
Copyright

by

Rustam Raisovich Miftakhutdinov

2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UT Digital Repository

https://core.ac.uk/display/211337578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Rustam Raisovich Miftakhutdinov
certifies that this is the approved version of the following dissertation:

Performance Prediction for

Dynamic Voltage and Frequency Scaling

Committee:

Yale N. Patt, Supervisor

Robert S. Chappell

Derek Chiou

Mattan Erez

Donald S. Fussell

Performance Prediction for

Dynamic Voltage and Frequency Scaling

by

Rustam Raisovich Miftakhutdinov, B.S.E.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

Preface

One of the biggest and most important tools
of theoretical physics is the wastebasket.

Richard Feynman

This dissertation is a culmination of three years of work, from Summer 2011 to

Summer 2014. Although not a theoretical physicist, I spent much of that time true to

the words of Richard Feynman—struggling to solve problems I ended up discarding.

The time I spent on these discarded problems was, however, not in vain. Little by

little, each one contributed to my broader understanding and, in the end, allowed me

to formulate and solve the problem of this dissertation.

Many people have helped me along the way and I would like to acknowledge

their contributions.

I would like to thank my advisor, Dr. Yale N. Patt, for the opportunity and

advice he gave me and the patience he afforded me.

I would like to thank the rest of my doctoral committee, Dr. Robert S. Chap-

pell, Dr. Derek Chiou, Dr. Mattan Erez, and Dr. Donald S. Fussell for their feedback

on my research. I would like to thank Rob Chappell in particular for introducing me

to my dissertation topic during my summer internship at Intel in 2011.

I would like to thank the many present and former members of the HPS

research group that helped me in my research pursuits. Specifically, I would like to

thank

• Eiman Ebrahimi, Onur Mutlu, and Francis Tseng for working with me on my

research problems,

• José Joao for sacrificing his time to maintain the IT infrastructure of the research

group,

iv

• Rob Chappell, Chang Joo Lee, Hyesoon Kim, Onur Mutlu, Paul Racunas, and

Santhosh Srinath for significant contributions to my simulation infrastructure,

and

• Marco Alves, Eiman Ebrahimi, Faruk Guvenilir, Milad Hashemi, José Joao,

Khubaib, Hyesoon Kim, Peter Kim, Ben Lin, Veynu Narasiman, Moin Qureshi,

Aater Suleman, Francis Tseng, and Carlos Villavieja for sharing their research

ideas and discussing mine.

I would like to thank Melanie Gulick and Leticia Lira for helping me navigate

the administrative bureaucracy of the university.

Finally, I would like to thank Muawya Al-Otoom, Hari Angepat, Abhishek

Das, Mark Dechene, Chris Fallin, Andy Glew, Min Jeong, Maysam Lavasani, Ikhwan

Lee, Nikhil Patil, Mike Sullivan, Dam Sunwoo, Birgi Tamersoy, Gene Wu, and Dan

Zhang for many intellectual discussions (research-related and otherwise).

Rustam Miftakhutdinov

August 2014, Austin, TX

v

Performance Prediction for

Dynamic Voltage and Frequency Scaling

Publication No.

Rustam Raisovich Miftakhutdinov, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Yale N. Patt

This dissertation proves the feasibility of accurate runtime prediction of pro-

cessor performance under frequency scaling. The performance predictors developed

in this dissertation allow processors capable of dynamic voltage and frequency scaling

(DVFS) to improve their performance or energy efficiency by dynamically adapting

chip or core voltages and frequencies to workload characteristics. The dissertation

considers three processor configurations: the uniprocessor capable of chip-level DVFS,

the private cache chip multiprocessor capable of per-core DVFS, and the shared cache

chip multiprocessor capable of per-core DVFS. Depending on processor configuration,

the presented performance predictors help the processor realize 72–85% of average or-

acle performance or energy efficiency gains.

vi

Table of Contents

Preface iv

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Background 5

2.1 Dynamic Voltage and Frequency Scaling 5

2.2 Performance Prediction . 7

2.3 Notational Conventions . 8

2.4 DRAM . 8

2.5 Stream Prefetching . 11

Chapter 3. Uniprocessor 13

3.1 Background . 14

3.1.1 Linear Model . 14

3.1.2 Leading Loads . 16

3.1.3 Stall Time . 17

3.2 CRIT: Accounting for Variable Access Latency Memory 17

3.2.1 Experimental Observations . 18

3.2.2 Variable Access Latency View of Processor Execution 20

3.2.3 Hardware Mechanism . 21

3.2.4 Summary . 23

3.3 BW: Accounting for DRAM Bandwidth Saturation 23

3.3.1 Experimental Observations . 24

3.3.2 Limited Bandwidth Analytic Model 29

3.3.3 Parameter Measurement . 31

3.3.4 Hardware Cost . 36

3.4 Methodology . 38

vii

3.4.1 Efficiency Metric . 38

3.4.2 Timing Model . 39

3.4.3 Power Model . 39

3.4.4 DVFS Controller . 40

3.4.5 Offline Policies . 42

3.4.6 Benchmarks . 43

3.5 Results . 43

3.5.1 CRIT (Prefetching Off) . 44

3.5.2 CRIT+BW (Prefetching On) 45

3.6 Conclusions . 48

Chapter 4. Private Cache Chip Multiprocessor 49

4.1 Experimental Observations . 50

4.2 Scarce Row Hit Prioritization . 50

4.2.1 Problem . 52

4.2.2 Mechanism . 53

4.2.3 Results . 54

4.2.4 Impact on Performance Predictability 54

4.3 Independent Latency Shared Bandwidth Model 56

4.3.1 Applicability of Linear Model 58

4.3.2 Overview of Analytic Model . 60

4.3.3 Core Model . 61

4.3.4 Equal DRAM Request Service Time Approximation 62

4.3.5 Bandwidth Constraint . 64

4.3.6 Combined Model . 66

4.3.7 Solution . 68

4.3.8 Approximations Behind ILSB 70

4.4 Parameter Measurement . 71

4.4.1 Core Model Parameters . 71

4.4.2 Maximum DRAM Bandwidth 71

4.5 Methodology . 72

4.5.1 Metric . 72

4.5.2 DVFS Controller . 74

4.5.3 Simulation . 74

4.5.4 Workloads . 75

4.5.5 Frequency Combinations . 76

4.5.6 Oracle Policies . 77

4.6 Results . 78

4.7 Conclusions . 82

viii

Chapter 5. Shared Cache Chip Multiprocessor 83

5.1 Problems Posed by Shared Cache . 83

5.2 Experimental Observations . 84

5.3 Analysis . 87

5.4 Robust Mechanism . 89

5.5 Results . 90

5.6 Case Study . 92

5.7 Conclusions . 94

Chapter 6. Related Work 95

6.1 Adaptive Processor Control . 95

6.1.1 Taxonomy of Adaptive Processor Controllers 96

6.1.2 Performance Prediction . 97

6.1.3 Other Approaches . 99

6.2 DVFS Performance Prediction . 100

6.3 Analytic Models of Memory System Performance 100

6.4 Prioritization in DRAM Scheduling 102

Chapter 7. Conclusions 104

7.1 Importance of Realistic Memory Systems 104

7.2 Performance Impact of Finite Off-Chip Bandwidth 105

7.3 Feasibility of Accurate DVFS Performance Prediction 106

Bibliography 107

ix

List of Tables

3.1 Applicability of leading loads . 19

3.2 Bandwidth bottlenecks in the uniprocessor 28

3.3 Hardware storage cost of CRIT+BW 37

3.4 Simulated uniprocessor configuration 37

3.5 Uniprocessor power parameters . 40

4.1 Bandwidth bottlenecks in the private cache CMP 51

4.2 Simulated private cache CMP configuration 74

4.3 Core frequency combinations . 76

5.1 Simulated shared cache CMP configuration 85

6.1 Citations for prior adaptive processor controllers 98

x

List of Figures

2.1 Processor and DVFS configurations addressed in this dissertation . . 6

2.2 Qualitative relationship between row locality, bank level parallelism,
and the dominant DRAM bandwidth bottleneck 10

2.3 Stream prefetcher operation . 12

3.1 Uniprocessor . 13

3.2 Linear DVFS performance model . 15

3.3 Abstract view of out-of-order execution with a constant access latency
memory system assumed by leading loads 16

3.4 Abstract view of out-of-order processor execution with a variable la-
tency memory system . 20

3.5 Critical path calculation example . 22

3.6 Linear model applicability with prefetching off 25

3.7 Linear model failure with prefetching on 26

3.8 Limited bandwidth DVFS performance model 30

3.9 Energy savings with prefetching off 44

3.10 Energy savings with prefetching on 46

3.11 Performance delta versus power delta under DVFS with CRIT+BW
for memory-intensive benchmarks . 46

4.1 Private cache CMP . 49

4.2 Simplified timing diagrams illustrating DRAM scheduling under two
different priority orders when row hits are abundant 52

4.3 Performance benefit of scarce row hit prioritization over indiscriminate
row hit prioritization . 55

4.4 Accuracy of the linear model applied to a four-core private cache CMP
with three different DRAM scheduling priority orders 57

4.5 High level structure of the ILSB analytic model 60

4.6 Core analytic model . 63

4.7 Complete mathematical description of the independent latency shared
bandwidth (ILSB) model of chip multiprocessor performance under
frequency scaling . 65

4.8 Graphical illustration of the independent latency shared bandwidth
model applied to two cores . 67

xi

4.9 Accuracy of the ILSB model and the linear model applied to a four-
core private cache CMP with three different DRAM scheduling priority
orders . 79

4.10 Oracle performance study on private cache CMP (medium cores, 1
DRAM channel) with ALL workloads 80

4.11 Full performance study on private cache CMP (medium cores, 1 DRAM
channel) with BW workloads . 80

4.12 Summary of experimental results for the private cache CMP 81

4.13 Sensitivity studies for the private cache CMP with BW workloads . . 81

5.1 Shared cache CMP . 83

5.2 Summary of experimental results for our DVFS performance predictor
for the private cache CMP applied to the shared cache CMP 85

5.3 Oracle performance study of our DVFS performance predictor for the
private cache CMP applied to the shared cache CMP (medium cores,
1 DRAM channel) with ALL workloads 86

5.4 Full performance study of our DVFS performance predictor for the
private cache CMP applied to the shared cache CMP (medium cores,
1 DRAM channel) with BW workloads 86

5.5 Sensitivity studies of our DVFS performance predictor for the private
cache CMP applied to the shared cache CMP with BW workloads . . 87

5.6 Oracle performance study of our robust DVFS performance predictor
for the shared cache CMP (medium cores, 1 DRAM channel) with ALL
workloads . 91

5.7 Full performance study of our robust DVFS performance predictor for
the shared cache CMP (medium cores, 1 DRAM channel) with BW
workloads . 91

5.8 Summary of experimental results for our robust DVFS performance
predictor for the shared cache CMP 92

5.9 Sensitivity studies of our robust DVFS performance predictor for the
shared cache CMP with BW workloads 92

5.10 Simulated and predicted performance of dep chain versus core cycle
time for two different Tdemand measurement mechanisms 93

6.1 Taxonomy of adaptive processor control approaches. 96

xii

Chapter 1

Introduction

Essentially, all models are wrong,
but some are useful.

George E. P. Box

Dynamic voltage and frequency scaling (DVFS) presents processor designers

with both an opportunity and a problem. The opportunity comes from the multi-

tude of voltage and frequency combinations, or operating points, now available to the

processor. The operating point that maximizes performance (within a power bud-

get) or energy efficiency depends on workload characteristics; hence, with DVFS, the

processor can improve its performance or energy efficiency by switching to the best

operating point for the running workload. The problem is to identify which operating

point is the best at any given time.

One way to solve this problem is to equip the processor with a performance

predictor, a mechanism capable of predicting what processor performance would be

at any operating point. So equipped, a processor can improve its performance by pe-

riodically switching to the operating point predicted to yield the highest performance

for the running workload. To improve energy efficiency in the same way, the processor

would also need a power consumption predictor; however, since power prediction is

simple if accurate performance prediction is available,1 in this dissertation we focus

primarily on performance predictors.

A performance predictor consists of

1Section 3.4.4 describes a power prediction scheme that relies on performance prediction.

1

1. a mathematical model that expresses processor performance as a function of

the operating point and workload characteristics and

2. hardware mechanisms that measure these workload characteristics.

The model could be either

• mechanistic, that is derived from an understanding of how the mechanism (in

our case, the processor) works, or

• empirical, that is based purely on empirical observations.

In this dissertation, we focus on DVFS performance predictors based on mecha-

nistic models, which are more valuable than empirical models from a researcher’s point

of view. Most importantly, mechanistic models of processor performance advance our

understanding of the major factors that drive processor performance, whereas empir-

ical models, at best, merely show that performance is predictable without revealing

why. Note that the assumptions underlying a mechanistic model may still be (and,

in our case, often are) based on empirical observations.

This dissertation proves the feasibility of designing good DVFS performance

predictors based on mechanistic models. We measure the goodness of a DVFS per-

formance predictor by how well the predictor can guide DVFS; that is, how much of

the benefit obtained by a hypothetical oracle predictor can the real predictor realize.

In short, this dissertation proves the following thesis:

A performance predictor comprised of a mechanistic model and hardware

mechanisms to measure its parameters can guide dynamic voltage and

frequency scaling well enough to realize most of the benefit obtained by

an oracle predictor.

To prove this thesis, we design and evaluate DVFS performance predictors for

three processor configurations: the uniprocessor, the private cache chip multiproces-

sor, and the shared cache chip multiprocessor. In Chapter 3, we develop a performance

2

predictor for the uniprocessor and use it to guide chip-level DVFS to improve energy

efficiency. In Chapter 4, we develop a performance predictor for the private cache chip

multiprocessor and use it to guide per-core DVFS to improve performance within a

power budget. In Chapter 5, we show that the performance predictor for the private

cache chip multiprocessor also works with a shared cache, explain why, and propose

a more robust mechanism tailored for the shared cache configuration.

As we follow this path and develop new and more accurate DVFS performance

predictors in the chapters ahead, we shall see two main points of focus emerge:

1. Realistic memory systems. We take care to consider the major features of

modern memory systems:

• variable DRAM request latencies resulting from DRAM timing constraints

and DRAM scheduler queuing delays,

• the commonly used stream prefetcher which may greatly increase DRAM

bandwidth demand, and

• the prioritization of demand (instruction fetch and data load) requests in

DRAM scheduling.

We pay particular attention to these details of modern memory systems because,

as we shall soon see, memory system behavior largely determines the perfor-

mance impact of frequency scaling—the same performance impact we want the

processor to be able to predict.

2. Performance impact of finite bandwidth. As a result of our focus on the details of

modern memory systems, we show that the commonly used stream prefetcher

may lead to DRAM bandwidth saturation—an effect ignored by prior DVFS

performance predictors. We design our DVFS performance predictors to take

DRAM bandwidth saturation into account. For the uniprocessor, we model how

finite bandwidth may limit processor performance. For the chip multiprocessor,

we model how finite bandwidth, shared among the cores, may limit performance

of some of the cores but not the others.

3

These points of focus are the reason that the DVFS performance predictors we develop

significantly outperform the state-of-the-art and deliver close to oracle gains in energy

efficiency and performance.

4

Chapter 2

Background

Learning without thought is labor lost;
thought without learning is perilous.

Confucius

In this chapter, we present some background information on dynamic voltage

and frequency scaling, the general approach of performance prediction, notational

conventions, DRAM, and stream prefetching. We shall rely on this background in-

formation to explain our performance predictors in Chapters 3, 4, and 5.

2.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) [5, 27] allows the processor to

change the supply voltage and operating frequency (the combination of which we call

an operating point) of the whole chip or its parts at runtime. Voltage and frequency

are generally scaled together because higher frequencies require higher voltages. Gen-

erally, performance increases at most linearly (but often sublinearly) with frequency

whereas power consumption increases roughly cubically with frequency. [57]

The variation in performance impact of DVFS is due to variation in workload

characteristics. For example, if a workload accesses off-chip memory often, the perfor-

mance impact of DVFS is sublinear because DVFS does not affect off-chip memory

latency. On the other, if a workload never misses in the cache, the performance

impact of DVFS is linear with frequency.

This variation in performance impact of DVFS means that the optimal op-

erating point for the processor is workload-dependent. Whatever the target metric

5

Core Cache

Chip frequency domain

DRAM

(a) Uniprocessor addressed in Chapter 3

Core Cache

Core Cache

Core frequency domains

DRAM
...

(b) Private cache CMP addressed in Chapter 4

Core

Core frequency domains

Core

Cache DRAM
...

(c) Shared cache CMP addressed in Chapter 5

Figure 2.1: Processor and DVFS configurations addressed in this dissertation

(such as energy, performance, or energy-delay product), DVFS endows the processor

with the capability to dynamically adjust its operating point in order to improve that

target metric. This capability gives rise to the central problem of this dissertation:

that of choosing the optimal operating point at runtime.

Traditionally, DVFS has been applied at the chip level only; recently, however,

other DVFS domains have been proposed. David et al. [16] propose DVFS for off-chip

memory and Intel’s Westmere [45] supports multiple voltage and frequency domains

inside the chip. In this dissertation, as illustrated in Figure 2.1, we focus on reducing

energy consumption using chip-level DVFS (Chapter 3) and improving performance

within the power budget using per-core DVFS (Chapters 4 and 5).

6

2.2 Performance Prediction

Performance prediction is a way to improve processor performance or energy

efficiency by adapting some adjustable parameter of the processor to better suit work-

load characteristics. As discussed in Chapter 1, a performance predictor generally

consists of a) a mathematical model that expresses performance as a function of the

adjustable parameter and some workload characteristics, and b) hardware mecha-

nisms that measure the necessary workload characteristics.

The processor uses the performance predictor to control the adjustable param-

eter as follows:

1. For one interval, the performance predictor measures workload characteristics

needed.

2. At the end of the interval, the predictor feeds the measured workload charac-

teristics into the performance model.

3. The performance model estimates what the processor performance would be at

every available setting of the adjustable parameter.

4. The processor changes the adjustable parameter to the setting predicted to

maximize performance (or another target metric) and the process repeats for

the next interval.

All performance predictors considered in this dissertation operate in this fashion.

Note the assumption implicit in these steps: the workload characteristics mea-

sured during the previous interval are expected to remain the same during the next

interval. We make this assumption because we focus on predicting performance given

known workload characteristics; predicting what the workload characteristics in the

next interval would be is the problem of phase prediction—a very different prob-

lem [29, 30, 74, 87] which lies outside the scope of this dissertation.

7

Performance prediction has been used by prior work to dynamically control

DVFS [10, 13–15, 18, 22, 37, 49, 61, 71], the number of running threads [82], shared

cache partition [2, 66, 67], prefetcher aggressiveness [51], core structure sizes [19],

DRAM bandwidth partition [53–55, 66, 67], and choice of core type in an asymmetric

CMP [56, 86]. We present a more detailed overview of prior work on performance

prediction in Chapter 6.

Two prior DVFS performance predictors are of particular interest to us: lead-

ing loads [22, 37, 71] and stall time [22, 37]. These works are the only previously

proposed DVFS performance predictors based on a mechanistic model. We describe

these predictors in detail in Section 3.1.

2.3 Notational Conventions

Performance prediction for DVFS and the associated mathematical models

require nontraditional notation to express performance and frequency.

Traditionally, performance of a single application is expressed in instructions

per cycle (IPC); however, this unit is inappropriate when chip or core frequencies

are allowed to change. Therefore, in this dissertation, the fundamental measure of

performance of a single application is instructions per unit time (IPT).

In addition, the mathematical models of performance under frequency scaling

turn out to be easier to express not in terms of IPT and frequency, but rather in

terms of their reciprocals. Specifically, we shall deal mostly with time per instruction

(TPI) rather than IPT and cycle time rather than frequency.

2.4 DRAM

As we shall see later on, DRAM latency and bandwidth are important factors

in processor performance, particularly under frequency scaling; thus we provide a

brief overview of DRAM below.

8

Modern DRAM systems [31, 58] are organized into a hierarchy of channels,

banks, and rows.1 Each channel has a data bus connected to a set of banks. Each

bank contains many rows and can have a single row open at any given time in its row

buffer. All data stored in DRAM is statically mapped to some channel, bank, and

row.

To access data stored in DRAM, the DRAM controller issues commands to

close (or “precharge”) the open row of the relevant bank, open (or “activate”) the

row mapped to the data needed, transferring the row to the bank’s row buffer, and

read or write the data over the data bus. Subsequent requests to the same row, called

row hits, are satisfied much faster by data bus transfers out of or to the row buffer.

Modern DRAM controllers typically prioritize row hit requests, demand (in-

struction fetch and data load) requests, and oldest requests. Row hit prioritization [70]

exploits row locality in data access patterns to reduce DRAM access latency and bet-

ter exploit DRAM bandwidth; demand prioritization helps shorten the latency of core

stalls caused by demand accesses.

Much of this dissertation deals with the impact of limited DRAM bandwidth

on processor performance; hence, we take a closer look at the three DRAM bandwidth

constraints:

1. Row open bandwidth. The “four activate window” (FAW) constraint limits the

rate at which rows of a channel may be opened by allowing at most four row

opens (“activates”) in any window of tFAW consecutive DRAM cycles (where

tFAW is a DRAM system parameter).

2. Bank bandwidth. The latencies needed to open, access, and close rows of a bank

limit the rate at which the bank can satisfy DRAM requests.

1There are other elements of DRAM organization, such as ranks and chips; however, a description
of these is not necessary to understand the performance impact of DRAM under frequency scaling.

9

Bank level parallelism

Row locality

Row open
(FAW)

Bus

Banks

Figure 2.2: Qualitative relationship between row locality, bank level parallelism, and
the dominant DRAM bandwidth bottleneck

3. Bus bandwidth. The time needed to transfer data over the bus and the overhead

of changing the bus direction (read to write and vice versa) limit the rate at

which the channel can satisfy DRAM requests.

Which of the three bandwidth constraints dominates depends on two param-

eters of the DRAM access stream: row locality, the number of row hits per row open,

and bank level parallelism, the number of banks accessed simultaneously. Figure 2.2

shows the qualitative relationship between these two parameters and the dominant

bandwidth bottleneck. The figure shows that

• the DRAM bus is the dominant DRAM bandwidth bottleneck when the DRAM

access patterns exhibit large row buffer locality,

• the row open bandwidth is the dominant DRAM bandwidth bottleneck when

the DRAM access patterns exhibit little row buffer locality but high bank level

parallelism, and

10

• the DRAM banks are the dominant DRAM bandwidth bottleneck when both

row buffer locality and bank level parallelism are relatively small.

As we show experimentally in Sections 3.3.1 and 4.1, a stream prefetcher (com-

mon in modern processors and described below) uncovers enough row locality to make

the DRAM bus the major bandwidth bottleneck.

2.5 Stream Prefetching

Stream prefetchers are used in many commercial processors [6, 28, 47] and can

greatly improve performance of memory intensive applications that stream through

contiguous data arrays. Stream prefetchers do so by detecting memory access streams

and generating memory requests for data the processor will request further down

stream.

