fructose  and  mannose  metabolism 3 61.950 0.000 0.006 0.001 
Flagellar  assembly 3 13.319 0.000 0.006 0.001 
Peptidoglycan  biosynthesis 3 17.033 0.000 0.006 0.001 
Benzoate  degradation 3 16.820 0.000 0.005 0.001 
Bacterial  chemotaxis 3 3.523 0.024 0.005 0.001 
Fatty  acid  biosynthesis 3 18.244 0.000 0.005 0.000 
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Table S3.2. Continued 2.  

Pathway d.f. F p Average Standard 
Deviation 

Carbon  fixation  in  photosynthetic  organisms 3 11.236 0.000 0.005 0.000 
beta  Alanine  metabolism 3 37.858 0.000 0.005 0.001 
One  carbon  pool  by  folate 3 9.586 0.000 0.005 0.000 
Starch  and  sucrose  metabolism 3 8.593 0.000 0.005 0.001 
Terpenoid  backbone  biosynthesis 3 47.305 0.000 0.005 0.000 
Protein  export 3 19.415 0.000 0.005 0.000 

 

 

CHAPTER 4: SUPPLEMENTAL INFORMATION 

Table S4.1. Pairwise comparisons between carapace, gut, surface and burrow sediment 
bacteria using SIMPER analysis. Average relative abundance is shown for each sediment 
type (first column corresponds to the first type in the compared pair, second column for 
the second). Taxonomic classification is shown to the deepest assignment for each OTU. 
OTUs representing approximately 30% of the variation are shown fro each comparison. 

VS Phylum Family Relative abundance Contribution 
(%) 

Cumulative 
contribution 

Surface vs. 
Gut 

Bacteroidetes Chitinophagaceae 0.0139 0.3140 0.1725 0.1889 
Firmicutes Bacillaceae 0.2270 0.0203 0.1291 0.3303 
Proteobacteria Halomonadaceae 0.1714 0.0265 0.1016 0.4416 
Proteobacteria Rhodobacteraceae 0.0446 0.1320 0.0810 0.5302 
Bacteroidetes Balneolaceae 0.0952 0.0034 0.0581 0.6733 
Firmicutes Staphylococcaceae 0.0062 0.0706 0.0408 0.7180 
Firmicutes Halanaerobiaceae 0.0587 0.0008 0.0347 0.7559 
Actinobacteria Corynebacteriaceae 0.0126 0.0517 0.0339 0.7931 
Proteobacteria Alteromonadaceae 0.0437 0.0044 0.0248 0.8202 
Bacteroidetes Flavobacteriaceae 0.0370 0.0027 0.0227 0.8451 
Proteobacteria Idiomarinaceae 0.0312 0.0049 0.0173 0.8640 
Proteobacteria Rhodospirillaceae 0.0246 0.0006 0.0152 0.8807 
Proteobacteria Desulfobacteraceae 0.0180 0.0006 0.0112 0.8929 
Actinobacteria Micrococcaceae 0.0026 0.0142 0.0091 0.9029 
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Table S4.1. Continued. 

VS Phylum Family Relative abundance Contribution 
(%) 

