Copyright
by
Fredrick Dean Mainor

2014

The Report Committee for Fredrick Dean Mainor

Certifies that this is the approved version of the following report:

Using KLEE to Generate Test Cases for the Texas Instruments®

Stellaris® Peripheral Driver Library

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:

Sarfraz Khurshid

William Bard

Using KLEE to Generate Test Cases for the Texas Instruments®

Stellaris® Peripheral Driver Library

by

Fredrick Dean Mainor, B.S.E.E.

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2014

Abstract

Using KLEE to Generate Test Cases for the Texas Instruments®
Stellaris® Peripheral Driver Library

Fredrick Dean Mainor, MSE

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid

Software engineers spend much of their time checking the correctness of
software. Software testing is the most widely used technique for accomplishing this task.
Most of the test cases used for checking software are manually created, and may not
always cover all execution paths of the software. If key test cases are not executed, then
the possibility of errors within the software still exists. By using tools that can automate
the testing of software, software engineers can run exhaustive tests on their applications
to provide verification and validation. Symbolic execution is a program analysis
technique that can be utilized to achieve this. KLEE is an open-source dynamic test
generation tool based on symbolic execution. In this report I present my results from
evaluating KLEE on the Texas Instruments® Stellaris® Peripheral Driver Library. The
Stellaris® Peripheral Driver Library consists of software drivers for controlling the
peripherals on the Stellaris suite of ARM® Cortex-M based microcontrollers. In total 554

functions within the library were tested, and a total of 14763 test cases were generated.

v

There were 32 bugs found in the software, which include assertion violations, memory

errors, and arithmetic errors (division by zero, and shift errors).

Table of Contents

LSt OF TADIES ...eeiiieiiieiieee ettt ettt et ebeeene e e vii
| A G S e U1 (P viii
1. INTRODUCTION......cccocreueeuecrececnesees 1
2. SYMBOLIC EXECUTION 3
3. KLEE....irnenrecennnnae 5
4. STELARIS® PERIPHERAL DRIVER LIBRARY 6
5.IMPLEMENTATION 8
6. EVALUATION RESULTS 14

6.1 FUNCTION WITH TWO EXECUTION PATHS 14

6.2 FUNCTION WITH AN ASSERTION 15

6.3 BUGS FOUND IN THE DRIVER LIBRARY 15

6.4 FUTURE RESEARCH 22
7. CONCLUSION.....covrrursursursaesnessesaes 24
Appendix A Source Code: Java makeKLEEINPULScccevvienieniniiiniencnicnen, 25
Appendix B Generated Test Case Totals........ccceeeevveeriiieeiiiieeniieeeiie e 38
REFERENCES ...ttt e ettt e e e e e s b e e e s nanaeeeennns 55

Vi

List of Tables

Table 1: Stellaris suite peripherals and software drivers.ccccoveeveriennenne 7
Table 2: KLEE reported errors found during analysis of the Stellaris Peripheral

DIIVEr LIDIAry ...cocuvieiieeiiieiieeieeeeee ettt 17

vii

List of Figures

Figure 1: Symbolic execution tree constructed from code snippet

viii

1. INTRODUCTION

Software engineers spend a lot of their time checking the correctness of software. It is
crucial that the software be correct, especially when peoples’ lives are at stake. Many
software engineers perform a static quality analysis (QA) of their software by reviewing
the source code. This technique is useful, but can be very tedious and may lead to bugs
being overlooked if the code is complex and lengthy. Another technique that is more
commonly used is executing specific modules in the software to ensure that it is
executing as expected according to test cases that were prepared prior to executing the
software. The problem with this technique arises when the software engineer has to
manually generate the test cases. If key test cases are not executed, then the possibility of
errors within the software still exists. By using tools that can automate the testing of
software, software engineers can run exhaustive tests on their applications to provide
verification and validation. Symbolic execution is a program analysis technique that can
be utilized to achieve this. KLEE is an open-source test generation tool based on
symbolic execution. In this report I present my results from evaluating KLEE on the
Texas Instruments® Stellaris® Peripheral Driver Library (revision 10636). The
Stellaris® Peripheral Driver Library consists of software drivers for controlling the
peripherals on the Stellaris suite of ARM® Cortex-M based microcontrollers. KLEE was
used to generate the test cases for each driver in the library, with the exception of the
CPU driver. The next section describes symbolic execution. The third section discusses
the design and functionality of KLEE. In the fourth section I discuss the Stellaris
Peripheral Driver Library. The implementation of KLEE on the Stellaris Peripheral
Driver Library is described in the fifth section. In the sixth section I present my

evaluation results and then conclude. In total 554 functions within the library were tested,

1

and a total of 14763 test cases were generated. There were 32 bugs found in the software,
which include assertion violations, memory errors, and arithmetic errors (division by

zero, and shift errors).

2. SYMBOLIC EXECUTION

Symbolic execution is a program analysis technique that helps with the software
validation/verification effort by generating software test cases automatically. The test
cases that are generated cover many, if not all, execution paths of the application.
Symbolic execution has been around since the 1970s, and was first used for simple
applications with primitive data types, such as integers and booleans [1]. Instead of
assigning program variables real values, symbolic execution uses symbols to represent
the values. As the program is executed, the program variables that depend on symbolic
inputs are updated to symbolic expressions. The idea behind using symbolic values
instead of real values was to use the symbolic values to represent an infinite set of real
values. Thus, the results of executing the program on one set of symbolic values would
yield the same result if it were executed with an infinite number of real values [1]. When
a conditional statement is evaluated the execution path condition is also updated. The
path condition acquires and maintains all symbolic logic required to reach the current
execution path. In order to fully cover all execution paths, when a conditional statement
is evaluated the path condition is updated for all possible outcomes. This produces
multiple execution paths resulting in branches in the symbolic execution tree. For
example, if the current path condition was pc before a branch condition, and the
conditional expression is q then (pc & ¢) will be the path condition for the true branch,
and (pc & /q) will be the path condition for the false branch. When the execution
terminates, the path condition is solved via a constraint solver (also referred to as a
decision procedure) and the solution forms the test case. This allows for the substitution
of real data into the program variables to follow the same execution path and terminate.

An example of a symbolic execution tree, and the code used to construct the tree is

displayed in Figure 1 [7]. Another valuable feature of symbolic execution is that it is able
to find run-time errors while it is traversing the symbolic execution tree. The major issue
with traditional symbolic execution is how to deal with the exponential number of paths
in the symbolic execution tree caused by loops and complex path conditions. This

continues to be a problem for current implementations.

1: intxvy;
2: if(x>y){
3: x+=y;
4: y=x-y;
5: x-=vy; pc=X<=Y pc=X>Y
6: if(x—y>0){ 3
7: assert(false); x:)(+‘|"v=‘|"
8: } PeEXY
9: } l 4
X=X+Y,y=X
pc=X>Y
| s

§H=Y,y=)(Ex:\',y:x
§pc=(x>‘r]&&[v—x)<=u %pc:p{;y]&&[\l’_x])o
’ ' i pc = false (unsatisfiable)

Figure 1. Symbolic execution tree constructed from code snippet.

3. KLEE

Dynamic test generation improves traditional symbolic execution by performing a
mixture of concrete and symbolic execution at run-time. The applications are essentially
executed without any changes to the source code. The statements that depend on
symbolic input are treated differently and their constraints are added to the path condition
[2]. KLEE was developed at Stanford in 2008 and is an extension of the dynamic test
generation tool EXE [3]. KLEE performs a combination of concrete and symbolic
execution on C applications to generate high line coverage test cases. KLEE works in
conjunction with the publically available LLVM compiler for GNU C. An application’s
source code is first compiled into bitcode using the LLVM compiler. KLEE then
performs symbolic execution on the LLVM bitcode. KLEE models memory with bit-
level accuracy and uses heuristics to reduce the number of execution paths that need to be
explored which results in higher line coverage. KLEE has two goals: (1) hit every line of
executable code in the program and (2) detect at each dangerous operation (e.g.,
dereference, assertion) if any input value exists that could cause an error [3]. When the
symbolic execution terminates, KLEE solves the current path condition using the STP
constraint solver to produce a test case that will follow the same execution path when re-
run on an unmodified version of the source code [3]. KLEE has proven to be a successful
tool for automated software testing. KLEE was able to find 56 serious bugs when applied
to several UNIX utility applications, some of which had been undetected for over 15
years [3]. Since KLEE is open source there is no cost involved in using the software tool
for automated testing. The KLEE community offers valuable resources, such as online

documentation, tutorials, mailing distributions, and many papers that use or extend KLEE

[4].