Figure 2.3 illustrates the high level operation of a stream prefetcher for a single

stream of last level cache demand accesses to contiguous cache lines. The prefetcher

handles a demand stream by progressing through three modes of operation:

1. Training. The prefetcher waits until the number of demand accesses fitting a

stream access pattern crosses a training threshold.

2. Ramp-up. For every stream demand access, the prefetcher generates several

prefetch requests (their number is the degree), building up the distance between

the prefetch stream and the demand stream.

3. Steady-state. Once the distance between the prefetch stream and the demand

stream reaches some threshold (the distance), the prefetcher tries to maintain

that distance by sending out a single prefetch stream request for every demand

stream request.

The prefetcher aims to generate prefetch requests early enough for them to bring data

from DRAM before the corresponding demand requests are issued. Those prefetch

11

Addresses

Demand stream accesses

Training threshold

Degree

Distance

Demand accesses

Prefetch accesses

Training Ramp-up Steady-state

Figure 2.3: Stream prefetcher operation

requests that are early enough are called timely. The stream prefetcher distance is

usually set (either at design time or dynamically [79]) to be large enough to make all

prefetch requests issued in steady-state mode timely.

12

Chapter 3

Uniprocessor

Big things have small beginnings, sir.

Mr. Dryden
Lawrence of Arabia

In this chapter1 we develop a DVFS performance predictor for the simplest

processor configuration: the uniprocessor shown in Figure 3.1. We first describe

the previously proposed predictors, leading loads and stall time, both based on a

simple linear analytic model of performance. We then show experimentally that

these predictors still have some room for improvement. Specifically, we show that

• the hardware mechanism used by the leading loads predictor to measure a key

linear model parameter assumes a constant access latency memory system—an

unrealistic assumption given the significant variation of DRAM request latencies

in real DRAM systems, and

• the linear analytic model used by both predictors fails in the presence of prefetch-

ing because the model does not consider the performance impact of DRAM

bandwidth saturation caused by prefetching.

1An earlier version of this chapter was previously published in [60].

Core Cache

Chip frequency domain

DRAM

Figure 3.1: Uniprocessor

13

We address both of these shortcomings by

• designing a new hardware mechanism that accounts for variable DRAM request

latencies when measuring the aforementioned linear model parameter, and

• developing a new limited bandwidth analytic model of performance under fre-

quency scaling that does consider bandwidth saturation caused by prefetching.

Taken together, these improvements comprise our DVFS performance predictor for

uniprocessors. According to this structure, we call this predictor CRIT+BW, since it

is a sum of two parts: CRIT, the hardware mechanism for parameter measurement

(which measures the length of a critical path through DRAM requests, hence the

name “CRIT”), and BW, the limited bandwidth analytic model. We conclude the

chapter by showing experimentally that CRIT+BW can make the processor more

energy-efficient by guiding chip-level DVFS almost as well as an oracle predictor.

3.1 Background

We first describe the basic linear model of processor performance under fre-

quency scaling; we then describe leading loads and stall time, the two previously

proposed DVFS performance predictors based on the linear model.

3.1.1 Linear Model

The linear analytic model of performance under frequency scaling (linear

DVFS performance model for short) arises from the observation that processor exe-

cution consists of two phases:

1. compute, that is on-chip computation, which continues until a burst of demand

(instruction fetch or data load) DRAM accesses is generated, the processor runs

out of ready instructions in the out-of-order instruction window, and stalls, and

2. demand, that is stalling while waiting for the generated demand DRAM accesses

to complete.

14

time per instruction T

cycle time t0

Tdemand

Ccompute × t

Figure 3.2: Linear DVFS performance model

This two-phase view of execution predicts a linear relationship between the average

execution time per instruction T and chip cycle time t. To show this, we let

T = Tcompute + Tdemand,

where Tcompute denotes the average compute phase length per instruction and Tdemand

denotes the average demand phase length per instruction. As chip cycle time t changes

due to DVFS, the average number of cycles Ccompute the chip spends in compute phase

per instruction stays constant; hence

Tcompute(t) = Ccompute × t.

Meanwhile, Tdemand remains constant for every frequency. Thus, given measurements

of Ccompute and Tdemand at any cycle time, we can predict the average execution time

per instruction at any other cycle time:

T (t) = Ccompute × t + Tdemand. (3.1)

This equation, illustrated in Figure 3.2, completely describes the linear DVFS per-

formance model.

15

Chip Activity

Memory
Requests

Phase

Load A

Load B

Load C

Load D

Load E

Compute Demand Compute Demand Compute
Time

Figure 3.3: Abstract view of out-of-order execution with a constant access latency
memory system assumed by leading loads

3.1.2 Leading Loads

Leading loads [22, 37, 71]2 is a previously proposed DVFS performance pre-

dictor based on the linear DVFS performance model and the assumption that the

off-chip memory system has a constant access latency. Figure 3.3 shows the abstract

view of execution implied by this assumption.

The major contribution of leading loads is its mechanism for measuring the two

parameters of the linear model (Tdemand, the average demand time per instruction,

and Ccompute, the average number of compute cycles per instruction) based on the

constant access latency assumption.

We first start with measurement of Tdemand. To measure Tdemand, the leading

loads predictor keeps a counter of total demand time and a counter of total instruc-

tions retired; Tdemand is computed by dividing the former by the latter. Figure 3.3

shows that each demand request burst contributes the latency of a single demand

request to the total demand time. The leading loads predictor measures that latency

by measuring the length of the first (or “leading”) demand request in the burst; since

demand requests are usually data loads, this approach was named “leading loads” by

Rountree et. al [71].

Once Tdemand is measured, the other linear model parameter, Ccompute, can be

computed from Tdemand and the easily measured execution time per instruction T .

2These three works propose very similar techniques. We use the name “leading loads” from
Rountree et al. [71] for all three proposals.

16

Specifically, from Equation 3.1:

Ccompute =
T − Tdemand

t
. (3.2)

The parameter measurement mechanism we just described and the the linear

DVFS performance model comprise the leading loads predictor. This predictor can

be used to control chip-level frequency as described in Section 2.2.

3.1.3 Stall Time

Like leading loads, the stall time [22, 37] DVFS predictor is the combina-

tion of the linear DVFS performance model and hardware mechanisms to measure its

parameters. The key idea is simple: the time the processor spends unable to retire in-

structions due to an outstanding off-chip memory access should stay roughly constant

as chip frequency is scaled (since this time depends largely on memory latency, which

does not change with chip frequency). The stall time predictor uses this retirement

stall time as a proxy for total demand time and computes Tdemand by dividing the

retirement stall time by the number of instructions retired. The Ccompute parameter

is computed exactly as in the leading loads predictor just described.

Unlike leading loads, the stall time predictor is not based on an abstract view

of execution. Rather, the use of retirement stall time as a proxy for demand time is

rooted in intuition.

3.2 CRIT: Accounting for Variable Access Latency Memory

Both leading loads and stall time DVFS performance predictors leave room

for improvement; thus, we design an improved DVFS performance predictor we call

CRIT (the reason for the name will soon become clear). Specifically, we note that

• leading loads is derived from an unrealistic abstract view of execution under a

constant access latency memory system that fails to describe a more realistic

variable access latency memory system, and

17

• stall time is rooted in intuition and is not based on an abstract view of execution,

failing to provide a precise rationale for and hence confidence in its parameter

measurement mechanism.

To overcome both of these shortcomings, we design our performance predictor from

a more realistic abstract view of execution under a variable access latency memory

system.

3.2.1 Experimental Observations

We first show experimentally that the abstract view of execution used by

leading loads breaks in the presence of a real DRAM system.

Table 3.1 shows results of a simulation experiment on SPEC 2006 bench-

marks.3 In this experiment, we compare the length of an average “leading load”

DRAM request to the length of an average demand DRAM request. Recall that

the leading loads predictor is based on a view of execution where the leading loads

have the same latency as the other demand DRAM requests. Table 3.1 shows that

this view is incorrect for a modern DRAM system. In fact, the average leading load

latency is generally less than the average demand DRAM request latency; the ratio

is as low as 63% for cactusADM. This discrepancy makes sense in a realistic DRAM

system where, unlike a constant access latency memory system, requests actually

contend for service. Specifically, a “leading load” DRAM request is less likely to

suffer from contention since, as the oldest demand request, it is prioritized in DRAM

scheduling over other requests, including demand requests from the same burst. Note

also that this discrepancy shows up in benchmarks like bwaves, leslie3d, and milc

which spend a large fraction of execution time waiting on memory (as seen in the

last table column). For these benchmarks, inaccurate measurement of demand time

per instruction Tdemand is most problematic, since the fraction of the error in Tdemand

3Section 3.4 details the experimental methodology and simulated processor configuration.

18

Benchmark Average
leading load
latency,
cycles

Average
DRAM request
latency,
cycles

Leading load
latency
relative to
average
demand request
latency, %

Demand
fraction of
execution time
as measured by
leading loads, %

astar 151 164 92 19
bwaves 138 188 73 37
bzip2 146 171 86 14
cactusADM 182 290 63 25
calculix 135 135 100 9
dealII 106 108 98 6
gamess 99 112 89 0
gcc 121 126 96 9
GemsFDTD 181 215 84 45
gobmk 156 157 100 3
gromacs 101 109 92 4
h264ref 109 113 96 7
hmmer 141 145 97 0
lbm 241 252 96 48
leslie3d 118 161 73 44
libquantum 104 109 95 65
mcf 190 211 90 62
milc 137 173 79 64
namd 93 97 96 1
omnetpp 161 173 93 58
perlbench 153 162 95 3
povray 103 113 91 0
sjeng 175 188 93 5
soplex 112 132 85 61
sphinx3 105 118 89 50
tonto 92 104 89 1
wrf 123 173 71 19
xalancbmk 161 173 93 15
zeusmp 168 179 94 44

Table 3.1: Applicability of leading loads

19

Chip Activity

Memory
Requests

Load A

Load B

Load C

Writeback

Store

Load D

Load E

Time

Figure 3.4: Abstract view of out-of-order processor execution with a variable latency
memory system

measurement that propagates into the total predicted execution time per instruction

T = Tdemand + Tcompute is proportional to Tdemand.

Thus we conclude that the abstract view of processor execution used by the

leading loads predictor does not apply to a processor with a realistic DRAM system.

3.2.2 Variable Access Latency View of Processor Execution

This conclusion motivates the parameter measurement mechanism of our CRIT

performance predictors; specifically, we design CRIT from a more realistic variable

access latency view of processor execution.

Figure 3.4 illustrates the abstract view of processor execution when memory

latency is allowed to vary. Note that the processor still eventually stalls under demand

(instruction fetch and data load) memory requests, but the lengths of these requests

are different.

The introduction of variable memory access latencies complicates the task of

measuring the demand time per instruction Tdemand. We must now calculate how

execution time per instruction is affected by multiple demand requests with very

different behaviors. Some of these requests are dependent and thus serialized (the first

must return its data to the chip before the second one can be issued). Specifically,

there are two kinds of dependence between requests:

1. program dependence, that is, when the address of the second request is computed

from the data brought in by the first request, and

20

2. resource dependence, such as when the out-of-order instruction window is too

small to simultaneously contain both instructions corresponding to the two

memory requests.

Other requests, however, overlap freely.

To estimate Tdemand in this case, we recognize that in the linear DVFS perfor-

mance model, Tdemand is the limit of execution time per instruction as chip frequency

approaches infinity (or, equivalently, as chip cycle time approaches zero). In that

hypothetical scenario, the execution time equals the length of the longest chain of

dependent demand requests. We refer to this chain as the critical path through the

demand requests.

To calculate the critical path, we must know which demand DRAM requests

are dependent (and remain serialized at all frequencies) and which are not. We observe

that independent demand requests almost never serialize; the processor generates

independent requests as early as possible to overlap their latencies. Hence, we make

the following assumption:

If two demand DRAM requests are serialized (the first one completes

before the second one starts), the second one depends on the first one.

3.2.3 Hardware Mechanism

We now describe CRIT, the hardware mechanism that uses the above assump-

tion to estimate the critical path through load and fetch memory requests. CRIT

maintains one global critical path counter Pglobal and, for each outstanding DRAM

request i, a critical path timestamp Pi. Initially, the counter and timestamps are set

to zero. When a request i enters the memory controller, the mechanism copies Pglobal

into Pi. After some time ∆T the request completes its data transfer over the DRAM

bus. At that time, if the request was generated by an instruction fetch or a data load,

CRIT sets Pglobal = max(Pglobal, Pi +∆T). As such, after each fetch or load request i,

21

Pglobal

Chip Activity

Memory
Requests

Load A

Load B

Load C

Writeback

Store

Load D

Load E

0 A B A + C A + C + EA + C + D
Time

Figure 3.5: Critical path calculation example

CRIT updates Pglobal if request i is at the end of the new longest path through the

memory requests.

Figure 3.5 illustrates how the mechanism works. We explain the example step

by step:

1. At the beginning of the example, Pglobal is zero and the chip is in a compute

phase.

2. Eventually, the chip incurs two load misses in the last level cache and generates

two memory requests, labeled Load A and Load B. These misses make copies

of Pglobal, which is still zero at that time.

3. Load A completes and returns data to the chip. Our mechanism adds the re-

quest’s latency, denoted as A, to the request’s copy of Pglobal. The sum repre-

sents the length of the critical path through Load A. Since the sum is greater

than Pglobal, which is still zero at that time, the mechanism sets Pglobal to A.

4. Load A’s data triggers more instructions in the chip, which generate the Load C

request. Load C makes a copy of Pglobal, which now has the value A (the latency

of Load A). Initializing the critical path timestamp of Load C with the value A

captures the dependence between Load A and Load C: the latency of Load C will

eventually be added to that of Load A.

5. Load B completes and ends up with B as its version of the critical path length.

Since B is greater than A, B replaces A as the length of the global critical path.

22

6. Load C completes and computes its version of the critical path length as A+C.

Again, since A + C > B, CRIT sets Pglobal to A + C. Note that A + C is indeed

the length of the critical path through Load A, Load B, and Load C.

7. We ignore the writeback and the store because they do not cause a processor

stall.4

8. Finally, the chip generates requests Load D and Load E, which add their latencies

to A + C and eventually result in Pglobal = A + C + E.

We can easily verify the example by tracing the longest path between dependent loads,

which indeed turns out to be the path through Load A, Load C, and Load E. Note

that, in this example, leading loads would incorrectly estimate Tdemand as A + C + D.

3.2.4 Summary

We have just described our hardware mechanism for measuring demand time

per instruction Tdemand, which is a workload characteristic and a parameter of the

linear analytic model. The other parameter of the model, Ccompute can be computed

using Equation 3.2 as done by both leading loads and stall time predictors. Our mech-

anisms to measure/compute these parameters together with the linear analytic model

comprise our CRIT performance predictor. We defer its evaluation until Section 3.5.1.

3.3 BW: Accounting for DRAM Bandwidth Saturation

Having proposed CRIT, a new parameter measurement mechanism for the

linear analytic model, we now turn our attention to the linear model itself. In this

section, we show experimentally that the linear model does not account for the per-

formance impact of DRAM bandwidth saturation caused by prefetching. We then fix

4Stores may actually cause processor stalls due to insufficient store buffer capacity or memory
consistency constraints [88]. CRIT can be easily modified to account for this behavior by treating
such stalling stores as demands.

23

this problem and develop a new limited bandwidth analytic model on top of the linear

model by taking into account bandwidth saturation. We also augment CRIT to work

with this new analytic model and design hardware to measure an extra parameter

needed by the new model. All together, these hardware mechanisms and the new

limited bandwidth model comprise CRIT+BW, our DVFS performance predictor for

uniprocessors.

3.3.1 Experimental Observations

Figure 3.6 shows how performance of six SPEC 2006 benchmarks scales under

frequency scaling when prefetching is off. The six plots were obtained by simulating

a 100K instruction interval of each benchmark at a range of frequencies from 1 GHz

to 5 GHz. Note that most plots, except the one for lbm, match the linear analytic

model. Comparing these plots to Figure 3.2, we see that some benchmarks (like

gcc and xalancbmk) exhibit low demand time per instruction Tdemand, spending most

execution time in on-chip computation even at 5 GHz. Others (like mcf and omnetpp)

exhibit high Tdemand and spend most of their execution time at 5 GHz stalled for

demand DRAM requests. Both kinds, however, are well described by the linear

analytic model. The apparent exception lbm follows the linear model for most of the

frequency range, but seems to taper off at 5 GHz. We shall soon see the reason for

this anomaly.

Figure 3.6 shows how performance of six SPEC 2006 benchmarks scales under

frequency scaling in the presence of a stream prefetcher (Section 2.5) over 100K

instruction intervals where these benchmarks exhibit streaming data access patterns.

Note that none of the plots match the linear model: instead of decreasing linearly

with chip cycle time, the time per instruction saturates at some point.

The linear model fails to describe processor performance in these examples

due to the special nature of prefetching. Unlike demand DRAM requests, a prefetch

DRAM request is issued in advance of the instruction that consumes the request’s

data. Recall from Section 2.5 that a prefetch request is timely if it fills the cache before

24

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(a) gcc

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(b) lbm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(c) mcf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(d) omnetpp

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(e) sphinx3

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(f) xalancbmk

Figure 3.6: Linear model applicability with prefetching off: performance impact of
frequency scaling on 100K instruction intervals of SPEC 2006 benchmarks

25

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(a) calculix

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(b) lbm

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(c) leslie3d

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(d) libquantum

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(e) milc

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

(f) zeusmp

Figure 3.7: Linear model failure with prefetching on: performance impact of frequency
scaling on 100K instruction intervals of prefetcher-friendly SPEC 2006 benchmarks

26

the consumer instruction accesses the cache. Timely prefetches do not cause processor

stalls; hence, their latencies do not affect execution time. Without stalls, however, the

processor may generate prefetch requests at a high rate, exposing another performance

limiter: the rate at which the DRAM system can satisfy DRAM requests—the DRAM

bandwidth.

Table 3.2 provides more insight into DRAM bandwidth saturation. Recall

from Section 2.4 that modern DRAM has three potential bandwidth bottlenecks: bus,

banks, and row open rate (determined by the “four activate window”, or FAW, timing

constraint). For each SPEC 2006 benchmark, the table lists the fraction of time each

of these potential bandwidth bottlenecks is more than 90% utilized. The left side of

the table shows this data for simulation experiments with prefetching off; the right

side shows results with a stream prefetcher enabled. Note that bandwidth saturation

of any potential bottleneck is rare when prefetching is off (with the exception of

lbm which explains its anomalous behavior seen earlier). On the other hand, in the

presence of a stream prefetcher, the DRAM bus is not only often saturated but is

also the only significant DRAM bandwidth bottleneck.

The simulation results in Table 3.2 clearly show that the DRAM bus is the ma-

jor DRAM bandwidth bottleneck; we now explain why. To become bandwidth-bound,

a workload must generate DRAM requests at a high rate. DRAM requests can be

generated at a high rate if they are independent; that is, the data brought in by one

is not needed to generate the addresses of the others. In contrast, dependent requests

(for example, those generated during linked data structure traversals) cannot be gen-

erated at a high rate, since the processor must wait for a long latency DRAM request

to complete before generating the dependent request. The independence of DRAM

requests needed to saturate DRAM bandwidth is a hallmark of streaming workloads,

that is workloads that access data by iterating over arrays (either consecutively or

using a short stride). An extreme example is lbm, which simultaneously streams

over ten arrays (which are actually subarrays within two three-dimensional arrays).

The memory layout of such arrays (e.g., column-major or row-major) is usually cho-

27

Fraction of time each potential DRAM bandwidth bottleneck
is more than 90% utilized, in %

Prefetching off Prefetching on
Benchmark Bus Banks FAW Bus Banks FAW

astar 2.3 0.0 0.0 2.7 0.0 0.0
bwaves 0.3 4.5 0.0 88.9 0.3 0.0
bzip2 6.5 0.1 0.0 12.0 0.0 0.0
cactusADM 8.0 0.7 0.0 7.9 0.6 0.0
calculix 7.1 0.0 0.0 7.9 0.0 0.0
dealII 0.2 0.0 0.0 0.4 0.0 0.0
gamess 0.0 0.0 0.0 0.0 0.0 0.0
gcc 0.3 0.0 0.0 0.8 0.0 0.0
GemsFDTD 6.1 0.2 0.0 48.4 0.2 0.0
gobmk 0.1 0.0 0.0 0.2 0.0 0.0
gromacs 0.2 0.0 0.0 0.2 0.0 0.0
h264ref 0.8 0.0 0.0 2.1 0.0 0.0
hmmer 0.0 0.0 0.0 0.1 0.0 0.0
lbm 94.9 0.1 0.0 99.3 0.0 0.0
leslie3d 1.8 5.4 0.0 43.4 0.1 0.0
libquantum 17.4 0.7 0.0 80.9 0.0 0.0
mcf 0.1 0.0 0.0 0.2 0.0 0.0
milc 18.0 2.1 0.0 39.7 0.0 0.0
namd 0.1 0.0 0.0 0.1 0.0 0.0
omnetpp 0.3 0.0 0.0 0.9 0.0 0.0
perlbench 0.5 0.0 0.0 0.6 0.0 0.0
povray 0.0 0.0 0.0 0.0 0.0 0.0
sjeng 0.0 0.0 0.0 0.0 0.0 0.0
soplex 2.7 1.7 0.0 71.7 1.4 0.0
sphinx3 1.0 0.3 0.0 36.7 0.2 0.0
tonto 0.2 0.0 0.0 0.0 0.0 0.0
wrf 1.3 1.4 0.0 7.4 0.3 0.0
xalancbmk 0.2 0.0 0.0 1.4 0.0 0.0
zeusmp 0.4 0.1 0.0 1.2 0.0 0.0

Table 3.2: Bandwidth bottlenecks in the uniprocessor

28

sen with these streaming DRAM access patterns in mind in order to exploit row

locality, making the DRAM bus the most likely bandwidth bottleneck even without

prefetching. Once on, the stream prefetcher further speeds up streaming workloads

and uncovers even more row locality; therefore, streaming workloads become even

more likely to saturate the DRAM bus.5

Now that we uncovered the performance limiting effect of DRAM bandwidth

saturation and observed the DRAM bus to be the dominant DRAM bandwidth bot-

tleneck, we are ready to develop a new DVFS performance predictor that takes these

observations into account. We start with a new analytic model and then develop

hardware mechanisms to measure its parameters.

3.3.2 Limited Bandwidth Analytic Model

We now describe the limited bandwidth analytic model of uniprocessor per-

formance under frequency scaling, illustrated in Figure 3.8, that takes into account

the performance limiting effect of finite memory bandwidth exposed by prefetching.

This model splits the chip frequency range into two parts:

1. the low frequency range where the DRAM system can service memory requests

at a higher rate than the chip generates them, and

2. the high frequency range where the DRAM system cannot service memory re-

quests at the rate they are generated.

In the low frequency range, shown to the right of tcrossover in Figure 3.8, the

prefetcher runs ahead of the demand stream because the DRAM system can satisfy

prefetch requests at the rate the prefetcher generates them. Therefore, DRAM band-

width is not a performance bottleneck in this case. In fact, in this case the time per

5Irregular access prefetchers [12, 32, 35, 89] (yet to be used in commercial processors) may also
saturate DRAM bandwidth; however, unlike stream prefetchers, these prefetchers generate requests
mapped to different DRAM rows. In this high bandwidth yet low row locality scenario, the DRAM
bus may no longer be the dominant bandwidth bottleneck.

