
©2017 – Ehsan Jafari
all rights reserved.



The Dissertation Committee for Ehsan Jafari
certifies that this is the approved version of the following dissertation:

Network Modeling and Design: A
Distributed Problem Solving Approach

Committee:

Stephen D. Boyles, Supervisor

Mark Hickman

Randy Machemehl

Christian Claudel

Avinash Unnikrishnan



Network Modeling and Design: A
Distributed Problem Solving Approach

by

Ehsan Jafari

DISSERTATION

Presented to the Faculty of the Graduate School of
The University of Texas at Austin

in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2017



Dedicated to Sayideh, Roza and Ava



Acknowledgments

I would like to express my deep appreciation and gratitude to my advisor, Dr. Stephen D. Boyles,
for the patient guidance, motivation, immense knowledge, and mentorship he provided to me, all the
way from when I started my PhD at The University of Texas at Austin, through to completion of this
degree. I am truly fortunate to have had the opportunity to work with him. I must also express my sincere
appreciation to Dr. Mark Hickman who introduced me to the field of transportation, and mentored me
through my masters degree at the University of Arizona. I am also honored to have him as a member of
my dissertation committee.

I would like to thank the rest ofmy thesis committee: Drs. RandyMachemehl, ChristianClaudel, and
AvinashUnnikrishnan for their insightful comments and encouragement, which incentedme towidenmy
research from various perspectives. I am also grateful for the support by theNational Science Foundation,
and the Data-Supported Transportation Planning and Operations University Transportation Center.

Getting through my dissertation required more than academic support, and I have many, many peo-
ple to thank for listening to and, at times, having to tolerate me over the past four years. A very special
gratitude goes out to all the current and former members of the SPARTA Lab — Tarun, Michael, Venk-
tesh, Sudesh, Rachel, John, Cesar, Dongxu, and Rahul. I learned a lot from all of you. I am also grateful
to the administrative assistants who make sure nobody misses a deadline — Lisa Macias and Velma Vela
have been particularly helpful to me in my time here.

My parents, brother and two sisters have been unwavering in their personal support. Thank you for
supporting me spiritually throughout writing this dissertation and my life in general.

Finally, I’d be remiss if I didn’t acknowledge the innumerable sacrifices made by my wife, Sayideh, in
shouldering far more than her fair share of the parenting and household burdens standing by me through
the good times and bad. This accomplishment would not have been possible without you. Thank you.

v



Abstract

Ehsan Jafari, Ph.D.
The University of Texas at Austin, 2017

Supervisor: Stephen D. Boyles

This dissertation is concerned with developing new solution algorithms for networkmodeling and design
problems using a distributed problem solving approach. Network modeling and design are fundamental
problems in the field of transportation science, and numerous transportation applications such as urban
travel demand forecasting, congestion pricing, defining optimal toll values, and scheduling traffic lights all
involve some form of network modeling or network design.

The first part of this dissertation focuses on developing a distributed scheme for the static traffic as-
signment problem, based on a spatial decomposition. The objective of the traffic assignment problem
is to estimate traffic flows on a network and the resulting congestion considering the mutual interactions
between travelers. A traffic assignmentmodel takes as input the network topology, link performance func-
tions, and a demand matrix indicating the traffic volume between each pair of origin-destination nodes.
There are efficient algorithms to solve the traffic assignment problem, but, as computational hardware
and algorithms advance, attention shifts tomore demanding applications of the traffic assignment problem
(bilevel programswhose solution often requires the solution ofmany traffic assignment problem instances
as subproblems, accounting for forecasting errors with Monte Carlo simulation of input parameters, and
broadening the geographic scope of models to the statewide or national levels.)

In Chapter 2, we propose a network contraction technique based on the theory of equilibrium sen-
sitivity analysis. In the proposed algorithm, we replace the routes between each origin-destination (OD)
pair with a single artificial link. These artificial links model the travel time between the origin and desti-
nation nodes of each OD pair as a function of network demands. The network contraction method can
be advantageous in network design applications where many equilibrium problems must be solved for
different design scenarios. The network contraction procedure can also be used to increase the accuracy
of subnetwork analysis. The accuracy and complexity of the proposed methodology are evaluated using
the network of Barcelona, Spain. Further, numerical experiments on the Austin, Texas regional network
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validate its performance for subnetwork analysis applications.
Using this network contraction technique, we then develop a decentralized (distributed) algorithm

for static traffic assignment in Chapter 3. In this scheme, which we term a decentralized approach to the
static traffic assignment problem (DSTAP), the complete network is divided into smaller networks, and
the algorithm alternates between equilibrating these networks as subproblems, and master iterations us-
ing a simplified version of the full network. The simplified network used for the master iterations is based
on linearizations to the equilibrium solution for each subnetwork obtained using sensitivity analysis tech-
niques. We prove that the DSTAP method converges to the equilibrium solution on the complete net-
work, and demonstrate computational savings of 35-70% on the Austin network. Natural applications
of this method are statewide or national assignment problems, or cities with rivers or other geographic
features where subnetworks can be easily defined.

The second part of this dissertation, found in Chapter 4, deals with network design problems. In
a network design problem, the goal is to optimize an objective function (minimize the travel time, pollu-
tion, maximize safety, social welfare, etc.) bymaking investment decisions subject to budget and feasibility
constraints. Network design is a bi-level problemwhere the leader chooses the design parameters, and trav-
elers, as followers, react to the leader’s decision by changing their route. These problems are hard to solve,
and distributed problem solving approach can be used to develop an efficient framework for scaling these
problems.

In the proposed distributed algorithm for network design problems, different planning agencies may
have different objective functions and priorities, while a regional agent (state or federal officials) allocates
the finding between the urban cities. In this model, the urban planning agencies do their own planning
and design independently while capturing the system-level effects of their local decisions and plans. The
regional agent has limited and indirect authorities over the subnetworks through budget allocation. In
addition to computational advantages for traditional bi-level network design problems, the proposed al-
gorithm can be used to model the linkage between different entities for multi-resolution applications. We
develop a solution algorithm based on a sensitivity-analysis heuristic, and test our algorithm on two case
studies: a hypothetical network composed of two copies of Sioux Falls network, and the Austin regional
network. We evaluate the correctness of the decentralized algorithm, and discuss the benefits of the algo-
rithm in modeling the global impacts of local decisions. Furthermore, the implementation of distributed
algorithm on Austin regional network demonstrates a computational saving of 22%.
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1
Introduction

1.1 Distributed Problem Solving: Introduction

Complex and large-scale systems are usually made of multiple sub-systems working and interacting with
each other to accomplish a global task. Such systems face the following basic challenge: how to imple-
ment and incorporate new demands, extensions and planning questions considering the limited amount
of resource, capability and nonlinear behavior of entities. Traditional approaches have a unitary view:
formulate the problem as a single problem and solve it using a single solver. Such approaches, however,
have some major limitations: need a large amount of computational resources, especially for large scale
problems; modeling the system may require knowledge and information from different fields; the system
components may be essentially distributed, and due to data transmission and conversion costs, a unitary
approach can be costly; extending the system may ask for substantial changes and modifications to the
current system structure and entities, etc.

Distributed problem solving recommends partitioning the problem into smaller problems, called sub-
problems (subtasks), and introducing multiple solvers, referred to as local solvers (agents), to deal with the
problem. In such a system, there is no central processor or central controller and tasks are divided between
the local solvers. The local solvers, working on the subproblems, have limited access to local informa-
tion, mainly from the assigned task, and none of them is equipped with global information or knowledge.
The subproblemsmust be cooperative in the sense that, due to lack of sufficient information, a mechanism
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should be implemented to share information between them. In addition, the local solvers should be loosely
coupled: the local solvers spendmost of their time on solving the assigned task rather than communicating
with other solvers [Davis and Smith, 1983].

Asmentioned byDavis and Smith [1983] and discussed further inOates et al. [1997], distributed prob-
lem solving is not the same as distributed processing. Distributed problem solving involves solving a single
problemby usingmultiple cooperative solvers with some degree of dependency. In distributed processing,
however, we are facingwithmultiple problemswhich are usually independent and canbe easily distributed
over different solvers.

To the best of our knowledge, the term was first proposed and investigated in the field of artificial
intelligence, called distributed artificial intelligence (DAI), and has found its way to applications such as
cooperative information gathering [Oates et al., 1997], distributed scheduling of meetings [Zivan et al.,
2014], channel-allocation problem in a wireless networks [Yeoh and Yokoo, 2012], and resource allocation
in a disaster evacuation plan [Lass et al., 2008]. The benefits, implementation and requirements of a dis-
trusted problem solver are discussed later, at the end of this chapter.

1.2 Problem Description

This dissertation is concerned with developing and applying distributed problem solving techniques for
transportationnetworkmodeling anddesignproblems. To this end, thework is partitioned into twoparts.

Part I - Distributed problem solving and network modeling

The first part of this dissertation focuses on developing and using distributed problem solving for trans-
portation network modeling. Formally, we consider traffic assignment problem on large-scale transporta-
tion networks comprised of a large number of links, nodes and zones. As a motivating example, consider
a statewide model, where smaller subnetworks and urban areas compose the statewide network, as a case
study. Such a network is geographically distributed which means data is decentralized, and also the mod-
eling process may not be synchronized across urban models.

Two major approaches have been proposed to solve traffic assignment on large-scale networks: exact
and heuristic modeling techniques. The former one tackles the problem by modeling all network compo-
nents in detail. This task requires network details and demand data from all subnetworks, urban areas in
case of statewide modeling. These pieces of information, after being converted to a consistent format, are
stitched together to set up the regional network. This approach has twomajor shortcomings. First, collect-
ing, transmitting and converting data on such a distributed and large-scale network can be costly. Second,
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performing the assignment task on the resultant model requires a tremendous amount of computational
power and time (traffic assignment on a simplified version of Texas statewide network takes three days).

Theheuristic approachesuse the ideas ofnetwork simplifications to answermodelingquestions. These
techniques simplify the subproblems or urban areas presented in the statewide model by removing links
and nodes which are believed to be of less importance. The simplification process is done either by cutting
out the minor links and nodes or representing them by a single link or node. As the name implies, this is
a heuristic and generally the solution may not match the solution of the exact model.

On the other hand, due to lack of a consistentmodel and global information, the subnetworks (urban
areas) develop their own model and evaluate the future plans by ignoring interdependency between sub-
networks. Local decision and modifications, however, may not be optimal from a global perspective. For
example, in a small scale, consider a plan to improve the signal timing plans in a small neighborhood as a
solution to traffic congestion. The improved designmay attract travelers from other parts of the network,
resulting in a network state different that the one forecasted.

Here we propose a distributed problem solving approach to address the shortcomings of the exact and
heuristic algorithms. In this scheme, which we term decentralized static traffic assignment (DSTAP), the
network is divided into smaller networks, and the algorithm alternates between equilibrating these net-
works as subproblems, andmaster iterations using a simplified version of the full network. The simplified
network used for the master iterations is based on linearizations to the equilibrium solution for each sub-
network obtained using sensitivity analysis techniques. We prove that the DSTAP method converges to
the equilibrium solution on the full network, and demonstrate computational savings of 35 − 70% on
the Austin regional network. Natural applications of this method are statewide or national assignment
problems, or cities with rivers or other geographic features where subnetworks can be easily defined.

Theproposeddistributedproblem solving approach for traffic assignment taskdoes not own the issues
of exact and heuristic approaches: the proposed model benefits from decentralizing and parallelizing the
assignment task over a large-scale network; also the decomposition, design and cooperation suggested by
the algorithm ensures convergence to the correct solution.

DSTAP benefits from parallel computing, which is a general technique for reducing the running time
of algorithms, by identifying problem components which can be solved independently, and brought to-
gether at a later point in time. Many algorithms forTAPnaturally lend themselves to parallelization [Chen
and Meyer, 1988, Karakitsiou et al., 2004]. For instance, the classic Frank-Wolfe algorithm can be paral-
lelized by origin or destinationwhen finding shortest paths andbuilding the all-or-nothing link flow vector
used in the search direction, and by link when determining the step size. The newway of parallelizing traf-
fic assignment proposed in this dissertation is by geographic region rather than by origin.
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Part II - Distributed problem solving and network design

In Part II, we focus on developing a distributed problem solver for transportation network design prob-
lems. The network design problem is concerned with making investment decisions to maximize a system
objective function subject to budget and feasibility constraints. Network design can be formulated as a
bi-level problem where the system manager selects the improvement plans, and users react by modifying
their trip characteristics such as destination, mode, and route.

In this study, we consider a regional network composed of several subnetworks. The agents managing
the subnetworks do their own network planning and design independently without taking into account
that their local plans and investments may have broader impact than their subnetwork jurisdiction. This
happens mainly because the internal concerns are their first priority. The agent managing the regional
network (state or federal officials) is responsible for allocating funding to subnetworks andhave limited and
indirect authorities over the subnetworks. The transportation funds allocation to different subnetworks
within a state has impacts at multiple levels. While such decisions are intensely political, well-grounded
engineering models can help quantify the impacts of these policies, and guide allocation decisions. This
can be modeled as a distributed network design problem, which can answer important questions about
whether projects in different areas complement each other, measuring the impact of projects in one region
on another, and so forth.

The proposed model for decentralized network design problem partitions the design problem into a
design problem on a simplified version of the complete network and several smaller design problems (sub-
network design problems). The critical component of the proposed model is capturing the interactions
between the partitioneddesignproblems. Thismakes it possible to choose design variableswhile capturing
the interactions between entities and understanding the system-level effects. The problem is formulated
as a four-level network design problem, and a solution algorithm based on a sensitivity analysis heuristic is
developed to solve the problem.

The proposed distributed network design model has the following main advantages: first, it can sim-
plify the traditional bi-level network design problem; second, it increases awareness of local agents by rep-
resenting the effects of local improvements on the regional level; third, it helps in allocating the federal
or state funds to subnetworks by estimating the benefits from both local and global scales; and fourth,
the model makes it possible to solve a design problem over a region with different and even conflicting
objectives.
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Figure 1.1: The complete network (left) has 6 nodes and 7 links, while the contracted network (right)
has just 3 nodes representing the zones, and 2 artificial links representing each OD pair.

1.3 Informal Review

In this section we briefly introduce the problems discussed in this dissertation.

Chapter 2: Network Contraction

In this chapter, we review the general techniques developed in the literature for replacing a transportation
network with a simpler network with less detail. The proposed algorithms for network contraction are
usually link extraction or link abstraction. The former refers to simplifying a network by simply cutting
out some links and nodes, which are believed to be of less importance. The latter, however, tries to simplify
the network by aggregating portions of the network and representing a group of links and nodes with a
single link or node. Network contraction, in general, is a trade-off between the network complexity and
accuracy: higher contraction degree results in a simpler networkwith lower computational complexity but
higher error and vise versa.

In Chapter 2, we propose a network contraction technique based on the theory of equilibrium sen-
sitivity analysis. In the proposed algorithm, we replace the routes for each origin-destination (OD) pair
with a single artificial link. These artificial links model the travel time between the origin and destination
nodes of eachODpair as a function of network demands. Figure 2.2 illustrates the essence of this network
contraction technique on a small network with two OD pairs: 1–5 and 1–3.

LetΥw denote the travel time on artificial link created for OD pairw. Using d̂ to denote the demand
vector at the equilibrium solution x̂, and d̃ to denote the perturbed demand vector, we write Υw using
the first-order Taylor expansion:

Υw(d̃) = T̂w + ⟨∇T̂w, d̃− d̂⟩ (1.1)
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where T̂w is the equilibrium travel time between the origin-destination nodes ofODpairw at flow d̂,∇T̂w
is the gradient vector of T̂w with respect to OD flows evaluated at x̂, and ⟨x, y⟩ is the inner product of
vectors x and y.

In equation (1.1), the only unknowns tobe estimated forODpairw are the components of the gradient
vector∇T̂w. The entry of the gradient vector∇T̂w associated with OD pair u, i.e. ∂T̂w/∂du, shows the
derivative of T̂w with respect to du evaluated at x̂.

In this chapter, we prove that these interactions are symmetric under the assumption that OD paths
remain unchanged: a small change in d̂u has the same impact on T̂w as a small change in d̂w would have
on T̂u, i.e.,

∂T̂w
∂du

=
∂T̂u
∂dw

(1.2)

This symmetry property can be used to reduce the number of unknown parameters needed to be
estimated.

Later, we reformulate the linear system of equations defining these sensitivities as the solution to a
convex programming problem, which can be solved by making minor modifications to static user equi-
librium algorithms. The proposed convex program is essentially a static traffic assignment problem on a
modified network with linear cost functions which can be solved efficiently.

Chapter 3: Static traffic Assignment: A Decentralized Approach

The third chapter of this dissertation develops a decentralized (distributed) algorithm for static traffic as-
signment based on the idea of distributed problem solving. The proposed decentralized approach parti-
tions the assignment problem of a regional network into smaller problems. More precisely, for a regional
network with |U | subnetworks, the decentralized approach divides it into |U |+ 1 smaller problems: one
master problem and |U | subproblems. The master problem solves a simplified version of the regional net-
work, called aggregated regional network, where subnetworks are replaced with artificial regional links
to capture the dynamics of the urban networks in an aggregated fashion. These artificial links represent
first-order Taylor series approximations of OD travel time based on the equilibrium sensitivity analysis
developed in Chapter 2. Each subproblem performs traffic assignment on a modified version of one of
the subnetworks where artificial urban links, similar to those created in aggregated regional network, are
created to model the interactions between subnetworks. Figure 1.2 shows the Texas statewide network,
and Figure 1.3 describes the structure of the proposed distributed solver.
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Figure 1.2: A regional network with 5 subnetworks. Solving this problem is practically and computa-
tionally challenging.

Each iteration of the proposed decentralized algorithm starts with solving the assignment problem
of the aggregated regional network in the master problem. The assigned flow to each artificial regional
link is the amount of flow attracted to the associated subnetwork based on the current traffic conditions
of the regional and subnetworks. Each subproblem, then, solves the assignment problem on one of the
subnetworks by incorporating the demand assigned to its artificial regional links in the master problem
and artificial urban links in other subnetworks. As the last step at each iteration, the assignment solution
of subproblems are used to update the parameters of the artificial regional and urban links. This process
is repeated until a measure of convergence is satisfied.

Figure 1.4 describes the flowchart of the proposed decentralized traffic assignment method, called
DSTAP, where subproblems are solved in parallel.
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(a)

(b)

Figure 1.3: Distributed problem solving approach for statewide traffic assignment: (a) aggregated
statewide network solved as the master problem; (b) subnetworks which are solved cooperatively in
parallel. 8
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Figure 1.4: Flowchart of DSTAP in iteration k+1. The master problem starts by updating the param-
eters of the artificial regional links based on the solution of subproblems at iteration k. If the conver-
gence condition is not satisfied, then aggregated regional network is solved and the assigned demand to
artificial regional links are calculated. DSTAP continues by calling the |U | subproblems. The subprob-
lems are solved in parallel by incorporating assigned regional demand and demand from other urban
networks into their OD pairs. Finally the parameters of the artificial regional and urban links are re-
calculated for iteration k + 2.

9



1.3.1 Chapter 4: Network Design Problem: A Decentralized Approach

Chapter 4 of this dissertation deals with developing a decentralized algorithm for continuous network
design problem (CNDP). Similar to the work discussed in Chapter 3, we consider a regional network com-
posed of several subnetworks (urban cities). A regional agent has a budget to be distributed between the
subnetworks and some regional projects in an equitable way. The urban cities are managed independently
and the exact design plan at each urban city is not known to the regional agent.

The regional agent solves a CNDP on a simplified version of the regional network in which all urban
cities are replaced with artificial links between the endpoints used by regional demand. The artificial links
have a linear cost function stating the urban travel time as a function of regional flow and funding allocated
to the urban cities. Each subproblem solves a CNDPonone subnetworkwhere theODpairs with regional
demand (those modeled in the regional network with artificial links) are modeled with elastic demand.
This is due to the fact that regional demands traveling through urban cities have flexibility, and can change
their entrance and/or exit points by evaluating the urban congestion.

The problem is formulated as a four-level NDPwhere the regional agent, deciding about the regional
link improvements and funding allocation, forms the first level, a user equilibrium (UE) problem, mod-
eling the route choice of regional demand as a function of first level decisions and urban improvements,
form the second level, in the third level we have urban agents designing local plans using the funding allo-
cated to them from the regional agent, and finally the last level models the route choice behavior of urban
demands formulated as a UE problem with elastic demand.

We solve the problem using a sensitivity analysis based heuristic algorithm. Each iteration of the al-
gorithm starts by updating the regional agent’s decision variables. This step is performed using sensitivity
analysis information fromother levels. Next, the regional traffic is assigned to the regional network follow-
ing the Wardrap’s first principle. This step will also determine the external demand to each subnetwork.
As the next step, the subnetwork design problems are solved using the current budget allocated to them
from the regional agent. The solution algorithm for each subnetwork design problems is also based on a
sensitivity analysis heuristic. Finally, a set of UE problems with elastic demand are solved on subnetworks.

1.4 Dissertation Structure

The rest of the dissertation is organized as follows.
Chapter 2 introduces the network contraction notion and reviews the proposed network contraction

methods in the literature. Then the proposed network contraction technique in this dissertation, which is
based on the equilibrium sensitivity analysis, is formulated. Weprove a symmetry property for the sensitiv-
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ity parameters, and reformulate the linear system of equations defining these sensitivities as the solution to
a convex programming problem, which can be solved by making minor modifications to static user equi-
librium algorithms. A heuristic is proposed to capture the interactions between the OD travel times and
network flows. The accuracy and complexity of the proposed methodology are evaluated using the net-
work of Barcelona, Spain. Further, numerical experiments on the Austin, Texas regional network validate
its performance for subnetwork analysis applications.

Chapter 3 provides an introduction to static traffic assignment and its shortcomings when applied to a
large scale network. Then a decentralized approach, which is based on the network contraction technique
proposed in Chapter 2, is developed. The convergence of the decentralized approach is investigated using
the global convergence theorem. Numerical examples on a regional network from Austin, Texas, evaluates
the convergence properties and computational advantages of the proposed decentralized traffic assignment
approach.

In Chapter 4, wemathematically introduce the network design problem and discuss different versions
of the problem along with themost recent findings. Then the proposed decentralized scheme for network
design problem is introduced and formulated. As the next section, we discuss the solution algorithm. Fi-
nally, the simulation results on a hypothetical network composed of two copied of the Sioux Falls network
and also Austin regional network are presented.

Chapter 5 concludes this dissertation by summarizing the contributions of this work, and discusses
possible extensions of the work for future research.
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Part I:
Network Modeling: A Distributed

Problem Solving Approach
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2
Network Contraction

Calculating equilibrium sensitivityona bush can be done very efficiently, and serve as the basis
for a network contraction procedure. The contracted network (a simplified network with a few nodes and
links) approximates the behavior of the full network but with less complexity. The network contraction
method can be advantageous in network design applications where many equilibrium problems must be
solved for different design scenarios. The network contraction procedure can also be used to increase the
accuracy of subnetwork analysis. This method requires calculating travel time derivatives between two
nodes, with respect to the demand between them, assuming that the flow distributes in a way that equilib-
rium ismaintained. Previous research describes twomethods for calculating these derivatives. This chapter
presents a thirdmethod,which is simpler, faster, and just as accurate. Themethodpresented in this chapter
reformulates the linear system of equations defining these sensitivities as the solution to a convex program-
ming problem, which can be solved bymaking minor modifications to static user equilibrium algorithms.
In addition, the model is extended to capture the interactions between the path travel times and network
flows, and a heuristic is proposed to compute these interactions. The accuracy and complexity of the pro-
posed methodology are evaluated using the network of Barcelona, Spain. Further, numerical experiments
on the Austin, Texas regional network validate its performance for subnetwork analysis applications.
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2.1 Introduction

Static traffic assignment remains the most common network equilibrium model in practice: its favorable
mathematical properties are well-known, practitioners are experienced at calibrating and interpreting the
results, and it can be solved quickly. In particular, algorithms based on bushes— a concept dating to Dial
[1970], and first applied to the static equilibrium problem in Dial [1999b] — exploit the acyclicity of the
equilibrium flows to solve for equilibrium rapidly.

An important consequence of Beckmann’s formulation [Beckmann et al., 1956] is that a meaningful
sensitivity analysis can be undertaken. In the context of network equilibria, sensitivity analysis refers to de-
termining a functional relationship between the travel times and demands without re-solving the network
equilibrium problem. This functional relationship can be used to represent the network by connecting
each origin-destination (OD) pair with a single artificial link and removing all the intermediate nodes and
links.

Themain reason to develop such network contraction techniques is reducing the computational bur-
den of solving many network equilibrium problems [Friesz, 1985]. Still this computational motivation
seems to be valid. As an example, consider a network design problem which is formulated as a bi-level
problem. The master problem deals with computing some design parameters, and in the equilibrium
subproblem, the travelers modify their route choice in response to design parameters set in the master
problem. Such problems require solving hundreds or thousands of the network equilibrium problem as
a subproblem which can be computationally expensive even for modern algorithms such as Algorithm B
[Dial, 2006], TAPAS [Bar-Gera, 2010], or LUCE [Gentile, 2014].

As another application, consider the case of studying a number of alternatives, such as a new signal
timing plan or converting a one-way local street to two ways, in a region of interest. The impacts of these
policies are expected to be local, and solving the whole regional networkmay be unnecessary. Subnetwork
analysis is commonly used to avoid incurring the computational burden of regionalmodeling. In practice,
subnetwork modeling usually involves extracting a small component of a regional network, allowing the
boundary nodes of the subnetwork to serve as origins anddestinations, and estimating the subnetwork trip
table from an equilibrium solution on the regional network. Xie et al. [2010] use entropy-maximization
to identify these trips between the boundary points of the subnetwork. Effectively, this forms a “fixed”
boundary condition which neglects diversion effects due to changes in the subnetwork.

Boyles [2012] adopts a different approach, using bush-based sensitivity analysis to simplify the regional
network, rather than delete it entirely. In this way, diverting flows can be approximated while still retain-
ing most of the computational advantage of subnetwork modeling; the boundary is less rigidly enforced.
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The chief advantage of this procedure is that it captures diversion in a behavioral manner, based on drivers
choosing routes to minimize their travel time. This contrasts with the fixed-boundary approach, where
a common question is “how large does the subnetwork need to be to capture diversion?” While natural,
this question is a bit of a red herring. Consider a downtown area served by two roughly parallel freeways
(Figure 2.1). Even at large distances from the downtown area, there are drivers whose origins are roughly
equidistant from these two freeways. These drivers’ choice between these freeways depends on travel pat-
terns downtown, regardless of how distant their origin is: the fundamental issue is modeling route choice,
not simply capturing a large enough area. By integrating onemodel into another, “smoothing” the bound-
ary, much faster convergence and greater accuracy can be seen without needing a large subnetwork.

Creating such a model requires estimation of a number of sensitivity parameters. Boyles [2012] pro-
vided two methods to calculate these parameters: one is reminiscent of resistive circuit analysis, and only
applies when the equilibrium bushes are planar. The other is based on iterative solution of a linear system,
exploiting the underlying network structure to avoid inverting any large matrices. Both of these methods,
however, have undesirable aspects. In modern regional networks, planar bushes are rare because freeway
interchanges and overpasses are modeled in detail, rather than representing the entire interchange with a
single node (as was done in past decades to reduce the number of nodes and arcs). For example, in the
Chicago regional network [Bar-Gera, 2013], none of the 1790 origin bushes are planar at equilibrium.
While the second method is applicable in general networks, it requires careful implementation to avoid
numerical instabilities due to repeated matrix reinversion.

Also, these previous methods assume that the travel time between the origin and destination nodes
of each OD pair is a function of its own demand, and independent of other OD demands. In case of a
congested network, this assumption may degrade the accuracy of the method. Due to overlapping paths,
a small change to the flow on one path affects the travel time experienced by other paths. The set of im-
pactedpaths andODpairs extends furtherwhen some travelers decide to reroute to other paths in response
to travel time increase on their current path. In this chapter, the formulation is revised to model these in-
teractions: the dependency of each OD travel time on the demand of other OD pairs. In fact, modeling
OD travel time as a function of its demand can be viewed as a special case of the model proposed in this
chapter, and further a heuristic is proposed to address the question of which OD pairs should be included
in modeling the travel time of each OD pair.

In addition, this chapter describes a third method for calculating the necessary parameters, by refor-
mulating the linear system of equations as the solution to a modified network equilibrium problem. This
method is faster than the previousmethods, makes no planarity assumptions, and can be solved bymaking
only minor adjustments to existing equilibrium algorithms. In summary, the contributions are as follows:
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Downtown subnetwork

Figure 2.1: Portion of regional network with equidistant region shaded. Route choice from this region
to downtown is sensitive to changes in the subnetwork regardless of distance between the origin and
downtown.
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• The contracted model is extended to include the interactions between different OD pairs.

• A symmetry result is found in the sensitivity of travel times and demands across differentODpairs:
the impact of increased OD flow on another OD pair’s cost is the same as the impact of increased
flow of the second OD pair on the first OD pair’s cost.

• A heuristic is proposed to approximate the most prominent interactions.

• A formulation similar to the network equilibrium problem is developed to carry out the sensitivity
analysis and compute the derivatives.