4. STELLARIS® PERIPHERAL DRIVER LIBRARY

The Stellaris Peripheral Driver Library consists of twenty-three software drivers for
controlling the peripherals on the Stellaris suite of ARM® Cortex-M based
microcontrollers [5]. The driver library was developed by Texas Instruments and is
written in the C programming language. Texas Instruments allows for royalty-free use of
the software library provided that their copyright notice is retained in the source code [6].
Each peripheral and its software driver is listed Table 1. These drivers are referred to as
the Software Driver Model of the Stellaris Peripheral Driver Library. Each model in the
Stellaris suite of microcontrollers has a part-specific header file that defines all of the
registers that are available for that microcontroller. By including this header file you can
read/write to the peripheral registers directly. This direct access of the peripheral’s
registers is referred to as the Direct Register Access Model. This model allows the
programmer to only access registers that are defined in the header file and eliminates the
possibility of accessing peripherals that do not exist. The Direct Register Access Model
should definitely be considered when memory or speed requirements are not being met.
This report focuses on the drivers which make up the Software Driver Model of the

Stellaris Peripheral Driver Library.

All of the functions defined in the CPU module contain inline assembly and are used
primarily as instruction wrappers for special CPU instructions needed by the drivers. The
driver library includes error handling to check for assertion violations of function
arguments. The error handling is typically used only during the development stage and is
removed once the product is released to allow for a smaller memory footprint and faster

processing [5].

Analog Comparator comp.c
Analog to Digital Converter (ADC) adc.c
Controller Area Network (CAN) can.c

CPU cpu.c
Ethernet Controller ethernet.c
External Peripheral Interface (EPI) epi.c

Flash flash.c
GPIO gpio.c
Hibernation Module hibernate.c
Inter-Integrated Circuit (12C) i2c.c
Inter-IC Sound (12S) i2s.c
Interrupt Controller (NVIC) interrupt.c
Memory Protection Unit (MPU) mpu.c
Pulse Width Modulator (PWM) pwm.c
Quadrature Encoder (QEl) gei.c
Synchronous Serial Interface (SSI) ssi.c
System Control sysctl.c
System Tick (SysTick) systick.c
Timer timer.c
UART uart.c
uDMA udma.c
USB usb.c
Watchdog Timer watchdog.c

Table 1. Stellaris suite peripherals and their software drivers.

There are several tool chains that are available to compile source code and load the
binaries into the flash memory of the Stellaris microcontrollers. I used the Keil ™
RealView® Microcontroller Development Kit (MDK) for development/testing on a
Windows platform. The tool chain was used to confirm the errors that were reported by
KLEE. The Stellaris EKK-LM3S8962 evaluation board was used to confirm the errors

[10].

S. IMPLEMENTATION

To get started, I installed KLEE on a 64-bit CentOS 6.5 Linux distribution. KLEE
performs symbolic execution on LLVM bitcode, so I installed the LLVM 2.9 compiler.
The latest release of LLVM at the time of this report was LLVM 3.4.1. KLEE only
provided experimental support for LLVM 3.4, but fully supported LLVM 2.9. KLEE also
uses the STP constraint solver for solving path conditions. I installed STP rev 940, which
is the tested and recommend version by the KLEE developers. The KLEE “Getting
Started” page provides step-by-step instructions on building and running KLEE [4]. The
latest release (10636) of the Stellaris Peripheral Driver Library was downloaded from the

Texas Instruments website [6].

The latest release of the Stellaris Peripheral Driver Library contains 632 functions. This
total includes both the static and deprecated functions as well. The functions that I am
interested in evaluating are those that have one or more input parameters. There are 78
functions that have no input parameters (void). Thus, in total 554 functions were
evaluated. One of the unique features of KLEE is that you can perform symbolic
execution with little, if any, modifications to the source code under test. Many of the
functions in the driver library use assertions to validate the input arguments. An example

of this is shown below.

1: //

2: // Check the arguments.

3: //

4: ASSERT (ulBase == I12S0 BASE);

These assertions were replaced with KLEE assertions.

4: klee assert(ulBase == I2S0 BASE);

As mentioned previously, static functions were evaluated as well, but in order to make
the functions available in the KLEE function under test .c file, more on this later, I had to
remove the static reference in the code. If the static keyword is not removed, then KLEE
will report the error “external call with symbolic argument”. There were two functions in
the library that I had to add a break statement into a while loop to prevent it from
spinning in an infinite loop. The EthernetPacketGet has a condition to wait for a packet
to become available and the SysCtIPIOSCCalibrate has a condition to wait for a
calibration to complete. The values from the registers that these conditions were waiting
on were not treated as symbolic. I also had to remove an assertion based on the alignment
of the RAM vector table in the IntRegister function. The RAM vector table alignment is

set based on the compiler.

After these minor changes were made to the code under test, I needed to compile the code

into LLVM bitcode with the command below

llvm-gcc -m32 --emit-1lvm -I/root/KLEE/klee/include -
I/root/StellarisWare -L /root/KLEE/klee/Release+Asserts/lib/ -c -g

XXXX.c

where XXXX.c is the peripheral driver source file. It is important to note that KLEE
executes on a Linux 64-bit platform but the Cortex M3 is a 32-bit processor, so the -m32
option is included to produce 32-bit bitcode [8]. By using 32-bit bitcode, variables of type
long and unsigned long are 32-bits instead of 64-bits.

In the previous section I mentioned that KLEE does not support inline assembly. All of
the functions in the CPU driver contain inline assembly. These are used to enable/disable
interrupts, wait for interrupts to occur, and to get/set the interrupt priority masking level.
The SysCtlDelay function in the System Controller driver also contains inline assembly

and 1s used to add a fixed number of delay loop iterations during execution. For these

functions that do not return a value (void), I replaced them with a function that is empty.
For the functions that have a return value (unsigned long), I replaced them with a
function that just returns 0. These changes were made to prevent KLEE from reporting
execution errors (test.exec.err) related to inline assembly. These changes did not induce

any side-effects or unexpected behavior on the few functions that called them.

At this point all of the source code under test should be compiled into bitcode object files
(.0). In order to test the functions I created an individual .c file for each function under
test which would have a main function that calls the function under test with its symbolic
arguments. KLEE performs symbolic execution on program variables that are made
symbolic. To make a program variable symbolic the program must call the

klee make symbolic function and pass in the variable’s address, size, and name. An

example of this call is listed below.

1: unsigned long ulBase;

2: klee make symbolic(&ulBase, sizeof(ulBase), "ulBase");

For each function evaluated, its parameters were treated as symbolic variables. The
exception to this case was parameters that were pointers to the address of interrupt
handlers. The pointers to the interrupt handlers were treated as concrete variables in these

cascs.

The Cortex M3 processor communicates with the peripherals through memory-mapped
I/O [8]. The registers for each peripheral can be accessed and modified through load/store
commands to memory addresses assigned to that peripheral device. These memory
addresses needed to be made available to KLEE during execution. In order to allocate
specific blocks of memory, the program needs to call the klee define fixed object
function with the starting memory location and the number of bytes to allocate. An

example of this call is listed below.

1: klee define fixed object((void *) (0x40054000), 4096);

10

In the example above a block of 4KB are allocated starting at memory location
0x40054000, which is the base address for the 12S peripheral. The hw _mem map header
file provided the definitions for the base addresses of the memories and peripherals.
Some peripherals reference other peripherals in their source code. These peripherals must
allocate space for the referenced peripherals as well. For example, the usb driver includes
the udma driver in its source, so 4KB are allocated at memory location 0x400FF000,

which is the base address for the uDMA peripheral.

For functions that had assertions, I called the klee assume function with the assertion
argument so that the symbolic values generated by KLEE would pass the assertion. In my
evaluation I did not generate test cases that would knowingly/intentionally result in
assertion violations. This way any assertion violations that were reported by KLEE would

be true assertion violations that need addressing.

For functions that have parameters which are pointers to other variables, I created a
symbolic array of varying size and passed the name of the array to the function call for
that pointer. The size of the array was determined by inspecting the code under test to see

how much space needed to be allocated for the data structure.

The only thing left to add to the function under test file was the call to the function. The

function under test code for the [I2SRxDataGet function is listed below.