29

time per instruction T

cycle time t0

Tdemand

Ccompute × t

Tmin
memory

tcrossover

Bandwidth
bound

Latency
bound

Figure 3.8: Limited bandwidth DVFS performance model

instruction T is modeled by the original linear model, with only the non-prefetchable

demand memory requests contributing to the demand time per instruction Tdemand.

In the high frequency range, shown to the left of tcrossover in Figure 3.8, the

prefetcher fails to run ahead of the demand stream due to insufficient DRAM band-

width. As the demand stream catches up to the prefetches, some demand requests

stall the processor as they demand data that the prefetch requests have not yet

brought into the cache. In this high frequency range the execution time per instruc-

tion is determined solely by Tmin
memory: the minimum average time per instruction that

the DRAM system needs to satisfy all of the memory requests. Therefore, time per

instruction T does not depend on chip frequency in this case.

The limited bandwidth DVFS performance model shown in Figure 3.8 has

three parameters:

1. the demand time per instruction Tdemand,

2. the number of compute cycles per instruction Ccompute, and

30

3. the minimum memory time per instruction Tmin
memory.

Given the values of these parameters, we can estimate the execution time per

instruction T at any other cycle time t as follows:

T (t) = max
(
Tmin

memory, Ccompute × t + Tdemand

)
. (3.3)

3.3.2.1 Approximations Behind Tmin
memory

In this section, we address the implicit approximations related to the Tmin
memory

workload characteristic used by the limited bandwidth model. Specifically, our notion

that the minimum memory time per instruction Tmin
memory is a workload characteristic

that stays constant across chip frequencies relies on two approximations:

1. The average number of DRAM requests per instruction (both demands and

prefetches) remains constant across chip frequencies. This approximation is

generally accurate in the absence of prefetching; however, with prefetching on

this approximation is less accurate. Specifically, modern prefetchers may adapt

their aggressiveness based on bandwidth consumption, which may change with

chip frequency, causing the average number of DRAM requests per instruction

to also vary with chip frequency.

2. The DRAM scheduler efficiency remains the same across chip frequencies. In

particular, we approximate that the average overhead of switching the DRAM

bus direction per DRAM request remains the same across chip frequencies.

3.3.3 Parameter Measurement

We now develop the hardware mechanisms for measuring the three parameters

of the limited bandwidth analytic model. These mechanisms are complicated by the

fact that the analytic model allows for two modes of processor operation: latency-

bound and bandwidth-bound. Therefore we have to ensure our mechanisms work in

both modes.

31

3.3.3.1 Demand Time per Instruction Tdemand

In Section 3.2 we have already developed the CRIT hardware mechanism to

measure demand time per instruction Tdemand for the linear analytic model; however,

it requires a slight alteration to work with our new limited bandwidth analytic model.

In fact, CRIT does not measure Tdemand correctly in the bandwidth-bound

mode of operation. Like leading loads and stall time, CRIT is based on the assumption

that the number of demand DRAM requests per instruction and their latencies remain

(on average) the same across chip frequencies. Prefetching in bandwidth-bound mode

violates this assumption.

This effect concerns prefetch DRAM requests that are timely when the core

is latency-bound (recall from Section 2.5 that timely prefetch requests bring their

data into the cache before a demand request for that data is generated). Specifically,

DRAM bandwidth saturation at higher chip frequencies increases DRAM request

service time, causing some of these timely prefetch requests to become untimely.

In fact, limited bandwidth may force the prefetcher to drop some prefetch requests

altogether due to the prefetch queue and MSHRs being full, causing extra demand

requests for the would be prefetched data. As a result, when bandwidth-bound, a

core appears to exhibit more demand time per instruction than when latency-bound

(due to a higher number of demand requests and untimely prefetch requests than in

latency-bound mode). This effect is undesirable because for a DVFS performance

predictor to be accurate all workload characteristics must stay the same across core

frequencies.

To solve this problem we add extra functionality to the existing stream prefetcher

to classify demand requests and untimely prefetch requests as “would be timely” if

the core were latency-bound. This classification is based on the two modes the stream

prefetcher uses to prefetch a stream (see Section 2.5 for details): a) the ramp up mode,

started right after the stream is detected, in which the prefetcher continually increases

the distance between the prefetch stream and the demand stream, and b) the steady

state mode, which the prefetcher enters after the distance between the prefetch stream

32

and the demand stream becomes large enough to make the prefetch requests timely.

As demand accesses to the last level cache are reported to the stream prefetcher for

training, some may match an existing prefetch stream, mapping to a cache line for

which, according to prefetcher state, a prefetch request has already been issued. In

this case we assume that the previously issued prefetch request was actually dropped

due to prefetch queue or MSHR saturation typical of bandwidth-bound execution.

Such a prefetch request would not have been dropped had the core been latency-

bound; in fact, this prefetch request would have been timely had the prefetch stream

been in steady state. Thus, we mark each demand last level cache access that matches

a prefetch stream in steady state as a “would be timely” request. Prefetch requests

generated for streams in the steady state mode are also marked “would be timely.”

This classification enables CRIT to measure demand time per instruction

Tdemand in both modes of processor operation. Specifically, when computing the crit-

ical path through the demand DRAM requests (Section 3.2.3), CRIT now ignores all

demand DRAM requests marked “would be timely,” because these demand requests

are predicted to be timely prefetch requests in the latency-bound mode.

3.3.3.2 DRAM Bandwidth Utilization

While DRAM bandwidth utilization is not a parameter of the limited band-

width analytic model, we do measure it to detect the current processor operation

mode (latency-bound or bandwidth-bound) and to measure minimum memory time

per instruction Tmin
memory.

Recall from earlier experimental observations in Section 3.3.1 that the DRAM

bus is the dominant DRAM bandwidth bottleneck of a uniprocessor with a stream

prefetcher; hence, in this case, DRAM bandwidth utilization is simply DRAM bus

utilization.

To measure current DRAM bus utilization Ubus we first compute the maximum

rate at which the bus can satisfy DRAM requests. This maximum rate depends on

the average time each DRAM request occupies the bus. To measure the average time

33

each DRAM request occupies the bus we consider both the actual data transfer time

and the overhead of switching the bus direction. Specifically, in the DDR3 [58] system

we use, a DRAM request requires four DRAM bus cycles to transfer its data (a 64

byte cache line) over the data bus. In addition, each bus direction switch prevents the

bus from being used for 9.5 cycles on average (2 cycles for a read to write switch and

17 cycles for a write to read switch). Hence, the average time each DRAM request

occupies the 800 MHz bus (cycle time 1.25 ns) is

Trequest =

(
4 + 9.5 × Direction switches

Requests

)
× 1.25 × 10−9.

Note that Trequest is easily computed from DRAM system design parameters and per-

formance counters. Once Trequest is known, the maximum DRAM request rate is sim-

ply 1/Trequest. Finally, DRAM bus utilization Ubus is computed using this maximum

DRAM request rate and the measured DRAM request rate:

Ubus =
Measured DRAM request rate

Maximum DRAM request rate
= Measured DRAM request rate × Trequest.

Note that we include both data transfer time and direction switch overhead time in

our definition of DRAM bus utilization.

3.3.3.3 Detecting Current Operation Mode

In order to compute the remaining parameters of the limited bandwidth model,

our performance predictor must determine the current operating mode of the proces-

sor: latency-bound or bandwidth-bound. To develop the relevant mechanism, we

make two observations:

1. DRAM bus utilization is close to 100% in the bandwidth-bound mode, but not

in the latency-bound mode.

2. The fraction of time the processor spends either computing or stalling on non-

”would be timely” demand DRAM requests is close to 100% in the latency-

bound mode, but not in the bandwidth-bound mode (in which the processor

34

spends a non-trivial fraction of time stalling on “would be timely” DRAM re-

quests and due to MSHRs being full).

Therefore, to determine the operating mode of the processor, the performance predic-

tor can simply compare DRAM bus utilization to the fraction of time the processor

spends either computing or stalling on a non-“would be timely” demand DRAM re-

quest. To make this comparison, the processor measures the needed quantities as

follows:

• DRAM bus utilization is measured as described in Section 3.3.3.2.

• Fraction of time spent computing is measured as fraction of time instruction

retirement is not stalled due to a demand DRAM request or MSHRs being full.

• Fraction of time spent stalled on non-“would be timely” demand DRAM requests

is computed as the demand time per instruction Tdemand (measured as described

in Section 3.3.3.1) divided by the easily measured total execution time per

instruction T .

Having computed these quantities, the performance predictor determines the operat-

ing mode of the processor to be:

• bandwidth-bound if DRAM bus utilization is greater than the fraction of time

spent computing or stalling on non-”would be timely” demand DRAM requests,

or

• latency-bound otherwise.

3.3.3.4 Compute Cycles per Instruction Ccompute

The measurement technique for compute cycles per instruction Ccompute de-

pends on the operating mode of the processor. In the latency-bound mode the main

assumption of the linear model still holds: the processor is always either computing

35

or stalling on (non-“would be timely”) demand DRAM requests. Therefore, Ccompute

is easily computed using Equation 3.2, restated here:

Ccompute =
T − Tdemand

t
.

This equation, however, does not apply in the bandwidth-bound mode, where the

processor, in addition to computing or stalling on non-“would be timely” demand

DRAM requests, may also be in a third state: stalling on “would be timely” DRAM

requests or due to MSHRs being full. Therefore, we devise a different way to measure

Ccompute in the bandwidth-bound mode: as the number of cycles the processor is not

stalled due to a demand DRAM request or MSHRs being full divided by the number

of instructions retired.

3.3.3.5 Minimum Memory Time per Instruction Tmin
memory

The measurement technique for the minimum memory time per instruction

Tmin
memory also depends on the operating mode of the processor.

In the latency-bound mode, Tmin
memory is computed from DRAM bus utiliza-

tion Ubus and the measured execution time per instruction T . Since Tmin
memory is the

minimum bound on T reached when DRAM bus bandwidth is utilized 100%, the

relationship is simple:

Tmin
memory = Ubus × T .

In the bandwidth-bound mode, according to the limited bandwidth model, the

execution time per instruction T is simply Tmin
memory; therefore, Tmin

memory = T .

3.3.4 Hardware Cost

Table 3.3 details the storage required by CRIT+BW. The additional storage

is only 1088 bits. The mechanism does not add any structures or logic to the critical

path of execution.

36

Storage Component Quantity Width Bits

Global critical path counter Pglobal 1 32 32
Copy of Pglobal per memory request 32 32 1024
“Would be timely” bit per memory request 32 1 32
Other counters assumed to exist already – – –

Total bits 1088

Table 3.3: Hardware storage cost of CRIT+BW

Frequency Front end OOO Core

Min 1.5 GHz Microinstructions/cycle 4 Microinstructions/cycle 4
Max 4.5 GHz Branches/cycle 2 Pipeline depth 14
Step 100 MHz BTB entries 4K ROB size 128

Predictor hybrida RS size 48

All Caches ICache DCache L2 Stream prefetcher [84]

Line 64 B Size 32 KB 32 KB 1 MB Streams 16 Distance 64
MSHRs 32 Assoc. 4 4 8 Queue 128 Degree 4
Repl. LRU Cycles 1 2 12 Training threshold 4

Ports 1R,1W 2R,1W 1 L2 insertion mid-LRU

DRAM Controller DDR3 SDRAM [58] DRAM Bus

Window 32 reqs Chips 8 × 256 MB Row 8 KB Freq. 800 MHz
Priority schedulingb Banks 8 CASc 13.75 ns Width 8 B

a 64K-entry gshare + 64K-entry PAs + 64K-entry selector.
b Priority order: row hit, demand (instruction fetch or data load), oldest.
c CAS = tRP = tRCD = CL;

other modeled DDR3 constraints: BL, CWL, t{RC, RAS, RTP, CCD, RRD, FAW, WTR, WR}.

Table 3.4: Simulated uniprocessor configuration

37

3.4 Methodology

We compare energy saved by CRIT+BW to that of the state-of-the-art (lead-

ing loads and stall time) and to three kinds of potential energy savings (computed

using offline DVFS policies). Before presenting the results, we justify our choice of

energy as the efficiency metric, describe our simulation methodology, explain how we

compute potential energy savings, and discuss our choice of benchmarks.

3.4.1 Efficiency Metric

We choose energy (or, equivalently,6performance per watt) as the target ef-

ficiency metric because a) energy is a fundamental metric of interest in computer

system design and b) of the four commonly used metrics, energy is best suited for

DVFS performance prediction evaluation.

Specifically, energy is a fundamental metric of interest in computer system

design because it is directly related to operation cost (in data center applications)

and battery life (in mobile applications), which are, in turn, directly related to the

data center operator’s bottom line and the quality of user experience, respectively.

In addition, of the four commonly used metrics—energy, energy delay product

(EDP), energy delay-squared product (ED2P), and performance (execution time)—

energy is best suited for DVFS performance predictor evaluation because it can be

targeted by a simple DVFS performance controller (so that most of the benefit comes

from DVFS performance prediction) and allows comparisons to optimal results.

Specifically, energy has the desirable property that the optimal (most energy-

efficient) frequency for an execution interval does not depend on the behavior of the

rest of the execution. Therefore, the DVFS controller need not keep track of past

long-term application behavior and predict future long-term application behavior in

order to reduce energy consumption using DVFS. In addition, this property means

6Energy and performance per watt are equivalent in the sense that in any execution interval, the
same operating point is optimal for both metrics.

38

that a locally optimal oracle predictor (one that correctly predicts the best chip

frequency for every execution interval) is also globally optimal (that is, optimal over

the entire execution of the workload). Since simulation of such locally optimal oracle

predictors is, though slower than nonoracle simulation, still feasible, this property

enables comparisons to globally optimal results.

In contrast, EDP and ED2P do not have this property, making it hard to

isolate the benefits of DVFS performance prediction in the results and precluding

comparisons to optimal results. Sazeides et al. [73] discuss these issues in greater

detail.

The remaining metric, performance, is not applicable to chip-level DVFS. In

the uniprocessor case, optimizing performance does not require a performance pre-

diction: the optimal frequency is simply the highest frequency.7

3.4.2 Timing Model

We use an in-house cycle-level simulator of an x86 superscalar out-of-order

processor driven by the x86 functional model from Multi2Sim [85]. The simulator

models port contention, queuing effects, and bank conflicts throughout the cache

hierarchy and includes a detailed DDR3 SDRAM model. Table 3.4 lists the baseline

processor configuration.

3.4.3 Power Model

We model three major system power components: chip power, DRAM power,

and other power (fan, disk, etc.).

We model chip power using McPAT 0.8 [50] extended to support DVFS. Specif-

ically, to generate power results for a specific chip frequency f , we:

1. run McPAT with a reference voltage V0 and frequency f0,

7We shall target performance (within a power budget) when we consider performance prediction
for per-core DVFS in Chapters 4 and 5.

39

Component Parameter Value

Chip
@1.5 GHz @4.5 GHz

Static power (W) 12 35
Peak dynamic power (W) 2 51

DRAM

Static power (W) 1
Precharge energy (pJ) 79
Activate energy (pJ) 46
Read energy (pJ) 1063
Write energy (pJ) 1071

Other Static power (W) 40

Table 3.5: Uniprocessor power parameters

2. scale voltage using V = max(Vmin,
f
f0

V0),

3. scale reported dynamic power using P = 1
2
CV 2f , and

4. scale reported static power linearly with voltage [7].

We model DRAM power using CACTI 6.5 [63] and use a constant static power

as a proxy for the rest of system power.

Table 3.5 details the power parameters of the system.

3.4.4 DVFS Controller

Every 100K retired instructions, the DVFS controller chooses a chip frequency

for the next 100K instructions.8 Specifically, the controller chooses the frequency esti-

mated to cause the least system energy consumption. To estimate energy consumption

at a candidate frequency f while running at f0, the controller:

1. obtains measurements of

8We chose 100K instructions because it is the smallest quantum for which the time to change
chip voltage (as low as tens of nanoseconds [39, 40], translating to less than 1K instructions or less
than 1% of the 100K instruction interval) can be neglected.

40

• execution time T (f0),

• chip static power Pchip static(f0),

• chip dynamic power Pchip dynamic(f0),

• DRAM static power PDRAM static(f0),

• DRAM dynamic power PDRAM dynamic(f0), and

• other system power Pother(f0)

for the previous 100K instructions from hardware performance counters and

power sensors,

2. obtains a prediction of execution time T (f) for the next 100K instructions from

the performance predictor (either leading loads, stall time, or CRIT+BW),

3. calculates chip dynamic energy Echip dynamic(f0) and DRAM dynamic energy

EDRAM dynamic(f0) for the previous interval using E = PT ,

4. calculates Echip dynamic(f) by scaling Echip dynamic(f0) using E = 1
2
CV 2,

5. calculates Pchip static(f) = V
V0

Pchip static(f0) as in [7],

6. and finally calculates total estimated system energy

E(f) = Echip(f) + EDRAM(f) + Eother(f)

= Pchip static(f) × T (f) + Echip dynamic(f) +

PDRAM static(f0) × T (f) + EDRAM dynamic(f) +

Pother(f0) × T (f).

To isolate the effect of DVFS performance predictor accuracy on energy sav-

ings, we do not simulate delays associated with switching between frequencies. Ac-

counting for these delays requires an additional prediction of whether the benefits of

switching outweigh the cost. If the accuracy of that prediction is low, it could hide

the benefits of high performance prediction accuracy, and vice versa.

41

3.4.5 Offline Policies

We model three offline DVFS controller policies: dynamic optimal, static op-

timal, and perfect memoryless.

The dynamic optimal policy places a lower bound on energy consumption. We

compute this bound as follows:

1. run the benchmark under study at each chip frequency,

2. for each interval, find the minimum consumed energy across all frequencies,

3. total the per-interval minimum energies.

The static optimal policy chooses the chip frequency that minimizes energy

consumed by the benchmark under study, subject to the constraint that frequency

must remain the same throughout the run. The difference between dynamic and static

optimal results yields potential energy savings due to benchmark phase behavior.

The perfect memoryless policy simulates a perfect memoryless performance

predictor. We call a predictor memoryless if it assumes that for each chip frequency,

performance during the next interval equals performance during the last interval. This

assumption makes sense for predictors that do not “remember” any state (other than

the measurements from the last interval); hence the name “memoryless.” Note that all

predictors discussed in this dissertation are memoryless. For each execution interval,

the perfect memoryless policy chooses the chip frequency that would minimize energy

consumption during the previous interval.

The perfect memoryless policy provides a quasi-optimal9 bound on energy

saved by memoryless predictors. A large difference between dynamic optimal and

perfect memoryless results indicates that a memoryless predictor cannot handle the

frequency of phase changes in the benchmark under study. Getting the most energy

9We call this bound quasi-optimal because an imperfect memoryless predictor may actually save
more energy than the perfect memoryless predictor if the optimal frequency for the previous interval
does not remain optimal in the next interval.

42

savings out of such benchmarks may require “memoryful” predictors that can detect

and predict application phases. We leave such predictors to future work.

3.4.6 Benchmarks

We simulate SPEC 2006 benchmarks compiled using the GNU Compiler Col-

lection version 4.3.6 with the -O3 option. We run each benchmark with the refer-

ence input set for 200M retired instructions starting from checkpoints taken using

Pincpt [59] at the beginning of a representative region selected using Pinpoints [68].

To simplify the analysis of the results, we classify the benchmarks based on

their memory intensity. We define a benchmark as memory-intensive if it generates 10

or more DRAM requests per thousand instructions at the baseline 3.7 GHz frequency

with no prefetching.

3.5 Results

We show CRIT and CRIT+BW results for two configurations: with prefetch-

ing turned off (for CRIT) and with a stream prefetcher (for CRIT+BW). In both

cases, we show normalized energy reduction relative to the energy consumed at 3.7 GHz,

the most energy-efficient static frequency across SPEC 2006 (which happens to be

the same for both cases).

Before analyzing the results, we first explain their presentation using Fig-

ure 3.9a as an example. Note that, for each benchmark, the figure shows five bars

within a wide box. The height of the box represents dynamic optimal energy reduc-

tion. Since no other DVFS policy can save more energy than dynamic optimal, we

can use this box to bound the other five bars. The five bars inside the box represent

energy reduction due to 1) leading loads, 2) stall time, 3) CRIT or CRIT+BW, 4) op-

timal static DVFS policy, and 5) perfect memoryless DVFS policy. This plot design

allows for easy comparisons of realized and potential gains for each benchmark and

simplifies comparison of potential gains across benchmarks at the same time.

43

-2

 0

 2

 4

 6

 8

 10

bwaves

GemsF
DTD lbm

lesli
e3d

lib
quantum mcf

milc

omnetpp
soplex

sphinx3
gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT Static
optimal

Perfect
memoryless

Dynamic
optimal

(a) Memory-intensive benchmarks

-2

-1

 0

 1

 2

asta
r

bzip2

cactusA
DM

calculix
dealII

gamess gcc

gobmk

h264ref

hmmer
namd

perlb
ench

povray
sje

ng
tonto wrf

xalancbmk

zeusm
p

gmeanE
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT Static
optimal

Perfect
memoryless

Dynamic
optimal

(b) Non-memory-intensive benchmarks

Figure 3.9: Energy savings with prefetching off

3.5.1 CRIT (Prefetching Off)

Figure 3.9a shows realized and potential energy savings across the ten memory-

intensive workloads. On average, CRIT and stall time realize 4.8% and 4.2% out of

potential 6.0% energy savings, whereas leading loads only realizes 3.3%. For com-

pleteness, Figure 3.9b shows energy savings for low memory intensity benchmarks

(note the difference in scale).

The subpar energy savings by leading loads are due to its constant memory

access latency approximation. As described in Section 3.1.2, leading loads measures

the latency of the first load in each cluster of simultaneous memory requests to com-

pute the demand component Tdemand of total execution time per instruction T . As we

have already discussed in Section 3.2.1, it turns out that in such clusters, the leading

load latency is usually less than that of the other requests. This discrepancy is due to

the fact that the first memory request in a cluster is unlikely to contend with another

request for a DRAM bank, whereas the later requests in the cluster likely have to

44

wait for the earlier ones to free up the DRAM banks. This underestimate of Tdemand

results in subpar energy savings, exemplified by bwaves, leslie3d, and mcf.

The fact that stall time beats leading loads validates our focus on realistic

memory systems. Both our experiments and prior work [22, 37] show that when

evaluated with a constant access latency memory, leading loads saves more energy

than stall time. Evaluation of the two predictors with a realistic DRAM system,

however, actually reverses this conclusion. Thus we conclude that DVFS performance

predictors must be evaluated with realistic memory systems.

While CRIT generally outperforms stall time and leading loads, all three per-

formance predictors fail to save much energy on lbm and calculix. These two bench-

marks generate enough DRAM requests to saturate DRAM bandwidth even though

prefetching is off (for calculix this behavior is limited to 8M out of simulated 200M

instructions). As discussed in Section 3.3, the linear DVFS performance model as-

sumed by all three predictors does not account for this DRAM bandwidth saturation;

thus, all three predictors fail to accurately predict performance of these benchmarks

resulting in suboptimal energy savings.