The remainder of the chapter is organized as follows: Section 2.2 discusses related research on net-
work contraction, sensitivity analysis, and bush-based algorithms. Section 2.3 briefly reviews the context
and objectives of the problem at hand, and Section 2.4 presents the novel method based on reformulation
as an equilibrium problem. Section 2.5 describes a heuristic for estimating the interactions. Section 2.6
demonstrates the accuracy and computational performance of this procedure using two case studies. The
Barcelona network is used to measure the complexity and to evaluate the accuracy of the proposed model
in response to different demand perturbations. The advantages of simplifying the regional network rather
than deleting it in subnetwork analysis is illustrated on a regional network representing Austin, TX. Sec-
tion 2.7 concludes the work.

2.2 Literature Review

The idea of simplifying networks to reduce computation time has existed for several decades, receiving
considerable attentionprior to the rise of efficient path-based andbush-based equilibriumalgorithms since
the 1990’s. In case of an uncongested network, networks with constant link travel cost, the problem is
easy to handle by using aggregated nodes instead of a group of the network nodes. Zipkin [1980] derives
bounds for such a contraction technique for a class of linear minimum cost flow problems. As noted by
Friesz [1985], the network contraction problem becomes complicated and computationally intensive for
congested networks.

Different contraction methods have been studied in the presence of congestion. The early studies on
network contraction used the idea of link extractions [Haghani and Daskin, 1983]. Link extraction refers
to removing unimportant links and nodes from the network. Chan [1976] proposes such a network con-
traction approach for networks with constant link cost. This study shows that the derived traffic from
the excluded links cause an unpredictable flow pattern through the network. Hearn [1984] proposes an
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analytical method for link extraction where the subnetwork of interest is extracted and then a transfer de-
composition is applied to partition the original traffic assignment problem into a master problem and a
subproblem. Themaster problem deals with amodified version of the original networkwhere the subnet-
work is replaced with some pseudo-links, and the subproblem solves the traffic assignment problem over
the extracted subnetwork.

Some efforts have been done to combine the link extraction with demand aggregation. Modeling the
transportation network with full demand resolution requires detailed data which is expensive and time
consuming. Zonal aggregation can reduce the computational expense of detailed zoning by dividing the
space into discrete zones called traffic analysis zones. It is assumed that zone activity is concentrated at the
zone centroid and demand are loaded on and of the network through connectors [Jafari et al., 2015]. By
evaluating two levels of network details and 11 zoning structures, Chang et al. [2002] show that smaller
zones are more beneficial in travel demand modeling, while larger zones result in a better performance for
less detailed network. Jeon et al. [2010] construct three networkswith different levels of contraction: a fine,
a medium (collectors are excluded), and a coarse model (collectors and minor streets are deleted). Zones
are also aggregated based on themethod proposed byBovy and Jansen [1983]. The simulation results show
that the reduced capacity is hard to estimate, and traffic volumes are overestimated on the remaining links
as a result of this reduced capacity. Also studies by Eash et al. [1983] and Sbayti et al. [2002] show that due
to inconsistency between the extracted network and the complete network, the results from thesemethods
are not reliable.

Another contraction approach is link abstractionwhere a set of links andnodes between twonodes are
replaced with a single aggregated link. Eash et al. [1983] and Boyce et al. [1985] propose rules to aggregate
series and parallel links for the purpose of the sketch planning. This idea is used by Wright et al. [2010]
to reduce the computational time and increase the efficiency of the algorithm for large-scale networks.
Connors and Watling [2014] employ the idea of link abstraction for stochastic user equilibrium (SUE)
problemwhere the route choice is a function of the path utility. In SUE there is no notion of equilibrium
travel time, and the authors propose the composite cost as a unique measure for each OD pair. Similar to
Boyles [2012], sensitivity analysis is used tomodel theOD composite cost as function of theODdemands.

The methodology proposed in this chapter can be classified as link abstraction method based on the
equilibrium sensitivity analysis and is a sequel to work done by Boyles [2012]. Explicit sensitivity analysis
for the static equilibrium problem has primarily been based on the implicit function theorem [Tobin and
Friesz, 1988, Cho et al., 2000, Yang and Bell, 2007a] or sensitivity results of variational inequalities [Lu,
2008]. Recently, Bar-Gera et al. [2013] formulated the sensitivity of link flows with respect to network
design parameters as a solution to a quadratic programming and evaluated the precision of the computed
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derivatives. Other researchers have established general regularity properties on the solution of network
equilibriumproblems as the input data vary, identifying conditions under which the equilibrium solution
(expressed either in terms of link or path flows) is continuous or differentiable [Qiu and Magnanti, 1989,
Yen, 1995, Patriksson, 2004, Lu andNie, 2010a]. Particularly relevant to this problem, equilibrium bushes
are stable and link flows are analytic with respect to demand perturbations under generally nonrestrictive
regularity assumptions [Boyles, 2012].

In static traffic assignment, there is always an equilibrium flow solution inwhich the links used by each
origin form an acyclic subgraph [Bar-Gera, 2002]. Due to the existence of a topological order [Ahuja et al.,
1993], network algorithms on acyclic graphs are usually very fast. To the author’s knowledge, this notion
of a bush (an acyclic subgraph) dates to Dial [1970], where it was applied in a stochastic network loading
procedure. The same concept was used in a network pricing problem [Dial, 1999a], and independently
rediscovered in the setting of communications networks [Gallager, 1977], before being applied to the static
equilibriumproblem as the basis for a number of algorithms [Dial, 1999b, Bar-Gera, 2002,Dial, 2006,Nie,
2010, Gentile, 2014].

2.3 Problem Statement

Consider a directed network G = (N,A,Z) with node and arc sets N and A of cardinality n andm,
respectively, and a set of zones Z ⊆ N of cardinality z. Let W ⊆ Z × Z denote the set of K OD
pairs. The travel demand between OD pair w is indicated by dw. We group the OD demands into aK-
dimensional vector d. Let pw denote the set of all paths connecting OD pairw and p be the entire set of
paths in the network. The delay on each link a is given by ta(xa), as a function of its flow xa which is
strictly positive, strictly increasing, and differentiable. The deterministic user equilibrium problem seeks
the vector of link flows x̂minimizing the following convex optimization problem:

minimize
∑
a∈A

∫ xa

0
ta(x)dx (2.1)

subject to
∑
π∈pw

hπ = dw, ∀w ∈W (2.2)

∑
w∈W

∑
π∈pw

hπδaπ = xa, ∀a ∈ A (2.3)

hπ ≥ 0, π ∈ p (2.4)
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Table 2.1: Table of notation

N ≜ set of network nodes of cardinality n
A ≜ set of network links of cardinalitym
Z ≜ set of network zones of cardinality z
W ≜ set of network OD pairs of cardinalityK

w ∈ W ≜ an OD pair
d = [dw] ≜ vector of OD demands
p = [pw] ≜ vector of OD paths

p̂w ≜ set of paths with positive flow between OD pairw
Tw ≜ travel time between OD pairw
hπ ≜ flow of path π
Cπ ≜ cost of path π
xa ≜ flow on link a

ta(xa) ≜ cost of traveling on link a
δaπ ≜ 1 if link a is on path π, otherwise 0
Br ≜ equilibrium bush rooted at origin r

Nr ≜ set of nodes visited by some demand from origin r

Ar ≜ set of links visited by some demand from origin r

Bw ≜ stem of OD pairw
Nw ≜ nodes utilized by dw
Aw ≜ links utilized by dw
Nc ≜ set of nodes in contracted network
Ac ≜ set of artificial links in contracted network
Zc ≜ set of zones in contracted network
lw ≜ artificial link between OD pairw in contracted network
Υw ≜ cost on artificial link between OD pairw

G(w) ≜ set of ODpairs selected tomodel the travel time between origin
and destination nodes ofw

αw
a ≜ derivative of xa with respect to dw

βw
π ≜ derivative of hπ with respect to dw
τwu ≜ derivative of Tu with respect to dw

ODa ≜ set of OD pairs with demand on link a
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where hπ is the flow on path π, and δaπ is 1 if path π utilizes link a, and 0 otherwise. Assume that the
unique link flow vector x̂ satisfying the above problem is known, and let T̂w be the minimum travel time
between OD pairw at equilibrium flow x̂. Furthermore, let p̂w denote the set of paths with positive flow
forw corresponding to x̂. Thesemight represent the entropy-maximizing path flows, or some other path-
based solution. The route flow is assumed to be strictly complementary in the sense that all minimum-
cost routes have positive flow. This assumption is common in the sensitivity analysis literature [Friesz
et al., 1990, Cho et al., 2000, Patriksson, 2004, Josefsson and Patriksson, 2007, Yang and Bell, 2007a].
In practice, it can be difficult to determine whether a solution violates strict complementarity, because
equilibria are only solved to finite precision (cf. Bar-Gera [2006]), but noncomplementary solutions are
a zero-measure set [Patriksson, 2004] so we feel this assumption is viable for practical applications such as
the ones considered in this chapter.

The equilibrium flow from each origin to all destinations form a bush, a connected and acyclic subnet-
work connecting origin to each node. Define the equilibrium bush rooted at origin r to beBr = (Nr,Ar),
where Nr ⊆ N and Ar ⊆ A, respectively, are sets of nodes and links visited by some demand from r.
For each OD pair w ∈ W with origin r, stem Bw = (Nw,Aw) is defined as a subgraph of equilibrium
bush Br comprised of links and nodes utilized by dw at equilibrium flow x̂; Aw andNw are stem links
and nodes, respectively. More precisely, the stem Bw is a subnetwork formed by the union of links and
nodes visited by at least one path in p̂w.

We seek to estimate a simple equation to model the relation between the OD travel time and network
flows. By doing so, networkG is replaced by a “contracted” networkGc = (Nc, Ac, Zc)with the follow-
ing properties: (a) the contracted network has the same set of zones as the original network and does not
contain any intermediate node, i.e. Nc = Zc = Z ; (b) the number of links in the contracted network
is the same as number of OD pairs inG. More precisely, there is one artificial link between each OD pair
in the contracted network. If networkG has n nodes,m links, z zones, andK OD pairs, the contracted
version includes z nodes, z zones andK links. Figure 2.2 shows this transformation on a small network.
The complete network on the left panel has 1 origin node, node 1, and 2 destination nodes, nodes 3 and
5, while the associated contracted network, right panel, has just 3 nodes and 2 links; one node for each
origin/destination node and one artificial link between each OD pair.

The artificial links in the contracted networkmodel the travel time between eachODpair as a function
of OD flows. Let lw denote the artificial link between OD pair w in the contracted network and Υw

denote the travel time on lw. As discussed before, Υw estimates the cost of travel between OD pair w in
the complete networkG. Boyles [2012] assumed that Υw is a function of dw alone, and independent of
other OD demands, i.e. Υw = Υw(dw). In this chapter, however, this assumption is relaxed, and the
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Figure 2.2: The complete network (left) has 6 nodes and 7 links, while the contracted network (right)
has just 3 nodes representing the zones, and 2 artificial links representing each OD pair.

cost of travel on each artificial link is formulated as a multivariable function to capture the interactions
between multiple OD flows.

Using d̂ to denote the demand vector at the equilibrium solution x̂, and d̃ to denote the perturbed
demand vector, we writeΥw using the first-order Taylor expansion:

Υw(d̃) = T̂w + ⟨∇T̂w, d̃− d̂⟩ (2.5)

where∇T̂w is theK-dimensional gradient vector of T̂w with respect toODflows evaluated at x̂, and ⟨x, y⟩
is the inner product of vectors x and y. In (2.5), it is assumed that the travel time between OD pairw is a
function of all demand vector entries. This assumption, however, requires estimatingO(K2) parameters
which is not practically feasible. Hence we model the travel time between OD pair w as a function of a
subset of ODdemands. LetG(w) (of cardinality gw) denote the set of OD demands selected tomodel the
travel time of OD pairw in the contracted network. Then, (2.5) can be written as:

Υw(ẽw) = T̂w + ⟨ψw, ẽw − êw⟩ (2.6)

where ẽw, êw, andψw are, respectively, gw-dimensional subvectors of vectors d̃, d̂, and∇T̂w correspond-
ing to OD pairs in G(w). A small example in Section 2.6 describes this model approximation in more
detail.

In general, gw can be any number between 1 andK where gw = 1means thatΥw is just a function of
dw (the assumption in Boyles [2012]), and for gw = K ,Υw is a function of all OD flows. The value of gw
is a trade-off between the accuracy of the contracted model and computational time required to estimate
the contracted network, where a smaller gw requires estimating fewer parameters, but such a model may
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be prone to higher error rates since the effect of someODdemands are neglected. A heuristic for choosing
this subset of OD pairs is provided below.

In equation (2.6), the only unknowns to be estimated for OD pair w are the gw components of the
vector ψw. The entry of the vector ψw associated with OD pair u, i.e. ∂T̂w/∂du, shows the derivative
of T̂w with respect to du evaluated at x̂. The theorem below shows that under the assumption that OD
stems remain unchanged, these interactions are symmetric: a small change in d̂u has the same impact on
T̂w as a small change in d̂w would have on T̂u.

Theorem 1. For any two OD pairs w and u:

∂T̂w
∂du

=
∂T̂u
∂dw

(2.7)

Proof. Tobin and Friesz [1988] showed that for a small demand perturbation, where the set of used paths
remain intact, the change in equilibrium travel time would be:

∂T =
[
Λ(∇C)−1Λt

]−1
∂d (2.8)

where ∂T and ∂d are, respectively, differential vectors of changes inOD travel time and demand, and∇C
is Jacobian of path cost vector with respect to path flow:

∇C =



∂C1
∂h1

∂C1
∂h2

. . . ∂C1
∂hρ

∂C2
∂h1

∂C2
∂h2

. . . ∂C2
∂hρ

...
... . . . ...

∂Cρ

∂h1

∂Cρ

∂h2
. . .

∂Cρ

∂hρ


(2.9)

where ρ is the number of paths with positive demand, andCπ is travel time on path π. Λ is the OD/path
incidence matrix withK rows and ρ columns andΛ(w, π) = 1 if path π is used by dw, and 0 otherwise.

Noting that ∂xa
∂hπ

= 1 if link a is utilized by path π, δaπ = 1, for two paths π and η we have:

∂Cπ

∂hη
=


∑

a∈A
∂ta
∂xa

δaπ if π = η∑
a∈A

∂ta
∂xa

δaπδaη otherwise
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Using this equality, we can see that for two different paths π and η with some common links:

∂Cπ

∂hη
=
∂Cη

∂hπ
(2.10)

indicating that∇C (and thus its inverse) are symmetric:

(∇C)−1 =
(
(∇C)−1

)t (2.11)

We can thus show thatΛ(∇C)−1Λt is symmetric:

(
Λ(∇C)−1Λt

)t
= Λ

(
Λ(∇C)−1

)t
= Λ

(
(∇C)−1

)t
Λt = Λ(∇C)−1Λt (2.12)

which implies that
(
Λ(∇C)−1Λt

)−1 is also symmetric. Let

(
Λ(∇C)−1Λt

)−1
=



γ11 γ12 . . . γ1K

γ21 γ22 . . . γ2K

...
... . . . ...

γK1 γK2 . . . γKK


(2.13)

then


∂T̂1

∂T̂2
...

∂T̂K

 =



γ11 γ12 . . . γ1K

γ21 γ22 . . . γ2K

...
... . . . ...

γK1 γK2 . . . γKK




∂d1

∂d2
...

∂dK

 (2.14)

It can be verified easily that change in equilibrium cost of OD pair w in response to a small change in
demand of OD pair u is:

∂T̂w
∂du

= γwu (2.15)
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and the same way:

∂T̂u
∂dw

= γuw (2.16)

these two values are equal.

Later, in Section 2.6, a numerical example on the small network described in Figure 2.2 clarifies this
property and shows how to compute these derivatives and interactions.

This symmetry property can reduce the computational time required to estimate the contracted net-
work by calculating just one derivative instead of doing two sensitivity analysis to compute ∂T̂u/∂dw and
∂T̂w/∂du. Consider a network withK OD pairs and assume that we want to model the contracted net-
work with full interactions. Furthermore, assume that all K OD stems are of the same size. Without
considering the symmetry property, we need to solveK problems each withK OD stems, a total ofK2

problems. With the symmetricity property, the problem size associated with the first OD pair isK , the
second problem is K − 1, and the last OD pair is 1. The happens because after solving the sensitivity
problem for OD pair w1 and computing the derivative for OD pair w2, ∂T̂w2/∂dw1 , we do not need to
include Bw1 when doing sensitivity analysis for OD pairw2. This results in a total of K(K−1)

2 problems,
roughly half the number needed without considering the symmetricity property.

From here on, the focus of the chapter is the computation of these partial derivatives.
Assume that demandbetweenODpairw is perturbed by a small value such that the set of equilibrium

paths remain fixed, and the goal is to estimate the change in the travel time of OD pairs inG(w). Under
the assumption that OD stems remain unchanged, flow shifts between the stem paths of each OD pair
u ∈ G(w) until a new equilibrium is achieved and all the stem paths have the same cost. This indicates
that travel time is changed by the same amount on all paths. The above condition can be stated as:

∂T̂w
∂du

=
∂T̂u
∂dw

=
∂Cπ

∂dw
, ∀π ∈ p̂u, u ∈ G(w) (2.17)

The changes in each path’s travel time is equal to the sum of the changes in travel times of its links:

∂Cπ

∂dw
=

∑
a∈Aw

∂ta
∂dw

δaπ, ∀π ∈ p̂u, u ∈ G(w) (2.18)

where ∂ta/∂dw is the derivative of link a travel time with respect to dw. Using the chain rule, the above
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equation can be written as:

∂Cπ

∂dw
=

∑
a∈Aw

t′aα
w
a δaπ, ∀π ∈ p̂u, u ∈ G(w) (2.19)

where t′a = dta/dxa is the derivative of link travel time with respect to the link flow evaluated at x̂, and
αw
a = ∂xa/∂dw is the derivative of link a flow with respect to dw evaluated at x̂.

Let βwπ = ∂hπ/∂dw be the derivative of path π flow with respect to dw and Āw =
∪
Au

u∈G(w)

be the

union of the links on the stems of OD pairs inG(w). Then we have:

αw
a =

∑
u∈G(w)

∑
π∈p̂u

βwπ δaπ, ∀a ∈ Āw (2.20)

In addition, since dw is the only independent variable, we can write:

∑
π∈p̂u

βwπ =

 1 w = u

0 w ̸= u
, ∀u ∈ G(w) (2.21)

Equation (2.21) indicates that one unit of demand is added to dw and the demand between the re-
maining OD pairs remain unchanged. The linear system of equations described by (2.17), (2.19), (2.20),
and (2.21) can be solved for βwπ and compute ∂T̂u/∂dw for every OD pair u ∈ G(w) which form the
entries ofψw. This procedure needs to be repeated for each OD pairw ∈W .

The linear system (2.17), (2.19), (2.20), and (2.21) form the basis for the sensitivity analysis in this chap-
ter. Boyles [2012] describes two methods for calculating these derivatives. The first approach is based on
network transformations and has similarities with techniques used in analysis of resistive circuits. Four
network transformations are proposed: two series links to one link; two parallel link to one link;∆ struc-
ture (an undirected cycle of three nodes with an empty interior) toY, andY structure to∆. These four
transformations are illustrated in Figure 2.3. Under the planarity assumption, these transformations can
be used to successively replace each OD stem with a simpler stem. At the end, the stem is reduced to a
single arc, and OD derivative can be easily calculated.

The second technique calculates these derivatives by directly solving equations (2.17), (2.19), (2.20),
and (2.21) enforcing that the stem remains at equilibrium. The system of linear equation hasO(n +m)

equations and requires inverting amatrix of sizeO(n+m). Using a well-known block inversion formula,
Boyles [2012] proposes a technique that iteratively solves this linear system of equations, ensuring that no
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Figure 2.3: Schematic of series (top), parallel (middle), and ∆-Y (bottom) transformations

matrix needs to be inverted with dimension larger than the number of incident arcs to a single node.
In summary, the first technique is limited to planar bushes, which is a restrictive assumption. The

second technique is more general and does not require any planarity assumption, but has higher com-
putational time and needs careful implementation to avoid numerical instabilities from repeated matrix
reinversion. In the next section, however, we propose a faster solution method based on formulating this
system as the solution to a convex program.
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2.4 Equilibrium Formulation

Rather than solving (2.17), (2.19), (2.20), and (2.21) directly as a linear system, in this section we show that
the solution to this system also solves the convex optimization problem:

minimize
∑
a∈Āw

∫ αw
a

0
t′aω dω (2.22)

subject to
∑
π∈p̂u

βwπ = 0, ∀u ∈ G(w), u ̸= w (2.23)

∑
π∈p̂w

βwπ = 1 (2.24)

αw
a =

∑
u∈G(w)

∑
π∈p̂u

βwπ , ∀a ∈ Āw (2.25)

This is essentially a static equilibrium problem on the network comprised of all OD stems inG(w),
with αw

a and βwπ serving the role of link flows and path flows, respectively, linear cost functions of the
form t′aα

u
a , and unit demand between OD pair u. There is one significant difference: there is no nonneg-

ativity constraint on the βuπ , reflecting the fact that not all path flows need increase with dw. The Braess
network [Braess, 1969] forms a counterexample: as the reader can verify, when the demand between the
endpoints increases from 6, flow on the path utilizing the middle link decreases.

The objective function (2.22) is strictly convex, and the constraints (2.23)–(2.25) form a convex set, so
a solution exists and is unique. Lagrangianizing the flow conservation constraints (2.23) and (2.24) with
multipliers τw, the first-order conditions are∑

a∈Au

t′aα
w
a δaπ − τwu = 0, ∀π ∈ p̂u, u ∈ G(w) (2.26)

∑
π∈p̂u

βwπ = 0, ∀u ∈ G(w), u ̸= w (2.27)

∑
π∈p̂w

βwπ = 1 (2.28)

∑
u∈G(w)

∑
π∈p̂u

βwπ = αw
a , ∀a ∈ Āw (2.29)

with no complementarity conditions because there are no nonnegativity constraints on β. Interpreting
τwu as ∂T̂u/∂dw, the system (2.26)–(2.29) is identical to (2.17), (2.19), (2.20), and (2.21).
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This equivalence presents an easier method to identify the travel time derivatives needed to form cost
functions on the artificial arcs of the contracted network, because the optimization problem (2.22)–(2.25)
can be solved by making minor changes to bush-based algorithms for solving the traffic assignment prob-
lem.

The bush-based algorithms start from the shortest path tree for each origin and iterate between equi-
librating andmodifying the bush. At each iteration, the origin bush is fixed and the network is reduced to
an acyclic network containing just the bush links and the assignment problem is restricted to this acyclic
network. Bar-Gera [2002] and Dial [2006] prove that the equilibrium flow is attained after all bushes are
equilibrated. The general procedure may be described as follows:

1. Initialize the origin bush by finding the shortest path tree for each origin and assign all flows to the
origin bush.

2. Add new links to bush if travel time can be improved.

3. Solve the assignment problem over the acyclic network restricted to the bush.

4. Remove links with zero flow.

5. Stop if converged, otherwise go to step 2.

The interested reader is referred to Nie [2010] for an in-depth discussion on different bush-based algo-
rithms and their computational power.

In a bush-based algorithm, the only change needed is to eliminate the zero-flow lower bound when
equilibrating the bush, and skipping the bush updating steps since these links are fixed. Further, by solving
this equilibriumproblem to varying gap levels, one canmore finely adapt theprecisionof themethod to the
computational resources available. As shown in the next section’s computational results, it is not necessary
to calculate these derivatives with a high level of accuracy, because other aspects of the approximation (e.g.,
assuming fixed bushes) tend to dominate the error in the overall procedure.

The optimization problem (2.22)–(2.25) is a special case of the quadratic approximations developed
by Patriksson [2004] and Josefsson and Patriksson [2007], for the case where only the OD matrix is per-
turbed, link costs are separable, and there is no elasticity in demand. Patriksson [2004] obtained themodel
starting from results on the sensitivity of variational inequalities. This chapter presents an alternative
derivation starting from equilibrium and flow conservation principles, showing that these equations form
the KKT conditions for the quadratic approximation model given in the chapter. We believe that there is
value in presenting such an alternative derivation, and that itmay bemore intuitive for some readers (albeit
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for a special case of Patriksson’s results.) Also the problem (2.22)–(2.25) is disaggregated, only considering
the interactions between partial sets of OD pairs. This allows the sensitivity subproblem to be separated
by OD pair, which may have computational advantages (including easier parallelization).

In this section, a formulation similar to classical user equilibrium problem was proposed to compute
the sensitivity of travel time for everyODpairu ∈ G(w) in response to a small change indw. Thequestion
still remained to be answered is which OD pairs should be included inG(w), ∀w ∈W . The next section
will address this question by proposing a simple heuristic.

2.5 Network Interactions

It is important to consider how the list of OD flows for modeling the cost on lw in (2.6) is chosen for
every w ∈ W . The goal of embedding the other flows in Υw is achieving an approximation with lower
estimation error. Based on this, the list G(w) for OD pair w ∈ W should contain those OD pairs for
which a small change in their flow has the highest impact on travel cost ofw. Estimating the dependency
of each OD travel time on other OD flows, however, requires doing sensitivity analysis for all OD pairs
which is a computationally challenging and practically infeasible task. To alleviate this problem and still
gain a good approximation, a simple heuristic is proposed here.

For eachODpair, the links with the highest sensitivity—defined as derivative of link travel time with
respect to its flow — play the role of bottlenecks. For example, a link with derivative of 1 sec/vehicle has a
small impact on route choice of users compared to a link with derivative of 10 sec/vehicle. It is clear that
a small change in flow of such bottleneck links may encourage some travelers to search for cheaper routes.
This is related to the concept of intrinsic sensitivity, defined in Boyles et al. [2011].

LetODa denote the list of OD pairs with demand on link a. Given gw for every OD pair w ∈ W ,
Algorithm 1 calculates the listG(w) in the following way. First, the link travel time derivatives for all links
with positive demand are calculated. Then all OD stems are checked and w is added to the list ODa if
link a is part of the stem of OD pairw. These two steps are preprocessing steps, and can be implemented
without any further computational effort while solving for the UE. Then for each OD pair w ∈ W , the
first bottleneck link inAw, the link with the highest sensitivity, is computed and the most dominant OD
pair, defined as the OD pair with the highest share of flow on this bottleneck link, is added to G(w).
To make sure that the evaluated bottleneck link and selected OD pair are not considered again, they are
removed from the associated lists. If the number of OD pairs inserted in G(w) is less than gw, the first
bottleneck link among the present links inAw is selected and the same process is repeated by selecting the
dominant OD pair and adding it to G(w). This process stops when gw OD pairs are selected for OD
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pair w or all links are evaluated where in the latter case, the cardinality ofG(w) can be less than gw. The
algorithm can easily be modified to make sure that the listG(w) contains gw OD pairs by selecting more
than one OD pair from each bottleneck link. This process is repeated until all OD pairs w ∈ W are
evaluated. Note that gw’s are the input parameters in this heuristic, and can vary by OD pair.

The next section is devoted to evaluate the performance and computational time of the approximate
model under different demand and modeling scenarios. Later the advantage of the proposed network
contraction technique is described in subnetwork analysis where areas outside the subnetwork boundary
are replaced by some artificial links to capture the impact of subnetworkmodifications on demand in areas
beyond the subnetwork boundary.

2.6 Demonstration

In this section, three test networks are used to implement the idea presented in this chapter. The first
case study is the toy network sketched in Figure 2.2. This network can be solved manually and helps the
reader to follow the discussion of the chapter. Then, the Barcelona network is used to illustrate the quality
of the contracted network in capturing the behavior of the complete network. Also the effect of gw on
the accuracy of the model and time required for estimating the unknown parameters of the contracted
network is evaluated. Finally, the regional Austin, Texas network is used for the purpose of subnetwork
analysis. All experiments are implemented in Java and carried out on a PC with an Intel Core i7 1.8GHz
CPU and main memory of 4GB.

2.6.1 Toy Network

Consider the toy network in Figure 2.2 with link cost functions described in Table 2.2. Assume demand of
d15 and d13 from origin node 1 to destination nodes 5 and 3, respectively. At equilibrium, the path flows
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Algorithm 1 Calculate Interactions
1: for all a inA do: ▷ calculates derivative of each link a ∈ A
2: t′a =

dta
dxa
|x̂a

3:
4: for allw inW do: ▷ calculates the list of OD pairs utilizing each link a ∈ A
5: for all a inAw do:
6: addw toODa

7:
8: for allw inW do: ▷ finds the list of gw OD pairs with the highest interaction ∀w ∈W
9: okay:=false
10: while okay is false do:
11: a :=getBottleneckLink(w)
12: delete a fromAw

13: u :=getOD(a)
14: delete u fromODa

15: add u toG(w)
16: if |G(w)| = gw orAw is empty then:
17: okay:=true
18:
19: function getBottleneckLink(w) ▷ returns the link with the highest derivative value forw
20: d:=0
21: for all a inAw do:
22: if t′a > d then:
23: d := t′a
24: selectedLink:=a

return selectedLink
25:
26: function getOD(a) ▷ returns the OD pair with the highest share of demand on link a
27: d := 0
28: for allw inODa do:
29: if dw > d then:
30: d := dw
31: selectedOD:=w

return selectedOD
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Table 2.2: The link cost functions of the network in Figure 2.2.