Cumulative 
contribution 

Burrow vs. 
Surface 

Firmicutes Bacillaceae 0.2270 0.1190 0.1423 0.1994 
Proteobacteria Halomonadaceae 0.1714 0.0858 0.0894 0.3248 
Proteobacteria Idiomarinaceae 0.0312 0.1590 0.0810 0.4384 
Bacteroidetes Balneolaceae 0.0952 0.0276 0.0576 0.5191 
Proteobacteria Alteromonadaceae 0.0437 0.0959 0.0401 0.5754 
Firmicutes Halanaerobiaceae 0.0587 0.0214 0.0352 0.6246 
Proteobacteria Rhodobacteraceae 0.0446 0.0438 0.0334 0.6715 
Bacteroidetes Flavobacteriaceae 0.0370 0.0253 0.0247 0.7061 
Proteobacteria Desulfobacteraceae 0.0180 0.0334 0.0224 0.7375 
Proteobacteria Pseudoalteromonadaceae 0.0076 0.0332 0.0198 0.7653 
Proteobacteria Oceanospirillaceae 0.0044 0.0310 0.0171 0.7892 
Proteobacteria Rhodospirillaceae 0.0246 0.0103 0.0148 0.8100 
Proteobacteria Halothiobacillaceae 0.0102 0.0186 0.0123 0.8272 
Bacteroidetes Chitinophagaceae 0.0139 0.0070 0.0115 0.8433 
Proteobacteria Chromatiaceae 0.0087 0.0121 0.0100 0.8713 
Cyanobacteria Synechococcaceae 0.0114 0.0077 0.0095 0.8847 
Actinobacteria Corynebacteriaceae 0.0126 0.0027 0.0086 0.8967 
Proteobacteria Methylococcaceae 0.0090 0.0047 0.0074 0.9071 

Surface vs. 
Carapace 

Proteobacteria Rhodobacteraceae 0.0446 0.2542 0.1270 0.1548 
Firmicutes Bacillaceae 0.2270 0.0039 0.1231 0.3048 
Proteobacteria Halomonadaceae 0.1714 0.0267 0.0853 0.4087 
Bacteroidetes Balneolaceae 0.0952 0.0050 0.0557 0.4767 
Bacteroidetes Flavobacteriaceae 0.0370 0.1081 0.0535 0.5418 
Firmicutes Halanaerobiaceae 0.0587 0.0058 0.0335 0.5826 
Proteobacteria Alteromonadaceae 0.0437 0.0685 0.0325 0.6222 
Proteobacteria Pseudoalteromonadaceae 0.0076 0.0543 0.0311 0.6601 
Actinobacteria Corynebacteriaceae 0.0126 0.0443 0.0294 0.7331 
Proteobacteria Idiomarinaceae 0.0312 0.0349 0.0241 0.7625 
Bacteroidetes Chitinophagaceae 0.0139 0.0311 0.0239 0.7916 
Firmicutes Staphylococcaceae 0.0062 0.0284 0.0178 0.8133 
Proteobacteria Oceanospirillaceae 0.0044 0.0293 0.0171 0.8341 
Bacteroidetes Saprospiraceae 0.0000 0.0260 0.0153 0.8527 
Proteobacteria Moraxellaceae 0.0000 0.0281 0.0150 0.8710 
Proteobacteria Rhodospirillaceae 0.0246 0.0014 0.0147 0.8888 
Proteobacteria Desulfobacteraceae 0.0180 0.0010 0.0106 0.9018 
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Table S4.1. Continued 2. 

VS Phylum Family Relative abundance Contribution 
(%) 

Cumulative 
contribution 

Burrow vs. 
Gut 

Bacteroidetes Chitinophagaceae 0.3140 0.0070 0.1795 0.1945 
Proteobacteria Idiomarinaceae 0.0049 0.1590 0.0929 0.2951 
Proteobacteria Rhodobacteraceae 0.1320 0.0438 0.0856 0.3878 
Firmicutes Bacillaceae 0.0203 0.1190 0.0738 0.5505 
Proteobacteria Halomonadaceae 0.0265 0.0858 0.0582 0.6135 
Proteobacteria Alteromonadaceae 0.0044 0.0959 0.0570 0.6752 
Firmicutes Staphylococcaceae 0.0706 0.0035 0.0423 0.7210 
Actinobacteria Corynebacteriaceae 0.0517 0.0027 0.0311 0.7547 
Proteobacteria Desulfobacteraceae 0.0006 0.0334 0.0213 0.7778 
Proteobacteria Pseudoalteromonadaceae 0.0009 0.0332 0.0197 0.7991 
Proteobacteria Oceanospirillaceae 0.0008 0.0310 0.0180 0.8186 
Bacteroidetes Balneolaceae 0.0034 0.0276 0.0168 0.8368 
Bacteroidetes Flavobacteriaceae 0.0027 0.0253 0.0151 0.8532 
Firmicutes Halanaerobiaceae 0.0008 0.0214 0.0135 0.8679 
Proteobacteria Halothiobacillaceae 0.0002 0.0186 0.0123 0.8812 
Actinobacteria Micrococcaceae 0.0142 0.0003 0.0085 0.8904 
Proteobacteria Chromatiaceae 0.0015 0.0121 0.0083 0.8994 
Firmicutes Streptococcaceae 0.0123 0.0002 0.0077 0.9078 