3.5.2 CRIT+BW (Prefetching On)

Figure 3.10a shows realized and potential energy reduction across the ten

memory-intensive benchmarks with a stream prefetcher enabled. On average, CRIT+BW

realizes 6.4% out of potential 7.8% energy savings, whereas stall time and leading

loads only realize 1.4% and 0.6% respectively. CRIT+BW saves significantly more

energy than stall time and leading loads because the limited bandwidth model used

by CRIT+BW takes into account DRAM bandwidth saturation, whereas the linear

model used by stall time and leading loads does not. For completeness, Figure 3.10b

shows energy savings for non-memory-intensive benchmarks (note the difference in

scale).

45

-2

 0

 2

 4

 6

 8

 10

 12

 14

bwaves

GemsF
DTD lbm

lesli
e3d

lib
quantum mcf

milc

omnetpp
soplex

sphinx3
gmean

E
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

-14.1 -14.7

Leading loads Stall time CRIT+BW Static
optimal

Perfect
memoryless

Dynamic
optimal

(a) Memory-intensive benchmarks

-2

-1

 0

 1

 2

 3

asta
r

bzip2

cactusA
DM

calculix
dealII

gamess gcc

gobmk

h264ref

hmmer
namd

perlb
ench

povray
sje

ng
tonto wrf

xalancbmk

zeusm
p

gmeanE
n

er
g

y
 R

ed
u

ct
io

n
 (

%
)

Leading loads Stall time CRIT+BW Static
optimal

Perfect
memoryless

Dynamic
optimal

(b) Non-memory-intensive benchmarks

Figure 3.10: Energy savings with prefetching on

-20

-10

 0

 10

 20

-20 -10 0 10 20

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce
 ∆

,
%

Normalized power ∆, %

bwaves

GemsFDTD

lbm

leslie3d

libquantum

mcf

milc
omnetpp

soplex

sphinx3

Figure 3.11: Performance delta versus power delta under DVFS with CRIT+BW for
memory-intensive benchmarks

46

Note that CRIT+BW realizes close to oracle energy savings on both lbm and

calculix, the two workloads on which CRIT fails due to ignoring the performance

impact of DRAM bandwidth saturation.

Note also that CRIT+BW adapts to dynamic phase behavior of bwaves,

GemsFDTD, libquantum, and soplex. This effect is evident from the large differ-

ence between energy savings realized by CRIT+BW and the energy savings achieved

by the static optimal DVFS policy on these benchmarks.

Finally, note that CRIT+BW realizes less than half of dynamic optimal energy

savings on leslie3d and sphinx3. This suboptimal showing is due to the frequent

phase changes in both benchmarks, evident from the large difference between dynamic

optimal energy savings and the energy savings achieved by the perfect memoryless

DVFS policy. The 100K instruction intervals used by CRIT+BW are too long to

allow CRIT+BW to adapt to the fast-changing phase behavior of these benchmarks.

3.5.2.1 Power and Performance Tradeoff

Figure 3.11 details how CRIT+BW trades off power and performance to re-

duce energy. The figure plots performance delta versus power delta (normalized to

performance and power achieved at the baseline 3.7 GHz frequency). The diagonal

line consists of points where performance and power deltas are equal, resulting in the

same energy as the baseline.

CRIT+BW trades off power and performance differently across workloads. On

GemsFDTD and bwaves, CRIT+BW spends extra power for even more performance,

while on lbm, mcf, milc, omnetpp, and sphinx3 CRIT+BW allows performance to

dip to save more power.

Note that CRIT+BW improves performance and saves power on leslie3d,

libquantum, and soplex. CRIT+BW does so by exploiting phase behavior of these

benchmarks. In some phases, CRIT+BW spends extra power for more performance;

in others, it makes the opposite choice. On average, both performance and power

consumption improve.

47

3.6 Conclusions

In this chapter we have developed CRIT+BW, a DVFS performance predictor

for uniprocessors that enables DVFS to realize close to optimal energy savings. We

have also shown that taking into account the details of the memory system (such as

variable DRAM access latencies and stream prefetching) is key to accurate DVFS

performance prediction.

We note that most of the extra energy savings realized by CRIT+BW on top

of the savings realized by prior work comes not from better model parameter measure-

ment (the CRIT part of CRIT+BW), but rather from the new limited bandwidth

DVFS performance model (the BW part of CRIT+BW). This discrepancy makes

sense: no matter how accurate a parameter measurement mechanism is, it cannot

help the performance predictor if the performance model used is inaccurate itself.

This observation motivates our approach to DVFS performance prediction

for chip multiprocessors in the chapters ahead. Specifically, we shall focus most

of our attention on the DVFS performance model, keeping parameter measurement

mechanisms as simple as possible.

48

Chapter 4

Private Cache Chip Multiprocessor

A brave little theory, and actually quite coherent for a system
of five or seven dimensions—if only we lived in one.

Academician Prokhor Zakharov on “Superstring Theory”
Sid Meyer’s Alpha Centauri

In this chapter we develop a DVFS performance predictor for the private cache

chip multiprocessor shown in Figure 4.1. We start by showing experimentally that,

just like in the uniprocessor, the DRAM bus is the major DRAM bandwidth bot-

tleneck in the private cache chip multiprocessor equipped with a stream prefetcher.

We then take a short detour from performance prediction and propose scarce row hit

prioritization, a DRAM scheduling technique that improves performance when the

DRAM bus is saturated and, more importantly for this dissertation, makes perfor-

mance more predictable. We then get back to performance prediction and propose the

independent latency shared bandwidth (ILSB) model of performance under frequency

scaling as well as the hardware mechanisms that measure parameters of this model.

Finally, we show that the DVFS performance predictor comprised of our ILSB model

Core Cache

Core Cache

Core frequency domains

DRAM
...

Figure 4.1: Private cache CMP

49

and our parameter measurement mechanisms can be used to improve performance

within the peak power budget, realizing most of the oracle performance gains.

4.1 Experimental Observations

We first show experimentally that of the three possible DRAM bandwidth

bottlenecks (bus, banks, and FAW—see Section 2.4 for details) the DRAM bus is

the major bandwidth bottleneck in a private cache chip multiprocessor with a stream

prefetcher. For this experiment, we simulated a four-core private cache chip multi-

processor1 at 5 GHz (an unrealistically high frequency chosen on purpose to induce

more bandwidth saturation) and measured the utilization of all three bottlenecks.

Table 4.1 lists the fraction of time each potential bandwidth bottleneck was more

than 90% utilized. The table shows that the bus is the most common bandwidth

bottleneck with and without stream prefetching; however, with stream prefetching

on, the bus becomes the only major bandwidth bottleneck.

The observation that the DRAM bus is the major bandwidth bottleneck will

come in useful in two places later in this chapter. First, we shall use this observation

to explain part of the performance benefit of the scarce row hit prioritization DRAM

scheduling technique (Section 4.2). Second, we shall use this observation to simplify

how our independent latency shared bandwidth model (Section 4.3) accounts for the

performance constraint imposed by finite DRAM bandwidth.

4.2 Scarce Row Hit Prioritization

In this section, we take a slight detour from the main topic of this dissertation—

performance prediction—and develop scarce row hit prioritization, a DRAM schedul-

ing technique. We do so not because this technique improves performance (which it

does), but because it makes performance more predictable.

1Section 4.5.3 details the simulation methodology and the simulated processor configuration; the
workloads used come from the ALL set of four-core workloads described in Section 4.5.4.

50

Fraction of time each potential
DRAM bandwidth bottleneck is
more than 90% utilized, in %

Prefetching off Prefetching on
Workload Bus Banks FAW Bus Banks FAW

astar, gamess, sphinx3, milc 12.3 6.3 0.0 88.3 0.0 0.0
bwaves, libquantum, povray, gcc 3.0 20.8 0.0 95.4 0.2 0.0
bzip2, soplex, namd, libquantum 51.9 7.8 0.0 99.6 0.0 0.0
cactusADM, h264ref, astar, sphinx3 22.1 6.5 0.0 75.8 0.1 0.0
calculix, sphinx3, GemsFDTD, lbm 96.2 0.4 0.0 100.0 0.0 0.0
dealII, bzip2, soplex, tonto 29.3 1.9 0.0 88.0 0.1 0.0
gamess, milc, zeusmp, mcf 20.4 0.1 0.0 53.2 0.0 0.0
gcc, cactusADM, tonto, soplex 35.1 1.1 0.0 89.9 0.2 0.0
GemsFDTD, wrf, libquantum, calculix 50.4 4.1 0.0 99.8 0.0 0.0
gobmk, gcc, mcf, dealII 1.7 0.1 0.0 7.9 0.0 0.0
gromacs, mcf, hmmer, namd 1.7 0.0 0.0 2.7 0.0 0.0
h264ref, bwaves, cactusADM, omnetpp 35.8 7.2 0.0 95.9 0.3 0.0
hmmer, tonto, calculix, sjeng 6.9 0.0 0.0 8.7 0.0 0.0
lbm, namd, milc, bzip2 99.5 0.0 0.0 99.9 0.0 0.0
leslie3d, zeusmp, gobmk, xalancbmk 9.5 5.5 0.0 79.6 0.1 0.0
libquantum, hmmer, omnetpp, GemsFDTD 40.5 2.0 0.0 99.7 0.0 0.0
mcf, lbm, gromacs, perlbench 98.5 0.0 0.0 99.2 0.0 0.0
milc, omnetpp, xalancbmk, gromacs 28.2 0.0 0.0 81.0 0.0 0.0
namd, sjeng, perlbench, povray 0.7 0.0 0.0 0.7 0.0 0.0
omnetpp, gobmk, bzip2, leslie3d 30.5 4.1 0.0 88.8 0.1 0.0
perlbench, xalancbmk, bwaves, h264ref 6.0 2.9 0.0 89.8 0.3 0.0
povray, astar, sjeng, hmmer 4.4 0.0 0.0 6.7 0.0 0.0
sjeng, gromacs, gamess, zeusmp 0.5 0.2 0.0 2.2 0.0 0.0
soplex, dealII, h264ref, cactusADM 39.5 1.7 0.0 91.8 0.1 0.0
sphinx3, calculix, leslie3d, astar 34.1 16.2 0.0 98.3 0.0 0.0
tonto, povray, lbm, wrf 98.3 0.1 0.0 99.7 0.0 0.0
wrf, GemsFDTD, gcc, gobmk 13.3 0.6 0.0 56.9 0.1 0.0
xalancbmk, leslie3d, wrf, bwaves 39.3 16.7 0.0 99.1 0.1 0.0
zeusmp, perlbench, dealII, gamess 1.0 0.0 0.0 3.4 0.0 0.0

Table 4.1: Bandwidth bottlenecks in the private cache CMP

51

Scenario at the start:
• each bank has 6 prefetch row hit requests,
• bank 1 also has a single demand row conflict request,
• the requests are oldest in bank 0, then bank 1, and so on.

Bank 0
Bank 1
Bank 2
Bank 3

Bus 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 31

Precharge,activate,read

Each bus transfer is labeled
with the corresponding bank number

Bank 1 row hits done,
OK to close row

Demand request
bus transfer

(a) Priority order: row hit, demand, age

Bank 0
Bank 1
Bank 2
Bank 3

Bus 0 0 0 0 0 0 2 2 2 2 2 2 3 3 3 3 1 1 1 1 1 1 3 31

Precharge,activate,read Precharge,activate,read

Demand prioritized,
OK to close row

Close row, reopen old
row for prefetches

Bank 1 row hits pri-
oritized due to age

Demand request
bus transfer

(b) Priority order: demand, age

Figure 4.2: Simplified timing diagrams illustrating DRAM scheduling under two dif-
ferent priority orders when row hits are abundant

4.2.1 Problem

The DRAM scheduling policy we have assumed so far suffers from a problem

of priority inversion in the presence of abundant row hit requests. We first illustrate

the problem with an example and then generalize.

Figure 4.2a provides an example to illustrate the problem. At the start of

the example, each bank has 6 prefetch row hit requests outstanding; in addition,

bank 1 has a single demand row conflict request. Recall from Section 2.4 that the

DRAM scheduler prioritizes a) row hit requests, b) demand (instruction fetch and

data load) requests, and c) oldest requests, in that order. Under this regular priority

order, the row hits from banks 0 and 1 are scheduled first (due to row hit and oldest

52

request prioritization). Once bank 1’s row hits are done, the bank’s open row may

be closed and another row opened for the remaining demand request. In contrast,

Figure 4.2b shows the same example, except the DRAM scheduler no longer prioritizes

row hits; instead, demand requests are given first priority. Note that a) the demand

request is satisfied much earlier under this priority order, and b) the bus is completely

utilized under both priority orders. Clearly, for this specific example, “row hit first”

prioritization is harmful because it delays the only demand request (on which its

originating core is likely stalling) without any increase in bus utilization.

In general, the traditional “row hit first” priority order makes sense for DRAM

scheduling decisions made when row hits are scarce but becomes harmful when row

hits are abundant. The benefit of prioritizing non-demand row hit requests over

demand row conflict requests comes from the resulting increase in bus utilization;

thus, if bus utilization is likely to be high anyway due to the abundance of outstanding

row hit requests, non-demand row hit requests should not be prioritized over demand

row conflicts.

4.2.2 Mechanism

These observations lead us to an improved DRAM scheduling mechanism that

adjusts its priority order based on the scarcity or abundance of outstanding row

hit requests. Specifically, when considering DRAM commands for a specific bank,

the scheduler calculates how many row hits are outstanding to the other banks in

the channel. If that number is greater than a threshold, the row hits are deemed

abundant and the scheduler uses the “demand, age” priority order. Otherwise, the

row hits are deemed scarce and the scheduler uses the regular “row hit, demand, age”

priority order—hence the name “scarce row hit prioritization.”

In our experiments, we have found the threshold value of 7 outstanding row

hits to work best. Note that, in the DDR3 DRAM system we model, 7 row hits are

not enough to completely utilize the DRAM bus during the extra bank latency of

a single row conflict (7 × 4 = 28 DRAM cycles vs. 39 DRAM cycles, respectively).

53

This apparent discrepancy is explained by the fact that the threshold value does not

include row hit requests likely to be generated in the future.

4.2.3 Results

Figure 4.3 shows the performance gains achieved by scarce row hit prioritiza-

tion on a four-core private cache CMP.2 The figure shows both per-core and overall

performance gains.3 Note that performance of most workloads improves; only a cou-

ple suffer negligible performance degradation (less than 0.3%). On average across

these workloads, scarce row hit prioritization improves performance by 2.1%.

Scarce row hit prioritization attains these gains because, as we observe in

Section 4.1, the DRAM bus is often saturated. This observation implies that row hit

requests are often abundant, and thus the DRAM scheduler is often faced with the

priority inversion problem addressed by scarce row hit prioritization. This argument is

supported by the fact that all workloads on which scarce row hit prioritization achieves

significant performance gains (say, more than 2%) often exhibit DRAM saturation

(more than 50% of the time as shown in Table 4.1).

4.2.4 Impact on Performance Predictability

More important to this dissertation is how scarce row hit prioritization im-

proves predictability of performance under frequency scaling. Specifically, scarce row

hit prioritization improves performance predictability in two ways:

1. It makes the latency of demand requests of a core approximately constant with

respect to the changes in frequencies of the other cores. Specifically, scarce row

hit prioritization bounds the time demand requests of one core have to wait for

the non-demand row hit requests of other cores, thereby making the latency of

demand requests of one core roughly independent of the number of outstanding

2Section 4.5 describes our experimental methodology in detail.
3We use the geometric mean of individual cores’ performances as the multicore performance

metric. We justify this choice of metric in Section 4.5.1.

54

-20

-10

0

10

20

30

40

astar
gamess
sphinx3

milc

bwaves
libquantum

povray
gcc

bzip2
soplex
namd

libquantum

cactusADM
h264ref

astar
sphinx3

calculix
sphinx3

GemsFDTD
lbm

dealII
bzip2
soplex
tonto

gamess
milc

zeusmp
mcf

gcc
cactusADM

tonto
soplex

GemsFDTD
wrf

libquantum
calculix

gobmk
gcc
mcf

dealII

gromacs
mcf

hmmer
namd

h264ref
bwaves

cactusADM
omnetpp

hmmer
tonto

calculix
sjeng

lbm
namd
milc
bzip2

leslie3d
zeusmp
gobmk

xalancbmk

libquantum
hmmer

omnetpp
GemsFDTD

mcf
lbm

gromacs
perlbench

milc
omnetpp

xalancbmk
gromacs

namd
sjeng

perlbench
povray

omnetpp
gobmk
bzip2

leslie3d

perlbench
xalancbmk

bwaves
h264ref

povray
astar
sjeng

hmmer

sjeng
gromacs
gamess
zeusmp

soplex
dealII

h264ref
cactusADM

sphinx3
calculix
leslie3d

astar

tonto
povray

lbm
wrf

wrf
GemsFDTD

gcc
gobmk

xalancbmk
leslie3d

wrf
bwaves

zeusmp
perlbench

dealII
gamess

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Performance gains
of individual cores

Overall performance gain
(geometric mean)

Figure 4.3: Performance benefit of scarce row hit prioritization over indiscriminate row hit prioritization

55

non-demand requests from other cores (which may change with the other cores’

frequencies).

2. It makes the queuing latency of non-demand requests of different cores roughly

equal. Specifically, scarce row hit prioritization mitigates priority inversion

of not only demand requests, but also old requests, including old non-demand

requests. Therefore, scarce row hit prioritization makes a core that continuously

generates prefetch row hit requests less likely to deny DRAM service to the older

prefetch row conflict requests from the other cores. That is, scarce row hit

prioritization makes the DRAM scheduler treat non-demand requests in a more

first-come-first-serve fashion, keeping the average non-demand request queuing

latencies of different cores roughly the same.

We shall rely on both of these effects when designing our analytic model of CMP

performance under frequency scaling in Section 4.3.

4.3 Independent Latency Shared Bandwidth Model

After our short dabble in DRAM scheduling, we now return back to per-

formance prediction—the main topic of this dissertation—and develop the analytic

model of performance under frequency scaling for private cache chip multiprocessors.

We develop this model for private cache CMPs in two steps. We first show that the

linear model previously proposed for uniprocessors remains accurate when applied to

each core of a private cache CMP independently of the other cores as long as DRAM

bandwidth is not saturated. We then augment the linear model to handle perfor-

mance effects of DRAM bandwidth sharing which are exposed by DRAM bandwidth

saturation. The result is our independent latency shared bandwidth (ILSB) analytic

model.

56

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Bus utilization
> 90%
< 90%

(a) Scarce row hit, demand, oldest

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Bus utilization
> 90%
< 90%

(b) Row hit, oldest (FR-FCFS)

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Bus utilization
> 90%
< 90%

(c) Row hit, demand, oldest

Figure 4.4: Accuracy of the linear model applied to a four-core private cache CMP
with three different DRAM scheduling priority orders

57

4.3.1 Applicability of Linear Model

Our experimental results suggest that, when the DRAM system is not satu-

rated, the linear model, applied to each latency-bound core independently of other

cores, still accurately describes latency-bound core performance. We first present

these results and then explain their justification and consequences.

4.3.1.1 Experimental Results

Figure 4.4a presents the experimental data. The figure shows the prediction ac-

curacy (predicted performance gain vs. simulated performance gain) of a performance

predictor based on the linear model applied independently to each core. To generate

the figure, we simulate 29 random four-core combinations of SPEC 2006 benchmarks

for 1M cycles in the baseline frequency configuration (each core at 2.8GHz) and in 20

random iso-power (that is, with the same peak power as the baseline) frequency con-

figurations in which core frequencies range from 1.6GHz to 4.0GHz. We plot the

performance delta measured in simulation on the X axis and the performance delta

predicted by the linear analytic model on the Y axis. The color of each dot depends on

the DRAM bus utilization4 of the corresponding workload in the baseline frequency

configuration: dark if DRAM bus utilization is less than 90% and light otherwise. The

figure clearly shows that the predicted delta roughly equals the simulated delta as

long as bus utilization is under 90%; thus we conclude that the linear model remains

accurate for CMPs as long as the DRAM bus is not saturated.

4.3.1.2 Justification

To justify the applicability of the linear analytic model to latency-bound CMPs

demonstrated in Figure 4.4a, we consider how DRAM interference affects a latency-

bound core in a multicore workload. The performance of a latency-bound core de-

pends on the average latency of its demand DRAM requests, which depends on the

4DRAM bus utilization is defined in Section 3.3.3.2.

58

amount of DRAM interference presented by other cores. Since the average number

of outstanding demand requests in the DRAM system is usually small (at most 6 in

these experiments), the bulk of the interference is due to non-demand requests. How-

ever, since a) demand requests are prioritized over non-demand requests and b) the

priority inversion problem is mitigated by scarce row hit prioritization (Section 4.2),

the impact of this interference is limited; at most, demand requests only have wait for

a short sequence of another core’s non-demand row hits to complete before getting

serviced. Thus, while the number of outstanding non-demand requests does change

under core frequency scaling, their impact on demand request latency stays relatively

constant. This observation suggests that the performance of each latency-bound core

could be predicted independently of the others, as confirmed by our experimental

results.

The importance of demand prioritization and scarce row hit prioritization is

highlighted in Figures 4.4b and 4.4c which show the linear model applied indepen-

dently to individual cores to be less accurate without these mechanisms.

4.3.1.3 Consequences

Figure 4.4a also shows that bandwidth-bound workloads stand to gain the

most performance within the power budget from per-core DVFS. Specifically, note

that most of the workloads with positive simulated performance gains (in the right

half of the plot) are bandwidth-bound and that the linear model fails to predict

these gains. A more accurate analytic model that takes bandwidth saturation into

account could predict these gains correctly, allowing these gains to be realized with

per-core DVFS. This observation further underscores the importance of taking finite

bandwidth into account when designing performance predictors—a major point of

focus of this dissertation.

59

TN(S, tN)

T1(S, t1)

... BW (T1, . . . , TN) ≤ BWmax

time per instruction T1of core 1

time per instruction TN

of core N

Implicit constraint on
DRAM request service time S

Core model
(Section 4.3.3)

Bandwidth
constraint

(Section 4.3.5)

Figure 4.5: High level structure of the ILSB analytic model

4.3.2 Overview of Analytic Model

To accurately predict performance when DRAM bandwidth is saturated we

need a new analytic model. Our previous limited bandwidth model for uniprocessors

(Section 3.3.2) does not apply to CMPs because it does not account for DRAM band-

width sharing. Specifically, the limited bandwidth model treats the core performance

limit imposed by achievable DRAM bandwidth as a measurable parameter Tmin
memory,

the minimum memory time per instruction. In a chip multiprocessor, however, the

DRAM bandwidth achievable by a core is not a measurable parameter; instead the

achievable bandwidth is a variable affected by the bandwidth consumption of the

other cores, which may change drastically under frequency scaling. Thus, the limited

bandwidth model is insufficient; a new analytic model is needed.