Link 1− 2 1− 6 4− 3 4− 5 6− 5 1− 4 2− 3

Cost function 2 2 2 2 3x15 x14 2x23

and OD travel times are as follows: 

ĥ1,2,3 =
3
11(d13 + d15),

ĥ1,4,3 =
1
11(8d13 − 3d15),

T̂13 = 2 + 6
11(d13 + d15)

ĥ1,6,5 =
2
11(d15 + d13),

ĥ1,4,5 =
1
11(9d15 − 2d13)

T̂15 = 2 + 6
11(d15 + d13)

(2.30)

Let d̃13 and d̃15 denote the perturbed demand values and d̂13 and d̂15 denote the current demands.
According to equation (2.6), the cost of traveling on the artificial links in the contracted network, Figure
2.2 right panel, would be:

Υ13(d̃13, d̃15) = T̂13 +
∂T13
∂d13

(d̃13 − d̂13) + ∂T13
∂d15

(d̃15 − d̂15)

= 2 + 6
11(d̂13 + d̂15) +

6
11(d̃13 − d̂13) +

6
11(d̃15 − d̂15)

= 2 + 6
11(d̃13 + d̃15)

Υ15(d̃13, d̃15) = T̂15 +
∂T15
∂d15

(d̃15 − d̂15) + ∂T15
∂d13

(d̃13 − d̂13)

= 2 + 6
11(d̂15 + d̂13) +

6
11(d̃15 − d̂15) +

6
11(d̃13 − d̂13)

= 2 + 6
11(d̃15 + d̃13)

(2.31)

whereΥ13 andΥ15 are approximateOD travel times formulated as a linear function of perturbed demand
values d̃13 and d̃15. Since all link cost functions are linear, the linear approximates match the correct equa-
tions. Let∆T = T̃ − T̂ and∆h = h̃− ĥ denote, respectively, the travel time and path flow deviations
as a result of demand deviation∆d = d̃− d̂. Then, relations between travel time, demand, and path flow
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deviations are as follows:

∆T13 =
6
11(∆d13 +∆d15)

∆h1,2,3 =
3
11(∆d13 +∆d15) =

∆T13
2

∆h1,4,3 =
1
11(8∆d13 − 3∆d15) = ∆d13 − ∆T13

2

∆T15 =
6
11(∆d13 +∆d15)

∆h1,6,5 =
2
11(∆d13 +∆d15) =

∆T15
3

∆h1,4,5 =
1
11(−2∆d13 + 9∆d15) = ∆d15 − ∆T15

3

(2.32)

These equations can be used easily to compute the amount of change in demand for eachODpair that
results in a change∆T in equilibrium travel times. For example, if the demand from 1 to 3 remains con-
stant, i.e. ∆d13 = 0, then∆h1,4,3 = −∆T/2;∆h1,4,5 = 3∆T/2; and∆d1,5 = 11∆T/6. The same
way, if the demand from 1 to 5 remains constant, i.e. ∆d15 = 0, then ∆h1,4,5 = −∆T/3;∆h1,4,3 =

4∆T/3; and∆d1,3 = 11∆T/6.
Note that the equations in (2.31) are estimated with full interactions, and the OD travel times where

interactions are not modeled would be as follows:Υ13(d̃13) = 2 + 2
3 d̃13

Υ15(d̃15) = 2 + 3
4 d̃15

(2.33)

which is not as accurate as the case with full interactions. The travel time derivatives in equations (2.31)
and (2.33) can easily be computed by solving the optimization problem (2.22)–(2.25).

2.6.2 Barcelona

The method presented in the previous section is applied to Barcelona network with 110 zone, 1020 nodes,
and 2522 links [Bar-Gera, 2013]. As stated before, the travel cost between each artificial link lw in the con-
tracted network is a linear approximation of the travel cost between OD pairw in the complete network.

The complete network is solved to relative gap of 10−6 defined as:

relative gap =

∑
w∈W

∑
π∈p̂w hπCπ −

∑
w∈W

∑
π∈p̂w hπκ

w∑
w∈W

∑
π∈p̂w hπCπ

(2.34)
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where κw represents the time spent on the fastest path between OD pair w. As verified by Boyce et al.
[2004], this relative gap is enough to ensure that traffic assignment is converged to a stable link flow solu-
tion.

The equilibrium formulation (2.22)–(2.25) is used to compute the OD travel time derivatives with
respect toODdemands. The equilibrium travel times alongwith these derivatives are needed to set up the
contracted network. To evaluate the accuracy of the proposed network approximation algorithm, theOD
matrix is perturbed, and the new equilibrium travel times are compared against those estimated via (2.6).
For convenience, it is assumed that all OD pairs are modeled with the same number of OD interactions,
i.e. gw = g. Figure 2.4 shows the simulation results for different g values and demand scenarios. Each
line shows one demand scenario where p% means that all OD demands are perturbed randomly by p
percentage from the base values. The horizontal axis represents the number ofOD flows selected tomodel
the travel cost of each OD pair, g, and the vertical axis shows the average error between the actual travel
time in the complete network and estimated travel time calculated from the contracted network. The
estimation error is this figure is calculated as:

ϵ =
1

K

∑
w∈W

∣∣∣Υw(ẽ)− T̂w(d̃)
∣∣∣

T̂w(d̃)
(2.35)

where ϵ is the average estimation error per OD pair, d̃ is the perturbed demand vector, and ẽ is a subset of
d̃ corresponding to the entries ofG(w). Υw(ẽ) is the estimated travel time betweenOD pairw using the
contracted network for perturbed demand d̃, and T̂w(d̃) is the actual travel time obtained by solving the
complete network for d̃.

As expected, the contracted network yields better results for demand scenarios with lower perturba-
tion, and larger demand perturbations produces higher errors. This is due to the fact that the approximate
model is a first order Taylor series calibrated for base demand and as demand deviates more from the cali-
bration point, the accuracy of the model deteriorates. Also under each demand scenario, including more
OD flows tomodel the travel time of eachODpair providesmore accurate travel time estimates where im-
provement is more significant for a larger perturbation. For example, under 50% perturbation scenario,
the error of 6.7% for the case whereOD travel time ismodeled as a function of only its own demand drops
to 3.6%when 200 other OD flows are also included to model the interactions; an improvement of 3.1%.
The difference for perturbation of 5%, however, is less than 0.4%. This indicates that for a larger demand
disruption, the impact of g is more significant, but nevertheless the improvement is marginal, especially
for small demand perturbations, and diminishes after g ≃ 10. Based on these observations, modelingOD
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travel times based on their own demand should be enough for most applications.
Figure 2.5 shows the time required to approximate and set up the contracted network. The horizontal

axis represents dimension of gradient vector in (2.6), g, and vertical axis shows the ratio of time required
to set up the contracted network —computing the list of OD flows for modeling each OD pair based on
Algorithm 1 and solving the convex program (2.22)–(2.25) for each OD pair— to the time required for
solving the complete network. It can be seen that computational complexity of the problem is affected by
g, because it takes more time to set up the contracted network for a larger g value. This is mainly because
modeling more interactions increases the size of the problem in (2.22)–(2.25): for g = 1, we need to solve
these system of equations for one stem, while modeling all interactions requires solving a problem with
size of the complete network for each OD pair. The results described in Figure 2.5 show that in case of
Barcelona network with g ≤ 150, it takes less time to set up the contracted network than solving the
complete network.

The next section illustrates the benefits of the proposed network contraction technique for subnet-
work analysis where the network outside the subnetwork boundary is replaced with an aggregated version
to reduce the computational time and still capture the important attraction and diversion effects as drivers
(globally) change routes in response to (local) subnetwork changes.

2.6.3 Subnetwork Application

To enable direct comparison with the methods developed by Boyles [2012], the same experimental set-
ting was adopted. The regional network represents the Austin, TX metropolitan area, and contains 7466
nodes; 18,718 links; and 1117 zones; the downtown subnetwork contains 143 nodes, 448 arcs, and 20 internal
zones (Figure 2.6). In the original network, 7th Street is a downtown arterial which is one-way eastbound.

We consider the impact of converting 7th Street to twoways, dividing its capacity equally between the
two directions, and compare three techniques for evaluating the performance of the modified network.
The first technique is to simply re-solve the equilibrium problem on the entire regional network; as re-
ported in Boyles [2012], this requires approximately 20 minutes to reduce the relative gap to the range
10−4–10−6, according to current recommendations Boyce et al. [2004]. The second technique is to solve
the equilibrium problem on the subnetwork alone, using the route flow solution from the base case net-
work to form theODmatrix between boundary nodes; this requires only a second or two of computation
time. The third technique is based on network contraction for gw = 1 by first creating artificial arcs as
discussed in Section 2.3, then eliminating artificial arcs directly connecting an origin to a destination by in-
troducing elastic demand and inverting the Gartner transformation [Boyles, 2012]. Since the equilibrium
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Figure 2.4: Total error between the travel times of the complete network and contracted network
under different demand perturbation scenarios.

bushes are nonplanar, the artificial arc cost functions can be found either by solving linear system of the
form (2.17), (2.19), (2.20), and (2.21) (which requires approximately 90 minutes), or by solving modified
equilibrium problem of the form (2.22)–(2.25). Either method gives identical results when the equilib-
rium problems are solved to a very tight gap, so the focus on this section is comparing the computational
requirements involved, and the tradeoffs between accuracy and computational time.

The remainder of this section investigates three main questions: first, the computation time required
to solve (2.22)–(2.25) to varying gap levels; second, how the relative gap used in the the equilibrium prob-
lems in the third technique affects the accuracy of the approximation; and third, how the relative gap used
in the elastic demand subnetwork problem in the third technique affects the accuracy of the approxima-
tion. This accuracy is measured in terms of link volumes, link travel times, and corridor travel times in
each direction.

Each equilibrium problem (2.22)–(2.25) can be solved very rapidly, in far less than a second. How-
ever, creating the contracted network requires solving 212,432 such problems. Figure 2.7 shows how the
total computation time required varies with the relative gap criterion used to terminate the equilibrium
problems. Solving the equilibrium subproblems to a relative gap of 10−4 requires roughly an order of
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Figure 2.5: Ratio of time required to set up the contracted network to time of solving the complete
network

magnitude less time than solving the linear systems directly. One may question the usefulness of this pro-
cedure, since the full regional network can be solved in only a little more time than is required to construct
the approximation. The advantage comes in network design or other problems where subnetwork equi-
librium must be solved many times, since the overhead involved in calculating these derivatives is only
incurred once.

Table 2.3 shows how the root-mean square error (RMSE) link volume varies according to the relative
gap used to calculate travel time derivatives, and the relative gap used when solving the elastic-demand
equilibrium problem on the contracted network. These RMSE errors are calculated relative to the equi-
librium solution on the regional network which serves as a baseline. By comparison, the RMSE from the
fixed-boundary flows approach (the second technique) is 1216 vph. Notice that the accuracy of the third
technique is not particularly sensitive to the gap values used. This indicates that the primary source of
error in the approximation is due to the central assumptions made (fixed bushes and fixed flows outside
each stem), rather than the accuracy to which the subproblems are solved. This result favors the method
developed in this chapter, because there is no need to calculate the travel time derivatives exactly. Table 2.4
shows similar results when comparing average corridor travel times (in both directions, the contracted
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7th Street

Figure 2.6: Austin regional network, subnetwork, and street modified from one-way to two-way.
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Figure 2.7: Computation time required for solving 212,432 modified equilibrium problems.
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Table 2.3: Link-flow RMSE for contracted graph as subproblem accuracy varies.

Relative gap for generating Relative gap for solving contracted graph

contracted graph 10−2 10−4 10−6 10−8

1 791.150 778.596 778.596 778.536
10−2 791.102 795.802 778.665 778.530
10−4 791.104 793.825 778.758 778.530
10−6 791.112 795.228 778.600 778.529

Table 2.4: Average corridor travel time error for contracted graph as subproblem accuracy varies.

Relative gap for generating Relative gap for solving contracted graph

contracted graph 10−2 10−4 10−6 10−8

1 −3.471% −3.235% −3.235% −3.231%
10−2 −5.817% −5.982% −5.439% −5.435%
10−4 −5.814% −5.982% −5.437% −5.435%
10−6 −5.814% −5.976% −5.441% −5.435%

graph slightly underestimated the travel times).

2.7 Conclusion

This chapter presented a newmethod for calculating travel time sensitivities on equilibrium bushes which
is superior to the two presented in earlier work by Boyles [2012]: it can model interactions between dif-
ferent OD pairs, it requires no planarity assumption, is more stable numerically, is easier to implement
using existing code for traffic assignment, and the computation time can be controlled by adjusting a gap
termination criterion. Further, simulation results on the Barcelona network indicates that the contracted
network can approximate the behavior of the complete network: the error is less that 6.7% even for a
demand perturbation as high as 50% and can be reduced to 3.6% by modeling the interaction between
OD travel times andOD flows. The application of the proposed approach for subnetwork analysis on the
Austin, TX regional network shows that this method achieves comparable accuracy to the other methods
while requiring only a tenth of the computation time. It would be useful to validate this performance on
other networks, or to develop tailored network design or second-best pricing algorithms based on these
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approximations.
It should be noted that the contracted network only has to be constructed once and can be used to

evaluate the network performance for different demand scenarios easily with a good approximation. The
hybrid approach can be used to improve the accuracy of the model in a bi-level network design problem
where hundreds or thousands of equilibrium subproblems are required to be solved. In the hybrid ap-
proach, the contracted network is approximated based on the current demand and is fixed. After several
iterations of working with the contracted network, it can be updated by re-solving the complete network
for the new demand vector. This reduces the estimation error by increasing the consistency between the
contracted network and the complete network.
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3
Static Traffic Assignment: A Decentralized

Approach

This chapter describes a spatial parallelization scheme for the static traffic assignment problem. In this
scheme,whichwe termdecentralized static traffic assignment (DSTAP), thenetwork is divided into smaller
networks, and the algorithm alternates between equilibrating these networks as subproblems, and master
iterations using a simplified version of the full network. The simplified network used for the master itera-
tions is based on linearizations to the equilibrium solution for each subnetwork obtained using sensitivity
analysis techniques. We prove that the DSTAP method converges to the equilibrium solution on the full
network, and demonstrate computational savings of 35-70% on the Austin regional network. Natural
applications of this method are statewide or national assignment problems, or cities with rivers or other
geographic features where subnetworks can be easily defined.

3.1 Introduction

The traffic assignmentproblem (TAP) formulatedbyBeckmann et al. [1956] is used in transportationplan-
ning throughout the world, to predict drivers’ route choice, and the resulting flows on roadway links [Pa-
triksson, 2004]. Owing to its elegant formulation as a convex programwith an underlying network struc-
ture, this problem can be efficiently solved to high precision on city-scale networks using any number of
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modern algorithms [Dial, 2006, Bar-Gera, 2010, Gentile, 2014]. However, as computational hardware
and algorithms advance, attention shifts to more demanding applications of the traffic assignment prob-
lem. These include bilevel programs, whose solution often requires the solution of many TAP instances
as subproblems, accounting for forecasting errors with Monte Carlo simulation of input parameters, or
broadening the geographic scope of models to the statewide or national levels.

Parallel computing is a general technique for reducing the running time of algorithms, by identifying
problem components which can be solved independently, and brought together at a later point in time.
Many algorithms for TAPnaturally lend themselves to parallelization [Chen andMeyer, 1988, Karakitsiou
et al., 2004]. For instance, the classic Frank-Wolfe algorithm can be parallelized by origin or destination
when finding shortest paths and building the all-or-nothing link flow vector used in the search direction,
and by link when determining the step size.

This paper introduces a new way of parallelizing traffic assignment, by geographic region rather than
by origin. In this scheme, which we term the decentralized static traffic assignment problem (DSTAP) ap-
proach, the network (which we term the original network for clarity) is divided into a number of subnet-
works. A regional network is also created as an abstraction of the original network. TheDSTAP algorithm
iterates between solving equilibrium on these subnetworks and on the master network, with the demand
across the boundaries of the subnetworks obtained from the master network, and the structure of the
master network updated based on the subnetwork equilibria. Any algorithm for TAP can be used to solve
these equilibrium subproblems.

As is shown in this paper, the DSTAP algorithm converges to the same equilibrium solution as would
be obtained for the original network. Numerical experiments on the Austin, TX regional network also
show a substantial reduction in computation time (ranging from 35–70%). Althoughwe show correctness
on general networks, DSTAP is most obviously suited for assignment problems on networks which nat-
urally divide into subnetworks. Examples include statewide or nationwide models, where clearly-defined
urban areas are connected by sparser rural regions, or in cities partitioned by rivers or other geographic
features. In this paper we do not consider how best to partition a network into subnetworks, although
this is a highly interesting problem for future research.

The remainder of this chapter is organized as follows. Section 3.2 presents a reviewof currentmodeling
methods for TAP, and research studies related to thismodeling approach. Sections 3.3 defines terminology
related to the spatial decomposition scheme. Section 3.4 overviews the proposed DSTAP approach, Sec-
tion 3.5 describes the algorithm in detail, and Section 3.6 provides a proof of its convergence to the original
network equilibrium. Section 3.7 presents numerical results when applyingDSTAP to a regional network
from Austin, TX, and Section 3.8 concludes the chapter.
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3.2 Literature Review

This section provides an overview of the existing literature in the following areas: modeling approaches to
solve TAP on large scale networks; a review of network aggregation techniques and their applications in
the field of transportation planning; and methods to parallelize the solution of TAP.

Many solution methods have been developed to solve the traffic assignment problem, which can be
broadly classified into link-based methods, path-based methods, and bush-based methods. Link-based
methods require less operational memory and work in the space of link flows to solve the optimization
problem [Frank and Wolfe, 1956, LeBlanc et al., 1975, Mitradjieva and Lindberg, 2013]. Path-based meth-
ods offer faster convergence compared to link based methods and act on the space of path flows; however,
they have larger memory requirements [Florian et al., 2009, Jayakrishnan et al., 1994]. Bush-based meth-
ods exploit the fact that the set of used paths from each origin at equilibrium forms an acyclic network
[Bar-Gera, 2002, Dial, 2006, Nie, 2010, Bar-Gera, 2010, Gentile, 2014]. These methods have improved
the existing state-of-the-art of algorithms and are fast and memory efficient for networks with large scale.
However, applying such algorithms to solve equilibrium on very large-scale networks may remain imprac-
tical. Even if not computation time is not an issue, more time-efficient methods for TAP require more
memory consumption, and a parallelization scheme may be able to reduce these requirements.

Current statewide planning models still rely on aggregation of the networks within cities, capturing
only themajor freeways and demand using the freeways. For instance, the Texas StatewideAnalysisModel
(SAM) captures the lower-level transportation systemusing centroid connectors which serve as an abstract
but aggregate representation of urban transportation networks in different cities [TXDOT, 2013]. Many
planning models also utilize the aggregation of Traffic Analysis Zones (TAZ) to simplify the network at
larger scale. Such techniques are employed by statewide planning models which aggregate the zones and
links in MPO models in the statewide network representation [Horowitz, 2006].

Severalmethods have been proposed to combine the zones and links in a network to form an aggregate
network. Link extraction methods remove the unimportant links and nodes from the network [Haghani
and Daskin, 1983], but as shown in Chan [1976], such extraction might lead to unpredictable flow pat-
terns on network. Other researchers have proposed link abstraction methods where set of links and nodes
between two nodes are replaced with a single aggregated link. Methods proposed to aggregate series and
parallel links for purposes of sketch planning are one form of link abstraction [Boyce et al., 1985, Eash et al.,
1983].

Recent studies have proposed methods to abstract the links outside a subnetwork in form of an arti-
ficial link. Zhou et al. [2006] determines the OD matrices for subnetwork by capturing the behavior of
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shift of travelers from the subnetwork using a virtual link. The split proportion for that link is determined
using a proportional model based on travel times on paths inside and outside the subnetwork. The vir-
tual link represents trips between boundary nodes that bypass the subnetwork (bypassing paths includes
all paths with 50% of its links passing through the subnetwork but are not completely contained), but
do not include the paths which are completely (or more than 50%) external to the subnetwork. Hearn
[1984] introduces a “transfer decomposition method” to solve traffic assignment on a complete network
by dividing it into master and subproblems, where the master problem solves an abstracted network. The
approximations to link performance functions for the artificial links are proposed by generating a space of
potential artificial link flows, and using the least squaresminimization technique to determine the parame-
ters of the polynomial function whichminimizes the difference between original network travel times and
predicted travel times. Such approximation of parameters for artificial links, however, is computationally
taxing to evaluate, especially if there are multiple interactions between boundary nodes of the subnetwork
and the origin nodes outside. Barton et al. [1989] later proved that transfer decomposition proposed in
Hearn [1984] is equivalent to the generalized Bender’s decomposition of the traffic assignment problem.
He concludes that such a decomposition method may be efficient for models where the network outside
the subnetwork is large but has a smaller number of boundary or “interface” nodes.

The newer network aggregation techniques involving link abstraction rely on sensitivity analysis to
estimate changes in travel time between OD pairs with changes in the demand level. Boyles [2012] pro-
poses a bush-based sensitivity analysis of the equilibrium to accurately perform network aggregation, and
suggests a flexible boundary approach for modeling subnetwork, highlighting the inability to capture net-
work level changes with the fixed-boundary approaches (e.g. Xie et al. [2010] and Xie et al. [2011]). Jafari
and Boyles [2016] and Boyles [2013] present an improved methodology to calculate sensitivity parameters
as a convex optimization problemwhose structure is identical to the traffic assignment problemmaking it
easier to perform network contraction. This latter method is employed in DSTAP to determine artificial
link parameters (as made clear in Section 3.4).

These aggregation procedures are often used in coordination with disaggregation procedures which
seek to find solution to the original problem from the solution of aggregated network. The DSTAP al-
gorithm proposed in this paper is one form of an iterative aggregation-disaggregation (IAD) algorithm,
where aggregation of subnetworks is done at master level to solve a simplified regional network, and the
flow on “artificial links” in the subnetwork is disaggregated to find flows on actual links inside the sub-
network. Rogers et al. [1991] and Dubkin et al. [1987] present a comprehensive review of IAD techniques
used in linear, non-linear, and integer optimization. They highlight that convergence of these iterative
techniques depends on the aggregation and disaggregation procedure employed, and one primary issue
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with these techniques is calculating a bound on computation time for the IAD algorithms to reach within
some error range of the original problem solution.

Previous attempts at parallelizing the process of finding network equilibrium includes work by Chen
andMeyer [1988], where they distribute finding shortest paths between differentODpairs as independent
processes on different threads. Other authors have parallelized a simplified quadratic-knapsack problem
for a disaggregate simplicial decomposition algorithm to achieve faster convergence [Lotito, 2006, Karak-
itsiou et al., 2004] which still hinges on separability of minimization problem in Beckman formulation
wrt OD pairs. Work by Damberg andMigdalas [1997] uses similar ideas of parallelizing simplicial decom-
positionmethods. Bar-Gera [2010] also describes parallelization of algorithms based on paired-alternative
segments. An alternative way of parallelizing the traffic assignment process is described in Section 3.4.

3.3 Problem Statement

This section reviews the formulation of TAP, presents the problem statement specific to the DSTAP de-
composition scheme, and introduces definitions used in the rest of this paper. Figure 3.1 provides an il-
lustration of the definitions given below, for a full network with 2 subnetworks and the following origin-
destination (OD) pairs: r-s, r-5, 1-11, 9-5, 2-4 and 9-8. The same network is used throughout the paper
in explaining the various concepts associated with the DSTAP algorithm. A glossary of terms and table of
notation are provided at the end of the paper, in Tables 3.2 and 3.3.

The full network G = (N,A,W ) contains all the nodes, links, and OD pairs under consideration,
respectively defined by the sets N , A, and W . Let u ∈ U index the subnetworks. Each subnetwork
Gu = (Nu, Au,Wu) is a subset of the full network, whereNu ⊂ N ,Au ⊂ A, andWu ⊂ W , with the
additional stipulations that Au contains exactly the links whose tail and head nodes are in Nu, andWu

contains exactly the OD pairs whose origin and destination are both nodes inNu. These sets respectively
contain the subnetwork nodes, subnetwork links, and subnetwork OD pairs, and trips corresponding to
subnetwork OD pairs are referred to as subnetwork demand. Examples of subnetwork OD pairs are 2-4
and 9-8. The subnetworks do not overlap, so the setsNu,Au, andWu are disjoint across subnetworks u.

The subnetworks also need not form complete partitions ofN ,A, andW ; the setsNr,Ar, andWr

denote the nodes, links, and OD pairs in the full network which are not part of any subnetwork. These
sets include links and OD pairs whose tail and head lie in different subnetworks, or in no subnetwork.
These sets are referred to as containing regional nodes, regional links, and regional OD pairs, respectively,
and trips corresponding to regional ODpairs are referred to as regional demand. In Figure 3.1, the regional
nodesNr are shaded and the regional linksAr are colored, whereas the nodes and links corresponding to
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the two subnetworks are not. Examples of regional OD pairs are r-s, r-5, 1-11 and 9-5. In general, we
haveN = Nr ∪

u∈U
Nu,A = Ar ∪

u∈U
Au, andW =Wr ∪

u∈U
Wu.

The boundary nodes of subnetwork u are denoted by the set Bu ⊆ Nu, consisting of subnetwork
nodes which are the tail or head node of a regional link. In Figure 3.1, the boundary nodes of subnetwork 1
form the set {2, 4, 5, 7}, and the boundary nodes of subnetwork 2 form the set {8, 9}. A path is a regional
path if its endpoints correspond to a regional OD pair, and a subnetwork path if its endpoints correspond
to a subnetwork OD pair. A subnetwork path is internal if all nodes and links on the path belong to the
same subnetwork (path π = {2, 3, 4} in Figure 3.1), and is external if it uses links and nodes from more
than one subnetwork (path π = {2, 5, 8, 12, 9, 7, 4} in Figure 3.1). This paper only considers acyclic
paths, and all references to paths will exclude paths which repeats a node.

Let dw denote the travel demand between regional/subnetwork OD pairw, and let pw denote the set
of paths connecting the endpoints of OD pair w. The delay on each regional/subnetwork link a is given
by ta(·), as a function of its flow xa which is strictly increasing and differentiable. The user equilibrium
(UE) problem seeks the vector of regional and subnetwork link flows xminimizing the following convex
optimization problem:

minimize
∑
a∈A

∫ xa

0
ta(ω) dω (3.1)

subject to
∑
π∈pw

fπ = dw, ∀w ∈W, (3.2)

∑
w∈W

∑
π∈pw

fπδaπ = xa, ∀a ∈ A (3.3)

fπ ≥ 0, π ∈ pw, w ∈W. (3.4)

where fπ denotes the flow on regional/subnetwork path π and, and the indicator variable δaπ is 1 if path
π uses link a, and 0 otherwise.

The feasible region, defined by equations (3.2)–(3.4), forms a compact, convex polyhedral set. This
equilibrium problem on the full network can be solved using any number of modern algorithms [Bar-
Gera, 2002, Dial, 2006, Bar-Gera, 2010, Gentile, 2014], but we propose a parallelization scheme which
may offer faster convergence.
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Figure 3.1: A full network with two subnetworks.
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3.4 A Spatial Decomposition Algorithm: Overview

The traffic assignment problem is typically solved as one problem without regard to the subnetworks.
In this paper, we call this a centralized approach. A decomposition approach, by contrast, divides the as-
signment by subnetwork, which may have computational benefits. This paper describes a new algorithm
following a decomposition approach, which we term DSTAP (decomposed approach for the static traffic
assignment problem). TheDSTAP algorithm considers |U |+1 assignment problems for a networkwith a
setU of subnetworks: there are |U | subproblems, one corresponding to each subnetwork, and onemaster
problem which is derived from the full network. Each iteration of DSTAP starts by partially solving the
master problem, using the most recent information on travel times from the subproblems. The output
of the master problem provides the regional demand for each subproblem (“external trips” in planning
parlance). The subproblem flows and travel times are then updated and solved in a parallel fashion. As
discussed later, the set-up of regional network and subnetworks rely on equilibrium sensitivity analysis
based on path flow information. As the DSTAP algorithm we describe is path-based, this information is
available at each iteration.

The master problem assigns regional demand to a simplified version of the full network, referred to
as the regional network Ga = (Na, Aa,Wa), where subnetworks are aggregated and modeled by some
artificial links, referred to as artificial regional links, alongside the regional nodes and links as defined in the
previous section. The origin and destination nodes of the artificial regional links are subnetwork nodes,
which are either the boundary nodes or nodes serving as origin or(and) destination of regional demand.
These artificial links are created to represent the routes for regional demand which go through subnet-
works. The regional demand assigned to each artificial regional link in the master problem represents the
amount of regional demandwhich travels between the origin and destination nodes of the artificial link in
the associated subnetwork. This demand is used to update the subnetwork OD trips before running the
subproblems.

Each subproblem solves the assignment problem on one subnetwork augmented by some artificial
links, referred to as artificial subnetwork links. These artificial subnetwork links are created to represent
the routing of subnetwork demand which exit the boundary of subnetwork and go through other sub-
networks (subnetwork external paths). Let l denote an artificial subnetwork link added to subnetwork
u1 ∈ U representing routing through subnetwork u2. Similar to artificial regional links, the demand
assigned to l specifies the subnetwork demand from u1 which travels between the origin and destination
nodes of l in subnetwork u2 and need to be included when solving subproblem of u2. The artificial re-
gional/subnetwork link parameters are dynamic and need to be updated each iteration.
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For each OD pair in the regional network, we perform one shift from each used regional path to the
shortest regional path connecting its ODpair. Next, ODdemands in each subnetwork are updated to rep-
resent changes in external trips from the regional path shifts. Next, the subproblems are solved in parallel.
For each OD pair in subnetwork u, we perform one shift from each used subnetwork path to the shortest
subnetwork path connecting its OD pair. After all shifts are performed, the artificial regional/subnetwork
links are updated. This finishes one iteration of the DSTAP algorithm. If a convergence criterion is not
satisfied, these steps are repeated.