: #include "inc/hw _i2s.h"

: #include "inc/hw_ints.h"

: #include "inc/hw _memmap.h"

: #include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/i2s.h"
#include "driverlib/interrupt.h"
#include <klee/klee.h>

O J oy U b WD

10: void handler(void) {}

11:

12: int main() {

13: unsigned long ulBase;

14: klee make symbolic(&ulBase, sizeof(ulBase), "ulBase");
15: unsigned long pulData[l];

16: klee make symbolic(&pulData, sizeof(pulData), "pulData");

11

17:

18: klee define fixed object((void *) (0x40054000), 4096); //I2S

19: klee define fixed object((void *) (0x00000000), 262144); //FLASH
20: klee define fixed object((void *) (0x20000000), 65536); //SRAM
21: klee define fixed object((void *) (0xE0000000), 266240); //NVIC
22

23: klee assume (ulBase == I2S0 BASE);

24

25: I2SRxDataGet (ulBase, pulData);

26: return O;

27: '}

I2SRxDataGet .c, function under test file for I2SRxDataGet.

The function under test file is now ready to be compiled into LLVM bitcode for KLEE to

test.

llvm-gcc -m32 --emit-1lvm -I/root/KLEE/klee/include -
I/root/StellarisWare -L /root/KLEE/klee/Release+Asserts/1lib/ -c -g
XXXX.c

where XXXX is the name of the function under test.

After the object file has been created it needs to be linked with other object files to create

the final bitcode used by KLEE during execution.

llvm-link /root/StellarisWare/driverlib/YYYY.o
/root/StellarisWare/driverlib/interrupt.o

/root/StellarisWare/driverlib/cpu.o XXXX.0 -0 XXXX.bc

where XXXX is the name of the function under test, and YYY'Y is the peripheral driver
the function under test is defined in. All of the drivers reference functions defined in the
interrupt, and cpu drivers, so those object files must be linked in to the bitcode file. The
hibernate and usb drivers reference functions in the sysctl driver, so the sysctl object file
is linked into the functions under test for those drivers. The usb driver also references
functions in the udma driver, so the udma object file is linked in to functions under test

for the usb driver as well.

12

After the bitcode object files have been linked, the resulting bitcode is executed by KLEE

with the following command.

klee --emit-all-errors --max-time=3600 --watchdog XXXX.bc

where XXXX is the name of the function under test. Each function is ran for at most one
hour. I used the default search heuristic when running KLEE, which is the random-path
selection interleaved with non-uniform random search (nurs) with coverage-new
heuristic.

I wrote a Java application that would automate this entire process and execute KLEE for
all 554 functions. As the KLEE program executed, it generated the test cases for all
execution paths that were evaluated within the one hour time limit. The error messages
generated are written to KLEE Errors.txt and the total test cases generated are written to
KLEE TestCases.txt. The Java application is included in Appendix A. The “includes”
being referenced contain the same header files that are in the peripheral driver. The
“files” being referenced contain the function definition with all of the assertions

following it for that function. Below is a snippet of the adc file for two of the functions.

1: ADCIntRegister (unsigned long ulBase, unsigned long ulSequenceNum,
void (*pfnHandler) (void))

2: klee assume((ulBase == ADCO BASE) | (ulBase == ADCl BASE));

3: klee assume(ulSequenceNum < 4);

4:

5: ADCIntUnregister(unsigned long ulBase, unsigned long ulSequenceNum)
6: klee assume((ulBase == ADCO BASE) | (ulBase == ADCl BASE));

7: klee assume(ulSequenceNum < 4);

13

6. EVALUATION RESULTS

There are twenty-three software modules in the Stellaris Peripheral Driver Library.
Twenty-two of the twenty-three software modules were evaluated. All of the functions in
the CPU module contained inline assembly, so the CPU module was not evaluated. The
total number of test cases generated for each function is listed in Appendix B. The
appendix includes all functions within the drivers that were evaluated. There are some
functions that have a value set to “void”. These functions are functions that have no input

parameters (void), and thus were not evaluated.

6.1 Function with Two Execution Paths

The source code of the functions varied in complexity and input parameters, so there is a
wide range of test cases that were reported for each function. For example, the CAN
driver has a function CANBaseValid which validates if the base address argument is a
valid CAN controller base address. The code for this function is shown below. As you
can see, there are only two paths through this function. One path where the base address
is equal to one of the three valid CAN controller base addresses (CANO BASE,

CANI1 _BASE, or CAN2 BASE). The other path is where the base address is not equal to
one of the three valid CAN controller base addresses. The test cases that KLEE produced
were ulBase equal to 0x40040000 (CANO_BASE) and ulBase equal to 0x00000000. The

first test case would return true and the second would return false.

1: tBoolean

2: CANBaseValid(unsigned long ulBase)

3: {

4: return((ulBase == CANO BASE) || (ulBase == CANl BASE) ||
5: (ulBase == CAN2 BASE));

6:

14

6.2 Function with an Assertion

Another simple but interesting example is described in the CANDisable function. This
code does not have any complex logic, and appears to only have a single path so you
would think that only one test case would be generated. However, there is an assertion
that the CAN controller base address is valid. The test cases that KLEE produced were
ulBase equal to 0x40040000 (CANO BASE), ulBase equal to 0x40041000
(CANI1_BASE), and ulBase equal to 0x40042000 (CAN2_BASE). Most of the drivers in
the library have similar functions which validate the base address of the peripheral and

other functions that call the validating function to check the inputs to the function.

1: void

2: CANDisable(unsigned long ulBase)

3: {

4: //

5: // Check the arguments.

6: //

7 klee assert (CANBaseValid(ulBase)) ;

8:

9: //

10: // Set the init bit in the control register.
11: //

12: CANRegWrite (ulBase + CAN O CTL,

13: CANRegRead (ulBase + CAN O CTL) | CAN CTL INIT);
14: }

6.3 Bugs Found in the Driver Library

The automatic test case generation that KLEE performs is a valuable asset for software
engineers. Another amazing feature that KLEE provides is the ability to find bugs. As
KLEE performs symbolic execution to generate test cases, it also checks for bugs in the

software. Some of which are assertion violations, memory access violations, and

15

arithmetic errors. The bugs found during analysis of the Stellaris Peripheral Driver
Library are listed in Table 2. Each of the errors is described below and a solution is
provided to resolve the error for most of the reported errors. The memory errors and
divide-by-zero errors were confirmed on the Stellaris EKK-LM3S8962 board by calling
the functions with the test case inputs that were generated to produce the error.

For the divide-by-zero errors, in order for the fault to be observed by the Cortex M3
processor, the DIV_0 TRP bit in the Configuration and Control Register (CCR) must be
enabled (set to 1) [9]. If it is not set, then the Usage Fault will not be thrown and the
Interrupt Default Handler (IntDefaultHandler) will not be called. In this case the quotient
is set to 0 and execution resumes as if the operation was valid. The IntDefaultHandler is
just an infinite while loop which maintains the system state for debugging purposes. The
function call SSIConfigSetExpClk(0x40008000,0xFFFFFFFF,0,0,0,0) and
SysCtlI2SMClkSet(0xFFFFFFFF, 0x40000000) will result in the divide-by-zero error
when re-ran on the EK-LM3S8962. The optimizations for the compiler need to be

disabled in order for the SDIV and UDIV instructions to be produced.

The memory errors reported for the functions SysCtlPeripheralDeepSleepDisable,
SysCtlPeripheralDeepSleepEnable, SysCtlPeripheralDisable, SysCtlPeripheralEnable,
SysCtlPeripheralReset, SysCtlPeripheralSleepDisable, SysCtlPeripheralSleepEnable are
all related. The SysCtlPeripheralDeepSleepDisable function is listed below. This function
has an assertion to check that the peripheral identifier is valid. For peripheral identifiers
whose peripheral index is not 15 (false condition at line 13), the statement at line 26 is

executed. The peripheral identifier (ulPeripheral) is passed to the macro

16

Function

Error

CANDataRegRead can.c:264: ASSERTION FAIL: ullntNumber != (unsigned long)-1
CANDataRegWrite can.c:402: memory error: out of bound pointer
CANMessageSet KLEE failure

CANRegRead can.c:284: memory error: out of bound pointer
CANRegWrite KLEE failure

EthernetPacketGetinternal KLEE failure

EthernetPHYPowerOff ethernet.c:1305: ASSERTION FAIL: ulBase == ETH_BASE
EthernetPHYPowerOn ethernet.c:1305: ASSERTION FAIL: ulBase == ETH_BASE
FlashProtectGet KLEE failure

IntRegister IntRegister.c:36: invalid klee_assume call (provably false)

MPURegionSet

MPURegionSet.c:25: overshift error

PWMGenFaultClear

PWMGenFaultClear.c:50: invalid klee_assume call (provably
false)