We construct this analytic model from an intuition of how limited DRAM

bandwidth affects CMP performance. The intuition is simple: once the total DRAM

bandwidth demanded by the cores exceeds available bandwidth, DRAM requests

start spending more time waiting to be served, thereby reducing core performance

until bandwidth demand equals available bandwidth. Note the feedback loop: core

performance affects bandwidth demand, which affects request service time, which

60

affects core performance. The structure of our analytic model, shown at a high level

in Figure 4.5, reflects this intuition.

We develop the model in three steps. First we develop the core model that

expresses the time per instruction Ti of core i as a function of the core’s average

DRAM request service time Si and cycle time ti. Second, we make and justify a

key approximation: that the average DRAM request service time is the same across

cores; that is S1 = · · · = SN = S. Third, we establish the bandwidth constraint:

the total DRAM bandwidth BW (T1, . . . , TN) must be no greater than the maximum

achievable DRAM bandwidth BW max. Together, these parts form our independent

latency shared bandwidth (ILSB) analytic model of chip multiprocessor performance

under frequency scaling.

4.3.3 Core Model

To develop the analytic model of core performance, we start with our previous

limited bandwidth model for uniprocessors (Equation 3.3, Figure 3.8):

T (t) = max
(
Tmin

memory, Ccompute × t + Tdemand

)
.

Our goal is to augment this model to express how DRAM sharing affects bandwidth-

bound core performance via average DRAM request service time S.

The average minimum memory time per instruction Tmin
memory can be expressed

as a function of average DRAM service latency using Little’s law [52]. In queuing

theory notation, Little’s law states that the average queue length L is the product

of the average arrival rate λ and the average time in queue W , that is L = λ × W .

Therefore, the maximum arrival rate supported by a finite queue of size Q is λmax =

Q/W . Analogously, the maximum rate of DRAM requests supported by a core is the

ratio of the number of DRAM request buffers (or MSHRs) and the average DRAM

service latency S; that is, λmax = NMSHRs/S. Assuming that the core generates R

requests per instruction, we can express the maximum number of instructions per

unit time IPTmax = λmax/R. The minimum memory time per instruction Tmin
memory is

61

the reciprocal of IPTmax; therefore

Tmin
memory(S) =

1

IPTmax

=
R

λmax

=
R

NMSHRs

× S.

We substitute this expression for Tmin
memory(S) into the linear bandwidth model

to generate our core model (illustrated in Figure 4.6):

T (S, t) = max

(
R

NMSHRs

× S, Ccompute × t + Tdemand

)
. (4.1)

Note that for a given core frequency t there is a special DRAM service time Scrossover

for which the two sides of the max() are equal; that is, the core is on the edge between

being latency-bound or bandwidth-bound. Setting the two sides of the max() equal,

R

NMSHRs

× Scrossover = Ccompute × t + Tdemand,

we derive the expression for this value:

Scrossover = (Ccompute × t + Tdemand) ×
NMSHRs

R
. (4.2)

We shall use the concept of this special boundary DRAM request service time (il-

lustrated in Figure 4.8a) to explain how the entire analytic model fits together in

Section 4.3.6.

4.3.4 Equal DRAM Request Service Time Approximation

To simplify our thinking about how DRAM bandwidth is shared among the

cores, we make an approximation: the average service time (which includes both

queuing and access latency) of a DRAM request is the same for each core. We justify

this approximation by a) explaining why the average non-demand (store, prefetch,

and writeback) DRAM request queuing latency is roughly the same across cores and

b) showing that the average service time of all (demand and non-demand) DRAM

requests from bandwidth-bound cores is dominated by non-demand DRAM request

queuing latency.

62

cycle
time t

service time S

latency boundbandwidth bound

time per instruction T

Ccom
pute

× t + Tdemand

R
N

MSHRs
× S

Figure 4.6: Core analytic model

To explain why average non-demand DRAM request queuing latency is roughly

the same across cores, we recall our scarce row hit prioritization technique (Sec-

tion 4.2). Specifically, scarce row hit prioritization mitigates priority inversion in

DRAM scheduling, making DRAM scheduling of non-demand requests roughly first-

come-first-serve (FCFS). Intuitively, since FCFS scheduling does not prioritize among

cores, the average queuing time of a non-demand request does not depend on which

core generated it. This intuition is supported by the PASTA (“Poisson arrivals see

time averages”) principle [26] from queuing theory.5 Therefore, the average queuing

latency of a non-demand DRAM request should be roughly the same for all cores.

We further approximate that the whole average DRAM request service time

(including queuing and access latencies of both demand and non-demand requests)

remains the same across cores. This approximation relies on two observations. First,

as seen in the core analytic model (Section 4.3.3), the average DRAM request latency

determines core performance only if the core is bandwidth-bound; therefore, our ap-

proximation need only be accurate for bandwidth-bound cores. Second, most DRAM

5The PASTA principle is proven true for an FCFS queue, Poisson inter-arrival time distribution,
and independent inter-arrival and service times.

63

requests from bandwidth-bound cores are non-demand requests that spend most of

their latency enqueued behind other requests. Therefore, the average service time of

DRAM requests from bandwidth-bound cores is dominated by non-demand DRAM

request queuing latency which we have just reasoned to be roughly the same across

cores.

4.3.5 Bandwidth Constraint

The bandwidth constraint model is a mathematical expression of the fact that

DRAM bandwidth BW is constrained by the maximum achievable DRAM band-

width BW max.

To express this constraint, we first derive the total DRAM bandwidth BW .

We start with the DRAM bandwidth BW i of a single core i. Since a) the stream

prefetcher makes the DRAM bus the main DRAM bottleneck in our system and

b) each DRAM request occupies the same amount of time on the DRAM bus (the

time needed to transfer a cache line), the bandwidth consumption of each request

is the same; hence we express DRAM bandwidth as the DRAM request rate (the

number of requests completed per unit time). Thus, if the time per instruction of

core i is Ti and the number of DRAM requests per instruction of core i is Ri, the

bandwidth of core i is BW i = Ri/Ti. Hence, the total DRAM bandwidth of all N

cores is

BW
(
T1, . . . , TN) =

N∑
i=1

Ri

Ti

. (4.3)

To constrain BW by maximum achievable DRAM bandwidth BW max, we

consider two cases: a) the DRAM bandwidth is not saturated and b) the DRAM

bandwidth is saturated. The DRAM bandwidth is not saturated if the total band-

width demanded by all cores would be less than maximum bandwidth even if all

of the cores were latency-bound. In this case, according to the core analytic model

(Section 4.3.3), the average DRAM request service time S has no effect on core per-

formance; therefore we assume it to be zero for simplicity. The DRAM bandwidth

is saturated if the total bandwidth demanded by all cores would be equal or greater

64

Variables

ti cycle time of core i
Ti time per instruction of core i
S average DRAM request service time
BW total bandwidth (requests per unit time)

Parameters

Ccompute i compute cycles per instruction of core i
Tdemand i demand stall time per instruction of core i
Ri DRAM requests per instruction of core i
BW max maximum bandwidth (requests per unit time)
NMSHRs number of MSHRs in each core

For each core i:

Ti = max

(
Ri

NMSHRs

× S, Ccompute i × ti + Tdemand i

)
For entire system:

BW =
∑

i

Ri

Ti{
BW < BW max if S = 0
BW = BW max otherwise

Figure 4.7: Complete mathematical description of the independent latency shared
bandwidth (ILSB) model of chip multiprocessor performance under frequency scaling

than the maximum DRAM bandwidth if all of the cores were latency-bound. In this

case, the average DRAM request service time S matters; in fact, S must be just long

enough to make some cores bandwidth-bound, making these cores slower and reduc-

ing bandwidth demand to equal the maximum achievable bandwidth BW max. The

bandwidth constraint for these two cases can be expressed mathematically as{
BW < BW max if S = 0

BW = BW max otherwise
(4.4)

65

4.3.6 Combined Model

Having described the individual parts of our analytic model (the core model,

the equal DRAM service time approximation, and the bandwidth constraint model)

we can now examine the analytic model as a whole. For ease of reference, Figure 4.7

provides the complete mathematical description of the model.

To examine how the entire model fits together, we consider the simple case of

a two core CMP. The analytic model for this special case is graphically illustrated in

Figure 4.8.

There are three possible cases: both cores are latency bound, one is bandwidth

bound and another is latency bound, and both cores are bandwidth bound.

Suppose both cores (core 1 and core 2) are latency-bound. Then, as evident

from Figure 4.8a, the average DRAM service time S (assumed to be the same for

both cores as discussed in Section 4.3.4) is less than both Scrossover 1 and Scrossover 2.

In this case, according to the core model, performance of each core is independent

of S. If core performance does not change with S, then neither does the bandwidth

consumption. Therefore, as shown in Figure 4.8b, the total bandwidth is constant

for that range of DRAM service time S. Note that, in the figure, this bandwidth

happens to be greater than the maximum achievable DRAM bandwidth BW max;

therefore, this case (both cores latency bound) violates the bandwidth constraint.

Suppose now that core 1 is bandwidth-bound and core 2 is latency-bound;

that is, DRAM service time S is between Scrossover 1 and Scrossover 2. Then, as seen on

the right side of Figure 4.8a, the time per instruction of core 1 is proportional to S.

Therefore, the performance (instructions per unit time) and hence the bandwidth

consumed by core 1 are proportional to 1/S. Meanwhile, the bandwidth consumed

by core 2 remains the same since core 2 is still latency-bound. Therefore, as shown

in the middle of Figure 4.8b, as we increase S the total bandwidth decreases. In fact,

total bandwidth becomes low enough to satisfy the bandwidth constraint.

The last case, both cores bandwidth-bound, should now be straightforward. As

shown in Figure 4.8b, in this case the bandwidth consumption of both cores decreases

66

time per instruction Ti

service time S0

Tdemand i

Ri

NMSHRs

× S

Scrossover i

Latency
bound

Bandwidth
bound

Ccompute i × ti

(a) Performance of core i as a function of service time S

total bandwidth BW

service time S0 Scrossover 1 Scrossover 2

R1

T1(S, t1)

R2

T2(S, t2)

Both cores
latency-
bound

Core 1 is
bandwidth-
and core 2
is latency-
bound

Both cores
bandwidth-
bound

BW max

(b) Total DRAM bandwidth as a function of service time S

Figure 4.8: Graphical illustration of the independent latency shared bandwidth model
applied to two cores

67

with DRAM service time S. Note that this case, like the first, violates the bandwidth

constraint. Specifically, while the bandwidth constraint is an inequality if S = 0 (all

cores latency-bound), the constraint is an equation otherwise to reflect the notion

that DRAM service time S is just long enough to keep DRAM bandwidth equal

to BW max. In this case, however, DRAM bandwidth is actually less than BW max;

hence, the bandwidth constraint is violated.

4.3.7 Solution

We now explain how the system of equations (and one inequality) comprising

our ILSB model can be solved to obtain time per instruction Ti of each core i as a

function of provided core cycle times ti and the model parameters. Specifically, we

first explain the key idea of the solution and then describe how the solution can be

computed numerically or derived algebraically.

The key to solving the ILSB model lies in two observations:

1. The average DRAM request time S is the “root” variable of the system: if

the value of S is known, all other variables can be computed from it (first

the time per instruction Ti of each core i using Equation 4.1 and then total

bandwidth BW using Equation 4.3 and the already computed Ti).

2. Total bandwidth BW is a monotonically non-increasing function of average

DRAM request service time S. This fact makes intuitive sense: an increase in

average DRAM request service time S cannot lead to performance improvement

of any core and thus cannot lead to an increase of total bandwidth consumption.

Taken together, these observations imply that the ILSB model can be solved

numerically using binary search over the range of the DRAM request service time S.

Specifically, starting with some value of S, we can compute the total bandwidth BW ,

check whether BW is less than or greater than the bandwidth constraint BW max,

adjust S in the appropriate direction and repeat. Once S is found, Equation 4.1 can

be used to compute the predicted performance of each core.

68

The system may also be solved algebraically by considering N + 1 cases

(where N is the number of cores). Without loss of generality, we number the cores

{1, 2, . . . , N} in order of their respective values of Scrossover such that Scrossover 1 ≤

Scrossover 2 ≤ · · · ≤ Scrossover N . The N + 1 cases to consider are:

Case 1: 0 ≤ S < Scrossover 1 (all cores latency-bound)

Case 2: Scrossover 1 ≤ S < Scrossover 2

(core 1 bandwidth-bound,
others latency-bound

)
...

Case N + 1: Scrossover N ≤ S (all cores bandwidth-bound)

Equation 4.3 states that total bandwidth BW =
∑N

i=1

Ri

Ti

; we can now expand this

expression. Specifically, for each case, we know which cores are latency-bound and

which cores are bandwidth-bound; therefore, we know which side of the max() in

Equation 4.1 for Ti applies for each core i. This knowledge allows us to express total

bandwidth BWcase j for each case j in which cores [1, j−1] are bandwidth-bound and

cores [j, N] are latency-bound:

BWcase j = (j − 1) × NMSHRs

S︸ ︷︷ ︸
Bandwidth-bound cores

+
N∑

i=j

Ri

Ccompute i × ti + Tdemand i︸ ︷︷ ︸
Latency-bound cores

. (4.5)

For any case j except case 1, the bandwidth constraint (Section 4.3.5) posits BWcase j =

BW max, an equation we can solve for average DRAM request service time S; as dis-

cussed in Section 4.3.5, we set S to be zero in case 1 (all cores latency-bound) for

simplicity. Thus,

Scase 1 = 0

Scase j 6=1 =
(j − 1) × NMSHRs

BW max −
∑N

i=j

Ri

Ccompute i × ti + Tdemand i

. (4.6)

69

Of these possible values of S, only one6 corresponds to the case that contains the

solution of the system:

S =

Scase 1 BWcase 1 < BW max

Scase 2 Scrossover 1 ≤ Scase 2 < Scrossover 2
...

Scase j Scrossover j−1 ≤ Scase j < Scrossover j
...

Scase N+1 Scrossover N ≤ Scase N+1

(4.7)

Given the expression for the average DRAM request service time S, we can plug it

into the Equation 4.1 to find time per instruction Ti for each core i as a function of

core cycle time ti.

4.3.8 Approximations Behind ILSB

In this section, we address the implicit approximations behind the ILSB model.

While these approximations are the same as those behind the limited bandwidth

model of uniprocessor performance (explained in Section 3.3.2.1), ILSB assumes them

to hold true for a chip multiprocessor. Specifically, we approximate that:

1. The average number of DRAM requests per instruction (both demands and

prefetches) remains constant across core frequency combinations. As described

in Section 3.3.2.1, this approximation may be problematic if prefetcher aggres-

siveness is allowed to vary.

2. The DRAM scheduler efficiency remains the same across core frequency combi-

nations; in particular, the average overhead of switching the DRAM bus direc-

tion per DRAM request remains the same.

6The uniqueness of the solution is evident from the mostly monotonically decreasing behavior
of total bandwidth BW as a function of S, illustrated in Figure 4.8b. The only exception to this
behavior is the case of all cores being latency-bound, in which BW is constant with respect to S;
however, in this case we have forced the solution to be unique by defining it as S = 0.

70

4.4 Parameter Measurement

Having developed the ILSB model, we now design the hardware mechanisms

that measure its parameters. As described in Section 2.2, the ILSB model and these

hardware mechanisms together comprise our performance predictor. We first de-

scribe measurement of core model parameters and then measurement of the maximum

DRAM bandwidth BW max.

4.4.1 Core Model Parameters

The core model parameters are easy to obtain; they are either design pa-

rameters (NMSHRs, the number of MSHRs per core), easily measured using simple

performance counters (R, the number of DRAM requests per instruction), or mea-

sured using mechanisms we proposed previously for the uniprocessor (demand time

per instruction Tdemand and compute cycles per instruction Ccompute, measured using

uniprocessor mechanisms described in Sections 3.3.3.1 and 3.3.3.4 respectively).

Note that in accordance with our decision to use the simplest parameter mea-

surement mechanisms possible (Section 3.6), we use stall time rather than CRIT to

measure Tdemand. Specifically, we employ the “would be timely” request classification

from Section 3.3.3.1 and apply it to stall time as follows: we measure Tdemand as the

time a core stalls on non-“would be timely” demand DRAM requests divided by the

number of instructions retired.

4.4.2 Maximum DRAM Bandwidth

To measure maximum DRAM bandwidth BW max, we reuse the relevant unipro-

cessor mechanism; we also extend that mechanism to work with multiple DRAM

channels (a common feature of chip multiprocessors).

Specifically, for a single channel, we measure the average time Trequest each

DRAM request occupies the DRAM bus as described in Section 3.3.3.2. In our ex-

periments, we observe that a bandwidth saturated DRAM system shared by multiple

71

cores of a chip multiprocessor achieves roughly 97% bus utilization; hence, we com-

pute the the maximum bandwidth BW max for a single channel as follows:

BW max of a single DRAM channel = 0.97 × 1

Trequest

. (4.8)

The addition of multiple DRAM channels introduces a new wrinkle in max-

imum DRAM bandwidth measurement. Specifically, since DRAM requests map to

channels non-uniformly in the short term, the average DRAM bus utilization drops

significantly. To deal with this problem we extend the DRAM controller to measure

channel level parallelism CLP . For every interval of 128 DRAM requests (the number

of requests in the DRAM controller queue), the DRAM controller determines which

channel satisfied the most requests. We call this channel critical. The CLP is simply

128 divided by the number of requests satisfied by the critical channel. We also ensure

that Trequest is computed using only critical channel measurements because the other,

less stressed channels usually allow more bus direction switch overhead.

With these changes, the processor can compute the maximum DRAM band-

width BW max for the general case of multiple DRAM channels:

BW max = 0.97 × CLP × 1

Trequest

. (4.9)

4.5 Methodology

The independent latency shared bandwidth (ILSB) analytic model and the

mechanisms for measuring its parameters comprise our DVFS performance predictor

for private cache chip multiprocessors; we evaluate the performance improvement

within the power budget due to this predictor using the methodology detailed below.

4.5.1 Metric

We choose performance within a power budget as the target metric because

performance and power budget are, respectively, a fundamental metric of interest

and a fundamental constraint in computer system design. In addition, switching from

72

energy (targeted in Chapter 3) to performance as the target metric demonstrates that

DVFS performance prediction is beneficial in diverse usage scenarios.

We define multicore performance as the geometric mean of instructions per

unit time for each core; we choose this multicore performance metric over the more

commonly used weighted speedup [76] for two reasons:

1. We wish to evaluate our DVFS performance predictor in isolation. Specifically,

since weighted speedup is computed using each core’s performance running alone

on the system, a performance predictor targeting weighted speedup would have

to include a mechanism to estimate each core’s alone performance—a mecha-

nism that would introduce prediction errors and complicate evaluation of the

analytic model itself.

2. We wish to exploit the potential performance benefit of per-core DVFS only;

we do not wish to exploit the imbalance in how the target metric weighs perfor-

mance of each core. Specifically, we consider the potential performance benefit

of per-core DVFS to come from the imbalance in the marginal utility of ex-

tra power consumption among cores. However, weighted speedup introduces

another source of potential performance improvement: the imbalance in how

weighted speedup weighs performance of each core. For example, a per-core

DVFS controller could cause a 2x performance loss on one core and a 10% per-

formance gain on another and still deliver a net gain in weighted speedup. We

attribute such performance gains to the imbalance in how weighted speedup

weighs performance of each core and not to per-core DVFS. Indeed, any other

shared resource management technique (such as DRAM bandwidth partition-

ing) could exploit this imbalance in weighted speedup. In contrast, the geomet-

ric mean weighs performance of each core equally: a 2x performance loss must

be offset by a more than 2x performance gain in order to yield a net gain in

geometric mean. Thus, a DVFS controller that improves the geometric mean

of each core’s performance exploits only the imbalance in marginal utility of

73

General Frontend (Medium/Big) OOO Core (Medium/Big)

Cores 4 Microinstr./cycle 4/8 Microinstr./cycle 4/8
Base freq. 2.8 GHz Branches/cycle 2 Pipeline depth 14
Min freq. 1.5 GHz BTB entries 4K ROB size 128/256
Max freq. 4.5 GHz Predictor hybrida RS size 48/96

All Caches ICache DCache L2 Stream prefetcher [84], per core

Line 64 B Size 32 KB 32 KB 1 MB Streams 16 Distance 64
MSHRs 32 Assoc. 4 4 8 Queue 128 Degree 4
Repl. LRU Cycles 1 2 12 Training threshold 4

Ports 1R,1W 2R,1W 1 L2 insertion mid-LRU

DRAM Controller DDR3 [58] Channel DRAM Bus

Window 128 reqs Chips 8 × 256 MB Row 8 KB Freq. 800 MHz
Priority schedulingb Banks 8 CASc 13.75 ns Width 8 B

a 64K-entry gshare + 64K-entry PAs + 64K-entry selector.
b Priority order: scarce row hit (Section 4.2), demand (instr. fetch or data load), oldest.
c CAS = tRP = tRCD = CL;

other modeled DDR3 constraints: BL, CWL, t{RC, RAS, RTP, CCD, RRD, FAW, WTR, WR}.

Table 4.2: Simulated private cache CMP configuration

extra power consumption among cores—an imbalance that cannot be exploited

by other shared resource management techniques.

4.5.2 DVFS Controller

We evaluate our performance predictor by modeling a DVFS controller that

operates as described in Section 2.2. In all experiments except the relevant sensitivity

study the DVFS controller considers a change of core frequencies every 1M baseline

2.8 GHz cycles (roughly 357 µs).

4.5.3 Simulation

We use an in-house cycle-level simulator driven by the x86 functional model

from Multi2Sim [85]. We evaluate both private cache and shared cache CMPs in three

four-core configurations: a) 4-wide medium cores with one DRAM channel, b) 8-wide

74

big cores with one DRAM channel, and c) 8-wide big cores with 2 DRAM channels.

The 8-wide core represents modern SIMD-capable cores (our simulator currently does

not support SIMD). Table 4.2 details the simulation parameters.

Our simulation proceeds in three stages:

1. Instruction level warmup, in which each application in the four-core workload

runs for 50M instructions and warms up the branch predictors and the cache

hierarchy. This stage allows even low IPC benchmarks like mcf to properly

warm up these structures.

2. Cycle accurate warmup, in which the processor is simulated in the baseline

2.8 GHz configuration for 10M cycles, after which all statistic counts are re-

set. This stage warms up the entire microarchitecture and ends in the same

microarchitectural state for both the baseline and the simulated predictors.

3. Cycle accurate simulation proper. For baseline 2.8 GHz experiments, this stage

proceeds for 100M cycles; for predictor experiments, this stage proceeds until

all cores retire the same number of instructions as in the baseline. The core

performance is computed at the time the core reaches its baseline instruction

count; however, the core continues to run to provide interference for other cores.

4.5.4 Workloads

We use two sets of workloads: ALL and BW. The ALL workloads are 29

random combinations of SPEC2006 benchmarks chosen so that each benchmark ap-

pears in exactly four workloads and no workload has two of the same benchmark.

The BW workloads were generated as follows. We ran 200 random combinations of

SPEC2006 in the baseline medium core configuration. Of the 200 workloads, a third

(67) were bandwidth bound (more than 90% bus utilization). The 25 BW workloads

were randomly chosen from these 67 workloads.