We propose a convergence criterion based on the maximum excess cost in the master problem. The
proposed stopping condition needs to be checked at the beginning of eachDSTAP iteration, after the arti-
ficial links are updated and before the master problem is solved. We prove the convergence of the DSTAP
algorithm using Zangwill’s global convergence theorem and show that, upon termination, the flow assign-
ment in DSTAP corresponds to an equilibrium flow in the full network.

3.5 DSTAP Algorithm

In this section, we present a formal definition of the master problem and subproblems introduced in the
DSTAP approach, and then discuss the algorithmic details.

3.5.1 Master Problem

The regional network,which forms thebasis for theDSTAPmaster problem, includes all the regional links,
regional nodes, boundary nodes, subnetwork nodes which are origins or destinations of regional demand,
and some artificial regional links. The artificial regional links represent abstractions of the subnetworks,
and aim to capture interactions between regional and subnetwork demands in a simplifiedmanner. These
artificial regional links are created between two nodes in the same subnetwork which can be used by re-
gional demand, and must satisfy two conditions: if (i, j) is an artificial regional link, then (1) node j is
reachable from i using only subnetwork links, and (2) both i and j correspond either to a subnetwork
boundary node or an endpoint of a regional OD pair; and in this latter case, i must precede j in some
regional path.

The artificial regional links in the regional network are created in three steps. First, for each subnetwork
u, artificial links are created between the boundary nodesBu. These boundary-boundary links model the
routing of regional demand through subnetwork u. The second step constructs artificial links between
the boundary nodes and subnetwork destinations with regional demand. These boundary-destination
links are used by regional demand with destination in u. Finally, we create artificial links between the
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subnetwork origins with regional demand and boundary nodes. The origin-boundary links created in
subnetwork uwill be used by regional demand starting from subnetwork u.

Figure 3.2 shows the regional network of the full network shown in Figure 3.1. In Figure 3.2, links
(2, 4), (2, 5), (7, 4), and (7, 5) in subnetwork 1, and link (8, 9) in subnetwork 2, are boundary-boundary
links and created in the first step. We do not create artificial links from boundary nodes 2, 4 and 5 to
boundarynode7 in subnetwork1, because the second condition is violated: there is nodemanddestined to
node 7, and regional demand can not leave subnetwork 1 at node 7. Nodes 5 and 11 are destination nodes
with regional demand in subnetworks 1 and 2, respectively. In the second step, we create the boundary-
destination links (2, 5) and (8, 11). Finally, the origin-boundary link (1, 5) is created as the last step (origin
node 9 in subnetwork 2 is a boundary node, and the only origin-boundary link we could create is (9, 8)
which violates condition 2.)

Note that the artificial links created inmentioned steps are not disjoint, and some of themmay fall into
more than one category. For example, link (2, 5) is both a boundary-boundary and boundary-destination
link. In such cases, only one link is created.

Nowwe investigate how the routing options in the full network correspond to routing options in the
regional network in Figure 3.2.

1. OD pair r-s: in the full network of Figure 3.1, there are 3 types of routes available: using the direct
regional link (r, s); entering subnetwork 1 at node 2 and leavnig it at node 4 using links and nodes
which are internal to subnetwork 1; and entering subnetwork 1 at node 2 and leaving it at node
4, but first passing through subnetwork 2 using regional links (5, 8) and (9, 7). All these routing
options are present in the regional network of Figure 3.2: in the first case, the direct link (r, s) is
present; in the second case, option 2 is modeled by the artificial link (2, 4); and in the third case,
through the artificial links (2, 5), (8, 9) and (7, 4).

2. OD pair r-5: all routes for this OD pair enter subnetwork 1 at node 2 and finish the trip at node 5.
This option is modeled in the regional network by the artificial link (2, 5). Note that the artificial
link (2, 5) is not a copy of the subnetwork link (2, 5), but rather represents all used paths from 2

to 5 in subnetwork 1.

3. OD pair 1-11: all routes exit subnetwork 1 at node 5, enter subnetwork 2 at node 8, and finish the
trip at node 11. The artificial links (1, 5) and (8, 11)model this routing option.

4. OD pair 9-5: all routes enter subnetwork 1 at node 7 and travel to node 5 in subnetwork 1. The
artificial link (7, 5) provides this option.
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Figure 3.2: Regional network solved in the DSTAP master problem, containing all regional links and
regional nodes, and artificial regional links.
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Each artificial regional link represents all used paths in the subnetwork connecting its tail to its head,
andwill be equippedwith cost functions which represent the equilibrium travel time between these nodes
in the subnetwork, as a function of the regional demandbetween these points. These cost functions are de-
rived froma linear approximation of the subnetwork equilibrium solutions, obtained through a sensitivity
analysis procedure described in Section 3.5.4. Let Θu denote the set of artificial regional links created for
subnetwork u in the regional network. As the flow on each artificial regional link corresponds to external
demand for subnetwork u, we will also useΘu to denote the associated set of OD pairs in subnetwork u.
At iteration k+1 of theDSTAP algorithm, these artificial regional links have the following cost function:

tk+1
θ (xk+1

θ,r ) = µkθ + ψk
θ (x

k+1
θ,r − x

k
θ,r), ∀θ ∈ Θu, u ∈ U (3.5)

where the superscript is the iteration number, tk+1
θ (·) denotes the travel time variable,xk+1

θ,r is the amount
of regional demand on the artificial regional link θ at iteration k+1, xkθ,r is the regional demand using the
link at the previous iteration, which is fixed, and µkθ and ψk

θ respectively denote the average travel time of
the paths represented by θ (weighted by flow), and the derivative of this average travel time for the artificial
regional link θ. Equation (4.23) has three parameters from the previous iteration k: xkθ,r, given by the
master problem, andµkθ andψk

θ , which are obtained from the subproblems. In the above formulation, the
derivativeϕkθ only exists if the solution is strictly complementary in the sense that all minimum-cost routes
have positive flow. This assumption is common in the sensitivity analysis literature [Tobin andFriesz, 1988,
Cho et al., 2000, Patriksson, 2004, Josefsson and Patriksson, 2007, Yang and Bell, 2007b]. In practice, it
can be difficult to determine whether a solution violates strict complementarity, because equilibria are
only solved to finite precision (cf. Bar-Gera [2006]). However, since non-complementary solutions are a
zero-measure set [Patriksson, 2004], and the sensitivity analysis procedure described below still produces
a directional derivative in noncomplementary cases, we feel this assumption is not limiting in practice.
Furthermore, the parameters ϕkθ are only used to help determine the step size using Newton’s method,
and the proof of convergence in Section 3.6 does not require the equilibrium cost to be differentiable at
each iteration.

The cost functions on regional links also need to be modified, to account for subnetwork demand
which uses regional links. The resulting biased cost functions t̃k+1

a (·) are defined as follows. Letxka,s denote
the subnetwork demand assigned to the regional link a as a result of solving the subproblems at iteration
k. The biased link cost function is given by:

t̃k+1
a (xk+1

a,r ) = ta(x
k
a,s + xk+1

a,r ), ∀a ∈ Ar (3.6)
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where xka,s is fixed and xk+1
a,r is the regional link flow variable. More discussion on these bias terms and

their values is found in the following subsection, when the subproblems and the structure of artificial
subnetwork links are presented.

The master problem at iteration k + 1 is then given by:

minimize
∑
a∈Ar

∫ xk+1
a,r

0
t̃k+1
a (ω) dω +

∑
u∈U

∑
θ∈Θu

∫ xk+1
θ,r

0
tk+1
θ (ω) dω (3.7)

subject to
∑
π∈pw

fk+1
π = dw, ∀w ∈Wr (3.8)

∑
v∈Wr

∑
π∈pv

fk+1
π δaπ = xk+1

a,r , ∀a ∈ Ar (3.9)

∑
v∈Wr

∑
π∈pv

fk+1
π δθπ = xk+1

θ,r , ∀θ ∈ Θu, u ∈ U (3.10)

fk+1
π ≥ 0, ∀π ∈ pw,R, w ∈Wr (3.11)

The first term of the objective function includes regional links with their biased cost functions and the
second term sums over the artificial regional links with cost defined in (4.23). The constraint set only
includes regional OD pairs, regional links and artificial regional links; notice that the allowable path set
in the regional network is pw,R, which is distinct from the path set in the full network pw due to the
aggregation of subnetworks. The solution to this problem specifies the flow assigned to regional links,
xk+1
a,r , and artificial regional links, xk+1

θ,r , at iteration k + 1. The flow on artificial links will be used to
update the demand of the associated subnetwork OD pairs.

3.5.2 Subproblems

Each of the |U | subproblems finds equilibrium on one of the subnetworks while approximating interac-
tions with the regional network and other subnetworks. To represent regional demand from the master
problem, the set of subnetworkODpairsWu is augmentedwith anODpair for each artificial regional link
in the setΘu where the origin and destination correspond to the tail and head nodes of each link θ ∈ Θu.
These OD pairs represent external trips from regional demand. For example, after solving the network in
Figure 3.2, the demand between OD pair 2-4 in subnetwork 1 needs to be adjusted based on the regional
demand assigned to artificial regional link (2, 4) (d24 ← d24+x

k+1
24,r ), and for artificial regional link (8, 9),

we first create OD pair 8-9, if not already created in previous iterations, and then set its demand equal to
the regional flow assigned to artificial regional link (8, 9), i.e., d89 ← xk+1

89,r . A similar procedure needs to
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be implemented for the remaining 5 artificial regional links and their associated subnetwork OD pairs.
Furthermore, the set of subnetwork links Au is augmented by artificial subnetwork links between

boundary nodes. The artificial subnetwork links represent the external subpaths: possibility of subnet-
work demand to leave the subnetwork, route through regional links and perhaps other subnetworks, and
re-enter the subnetwork at a later point. Consider the subproblems of the full network in Figure 3.1, as
shown in Figure 3.5. For subnetwork 1, we create one artificial link between boundary nodes 5 and 7 be-
cause subnetwork demand can leave the subnetwork at node 5 and re-enter at node 7 by traveling through
regional links (5, 8), subnetwork 2, and (9, 7). Similarly, artificial link (9, 8) added to subnetwork 2 repre-
sents the opportunity for subnetwork demand from subnetwork 2 to travel through subnetwork 1. OD
pairs are also added to correspond to the artificial links created in the regional network (compare with
Figure 3.2).

Let xk+1
γ,u denote the flow assigned to artificial subnetwork link γ added to subnetwork u to represent

routing through subnetwork ν between the end points of OD pairw ∈Wν at iteration k+1, and letΓu

denote the set of artificial subnetwork links added to subnetwork u. The cost function of these artificial
subnetwork links at iteration k + 1, denoted by tk+1

γ (·), is similar to (4.23):

tk+1
γ (xk+1

γ,u ) = λkγ + ϕkγ(x
k+1
γ,u − xkγ,u), ∀γ ∈ Γu, u ∈ U (3.12)

where xk+1
γ,u denotes the flow variable, xkγ,u is the flow assigned to the artificial subnetwork link at itera-

tion k, λkγ is the average travel time between the endpoints of OD pair w in subnetwork ν at iteration k
(weighted by current flows), and ϕkγ is the derivative of this average travel time.

Th reader may skip this discussion without loss of continuity.

Discussion

The external paths, in general, may traversemultiple regional links and subnetworks, and in such a case, to
represent all these external paths, the subnetwork can be equipped with regional links and some artificial
links representing the paths between the boundary nodes of other subnetwork. The resulting network
resembles the network used in the master problem, but retains the full subnetwork and only assigns sub-
network demand.

As an example, consider the network shown in Figure 3.3, which has 3 subnetworks (for simplicity, this
figure only shows the boundary nodes and their connections with other subnetworks). Assume that flow
exiting subnetwork 1 at node a1 may travel through subnetwork 2 and subnetwork 3 before returning
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back to subnetworks 1 at node a2. Then the set of alternative external subpaths for subnetwork 1 can
be modeled by adding the regional links and artificial links for the other subnetworks. Figure 3.4 shows
subnetwork 1 augmented with regional links (continuous line) and artificial links (dashed line). Similarly,
one can modify subnetworks 2 and 3 to represent the external subnetwork paths.

If there are multiple regional segments directly connecting nodes a1 and a2 without going through
other subnetworks, the regional segments can be directly added to the subnetwork. If this is computation-
ally prohibitive (e.g., if there are many such routse), one may perform a sensitivity analysis on the regional
network to simplify all these segments between a1 and a2 with one artificial link. The procedure for per-
forming sensitivity analysis on the regional network for the purpose of estimating the parameters of the
new artificial link would be the same as the one discussed for the case of subnetworks.

    Subnetwork 1

    Subnetwork 2     Subnetwork 3

a1 a2

b2

c3
b3

c2

b4

c1

b1

Figure 3.3: A regional network with three subnetworks.
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    Subnetwork 1

a1 a2

b2

c3

b3

c2

b4 c1

b1

Figure 3.4: Subnetwork 1 augmented with multiple regional and artificial links to model external
paths.

The demand in subnetwork u needs to be updated considering the flow assigned from other subnet-
works’ artificial links in previous iteration. Let dkw(ν) denote the flow from subnetwork ν assigned to
travel between endpoints of OD pairw in subnetwork u at iteration k and∆u denote the set of OD pairs
in subnetwork u which correspond to artificial subnetwork links in other subnetworks. For subnetwork
1 in Figure 3.5, dk75(2) = xk98,2 and ∆1 = {7-5}, and for subnetwork 2 we have dk89(1) = xk57,1 and
∆2 = {8-9}. The demand for anODpairw ∈ ∆u is updated considering the flow on artificial links rep-
resenting that OD pair in other subnetworks at the previous iteration (dk+1

w ← dw +
∑

ν∈U\u d
k
w(ν)).

For example, for iteration k + 1, we first create the OD pair 7− 5 in subnetwork 1 corresponding to the
artificial link (9, 8) in subnetwork 2, if not already existing in previous iterations, and then set the demand
to include the flow on the link in previous iteration (d75 ← dk75(2)).

The demand in a subnetwork for each iteration is thus influenced by the master problem and other
subnetworks, through external trips which enter or leave the subnetwork at its boundary nodes. Based on
whether an OD pair w belongs toΘu and/or∆u, the adjusted OD demand (d̆k+1

w ) at iteration k + 1 is
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Artificial subnetwork links
Subnetwork links
Subnetwork nodes 

2 3 4
5 6 7

1

Subnetwork 1

8 9
10 11 12

Subnetwork 2

OD pairs
W 2

9−8
Θ2

8−9
8−11
Δ2

8−9

OD pairs

W 1

2−4
Θ1

1−5
2−4
2−5
7−4
7−5
Δ1

7−5

Figure 3.5: Subnetworks solved as the subproblems of DSTAP. Networks have all the subnetwork
links, nodes and some artificial subnetwork links.

given by equation 3.13.

d̆k+1
w =



dw + xk+1
w,r ifw ∈ Θu, w /∈ ∆u

dw +
∑

ν∈U\u d
k
w(ν) ifw /∈ Θu, w ∈ ∆u

dw + xk+1
w,r +

∑
ν∈U\u d

k
w(ν) ifw ∈ Θu, w ∈ ∆u

dw ifw /∈ Θu, w /∈ ∆u

(3.13)

where xk+1
w,r denotes the regional demand assigned to OD pairw through the associated artificial regional

link.
Let W̆u =Wu∪Θu∪∆u denote the set ofODpairs in subnetworku togetherwith external demand

pairs from the regional network, Θu, or from other subnetworks, ∆u. The subproblem for subnetwork
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u at iteration k + 1 is given by:

minimize
∑
a∈Au

∫ xk+1
a,u

0
ta(ω) dω +

∑
γ∈Γu

∫ xk+1
γ,u

0
tk+1
γ (ω) dω (3.14)

subject to
∑
π∈pw

fk+1
π = d̆k+1

w , ∀w ∈ W̆u (3.15)

∑
w∈W̆u

∑
π∈pw

fk+1
π δaπ = xk+1

a,u , ∀a ∈ Au (3.16)

∑
w∈W̆u

∑
π∈pw

fk+1
π δγπ = xk+1

γ,u , ∀γ ∈ Γu (3.17)

fk+1
π ≥ 0, ∀π ∈ pw, w ∈ W̆u (3.18)

Nowwe can discuss the bias termxka,s in the travel time function of regional link a, described in equa-
tion (3.6). After all subproblems are solved, the bias termxka,s can be determined by summing subnetwork
demands assigned to regional link a:

xka,s =
∑
u∈U

∑
γ∈Γu

xkγ,uδaγ , ∀a ∈ Ar (3.19)

where δaγ is 1 if regional link a is part of artificial subnetwork link γ and 0 otherwise. This bias term plays
the role of the background flow when solving the master problem at iteration k + 1.

3.5.3 Algorithm

Figure 3.6 is a flowchart of the DSTAP algorithm, in which the subproblems are solved in parallel. The
algorithm alternates between shifting flow on the regional network (the master problem described in Sec-
tion 3.5.1), and on the augmented subnetworks described in Section 3.5.2.

The algorithm starts by checking a gapmeasure on the regional network and continues by solving the
regional network if the stopping condition is notmet. In Section 3.6,weprove correctness and convergence
of the algorithm. In the results presented in this paper, our termination criterion is the maximum excess
cost, defined by the greatest difference between the longest used path and shortest path for each OD pair.
The convergence gap value is given by ϵ∗od.

Flows on both the regional network, problem (3.7)–(3.11), and each subnetwork u ∈ U , problem
(3.14)–(3.18), are shifted according to theGoldstein-Levitin-Polyak gradient projection algorithmproposed
by Bertsekas [1976] and investigated in Jayakrishnan et al. [1994] for the traffic assignment problem. The
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Figure 3.6: Flowchart of the DSTAP algorithm.
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path flows for regional OD pairw are updated by moving along the direction opposed to the gradient:

fπ ←
[
fπ − α(Tπ − Tb(π))

]+
, ∀π ∈ p̂w (3.20)

fb(π) = dw −
∑
π∈p̂w

fπ (3.21)

where Tπ is the travel time on path π, and b(π) is a shortest path corresponding to the OD pair whose
endpoints are the same as those of π (choosing the same shortest path for all such paths), Tb(π) is travel
time on b(π), p̂w is the set of used paths excluding shortest path b(π), and α is the stepsize. In case of
ties, the choice of shortest paths b(π) for OD pairs can be made arbitrarily. To gain a sharper rate of
convergence, Bertsekas [1976] suggests a Newton-type step size, using second derivative information. To
this end, one can scale the stepsize α with the second derivative sπ (i.e. α← αsπ) in (3.20). The variable
sπ may be formulated as:

sπ =
1∑

a∈Ar
t̃′a|δaπ − δab(π)|+

∑
u∈U

∑
θ∈Θu

t′θ|δθπ − δθb(π)|
(3.22)

where t̃′a and t′θ are, respectively, the derivative of biased regional link a travel time and artificial regional
link θ travel time with respect to link flow evaluated at the current flow. The formulation for subnetwork
flow shifts are identical. (This choice of algorithm is assumed in the convergence proof in Section 3.6,
although it seems likely that other algorithm choices for the master problem will converge as well.)

When solving the regional network and subnetworks, the step sizeα, scaledwith the second derivative
sπ , in equation (3.20) plays an important role in the convergence of the algorithm and a large stepsize may
result in a slow convergence or even divergence. This issue is similar to that faced in trust region algorithms
for nonlinear programming, which improve the current solution by constructing an approximate model
around the current solution. The approximate model is trusted to be a good approximation near to the
current solution, but less so beyond the trust region. The general approach for using a trust region ap-
proach is to adjust the trust region from iteration to iteration. More precisely, if the new solution provides
enough improvement for the original problem, then the trust region can be extended, otherwise we need
to shrink the trust region. For more discussion on trust region approaches, refer to Yuan [2000].

InDSTAP, the artificial regional/subnetwork links represent an approximatemodel constructedbased
on the current subnetwork demand and flow assignment. In particular, the derivative information ob-
tained from the sensitivity analysis procedures, discussed in Section 3.5.4, is only valid when the set of used
paths do not change. A large change in the regional path flows, resulting from a large stepsize, may push

62



the subnetworkOD demands beyond the trusted region. Hence, we propose to adjust the stepsize at each
iteration based on the gap value. The gap measure, before adjusting the path flows, can be used as a mea-
sure of performance of the trust region. Specifically, the algorithm starts with an initial stepize of α0 and
updates it asαk+1 = ζαk such thatαk+1 ≤ 1. If the initial value of the gap measure at iteration k+1 is
worse than iteration k, then we reduce the trust region by setting ζ < 1, and if the new gap is lower, the
trust region can be extended by setting ζ > 1. This allows the algorithm to explore points further from
the current solution. The best value of ζ is network and implementation dependent.

3.5.4 Calculating parameters for artificial links

The travel time function of artificial regional link θ created for subnetwork u in the regional network,
defined in equation (4.23), involves two parameters: µkθ and ψk

θ . The former represents the travel time
between the endpoints of θ (an OD pairw ∈Wu) in the subnetwork u, which can be directly computed
from the assignment results of u at iteration k as the flow-weighted average of the subnetwork path costs:

µkθ =
∑
π∈pθ

ρπTπ (3.23)

where the notation π ∈ pθ defines all used subnetwork paths represented by the artificial link θ, Tπ is
travel time on path π, and

ρπ =
fπ∑

π′∈pθ fπ′
(3.24)

is the proportion of flow on path π.
The second parameter, ψk

θ , is the derivative of travel time between the endpoints of θ in the subnet-
work u with respect to adjusted OD demand d̆kw, accounting for the allocation of this demand across all
used paths. As shown in Josefsson and Patriksson [2007] and Jafari and Boyles [2016], this partial deriva-
tive ψk

θ under the assumption of strict complementarity of route flows, is given by the solution to the
following convex program:

minimize
∑
a∈Ãw

∫ ϱwa

0
t′a(ω) dω (3.25)

subject to
∑
π∈pw

βwπ = 1, (3.26)

ϱwa =
∑
π∈pw

βwπ δaπ, ∀a ∈ Ãw (3.27)
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where Ãw is the set of all links used by d̆kw at the current solution, t′a = dta/dxa,u is the derivative of link
a travel timewith respect to linka flow evaluated at current assignment at iteration k, ϱwa = ∂xa,u/∂d̆

k
w is

the derivative of linka flowwith respect to d̆kw evaluated at current demand at iterationk,βwπ = ∂fπ/∂d̆
k
w

is the derivative of path π flow with respect to d̆kw, and δaπ is 1 if link a is used by path π. The OD travel
time derivative can be written as:

ψk
θ =

∑
a∈Ãw

t′aϱ
w
a δaπ (3.28)

where π can be any of the used paths for OD pairw.
Similarly, the artificial subnetwork link γ added to subnetwork u to model the alternative routes in

subnetwork ν between the endpoints of OD pair w, and formulated in equation (3.12), requires two pa-
rameters from subnetwork ν: λkγ , which is the travel time between the OD pair w in the subnetwork ν,
formulated as the flow-weighted average of the subnetwork path costs (similar to (3.23) and (3.24)), andϕkγ ,
which is the derivative ofOD travel timewith respect to d̆kw. TheOD travel time derivativeϕkγ can be com-
puted using a convex program similar to (3.25)–(3.27) and (3.28) albeit for OD pairw within subnetwork
ν.

The convex problem defined by (3.25)–(3.27) must be solved for each subnetwork u ∈ U and each
OD pair w ∈ ∆u ∪ Θu. These problems are essentially static equilibrium problems on the networks
comprised of links in Ãw, with ϱwa andβwπ serving the role of link flows and path flows, respectively, linear
cost functions of the form t′aϱ

w
a , unit demand between OD pair w, and no nonnegativity constraints on

flowvariables. This problemcanbe solvedbymakingminormodifications to algorithms for the traditional
TAP.

The derivation in Jafari and Boyles [2016] conducted this sensitivity analysis under the assumption
that the initial flow were at equilibrium. The interpretation of the derivatives here are slightly different,
because inDSTAP the flow at iterationkmaynot satisfy the equilibriumprinciple. The sensitivity analysis
implies that any small change in OD demand will distribute among currently used paths such that they all
experience the same change in their travel time, and this equal change is given by these derivatives. More
details and computational experiments on thismethod can be found in Jafari andBoyles [2016] or Chapter
2 of this dissertation.

After updating the artificial link parameters at iterationk+1 of theDSTAPalgorithm (Figure 3.6), the
master problem starts with the flow assigned to the regional network at iteration k (xk+1

θ,r = xkθ,r, x
k+1
a,r =

xka,r). This flow is adjusted to obtain the new flow assignment xk+1
θ,r and xk+1

a,r . The subproblems at
iteration k + 1, after updating the subnetwork demands and artificial subnetwork links, start with their
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assignment solution from iteration k and adjust the flows on current set of used paths, proportionally
inflating or deflating the path flows, to ensure feasibility of new regional flows.

3.6 Algorithm Correctness

Here we discuss properties of the DSTAP algorithm and then prove its correctness and convergence.

3.6.1 Correctness

This subsection discusses the termination criterion used for the entire DSTAP algorithm (the “DSTAP
converged?” block). This leads directly to a discussion of algorithm correctness, that at termination the
solution obtained from the DSTAP algorithm corresponds to the equilibrium solution obtained from a
centralized algorithm applied to the full network. This is a separate issue from convergence to this correct
solution, which is discussed in the following subsection.

More specifically, we show that near-equilibrium solutions from DSTAP map to near-equilibrium
solutions on the full network, for any given convergence threshold. This is sufficient to show correctness,
since all algorithms for TAP only converge to the equilibrium solution in the limit. The proposed con-
vergence measure for the entire DSTAP algorithm is the maximum excess cost, calculated before solving
the master problem. We believe it likely that similar properties can be established for other convergence
measures as well, such as average excess cost or relative gap.

In this section, we use fk to denote the path flow vectors at the end of iteration k of DSTAP, while
xk refers to the associated link flow vectors.

We start by defining amapping from aDSTAPpath flow solution to a full network flow solution; this
full network flow solution is said to correspond to theDSTAP solution, and the link flows (and thus travel
times) on each link common to the full network and the DSTAP regional network and subnetworks will
agree. This constructionmakes extensive use of the correspondence between artificial links (both regional
and subnetwork) and the set of path segments in the full network which they aggregate. For instance, the
artificial link θ ∈ Θu connects two boundary nodes of subnetwork u, say iu and ju, and conceptually
represents all of the used paths between these nodes (|θ| paths). In this proof, the set pθ, as introduced in
(3.23), contains all such paths connecting the endpoints of the artificial link θ. Similarly, pγ is the set of all
used paths connecting the endpoints of a subnetwork artificial link γ. Iteration superscripts are dropped
for brevity.

In the construction, paths using artificial links in DSTAP must be allocated to the full network paths
corresponding to these artificial links. We will allocate the artificial link flow to the full network paths in
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the same proportions as the path flows in the DSTAP subnetwork aggregated by the artificial link. These
proportions for an artificial regional link θ ∈ Θu, and some subnetwork path π ∈ pθ are given by (3.24).

Now the construction of the feasible full network flow is given. Consider any OD pair w = (r, s)

modeled in DSTAP algorithm which is also present in the full network (note that due to artificial links,
subproblems in DSTAP may have additional OD pairs not present in the full network, i.e.,Θu and∆u),
and any path π∗ ∈ pw connecting its origin to its destination in the regional network. We consider the
following cases:

Case I: r and s form a regional OD pair (no subnetwork contains them both). Then path π∗ can be
expressed as the concatenation of path segments π∗i using just regional links, and artificial regional
links θi:

π∗ = π∗0 ⊕ θ1 ⊕ π∗1 ⊕ θ2 ⊕ · · · ⊕ πn(π∗)

where π∗0 or πn(π∗) may be empty if π∗ begins or ends with an artificial regional link. Since each
artificial regional link θi conceptually represents |θi| paths between its endpoints, the decomposi-
tion of path π∗ results in |θ1| ∗ |θ2| ∗ · · · |θn(π∗)| paths in the full network. Let π be one of these
paths. Path π may be expressed as:

π = π∗0 ⊕ σ1 ⊕ π∗1 ⊕ σ2 ⊕ · · · ⊕ πn(π∗)

where σi ∈ pθi represents one of the used paths represented by the artificial regional link θi. We
set

f
π
= dwρπ∗

n(π∗)∏
i=1

ρσi

where an empty product (meaning only regional links are used) is unity.