PWMGenFaultTriggerSet

PWMGenFaultTriggerSet.c:50: invalid klee_assume call
(provably false)

SSIConfigSetExpClk

SSIConfigSetExpClk.c:39: divide by zero

SysCtlI2SMClkSet

sysctl.c:3106: divide by zero

SysCtlPeripheralDeepSleepDisable

sysctl.c:1312: memory error: out of bound pointer

SysCtlPeripheralDeepSleepEnable

sysctl.c:1233: memory error: out of bound pointer

SysCtlPeripheralDisable

sysctl.c:1005: memory error: out of bound pointer

SysCtlPeripheralEnable

sysctl.c:937: memory error: out of bound pointer

SysCtlPeripheralReset

sysctl.c:849: memory error: out of bound pointer

SysCtIPeripheralSleepDisable

sysctl.c:1156: memory error: out of bound pointer

SysCtlPeripheralSleepEnable

sysctl.c:1080: memory error: out of bound pointer

UARTConfigGetExpClk

KLEE failure

uDMAIntUnregister

interrupt.c:559: ASSERTION FAIL: ullnterrupt <
NUM_INTERRUPTS

USBEndpointDMADisable

KLEE failure

USBEndpointDMAEnable

KLEE failure

USBFIFOConfigGet

usb.c:188: ASSERTION FAIL: (ulEndpoint ==0) | | (ulEndpoint ==
1) || (ulEndpoint == 2) | | (ulEndpoint == 3)

USBFIFOConfigSet

usb.c:124: ASSERTION FAIL: (ulEndpoint == 0) | | (ulEndpoint ==
1) || (ulEndpoint ==2) || (ulEndpoint == 3)

USBIndexRead KLEE failure
USBIndexWrite KLEE failure
USBPHYPowerOff KLEE failure
USBPHYPowerOn KLEE failure

Table 2. KLEE reported errors found during analysis of the Stellaris Peripheral Driver

Library.
17

SYSCTL PERIPH INDEX. This macro does a right shift on the least 28 bits of the
peripheral identifier to get the 4 most significant bits. This value can range from 0 to 15
(0xF). The value returned by the macro is then used as an index into the

g pulDCGCRegs array, but the array only has a size of 3. If a value of 3 to 15 is returned

then a memory violation will occur.

1: void

2: SysCtlPeripheralDeepSleepDisable (unsigned long ulPeripheral)
3: {

4: //

5: // Check the arguments.

6: //

7 klee assert(SysCtlPeripheralValid(ulPeripheral)) ;

8:

9: //

10: // See if the peripheral index is 15, indicating a peripheral
that is

11: // accessed via the SYSCTL DCGCperiph registers.

12: //

13: if((ulPeripheral & 0xf0000000) == 0x£f0000000)

14: {

15: //

16: // Disable this peripheral in deep-sleep mode.

17: //

18: HWREGBITW(SYSCTL_DCGCBASE + ((ulPeripheral & 0xff00) >> 8),
19: ulPeripheral & 0xff) = 0;

20: }

21: else

22 {

23: //

24: // Disable this peripheral in deep-sleep mode.

25: //

26: HWREG (g_pulDCGCRegs [SYSCTL PERIPH INDEX(ulPeripheral)]) &=
27: ~SYSCTL_ PERIPH MASK(ulPeripheral);

28: }

29: 1}

#define SYSCTL PERIPH INDEX(a) (((a) >> 28) & Oxf)

const unsigned long g pulDCGCRegs[] = { SYSCTL DCGCO, SYSCTL DCGCIL,
SYSCTL DCGC2 };

18

If the valid peripheral identifiers SYSCTL PERIPH PLL (0x30000010),
SYSCTL_PERIPH_TEMP (0x30000020), or SYSCTL PERIPH MPU (0x30000080)
are passed as an argument to SysCtlPeripheralDeepSleepDisable,
SysCtlPeripheralDeepSleepEnable, SysCtlPeripheralDisable, SysCtlPeripheralEnable,
SysCtlPeripheralReset, SysCtlPeripheralSleepDisable, or SysCtlPeripheralSleepEnable,
then a memory fault will occur. The processor will then call the fault handler (FaultISR),

which sits in an infinite loop.

CANRegRead has an indirect assertion on its input parameter ulRegAddress. The
problem with this assertion comes from masking off the 12 least significant bits of
ulRegAddress. The test case that was produced that would cause this memory violation
has the value of 0x40041FFD for ulRegAddress. This value will pass the assertion, but is
not a valid 32-bit aligned address and thus will cause a memory error when
HWREG(ulRegAddress) is called. An additional assertion should be added to ensure that

ulRegAddress is a multiple of 4: klee assume(!(ulRegAddress & 3));

1: ulIntNumber = CANIntNumberGet (ulRegAddress & O0xfffff000);
2:
3: klee assert(ulIntNumber != (unsigned long)-1);

CANRegWrite suffers from not having an assertion on the ulRegAddress parameter.
Since there is no assertion on the register address, KLEE will generate a memory address
that will cause the statement HWREG(ulRegAddress) to produce a memory error: out of
bound pointer.

For EthernetPHYPowerOff and EthernetPHYPowerOn, there does not exist an assertion

on ulBase, but these functions call EthernetPHY Write which has an assertion on ulBase.

19

Therefore it is possible for KLEE to generate a test case for EthernetPHYPowerOff/
EthernetPHYPowerOn that causes an assertion violation. To resolve this issue,

klee assert(ulBase == ETH BASE) should be added to the start of these functions. All of
the other functions in the ethernet driver have this assertion, so I am not sure why it was

not included for these two functions.

For EthernetPacketGetInternal, there are no assertions on the input parameters. In this
case KLEE failed while trying to generate test cases. To resolve this issue, assertions
should be added on the input parameters. It’s possible that the developers did not include
the assertions since this is a static/internal function, but the other get functions,
EthernetPacketGet and EthernetPacketGetNonBlocking, have the same assertions on the
inputs (klee assume(ulBase == ETH_BASE); klee assume(pucBuf != 0);

klee assume(IBufLen > 0);) If these assertions are added, then KLEE is able to create test

cases for this function.

PWMGenFaultClear and PWMGenFaultTriggerSet both have the same assertion
statements which are contradictory. It is not possible for the ulGroup to be equal to
PWM_FAULT GROUP 0 and PWM_FAULT GROUP_1 at the same time. This

contradiction is made at line 2 and line 5.

1: klee assert((ulGroup == PWM FAULT GROUP 0) || (ulGroup ==
PWM_FAULT GROUP 1)) ;

2: klee assert((ulGroup == PWM FAULT GROUP _0) &&

3: ((ulFaultTriggers & ~(PWM_FAULT_FAULTO | PWM_FAULT_FAULTI |
4: PWM FAULT FAULTZ |
PWMﬁFAULTiFAULTﬁ)) == 0));

5: klee assert((ulGroup == PWM FAULT GROUP 1) &&

6: ((ulFaultTriggers & ~(PWM FAULT DCMPO | PWM FAULT DCMP1 |
7: PWM_FAULT DCMP2 |

PWM_FAULT DCMP3 |

20

8: PWM_FAULT DCMP4 |
PWM_FAULT DCMP5 |

9: PWM FAULT DCMP6 |

PWM_FAULT DCMP7)) == 0));

For USBFIFOConfigGet and USBFIFOConfigSet, there is an assertion on the ulEndpoint
parameter which allows it to have a value in the range USB_EP 1 (x10) to USB _EP 15
(xF0). This value is shifted four bits to the right and passed in to a call to USBIndexRead
for the ulEndpoint argument. Once shifted the range of values is 1 to 15. USBIndexRead
has an assertion that the value of ulEndpoint be 0 to 3. Therefore an assertion violation
can occur if USBFIFOConfigGet or USBFIFOConfigSet is called with ulEndpoint set to
USB EP 4to USB EP 15.

For USBPHYPowerOff and USBPHYPowerOn, there is not assertion on the ulBase input
parameter. This can result in a memory violation when the memory address at ulBase is
read for an address that is not available: HWREGB(ulBase + USB_O _POWER). To
resolve this issue, an assertion should be placed on ulBase, klee assert(ulBase ==

USBO BASE). All of the other functions in the library include this assertion, so I am not
sure why the developers left this out. These functions are not static/internal functions.
Not only is the ulBase assertion missing from USBEndpointDMADisable and

USBEndpointDMAEnable, but so is the assertion on ulEndpoint.

For USBIndexRead and USBIndexWrite there is a similar issue, but the assertion needs
to be added for the ullndexedReg parameter. A call is made to HWREGB(ulBase +

ullndexedReg) which could result in a memory access violation.