Gut vs. 
Carapace 

Bacteroidetes Chitinophagaceae 0.3140 0.0311 0.1669 0.2089 
Proteobacteria Rhodobacteraceae 0.1320 0.2542 0.1494 0.3959 
Bacteroidetes Flavobacteriaceae 0.0027 0.1081 0.0648 0.5612 
Firmicutes Staphylococcaceae 0.0706 0.0284 0.0456 0.6183 
Actinobacteria Corynebacteriaceae 0.0517 0.0443 0.0424 0.6713 
Proteobacteria Alteromonadaceae 0.0044 0.0685 0.0393 0.7205 
Proteobacteria Pseudoalteromonadaceae 0.0009 0.0543 0.0326 0.7613 
Proteobacteria Halomonadaceae 0.0265 0.0267 0.0261 0.7940 
Proteobacteria Idiomarinaceae 0.0049 0.0349 0.0211 0.8204 
Proteobacteria Moraxellaceae 0.0100 0.0281 0.0208 0.8465 
Proteobacteria Oceanospirillaceae 0.0008 0.0293 0.0178 0.8687 
Bacteroidetes Saprospiraceae 0.0034 0.0260 0.0163 0.8891 
Firmicutes Bacillaceae 0.0203 0.0039 0.0126 0.9048 
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Table S4.1. Continued 3. 

VS Phylum Family Relative abundance Contribution 
(%) 

Cumulative 
contribution 

Burrow vs. 
Carapace 

Proteobacteria Rhodobacteraceae 0.0438 0.2542 0.1351 0.1737 
Proteobacteria Idiomarinaceae 0.1590 0.0349 0.0859 0.2840 
Firmicutes Bacillaceae 0.1190 0.0039 0.0673 0.3705 
Bacteroidetes Flavobacteriaceae 0.0253 0.1081 0.0552 0.4415 
Proteobacteria Alteromonadaceae 0.0959 0.0685 0.0456 0.5001 
Proteobacteria Halomonadaceae 0.0858 0.0267 0.0443 0.5570 
Proteobacteria Pseudoalteromonadaceae 0.0332 0.0543 0.0364 0.6038 
Proteobacteria Oceanospirillaceae 0.0310 0.0293 0.0265 0.6767 
Actinobacteria Corynebacteriaceae 0.0027 0.0443 0.0258 0.7098 
Bacteroidetes Chitinophagaceae 0.0070 0.0311 0.0206 0.7363 
Proteobacteria Desulfobacteraceae 0.0334 0.0010 0.0205 0.7626 
Firmicutes Staphylococcaceae 0.0035 0.0284 0.0174 0.7850 
Proteobacteria Moraxellaceae 0.0012 0.0281 0.0162 0.8058 
Bacteroidetes Saprospiraceae 0.0001 0.0260 0.0160 0.8264 
Bacteroidetes Balneolaceae 0.0276 0.0050 0.0158 0.8467 
Firmicutes Halanaerobiaceae 0.0214 0.0058 0.0137 0.8642 
Proteobacteria Halothiobacillaceae 0.0186 0.0013 0.0114 0.8789 
Bacteroidetes Cryomorphaceae 0.0113 0.0083 0.0088 0.8902 
Proteobacteria Chromatiaceae 0.0121 0.0000 0.0076 0.8999 
Proteobacteria Vibrionaceae 0.0012 0.0119 0.0074 0.9094 
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