Case II: r and s lie within the augmented subnetwork u, but π∗ uses one or more artificial subnetwork
links. Then path π∗ can be expressed as the concatenation of path segments π∗i in subnetwork u,
and artificial subnetwork links γi:

π∗ = π∗0 ⊕ γ1 ⊕ π∗1 ⊕ γ2 ⊕ · · · ⊕ πn(π∗)

whereπ∗0 andπn(π∗) may be empty ifπ∗ starts or ends with a segment outside ofu. Similar to Case
I, the decomposition of path π∗ results in |γ1| ∗ |γ2| ∗ · · · |γn(π∗)| paths in the full network. Let
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π be one of these paths. Path π may be expressed as:

π = π∗0 ⊕ σ1 ⊕ π∗1 ⊕ σ2 ⊕ · · · ⊕ πn(π∗)

where σi ∈ pγi represents one of the used paths represented by the artificial subnetwork link γi.
We set

f
π
= dwρπ∗

n(π∗)∏
i=1

ρσi

Case III: r and s lie within the augmented subnetwork u, and π∗ does not use any artificial subnetwrk
link. Thenpathπ∗ exists in the subnetworkuof the full network aswell, andwe choosef

π∗ = fπ∗ .
Note that this formula can be seen as a special case of formula in Case II, where the empty product
is equal to unity.

Lemma 2. (Mapping from DSTAP flow to full network flow.) Given any regional and subnetwork path
flow vector fk which is feasible in the DSTAP algorithm, the corresponding full network path flow vector fk

is feasible to the full network assignment problem

Proof. Consider any regional OD pairw. Due to the way f was constructed, each path π ∈ pw with pos-
itive flow in the full network is associated with a unique path π∗ in the regional network which alternates
between path segments using regional links, and artificial regional links θi for i ∈ {1, . . . , n(π∗)}. We
will use the notation π ∈ π∗ to indicate that path π in the full network is associated with path π∗ in the
regional network; this notation is meant to suggest that several paths πmaymap to the same π∗. We then
have ∑

π∈pw
f
π
=

∑
π∗∈pw,R

∑
π∈π∗

f
π

(3.29)

= dw
∑

π∗∈pw,R

ρπ∗
∑
π∈π∗

n(π∗)∏
i=1

ρσi . (3.30)

Now, for each regional path π∗, we have
∑

π∈π∗
∏n(π∗)

i=1 ρσi = 1: this is trivially true when n(π∗) = 0;
and if it is true whenever n(π∗) = m, then for any path with n(π∗) = m+ 1we have

∑
π∈π∗

m+1∏
i=1

ρσi =
∑

π′∈pσm+1

ρπ′
∑
π∈π′′

m∏
i=1

ρσi

67



where π′′ is the subpath of π∗ preceding θm+1. This identity follows from the distributive law, and the
claim then follows from the induction hypothesis and the definition of ρσm+1 .

Applying this result to (3.30), and since
∑

π∗∈pv,R ρπ∗ = 1 by the definition of ρπ∗ , the constructed
flow vector satisfies the demand constraints. Since it is clearly nonnegative, it thus is feasible to the full
network equilibrium problem.

The proof for subnetwork flows is identical.

To illustrate this mapping, assume that the internal path π∗a = {2, 3, 4} and the external path π∗b =

{2, 5, 7, 4} are usedpaths forODpair2-4 in subproblem1of Figure 3.5. Based on the previous discussion,
pathπ∗a belongs to Case III, andπ∗b is of type of Case II withπ∗0 = (2, 5), γ1 = (5, 7), andπ∗1=(7,4). Let’s
assume that the artificial link (5, 7) in subnetwork 1 represents internal paths σ1,1 = {8, 10, 11, 12, 9}
and σ1,2 = {8, 12, 9} in subproblem 2. In the constructed solution to the full network (Figure 3.1),
OD pair 2-4 will use 3 paths: internal path π1 = {2, 3, 4} copied directly from the subnetwork; and
paths π2 = {2, 5, 8, 10, 11, 12, 9, 7, 4} and π3 = {2, 5, 8, 12, 9, 7, 4} obtained by splicing the paths
represented by the artificial link (5, 7) into the external path {2, 5, 7, 4}. Based on the previous notation
we have π1 ∈ π∗a and π2, π3 ∈ π∗b . The flow values are given by:

f
π1

= fπ∗
a

f
π2

= d24
fπ∗

b

fπ∗
a
+ fπ∗

b

fσ1,1

fσ1,1 + fσ1,2

= fπ∗
b

fσ1,1

fσ1,1 + fσ1,2

where the third equality follows since d24 = fπ∗
a
+ fπ∗

b
. Similarly

f
π3

= fπ∗
b

fσ1,2

fσ1,1 + fσ1,2

Let B̃ =
∑

u∈U |Bu| denote the total number of boundary points across all subnetworks. We now show
that near-equilibria for DSTAP solutions map to near-equilibria in the full network, where the excess gap
in the full network is at most a constant multiple of the DSTAP gap.

Lemma 3. (Near-equilibria in DSTAP are near-equilibria in the full network.) If the maximum excess
cost for the regional network and all subnetworks are respectively less than ϵrod and ϵsod when the “DSTAP
converged?” step is reached (i.e., just before solving the master problem), then the maximum excess cost in a
corresponding full network path flow solution (see Lemma 2) is at most 2B̃(ϵrod + ϵsod).
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Proof. Let the full network solution fk be generated from the feasible DSTAP solution fk using the pro-
cedure in Lemma 2. Choose any OD pair w and used path π ∈ pw in the full network, and let η be a
shortest path for this OD pair in the full network. As in Lemma 2, ifw is a regional OD pair, both π and
η can be decomposed into an alternating set of path segments composed of regional links, and links from
a particular subnetwork:

π = π0 ⊕ σ1 ⊕ π1 ⊕ · · · ⊕ σn ⊕ πn(π) (3.31)

η = η0 ⊕ ς1 ⊕ η1 ⊕ · · · ⊕ ςm ⊕ ηm(η) (3.32)

where each σi or ςj correspond to some artificial regional link θi or ϑj . Thus, π and η in the full network
correspond to the following paths π∗ and η∗ in the regional network:

π∗ = π0 ⊕ θ1 ⊕ π1 ⊕ · · · ⊕ θn ⊕ πn(π) (3.33)

η∗ = η0 ⊕ ϑ1 ⊕ η1 ⊕ · · · ⊕ ϑm ⊕ ηm(η) (3.34)

Using T to denote the travel time on a path, since the maximum excess cost in the regional network is less
than ϵrod we have:

|Tπ∗ − Tη∗ | ≤ ϵrod (3.35)

The cost functions on the artificial regional links θi and ϑj are given as the flow-weighted average of the
subnetworkpath costs (see Section 3.5.4). This implies that |Tσi−Tθi | ≤ ϵsod and |Tςj−Tϑj | ≤ ϵsod. Since
the number of subnetwork path segments going through each subnetwork u is at most 1

2 |Bu| (otherwise
there will be cycle), the value of n(π) is bounded by 1

2B̃. Using this bound we may write:

|Tπ − Tπ∗ | ≤ 1

2
B̃ϵsod ,

|Tη − Tη∗ | ≤
1

2
B̃ϵsod ,

From (3.35) we get the bound ϵrod + B̃ϵsod on |Tπ − Tη|.
Ifw is a subnetwork OD pair in subnetwork u, then we have

|Tπ∗ − Tη∗ | ≤ ϵsod (3.36)

Furthermore, the number of external subpaths on any path π∗ or η∗ can be at most 1
2 |Bu|. These external

subpaths in total can visit at most 1
2B̃ subpaths in other subnetworks and include at most B̃ regional
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subpaths (at most 2 regional subpaths for any subpath is a different subnetwork). This implies that:

|Tπ − Tπ∗ | ≤ 1

2
B̃ϵsod + B̃ϵrod ,

|Tη − Tη∗ | ≤
1

2
B̃ϵsod + B̃ϵrod ,

From (3.36) we get the bound 2B̃ϵrod+ ϵsod(1+ B̃) ≤ 2B̃(ϵrod+ ϵsod) on |Tπ −Tη|which dominates the
previous bound ϵrod + B̃ϵsod.

In practice this bound is very loose. In the numerical experiments which follow, the maximum excess
cost of the corresponding full network solution is always less than 4(ϵrod + ϵsod), and with virtually any
reasonable subnetwork definition will have the upper bound of 2|U |(ϵrod + ϵsod), since most paths will
not re-use subnetworks. Nevertheless, this result shows that an arbitrary level of convergence in the full
network can be obtained by solving DSTAP to a pre-defined level of convergence depending only on the
network topology and desired full network convergence. Together with a proof of DSTAP convergence,
in the following subsection, this result guarantees that DSTAP can produce full network solutions with
arbitrarily small gap. We summarize the discussion in this subsection in the following result.

Theorem 4. If the stopping condition of the DSTAP algorithm is reached at some iteration k (that is, the
maximum excess cost in the regional network and all subnetworks is less than ϵ∗od), one can construct a path
flow solution in the full network with maximum excess cost no more than 4B̃ϵ∗od.

3.6.2 Convergence of the DSTAP Method

The previous subsection showed that if theDSTAP algorithm converges to a stable solution, this solution
is an equilibrium solution on the full network to within any stated tolerance. This subsection addresses
the question of whether in fact it converges. First we present a formal algorithmic description of DSTAP,
and then prove the convergence of the algorithmusing the global convergence theoremofZangwill [1969].

Algorithmic Description: Define the state of the algorithm by a tuple containing the regional and subnet-
work link flows, regional and subnetwork path flows, original network link travel times and derivatives,
subnetwork demands, and the constants in the regional and subnetwork artificial link performance func-
tions:

χ = (fr, fs,d,µ,λ) (3.37)

where fr and fs are subvectors of f defining the regional and subnetworkpath flowvectors, i.e., f = [fr; fs].
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Each state χ is an element of the compact, nonempty setX defined by the following constraints. Let
D =

∑
w∈W dw be the total travel demand in the full network, t = maxa∈A ta(D) an upper bound on

the travel time on each link, and T = |A|t an upper bound on the travel time on a full network path.

1. For each θ ∈ Θ, µθ ∈ [0, T ].

2. For each u ∈ U and γ ∈ Γu, λγ ∈ [0, T ].

3. For each u ∈ U andw ∈Wu ∪Θu ∪∆u, dw ∈ [0, D].

4. Each path flow component in f lies in the interval [0, D].

Note that the state χ uniquely determines the flow, and thus the travel time, on each link and path in the
full network, through the correspondence in Lemma 2. Furthermore, these mappings from χ to x, t and
T are differentiable. We use notation such as x(χ) to reflect this dependence, but at times omit explicit
dependence on χ for notational brevity.

The DSTAP algorithm, given by the point-to-set map Ξ : X ⇒ X , is the composition of several
sub-mappings, which are precisely specified below:

1. Updating artificial link parameters for the regional network, denoted by Ξr,links.

2. Shifting flow between paths in the regional network, denoted by Ξr,shift

3. Updating artificial link parameters for all subnetworks, denoted by Ξs,links.

4. Shifting flow between paths in all subnetworks, denoted by Ξs,shift.

The overall DSTAP mapping Ξ is the composition of these mappings for the regional network and each
of the |U | subnetworks:

Ξ = Ξs,shift ◦ Ξs,links ◦ Ξr,shift ◦ Ξr,links . (3.38)

The four mappings are specified below.
The map Ξr,links updates the artificial link parameters in the regional network, and only changes the

µ components, that is,
Ξr,links(fr, fs,d,µ,λ) = (fr, fs,d,µ

′,λ) (3.39)

where for each artificial regional link θ, µ′θ is calculated as the weighted average cost of travel between the
endpoints of θ (weighted by the path flows in the relevant subnetwork), as described in Section 3.5.4. That
is, µ′θ =

(∑
π∈pθ fπTπ

)
/
(∑

π∈pθ fπ

)
.
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ThemapΞr,shift shifts flow from every used path in the regional network to a shortest path for its OD
pair. It is defined in terms of several simpler mappings. For OD pair w ∈ Wr, let bw be a shortest path
connecting this OD pair for the travel timesT(f),Bw the set of all such shortest paths,B = ×w∈WrBw

the set representing every possible choice of a single shortest path for each OD pair as a |Wr|-dimensional
vector, and b ∈ B one choice of such a vector. The map for shifting flow to these paths with step size α,
as formulated in (3.20) and (3.21), is given by

Ξb,α
r,shift(fr, fs,d,µ,λ) = (f ′r, fs,d

′,µ,λ) (3.40)

where f ′r = fr +∆b,αfr is the regional path flow shift given by:

∆b,αfπ = −min{fπ, α(Tπ − Tb(π))} (3.41)

if π is not the shortest path for its OD pairw chosen in b (that is, π ̸= b(π)), and

∆b,αfbw = −
∑

π∈pw\{bw}

∆b,αfπ (3.42)

if it is; and d′ is obtained from f ′r and fs by (3.13).

Lemma 5. Let zb(α) be the value of the objective function in the full network (1) based on the regional
path flows fr + ∆b,αfr, using the map in Lemma 2. As a function of α, the derivative dzb

dα exists and
is nonnegative at α = 0. Furthermore, dzb

dα < 0 unless f corresponds to a full network user equilibrium
solution.

Proof. For purposes of calculating the derivative at zero, we may restrict attention to α small enough that
α(Tπ − Tb(π)) < fπ for all paths with positive flow, so that ∆b,αfπ = α(Tπ − Tb(π)) if fπ > 0, and
∆b,αfπ = 0 if fπ = 0 and π ̸= b(π). Within this neighborhood, ∆b,αfr is differentiable, and this
differentiability carries through the map in Lemma 2 to the full network path flows, and thus the original
network objective function.

Consider next the effect of a change in the flow fπ on a regional path on the full network objective
function (3.1). Using the notation η ∈ π as in Lemma 2, to refer to a full network path η corresponding
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to regional path π, and using ρη to reflect the proportion of the flow on π which uses η, we have

∂zb

∂fπ
=

∑
a∈A

ta(xa)
∂xa
∂fπ

=
∑
a∈A

ta(xa)
∑
η∈π

ρηδaη

=
∑
η∈π

ρη
∑
a∈A

ta(xa)δaη

=
∑
η∈π

ρηTη

But this is the same travel time as Tπ in the regional network, because the mapping Ξr,links sets the travel
time on artificial regional links to the flow-weighted average of the constituent paths in the original net-
work.

Hence,

dzb

dα
=

∑
w∈Wr

∑
π∈pw

∂zb

∂fπ

dfπ
dα

= −
∑

w∈Wr

∑
π∈pw:π/∈b(π)

(Tπ − Tb(π))2

≤ 0

Furthermore, the inequality is strict unless Tπ = Tb(π) for all paths π with positive flow, that is, unless the
path flows f satisfy user equilibrium in the regional network (and thus in the full network).

Now, let zb(α) denote the value of the objective (3.1) after the step ∆b,α is made. As shown in
Lemma 5, the derivative dzb

dα (0) exists and is strictly negative unlessχ is a full network equilibrium. There-
fore, there is some α(b, χ) such that zb(α) < zb(0)whenever 0 < α < α(b, χ). Choose the constant
ϵα ∈ (0, 12), and define the map

Ξb
r,shift = (fr, fs,d,µ,λ) = (f ′r, fs,d

′,µ,λ) (3.43)

where f ′r = fr + ∆b,αfr for some α ∈ [ϵαα(b, χ), (1 − ϵα)α(b, χ)]. The key points of this map are
that both the path shift and descent of the objective are bounded away from zero for nonequilibrium χ.
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Finally, the choice of the shortest path vector b is arbitrary, and

Ξr,shift =
∪
b∈B

Ξb
r,shift . (3.44)

The maps Ξs,links and Ξs,shift for the subnetworks are defined in analogous ways, and their specifi-
cation is omitted for brevity. Note that the subnetwork shifts are all based on the same path flow values
from the last regional iteration, justifying a parallel solution. Lemma 5 can be applied individually to each
subnetwork’s shifts, and thus to the overall mapΞs,shift by linearity of the derivative.

Proof of Convergence: We now show convergence of the DSTAP algorithm by appealing to the global
convergence theorem of Zangwill [1969], stated below, which uses the following definition of a closed
map. For more details, see Bazaraa et al. [2013].

Definition Let A : X ⇒ X be a point-to-set map. The map Ξ is closed at χ∗ if for any sequences χk

and υk satisfying:

χk → χ∗ (3.45)

υk → υ∗ (3.46)

with υk ∈ Ξ(χk)we have υ∗ ∈ Ξ(χ∗).

Theorem 6. (Global Convergence Theorem, Zangwill, 1969*, p. 91) Let Ξ : X ⇒ X be a point-to-set map.
Suppose χ0 ∈ X and a sequence {χk}∞k=1 satisfying χk+1 ∈ Ξ(χk) are given. Let a solution setX∗ ⊂ X
be given, and furthermore suppose that:

1. The set X is compact.

2. There is a continuous function z on X such that

(a) if χ /∈ X∗, then z(υ) < z(χ) for all υ ∈ Ξ(χ).

(b) if χ ∈ X∗, then z(υ) ≤ z(χ) for all υ ∈ Ξ(χ).

3. The map Ξ is closed at all points outside X∗.

Then every limit point of {χk} belongs to the solution set X∗.
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We defineX∗ to be the set of χ corresponding to user equilibrium solutions in the full network (that
is, minimizers of (3.1)) under the mapping in Lemma 2, and check each of the conditions of Zangwill’s
Theorem in turn. The setX is clearly compact, and the full network objective function z is clearly con-
tinuous in Ξ (depending only on fr and fs). We now show its descent property. It is enough to show
this property for theΞ·,shift mappings, since theΞ·,links maps do not change the link flows and thus leave
z unchanged. Lemma 7 shows this for the regional network shift Ξr,shift, the proof for the subnetwork
shifts is identical but for a change in notation.

Lemma 7. Let υ ∈ Ξr,shift(χ). Then z(υ) ≤ z(χ), with equality only occurring if χ ∈ X∗.

Proof. If χ ∈ X∗, then it corresponds to a user equilibrium solution in the full network, in which case
∆b,λfr = 0, since paths are either unused and hence have zero shift based on the first term in the mini-
mum (3.41), or have the same cost as the shortest path for their OD pair, and have zero shift based on the
second term in the minimum. Hence z(υ) = z(χ).

Otherwise, Lemma 5 applies, and the derivative of z for the shift∆b,λf is negative. The step size α is
chosen such that z(υ) < z(χ), proving the lemma.

Lemma 8. The maps Ξr,shift and Ξs,shift are closed.

Proof. We prove the lemma for Ξr,shift, the proof is identical for Ξs,shift. Consider any convergent se-
quences χk → χ∗ and υk → υ∗ lying within X , and satisfying υk ∈ Ξ(χk). Define the flow shift
∆fkr = fr(υ

k) − fr(χ
k) to be the difference in the fr components of υk and χk. The sequence of flow

shifts converges to some vector∆f∗r . Further letbk andαk be values ofb andαwhich correspond to∆fkr .
Now, by the definition of Ξr,shift the vectors ∆fkr have at most one strictly positive component for each
regional OD pair v, corresponding to the choice of shortest path bk∗w . Therefore the limit flow shift vector
∆f∗r has at most one strictly positive component for each OD pair. For the OD pairs for which there is a
strictly positive component in ∆f∗r , the corresponding component in ∆fkr must also be strictly positive
for k sufficiently large. For each OD pair w with no strictly positive component in ∆f∗r , there must be a
shortest path b∗w which appears infinitely often in the sequence bk; wemay therefore pass to a subsequence
k′ where all bk′ are identical. Denote this vector of shortest path choices as b∗.

Within this subsequence, the valuesαk′ liewithin the closed intervals [ϵαα(b∗, χk′), (1−ϵα)α(b∗, χk′)].
Sinceα(b∗, χ) is continuous inχ, we haveα(b∗, χk′)→ α(b∗, χ∗) ≡ α∗, and a straightforward gener-
alization of the Bolzano-Weierstrass theorem allows us to pass to a subsequence k′′ where αk′′ → α∗ for
some α∗ ∈ [ϵαα

∗, (1− ϵα)α∗].
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Now, consider the path travel time vectorsTk′′ , which converge toT∗ ≡ T(χ∗) by continuity. The
limit vectorb∗ must correspond to shortest paths given the travel timesT∗: if not, thenbk′′ must also con-
tain a non-shortest path when k′′ is large. But this contradicts the choice of subsequence (bk′′ = b∗ uni-
formly) and the condition thatbk′′ corresponds toΞr,shift(χ

k′′). Similarly, continuity givesα(b∗, χ∗) =

α∗. Therefore b∗ and α∗ are valid choices forΞr,shift at the limit point χ∗, and υ∗ ∈ Ξr,shift(χ
∗).

Lemma 9. The maps Ξr,links and Ξs,links are closed.

Proof. Both of thesemaps are in fact single-valued functions which are continuous inχ, and hence closed.

Theorem 10. Given any sequence χk such that χ0 ∈ X and χi ∈ Ξ(χi−1), every limit point of this
sequence corresponds to a user equilibrium solution in the original network under the mapping in Lemma
2.

Proof. We verify each condition in Zangwill’s theorem. The feasible set X is clearly compact. Defining
X∗ to be the set of χ which map to user equilibrium solutions in the original network under Lemma 2,
Lemma 7 establishes that z(χi) ≤ z(χi−1), with strict inequality χi−1 ∈ X∗. Finally, by Lemmas 8
and 9, each of the mappings Ξr,links, Ξr,shift, Ξs,links, and Ξs,shift is closed, and hence their composition
is as well.

3.7 Demonstrations

In this section, we study the properties of theDSTAP algorithmon theAustin, Texas network. We start by
discussing issues related to the implementation of theDSTAP algorithm, and proceed to study the conver-
gence properties and the accuracy of the solution compared to a centralized approach. The computational
performance of DSTAP is discussed next. All tests are run on a 3.3 GHz Linux machine with 8GBRAM.

The Austin network (full network) has 6349 nodes, 18696 links, 1117 zones, 231497OD pairs and
total demand of 687690 vehicles. We partition the network into 2 subnetworks: the northern subnetwork
and southern subnetwork. These subnetworks are divided by the ColoradoRiver, which flows through the
city. Each subnetwork has 20 boundary nodes, and there are a total of 27 links connecting these 2 sub-
networks through boundary nodes. There are no regional nodes in the proposed network decomposition.
Table 3.1 illustrates the statistics for the Austin network (full network), and regional network and subnet-
works introduced in theDSTAP algorithm. Note that the subnetworks are modeled without subnetwork
artificial links. In our initial tests, we observed that the artificial subnetwork linkswere not used, indicating
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Table 3.1: Statistics of the Austin network solved in centralized approach and DSTAP regional net-
work and subnetworks.

Network nodes zones OD pairs demand physical links artificial links

Austin network 6349 1117 231497 687690 18696 0

Regional network 1854 907 67329 127695 27 24536
Southern subnetwork 2383 490 57557 185979 6863 176
Northern subnetwork 3966 627 106611 374016 11806 175

that internal subnetwork demands were restricted to links and routes inside the subnetworks and external
subpathsweremore expensive compared to internal ones. Thus, we removed all artificial subnetwork links
to simplify the networks for final simulations.

3.7.1 Implementation

Although convergence of the DSTAP algorithmwas shown in the previous section, efficient performance
on practical networks requires further implementation choices to be made. This subsection discusses our
findings based on the experiments we performed in the Austin network.

As discussed before, here we adjust the stepsize at each iteration based on the maximum excess cost
value. Figure 3.8 shows the variation in stepsize over iterations when starting with an initial step size of
α0 = 1 and adjusting it by applying the following rules: decrease the stepsize by a factor of 0.9 if the
maximum excess cost increased from the previous iteration or increase it by a factor of 1.1 if the maxi-
mum excess cost improved in two consecutive iterations. In general, as seen in Figure 3.8, the stepszie has
a decreasing trend and gets more stable at values less than 0.2. In our implementation of DSTAP, the
best performance, in terms of convergence speed and accuracy, was obtained by choosing α0 in the range
[0.1, 0.5], and we can boost the convergence rate by forcing a large stepsize, e.g. α = 1, periodically (for
example every 4− 5 iterations) for just one step and then reseting it back to the previous value.

The master problem starts with the flow assigned to the regional network at previous iteration, and
re-equilibrates this flow based on the new artificial regional link parameters to obtain the new flow assign-
ment. In addition, after solving the regional network at each iteration and updating the subnetwork OD
demands, the subproblems need not be solved from scratch. Warm-starting the subproblems with the so-
lution from the previous iteration, proportionally inflating or deflating the path flows forODpairs whose
demand changed, provided solutions with a good initial gap and a better convergence rate.
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          Northern subnetwork
          Southern subnetwork

Figure 3.7: Austin network decomposed into two subnetworks: northern and southern subnetworks.
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Figure 3.8: Iterative change of stepsize, α in equation (3.20), in the regional network, starting with
α0 = 1.
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3.7.2 Convergence Properties

Figure 3.9 plots the maximum excess cost values for the regional network, northern and southern subnet-
works, and also the excess cost on the Austin network in a logarithmic scale for a termination criterion of
0.8 minute (“DSTAP converged?” block in Figure 3.6) and initial stepsieze of 0.2. The maximum excess
cost for the Austin network is calculated by constructing a feasible path flow solution on the Austin net-
work from the DSTAP path flow solution according to Lemma 2. The DSTAP algorithm converged in
90 iterations with a maximum excess cost of 0.76minute on the regional network, and 4.28E−4minute
and 1.74E−4minute on southern and northern subnetworks, respectively. The maximum excess cost on
the full network is always within 10% of that of the regional network, and upon convergence, the full
network has a maximum excess cost of 0.816minute.

Figure 3.10 shows the average excess cost and relative gap values for the Austin network, regional net-
work, and northern and southern subnetworks. For any general network u with set of OD pairsWu, the
average excess cost and relative gap measures may be defined as:

Average excess cost =
∑

w∈Wu

∑
π∈pw fπ(Tπ − Tbw)∑
w∈Wu

dw
(3.47)

Relative gap =

∑
w∈Wu

∑
π∈pw fπ(Tπ − Tbw)∑

w∈Wu

∑
π∈pw fπTπ

(3.48)

where Tbw is cost of the shortest path for OD pairw. Upon convergence, the average excess cost and gap
value of the DSTAP solution applied to Austin network were 1.16E−6 and 8.74E−11, respectively.

3.7.3 Correctness

To examine the accuracy of theDSTAP algorithm, we solved for equilibrium on theAustin network using
the traditional gradient projection method, to a gap value of 1E−10, and measured the percentage error
in the equilibrium OD travel times as:

Et(w) =
|tD(w)− tC(w)|

tC(w)
, w ∈W (3.49)

where Et(w) is the relative error in travel time of OD pair w, and tD(w) and tC(w) are respectively the
equilibrium travel times fromDSTAP and the centralizedmethod, computed as the average travel time of

all usedpaths at equilibrium. Figure 3.11 shows the averagepercentageODtravel time error
(∑

w∈W Et(w)
|W |

)
against the iteration number of DSTAP algorithm in the final assignment. The average travel time error,
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Figure 3.9: Maximum excess cost values of the regional network, northern and southern subnetworks,
and the maximum excess cost of the full network (Austin network).

expressed in Figure 3.11, decreases and has a value of 0.006% upon termination. Out of 231,497 OD pairs,
231,017 have an error of less than 0.1%, and the travel time error of almost 99.8% of OD pairs is less than
1%.

A similar measure was proposed to evaluate the accuracy of the link flows. Let Ef (a) denote the per-
centage error in flow of link a given by:

Ef (a) =
|xD(a)− xC(a)|

xC(a)
(3.50)

where xD(a) and xC(a) denote the flow assigned to link a in the DSTAP and centralized methods, re-
spectively. The average link flow error is plotted in Figures 3.12. DSTAP algorithm terminates with an
average link flow error of 0.067%, and more than 98.9% of links have an error less than 1%.

3.7.4 Computational Effort

This section investigates the computational requirements of the DSTAP algorithm, compared with the
centralized approaches. Here we used relative gap as the measure of convergence, and both the DSTAP
and centralized approacheswere used to solve the network to a relative gap of 1E−5. The simulationswere
implemented on onemachine and Thread class in Java was used to solve the subproblems simultaneously.
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Figure 3.10: The average excess cost (a) and relative gap (b) of the full network, regional network,
and northern and southern subnetworks.
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Figure 3.11: The average percentage error in OD travel times of DSTAP compared to centralized
algorithm solution.
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Figure 3.12: The average percentage error in flows assigned to links in DSTAP compared to central-
ized algorithm.
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More specifically, one thread is created for each subproblem and if one of the threads ends earlier, it waits
for the other thread to finish before calling the next task. The traditional, centralized approach resulted in a
run time of 1780 seconds while the proposedDSTAP algorithm, with described parallel implementation,
could solve the Austin network to the same level of relative gap in 1128 seconds: savings of almost 36%.

To get a broader understanding of the computational performance of DSTAP, we conducted a sensi-
tivity analysis to the overall demand level in the network, scaling the OD matrix by factors ranging from
0.2 to 2. Figure 3.13 plots the runtime of DSTAP algorithm (regional network in red and parallelized sub-
networks in green) compared to a centralized approach (black). Figure 3.13 shows that the computational
savings of DSTAP are more significant in absolute terms for congested networks: more than 8500 sec-
onds when demand is doubled. Almost independent of the demand level, roughly four times as much
computational time is expended on the subproblems as on the master problem.

Figure 3.14 plots the percentage time saving for different demand levels. For low congestion cases, the
saving varies between35%–55%, increasing slightly as demand increases: the savings are almost70%when
OD demands are doubled. Also note that in our simulations, the time spent to perform the sensitivity
analysis and estimate the artificial links for each subnetwork is between 15%–20% of total subnetwork
computational time.