The SPEC 2006 benchmarks were compiled using the GNU Compiler Collec-

tion version 4.3.6 with the -O3 option. The benchmarks were run from checkpoints

75

689 frequency combinations for full performance study, GHz
(44 ordered combinations listed)

2.8 2.8 2.8 2.8 2.6 2.6 2.8 3.0 2.6 2.6 2.6 3.2 2.4 2.8 2.8 3.0 2.4 2.6 3.0 3.0
2.4 2.6 2.8 3.2 2.4 2.4 3.0 3.2 2.4 2.4 2.6 3.4 2.2 2.8 3.0 3.0 2.2 2.8 2.8 3.2
2.2 2.6 2.6 3.4 2.2 2.4 2.8 3.4 2.2 2.4 2.4 3.6 2.2 2.2 3.2 3.2 2.2 2.2 3.0 3.4
2.2 2.2 2.6 3.6 2.2 2.2 2.2 3.8 2.0 2.6 3.0 3.2 2.0 2.6 2.8 3.4 2.0 2.4 3.2 3.2
2.0 2.4 2.6 3.6 2.0 2.2 2.8 3.6 2.0 2.2 2.4 3.8 1.8 3.0 3.0 3.0 1.8 2.8 3.0 3.2
1.8 2.6 2.6 3.6 1.8 2.4 3.0 3.4 1.8 2.0 3.2 3.4 1.8 2.0 3.0 3.6 1.8 2.0 2.6 3.8
1.8 2.0 2.0 4.0 1.8 1.8 2.2 4.0 1.6 2.8 2.8 3.4 1.6 2.6 3.2 3.2 1.6 2.4 2.8 3.6
1.6 2.4 2.4 3.8 1.6 2.2 3.2 3.4 1.6 2.2 2.6 3.8 1.6 2.0 2.2 4.0 1.6 1.8 2.8 3.8
1.6 1.8 2.4 4.0 1.6 1.6 3.4 3.4 1.6 1.6 3.2 3.6 1.6 1.6 1.6 4.2

121 frequency combinations for relevant sensitivity study, GHz
(10 ordered combinations listed)

2.8 2.8 2.8 2.8 2.4 2.4 2.8 3.2 2.0 2.8 2.8 3.2 2.0 2.4 3.2 3.2 2.0 2.4 2.4 3.6
2.0 2.0 2.8 3.6 1.6 2.4 2.8 3.6 1.6 2.0 2.0 4.0 1.6 1.6 3.2 3.6 1.6 1.6 2.4 4.0

43 frequency combinations for oracle and relevant sensitivity study, GHz
(5 ordered combinations listed)

2.8 2.8 2.8 2.8 2.2 2.2 2.8 3.4 1.6 2.8 2.8 3.4 1.6 1.6 3.4 3.4 1.6 1.6 2.2 4.0

Table 4.3: Core frequency combinations. Only ordered combinations are listed; the
rest are permutations of the listed combinations.

taken using Pincpt [59] at the beginning of their 200M instruction long representative

regions determined using Pinpoints [68].

4.5.5 Frequency Combinations

All experiments except for oracle studies and the relevant sensitivity study

were run with 689 available four-core frequency combinations. We chose the combi-

nations by a) enumerating all combinations of core frequencies between 1.6 GHz and

4.2 GHz (with a step of 200 MHz), b) discarding all combinations that were over the

peak dynamic power budget of the baseline 2.8 GHz configuration (assuming that

peak dynamic power budget is proportional to the cube of frequency), and c) dis-

carding all non-Pareto optimal combinations (a combination is Pareto optimal if in

all other frequency combinations at least one core is assigned a lower frequency than

76

the same core in the considered combination).

Two smaller sets of frequency combinations (for oracle and sensitivity studies)

were generated in the same way using steps of 400 MHz (yielding 121 combinations)

and 600 MHz (43 combinations).

All three sets of frequency combinations are specified in Table 4.3. Note that

the table does not list every single combination. Instead, the table lists only ordered

combinations (those in which the frequencies are sorted in ascending order); the rest

can be generated by permuting the listed ordered combinations. For example, an

ordered combination {2.6, 2.6, 2.6, 3.2} can be permuted into three other frequency

combinations: {3.2, 2.6, 2.6, 2.6}, {2.6, 3.2, 2.6, 2.6}, and {2.6, 2.6, 3.2, 2.6}.

4.5.6 Oracle Policies

We measure potential gains by simulating two oracle DVFS control policies:

myopic oracle and perfect memoryless.

The myopic oracle policy uses oracle knowledge of the next DVFS interval to

choose the frequency combination for that interval. Specifically, the myopic oracle

predictor simulates all frequency combinations for the next interval and chooses the

one with the highest performance. We call this oracle “myopic” because it has no

knowledge beyond the next DVFS interval. Due to this limitation (necessary to keep

simulation time reasonable), the oracle may choose short term optimal frequency

combinations that are suboptimal in the long run.

We carry over the perfect memoryless policy from our uniprocessor methodol-

ogy (Section 3.4.5). Like the myopic oracle policy, the perfect memoryless policy relies

on simulating all frequency combinations for each DVFS interval; unlike the myopic

oracle policy, the perfect memoryless policy switches to the frequency combination

that results in the highest performance during the previous (rather than next) DVFS

interval. This policy mimics a performance predictor that correctly predicts the best

frequency combination for every interval after the interval is complete and assumes

the same frequency combination is the best for the next interval.

77

To reduce simulation time, we run oracle studies (including the baseline, real

predictors, and both oracle policies) for 10M cycles instead of 100M cycles after

warmup and with only 43 frequency combinations.

4.6 Results

Before delving into the performance results, we first revisit the prediction

accuracy study from Section 4.3.1.1. Figure 4.9a compares the prediction accuracy

of our performance predictor based on our ILSB model to that of a predictor based

on the prior linear model. This figure together with Figure 4.4a show that the ILSB

model leads to significant improvement in prediction accuracy, particularly among

bandwidth-bound workloads. Specifically, ILSB identifies 79% of points representing

a performance gain, whereas the linear model identifies only 25% (both ILSB and

linear model identify 99% of performance loss points).

We also show the prediction accuracy of the ILSB model applied to a private

cache CMP without demand prioritization and scarce row hit prioritization in Fig-

ures 4.9b and 4.9c. Note the degradation in prediction accuracy demonstrated by

these figures. As discussed in Sections 4.2.4, 4.3.1, and 4.3.4, demand prioritization

and scarce row hit prioritization are major factors behind the ILSB model assump-

tions; the significant improvement in prediction accuracy we see when these features

are turned on supports these explanations.

Figure 4.10 shows the detailed results of an oracle study for a private cache

CMP (medium cores, 1 DRAM channel) with ALL workloads. Note that oracle per-

formance gains vary from 0% to 7% depending on the workload; for most workloads,

our performance predictor realizes at least 80% of oracle performance.

Since bandwidth-bound workloads promise the largest performance gains, we

also show the detailed results of a full performance study for a private cache CMP

(medium cores, 1 DRAM channel) with BW workloads in Figure 4.11. Note that the

performance predictor based on the prior linear model delivers less than half of the

78

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Predictor
Linear
ILSB

(a) Scarce row hit, demand, oldest

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Predictor
Linear
ILSB

(b) Row hit, oldest (FR-FCFS)

-25

-20

-15

-10

-5

+0

+5

+10

+15

-25 -20 -15 -10 -5 +0 +5 +10 +15

P
re

d
ic

te
d
 p

er
fo

rm
an

ce
 g

ai
n
,
%

Simulated performance gain, %

Predictor
Linear
ILSB

(c) Row hit, demand, oldest

Figure 4.9: Accuracy of the ILSB model and the linear model applied to a four-core
private cache CMP with three different DRAM scheduling priority orders

79

0

2

4

6

8

GemsFDTD
wrf

libquantum
calculix

hmmer
tonto

calculix
sjeng

leslie3d
zeusmp
gobmk

xalancbmk

namd
sjeng

perlbench
povray

perlbench
xalancbmk

bwaves
h264ref

povray
astar
sjeng

hmmer

sjeng
gromacs
gamess
zeusmp

tonto
povray

lbm
wrf

wrf
GemsFDTD

gcc
gobmk

zeusmp
perlbench

dealII
gamess

bwaves
libquantum

povray
gcc

cactusADM
h264ref

astar
sphinx3

omnetpp
gobmk
bzip2

leslie3d

h264ref
bwaves

cactusADM
omnetpp

milc
omnetpp

xalancbmk
gromacs

mcf
lbm

gromacs
perlbench

gobmk
gcc
mcf

dealII

gromacs
mcf

hmmer
namd

astar
gamess
sphinx3

milc

sphinx3
calculix
leslie3d

astar

gamess
milc

zeusmp
mcf

xalancbmk
leslie3d

wrf
bwaves

libquantum
hmmer

omnetpp
GemsFDTD

dealII
bzip2
soplex
tonto

soplex
dealII

h264ref
cactusADM

gcc
cactusADM

tonto
soplex

lbm
namd
milc
bzip2

bzip2
soplex
namd

libquantum

calculix
sphinx3

GemsFDTD
lbm

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 4.10: Oracle performance study on private cache CMP (medium cores, 1 DRAM channel) with ALL workloads

0

2

4

6

8

10

bwaves
GemsFDTD

h264ref
wrf

lbm
povray

GemsFDTD
sjeng

lbm
hmmer

GemsFDTD
tonto

tonto
lbm

povray
gamess

gromacs
libquantum
GemsFDTD
xalancbmk

lbm
sjeng
wrf

tonto

GemsFDTD
bwaves
dealII

perlbench

calculix
soplex

wrf
GemsFDTD

gcc
libquantum

dealII
sphinx3

soplex
lbm

cactusADM
sphinx3

astar
bwaves

omnetpp
wrf

bwaves
soplex
bzip2

cactusADM

lbm
calculix

xalancbmk
wrf

wrf
bwaves

milc
perlbench

tonto
astar
milc

sphinx3

soplex
libquantum
perlbench

namd

calculix
milc

bwaves
wrf

milc
omnetpp
leslie3d

lbm

bzip2
omnetpp

namd
soplex

libquantum
mcf

leslie3d
namd

milc
leslie3d
bwaves
sjeng

lbm
h264ref
bwaves
calculix

hmmer
calculix

lbm
milc

omnetpp
namd
lbm
milc

milc
gamess
sphinx3

lbm

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Figure 4.11: Full performance study on private cache CMP (medium cores, 1 DRAM channel) with BW workloads

80

 0
 1
 2
 3
 4
 5
 6

ALL BW ALL BW ALL BW ALL BW ALL BW ALL BW

P
er

fo
rm

an
ce

 g
ai

n
,
% Full Oracle Full Oracle Full Oracle

Medium cores, 1 DRAM channel Big cores, 1 DRAM channel Big cores, 2 DRAM channels

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 4.12: Summary of experimental results for the private cache CMP

0

1

2

3

4

5

6

7

100k 1M 10M

P
er

fo
rm

an
ce

 g
ai

n
,
%

Interval length, cycles

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

43 121 689

P
er

fo
rm

an
ce

 g
ai

n
,
%

Frequency combinations

Med. cores, 1 chan.
Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

0 0.1 1 10

P
er

fo
rm

an
ce

 g
ai

n
,
%

DVFS overhead, µs

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

Figure 4.13: Sensitivity studies for the private cache CMP with BW workloads (circled
points represent default settings)

benefit of our performance predictor, particularly on those workloads for which our

predictor provides the most benefit (more than 5%).

We summarize the rest of our experimental results in Figure 4.12, showing

average performance gains in the three simulated configurations, including full and

oracle studies, and using the ALL and BW workload sets. Note that our predictor

delivers 5% performance improvement on BW workloads in the big cores, 1 DRAM

channel configuration.

Figure 4.13 shows that our performance predictor works for a variety of DVFS

interval sizes, numbers of frequency combinations, and DVFS overheads. Note in

particular that voltage and frequency switch overheads of up to 1 µs do not degrade

81

performance significantly. Higher overheads can still be tolerated by increasing the

length of the DVFS interval.

4.7 Conclusions

In this chapter, we have shown that accurate DVFS performance prediction

for private cache chip multiprocessors is feasible. Specifically, we have designed a

DVFS performance predictor for private cache CMPs that helps the DVFS controller

realize most of the gains realized by an oracle predictor. As in the uniprocessor case

(Chapter 3), our DVFS performance predictor for private cache CMPs derives most

of its benefit from taking into account the finite off-chip bandwidth.

82

Chapter 5

Shared Cache Chip Multiprocessor

Exactly! It is absurd—improbable—it cannot be.
So I myself have said. And yet, my friend, there it is!
One cannot escape from the facts.

Hercule Poirot
Murder on the Orient Express

In this chapter we extend the DVFS performance predictor we designed for

the private cache CMP to work with the shared cache CMP shown in Figure 5.1.

We first explain the problems posed by the introduction of shared last level cache,

then show that our predictor for the private cache CMP still works with the shared

cache CMP, explain why, and propose two improvements to make the predictor more

robust.

5.1 Problems Posed by Shared Cache

The introduction of shared last level cache complicates DVFS performance

prediction in two ways.

Core

Core frequency domains

Core

Cache DRAM
...

Figure 5.1: Shared cache CMP

83

First, unlike private caches, the shared cache lies outside of core frequency

domains. Therefore, as core frequencies change, the time needed to access the last

level cache remains the same. This fact contradicts our prior view of latency-bound

core performance, which assumes that last level cache access time scales with core

frequency and only DRAM latencies remain the same under core frequency scaling.

Second, the natural1 partition of shared cache capacity among the cores may

change under core frequency scaling, violating an important but so far implicit as-

sumption of our independent latency shared bandwidth (ILSB) model. This assump-

tion states that the number of DRAM requests per instruction is a workload charac-

teristic that stays constant under frequency scaling. Of course, if the shared cache

capacity allocated to a core changes under frequency scaling, the shared cache miss

rate of the core would also change, thereby changing the number of DRAM requests

per instruction for that core and thus violating the assumption.

5.2 Experimental Observations

Despite these potential concerns, our experiments show that the DVFS per-

formance predictor we designed for the private cache CMP in Chapter 4 performs

well in the shared cache CMP configuration. The methodology of these experiments

mirrors the methodology of our private cache CMP experiments (Section 4.5) with

the obvious replacement of private caches with a shared last level cache. Table 5.1

lists the simulation parameters.

Figures 5.3, 5.4, and 5.2 present these experimental results. As in the private

cache CMP evaluation, we show an oracle and a full performance study for the medium

core, 1 DRAM channel configuration (Figures 5.3, 5.4) and then present a summary

of the rest of the experiments (Figure 5.2).

1The natural shared cache partition is the one that results from the regular LRU replacement
policy without any explicit shared cache partitioning mechanisms.

84

General Frontend (Medium/Big) OOO Core (Medium/Big)

Cores 4 Microinstr./cycle 4/8 Microinstr./cycle 4/8
Base freq. 2.8 Ghz Branches/cycle 2 Pipeline depth 14
Min freq. 1.5 GHz BTB entries 4K ROB size 128/256
Max freq. 4.5 GHz Predictor hybrida RS size 48/96

All Caches ICache DCache L2 Stream prefetcher [84], per core

Line 64 B Size 32 KB 32 KB 4 MB Streams 16 Distance 64
MSHRs 32 Assoc. 4 4 8c Queue 128 Degree 4
Repl. LRU Cycles 1 2 16 Training threshold 4

Ports 1R,1W 2R,1W 1 L2 insertion mid-LRU

DRAM Controller DDR3 [58] Channel DRAM Bus

Window 128 reqs Chips 8 × 256 MB Row 8 KB Freq. 800 MHz
Priority schedulingb Banks 8 CASd 13.75 ns Width 8 B

a 64K-entry gshare + 64K-entry PAs + 64K-entry selector.
b Priority order: scarce row hit (Section 4.2), demand (instr. fetch or data load), oldest.
c L2 associativity is 16 in experiments with shared cache partitioning on.
d CAS = tRP = tRCD = CL;

other modeled DDR3 constraints: BL, CWL, t{RC, RAS, RTP, CCD, RRD, FAW, WTR, WR}.

Table 5.1: Simulated shared cache CMP configuration

 0
 1
 2
 3
 4
 5
 6

ALL BW ALL BW ALL BW ALL BW ALL BW ALL BW

P
er

fo
rm

an
ce

 g
ai

n
,
% Full Oracle Full Oracle Full Oracle

Medium cores, 1 DRAM channel Big cores, 1 DRAM channel Big cores, 2 DRAM channels

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 5.2: Summary of experimental results for our DVFS performance predictor for
the private cache CMP applied to the shared cache CMP

85

0

2

4

6

8

cactusADM
h264ref

astar
sphinx3

hmmer
tonto

calculix
sjeng

leslie3d
zeusmp
gobmk

xalancbmk

namd
sjeng

perlbench
povray

perlbench
xalancbmk

bwaves
h264ref

povray
astar
sjeng

hmmer

sjeng
gromacs
gamess
zeusmp

tonto
povray

lbm
wrf

wrf
GemsFDTD

gcc
gobmk

zeusmp
perlbench

dealII
gamess

GemsFDTD
wrf

libquantum
calculix

omnetpp
gobmk
bzip2

leslie3d

milc
omnetpp

xalancbmk
gromacs

h264ref
bwaves

cactusADM
omnetpp

bwaves
libquantum

povray
gcc

sphinx3
calculix
leslie3d

astar

xalancbmk
leslie3d

wrf
bwaves

libquantum
hmmer

omnetpp
GemsFDTD

gobmk
gcc
mcf

dealII

astar
gamess
sphinx3

milc

gamess
milc

zeusmp
mcf

mcf
lbm

gromacs
perlbench

gromacs
mcf

hmmer
namd

gcc
cactusADM

tonto
soplex

soplex
dealII

h264ref
cactusADM

dealII
bzip2
soplex
tonto

lbm
namd
milc
bzip2

calculix
sphinx3

GemsFDTD
lbm

bzip2
soplex
namd

libquantum

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 5.3: Oracle performance study of our DVFS performance predictor for the private cache CMP applied to the
shared cache CMP (medium cores, 1 DRAM channel) with ALL workloads

0

2

4

6

8

10

bwaves
GemsFDTD

h264ref
wrf

tonto
lbm

povray
gamess

lbm
sjeng
wrf

tonto

GemsFDTD
bwaves
dealII

perlbench

gromacs
libquantum
GemsFDTD
xalancbmk

lbm
povray

GemsFDTD
sjeng

gcc
libquantum

dealII
sphinx3

soplex
lbm

cactusADM
sphinx3

lbm
hmmer

GemsFDTD
tonto

wrf
bwaves

milc
perlbench

calculix
soplex

wrf
GemsFDTD

soplex
libquantum
perlbench

namd

astar
bwaves

omnetpp
wrf

tonto
astar
milc

sphinx3

milc
omnetpp
leslie3d

lbm

bzip2
omnetpp

namd
soplex

libquantum
mcf

leslie3d
namd

bwaves
soplex
bzip2

cactusADM

milc
gamess
sphinx3

lbm

omnetpp
namd
lbm
milc

lbm
calculix

xalancbmk
wrf

calculix
milc

bwaves
wrf

milc
leslie3d
bwaves
sjeng

hmmer
calculix

lbm
milc

lbm
h264ref
bwaves
calculix

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Figure 5.4: Full performance study of our DVFS performance predictor for the private cache CMP applied to the
shared cache CMP (medium cores, 1 DRAM channel) with BW workloads

86

0

1

2

3

4

5

6

7

100k 1M 10M

P
er

fo
rm

an
ce

 g
ai

n
,
%

Interval length, cycles

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

43 121 689

P
er

fo
rm

an
ce

 g
ai

n
,
%

Frequency combinations

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

0 0.1 1 10

P
er

fo
rm

an
ce

 g
ai

n
,
%

DVFS overhead, µs

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

Figure 5.5: Sensitivity studies of our DVFS performance predictor for the private
cache CMP applied to the shared cache CMP with BW workloads (circled points
represent default settings)

As evident from these figures, our DVFS performance predictor for private

cache CMPs maintains its high performance in the presence of a shared cache. Specifi-

cally, in the medium core, 1 DRAM channel configuration, the predictor realizes 74%

of average oracle performance gains (Figure 5.3) and delivers 4.4% average perfor-

mance gains on bandwidth-bound workloads (Figure 5.4). The summary of exper-

imental results shown in Figure 5.2 demonstrates similar trends for the rest of the

simulated configurations. In particular, our DVFS performance predictor for the pri-

vate cache CMP improves performance of bandwidth-bound workloads by 6.2% in

the big core, 1 DRAM channel configuration.

The sensitivity studies shown in Figure 5.5 confirm that our DVFS predictor

for the private cache CMP still works well with the shared cache CMP for a variety

of key parameter settings.

5.3 Analysis

We now explain why the DVFS performance predictor we designed for the

private cache CMP in Chapter 4 still works well with the shared cache CMP. There

are two major reasons: the ability of the out-of-order processor to hide shared LLC

87

access latencies and the relative constancy of the natural shared cache partition under

frequency scaling. We discuss each reason in turn.

The ability of the out-of-order processor to hide shared LLC access latencies

mitigates the first problem posed by shared cache: the fact that the shared cache lies

outside of core frequency domains making shared cache access latency independent of

core frequencies. As discussed in Section 5.1, this fact is a potential problem because

we designed the evaluated DVFS performance predictor assuming the opposite: that

LLC latencies scale with core frequencies (as they do in the private cache CMP).

However, due to the ability of the out-of-order processor to hide these latencies, they

do not have much impact on performance. In fact, in our baseline studies across the

three simulated configurations, the fraction of time a core stalls on an LLC access

does not exceed 8% and is less than 4% in 91% of the cases. Since LLC access

latencies stall the cores for only a small fraction of execution time, the error due to

inaccurately predicting that fraction is small relative to total execution time and thus

has negligible effect on performance prediction accuracy.

The relative constancy of the natural shared cache partition under frequency

scaling mitigates the second potential problem posed by shared cache: the potential

failure of the assumption that the number of DRAM requests per instruction of a

core remains the same under frequency scaling.

To show that the natural shared cache partition does not change significantly

under frequency scaling, we first define the distance between two shared cache parti-

tions:

The distance between two shared cache partitions is the fraction of shared

cache capacity not allocated to the same core in both partitions.

For example, given two shared cache partitions {10%, 20%, 30%, 40%} and {15%,

20%, 40%, 25%}, the distance between them is 15%—the sum of the 5% gained by

core 1 and the 10% gained by core 3 at the expense of core 4. More formally, treating a

88

shared cache partition x among N cores as a vector {x1, x2, . . . , xN} of cache fractions

allocated to each core, we define:

distance between two partitions A and B =
1

2

N∑
i=1

|Ai − Bi|. (5.1)

So defined, the distance between two shared cache partitions is equivalent to Manhat-

tan distance normalized to make 1 the greatest possible distance; however, we choose

this definition for its intuitive power rather than formalism.

Using this definition, the distance between the time-averaged shared cache

partition in the baseline and in the DVFS experiments using the ILSB model is at

most 5%. Therefore, core frequency scaling in our experiments does not significantly

change the natural shared cache partition, making the shared cache act like private

caches (of different sizes) and hence maintaining the assumption that the number of

DRAM requests per instruction remains the same under frequency scaling.