21

For uDMAIntUnregister there is no assertion on ullntChannel. This function calls
IntUnregister, which has an assertion on ullnterrupt. To overcome this error, the same
assertion called in IntUnregister should be called in uDMAIntUnregister:

klee assume(ullntChannel < NUM INTERRUPTS);

6.4 Future Research

KLEE is known for generating high-coverage test cases [3]. The code coverage is
typically measured by compiling the source code under test with gcov and rerunning the
test cases natively (independent of KLEE). The Keil tool chain that I used for
compiling/loading the EK-LM3S8962 evaluation board required additional hardware
(ULINK Pro) in order to measure code coverage. Future research might include using a
different tool chain, perhaps the Mentor Graphics Sourcery CodeBench for Stellaris

EABI for a Linux platform.

The bugs I found were passed on to the Texas Instruments StellarisWare developers. |
have not heard a response yet. According to TI’s website, there will no longer be releases
of StellarisWare unless there are major issues [11]. I feel like some of the bugs I found
could be major issues, but I will let the developers decide if they want to release the fixes.
TI is pushing the use of the Tiva family of microcontrollers and their TivaWare software.
A future project could be obtaining a Tiva evaluation board and applying KLEE to

TivaWare to generate test cases and find bugs.

22

7. CONCLUSION

Symbolic execution is a programming analysis technique that has been around since the
1970s. Tools based on symbolic execution have been created to automate the testing of
software which improves the quality of software. These tools allow software engineers to
run exhaustive tests on their software to provide verification and validation. KLEE is an
open-source dynamic test generation tool based on symbolic execution that is fairly
straightforward to use. KLEE is an ideal test generation tool because it performs
symbolic execution on C code that runs on Linux distributions. KLEE can help reduce
the time spent checking software by exhaustively generating test cases automatically.
KLEE can also help to eliminate maintenance costs by uncovering bugs within our
software. The benefits of using KLEE for automated software testing will be observed
immediately. For my evaluation, I was able to generate over 14000 test cases on over 550
functions within the Stellaris Peripheral Driver Library. I was able to find 32 bugs in the
library as well. KLEE should definitely be put to use by low-level embedded systems

engineers to support their testing efforts.

23

Appendix A

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;

import java.io.IOException;

import java.io.PrintStream;

import java.nio.file.Files;

import org.apache.commons.io.FileUtils;
import org.apache.commons.io.FilenameUtils;
import org.apache.commons.io.IOUtils;

public class makeKLEEinputs {

public static void main(String[] args) {
File dir = new File("/root/workspace/makeKLEEinputs/files");
File outputFile = new
File("/root/workspace/makeKLEEinputs/KLEE_Errors.txt");
File[] directoryListing = dir.listFiles();
String pathToDriverLibrary = "/root/StellarisWare/driverlib/";

try {
PrintStream out = new PrintStream(new

FileOutputStream("/root/workspace/makeKLEEinputs/KLEE_TestCases.txt"));
System.setOut(out);
} catch (FileNotFoundException el) {
el.printStackTrace();

}

//Process each driver in the Stellaris Peripheral Driver Library
(except CPU)

for(File file : directoryListing)

{

try {
FileReader fileReader = new FileReader(file);

String basename =
FilenameUtils.getBaseName(file.getName()).toLowerCase();
File directory = new File("functions/" + basename);
if (!directory.exists()) {
directory.mkdir();

}

BufferedReader bufferedReader = new
BufferedReader(fileReader);

String line;

while((line = bufferedReader.readlLine()) != null)

{

24

boolean hasPtrParameter = false;
int index = line.indexOf('(');
String functionName = line.substring(o,

index);

String path = "functions/" + basename + "/" +
functionName;

String pathAndFunctionName = path + "/" +
functionName;

directory = new File(path);
if (!directory.exists()) {
directory.mkdir();

}

String[] params =
line.substring(index+1).split(",");

File functionFile = new
File(pathAndFunctionName + ".c");

Files.copy(new File("includes/" + basename +
".c").toPath(), functionFile.toPath());

StringBuilder mainFunction = new
StringBuilder();
mainFunction.append("\r\nint main() {\r\n");

for(int i = @9; i < params.length; i++)

{
if(i == params.length - 1)

{
params[i] =
params[i].substring(@®, params[i].length() - 1);

if(params[i].contains("(void)"))

{
}

else if(params[i].contains("*"))

{
}

else

{

params[i] = "handler";

hasPtrParameter = true;

mainFunction.append("\t");
mainFunction.append(params[i]);
mainFunction.append(";\r\n\t");

mainFunction.append("klee_make_symbolic(&");
String[] paramString =
params[i].split(" ");

25

String param =
paramString[paramString.length - 1];

mainFunction.append(param);

mainFunction.append(",
sizeof(");

mainFunction.append(param);

mainFunction.append("), \"");

mainFunction.append(param);

mainFunction.append("\");\r\n");

}

if(basename.equals("adc"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40038000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40039000), 4096);");
}

else if(basename.equals("can"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40040000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40041000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40042000), 4096);");
}

else if(basename.equals("comp"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*)(0x4003C000), 4096);");
}

else if(basename.equals("epi™))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400D0000), 4096);");
}

else if(basename.equals("ethernet"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40048000), 4096);");

26

}

else if(basename.equals("flash"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400FDO00), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (Ox400FE@G00), 4096);"); //sysctl (CLASS_IS_SANDSTORM)

}

else if(basename.equals("gpio"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40004000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40005000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40006000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40007000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40024000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40025000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40026000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40027000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4003D000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40058000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40059000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4005A000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4005B000), 4096);");

27

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4005C000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4005D000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4005E000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4005F000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40060000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40061000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40062000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40063000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40064000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (9x40065000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40066000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (Ox400FE@G00), 4096);"); //sysctl (CLASS_IS_SANDSTORM)

}

else if(basename.equals("hibernate"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x400FCO00), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0X400FE000), 4096);"); //sysctl

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x43FC6000), 65536);"); //sysctl
}

else if(basename.equals("i2c"))

{
28

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40020000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40020800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40021000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40021800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40022000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40022800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40023000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40023800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x400C0000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (9x400C0800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400C1000), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400C1800), 2048);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400FEQQQ), 4096);"); //sysctl (CLASS_IS_DUSTDEVIL)
}

else if(basename.equals("i2s"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40054000), 4096);");

}

else if(basename.equals("pwm"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40028000), 4096);");

29

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40029000), 4096);");

}

else if(basename.equals("qei"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4002C000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4002D000), 4096);");

}

else if(basename.equals("ssi"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40008000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40009000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4000A000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4000B000), 4096);");

}

else if(basename.equals("sysctl"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (Ox400FEQ0Q), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x43FC6000), 65536);");

}

else if(basename.equals("timer"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40030000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40031000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40032000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40033000), 4096);");

30

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40034000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40035000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40036000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40037000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4004C000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4004D000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4004E000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4004F000), 4096);");

}

else if(basename.equals("uart"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4000C000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x4000D000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x4000EQ00), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (Ox4000F000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40010000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40011000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40012000), 4096);");

31

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40013000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (Ox400FE@G00), 4096);"); //sysctl (CLASS_IS_SANDSTORM)

}

else if(basename.equals("udma"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400FF000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x400FEQ0Q), 4096);"); //sysctl (CLASS_IS_SANDSTORM)
}

else if(basename.equals("usb"))

{

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40050000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (Ox400FEQ0Q), 4096);"); //sysctl

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x43FC6000), 65536);"); //sysctl

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (Ox400FF0Q0Q), 4096);"); //udma

}

else if(basename.equals("watchdog"))

{

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0x40000000), 4096);");

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x40001000), 4096);");

}

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x00000000), 262144);"); //256KB FLASH

mainFunction.append("\r\n\tklee_define_fixed_object((void
*) (0x20000000), 65536);"); //64KB SRAM

mainFunction.append("\r\n\tklee_define_fixed object((void
*) (0xXEQ000000), 266240);"); //NVIC

32

mainFunction.append("\r\n\r\n");

while(true)

{
line = bufferedReader.readlLine();
if(line == null || line.equals(""))
{

}

mainFunction.append("\t");
mainFunction.append(line);
mainFunction.append("\r\n");

break;

}

mainFunction.append("\r\n\t");
mainFunction.append(functionName);
mainFunction.append("(");

for(int i = @; i < params.length; i++)
{
String[] paramString =
params[i].split(" ");
String param =
paramString[paramString.length - 1];
mainFunction.append(param);
if(i != params.length - 1)
{