3.8 Conclusion and Discussion

Weproposed a spatial decomposition approach for the traffic assignment problem. TheDSTAPalgorithm
distributes the assignment task between the master problem, an equilibrium assignment over a simplified
version of the full network, and subproblems, each solving for equilibrium on a smaller subnetwork.

Artificial regional and subnetwork links are created based on linear approximations obtained through
sensitivity analysis. This is a critical component of the algorithm, because they allow for both the master
problem and subproblems to anticipate the response from the other networks they interact with. Rather
than having a strict separation between models, the use of “softer” boundaries was able to improve con-
vergence of the algorithm.

The subproblems aremodeled in themaster problemusing some artificial regional links, which are up-
dated each iteration. The assigned regional demand to these artificial regional links are then used to update
the OD demands in subproblems. This exchange of information between the master and subproblems is
implemented in an abstract way to ensure an accurate and fast assignment process.

Experiments on the Austin, TX network showed the computational advantages of DSTAP, and its
convergence to the correct equilibrium solution. Amajor question for future research is howbest to divide
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Figure 3.14: Computational savings of DSTAP algorithm.
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a network into subnetworks. In the Austin network, the Colorado River provided an obvious partition
into two regions of roughly equal size. It remains to determine general procedures for identifying sub-
networks, and the extent to which network topology influences the computational requirements of the
DSTAP algorithm.

In general, partitioning a network into more subnetworks will reduce computation time for the sub-
problems, but increases the complexity of the master problem by increasing the number of boundary
nodes, regional OD pairs, and subnetwork interactions. Based on the detail and complexity of the pro-
posed algorithm and our simulation experiments, we suggest the following criteria to be considered when
partitioning a network.

• Number of boundary nodes: Artificial links are created between each pair of boundary nodes and
also between regional origin/destination nodes and boundary nodes. As a result, partitioning a
network such that the minimum number of boundary nodes are created can decrease the size of
the regional network.

• Size of the regionalODmatrix: Similar to the case of boundarynodes, thenumberof origin/destination
nodes in the regional network controls the size of the master problem (number of links and OD
pairs). This also increases the number ofODpairs in each subnetwork and the partitionmay result
in subnetworks with number of OD pairs close to or even higher than that of the full network.

• Interaction between subnetworks: The subnetwork interactions are modeled with artificial links.
Adding these subnetwork artificial links, in addition to increasing the size of the subproblems, re-
quires performing additional sensitivity analysis to estimate the parameters of these artificial links.
One possible way to evaluate the amount of interactions beforehand is to find shortest path tree
from each subnetwork origin node in the full network. If the shortest path to any leaf node passes
through more than one boundary node (this is an external path which crosses the subnetwork
boundary and returns back later), then external subnetwork paths may be required. The num-
ber of OD pairs with an external shortest paths along with their associated trips may be used to
weight the amount of interaction between subnetworks.

Experimental evaluation the impact of these parameters and defining specific threshold values for each of
them are beyond the scope of this work, but is an important topic for future research.
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Table 3.2: Glossary of terms

Full networkG = (N,A,W ) ≜ contains all the nodes, links, andODpairs under
consideration

Subnetwork u = (Nu, Au,Wu) ≜ a subset of the full network (Nu ⊂ N,Au ⊂
A,Wu ⊂W )

Subnetwork nodesNu ≜ nodes within the boundary of subnetwork u
Boundary nodesBu ⊆ Nu ≜ subnetwork nodes which are the tail or head

node of a regional link
Subnetwork linksAu ≜ links whose tail and head nodes are inNu

Subnetwork OD pairsWu ≜ OD pairs whose origin and destination are both
nodes inNu

Subnetwork demand ≜ trips corresponding to subnetwork OD pairs
Subnetwork path ≜ its endpoints correspond to a subnetwork OD

pair
Internal subnetwork path ≜ uses links and nodes from the same subnetwork
External subnetwork path ≜ uses links andnodes frommore than one subnet-

work
Regional nodesNr ≜ nodes in the full network which are not part of

any subnetwork
Regional linksAr ≜ links in the full networkwhich arenotpart of any

subnetwork
Regional OD pairsWr ≜ OD pairs in the full network which are not part

of any subnetwork
Regional demand ≜ trips corresponding to regional OD pairs

Regional path ≜ its endpoints correspond to a regional OD pair
Artificial regional links, ≜ artificial links representing the subnetworks in

regional network
Artificial subnetwork links, ≜ artificial links added to subnetworks

Regional networkGa = (Na, Aa,Wa) ≜ abstracted version of full network augmented
with artificial regional links

Centralized approach ≜ solving the full network as one problemwithout
regard to the subnetworks

Decomposed approach ≜ solving the full network by partitioning the full
network into subnetwork

Master problem ≜ solves regional network
Subproblem u ≜ solves subnetwork u augmented with artificial

subnetwork links87



Table 3.3: Table of notation

dw ≜ demand for OD pairw
pw ≜ set of paths connecting endpoints of for OD pairw
p̂w ≜ set of used paths excluding the shortest path for OD pairw.
Tπ ≜ travel time on path π
fπ ≜ flow on path π
Tbw ≜ travel time on the shortest path for OD pairw
b(π) ≜ shortest path corresponding to the OD pair whose endpoints are the

same as those of π
z(·) ≜ value of the objective function in the full network
xka,r ≜ regional flow assigned to link a at iteration k of DSTAP
xka,u ≜ flow from subnetworku assigned to link a at in iteration k ofDSTAP
xka,s ≜ total subnetwork flow assigned to link a at iteration k of DSTAP
α ≜ stepsize
sπ ≜ second derivative of objective function z(·)with respect to path flow

fπ

Θu ≜ set of artificial regional links created for subnetworku in regional net-
work/ set of OD pairs in subnetwork uwith regional demand

Γu ≜ set of artificial subnetwork links added to subnetwork u
∆u ≜ set of OD pairs in subnetwork u which correspond to artificial sub-

network links in other subnetwork
d̆kw ≜ adjusted subnetwork OD demand at iteration k

ta(·) ≜ cost function of link a
t̃ka(·) ≜ biased cost function of link a in master problem at iteration k of

DSTAP
t̆ka(·) ≜ biased cost function of link a in subproblem at iteration k of DSTAP

tkθ(·)/tkγ(·) ≜ cost function of artificial regional/subnetwork link θ/γ at iteration k
of DSTAP

µθ/λγ ≜ free-flow time of cost function of artificial regional/subnetwork link
θ/γ

ψθ/ϕγ ≜ sensitivity term of cost function of artificial regional/subnetwork link
θ/γ

ρπ ≜ proportion of flow assigned to path π
fkr ≜ regional path flow vectors at iteration k of DSTAP
fks ≜ subnetwork path flow vectors at iteration k of DSTAP

fk = [fkr ; f
k
s ] ≜ path flow vectors at iteration k of DSTAP
fk ≜ path flow vectors in the full network at the end of iteration k of

DSTAP
xk ≜ link flow vectors at iteration k of DSTAP
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Part II:
Network Design: A Distributed

Problem Solving Approach
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4
Network Design Problem: A Decentralized

Approach

The network design problem is concerned with making investment decisions to maximize a system objec-
tive function subject to budget and feasibility constraints. Network design can be formulated as a bi-level
problem where the system manager selects the design parameters, and users react by modifying their trip
characteristics such as destination, mode, and route. These problems are hard to solve and a distributed
problem solving approach can be used to develop an efficient framework for scaling these problems.

In this chapter, we develop a distributed algorithm for network design problem in which different
planning agencies may have different objective functions and priorities while a regional agent (state or
federal officials) decides about the finding allocation between different urban cities. Under the proposed
allocation-design problem, the urban planning agencies do their own network planning and design inde-
pendently while taking into account that their local plan and investments may have broader impact than
their subnetwork jurisdiction. The regional agent has limited and indirect authorities over the subnet-
works through budget allocation. We develop a solution algorithm based on a sensitivity-analysis heuristic
to solve this problem and test our algorithm on two case studies: a hypothetical network composed of two
copies of the Sioux Falls network, and a modified version of the Austin regional network. We evaluate
the correctness of the decentralized algorithm and discuss a condition under which the decentralized algo-
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rithm replicates the true solution. Simulation results also reveals the advantage of the proposed algorithm
in this chapter in modeling the interactions between different regions. Furthermore, the implementation
of distributed algorithm on Austin regional network demonstrates a computational saving of 22%.

4.1 Introduction

This chapter is concerned with formulating and solving network design problem (NDP) over a regional
network composed of several urban networks together with intercity links and nodes. We propose a new
implementation of the problem based on th idea of distributed problem solving. Distributed problem
solving recommends partitioning the problem into smaller problems, called subproblems (subtasks), and
introducingmultiple solvers, referred to as local solvers (agents), to deal with the problem. In such a system,
there is no central processor or central controller and tasks are divided between the local solvers. The local
solvers, working on the subproblems, have limited access to local information, mainly from the assigned
task, and none of them is equipped with global information or knowledge. The subproblems must be
cooperative in the sense that, due to lack of sufficient information, a mechanism should be implemented to
share information between them. In addition, the local solvers should be loosely coupled: the local solvers
spendmost of their time on solving the assigned task rather than communicatingwith other solvers [Davis
and Smith, 1983].

In the proposed distributed implementation, regional agent is responsible for managing the intercity
roadways and has no authority over urban cities. The urban cities are managed independently and the
exact design plan at each urban city is not known to the regional agent. The regional agent has a fixed
budget which can be distributed between urban cities and invested on intercity roadways. The proposed
allocation-design problem can also be viewed as a multiresolution network design problem in which the
regional agent deals with a less detailed network in a higher level while the urban cities are managed in
lower levels but higher details.

There have been many studies on NDPs, and numerous heuristic and exact algorithms have been
developed to solve variations of the problem. The proposed network design algorithm in this chapter, in
addition to suggesting anewalgorithmfor traditional bi-levelNDPs, alsoproposes a solution algorithmfor
multi-level design problems. In practice, urban regions often implement their planning projects without
considering the impact of their local plans on a larger scale. This happensmainly because internal concerns
usually have higher priority compared to system-level effects. The proposed decentralized scheme forNDP
in this chapter can alleviate this problemby efficientlymodeling the linkage between different players (local
and regional planing agencies).
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The network design problem is a special class of bi-level optimization which is composed of two in-
terconnected problems: the upper-level and the lower-level optimization task. The upper-level problem is
usually concernedwith design variables (toll values, capacity improvements, facility location, signal timing
plans, link and lane additions, etc.), and the lower-level problem captures the reaction of users in response
to design decisions. The general formulation of a bi-level program is:

min
y
fu(y, x(y)) (4.1)

s.t. (y, x(y)) ∈ Su (4.2)

where Su = {(y, x) : gu(y, x) ≤ 0, hu(y, x) = 0} defines the feasible region for the upper-level
problem, and x(y) is well-defined in our model since the lower-level problemwill have a unique solution.
The value of x(y) is defined implicitly to be the solution to the following lower-level problem:

min
x
fl(x, y) (4.3)

s.t. x ∈ Sl(y) (4.4)

where Sl(y) = {x : gl(x, y) ≤ 0, hl(x, y) = 0} is the feasible set for the lower-level problem.
Bilevel programming problems (BLPP) have been discussed and used in the economic field, especially

in applications related to the Stackelberg game [Von Stackelberg, 1952]. In a two-person Stackelberg game,
the players wish to minimize their own cost (maximize their utility). The first player, referred to as the
leader, has perfect information about the objective function of the second player, the follower, and chooses
the strategy anticipating the reaction of the follower. The follower may or may not know the objective of
the leader but is aware of the strategy taken by the leader and updates their strategy using this information.

Falk and Liu [1995] divided algorithms for dealing with a general BLPP into three classes. In the first
class of algorithms, both the upper-level and lower-level problem are approximated by unconstrainedmin-
imization problems of penalized augmented objective functions. These solution algorithms are also called
double-penalty methods [Ishizuka and Aiyoshi, 1992, Dempe et al., 2015] and suffer from slow conver-
gence rate. The second class of solution algorithms replaces the lower-level problem with the equivalent
Karush-Kuhn-Tucker (KKT) conditions [Edmunds and Bard, 1991, Bard, 1983]. This transforms the bi-
level problem into a single-level mathematical program with complementary slackness conditions. The
resulting problem can be very complicated and consequently hard to solve. The third class of algorithms
uses the gradient information of the lower-level problem to compute a descent direction for the upper-
level problem [Kolstad and Lasdon, 1990]. The proposed algorithm described in this chapter falls into the
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third category.
It is easy to see the connection between the transportation network design problem and such a Stack-

elberg game. In transportation network design applications, the leader is a network manager (planner)
making design decisions such as which new links should be added or which set of links should be im-
proved, and the followers are users traveling through the network. The leader knows that the followers
select their route in order tominimize their travel cost (user equilibrium principle) and the followers select
their route taking into account the decisions made by the leader. Predicting the reaction of the users to
design decisions suggested by the system manager is critical, and without correct modeling of the users’
response, the design problem may result in unexpected situations in which no one may benefit from the
implemented improvement plans. A well-known example of such issue is the Braess paradox in which
adding a link increases the travel time of all users [Braess, 1969].

The transportation network design problem can also be categorized as a mathematical program with
equilibrium constraints (MPEC), which is a class of problems closely related to bi-level optimization. In an
MPEC, some of the constraints are defied as equilibrium constraints such as complimentary constraints or
variational inequalities. For the case of transportation network design problem, one can replace the lower-
level problem, which is a user equilibrium (UE) problem, as complimentary constraints or the equivalent
variation inequalities. Luo et al. [1996] provide more detail on this type of problem.

The transportationNDP can be divided into three classes: discrete network design problems (DNDP),
continuous network design problems (CNDP), andmixed network design problems (MNDP). The first class
refers to problems in which the design decisions are discrete variables (e.g., constructing new roads, adding
new lanes, location of bus stops, turning movements at signalized intersection). The second class deals
with design problems with continuous decision variables. These variables usually include how much to
expand a link, how much toll should be charged on candidate links, or timing the signals. The last class
of problems is a mixture of the previous classes and include both discrete and continuous design variables.
Note that the main theme of the network design problem discussed in this chapter is CNDP.

The continuity of decision variables in case of CNDPs allows a variety of algorithms and method-
ologies to be used in order to develop efficient solution algorithms. This is the main benefit of CNDPs
compared to DNDPs and MNDPs and has resulted in a larger body of research to deal with this type of
problems. In the following paragraphs we provide a summary of the current studies on the CNDPs. The
interested reader is referred toGao et al. [2005], Luathep et al. [2011], Farahani et al. [2013], andWang et al.
[2013] for more detail on discrete and mixed network design problems.

To the best of our knowledge, Abdulaal and LeBlanc [1979] were the first to formulate and solve
the CNDP in the field of transportation science. The authors formulated the problem as a nonlinear
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unconstrained optimization and solved it using the methods developed in Powell [1964] and Hooke and
Jeeves [1961]. Since then there has been a substantial amount of research on the CNDP [Yang and Bell,
2001]. Upper-level objectives have included system travel time [Mathew and Sharma, 2009, Meng et al.,
2001], consumers’ surplus [Yang, 1997], construction cost [Friesz et al., 1993], and reserve capacity [Wong
and Yang, 1997, Ziyou and Yifan, 2002]. The decision variables have included capacity improvements
[Chiou, 2005, Meng and Yang, 2002], optimal toll values [Yang and Bell, 1997], and scheduling traffic
lights [Yang and Yagar, 1995, Chiou, 2008]. The distributed network design problem proposed in this
chapter aims to minimize system travel time in all levels. While the decision variables for design problems
solved in the lower level are capacity improvements, the higher level design problem includes a mixture of
budget allocation and capacity improvements decisions.

Dantzig et al. [1979] solved the CNDP using a decomposition algorithm in which a separate subprob-
lem is solved for each link. A master problem, where the solutions to subproblems form its objective, is
also introduced to find the flow for each link. Suwansirikul et al. [1987] developed a solution algorithm,
called equilibrium decomposed optimization. Similar toDantzig et al. [1979], the problem is decomposed
into a set of interacting subproblems where each subproblem deals with one link with specific bounds on
decision variables. After finding the optimal design variables for all links, a UE problem is solved and then
the bounds are updated using information from the gradient values. This process is repeated until the
upper and lower bounds on decision variables are close enough. Meng et al. [2001] introduced the lower-
level problem (UE problem) as a gap function in the upper-level problem and employed an augmented
Lagrangian algorithm to relax this nonlinear equality constraint. This method was later used by Yang
et al. [2004] to select the optimal tolls for private highways where tolls are charged based on the entry-exit
points.

Chiou [2007] proposed a generalized bundle subgradient projection algorithm to solve the CNDP
where the user equilibrium subproblem is presented as a variational inequality. This work was later ex-
tended in Chiou [2009] by proposing a new conjugate subgradient projectionmethod. In a similar study,
Ban et al. [2006] formulated the CNDP with the UE subproblem expressed as a nonlinear complemen-
tary problem. Wang and Lo [2010] formulated the NDP as a single-level problem with equilibrium con-
straints and then approximated the equilibrium constraints as a set of mixed-integer constraints. Luathep
et al. [2011] generalized the mixed-integer programming formulation developed by Wang and Lo [2010]
formixedNDP and proposed a link-based formulation to avoid path enumeration. More recently, Li et al.
[2012] used the gap function of the lower-level UE problem and decomposition techniques to convert the
CNDP into a sequence of single-level concave optimization problems.

The difficulty of a NDP is due to its nonconvexity, nondifferentiability, and the need to solve one
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equilibrium problem after any change in upper level decision variables. As discussed by Yang et al. [1994],
the implicit function relating the link flows to improvement decision variables is a nonlinear equality
constraint making the problem nonconvex. More precisely, let (y1,x1(y1)) and (y2,x2(y2)) be two
feasible points where yz , z = 1, 2, denotes the vector of decision improvements selected by the plan-
ner and xz(yz) is the UE link flow solution for improvements yz . Now consider a point (y3,x3) with
y3 = λy1+(1−λ)y2 andx3 = λx1(y1)+(1−λ)x2(y2) as the convex combination of these two fea-
sible solutions. This, however, may not be a feasible solution since we cannot guarantee that x(y3) = x3.
Also, as proved by Hall [1978] and Lu and Nie [2010b], the UE link flow and origin-destination (OD)
travel times are continuous functions of demand, but they may not be convex, concave, or differentiable.

Due to these difficulties, searching for a global optimal solution requires an extensive amount of com-
putational resources and time, and the algorithmsdiscussed above aremostly capable of solving small prob-
lems instances. In addition, due to to non-convexity of the problem, checking the global optimality of a
solution generated by algorithms is not practical. As a result, there has been a significant amount of re-
search developing heuristic algorithms for the problem aiming to find a local optima. One of the earliest
heuristics developed for solving theNDP is the iterative optimization-assignment algorithm [Allsop, 1974,
Steenbrink, 1974], which iterates between solving the upper level problem (optimization) for fixed flows
and solving the lower level problem (assignment) for fixed link improvement decisions. This algorithmhas
reasonable computational time but may end up at a solution dramatically different from the optimal one
[Harker and Friesz, 1984]. Friesz and Harker [1985] showed that the iterative optimization-assignment al-
gorithm is exact for problems inwhich the planner ismyopic to the users’s behavior (Cournot-Nash game),
but is not appropriate for solving the user equilibrium network design problem, a Stackelberg game, in
which the reaction of users play the core role in the success of the improvement decisions. Another class
of heuristics are link usage proportion-based algorithms, where a given path-flow solution to the lower
level problem is used predict how link flows may change [Yang and Bell, 1997, Yang et al., 2004, 1994].
This class of algorithms are mainly suitable for design problems in which OD demand is an upper-level
decision variable (e.g., ramp metering, OD matrix estimation).

Sensitivity analysis based (SAB) algorithms are another class of heuristics which have received special
attention. The SAB approach performs the user equilibrium sensitivity analysis on the lower-level prob-
lemwith respect to upper-level decision variables to capture the reaction of users to upper-level design vari-
ables. This sensitivity analysis information is then used to compute a descent direction for the upper-level
problem and to update the upper-level decision variables. The SAB algorithms are the same as gradient-
based solution algorithms for a general BLPP, and have been successfully applied in many network design
applications [Yang et al., 1992, 1994, Yang and Yagar, 1995, Miyagi and Suzuki, 1996, Chiou, 1999, Ziyou
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and Yifan, 2002, Josefsson and Patriksson, 2007, Chiou, 2009, Dempe and Zemkoho, 2012]. The pro-
posed formulation and solution algorithm in this chapter heavily relies on the theory of user equilibrium
sensitivity analysis.

The rest of this chapter is organized as follows. Section 4.2 discusses the main advantages of the pro-
posed allocation-design problem. Section 4.3 formally defines the problem of interest by introducing the
regional-level and urban-level design problems, describing the interactions between them. Themathemat-
ical formulations of these regional- and urban-level problems are then presented in Section 4.4. Section
4.5 develops a solution algorithm based on a SAB heuristic for both design problems and discusses how
to relax the non-linear constraints and address demand elasticity. The implementation of the algorithm is
discussed in Section 4.6, and Section 4.7 concludes thiswork by discussing the implications and limitations
of this study.

4.2 Motivation

This section discusses themain advantages of the decentralized network design algorithm proposed in this
chapter. The first two points are directly related to traditional bi-level NDPs, while the last three ones are
mainly for multi-level application where network is composed of different regions with possibly different
priorities and concerns.

1. Simplifying he problem: As with the DSTAP algorithm discussed in Chapter 3, the decentralized
scheme for NDP developed here also partitions the network into smaller subnetworks, and intro-
duces a solver for each subnetwork. The local solvers are responsible for solving theNDP over their
subnetworks while taking into account the system-level impact of their planning decisions. As a
result, the subnetwork design problems are of smaller scale and easier to formulate and deal with
compared to the original problem for the complete network.

2. A faster solution algorithm: The decentralized algorithm for NDP has a better run time because of
two properties: (1) the subnetwork design problems are defined over a region of smaller scale with
fewer decision variables, and (2) the subnetwork design problems can be parallelized.

3. Modeling interactions: Developing transportation planning projects by considering just the local
concerns while neglecting the system-level impacts can result in sub-optimal solutions. Neighbor-
hood traffic calming is one example. Adding stop signs, lowering the speed limit, narrowing traffic
lanes, curb extension, roundabounts, and blocking some turning movements can be used to en-
courage safer driving. These strategies may also lower the congestion. Without propermodeling of
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the impact of such local changes on a larger scale, however, the traffic may shift from these neigh-
borhoods to other corridors causing additional congestion in other parts of the network. The same
problem can happen in a network of different urban cities. The proposed scheme in this chapter
for representing the interactions between different regions can alleviate this problem.

4. Modeling conflicting objectives: Different set of goals can be considered when developing trans-
portation improvement projects. In addition to minimizing the total system travel time, regions
may prefer to improve safety, decrease pollution, encourage bicycling and ridesharing, make the
citymore attractive for visitors and residents, boost the economy and jobmarket by attracting busi-
nesses and industries, etc. Dealing with these different and sometimes even conflicting objectives
(minimizing travel timemay not be well aligned with boosting the economy or attractingmore vis-
itors or investors) individually in a decentralized implementation is another main advantage of the
solution algorithm developed in this chapter.

5. Equity: A measure of equity, defined as the regret function and introduced in Section 4.3, ensures
that small subnetworks with marginal benefits compared to larger regions will receive an equitable
amount of funding.

4.3 Problem Statement

This section reviews the formulation of the CNDP used in this study and introduces definitions used in
the rest of this chapter. Figure 4.1 provides an illustration of the definitions given below, for a full network
with 2 urban cities, and the following origin-destination (OD) pairs: r-s, r-10, 10-s, 1-11, 2-4 and 9-8.

We partition the network into a regional network, which ismanaged by a regional agent (such as a state
Department of Transportation), and cities governed by urban agents (maybemetropolitan planning orga-
nization). Wedenote the regional agent byEr, andurban agent for cityubyEu. LetGu = (Nu, Au,Wu)

denote the network for city u ∈ U , whereNu,Au, andWu are the sets of nodes, links, and OD pairs in
cityu. We call nodes, links, andODpairs of an urban city as urban nodes, links, andODpairs, respectively,
and trips corresponding to urban OD pairs are referred to as urban demand. We assume that urban cities
do not overlap and are managed by independent urban agents.

Links and nodes which are not part of any urban city are called regional links and regional nodes,
respectively. The urban cities are connected via regional links and regional nodes, and the urban nodes
which are the tail or head node of a regional link are denoted as boundary nodes. Example of boundary
nodes in Figure 4.1 are nodes 2, 4, 6, 9 and 12. In addition, the OD pairs which start and end at dif-
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Figure 4.1: Full network with two urban cities.
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ferent urban cities or at regional nodes are referred to as regional OD pairs, and trips between them are
called regional demand. Examples of regional OD pairs are r-s, r-10, 10-s and 1-11. These regional
trips, in addition to regional links and nodes, may use some urban links and nodes by entering or exit-
ing at boundary nodes. Let ⟨a, b⟩ denote the set of all alternatives routes between nodes a and b. As an
example, there exist 5 alternatives for trips between OD pair r-s: {r, ⟨2, 4⟩, s}, {r, ⟨2, 6⟩, t, s}, {r, t, s},
{r, ⟨2, 6⟩, t, ⟨9, 12⟩, s}, and{r, t, ⟨9, 12⟩, s}. As an example, the set ⟨9, 12⟩ includes the followingpaths:
{9, 12}, {9, 8, 12}, and {9, 8, 10, 11, 12}. For the purpose of modeling the regional network, and simi-
lar to the approach proposed in Chapter 2 and employed in Chapter 3, we model these internal subpaths
with artificial links between the urban nodes which may attract some regional demand (boundary nodes
and urban nodes which are origin or destination to some regional demand).

LetGr = (Nr, Ar,Wr) denote the regional network, whereNr, Ar, andWr are the sets of nodes,
links, andODpairs in the regional network. Based on the above discussion,Nr includes all regional nodes
and urban nodes which are either an endpoint of a regional link (urban boundary nodes), or are the origin
or destination of some regional demands. SetAr consists of all regional links and artificial links represent-
ing the urban networks, andWr is the set of OD pairs with start and end at different urban cities or at a
regional node. Figure 4.2 depicts the regional network associated with the network plotted in Figure 4.1.

As mentioned before, the urban cities are managed by independent agents which have full authority
over their networks. The regional agent can only manage the regional links and nodes, and does not have
the authority to plan or dictate any change or modification for urban areas. The regional agent, however,
has a total budgetB to be split among the regional projects (capacity improvements on regional links) and
urban networks. LetHr denote set of candidate regional projects considered by the regional agent. The
urban agent solves a CNDP on the regional network with the objective to improve the quality of trip for
regional demands while minimizing the dissatisfaction of urban agents when splitting the budgetB. Let
Br,u be the external budget assigned to urban city u. The proposed dissatisfaction factor is proportional
to the difference between the objective value of urban agentEu for current budgetBr,u and the case when
total budgetB is allocated to urban city u. More detail on the formulation of the dissatisfaction factor are
presented later.

Urban agents, on the other hand, use their internal budget in conjunction with the budget assigned
to them from the regional agent to implement their planning projects. LetBu denote the internal budget
of urban city u. Furthermore, letHu denote the set of candidate links subject to capacity improvement at
urban city u. The urban agents aim to optimize their objective by splitting their total budget,Bu +Br,u,
between (a subset of) candidate links. Here we assume that urban cities are spatially distributed such that
the internal trips from any urban city u are constrained to the nodes and link within u.
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Figure 4.2: Regional network in which urban networks are represented as artificial links between nodes
which can attract regional demand.
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The urban agents, however, need to account for route choice behavior of the regional demand when
designing the improvements. More precisely, increasing the capacity of the links used by regional demand
may attract more regional demand which in turn can increase the congestion level on those corridors. To
this end, the urban agents solve a CNDP with elastic demand for OD pairs which may attract regional
demand. Specifically, ODpairs 2-4 and 2-6 in urban city 1, andODpairs 9-10 and 9-12 in urban city 2 are
OD pairs with elastic demand. These OD pairs are represented by artificial links in the regional network.
Due to demand elasticity, minimizing the total system travel time may result in plans discouraging users
from traveling. This is not acceptable. Thus, for urban agents, the objective of the upper-level problem is
to maximize social surplus for OD pairs with elastic demand and to minimize the total system travel time
for those with fixed demand, and the lower-level problem is a UE problem with elastic demand. Section
4.4 formulates the continuous network design problems for the regional and urban networks.

The solution algorithm for solving the proposed network design problems is a sensitivity analysis
based heuristic. In this heuristic, and at each iteration, the upper-level decision variables (regional link
improvements and budget allocation in case of the regional network and urban link improvements in case
of urban networks) are updated by solving an equivalent linear program and finding the steepest descent
direction. In Section 4.5.1 we discuss a general framework for performing the equilibrium sensitivity anal-
ysis which will be used extensively later to develop solution algorithms for the proposed network design
problems in Sections 4.5.4 and 4.5.5, respectively.

Figure 4.3 provides a schematic of the overall network design problem studied here. This problem is
a CNDP with 4 inter-connected levels which are solved iteratively in search of a local optimum:

L 1- Pr(0): The first level deals with the decision of the regional agent regarding how to allocate the
budget between regional projects and different urban cities.

L 2- Pr(1): The second level models the route choice behavior of regional demand in response to re-
gional and urban improvements suggested by the regional and urban agents, respectively.