5.4 Robust Mechanism

Despite this evidence that the DVFS performance predictor we designed for

the private cache CMP works with shared cache CMP, we propose two improvements

to address the two potential problems posed by the shared cache and thus make our

DVFS performance predictor more robust.

The first improvement addresses the first problem posed by shared cache (Sec-

tion 5.1): the fact that shared LLC access latencies no longer scale with core fre-

quencies. To account for this fact, we redefine the demand DRAM request time per

instruction Tdemand to be the demand LLC or DRAM request time per instruction.

We augment the Tdemand measurement mechanism (described in Section 4.4.1 based

on earlier Section 3.3.3.1) to account for the extra demand time due to LLC requests.

Specifically, the mechanism adds the time retirement stalls on LLC accesses per in-

struction to Tdemand measured as in the previous mechanism.2

2The resulting Tdemand measurement mechanism would be especially useful in CMPs comprised
of in-order cores which are not able to hide LLC access latencies as well as out-of-order cores can.

89

The second improvement addresses the second problem posed by shared cache:

the potential change in the natural shared cache partition under frequency scaling.

To deal with this problem, we propose using an existing shared cache partitioning

mechanism such as Utility-Based Cache Partitioning (UCP) by Qureshi et al.[69]. An

explicit shared cache partitioning mechanism, in addition to improving performance,

keeps the shared cache partition constant and makes the shared cache act as private

caches, improving performance predictability as well.

5.5 Results

We now present the experimental results for our robust DVFS performance

predictor for the shared cache CMP. Note that in these results, the methodology is

identical to that of experimental observations in Section 5.2 except that all of the

experiments including the baseline employ Utility-Based Cache Partitioning (UCP)

invoked every 10M baseline cycles. Therefore, these results are not comparable to

the experimental observations in Section 5.2 because the baselines are different. For

example, the new baseline with UCP performs 2.6% better on average than the old

baseline in the medium cores, 1 DRAM channel configuration.

Figures 5.6 and 5.7 show the results of oracle and full performance studies with

our robust DVFS performance predictor. The results of the oracle study show that

the predictor delivers 80% of oracle performance, whilst the full study shows that

the predictor delivers 3.9% average performance improvement on bandwidth-bound

workloads in the medium cores, 1 DRAM channel configuration.

Figure 5.8 provides the summary of experimental results for the robust DVFS

performance predictor for the shared cache CMP. Note that the predictor realizes

most of the oracle gains and delivers an average 5% improvement on bandwidth-

bound workloads in the big cores, 1 DRAM channel configuration. For completeness,

Figure 5.9 presents the sensitivity study results.

90

0

2

4

6

8

leslie3d
zeusmp
gobmk

xalancbmk

cactusADM
h264ref

astar
sphinx3

GemsFDTD
wrf

libquantum
calculix

hmmer
tonto

calculix
sjeng

namd
sjeng

perlbench
povray

perlbench
xalancbmk

bwaves
h264ref

povray
astar
sjeng

hmmer

sjeng
gromacs
gamess
zeusmp

tonto
povray

lbm
wrf

wrf
GemsFDTD

gcc
gobmk

zeusmp
perlbench

dealII
gamess

bwaves
libquantum

povray
gcc

omnetpp
gobmk
bzip2

leslie3d

h264ref
bwaves

cactusADM
omnetpp

xalancbmk
leslie3d

wrf
bwaves

milc
omnetpp

xalancbmk
gromacs

sphinx3
calculix
leslie3d

astar

astar
gamess
sphinx3

milc

gromacs
mcf

hmmer
namd

gobmk
gcc
mcf

dealII

gamess
milc

zeusmp
mcf

libquantum
hmmer

omnetpp
GemsFDTD

soplex
dealII

h264ref
cactusADM

mcf
lbm

gromacs
perlbench

lbm
namd
milc
bzip2

gcc
cactusADM

tonto
soplex

bzip2
soplex
namd

libquantum

dealII
bzip2
soplex
tonto

calculix
sphinx3

GemsFDTD
lbm

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 5.6: Oracle performance study of our robust DVFS performance predictor for the shared cache CMP (medium
cores, 1 DRAM channel) with ALL workloads

0

2

4

6

8

10

tonto
lbm

povray
gamess

gromacs
libquantum
GemsFDTD
xalancbmk

lbm
povray

GemsFDTD
sjeng

GemsFDTD
bwaves
dealII

perlbench

bwaves
GemsFDTD

h264ref
wrf

lbm
sjeng
wrf

tonto

calculix
soplex

wrf
GemsFDTD

lbm
hmmer

GemsFDTD
tonto

astar
bwaves

omnetpp
wrf

gcc
libquantum

dealII
sphinx3

soplex
lbm

cactusADM
sphinx3

wrf
bwaves

milc
perlbench

tonto
astar
milc

sphinx3

soplex
libquantum
perlbench

namd

calculix
milc

bwaves
wrf

bwaves
soplex
bzip2

cactusADM

lbm
calculix

xalancbmk
wrf

libquantum
mcf

leslie3d
namd

bzip2
omnetpp

namd
soplex

omnetpp
namd
lbm
milc

lbm
h264ref
bwaves
calculix

hmmer
calculix

lbm
milc

milc
leslie3d
bwaves
sjeng

milc
omnetpp
leslie3d

lbm

milc
gamess
sphinx3

lbm

gmean

P
er

fo
rm

an
ce

 g
ai

n
,
%

Linear
ILSB

Figure 5.7: Full performance study of our robust DVFS performance predictor for the shared cache CMP (medium
cores, 1 DRAM channel) with BW workloads

91

 0
 1
 2
 3
 4
 5
 6

ALL BW ALL BW ALL BW ALL BW ALL BW ALL BW

P
er

fo
rm

an
ce

 g
ai

n
,
% Full Oracle Full Oracle Full Oracle

Medium cores, 1 DRAM channel Big cores, 1 DRAM channel Big cores, 2 DRAM channels

Linear
ILSB

Perfect memoryless
Myopic oracle

Figure 5.8: Summary of experimental results for our robust DVFS performance pre-
dictor for the shared cache CMP

0

1

2

3

4

5

6

7

100k 1M 10M

P
er

fo
rm

an
ce

 g
ai

n
,
%

Interval length, cycles

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

43 121 689

P
er

fo
rm

an
ce

 g
ai

n
,
%

Frequency combinations

Med. cores, 1 chan.
Big cores, 1 chan.

Big cores, 2 chan.

 0

 1

 2

 3

 4

 5

 6

 7

0 0.1 1 10

P
er

fo
rm

an
ce

 g
ai

n
,
%

DVFS overhead, µs

Med. cores, 1 chan.

Big cores, 1 chan.

Big cores, 2 chan.

Figure 5.9: Sensitivity studies of our robust DVFS performance predictor for the
shared cache CMP with BW workloads (circled points represent default settings)

5.6 Case Study

To ensure that our improved Tdemand measurement mechanism which takes

LLC stall time into account works as intended, we examine a case where this im-

provement actually matters—a case in which LLC access time has a major perfor-

mance impact. Specifically, we a) design a microbenchmark whose performance,

unlike SPEC2006 benchmarks, is dominated by LLC access time and b) evaluate

whether our robust DVFS performance predictor still works well when confronted

with this microbenchmark.

The microbenchmark, dep chain (short for “dependency chain”), traverses a

linked list contained in 256KB of memory. Thus, the linked list is too big to fit in

the level 1 data cache but fits with plenty of room to spare into the shared LLC.

92

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

Simulated
Predicted

(a) Demand DRAM access stall time

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

T
im

e
p
er

 i
n
st

ru
ct

io
n
,
p
s

Cycle time, ps

Simulated
Predicted

(b) Demand DRAM and LLC access stall time

Figure 5.10: Simulated and predicted performance of dep chain versus core cycle
time for two different Tdemand measurement mechanisms. Predicted performance is
based on workload measurements at the baseline 2.8 GHz frequency.

Therefore, the performance of dep chain is determined mostly by the latencies of

serialized LLC accesses generated during the linked list traversal. In fact, when run

on a uniprocessor, dep chain causes the core to stall on demand LLC accesses 89%

of the execution time (at the baseline 2.8GHz core frequency).

Figure 5.10 demonstrates that our improvement to Tdemand measurement mech-

anism significantly improves prediction accuracy on dep chain. Specifically, the figure

shows simulated versus predicted performance of dep chain on a uniprocessor (con-

figured as described in Section 3.4) as a function of core cycle time. Note that the

old Tdemand measurement mechanism based on DRAM stall time incorrectly measures

Tdemand to be zero, resulting in poor prediction accuracy. In contrast, our improved

Tdemand measurement mechanism leads to significantly more accurate performance

prediction.

An additional experiment proves that this improvement in prediction accuracy

translates into tangible performance gains. We set up this experiment as follows.

First, we introduce the compute-bound microbenchmark accum which continuously

increments a counter. Second, we evaluate our DVFS performance predictor based

on the ILSB model on the following four core workload: {dep chain, dep chain,

93

dep chain, accum}. When this DVFS performance predictor uses the improved

Tdemand measurement mechanism, it leads the DVFS controller to 2.3% overall perfor-

mance improvement (+14.3% on accum and −1.4% on each dep chain). In contrast,

when the DVFS performance predictor uses the old Tdemand measurement mechanism,

it merely maintains the baseline performance level by not switching core frequencies

at all. Therefore, our improved Tdemand measurement mechanism based on demand

DRAM and LLC stall time does successfully address the problem of the shared LLC

being outside of core frequency domains.

5.7 Conclusions

In this chapter we have shown experimentally that the DVFS predictor we

designed for the private cache CMP in Chapter 4 applies to the shared cache CMP

despite the potential problems caused by the shared cache. We explained these ex-

perimental results and proposed a new robust DVFS predictor designed specifically

for the shared cache CMP.

94

Chapter 6

Related Work

Amy: How are we going to get there without a hovercar?
Fry: Wait. In my time we had a way of moving objects

long distances without hovering.
Hermes: Impossible!
Fry: It was called. . . let me think. . . It was really famous.

Ruth Gordon had one. . . The wheel.
Leela: Never heard of it.
Prof. Farnsworth: Show us this “the wheel.”

Futurama, “Mother’s Day”

We describe and compare with related work on several levels. We first place

our work on DVFS performance predictors in the broader context of the prior work

on adaptive processor control. We then compare our DVFS performance predictors

with others in the literature. We also compare our limited bandwidth and indepen-

dent latency shared bandwidth analytic models, which focus on memory aspects of

performance, to previously proposed analytic models of memory system’s impact on

performance. Finally, we describe work related to scarce row hit prioritization.

6.1 Adaptive Processor Control

DVFS performance predictors explored in this dissertation are part of a broader

research area of adaptive processor control. An adaptive processor is a processor that

can dynamically adjust one or more architectural parameters to better fit the running

workload characteristics. Clearly, DVFS-capable processors fall under this definition

(chip and core frequencies being the adjustable architectural parameters).

We first present a taxonomy of adaptive processor control approaches (Sec-

tion 6.1.1, summarized in Figure 6.1) and categorize previously proposed adaptive

95

Performance prediction
mechanistic based on mathematical models of microarchitecture

details
statistical regression based on black box mathematical models derived

statistically from design-time training runs
machine learning based on black box mathematical models “learned”

at runtime
Other

proxy metric prediction based on a predictor of a proxy metric that correlates
with performance (e.g. cache hit rate)

heuristics based on a (typically empirically derived) set of rules
feedback-driven based on trial and error or hill climbing algorithms

Figure 6.1: Taxonomy of adaptive processor control approaches.

processor controllers based on their place in the taxonomy and the adjustable pa-

rameters they control (Table 6.1). We then discuss the tradeoffs between the various

approaches and explain why “mechanistic” performance prediction, our chosen ap-

proach, is preferable to the alternatives.

6.1.1 Taxonomy of Adaptive Processor Controllers

Adaptive processor controllers may be divided into those based on performance

prediction and others. A performance predictor consists of two parts:

1. a mathematical model that expresses processor performance as a function of

a) workload characteristics and b) adjustable parameter values, and

2. the hardware mechanisms that measure workload characteristics required by

the mathematical model.

The adaptive processor uses a performance predictor as described in Section 6.1.2.

As a quick overview, the adaptive processor controller spends some time measuring

the necessary workload characteristics, plugs them into the model, and chooses the

combination of adjustable parameter values that maximizes the performance function.

This process is repeated to ensure the processor always operates in a near-optimal

configuration.

96

The performance prediction approach has two main advantages over the others:

1. It enables the controller to switch to the predicted optimal configuration in one

shot, resulting in quick reaction to workload phase changes.

2. It leaves open the possibility of composing multiple local controllers of separate

adjustable parameters into one global controller, which can compare perfor-

mance impacts of adjusting very different parameters. It’s unclear how such

composability could be achieved with other approaches which do not estimate

the performance impact of parameter adjustment.

Further classification of performance prediction and other approaches follows.

Table 6.1 lists citations for prior work according to their place in this classification

and the adjustable parameters they control.

6.1.2 Performance Prediction

We classify performance predictors into a) “mechanistic,” b) statistical regres-

sion based, and c) machine learning based.

Mechanistic1[3] performance predictors are designed from an understanding of

relevant microarchitectural details. The designers of such predictors analyze the low

level microarchitectural behavior and construct mathematical models that express at

a high level the aggregate performance impact of this low level behavior.

In contrast, statistical regression and machine learning are black box approaches

that require no understanding of microarchitectural details. Statistical regression

models are based on design time experiments whereas machine learning approaches

aim to “learn” the performance function at runtime.

Mechanistic performance prediction is superior to these black box approaches

because it is more robust. Since mechanistic predictors are based on the physical

reality of what happens, they should always provide accurate predictions. In contrast,

1“Of or relating to theories which explain phenomena in purely physical or deterministic
terms” [75]. In computer architecture, this term was first used by Eyerman et al. [23] to char-
acterize performance models.

97

Parameter type Performance prediction Other

Mechanistic Statistical
regression

Machine
learning

Proxy
metric

Heuristic Feedback-
driven

Chip/core frequency 22, 37, 71 10, 13–15,
49

18, 61 1 8 –

Core clock domain frequencies – – – – – 11

Core structure sizes – 19 – 43 – –

Shared cache partition 66, 67 – 2 33, 62, 69 20, 34, 91 77, 78

DRAM bandwidth partition 53–55, 66, 67 – 2 – 20, 41, 42,
64, 65, 80

–

Prefetcher aggressiveness – – 51 24 21, 79 –

Symmetric core schedule 82 – – – – 77, 81

Asymmetric core schedule 86 56 – 44, 72 46 –

Table 6.1: Citations for prior adaptive processor controllers categorized by approach and adjusted parameters.

98

such confidence is unwarranted in case of black box predictors. It is possible that an

application not tested at design time may stress some part of the processor for which

no input to the black box model has been provisioned by the designer. In this case,

the black box approach may result in an inaccurate prediction.

From a research point view, mechanistic performance predictors also have the

advantage of providing insights into why performance changes the way it does—

insights that black box approaches cannot reveal.

The downside of mechanistic performance predictors is the nontrivial design ef-

fort they require. Specifically, designing a mechanistic performance predictor requires

an understanding of the major factors driving processor performance—an understand-

ing that takes time to develop.

6.1.3 Other Approaches

Other approaches found in the literature are a) proxy metric prediction, b) heuris-

tics, and c) feedback-driven.

The proxy metric prediction approach resembles performance prediction, ex-

cept the predicted metric is not a performance metric (such as instructions per cycle

or energy per instruction) but a proxy metric that correlates with performance. A

common example is a shared cache partitioning mechanism that optimizes for global

hit rate [33, 62, 69].

Another approach is based on heuristics, ad hoc rules that guide param-

eter adjustment in accordance with the designer’s intuitive understanding of the

configuration space. Heuristics are particularly common in shared cache partition-

ing [20, 34, 91] and prefetcher throttling [21, 79].

The final subcategory covers all feedback-driven approaches such as trial and

error and hill climbing. Feedback-driven controllers adjust processor parameters and

measure the resulting performance in order to explore the configuration space so that

the optimal configuration can be found. Such controllers may spend a lot of time in

99

suboptimal configurations and are slow to settle on the optimal configuration after a

workload phase change. These problems get worse as the the size of the configuration

space grows exponentially with the number of adjustable parameters.

6.2 DVFS Performance Prediction

Most prior work on DVFS performance prediction [10, 13–15, 18, 49, 61] ad-

dresses the problem above the microarchitectural level and does not explore hardware

modification. Hence, this work can only use already existing hardware performance

counters as inputs to their performance and power models. These counters were not

designed to predict the performance impact of DVFS and thus do not work well for

that purpose. Hence, these papers resort to statistical [10, 13–15, 49] and machine

learning [18, 61] techniques.

In contrast, in this dissertation we tackle DVFS control at the microarchi-

tecture level, designing new hardware counters with the explicit goal of measuring

workload characteristics needed for accurate DVFS performance prediction. This ap-

proach was introduced by leading loads [22, 37, 71] and stall time [22, 37] proposals

already discussed in Sections 3.1.2 and 3.1.3.

6.3 Analytic Models of Memory System Performance

Some prior work presents analytic models that, though not targeting frequency

scaling, also focus on memory performance. An early example is the negative feed-

back model of Bucher and Calahan [4] which, like our ILSB model, has a feedback

loop structure. Bucher and Calahan, however, do not consider multiple applications

or bandwidth saturation caused by prefetching. Prior analytic models of CMP band-

width partitioning [53–55, 66, 67] are also related to our ILSB model; however, they

do not take into account demand request prioritization in DRAM scheduling. In

contrast, our ILSB model does; in fact, as described in Section 4.3.1.2, demand pri-

100

oritization is what allows us to model latency-bound core performance independently

of the other cores.

The Roofline performance model [90] is particularly relevant to our limited

bandwidth model because it is also based on the basic insight that processor per-

formance is driven by the slowest of multiple bottlenecks; in case of the Roofline

model, these bottlenecks are compute bandwidth and memory bandwidth. There

are, however, three important differences between the two models.

1. The two models serve different purposes and link different quantities. Specifi-

cally, the Roofline model is meant to guide software optimization and uses the

aforementioned basic insight to express performance as a function of operational

intensity (a workload characteristic equal to the ratio of compute operations per

byte transmitted). In contrast, the linear bandwidth model is meant to guide

DVFS at runtime and expresses performance (time per instruction) as a function

of chip cycle time.

2. Due to this difference in purpose, the accuracy requirements for the two models

are also different. Specifically, the Roofline model need only provide a rough

upper bound on performance. In contrast, the linear bandwidth model needs

to predict performance accurately enough to guide runtime DVFS.

3. While both models consider memory bandwidth as one of two performance

bottlenecks, the other bottleneck differs among the two models. Specifically,

the second bottleneck of the Roofline model is compute bandwidth, whereas the

second bottleneck of the limited bandwidth model is a combination of compute

bandwidth and demand DRAM request latency.

Most other prior analytic models of memory system performance [9, 17, 25,

83, 92] also serve a different purpose than our analytic models. Specifically, these

models are designed for address design space exploration [9, 25, 83], predicting DRAM

efficiency [92], and predicting the benefit of low power DRAM operation [17]. Unlike

101

our analytic models, these models do not take the latency-bound and bandwidth-

bound modes of core operation into account; most [9, 17, 25, 92] assume that cores

are always latency-bound while one [83] assumes that processing is always bandwidth-

bound.

6.4 Prioritization in DRAM Scheduling

Finally, we compare to prior work related to scarce row hit prioritization (Sec-

tion 4.2). Multiple prior works on DRAM scheduling [36, 41, 42, 48, 64, 65] identify

priority inversion due to row hit prioritization as a performance problem. We divide

these works into those that, like scarce row hit prioritization, deal with the problem

at the level of short term scheduling and those that deal with it as part of a long term

scheduling policy.

The FR-FCFS-Cap policy of Mutlu and Moscibroda [64], Prefetch-Aware

DRAM Controller (PADC) of Lee et al. [48] and the Minimalist Open-Page policy of

Kaseridis et al. [36] are the short term scheduling mechanisms. The FR-FCFS-Cap

policy is the “row hit, oldest” priority order with a cap on the number of consecu-

tive row hits prioritized. Unlike scarce row hit prioritization, this policy may delay

scheduling a higher priority row conflict until a number of consecutive low priority

row hits to the same bank is satisfied even if the number of outstanding row hits to

other banks is enough to maintain high bus utilization. The Prefetch-Aware DRAM

Controller (PADC) dynamically chooses between two priority orders, “row hit, old-

est” and “demand, row hit, oldest.” However, PADC does not consider the “row hit,

demand, oldest” priority order (our baseline) which we find to perform better. The

Minimalist Open-Page policy changes address-to-bank mapping to increase bank level

parallelism of streaming workloads and reduce the length of bursts of consecutive row

hits. In general, any short term scheduling technique that tackles priority inversion,

such as these techniques and scarce row hit prioritization, helps DVFS performance

prediction by making chip multiprocessor performance more predictable as described

in Section 4.2.4.

102

Long term DRAM scheduling mechanisms [41, 42, 64, 65] pose a problem for

DVFS performance prediction. Unlike short term scheduling mechanisms, the long

term prioritization of some cores over others results in unequal DRAM service time of

bandwidth-bound cores, violating the equal DRAM request service time approxima-

tion (Section 4.3.4) of our ILSB model. We leave the problem of DVFS performance

prediction in the presence of these long term DRAM scheduling mechanisms to future

work.

103

Chapter 7

Conclusions

In the instant that you love someone,
In the second that the hammer hits,
Reality runs up your spine,
And the pieces finally fit.

Elton John
The One

Looking back at the major contributions of this dissertation—the mathemat-

ical models of performance under frequency scaling, the mechanisms to measure pa-

rameters of these models, and the evaluation results—we reach three conclusions:

1. Performance predictors must be designed for and evaluated with realistic mem-

ory systems.

2. Finite off-chip bandwidth must be considered in performance predictor design.

3. Accurate DVFS performance prediction at runtime is feasible.

We elaborate on these conclusions below.

7.1 Importance of Realistic Memory Systems

This dissertation shows that performance predictors in general, even those not

related to DVFS, must be designed and evaluated with realistic memory systems in

mind. Specifically, we have seen in Chapter 3 that prior DVFS performance predictors

(leading loads and stall time) fail to accurately predict performance under frequency

scaling because they ignore major qualitative characteristics of real memory systems

104

(such as variable access latency in the case of leading loads and stream prefetching

in the case of both). These problems, however, are not specific to DVFS. In fact,

frequency scaling is just one of many mechanisms the processor can use to change core

performance. Whatever the mechanism (e.g., switching between in-order and out-of-

order [38] execution modes or adjusting prefetcher aggressiveness [79]), predicting

its performance impact accurately requires considering the major characteristics of

realistic memory systems.

As we recommend taking realistic memory systems into account, we emphasize

their qualitative rather than quantitative characteristics. Specifically, this dissertation

considers memory systems with the following qualitative characteristics: variable

access latency, stream prefetching, and demand access prioritization. We fully expect

that our DVFS performance predictors will work with real (not simulated) memory

systems with these qualitative characteristics even if their quantitative characteristics

(such as exact DRAM timings or number of DRAM channels) differ from the ones we

used in simulation experiments.