}

mainFunction.append(", ");

}

mainFunction.append(");\r\n\treturn
@;\r\n}");

if(hasPtrParameter)

{

mainFunction = new StringBuilder();
mainFunction.delete(0,
mainFunction.length());

mainFunction.append(FileUtils.readFileToString(new
File("functionsWithPointerParameters/" + functionName + ".c")));

FileUtils.writeStringToFile(functionFile, mainFunction.toString(),
false);
}

else

{

33

FileUtils.writeStringToFile(functionFile, mainFunction.toString(),
true);

}

System.out.print(functionName + " ");
StringBuilder cmd = new StringBuilder();

cmd.append("1lvm-gcc -m32 --emit-1lvm -
I/root/Desktop/KLEE/klee/include -I/root/StellarisWare -L
/root/Desktop/KLEE/klee/Release+Asserts/1lib/ -c -g ");

cmd.append(functionFile.toPath());

cmd.append(" -0 ");

cmd. append (pathAndFunctionName);

cmd.append(".o0");

ProcessBuilder pb = new
ProcessBuilder("/bin/bash", "-c", cmd.toString());
Process process = pb.start();

try {
process.waitFor();

} catch (InterruptedException e) {
System.out.println("Error executing

llvm-gcc: + e.getMessage());

continue;

}

cmd = new StringBuilder();

cmd.append("1llvm-1link ");
cmd. append(pathToDriverLibrary);
cmd. append(basename);
cmd.append(".o ");
if(!basename.equals("interrupt"))
{
cmd. append(pathToDriverLibrary);
cmd.append("interrupt.o ");
}
if(basename.equals("hibernate") ||
basename.equals("usb"))

{
cmd.append(pathToDriverLibrary);
cmd.append("sysctl.o ");

}

if(!basename.equals("cpu"))

{
cmd.append(pathToDriverLibrary);
cmd.append("cpu.o ");

}

34

if(basename.equals("usb"))

{
cmd.append(pathToDriverLibrary);
cmd.append("udma.o ");

cmd. append(pathAndFunctionName);

cmd.append(".o -0 ");

cmd. append(pathAndFunctionName);

cmd.append(".bc");

pb = new ProcessBuilder("/bin/bash", "-c",
cmd.toString());

process = pb.start();

try {
process.waitFor();

} catch (InterruptedException e) {
System.out.println("Error executing
1llvm-1d: " + e.getMessage());
continue;

}

//Generate test cases for the function under
test for at most one hour
cmd = new StringBuilder();

cmd.append("klee --emit-all-errors --max-
time=3600 --watchdog ");

cmd . append(pathAndFunctionName);

cmd. append(".bc");

pb = new ProcessBuilder("/bin/bash", "-c",
cmd.toString());

process = pb.start();

try
{

process.waitFor();
String message = FileUtils.readFileToString(new
File(path + "/klee-last/messages.txt"));
if(!(message.equals("")))
{
FileUtils.writeStringToFile(outputFile, path
+ "\t" + message, true);

} catch (InterruptedException e) {
System.out.println("Error executing
klee: " + e.getMessage());
continue;
} catch (FileNotFoundException e) {

35

e.getMessage() + "\n", true);

to output file

| we -1");

cmd.toString());

System.out);

klee: " + e.getMessage());

}
}

FileUtils.writeStringToFile(outputFile,

}

//write total number of test cases generated
cmd = new StringBuilder();

cmd.append("ls " + path + "/klee-last/*.ktest
pb = new ProcessBuilder("/bin/bash", "-c",
pb.redirectErrorStream(true);

process = pb.start();
IoUtils.copy(process.getInputStream(),

try
{

process.waitFor();

} catch (InterruptedException e) {
System.out.println("Error executing

continue;

catch (IOException e)

{

e.printStackTrace();

}
}

System.out.println("Processing Complete!");

36

Appendix B

Functions

Number of Test Cases Generated

ADCComparatorConfigure

ADCComparatorintClear

ADCComparatorintDisable

ADCComparatorintEnable

ADCComparatorintStatus

ADCComparatorRegionSet

ADCComparatorReset

00 ININININININ

ADCHardwareOversampleConfigure

1

S

ADCIntClear

ADCIntDisable

ADCIntEnable

ADCIntRegister

ADClIntStatus

ADCIntUnregister

ADCPhaseDelayGet

ADCPhaseDelaySet

ADCProcessorTrigger

ADCReferenceGet

ADCReferenceSet

ADCResolutionGet

ADCResolutionSet

ADCSequenceConfigure

ADCSequenceDataGet

ADCSequenceDisable

ADCSequenceEnable

ADCSequenceOverflow

ADCSequenceOverflowClear

NININININININININININININDIN A ININININ

ADCSequenceStepConfigure

[EEN
[e)]

ADCSequenceUnderflow

ADCSequenceUnderflowClear

NN

ADCSoftwareOversampleConfigure

ADCSoftwareOversampleDataGet

22

ADCSoftwareOversampleStepConfigure

CANBaseValid

37

CANBitRateSet

128

CANBItTimingGet

CANBItTimingSet

CANDataRegRead

CANDataRegWrite

CANDisable

CANEnable

CANErrCntrGet

CANInit

CANIntClear

CANIntDisable

CANIntEnable

CANIntNumberGet

CANIntRegister

CANIntStatus

CANIntUnregister

CANMessageClear

CANMessageGet

CANMessageSet

CANRegRead

CANRegWrite

CANRetryGet

CANRetrySet

D(WO DOV WIWIN|WIPRWWIOO|WWIWIWIWIN WIW

CANStatusGet

[EEN
w

ComparatorConfigure

ComparatorintClear

ComparatorintDisable

ComparatorintEnable

ComparatorintRegister

ComparatorintStatus

ComparatorintUnregister

ComparatorRefSet

ComparatorValueGet

EPIAddressMapSet

EPIConfigGPModeSet

EPIConfigHB16Set

EPIConfigHB8Set

EPIConfigSDRAMSet

[N I N [O I NG [N RN O (== I NG (Y (YN SO [SN ey

38

EPIDividerSet

EPIFIFOConfig

EPIlIntDisable

EPlIntEnable

EPlIntErrorClear

EPlIntErrorStatus

EPlIntRegister

EPlIntStatus

EPlIntUnregister

EPIModeSet

EPINonBlockingReadAvail

EPINonBlockingReadConfigure

EPINonBlockingReadCount

EPINonBlockingReadGet16

EPINonBlockingReadGet32

EPINonBlockingReadGet8

EPINonBlockingReadStart

EPINonBlockingReadStop

EPIWriteFIFOCountGet

EthernetConfigGet

EthernetConfigSet

EthernetDisable

EthernetEnable

EthernetInitExpClk

EthernetIntClear

EthernetintDisable

EthernetIintEnable

EthernetIintRegister

EthernetIntStatus

EthernetintUnregister

EthernetMACAddrGet

EthernetMACAddrSet

EthernetPacketAvail

EthernetPacketGet

EthernetPacketGetInternal

EthernetPacketGetNonBlocking

RlOoOlR|RPRIRPRRPRIRINIR|IR[R|IRP|IRPRIRPRIRPR|IR[RPRIR[R[R|IRPR|IRPR|IRPR|RPR|IRPRIRPR[RPRIRLRINR[R|R|R|R|R|R

EthernetPacketPut

2047

EthernetPacketPutinternal

39

EthernetPacketPutNonBlocking 2047
EthernetPHYAddrSet 1
EthernetPHYPowerOff 2
EthernetPHYPowerOn 2
EthernetPHYRead 1
EthernetPHYWrite 1
EthernetSpaceAvail 1
FlashErase 1
FlashintClear 1
FlashintDisable 1
FlashintEnable 1
FlashintRegister 1
FlashIntStatus 2
FlashintUnregister void
FlashProgram 2
FlashProtectGet 0
FlashProtectSave void
FlashProtectSet 3
FlashUsecGet void
FlashUsecSet 1
FlashUserGet 1
FlashUserSave void
FlashUserSet 1
GPIOADCTriggerDisable 24
GPIOADCTriggerEnable 24
GPIOBaseValid 2
GPIODirModeGet 24
GPIODirModeSet 72
GPIODMATriggerDisable 24
GPIODMATriggerEnable 24
GPIOGetIntNumber 16
GPIOIntTypeGet 24
GPIOIntTypeSet 120
GPIOPadConfigGet 24
GPIOPadConfigSet 480
GPIOPinConfigure 15
GPIOPinIntClear 24
GPIOPinIntDisable 24