L 3- Pu(0): The third level captures the investment decisions of the urban agents based on their internal
budget and the external budget received from the regional agent. At this level, one problem is
defined for each urban agent and these urban design problems are solved simultaneously.

L 4- Pu(1): The last level models the route choice behavior of urban trips in response to improvement
plans implemented by the urban agents. These UE subproblems are solved simultaneously.

In the next section, we provide more detail on different stages of the problem and mathematically
formulate the problem dealt at each level.
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Regional Agent    :- Authority over just regional links - Total budget of B to be distributed between regional projects and urban cities- Solves CNDP on regional network where urban cities are represented by some artificial links- Aims to improve quality of trip for regional demand and equalize dissatisfaction of urban cities

Urban Agent    :- Authority over urban links - Internal budget     and external budget      received from regional agent- Solves CNDP with elastic demand- Aims to optimize  quality of trip for urban demand and social surplus for regional trips 

Er

E1

B1
B r ,1

........... .

Urban Agent     :- Authority over urban links - Internal budget     and external budget      received from regional agent- Solves CNDP with elastic demand- Aims to optimize  quality of trip for urban demand and social surplus for regional trips 

E|U|

B|U|
Br ,|U|

Figure 4.3: The overall design of the proposed network design problem and tasks of each agent.
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4.4 Problem Formulation

In this section, we first present the network design problem of the regional agent and then formulate the
problem of the urban agents.

4.4.1 Regional-level network design problem

The regional agentEr must allocate thebudgetB among regional links inHr andurban cities. In assigning
the budget, the regional agent aims to improve the quality of trip for regional demands, formulated as total
travel time, and also to equalize the dissatisfactionofurban cities. Thedissatisfaction is formulated as regret
function [Cassidy et al., 1971]. For any urban city u and under assigned budgetBr,u, the regret function
measures the difference between the objective value of urban city u under external budget Br,u and the
ideal case in which the total budget is assigned to u, i.e.,Br,u = B. This function, denoted byRu(Br,u),
is formulated as:

Ru(Br,u) =
F 0
u (Br,u)− F 0

u (B)

F 0
u (B)

(4.5)

where F 0
u (·) is the optimal value of the upper-level objective function of city u ∈ U given a specific

budget value. Note that Ru(Br,u) is a nonnegative variable, and Ru(Br,u) = 0 indicates the optimal
budget assignment from the perspective of urban city u. The goal of the regret function is to provide
equity among different urban cities. If we simply sum the objectives of urban cities in the objective of the
regional agent, then larger cities may receive a high portion of the budget because improvements, in terms
of absolute change in system travel time, can be significant. The normalization factor introduced as the
denominator of the regret function ensures that equal improvements, in terms of the percentage values,
will have the same weights.

The urban agent solves the network design problem on a network consisting of regional links and
nodes and artificial links representing the urban cities (Figure 4.2). LetΘr

u denote the set of artificial links
created for urban city u in the regional network, and let Θ be the set of all artificial links in the regional
network, i.e.,Θ =

∪
Θr

u
u∈U

. The flow on each artificial link corresponds to external demand for urban city

u, and we useΘu to denote the associated set of OD pairs in urban city u. In Figure 4.2, for urban city 1
we haveΘr

1 = {(2, 4), (2, 6)} andΘ1 = {2-4, 2-6}.
Let yb be a decision variable denoting the capacity improvement for link b ∈ Hr with the associated

cost ofGb(yb). We assume thatGb(yb) is a differentiable and non-decreasing function of yb. We group the
capacity improvement decision variables for regional links into an |Hr|-dimensional vectoryr and budget
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assigned to different cities into a |U | dimensional vectorB. The network design problem over the regional
network, denoted R-CNDP, may be written as:

Pr(0) : min
yr,B

F 0
r (yr,B) =

∑
w∈Wr

dwTw(xr) +
∑
u∈U

ηuRu(Br,u) (4.6)

subject to
∑
u∈U

Br,u +
∑
b∈Hr

Gb(yb) ≤ B, (4.7)

0 ≤ yb ≤ ỹb ∀b ∈ Hr, (4.8)

0 ≤ Bu ≤ B̃r,u ∀u ∈ U. (4.9)

wherexr = [xa] is the vector of link flows andTw(·)denotes the travel time between the endpoints ofOD
pair w. The objective function (4.6) is the weighted sum of the total travel time on the regional network
and the urban regret functions, constraint (4.7) ensures that the sumof the budget assigned to urban cities
and invested on candidate regional links is less than available budget, and equations (4.8) and (4.9) display
the lower and upper bounds on link improvements and urban budget allocations, respectively.

In problemPr(0), and for a given set of decision variablesyr andB, the UE flow vectorxr is defined
implicitly by the following convex optimization problem:

Pr(1) : min
xr

F 1
r (xr) =

∑
a∈Ar\Θ

∫ xa

0
ta(ω, ya) dω +

∑
θ∈Θ

∫ xθ

0
tθ(ω,Br,u) dω (4.10)

subject to
∑
π∈pw

fπ = dw ∀w ∈Wr, (4.11)

∑
w∈Wr

∑
π∈pw

fπδaπ = xa ∀a ∈ Ar\Θ, (4.12)

∑
w∈Wr

∑
π∈pw

fπδθπ = xθ ∀θ ∈ Θ, (4.13)

fπ ≥ 0 ∀π ∈ pw, w ∈Wr. (4.14)

where dw and pw denote the travel demand and set of paths between regional OD pair w, fπ is flow on
pathπ, and the indicator variable δaπ(δθπ) is 1 if pathπ uses link a(θ), and 0 otherwise. Note that ya = 0

for any link a not included in setHr.
The first summation in the objective function of problem Pr(1), equation (4.10), is over all physical

regional links, and the second term sums over all artificial links in the regional network. The travel time
on any physical artificial link a ∈ Ar\Θ is a function of regional link improvement variable ya, while the
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travel time on any artificial link θ ∈ Θr
u depends on the external budgetBr,u assigned to urban city u.

Let ŷr, B̂, and x̂r denote the current solutions to problems Pr(0) and Pr(1), respectively. (Details
of the solution algorithm will be discussed later.) Before solving the CNDP for urban cities based on
the new external budget B̂, we need to update the demand functions of urban OD pairs with regional
demand. Recall that these OD pairs belong to artificial links modeled in the regional network, and the
demand functions are introduced to predict the number of regional trips attracted to each urbanOD pair
as a function of OD equilibrium travel time.

Let w ∈ Θu ⊆ Wu be an urban OD pair represented in the regional network by artificial link θ ∈
Θr

u ⊆ Ar, dr,w(·) be the regional demand attracted to travel between the endpoints of OD pairw inside
urban city u, and d̂r,w = x̂θ denote the current value of dr,w. We approximate the demand function,
Dr,w(·), as a linear function of OD travel time:

dr,w(Tw) = Dr,w(Tw)

= d̂r,w +
∂dr,w
∂Tw

(Tw − T̂w)
(4.15)

where T̂w is the current travel time between the endpoints of w (demand d̂r,w is attracted based on this
travel time), and∂dr,w/∂Tw is the derivative ofdr,w(·)with respect toTw evaluated at T̂w. This derivative
is the only unknown variable to be estimated, and will be discussed in the Section 4.5.4.

Next, we formulate the continuous network design problem for each urban city u.

4.4.2 Urban-level network design problem

In the previous section we formulated the CNDP of the regional agent. The solutions to problemsPr(0)

and Pr(1) determine the external budget assigned to each urban city u ∈ U , i.e., Br,u, and the demand
functions, formulated in (4.15), specifying the regional demand attracted to urban OD pairs modeled in
the regional network (ODpairs isΘu). Here we describe the CNDP of urban cities, denoted as U-CNDP,
and then discuss how the artificial links in the regional network are updated.

Each urban agent Eu has a total budget of Bu + Br,u to be invested on urban projects defined by
set Hu. Likewise the regional agent who aims to minimize the total system travel time of the regional
travelers subject to a constraint on the satisfaction rate of urban agents, equations (4.6)–(4.9), the urban
agents need to consider the consumers’ surplus. Minimizing the total system travel time when demand
is elastic may result in implementing plans discouraging the regional travelers from traveling through the
urban cities. This is not practical and plausible. An appropriate objective function for the upper-level
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problem at each urban city can be tomaximize the social surplus for the regional demand and tominimize
the total travel cost for urban demands. The social surplus for regional demand can be defined as the differ-
ence between the social benefit,

∑
w∈Θu

∫ dr,w
0 D−1

r,w(ω) dω, and social cost incurred by regional travelers,∑
w∈Θu

dr,wTw. The upper-level problem for urban network u, denoted byPu(0), can be formulates as:

Pu(0) : min
yu

F 0
u (yu) =

∑
w∈Wu

dwTw(xu)−
∑
w∈Θu

(∫ dr,w

0
D−1

r,w(ω) dω − dr,wTw(xu)
)

(4.16)

subject to
∑
b∈Hu

Gb(yb) ≤ Bu +Br,u, (4.17)

0 ≤ yb ≤ ỹb ∀b ∈ Hu (4.18)

whereyu denotes the vector of improvement decision variables for urban links, andxu solves the following
UE problem with elastic demand:

Pu(1) : min
xu,du

F 1
u (xu,du) =

∑
a∈Au

∫ xa

0
ta(ω, ya) dω −

∑
w∈Θu

∫ dr,w

0
D−1

r,w(ω) dω (4.19)

subject to
∑
π∈pw

fπ = dw ∀w ∈Wu, (4.20)

∑
w∈Wu

∑
π∈pw

fπδaπ = xa ∀a ∈ Au, (4.21)

fπ ≥ 0 ∀π ∈ pw, w ∈Wu. (4.22)

where xu and du denote the vector of link flows and regional flows attracted to u, respectively.
Let ŷu, x̂u and d̂u denote the solutions to problems Pu(0) and Pu(1). (Details of the solution algo-

rithm will be discussed in Section 4.5.) Before solving the R-CNDP, problems Pr(0) and Pr(1) for new
flow assignment at urban cities, we need to update the parameters of artificial links in the regional net-
work. Recall that these artificial links belong to urban OD pairs with regional demand (those with elastic
demand) which are denoted byΘu.

Each artificial link θ ∈ Θr
u represents all used paths in the urban city u connecting its tail to its head,

andwill be equippedwith cost functions which represent the equilibrium travel time between these nodes
inside u, as a function of the regional demand between these points and the external budget assigned to
urban city u. Let w denote the OD pair represented by the artificial link θ in the regional network. At
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each iteration of the R-CNDP, these artificial regional links have the following cost function:

tθ(xθ) = µθ + ψθ,x(xθ − x̂θ) + ψθ,B(Br,u − B̂r,u), ∀θ ∈ Θr
u, u ∈ U (4.23)

where tθ(·) denotes the travel time variable, xθ is the amount of regional demand on the artificial link θ,
x̂θ = d̂r,w is the current regional demand attracted to urban city u, Br,u is the external budget assigned
to u, and B̂r,u is the current value of Br,u. Variable µθ is the weighted average travel time of the paths
represented by θ (weighted by flow), and ψθ,x and ψθ,B respectively denote the derivative of this average
travel time with respect to flow xθ and external budgetBr,u evaluated at x̂θ and B̂r,u. In equation (4.23),
xθ and Br,u are decision variables adjusted at the regional level, B̂r,u is known, and parameters µθ and
x̂θ can be directly computed from the solutions to problems Pu(0) and Pu(1). Thus the only unknown
variables are ψθ,x and ψθ,B , which will be discussed in Section 4.5.5.

Next we discuss the solution algorithms for regional problems Pr(0) and Pr(1) and urban problems
Pu(0) and Pu(1), for every urban city u ∈ U .

4.5 Solution Algorithms

As discussed in Section 4.1, the CNDP is a non-convex optimization problem, and searching for global
solutionmay require a tremendous amount of effort and computing resources. In addition, each iteration
of the CNDP requires solving one UE problem to evaluate the impact of improvement decision variables,
which can be time-consuming on large-scale networks. As a result, the literature hasmainly focused on de-
veloping heuristic algorithms for this problem. SAB algorithms are among the best heuristics successfully
applied to network design problems. Each iteration of an SAB algorithm starts with solving the upper-
level problem,where the impact of upper-level decision variables ismodeled through lower-level sensitivity
analysis. Essentially, a SAB algorithm predicts the behavior of the users, modeled as the lower-level prob-
lem, in response to link improvement decision variables adjusted at the upper-level. After updating the
upper-level decision variables, the lower-level UE problem is solved for the new design parameters. Then a
sensitivity analysis is performed to compute the derivatives of link flows with respect to link improvement
decision variables. This process is repeated until a measure of convergence is reached.

Before discussing the detail of the SAB algorithm for regional and urban network design problems,
we describe a procedure to perform equilibrium sensitivity analysis (required for updating artificial links
in regional network and demand functions for urban cities), discuss how to relax the nonlinear inequality
constraints (4.7) and (4.17), and reformulate the elastic-demand user equilibrium problemP ′

u(1) ((4.19)–
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(4.22)) as a fixed-demand problem.

4.5.1 User Equilibrium Sensitivity Analysis

This section formulates the user equilibrium sensitivity analysis problem. Let ϵ = [ϵ] be the vector of
disturbances where ϵ denotes the disturbance parameter affecting a subset of link travel costs and/or OD
demand. Let φ(ϵ) and ϱ(ϵ) respectively denote the set of links and OD pairs affected by disturbance
parameter ϵ. In the following discussion, the variable δa(ϵ) is 1 if travel time on link a depends on ϵ, and 0
otherwise. Similarly, δw(ϵ) is 1 if demand between the OD pairw is a function of disturbance parameter
ϵ, and 0 otherwise. Here we discuss how to compute the derivative of links flows, path flows, and OD
travel times with respect to ϵ.

Let x̂ denote the UE flow for some ϵ on a networkG = (N,A,Z) (regional or urban), and p̂w and
Âw, respectively, be the set of paths and links used by dw at the equilibrium flow x̂. Furthermore, let
βϵπ = ∂hπ/∂ϵ be the derivative of path π’s flow with respect to ϵ, αϵ

a = ∂xa/∂ϵ be the derivative of link
a’s flow with respect to ϵ, and t′a = dta/dxa be the derivative of link a’s travel time with respect to the
link flow evaluated at x̂.

The disturbance parameter ϵ affects all OD pairs in ϱ(ϵ), and also the OD pairs using links in φ(ϵ)
(OD pairs with at least one path using links in φ(ϵ) under flow assignment x̂.) Let G(ϵ) denote the set
of affected OD pairs, andA(ϵ) =

∪
Âw

w∈G(ϵ)

be the union of the links used by the OD pairs inG(ϵ). Based

on the assumption that the set of used paths remains unchanged, the user equilibrium sensitivity analysis
problem with respect to ϵ can be formulated as the following convex optimization problem:

minimize
∑

a∈A(ϵ)

(∫ αϵ
a

0
t′aω dω +

dta
dϵ
αϵ
aδa(ϵ)

)
(4.24)

subject to
∑
π∈p̂w

βϵπ = δw(ϵ), ∀w ∈ G(ϵ) (4.25)

αϵ
a =

∑
w∈G(ϵ)

∑
π∈p̂w

βϵπδaπ, ∀a ∈ A(ϵ) (4.26)

This is essentially a static user equilibrium problem on the network comprised of paths used by the OD
pairs inG(ϵ) (subnetwork comprised of links inA(ϵ)), with αϵ

a and βϵπ serving the role of link flows and
path flows, respectively. Solving this problem yields the derivatives of link flows and path flows (αϵ

a and
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βϵπ , respectively), and derivative of OD travel time for any OD pairw ∈ G(ϵ) can be formulated as:

∂Tw
∂ϵ

=
∑

a∈A(ϵ)

(
t′aα

ϵ
a +

dta
dϵ
δa(ϵ)

)
δaπ (4.27)

where path π is any of the used paths between endpoints of OD pairw. These derivatives only exist if the
solution is strictly complementary in the sense that allminimum-cost routes have positive flow. Please refer
to Jafari and Boyles [2016] for more detail on user equilibrium sensitivity analysis problem (4.24)–(4.26).

The proposed sensitivity analysis problem will be used in the following sections to estimate the pa-
rameters of urban demand functions, equation (4.15), and artificial links, equation (4.23). In addition, the
implementation of SAB algorithm extensively relies on this equilibrium sensitivity problem.

4.5.2 Relaxing Non-linear Constraints

TheALMis awell-knownalgorithm for solvingoptimizationproblemswithnon-linear constraints. In the
augmented Lagrangian method, the non-linear side constraints are excluded by incorporating them into
the objective function and solving a sequence of less constrained optimization problems. The augmented
Lagrangianmethod starts with a point, not necessarily feasible, and reduces the violation of the constraints
by updating the Lagrange multipliers and penalty term iteratively. Chapter 4 of Bertsekas [1999] discusses
details of the implementation and correctness of the ALM algorithm.

The augmented Lagrangian formulation with quadratic penalty function at iteration k of R-CNDP
is a problem of the following form

P ′
r(0) : min

yk
r ,B

k
L0
r(y

k
r ,B

k, λk, ck) (4.28)

subject to 0 ≤ ykb ≤ ỹb, ∀b ∈ Hr (4.29)

0 ≤ Bk
r,u ≤ B̃r,u, ∀u ∈ U (4.30)

where L0
r(y

k
u,B

k, λk, ck) is the augmented Lagrangian function, ck is the external penalty coefficient,
andλk is Lagrangemultiplier for the non-linear inequality constraint defined in equation (4.7) at iteration
k. The augmented Lagrangian functionL0

r(y
k
u,B

k, λk, ck) is given by:

L0
r(y

k
r ,B

k, λkr , ck) = F 0
r (y

k
r ,B

k) +
1

2ck

((
max{0, λk + ckgr(y

k
r ,B

k)}
)2 − (λk)2

)
(4.31)

where gr(yk
r ,B

k) =
∑

u∈U B
k
r,u +

∑
b∈Hr

Gb(y
k
b ) − B. Bertsekas [1999] suggests the following rule
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to update these parameters:

λk := λk−1 + ck−1gr(y
k−1
r ,Bk−1)

ck := βk−1ck−1
(4.32)

and:

βk−1 =

ρ if
(
g+r (y

k−1
r ,Bk−1)

)2 ≥ φ(g+r (yk−2
r ,Bk−2)

)2
1 otherwise

(4.33)

where gr(yk−1
r ,Bk−1) and gr(yk−2

r ,Bk−2) denote the nonlinear constraint at iteration k−1 and k−2,
respectively, ρ > 1, φ = 0.25, and g+r (x) = max{0, gr(x)}.

For the case of U-CNDPs, and similar to regional CNDP, the augmented Lagrangian formulation
with quadratic penalty function at iteration k of U-CNDP consists of solving a problems of the form

P ′
u(0) : min

yk
u

L0
u(y

k
u, λ

k, ck) (4.34)

subject to 0 ≤ ykb ≤ ỹb, ∀b ∈ Hu (4.35)

where L0
u(y

k
u, λ

k, ck) is the objective function (4.16) augmented with quadratic penalty function of the
non-linear inequality constraint (4.17):

L0
u(y

k
u, λ

k, ck) = F 0
u (y

k
u) +

1

2ck

((
max{0, λk + ckgu(y

k
u)}

)2 − (λk)2
)

(4.36)

where gu(yk
u) =

∑
b∈Hu

Gb(y
k
b )−Bk

r,u −Bu and update rules similar to (4.32) and (4.33).

4.5.3 Converting Elastic Demand into Fixed Demand

Gartner [1980] proposed a transformation to represent an elastic-demand user equilibrium problem as a
fixed-demand problem. To this end, artificial links are added between the endpoints of elastic OD pairs
with a cost function given by the inverse demand function. Let lw denote the artificial link added between
the endpoints of OD pairw ∈ Θu with a demand function given by (4.15), and furthermore, let θ ∈ Θr

u

be the associated artificial link in the regional network. The maximum regional demand which can go
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through urban OD pairw ∈ Θu would be:

d̄kr,w =
∑
ν∈Wr

dνδθν

where δθν = 1 if regional OD pair ν uses artificial link θ at iteration k, and is 0 otherwise.
The cost of travel on link lw would be:

tlw(xlw) = D−1(dkr,w(xu))

= T k
w +

1

∂dkr,w/∂Tw
(d̄kr,w − xlw − dkr,w)

(4.37)

where xlw is the flow on link lw, and parameters T k
w, ∂dkr,w/∂Tw, and dkr,w are input parameters from the

regional network at iteration k. The value ofxlw denotes the excess demand, those regional trips which are
not accommodated by OD pairw. Please refer to Gartner [1980] for more detail on this transformation.

Using this transformation, the lower-level problem Pu(1) at iteration k can be written as:

P ′
u(1) : min

xk
u

F 1
u (x

k
u) =

∑
a∈Au

∫ xk
a

0
ta(ω, y

k
a) dω +

∑
w∈Θu

∫ xk
lw

0
tlw(ω) dω (4.38)

subject to
∑
π∈pw

fπ = dw ∀w ∈Wu\Θu, (4.39)

∑
π∈pw

fπ + xklw = dw + d̄kr,w ∀w ∈ Θu, (4.40)

∑
w∈Wu

∑
π∈pw

fπδaπ = xka ∀a ∈ Au, (4.41)

fπ ≥ 0 ∀π ∈ pw, w ∈Wu, (4.42)

xklw ≥ 0 ∀w ∈ Θu. (4.43)

where constraints (4.39) and (4.40) ensure consistency between path flows and OD demand for OD pairs
with fixed demand and elastic demand, respectively. Problem (4.38)–(4.43) is a UE problem with fixed
demand for which there are efficient solution algorithms.

Inwhat follows, we discuss the procedure for performing iterationk of the proposed allocation-design
problem, and then provide the readerwith details on the full implementation of the algorithm. We assume
that iteration k− 1 is finished successfully and regional decisions variables yk−1

r ,Bk−1, xk−1
r , and urban

decision variables yk−1
u and xk−1

u are available for every urban city u ∈ U .

111



4.5.4 Iteration k of R-CNDP

At iteration k, the regional agentEr decides about the capacity improvements for the regional links, yk
r ,

and the external budget assigned to urban cities,Bk. Herewe discuss the detail of SAB solution algorithm,
and then describe the procedure to estimate the demand functions for urban cities.

SAB Algorithm for R-CNDP

Assuming the regional agent Er moves from yk−1
r and Bk−1 along a direction qr, the rate of change of

the value of cost function (4.28) may be written as:

DL0
r(y

k−1
r ,Bk−1;qr) =

(
∇yrL

0
r(y

k−1
r ,Bk−1);∇BL

0
r(y

k−1
r ,Bk−1)

)T
qr (4.44)

where ∇yrL
0
r(y

k−1
r ,Bk−1) = [∂L

0
r(y

k−1
r ,Bk−1)
∂yb

] and ∇BL
0
r(y

k−1
r ,Bk−1) = [∂L

0
r(y

k−1
r ,Bk−1)
∂Br,u

] are
gradient vectors with respect to upper-level decision variables yr andB evaluated at yk−1

r andBk−1 (for
simplicitywedroppedλkr and ck from the argument of the augmentedLagrangian function). A reasonable
strategy is to move along the steepest descent direction and try to minimize the linearized problem, i.e.,

min
∥qr∥≤1

DL0
r(y

k−1
r ,Bk−1;qr) =

(
∇yrL

0
r(y

k−1
r ,Bk−1);∇BL

0
r(y

k−1
r ,Bk−1)

)T
qr (4.45)

where ∥·∥ is some norm. Note that choice of Euclidean norm results in moving along the negative of
gradient direction.

Differentiating (4.28) with respect to yb, we get:

∂L0
r(y

k−1
r ,Bk−1)

∂yb
=
∂F 0

r (y
k−1
r ,Bk−1)

∂yb
+max{0, λk−1 + ck−1gr(y

k−1
r ,Bk−1)}

dGb(y
k−1
b )

dyb
(4.46)

where ∂F 0
r (y

k−1
r ,Bk−1)/∂yb can be calculated be taking a derivative from (4.6) with respect to yb:

∂F 0
r (y

k−1
r ,Bk−1)

∂yb
=

∑
w∈Wr

dw
∂Tw(x

k−1
r )

∂yb
+

∑
u∈U

ηu
∂Ru(B

k−1
r,u )

∂yb
(4.47)

In equation (4.47), the derivatives ∂Tw(xk−1
r )/∂yb are implicit functions and can be calculated by per-

forming the equilibrium sensitivity analysis on lower-level problem Pr(1) (convex optimization problem
formulated in (4.24)–(4.26).)
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The derivative ∂Ru(B
k−1
r,u )/∂yb denotes the change in the objective value of CNDP of the urban city

u due to a small perturbation in yb, where b is a regional link. Using the chain rule we can write these
derivatives as follows:

∂Ru(B
k−1
r,u )

∂yb
=

∑
θ∈Θr

u

∂Ru(B
k−1
r,u )

∂xθ

∂xθ
∂yb

(4.48)

where ∂xθ/∂yb can be computed by solving the problem (4.24)–(4.26) for yb, i.e., ∂xθ/∂yb = αb
θ. For

derivative ∂Ru(B
k−1
r,u )/∂xθ we can write (refer to (4.5)):

∂Ru(B
k−1
r,u )

∂xθ
=

1

F 0
u (B)

dF 0
u (B

k−1
r,u )

dxθ
(4.49)

where dF 0
u (B

k−1
r,u )/dxθ indicates the change in the objective function value of the upper-level problem

for urban city u for one unit change in regional flow, and can be computed by doing sensitivity analysis on
U-CNDP of urban city u. Letw ∈ Θu be the urban OD pair represented by artificial link θ ∈ Θr

u. The
change in xθ can be translated as the change in dr,w. Thus we get:

dF 0
u (B

k−1
r,u )

dxθ
=

dF 0
u (B

k−1
r,u )

ddr,w

= dw
∂Tw(x

k−1
u )

∂dr,w
−D−1

r,w(d
k−1
r,w ) + Tw(x

k−1
u )

(4.50)

where the second line follows by taking a derivative from objective function (4.16) with respect to dr,w,
dk−1
r,w denotes the regional demand traveling between the endpoints of urbanODpairw ∈ Θu at iteration
k − 1, which is known, and he value of ∂Tw(xk−1

u )/∂dr,w can be estimated by solving the sensitivity
analysis problem (4.24)–(4.26). Here we are assuming that change in dr,w will only impact those traveling
between OD oarw.

Going back to problem (4.45), for the remaining components of the gradient vector we can write:

∂L0
r(y

k−1
r ,Bk−1)

∂Br,u
=
∂F 0

r (y
k−1
r ,Bk−1)

∂Br,u
+max{0, λk−1 + ck−1gr(y

k−1
u )} (4.51)
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where ∂F 0
r (y

k−1
r ,Bk−1)/∂Br,u can be calculated by taking a derivative from (4.6) with respect toBr,u:

∂F 0
r (y

k−1
r ,Bk−1)

∂Br,u
=

∑
w∈Wr

dw
∂Tw(x

k−1
r )

∂Br,u
+

∑
u∈U

ηu
dRu(B

k−1
r,u )

dBr,u
(4.52)

Recall that in the regional network, and as modeled in (4.23), the variableBr,u is a parameter of artificial
links representing urban city u, i.e.,Θr

u. Thus, the derivatives ∂Tw(xk
r )/∂Br,u are implicit functions and

can be calculated by performing the equilibrium sensitivity analysis on lower-level problem Pr(1) with
respect to Br,u. Note that Br,u can be present in more than one link cost function, all artificial links θ
representing urban city u, i.e.,Θr

u, and any change inBr,u will be reflected on all these links.
The second unknown parameter in (4.52) is dRν(B

k−1
r,ν )/dBr,u which can be formulated as (refer to

(4.5)):

dRu(B
k−1
r,u )

dBr,u
=

1

F 0
u (B)

dF 0
u (B

k−1
r,u )

dBr,u
(4.53)

where dF 0
u (B

k−1
r,u )/dBr,u indicates the change in the optimal value of the upper-level problem for urban

cityu for one unit change inBr,u, and canbe computed by doing sensitivity analysis onU-CNDPof urban
city u. From (4.16), and for urban city u, we have:

∂F 0
u (B

k−1
r,u )

∂Br,u
=

∑
w∈Wu

dw
∂Tw(x

k−1
u )

∂Br,u
−

∑
w∈Θu

(
D−1

r,w(d
k−1
r,w )

∂dk−1
r,w

∂Br,u
−
∂dk−1

r,w

∂Br,u
Tw(x

k−1
u )− dk−1

r,w

∂Tw(x
k−1
u )

∂Br,u

)
(4.54)

where furthermore we can write:

∂dk−1
r,w

∂Br,u
=

∑
b∈Hu

∂dk−1
r,w

∂yb

∂yb
∂Br,u

∂Tw(x
k
u)

∂Br,u
=

∑
b∈Hu

∂Tw(x
k−1
u )

∂yb

∂yb
∂Br,u

(4.55)

In (4.55), the values of ∂dk−1
r,w /∂yb and ∂Tw(xk−1

u )/∂yb can be computed by performing sensitivity anal-
ysis on the lower-level problem of urban city u, solving problem (4.24)–(4.26). For any OD pair w ∈
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G(yb) ∩Θu, we have:

∂dkr,w(x
k−1
u )

∂yb
= −αb

lw
(4.56)

where αb
lw

= ∂lw/∂yb is the derivative of flow on artificial link lw, introduced through Gartner’s trans-
formation, with respect to yb.