7.2 Performance Impact of Finite Off-Chip Bandwidth

This dissertation also shows that finite off-chip bandwidth is a major perfor-

mance factor that must be considered in performance predictor design. Specifically,

all DVFS performance predictors we propose—targeting the uniprocessor (Chap-

ter 3), the private cache chip multiprocessor (Chapter 4), and the shared cache

chip multiprocessor (Chapter 5)—deliver most performance or energy efficiency gains

on bandwidth-bound workloads. The DVFS performance predictors that don’t take

bandwidth into account—those based on the linear DVFS performance model—fail

to realize these gains. Again, the causes of these effects are not specific to DVFS and

apply to any kind of performance predictor.

Note that our models of performance under frequency scaling (limited band-

width and the independent latency shared bandwidth) can be readily adapted to

help performance predictors unrelated to DVFS take finite bandwidth into account.

105

In fact, the parts of these models that deal with bandwidth apply directly to those

applications of performance prediction where the number of DRAM requests per in-

struction (for each core) remains the same at any adjustable parameter setting.

7.3 Feasibility of Accurate DVFS Performance Prediction

Finally and most importantly, this dissertation proves the feasibility of accu-

rate DVFS performance prediction using mechanistic models of performance under

frequency scaling. Specifically, the DVFS performance predictors we designed in this

dissertation are accurate enough to help the DVFS controller realize, depending on

the processor configuration, 72–85% of average oracle gains in performance or energy

efficiency (81–96% of average perfect memoryless gains) across SPEC 2006 bench-

marks or their randomly chosen combinations. We therefore conclude that DVFS

performance predictors based on mechanistic performance models can in fact be ac-

curate enough to realize most of the benefit of an oracle predictor—the very thesis

we set out to prove.

106

Bibliography

[1] Abhishek Bhattacharjee and Margaret Martonosi. Thread criticality predictors

for dynamic performance, power, and resource management in chip multiproces-

sors. In Proc. 36th Int. Symp. Comput. Arch. (ISCA 2009), pages 290–301, June

2009.

[2] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine learning

approach. In Proc. 41st ACM/IEEE Int. Symp. Microarch. (MICRO-41), pages

318–329, November 2008.

[3] George E. P. Box and Norman R. Draper. Empirical Model-Building and Re-

sponse Surfaces. John Wiley & Sons, 1987. Section 1.4.

[4] Ingrid Y. Bucher and Donald A. Calahan. Models of access delays in multi-

processor memories. IEEE Trans. Parallel Distrib. Syst. (TPDS), 3(3):270–280,

1992.

[5] Thomas D. Burd and Robert W. Brodersen. Energy efficient CMOS micropro-

cessor design. In Proc. 28th Hawaii Int. Conf. Syst. Sci. (HICCS-28), volume 1,

pages 288–297, January 1995.

[6] Michael Butler, Leslie Barnes, Debjit Das Sarma, and Bob Gelinas. Bulldozer:

An approach to multithreaded compute performance. IEEE Micro, 31(2):6–15,

March 2011.

[7] J. Adam Butts and Gurindar S. Sohi. A static power model for architects.

In Proc. 33rd ACM/IEEE Int. Symp. Microarch. (MICRO-33), pages 191–201,

December 2000.

107

[8] Qiong Cai, José González, Ryan Rakvic, Grigorios Magklis, Pedro Chaparro,

and Antonio González. Meeting points: Using thread criticality to adapt mul-

ticore hardware to parallel regions. In Proc. 17th Int. Conf. Parallel Arch. and

Compilation Techniques (PACT’08), pages 240–249, October 2008.

[9] Hyojin Choi, Jongbok Lee, and Wonyong Sung. Memory access pattern-aware

DRAM performance model for multi-core systems. In Proc. 2011 IEEE Int.

Symp. Perf. Anal. of Syst. and Soft. (ISPASS-2011), pages 66–75, April 2011.

[10] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Fine-grained dynamic

voltage and frequency scaling for precise energy and performance trade-off based

on the ratio of off-chip access to on-chip computation times. In Proc. Conf.

Design, Automation, and Test in Europe (DATE 2004), pages 4–9, February

2004.

[11] P. Choudhary and D. Marculescu. Power management of voltage/frequency

island-based systems using hardware-based methods. IEEE Trans. Very Large

Scale Integration (VLSI) Syst., 17(3):427–438, March 2009.

[12] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen. Pointer

cache assisted prefetching. In Proc. 35th ACM/IEEE Int. Symp. Microarch.

(MICRO-35), pages 62–73, June 2002.

[13] Gilberto Contreras and Margaret Martonosi. Power prediction for Intel XScale

processors using performance monitoring unit events. In Proc. 2005 Int. Symp.

Low Power Electron. and Design (ISLPED’05), pages 221–226, August 2005.

[14] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dim-

itrios S. Nikolopoulos. Online power-performance adaptation of multithreaded

programs using hardware event-based prediction. In Proc. 20th Int. Conf. Su-

percomputing (ICS’06), pages 157–166, June 2006.

108

[15] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopou-

los, Bronis R. de Supinski, and Martin Schulz. Prediction models for multi-

dimensional power-performance optimization on many cores. In Proc. 17th Int.

Conf. Parallel Arch. and Compilation Techniques (PACT’08), pages 250–259,

October 2008.

[16] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur

Mutlu. Memory power management via dynamic voltage/frequency scaling. In

Proc. 8th ACM Int. Conf. Autonomic Computing (ICAC 2011), pages 31–40,

June 2011.

[17] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, and Ricardo

Bianchini. MemScale: Active low-power modes for main memory. In Proc.

16th Int. Conf. Arch. Support for Programming Languages and Operating Syst.

(ASPLOS XVI), pages 225–238, March 2011.

[18] Gaurav Dhiman and Tajana Simunic Rosing. Dynamic voltage frequency scaling

for multi-tasking systems using online learning. In Proc. 2007 Int. Symp. Low

Power Electron. and Design (ISLPED’07), pages 207–212, August 2007.

[19] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.

O’Boyle. A predictive model for dynamic microarchitectural adaptivity control.

In Proc. 43rd ACM/IEEE Int. Symp. Microarch. (MICRO-43), pages 485–496,

December 2010.

[20] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via

source throttling: A configurable and high-performance fairness substrate for

multicore memory systems. ACM Trans. Comput. Syst. (TOCS), 30(2):7:1–7:35,

April 2012.

[21] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. Coordinated

control of multiple prefetchers in multi-core systems. In Proc. 42nd ACM/IEEE

Int. Symp. Microarch. (MICRO-42), pages 316–326, December 2009.

109

[22] Stijn Eyerman and Lieven Eeckhout. A counter architecture for online DVFS

profitability estimation. IEEE Trans. Comput. (TOC), 59:1576–1583, November

2010.

[23] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A mech-

anistic performance model for superscalar out-of-order processors. ACM Trans.

Comput. Syst. (TOCS), 27:3:1–3:37, May 2009.

[24] Marius Grannaes and Lasse Natvig. Dynamic parameter tuning for hardware

prefetching using shadow tagging. In Proc. 2nd Workshop Chip Multiprocessor

Memory Syst. and Interconnects (CMP-MSI), June 2008.

[25] Nagendra Gulur, Mahesh Mehendale, Raman Manikantan, and Ramaswamy

Govindarajan. ANATOMY: An analytical model of memory system perfor-

mance. In Proc. 2014 ACM Int. Conf. on Measurement and Modeling of Comput.

Syst. (SIGMETRICS ’14), pages 505–517, June 2014.

[26] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action, chapter 13, pages 242–244. Cambridge University

Press, 2013.

[27] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power digital

design. In IEEE Symp. Low Power Electron. (ISLPE’94) Digest of Tech. Papers,

pages 8–11, October 1994.

[28] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual Version 029, March 2014.

[29] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase

monitoring and prediction on real systems with application to dynamic power

management. In Proc. 39th ACM/IEEE Int. Symp. Microarch. (MICRO-39),

pages 359–370, December 2006.

110

[30] Canturk. Isci and Margaret Martonosi. Phase characterization for power: Evalu-

ating control-flow-based and event-counter-based techniques. In Proc. 12th IEEE

Int. Symp. High Perf. Comput. Arch. (HPCA-12), pages 121–132, February 2006.

[31] Bruce Jacob, Spencer W. Ng, and David T. Wang. Memory Systems: Cache,

DRAM, Disk, chapter 7, pages 315–351. Elsevier Science, 2010.

[32] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses for im-

proved correlated prefetching. In Proc. 46th ACM/IEEE Int. Symp. Microarch.

(MICRO-46), pages 247–259, December 2013.

[33] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon

Steely, Jr., and Joel Emer. Adaptive insertion policies for managing shared

caches. In Proc. 17th Int. Conf. Parallel Arch. and Compilation Techniques

(PACT’08), pages 208–219, October 2008.

[34] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High

performance cache replacement using re-reference interval prediction (RRIP).

SIGARCH Comput. Archit. News, 38(3):60–71, June 2010.

[35] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In Proc.

24th Int. Symp. Comput. Arch. (ISCA 1997), pages 252–263, June 1997.

[36] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. Minimalist open-

page: A DRAM page-mode scheduling policy for the many-core era. In Proc.

44th ACM/IEEE Int. Symp. Microarch. (MICRO-44), pages 24–35, December

2011.

[37] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. Interval-based

models for run-time DVFS orchestration in superscalar processors. In Proc. ACM

Int. Conf. Computing Frontiers (CF’10), pages 287–296, May 2010.

[38] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N.

Patt. MorphCore: An energy-efficient microarchitecture for high performance

111

ILP and high throughput TLP. In Proc. 45th ACM/IEEE Int. Symp. Microarch.

(MICRO-45), pages 305–316, December 2012.

[39] Wonyoung Kim, David Brooks, and Gu-Yeon Wei. A fully-integrated 3-level DC-

DC converter for nanosecond-scale DVFS. IEEE J. Solid-State Circuits (JSSC),

47(1):206–219, January 2012.

[40] Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks. System

level analysis of fast, per-core DVFS using on-chip switching regulators. In Proc.

14th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-14), pages 123–134,

February 2008.

[41] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. ATLAS:

A scalable and high-performance scheduling algorithm for multiple memory con-

trollers. In Proc. 16th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-16),

February 2010.

[42] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter.

Thread cluster memory scheduling: Exploiting differences in memory access be-

havior. In Proc. 43rd ACM/IEEE Int. Symp. Microarch. (MICRO-43), pages

65–76, December 2010.

[43] Vasileios Kontorinis, Amirali Shayan, Dean M. Tullsen, and Rakesh Kumar.

Reducing peak power with a table-driven adaptive processor core. In Proc. 42nd

ACM/IEEE Int. Symp. Microarch. (MICRO-42), pages 189–200, December 2009.

[44] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heteroge-

neous multi-core architectures. In Proc. Euro. Conf. Comp. Syst. (EuroSys 2010),

pages 125–138, April 2010.

[45] Rajesh Kumar and Glenn Hinton. A family of 45nm IA processors. In 2009

IEEE Int. Solid-State Circuits Conf. (ISSCC 2009) Digest Tech. Papers, pages

58–59, February 2009.

112

[46] Nagesh B. Lakshminarayana, Jaekyu Lee, and Hyesoon Kim. Age based schedul-

ing for asymmetric multiprocessors. In Proc. Conf. High Perf. Computing Net-

working, Storage, and Anal. (SC09), November 2009.

[47] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.

Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6

microarchitecture. IBM J. of Research and Develop., 51(6):639–662, November

2007.

[48] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. Prefetch-aware

DRAM controllers. In Proc. 41st ACM/IEEE Int. Symp. Microarch. (MICRO-

41), pages 200–209, November 2008.

[49] Sang Jeong Lee, Hae-Kag Lee, and Pen-Chung Yew. Runtime performance pro-

jection model for dynamic power management. In Advances in Comput. Syst.

Arch. 12th Asia-Pacific Conf. (ACSAC 2007) Proc., volume 4697 of Lecture

Notes in Computer Science, pages 186–197. Springer-Verlag, August 2007.

[50] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Proc. 42nd ACM/IEEE

Int. Symp. Microarch. (MICRO-42), pages 469–480, December 2009.

[51] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu, and

Hucheng Zhou. Machine learning-based prefetch optimization for data center

applications. In Proc. Conf. High Perf. Computing Networking, Storage, and

Anal. (SC09), November 2009.

[52] John D. C. Little. A proof for the queuing formula: L = λW . Operations

Research, 9(3):383–387, June 1961.

[53] Fang Liu. Analytically Modeling the Memory Hierarchy Performance of Modern

Processor Systems. PhD thesis, North Carolina State University, 2011.

113

[54] Fang Liu, Xiaowei Jiang, and Yan Solihin. Understanding how off-chip memory

bandwidth partitioning in chip multiprocessors affects system performance. In

Proc. 16th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-16), February

2010.

[55] Fang Liu and Yan Solihin. Studying the impact of hardware prefetching and

bandwidth partitioning in chip-multiprocessors. In Proc. ACM SIGMETRICS

Joint Int. Conf. on Measurement and Modeling of Comput. Syst. (SIGMET-

RICS’11), pages 37–48, June 2011.

[56] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman,

Ronald Dreslinski, Thomas F. Wenisch, and Scott Mahlke. Composite cores:

Pushing heterogeneity into a core. In Proc. 45th ACM/IEEE Int. Symp. Mi-

croarch. (MICRO-45), pages 317–328, December 2012.

[57] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. Com-

bined dynamic voltage scaling and adaptive body biasing for lower power mi-

croprocessors under dynamic workloads. In Proc. 2002 IEEE/ACM Int. Conf.

Comp.-Aided Design (ICCAD’02), pages 721–725, November 2002.

[58] Micron Technology, Inc. MT41J512M4 DDR3 SDRAM Datasheet Rev. K, April

2010. http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_

SDRAM.pdf.

[59] Rustam Miftakhutdinov. Pincpt: A tool for checkpointing architectural state.

http://pincpt.sourceforge.net.

[60] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt. Predicting perfor-

mance impact of DVFS for realistic memory systems. In Proc. 45th ACM/IEEE

Int. Symp. Microarch. (MICRO-45), pages 155–165, 2012.

[61] Michael Moeng and Rami Melhem. Applying statistical machine learning to

multicore voltage and frequency scaling. In Proc. ACM Int. Conf. Computing

Frontiers (CF’10), pages 277–286, May 2010.

114

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf

[62] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero. MLP-

aware dynamic cache partitioning. In Per Stenström, Michel Dubois, Manolis

Katevenis, Rajiv Gupta, and Theo Ungerer, editors, High Performance Embedded

Architectures and Compilers, volume 4917 of Lecture Notes in Computer Science,

pages 337–352. Springer Berlin Heidelberg, 2008.

[63] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.

CACTI 6.0: A tool to model large caches. Technical Report HPL-2009-85, HP

Laboratories, April 2009.

[64] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access schedul-

ing for chip multiprocessors. In Proc. 40th ACM/IEEE Int. Symp. Microarch.

(MICRO-40), pages 146–160, December 2007.

[65] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: En-

hancing both performance and fairness of shared DRAM systems. In Proc. 35th

Int. Symp. Comput. Arch. (ISCA 2008), pages 63–74, June 2008.

[66] Tae Cheol Oh. Analytical Models for Chip Multiprocessor Memory Hierarchy

Design and Management. PhD thesis, University of Pittsburgh, 2010.

[67] Tae Cheol Oh, Kiyeon Lee, and Sangyeun Cho. An analytical performance model

for co-management of last-level cache and bandwidth sharing. In Proc. 19th IEEE

Int. Symp. on Modeling, Anal., and Simulation of Comput. and Telecommun.

Syst. (MASCOTS 2011), pages 150–158, July 2011.

[68] Harish Patil, Robert S. Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and

Anand Karunanidhi. Pinpointing representative portions of large Intel Itanium

programs with dynamic instrumentation. In Proc. 37th ACM/IEEE Int. Symp.

Microarch. (MICRO-37), pages 81–92, December 2004.

[69] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared caches.

115

In Proc. 39th ACM/IEEE Int. Symp. Microarch. (MICRO-39), pages 423–432,

December 2006.

[70] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson, and John D.

Owens. Memory access scheduling. In Proc. 27th Int. Symp. Comput. Arch.

(ISCA 2000), pages 128–138, June 2000.

[71] Barry Rountree, David K. Lowenthal, Martin Schulz, and Bronis R. de Supinski.

Practical performance prediction under dynamic voltage frequency scaling. In

2011 Int. Green Computing Conf. and Workshops (IGCC’11), July 2011.

[72] Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova, and Sergey Blagodurov.

A comprehensive scheduler for asymmetric multicore systems. In Proc. Euro.

Conf. Comp. Syst. (EuroSys 2010), pages 139–152, April 2010.

[73] Yiannakis Sazeides, Rakesh Kumar, Dean M. Tullsen, and Theofanis Constanti-

nou. The danger of interval-based power efficiency metrics: When worst is best.

Comp. Arch. Lett. (CAL), 4(1), January 2005.

[74] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and pre-

diction. In Proc. 30th Int. Symp. Comput. Arch. (ISCA 2003), pages 336–347,

San Diego, California, June 2003.

[75] John Simpson, editor. Oxford English Dictionary. Oxford University Press, 3rd

edition, June 2001. Entry: “mechanistic, adj.”.

[76] Allan Snavely and Dean M. Tullsen. Symbiotic job scheduling for a simultaneous

multithreaded processor. In Proc. 9th Int. Conf. Arch. Support for Programming

Languages and Operating Syst. (ASPLOS-IX), pages 234–244, November 2000.

[77] Shekhar Srikantaiah, Reetuparna Das, Asit Mishra, Chita Das, and Mahmut

Kandemir. A case for integrated processor-cache partitioning in chip multipro-

cessors. In Proc. Conf. High Perf. Computing Networking, Storage, and Anal.

(SC09), November 2009.

116

[78] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. SHARP control:

controlled shared cache management in chip multiprocessors. In Proc. 42nd

ACM/IEEE Int. Symp. Microarch. (MICRO-42), pages 517–528, 2009.

[79] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feedback

directed prefetching: Improving the performance and bandwidth-efficiency of

hardware prefetchers. In Proc. 13th IEEE Int. Symp. High Perf. Comput. Arch.

(HPCA-10), pages 63–74, February 2007.

[80] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur

Mutlu. MISE: Providing performance predictability and improving fairness in

shared main memory systems. In Proc. 19th IEEE Int. Symp. High Perf. Comput.

Arch. (HPCA-19), pages 639–650, February 2013.

[81] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. Feedback-

directed pipeline parallelism. In Proc. 19th Int. Conf. Parallel Arch. and Com-

pilation Techniques (PACT’10), pages 147–156, September 2010.

[82] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven

threading: Power-efficient and high-performance execution of multi-threaded

workloads on CMPs. In Proc. 13th Int. Conf. Arch. Support for Programming

Languages and Operating Syst. (ASPLOS-XIII), pages 277–286, March 2008.

[83] Guangyu Sun, C. Hughes, Changkyu Kim, Jishen Zhao, Cong Xu, Yuan Xie,

and Yen-Kuang Chen. Moguls: A model to explore the memory hierarchy for

bandwidth improvements. In Proc. 38th Int. Symp. Comput. Arch. (ISCA 2011),

pages 377–388, June 2011.

[84] Joel Tendler, J. Steve Dodson, J. S. Fields Jr., Le Hung, and Balaram Sinharoy.

POWER4 system microarchitecture. IBM J. of Research and Develop., 46:5–25,

October 2001.

[85] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2Sim: A simulation framework for CPU-GPU computing. In Proc. 21st

117

Int. Conf. Parallel Arch. and Compilation Techniques (PACT’12), pages 335–

344, September 2012.

[86] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel

Emer. Scheduling heterogeneous multi-cores through performance impact es-

timation (PIE). In Proc. 39th Int. Symp. Comput. Arch. (ISCA 2012), pages

213–224, June 2012.

[87] Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere. A detailed

study on phase predictors. In Proc. 11th Int. Euro-Par Conf. Parallel Process.

(Euro-Par 2005), pages 571–581, August 2005.

[88] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos.

Mechanisms for store-wait-free multiprocessors. In Proc. 34th Int. Symp. Com-

put. Arch. (ISCA 2007), pages 266–277, June 2007.

[89] Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Making address-correlated prefetching practical. IEEE Mi-

cro, 30(1):50–59, January 2010.

[90] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An in-

sightful visual performance model for multicore architectures. Comm. ACM

(CACM), 52(4):65–76, 2009.

[91] Yuejian Xie and Gabriel H. Loh. PIPP: promotion/insertion pseudo-partitioning

of multi-core shared caches. In Proc. 36th Int. Symp. Comput. Arch.

(ISCA 2009), pages 174–183, June 2009.

[92] George L. Yuan and Tor M. Aamodt. A hybrid analytical DRAM performance

model. In Proc. 5th Workshop on Modeling, Benchmarking and Simulation

(MoBS 2009), June 2009.

118

	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background
	Dynamic Voltage and Frequency Scaling
	Performance Prediction
	Notational Conventions
	DRAM
	Stream Prefetching

	Chapter 3. Uniprocessor
	Background
	Linear Model
	Leading Loads
	Stall Time

	CRIT: Accounting for Variable Access Latency Memory
	Experimental Observations
	Variable Access Latency View of Processor Execution
	Hardware Mechanism
	Summary

	BW: Accounting for DRAM Bandwidth Saturation
	Experimental Observations
	Limited Bandwidth Analytic Model
	Parameter Measurement
	Hardware Cost

	Methodology
	Efficiency Metric
	Timing Model
	Power Model
	DVFS Controller
	Offline Policies
	Benchmarks

	Results
	CRIT (Prefetching Off)
	CRIT+BW (Prefetching On)

	Conclusions

	Chapter 4. Private Cache Chip Multiprocessor
	Experimental Observations
	Scarce Row Hit Prioritization
	Problem
	Mechanism
	Results
	Impact on Performance Predictability

	Independent Latency Shared Bandwidth Model
	Applicability of Linear Model
	Overview of Analytic Model
	Core Model
	Equal DRAM Request Service Time Approximation
	Bandwidth Constraint
	Combined Model
	Solution
	Approximations Behind ILSB

	Parameter Measurement
	Core Model Parameters
	Maximum DRAM Bandwidth

	Methodology
	Metric
	DVFS Controller
	Simulation
	Workloads
	Frequency Combinations
	Oracle Policies

	Results
	Conclusions

	Chapter 5. Shared Cache Chip Multiprocessor
	Problems Posed by Shared Cache
	Experimental Observations
	Analysis
	Robust Mechanism
	Results
	Case Study
	Conclusions

	Chapter 6. Related Work
	Adaptive Processor Control
	Taxonomy of Adaptive Processor Controllers
	Performance Prediction
	Other Approaches

	DVFS Performance Prediction
	Analytic Models of Memory System Performance
	Prioritization in DRAM Scheduling

	Chapter 7. Conclusions
	Importance of Realistic Memory Systems
	Performance Impact of Finite Off-Chip Bandwidth
	Feasibility of Accurate DVFS Performance Prediction

	Bibliography