40

GPIOPinIntEnable 24
GPIOPinIntStatus 48
GPIOPinRead 24
GPIOPinTypeADC 24
GPIOPinTypeCAN 24
GPIOPinTypeComparator 24
GPIOPinTypeEPI 24
GPIOPinTypeEthernetLED 24
GPIOPinTypeEthernetMll 24
GPIOPinTypeFan 24
GPIOPinTypeGPIOInput 24
GPIOPinTypeGPIOOutput 24
GPIOPinTypeGPIOOutputOD 24
GPIOPinTypel2C 24
GPIOPinTypel2CSCL 24
GPIOPinTypel2S 24
GPIOPinTypeLPC 24
GPIOPinTypePECIRX 24
GPIOPinTypePECITx 24
GPIOPinTypePWM 24
GPIOPinTypeQEl 24
GPIOPinTypeSSlI 24
GPIOPinTypeTimer 24
GPIOPinTypeUART 24
GPIOPinTypeUSBAnNalog 24
GPIOPinTypeUSBDigital 24
GPIOPinWrite 24
GPIOPortIntRegister 15
GPIOPortIntUnregister 15
HibernateBatCheckDone void
HibernateBatCheckStart void
HibernateClockConfig 1
HibernateClockSelect 1
HibernateDataGet 65
HibernateDataSet 65
HibernateDisable void
HibernateEnableExpClk 1
HibernateGPIORetentionDisable void

41

HibernateGPIORetentionEnable void
HibernateGPIORetentionGet void
HibernatelntClear 1
HibernatelntDisable 1
HibernatelntEnable 1
HibernatelntRegister 1
HibernatelntStatus 2
HibernatelntUnregister void
HibernatelsActive void
HibernateLowBatGet void
HibernateLowBatSet 1
HibernateRequest void
HibernateRTCDisable void
HibernateRTCEnable void
HibernateRTCGet void
HibernateRTCMatch0Get void
HibernateRTCMatchOSet 1
HibernateRTCMatch1Get void
HibernateRTCMatch1Set 1
HibernateRTCSet 1
HibernateRTCSSGet void
HibernateRTCSSMatchOGet void
HibernateRTCSSMatch0Set 1
HibernateRTCTrimGet void
HibernateRTCTrimSet 1
HibernateWakeGet void
HibernateWakeSet 1
I12CIntNumberGet 7
[2CIntRegister 6
I12CIntUnregister 6
I2CMasterBaseValid 2
I2CMasterBusBusy 6
I2CMasterBusy 6
I2CMasterControl 6
[2CMasterDataGet 6
[2CMasterDataPut 6
I2CMasterDisable 6
I2CMasterEnable 6

42

I2CMasterErr

I2CMasterlnitExpClk

12

I2CMasterIntClear

I2CMasterIntClearEx

I2CMasterintDisable

I2CMasterintDisableEx

I2CMasterintEnable

I2CMasterintEnableEx

[e)BNe) Ne) N Ne) i Ne) I)]

I2CMasterIntStatus

=
N

I2CMasterIntStatusEx

=
N

I2CMasterLineStateGet

[e)]

I2CMasterSlaveAddrSet

)]

I2CMasterTimeoutSet

[e)]

I12CSlaveACKOverride

[EEN
N

I12CSlaveACKValueSet

[E
N

I12CSlaveAddressSet

[E
N

I12CSlaveBaseValid

I2CSlaveDataGet

12CSlaveDataPut

I12CSlaveDisable

I12CSlaveEnable

I12CSlavelnit

I12CSlavelntClear

I12CSlavelntClearEx

I2CSlavelntDisable

I12CSlavelntDisableEx

I2CSlavelntEnable

I2CSlavelntEnableEx

DO DO DO OO |0 |[O [N

I2CSlavelntStatus

[EEN
N

I2CSlavelntStatusEx

[E
N

I2CSlaveStatus

12SIntClear

12SIntDisable

12SIntEnable

I12SIntRegister

12SIntStatus

I12SIntUnregister

I2SMasterClockSelect

R (R (N R[R (R~ |o

43

I2SRxConfigSet 3
I2SRxDataGet 1
I2SRxDataGetNonBlocking 1
I2SRxDisable 1
I2SRxEnable 1
I2SRxFIFOLevelGet 1
I2SRXFIFOLimitGet 1
I2SRXFIFOLimitSet 1
12STxConfigSet 2
I2STxDataPut 1
I12STxDataPutNonBlocking 1
I2STxDisable 1
I2STxEnable 1
I2STxFIFOLevelGet 1
I2STXFIFOLimitGet 1
I2STxFIFOLimitSet 1
I2STxRxConfigSet 3
I2STxRxDisable 1
I2STxRxEnable 1
IntDefaultHandler void
IntDisable 6
IntEnable 6
IntlsEnabled 6
IntMasterDisable void
IntMasterEnable void
IntPendClear 4
IntPendSet 5
IntPriorityGet 1
IntPriorityGroupingGet void
IntPriorityGroupingSet 1
IntPriorityMaskGet void
IntPriorityMaskSet 1
IntPrioritySet 1
IntRegister 1
IntUnregister 1
MPUDisable void
MPUEnable 1
MPUIntRegister 1

44

MPUIntUnregister

void

MPURegionCountGet

void

MPURegionDisable

MPURegionEnable

MPURegionGet

MPURegionSet

PWMDeadBandDisable

PWMDeadBandEnable

PWMFaultIntClear

PWMFaultIntClearExt

PWMPFaultIntGet

PWMFaultintRegister

PWMFaultintUnregister

PWMGenConfigure

PWMGenDisable

PWMGenEnable

PWMGenFaultClear

PWMGenFaultConfigure

PWMGenFaultStatus

PWMGenFaultTriggerGet

PWMGenFaultTriggerSet

PWMGenlintClear

PWMGenIntGet

PWMGenintRegister

PWMGenIntStatus

PWMGenIntTrigDisable

PWMGenIntTrigEnable

PWMGenIntUnregister

PWMGenPeriodGet

PWMGenPeriodSet

PWMGenValid

PWMIntDisable

PWMiIntEnable

PWMIntStatus

PWMOutputFault

PWMOutputFaultLevel

PWMOutputinvert

PWMOutputState

AR INININININICOININIR|ICIOINFRP|IPA|IEARINIPININ|IEAININININININININ|RLR(F|(F

45

PWMOutValid

PWMPulseWidthGet

PWMPulseWidthSet

PWMSyncTimeBase

PWMSyncUpdate

QElConfigure

QEIDirectionGet

QEIDisable

QEIEnable

QElErrorGet

QElIntClear

QElIntDisable

QElIntEnable

QElIntRegister

QElIntStatus

QElIntUnregister

QEIPositionGet

QEIPositionSet

QElIVelocityConfigure

QElVelocityDisable

QElVelocityEnable

QElVelocityGet

SSIBaseValid

SSIBusy

SSIClockSourceGet

SSIClockSourceSet

IR |IERININININININININDIEDININININDININININIDININ|AIAIN

SSIConfigSetExpClk

265

SSIDataGet

SSIDataGetNonBlocking

SSIDataPut

SSIDataPutNonBlocking

SSIDisable

SSIDMADisable

SSIDMAEnable

SSIEnable

SSlintClear

SSlintDisable

SSlintEnable

N N LR

46

SSlintNumberGet 5
SSlintRegister 4
SSlintStatus 8
SSlintUnregister 4
SysCtIADCSpeedGet void
SysCtIADCSpeedSet 1
SysCtIBrownOutConfigSet 1
SysCtIClkVerificationClear void
SysCtIClockGet void
SysCtIClockSet 5
SysCtiDeepSleep void
SysCtIDeepSleepClockSet 1
SysCtlDelay void
SysCtlFlashSizeGet void
SysCtIGPIOAHBDisable 1
SysCtIGPIOAHBEnNable 1
SysCtlI2SMClkSet 4
SysCtlintClear 1
SysCtlIntDisable 1
SysCtlintEnable 1
SysCtlintRegister 1
SysCtlintStatus 2
SysCtlintUnregister void
SysCtllOSCVerificationSet 2
SysCtILDOConfigSet 1
SysCtILDOGet void
SysCtILDOSet 1
SysCtIMOSCConfigSet 1
SysCtIMOSCVerificationSet 2
SysCtlPeripheralClockGating 2
SysCtlPeripheralDeepSleepDisable 3
SysCtlPeripheralDeepSleepEnable 3
SysCtlPeripheralDisable 3
SysCtlPeripheralEnable 3
SysCtIPeripheralMapToNew 37
SysCtlPeripheralPowerOff 37
SysCtIPeripheralPowerOn 37
SysCtlPeripheralPresent 3