To compute the value of ∂yb/∂Br,u, we increment Bk−1
r,u by one unit, i.e., Bk−1

r,u := Bk−1
r,u + 1,

and then find the steepest descent direction for the upper-level problem at urban city u (the details of
computing the steepest descent direction on urban city u is discussed in Section 4.5.5). Let q∗

u be the
steepest descent direction, then we can write:

∂yb
∂Br,u

= q∗b (4.57)

where q∗b is the entry of q∗
u associated with yb.

Let q∗
r denote the optimal solution to the linear program (4.45). The values of the decision variables

at iteration k can be updated by taking a step along the descent direction q∗
r and then projecting the new

point into feasible set defined by the bound constraints (4.29) and (4.30), i.e.,

[yk
r ;B

k] = ProjΩ([y
k−1
r ;Bk−1] + ϑkq∗

r) (4.58)

where ϑk is the step length along the steepest descent direction q∗
r , Ω = {yr,B|0 ≤ yb ≤ ỹb, ∀b ∈

Hr; 0 ≤ Br,u ≤ B̃r,u, ∀u ∈ U} is the feasible set, and ProjΩ(z) = argminy∈Ω ||y − z|| is the
projection of z into setΩ. For feasible setΩ, the projection is easy and can be computed as follows:

ProjΩ(z) = max{0,min{z, ỹ}} (4.59)

where 0 is a vector of all zeros, andmax andmin operators are applied component-wise.
After updating the upper-level decision variables, equation (4.58), we solve lower-level problemPr(1)

and compute the flow pattern over the regional network, i.e., xk
r . As the next step, and before solving the

urban network design problems, we need to update the urban demand functions.
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Updating Urban Demand Functions

The demand function for any OD pair w ∈ Θu represented by artificial link θ ∈ Θr
u is formulated as a

linear function of OD travel time (equation (4.15)):

dr,w(xu) = dkr,w +
∂dkr,w
∂Tw

(Tw(xu)− T k
w) (4.60)

where dkr,w = xkθ , T
k
w = tθ(x

k
θ), and Tw(xu) is the travel time between of OD pair w, which plays the

role of independent variable in this equation but depends on urban flowxu. To compute ∂dkr,w/∂Tw, we
perturb the travel cost on artificial link θ and compute the change in the regional demand going through
artificial link θ. Let zθ be the disturbance parameter. Themodified cost function on artificial link θwould
be tθ(xθ) + zθ. This way we can write:

∂dkr,w
∂Tw

=
∂xkθ
∂zθ

(4.61)

which can be calculated by performing the equilibrium sensitivity analysis on lower-level problem Pr(1),
i.e., solving convex optimization problem (4.24)–(4.26) for ϵ = zθ and dtθ/dϵθ = 1. Finally we may
write:

∂dkr,w
∂Tw

= αθ
θ

(4.62)

where αθ
θ = ∂xkθ/∂zθ is the derivative of flow on artificial link θ with respect to zθ.

After updating the urban demand functions, we need to solve U-CNDPs for each urban city u based
on the new budget assignmentBk

r,u.

4.5.5 Iteration k of U-CNDPs

At iteration k, each urban agentEu solves a CNDP with elastic demand on the urban city u based on the
external budgetBk

r,u assigned from the regional agentEr. For regional decision variables yk
r ,Bk, and xk

r

at iteration k, solving the U-CNDP for each urban city u requires multiple iterations. Let k̄ denote the
index of internal iteration of U-CNDP at iteration k of the R-CNDP.

In the following sections, first we formulate the SAB solution algorithm for the U-CNDP of urban
city u, and then describe the process for updating the artificial links in the regional network.
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SAB Algorithm for U-CNDP

Suppose we have reached lower-level solution (xk̄−1
u ,dk̄−1

u ) for upper-level improvement choice yk̄−1
u at

internal iteration k̄ − 1 performed under iteration k of the R-CNDP. The steepest descent direction at
internal iteration k̄ can be formulated as the solution to the following linearized problem

min
∥qu∥≤1

DL0
u(y

k̄−1
u ;qu) =

(
∇yuL

0
u(y

k̄−1
u )

)T
qu (4.63)

where ∥·∥ is some norm.
Differentiating (4.36) with respect to yb, we get:

∂L0
u(y

k̄−1
u )

∂yb
=
∂F 0

u (y
k̄−1
u )

∂yb
+max{0, λk̄−1 + ck̄−1gu(y

k̄−1
u )}

dGb(y
k̄−1
b )

dyb
(4.64)

where ∂F 0
u (y

k̄−1
u )/∂yb can be calculated by taking a derivative from (4.16) with respect to yb:

∂F 0
u (y

k̄−1
u )

∂yb
=

∑
w∈Wu

dw
∂Tw(x

k̄−1
u )

∂yb
−

∑
w∈Θu

(
D−1

r,w(d
k̄−1
r,w )

∂dk̄−1
r,w (xk̄−1

u )

∂yb
−
∂dk̄−1

r,w (xk̄−1
u )

∂yb
Tw(x

k̄−1
u )

−dk̄−1
r,w (xk̄−1

u )
∂Tw(x

k̄−1
u )

∂yb

)
(4.65)

where dk̄−1
r,w = d̄k̄−1

r,w − xk̄−1
lw

denotes the regional demand attracted to urban OD pair w. In equation
(4.65), the derivatives ∂Tw(xk̄−1

u )/∂yb, for all OD pairs, and ∂dk̄−1
r,w /∂yb, for OD pairs with elastic de-

mand, can be calculated by doing the equilibrium sensitivity analysis on lower-level problem Pu(1).
Let q∗

u denote the optimal solution to the linear program (4.63). The value of decision variables at
iteration k̄ can be updated by taking a step along the descent direction q∗

u and then projecting the new
point into feasible set defined by the bound constraints (4.35), i.e.,

yk̄
u = ProjΩ(y

k̄−1
u + ϑk̄q∗

u) (4.66)

whereΩ = {yu|0 ≤ yb ≤ ỹb, ∀b ∈ Hu} is the feasible set.
The next step after computing the vector of decision variables yk̄

u is to solve the lower-level problem
P ′
u(0), which is a traditional UE problem, for xk̄

u. Then we move to the next internal iteration k̄ + 1 and
solve the linearized problem (4.63) to computeyk̄+1

u from (4.66). This process is repeated until a measure
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of convergence (based on the Euclidean normof the gradient vector or changes in decision variables) is met
(Please refer to Section 4.6 for more discussion on stopping criteria.)

Next we discuss how to update the artificial links in the regional network after solving the problems
P ′
u(0) and P ′

u(1).

Updating Artificial Regional Links

Let yk
u and xk

u be the solutions to problems P ′
u(0) and P ′

u(1) after the stopping criterion of U-CNDP is
met at some iteration k̄ run under regional iteration k. At this point, we need to update the artificial links
representing each urban cityu ∈ U in the regional network before solvingR-CNDP for the next iteration,
i.e., iteration k + 1. As discussed in Section 4.4.2, each artificial link θ ∈ Θr

u represents all used paths in
the urban city u connecting its tail to its head with the following cost function at iteration k + 1:

tk+1
θ (xθ) = µkθ + ψk

θ,x(xθ − xkθ) + ψk
θ,B(Br,u −Bk

r,u), ∀θ ∈ Θr
u, u ∈ U (4.67)

wherexθ andBr,u are decision variables adjusted at the regional level,Bk
r,u is known from iteration k, and

parametersµkθ andxkθ can be directly computed from the solutions to problemsP ′
u(0) andP ′

u(1) (yk
u and

xk
u):

µkθ =
∑
π∈p̂w

fπ
dw + xθ

Cπ

xkθ = d̄kr,w − xklw

(4.68)

wherew ∈ Θu is the urbanODpair represented by artificial link θ. Hereµkθ is set as the average travel time
of the paths represented by θ (weighted by flow), and xkθ is equal to the regional demand accommodated
by OD pairw in urban city u.

For variable ψk
θ,x we have:

ψk
θ,x =

∂tkθ
∂xθ

=
∂Tw(x

k
u)

∂dw

(4.69)

where ∂Tw/∂dw can be estimated by sensitivity analysis problem described in Section 4.5.1.
The parameter ψk

θ,B determines how the travel time on link θ, or between OD pair w, is influenced
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by external budgetBr,u, and can be formulated as:

ψk
θ,B =

∂tkθ
∂Br,u

=
∂Tw(x

k
u)

∂Br,u

=
∑
b∈Hu

∂Tw(x
k
u)

∂yb

∂yb
∂Br,u

(4.70)

where the last equality is written using the chain rule, and the derivatives ∂Tw/∂yb can be estimated from
Section 4.5.1.

To compute the value of∂yb/∂Br,u, and similar to our discussion in Section 4.5.4, we incrementBk
r,u

by one unit, i.e.,Bk
r,u := Bk

r,u +1, and then solve the linear programming problem (4.63). Let q∗ be the
steepest descent direction, then we can write:

∂yb
∂Br,u

= q∗b (4.71)

where q∗b is the entry of q∗ associated with yb.
In summary, the procedure for solving the U-CNDP for urban city u ∈ U and for an external budget

Bk
r,u at regional iteration kmay be written as:

Algorithm 1: U-CNDP Pseudo-code

Step 0: Select initial values for decision variables y0
u, and set k̄ = 0.

Step 1: Solve the lower-level problem P ′
u(1) and get xk̄

u and dk̄
u.

Step 2: Solve the linear programming problem (4.63), as a local linear approximation of the upper-
level augmented objective function (4.34), to obtain q∗

u.

Step 3: Move along the steepest descent direction q∗
u: yk̄+1

u = ProjΩ(y
k̄
u − ϑk̄q∗

u).

Step 4: Go to Step 5 if the convergence criterion is met, otherwise set k̄ := k̄ + 1 and go to Step 1.

Step 5: Let yk = yk̄ and xk = xk̄. Update parameters of artificial links in regional network, and
call the R-CNDP solver.
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Next we overview the allocation-design problem.

4.5.6 Algorithm Overview

Before implementing the discussed allocation-design problemwe need to compute the value ofF 0
u (B) for

every urban city u ∈ U , as required in (4.5). To this end, we solve the CNDP for every city u ∈ U with
the full budget, i.e. Br,u = B. Let y∗

u denote the optimal improvements at city u ∈ U for Br,u = B,
and x∗

u = x(y∗
u) be the associated UE flow. We can write:

F 0
u (B) =

∑
w∈Wu

dwTw(x
∗
u) (4.72)

Note that F 0
u (B) is the best that each city can obtain under maximal possible budget.

As the next step, we need to set up the problem by some initial budget allocation. There are multiple
ways to initialize the urban budgets, but the measure selected here is to assign the budget proportional to
the value of F 0

u (B) :

B0
r,y = B

F 0
u (B)∑

v∈U F
0
v (B)

(4.73)

For this initial budget assignment, we solve theU-CNDP for each urban cityu ∈ U and then estimate
the the artificial links in the regional network, as discussed in Algorithm 1.

After these initialization steps, themain loop starts by iteratively solving the R-CNDP on the regional
network and updating the budget assignments, and then simultaneously solving the U-CNDPs on urban
cities and updating the regional network for the next step. This process is repeated until a measure of
convergence on both urban cities and regional network is reached.

The procedure for solving the proposed regional-urban network design problems is as follows:
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Algorithm 2: Pseudo-code of the proposed allocation-design problem

Step 0: Initialization

Step 0-1: Run Algorithm 1 for each urban city u ∈ U for Br,u = B, and compute F 0
u (B)

according to (4.72).

Step 0-2: Allocate budget to urban cities according to (4.73), and run Algorithm 1 to set up the
regional network.

Step 0-3: Set k = 0.

Step 1: Solve the lower-level problemPr(1) and urban network design problemsP ′
u(0) andP ′

u(1)

for xk
r , xk

u, and yk
u for every u ∈ U until converged:

Step 1-1: Solve the UE problem Pr(1). Let the output be xk
r .

Step 1-2: Update urban demand functions (Section 4.5.4).

Step 1-3: Solve U-CNDP for each urban city u using SAB algorithm (Algorithm 1). Let the
output be yk

u and xk
u.

Step 1-4: Update the artificial links (Section 4.5.5), and go to Step 1-1

Step 2: Update upper-level problem Pr(0) (Section 4.5.4). Call them yk+1
r andBk+1.

Step 3: Stop if the convergence criterion is met, otherwise set k := k + 1 and go to Step 1

4.6 Demonstration

This section deals with investigating the properties of the proposed network design problem. First we eval-
uate the quality of the solution generated by the proposed decentralized network design algorithm com-
pared to the solution obtained by solving the network design problem on the full network (centralized
implementation). Then we discuss the importance of modeling the interactions, evaluate the computa-
tional benefits of our algorithm, and demonstrate its advantages in addressing the design problems with
conflicting objective functions.

The first case study includes two urban cities where each urban city is a modified version of the Sioux
Falls network. The Sioux Falls network has 24 zones, 24 nodes, and 76 links [Bar-Gera, 2013]. Before
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discussing the details of the decentralized implementation, we implement the network design problem
with SAB algorithm on a single-network case study. Note that many instances of the single-network case,
as discussed in Algorithm 2, needs to be solved at each iteration of the allocation-design problem after
updating the regional decision variables. Figure 4.4 depicts a schematic of the Sioux Falls network and
Table 4.1 describes the set of candidate links and their associated improvement cost function parameters.
This is the same network used by Suwansirikul et al. [1987]. Each UE subproblem is solved to a relative
gap of 1E−6, where relative gap is defined as:

relative gap =

∑
w∈W

∑
π∈p̂w hπCπ −

∑
w∈W

∑
π∈p̂w hπκ

w∑
w∈W

∑
π∈p̂w hπCπ

(4.74)

where κw represents the time spent on the fastest path between OD pair w. As verified by Boyce et al.
[2004], this relative gap is enough to ensure that traffic assignment is converged to a stable link flow solu-
tion.

The algorithm stopswhen the Euclideannormof the gradient vector is less than0.5. Table 4.2 displays
the value of model parameters selected for this network.

Figure 4.5 shows the norm of the gradient vector and also the variation in the decision variables at each
iteration, and Figure 4.6 plots the value of the objective function at each iteration relative to the optimal
value (value upon convergence) and the allocated budget at each iteration of the algorithm (positive values
indicate that more than available budget is allocated and negative values mean that the allocated budget is
less than available budget). Except the first few iterations where the algorithm is still adjusting the stepsize,
these values show a decreasing trend. In Figure 4.6-(a), we have values of the objective function lower than
the optimal value. These solutions, as can be seen from Figure 4.6-(b), are infeasible points due to budget
constraint violation. This is a property of the ALM algorithm: it allows infeasible solutions but penalizes
them by increasing the penalty value until it converges to an optimal and feasible solution. Taking into
account the results plotted in Figure 4.6, one can see that the solution has converged enough when the
norm of the gradient vector is less than 10 or when the variation in decision variables is less than 1%. These
values are used as stopping condition of theUNDPswhen dealingwith the decentralized implementation.

Next we implement the decentralized allocation-design problem on the test-bed composed of two
urban cities where each urban city is a copy of the Sioux Falls network. Figure 4.7 shows the considered
case study. The set of urban projects for each urban city includes all urban links with an improvement cost
function ofGa(ya) = ζay

2
a where ζa is the cost coefficient. The cost coefficients are generated randomly

from a uniform distribution with support of [20, 40]. In addition, the set of regional candidate links
includes all 10 regional links with a improvement cost function similar to those of urban links.
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Figure 4.5: (a) The Euclidean norm of the gradient vector and (b) percentage variation of decision
variables (compared to the previous iteration) (b).
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Figure 4.6: (a) The value of the objective function relative to the optimal value and (b) budget vi-
olation (negative values indicate unallocated budget and positive values indicate budget constraint
violation).

125



Table 4.1: The set of candidate links for Sioux Falls network and their improvement cost function
parameters.

Ga(ya) = ζay
2
a

Links 16 and 19 17 and 20 25 and 26 29 and 48 30 and 75

ζa 26 40 25 48 34

Table 4.2: The simulation parameters.

c0 λ0 ρ β ϕ

1 1 1.0001 2 0.25

r

r

r
Figure 4.7: The hypothetical network composed of two copies of the Sioux Falls network.
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First we solved the network design problem on the full network in a centralized implementation and
then solved the same problem according to the proposed decentralized algorithm. In the decentralized
algorithm, the weights assigned to urban cities in the objective function of the regional agent, ηu in (4.6),
play an important role in the budget allocation. Figure 4.8 plots the results of decentralized algorithm
compared with the centralized implementation. The horizontal axis in both figures is the value of ηu
normalized by F 0

u (B) (please refer to (4.5)) such that value of 1 means that the weight assigned to each
urban city in (4.6) in equal to their best objective value under budget B, i.e., ηu = F 0

u (B). Both the
horizontal and vertical axes are shown in a logarithmic scale. The results plotted in Figure 4.8 show that
the error in travel times and budget allocation is high for both low and high values of the relative urban
weights, while for relative weight of 1, ηu = F 0

u (B), the errors in travel times and allocated budget are
minimum and close to those obtained under centralized implementation. In light of the urban regret
functions, equation (4.5), the objective function of the regional agent, equation (4.6), may be written as:

min
yr,B

F 0
r (yr,B) =

∑
w∈Wr

dwTw(xr) +
∑
u∈U

ηuRu(Br,u)

=
∑

w∈Wr

dwTw(xr) +
∑
u∈U

ηu
F 0
u (Br,u)− F 0

u (B)

F 0
u (B)

=
∑

w∈Wr

dwTw(xr) +
∑
u∈U

ηu
F 0
u (B)

F 0
u (Br,u)−

∑
∈U

ηu

(4.75)

where ηu is fixed and F 0
u (Br,u) is the objective of the urban agent Eu. One can see that selecting ηu =

F 0
u (B) assigns equal weight to the objective of regional and urban agents and converts the problem to

that of the centralized formulation. On the other hand, for the choice of ηu < F 0
u (B) the objective of

the regional agent has a higher priority compared to those of urban agents and as a result more budget will
be allocated to regional projects, and for the choice of ηu > F 0

u (B) the urban objectives get the higher
priority and their share from the total budget will increase. This is consistent with the findings in Figure
4.8.

To evaluate the importance of capturing the system-level impacts of the local planning decisions, and
modeling the interactions between different urban regions, we consider the following scenarios. First, we
solve the UE problem on the complete network, shown in Figure 4.7, to find the route choice of regional
demand. This defines the external demand to urban cities. Then, we fix the urban external demands and
solve CNDP for each urban city independently without modeling the interactions and global effects. For
this case, the budget is equally split between two urban regions. We refer to this model as Scenario 1. As
Scenario 2, we solve the CNDP by implementing the distributed scheme developed in this chapter. Under
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Figure 4.8: (a) Error in travel time and (b) budget allocation as a function of weight of urban regret
functions.
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Scenario 2, the budget assigned to urban 1 (network on left in Figure 4.7) and urban 2 (network on right
in Figure 4.7) are 52.5% and 47.5%, respectively. These values are very close to the split ratio applied
under Scenario 1. The design decisions, however, are significantly different. Under Scenario 2, where in-
teractions between urban cities and the route choice behavior of regional travelers are modeled, the total
system travel time improved by 13%: 2.24% for urban 1, 2.23% for urban 2, and 52% for regional traffic.
The improvement for regional traffic is more significant because their reaction was completely ignored
under Scenario 1, while in Scenario 2 the local plans are developed by considering the behavior of regional
traffic.

Let y1a and y2a denote the additional capacity assigned to link a under Scenarios 1 and 2, respectively.
Figure 4.9 shows the percentage change (PC) in link improvement decision variables, defined as follows
for link a:

PC(a) = 100
y2a − y1a
y1a

(4.76)

Figure 4.9 shows that mainly the links close to nodes with regional demand experience an increase in their
capacity under Scenario 2. This is due to the fact that in Scenario 2 all interactions aremodeled anddecision
variables will be adjusted to provide a global solution rather than a local solution.

The computational savings for this case study were not significant primarily because the networks
are small and the master and subproblems are easy to solve. To evaluate the computational advantages
of the proposed decentralized allocation-design problem, we tested our code on Austin regional network
also used in Chapter 3. The northern subnetwork (north of the Colorado River) is treated as one urban
city and the southern subnetwork (south of the river) form another urban city. The links connecting
these two subnetworks are considered as regional links and their free flow travel time is scaled up such
that the subnetwork stand independent from each other for the purpose of our problem. For each urban
network, 10% of links are randomly selected as the urban projects while all the links connecting these two
urban regions are subject to improvement. All urban and regional projects have an improvement cost
function ofGa(ya) = ζay

2
a where ζa is selected from the interval [20, 40]. We solved the network design

problem using both the centralized and decentralized implementations. The error in budget allocation
and travel times were less than 4% and 0.06%, respectively, and the decentralized algorithm demonstrated
a computational saving of 22%.

As discussed before, one of the main advantages of the proposed allocation-design problem is its ca-
pability to handle cases where different regions have different priorities. This essentially results in NDPs
with different objectives. Examples of such cases can be NDPs with the objectives to minimize the travel
time, pollution, network vulnerability, tomaximize network safety, etc. Here, as a simple example, we just
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Figure 4.9: Percentage change in link improvement decision variables for (a) urban 1, and (b) urban
2.
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assume that all urban cities opt to minimize the system travel time, but different corridors have different
weights. In this setting, each OD pair w is a assigned a weight γw indicating the importance of the travel
time of users traveling between the endpoints ofw. The objective function of urban cities,Pu(0), may be
written as:

Pu(0) : min
yu

F 0
u (yu) =

∑
w∈Wu

γwdwTw(xu)−
∑
w∈Θu

γw

(∫ dr,w

0
D−1

r,w(ω) dω − dr,wTw(xu)
)

(4.77)

subject to(4.17) and (4.18) (4.78)

Figure 4.10 compares the difference between the objective values and budget of urban cities and re-
gional network under centralized and decentralized implementations. Note that in the centralized case,
all OD pairs have the same weight, i.e., γw = 1 for all urban and regional OD pairs. For decentralized
implementation, we assume that ODweights come from a normal distribution with mean of 1 and differ-
ent standard deviations (γw ∼ N(1, σ)). The value of standard deviation (σ) indicates the variation of
the objective from the standard case where all OD pairs have equal weights. As seen in Figure 4.10, errors
are increasing functions of σ. This is reasonable: as the value of σ increases, deviation of the objective
functions in decentralized implementation from the objective of the centralized model increases, and this
results in NDPs with significantly different objectives, and, as a result, different design values.

The values plotted in Figure 4.10 indicate how ignoring the concerns and priorities of the local regions
for funding allocation and design decisions may result in sub-optimal plans for the system. Here still we
assumed that all objectives are concernedwithminimizng system travel time, while different corridors have
different weights. The difference can be even more significant if objectives are distinct. For example, if a
region is affected by high pollution or accident rates, implementing plans with the purpose of improving
the traffic congestion may actually worsen the condition by attracting more demand to that region.

4.7 Conclusion

In this study, we developed a decentralized algorithm for network design problem based on the idea of
the distributed problem solving approach. The algorithm allows the urban cities (subnetworks) to per-
form their design problem independently while a regional agent allocates budget to urban cities by taking
into account its own priorities and the impact of its decision of the performance of the urban cities. The
problemwas formulated as a four-level network design problem and a solution algorithmbased on the sen-
sitivity analysis heuristic was developed to solve the problem. Our test results on a hypothetical network
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Figure 4.10: (a) Error in objective value and (b) budget allocation as a function of standard deviation
of OD weights.
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composed of two copies of the Sioux Falls network shows that the centralized solution can be replicated
by assigning a weight equal to the best urban objective to each urban city. Our findings also demonstrated
the importance of modeling the interactions between different entities and considering the system-level
impacts of local decisions. Simulations on the Austin regional network demonstrated a computational
saving of 22% compared to the centralized algorithm.

An interesting topic for future research would be combining the decentralized networkmodeling and
design techniques. Network design requires solving many instances of the traffic assignment problem and
the idea of distributed networkmodeling, developed in Chapter 3, can be used to reduce the complexity of
this step. In addition, the focus of this chapter was on continuous instances of network design problem.
Extending the model to handle discrete and mixed design problems is another interesting topic for future
research.
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5
Conclusion

5.1 Summary

This dissertation developed distributed algorithms for networkmodeling and design problems. Themain
idea behind distributed problem solving approach is to partition the problem into smaller subproblems
and solve them locally by exchanging information between them. After the subproblems are solved, the
set of local solutions are synthesized to obtain a solution to the original problem.

In Chapter 2, a new algorithm was proposed to solve the user equilibrium sensitivity analysis prob-
lem. The proposed algorithm resembles the traditional user equilibrium problem on a modified network
where linkperformance functions are replacedwith their derivatives evaluated at the user equilibrium flow.
Compared to earlier bush-based sensitivity algorithms, the proposed method does not require a planarity
assumption and is more stable numerically. We evaluated the validity of the derivatives on Barcelona and
Austin regional networks. It was shown that the contracted network, a simplified version of the com-
plete network in which OD paths are represented by a single link with parameters tuned according to
the sensitivity analysis, can approximate the behavior of the complete network with a high accuracy. The
contracted network calibrated based on the proposed user equilibrium sensitivity analysis algorithm only
has to be constructed once, and can be used to evaluate the network performance for different demand
scenarios easily with a good approximation.

The proposed network contraction technique then was used to develop a spatially decomposition
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algorithm for traffic assignment problem in Chapter 3. The proposed algorithm, named DSTAP, parti-
tions the network intonon-overlapping subnetworks anddistributes the assignment task between amaster
problem and subproblems. The master problem solves the assignment problem on the master network,
a simplified version of the complete network in which all sub-networks are replaced with some artificial
links approximating the travel times between the subnetwork OD pairs. The parameters of these artificial
links are estimated by solving the sensitivity analysis problem on subnetworks. Each subproblem is re-
sponsible for solving the assignment problem over one subnetwork equipped with some artificial links to
model the paths outside of the subnetwork boundaries. The artificial links and regional demand assigned
to subproblems are updated iteratively until a measure of convergence based on the maximum excess cost
is obtained. We proved that DSTAP is an exact algorithm, and provided bounds on the maximum excess
cost of the flow assignment on the complete network. The proposed bound is a function of maximum
excess costs on the master problem and subproblems of DSTAP. Natural applications for the DSTAP al-
gorithm are networks with clear boundaries which can be partitioned easily. Examples of such networks
are statewide or national assignment problems, or cities with rivers or other geographic features.

In Chapter 4, as the second part of this dissertation, we developed a distributed algorithm for the net-
work design problem. The proposed decentralized algorithm, referred to as allocation-design problem,
was concerned with allocating funding between different urban cities and some regional projects. The ur-
ban cities have full authority over their jurisdiction, and the regional agentmay influence the urban design
projects indirectly through the funding allocated to them. The problemwas formulated as a four-level net-
work design problem, and a solution algorithmbased on a sensitivity analysis-base heuristic was developed
to solve the problem. We discussed how the proposed decentralized network design algorithm can repli-
cate the network design problem over the complete network, and showed the computational advantages
of the decentralized algorithm. Also the advantage of the proposed algorithm in capturing the system-level
effects of the local decisions was numerically illustrated.

5.2 Future Work

The work presented in this dissertation can be extended in different ways. In the case of the DSTAP al-
gorithm, we assumed that the network is already partitioned into subnetworks. Defining the partitions,
however, is amajor question for future research. Partitioning the network into smaller subnetworkswould
result in smaller subproblems, but it may increase the size of the master network, as number of artificial
links and OD pairs are expected to be an increasing function of number of partitions. This, in fact, may
hinder the computational advantages of theDSTAP algorithm. It would be interesting to study this prop-
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erty more rigorously and investigate if there is an optimal number of partitions which would result in the
best run time. Defining a proper objective function seems to play a critical role for the partitioning task.
The following objectives may be considered: (1) to minimize the number of boundary points, (2) to mini-
mize interactions between subnetwork, and (3) tominimize the size of regional ODmatrix. By combining
the partitioning and DSTAP algorithms, we can automate the whole process: the combined algorithm
would partition the network and solve the assignment problem over the subnetworks andmaster network
such that the run time is minimized.

Combining the decentralized network modeling and design techniques developed in this work is also
a topic of interest for future research. Network design requires solving many instances of the traffic as-
signment problem, and the idea of distributed network modeling, developed in Chapter 3, may be used
to reduce the complexity of this step. In addition, the focus of this chapter was on continuous instances
of network design problems. Extending the model to handle discrete andmixed design problems is worth
investigation.

Another interesting and important extension of the current work would be extending the idea of dis-
tributed modeling for dynamic models, which incorporate traffic flow dynamics. Despite much research
on dynamic models in recent decades, model complexity and computational burden for large-scale net-
works are still obstacles to deployment in practice. In this dissertation and for the static case, interactions
between different players were modeled by introducing some artificial links with parameters tuned based
on linearizations to the equilibrium solution for each sub-network. Perhaps the same idea can be extended
for dynamic models: each sub-network can be equipped with artificial links representing a simple and ag-
gregate model of neighboring sub-networks. Each artificial link relates the mean-space flow, speed, and
density of the aggregated area (there is a direct connection between these artificial links and macroscopic
fundamental diagram (MFD) discussed in the literature in recent years). Developing efficient algorithms
to estimate the parameters of the MFDs governing the artificial links, and evaluating the performance of
the proposed modeling approach are major tasks to be studied.
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