47

SysCtlPeripheralReady 37
SysCtIPeripheralReset 3
SysCtlPeripheralSleepDisable 3
SysCtlPeripheralSleepEnable 3
SysCtIPeripheralValid 2
SysCtlIPinPresent 1
SysCtIPIOSCCalibrate 4
SysCtIPLLVerificationSet 2
SysCtIPWMClockGet void
SysCtIPWMClockSet 1
SysCtIReset void
SysCtIResetCauseClear 1
SysCtIResetCauseGet void
SysCtlSleep void
SysCtISRAMSizeGet void
SysCtlUSBPLLDisable void
SysCtIUSBPLLEnable void
SysTickDisable void
SysTickEnable void
SysTickIintDisable void
SysTickintEnable void
SysTickIntRegister 1
SysTickIntUnregister void
SysTickPeriodGet void
SysTickPeriodSet 1
SysTickValueGet void
TimerBaseValid 2
TimerConfigure 768
TimerControlEvent 12
TimerControlLevel 24
TimerControlStall 24
TimerControlTrigger 24
TimerControlWaitOnTrigger 72
TimerDisable 12
TimerEnable 12
TimerIntClear 12
TimerIntDisable 12
TimerlintEnable 12

48

TimerIintNumberGet 13
TimerIntRegister 36
TimerlntStatus 24
TimerintUnregister 36
TimerLoadGet 24
TimerLoadGet64 12
TimerLoadSet 36
TimerLoadSet64 12
TimerMatchGet 24
TimerMatchGet64 12
TimerMatchSet 36
TimerMatchSet64 12
TimerPrescaleGet 24
TimerPrescaleMatchGet 24
TimerPrescaleMatchSet 36
TimerPrescaleSet 36
TimerQuiesce 12
TimerRTCDisable 12
TimerRTCEnable 12
TimerSynchronize 1
TimerValueGet 24
TimerValueGet64 12
UART9BitAddrSend 8
UART9BIitAddrSet 8
UART9BitDisable 8
UART9BitEnable 8
UARTBaseValid 2
UARTBreakCtl 16
UARTBusy 8
UARTCharGet 8
UARTCharGetNonBlocking 8
UARTCharPut 8
UARTCharPutNonBlocking 8
UARTCharsAvail 8
UARTClockSourceGet 8
UARTClockSourceSet 8
UARTConfigGetExpClk 0
UARTConfigSetExpClk 8

49

UARTDisable

UARTDisableSIR

UARTDMADisable

UARTDMAEnable

UARTEnable

00 (0O (0O |00 |00

UARTEnableSIR

[E
[e)]

UARTFIFODisable

UARTFIFOEnable

UARTFIFOLevelGet

UARTFIFOLevelSet

UARTFlowControlGet

UARTFlowControlSet

UARTIntClear

UARTIntDisable

UARTIntEnable

UARTIntNumberGet

UARTIntRegister

00 (O (00 (00 |00 |00 (0O (0O (OO |00 | 0O

UARTIntStatus

[E
)]

UARTIntUnregister

UARTModemControlClear

UARTModemControlGet

UARTModemControlSet

UARTModemStatusGet

UARTParityModeGet

UARTParityModeSet

UARTRxErrorClear

UARTRxErrorGet

UARTSmartCardDisable

UARTSmartCardEnable

UARTSpaceAvail

UARTTxIntModeGet

UARTTxIntModeSet

uDMAChannelAssign

= |00 |00 |00 (0O |00 |00 |00 (0O (OO | | | [|00

uDMAChannelAttributeDisable

[EEN
[e)]

uDMAChannelAttributeEnable

uDMAChannelAttributeGet

=
i)}

uDMAChannelControlSet

uDMAChannelDisable

50

uDMAChannelEnable 1
uDMAChannellsEnabled 1
uDMAChannelModeGet 3
uDMAChannelRequest 1
uDMAChannelScatterGatherSet 2
uDMAChannelSelectDefault 1
uDMAChannelSelectSecondary 1
uDMAChannelSizeGet 2
uDMAChannelTransferSet 14
uDMAControlAlternateBaseGet void
uDMAControlBaseGet void
uDMAControlBaseSet 1
uDMADisable void
uDMAEnable void
uDMAErrorStatusClear void
uDMAErrorStatusGet void
uDMAIntClear 1
uDMAIntRegister 1
uDMAIntStatus void
uDMAIntUnregister 7
USBDevAddrGet 1
USBDevAddrSet 1
USBDevConnect 1
USBDevDisconnect 1
USBDevEndpointConfigGet 2
USBDevEndpointConfigSet 24
USBDevEndpointDataAck 3
USBDevEndpointStall 3
USBDevEndpointStallClear 3
USBDevEndpointStatusClear 9
USBDevMode 1
USBEndpointDataAvail 2
USBEndpointDataGet 2
USBEndpointDataPut 5169
USBEndpointDataSend 2
USBEndpointDataToggleClear 2
USBEndpointDMAChannel 1
USBEndpointDMADisable 0

51

USBEndpointDMAEnable

USBEndpointStatus

USBFIFOAddrGet

USBFIFOConfigGet

USBFIFOConfigSet

USBFIFOFlush

USBFrameNumberGet

USBHostAddrGet

USBHostAddrSet

N[(N|[R[w|d[d|R|R]|O

USBHostEndpointConfig

[Ve]
(o]

USBHostEndpointDataAck

USBHostEndpointDataToggle

USBHostEndpointStatusClear

USBHostHubAddrGet

USBHostHubAddrSet

USBHostMode

USBHostPwrConfig

USBHostPwrDisable

USBHostPwrEnable

USBHostPwrFaultDisable

USBHostPwrFaultEnable

USBHostRequestIN

USBHostRequestINClear

USBHostRequestStatus

USBHostReset

USBHostResume

USBHostSpeedGet

USBHostSuspend

USBIndexRead

USBIndexWrite

ololr|kr|N|IN[RIMINIR|R|[R|R[R|R|loId|N|o N

USBIntDisable

USBIntDisableControl

w
0 (N

USBIntDisableEndpoint

=

USBIntEnable

32

USBIntEnableControl

USBIntEnableEndpoint

USBIntRegister

USBIntStatus

=== |0

52

USBIntStatusControl

USBIntStatusEndpoint

USBIntUnregister

USBModeGet

USBNumEndpointsGet

USBOTGMode

USBOTGSessionRequest

USBPHYPowerOff

USBPHYPowerOn

WatchdogEnable

WatchdoglntClear

WatchdoglntEnable

WatchdoglntRegister

WatchdoglntStatus

WatchdoglntTypeSet

WatchdoglIntUnregister

WatchdoglLock

WatchdoglLockState

WatchdogReloadGet

WatchdogReloadSet

WatchdogResetDisable

WatchdogResetEnable

WatchdogRunning

WatchdogStallDisable

WatchdogStallEnable

WatchdogUnlock

WatchdogValueGet

N v NN NN NN N INIRIN RPN |INM[O|lo|NIRIR IR IR|R R

53

[a—y

References

. J. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385-394, 1976.

C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann, W.
Visser. Symbolic Execution for Software Testing in Practice — Preliminary
Assessment. In /CSE’2011, Honolulu, HI, USA, May 2011.

. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proceedings of the Sth
USENIX Symposium on Operating Systems Design and Implementation, Dec.
2008.

The KLEE Symbolic Virtual Machine, http://klee.llvm.org.

5. Stellaris® Peripheral Driver Library USER'S GUIDE, SW-DRL-UG-10636.pdf

10.
11.

StellarisWare® Driver Library Standalone Package, http://www.ti.com/tool/sw-
drl

S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for
Model Checking and Testing. In Proc. 9th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), Warsaw, Poland,
April 2003.

Cortex-M3 Processor, http://www.arm.com/products/processors/cortex-m/cortex-
m3.php

Cortex-M3 Devices Generic User Guide: 4.3.10. Configurable Fault Status
Register,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihcfefi.h
tml

LM3S8962 Ethernet+CAN Evaluation Kits, http://www.ti.com/tool/ek-Im3s8962

StellarisWare® Complete (all boards, all components),
http://www.ti.com/tool/sw-lm3s

54

http://klee.llvm.org/
http://www.ti.com/tool/sw-drl
http://www.ti.com/tool/sw-drl
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihcfefj.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Cihcfefj.html
http://www.ti.com/tool/ek-lm3s8962
http://www.ti.com/tool/sw-lm3s

