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Global optimization deals with the development of solution methodologies for 

nonlinear nonconvex optimization problems.  These problems, which could arise in 

diverse situations ranging from optimizing hydro-power generation schedules to 

estimating coefficients of non-linear regression models, are difficult for traditional 

nonlinear solvers that iteratively search the neighborhood around a starting point.  The 

Piecewise Linear Approximation (PLA) method that we study in this dissertation seeks to 

generate ‘good’ starting points, hopefully ones that lie in the basin of attraction of the 

globally optimal solution.  In this approach, we approximate the non-linear functions in 

the optimization problem by piecewise linear functions defined over the vertices of a grid 

that partitions the domain of each nonlinear function into cells.  Based on this 

approximation, we convert the original nonlinear program into a mixed integer program 

(MIP) and use the solution to this MIP as a starting point for a local nonlinear solver.  In 

this dissertation, we validate the effectiveness of the PLA approach as a global 

optimization approach by applying it to a diverse set of continuous and discrete nonlinear 

optimization problems.  Further, we develop various modeling and algorithmic strategies 

for enhancing the basic approach.  Our computational results demonstrate that the PLA 

approach works well on non-convex problems and can, in some cases, provide better 

solutions than those provided by existing nonlinear solvers. 
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Chapter 1:  Introduction 

Research on nonlinear optimization has made great strides in the last few decades.  

Most of these problems are non-convex, which implies that local solvers, which start at 

an initial point and move to the nearest local optimum, find it difficult to solve these 

problems effectively.  Global optimization seeks to find globally optimal solutions to 

optimization problems.  In this dissertation, we study the effectiveness of solving non-

linear programs by approximating the non-linear functions in the problem with piecewise 

linear functions, thereby creating an approximate mixed integer program (MIP), which 

can be solved by a MIP solver.  The piecewise linear approximation (PLA) approach 

involves using the MIP solution as a starting point for a local solver.  If the MIP solution 

lies in the basin of attraction of the globally optimal solution, then a local solver will 

yield the globally optimal solution. 

Nonlinear optimization problems appear in many contexts in operations 

management, economics, and engineering.  Hydropower generation (GonzAlez and 

Castro 2001) involves storing water in a reservoir and then converting the potential 

energy of the water into electrical energy by moving the water through a turbine.  The 

power produced by the turbine is a function of (a) the quantity of water flowing through 

it, and (b) the height or head of the water column.  Thus, to create a generation schedule 

for the turbine, both the volume and the height of the water have to be considered.  

Oil refineries buy crude oils of different grades and mix them in mixing tanks to 

obtain different blends of gasoline.  The quality of the blends and the crude oils is 

measured in terms of attributes such as octane number, density, etc.  When two or more 
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crude oils are mixed, the attribute value of the resulting blend is a weighted sum of the 

attribute values of the input crude oils, where the weights are the proportions of the crude 

oils mixed.  These blends are sold as different products each with a specified selling price 

and with a specified minimum or maximum level of the various attributes.  This gives 

rise to the pooling problem (Adhya et al. 1999) that involves determining the proportions 

in which the input crude oils should be mixed so that the total profit is maximized.  

Scheduling operations at an oil refinery is also a mixed integer nonlinear optimization 

problem (Karuppiah et al. 2008).  

Nonlinear optimization problems also arise in the optimization of oil extraction 

process.  Oil companies extract oil from a reservoir by injecting water into a reservoir 

through a set of wells called injectors.  This injection process forces a mixture of water 

and oil to come out of another set of wells called producers.  The quantity of mixture 

coming out of the producer wells depends upon a) the injection schedule, b) the 

connectivity between the wells, and c) the response delay (compressibility) of the 

producer well.  To estimate the connectivity and the response delay, non-linear regression 

models (Yousef et al. 2006) are applied to historical injection and production data.  

Correct estimation of these characteristics helps determine an oil production schedule that 

maximizes total profit over the life span of the reservoir.  

The Euclidean Multi-facility Location problem (Radó 1988) involves finding the 

location (Euclidean co-ordinates) of a set of plants that supply a single commodity to a 

set of demand points with pre-specified Euclidean coordinates and demand.  Each plant 

has a specified maximum production capacity.  The cost of transporting a specific 

quantity of the commodity from a plant to a demand point is the product of the quantity 
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transported and the Euclidean distance between the plant and the demand point.  The goal 

is to find the geographical positions of the plants so as to minimize the total 

transportation cost. 

Nonlinear convex problems like the ones described above have traditionally been 

solved by local solvers which given a starting point, search for a descent direction (for a 

minimization problem), choose a step size and then move to a better point.  This 

sequence of steps is repeated until the algorithm reaches a point at which it cannot find a 

descent direction, i.e., it reaches a locally optimal solution.  However, for a non-convex 

problem, this solution need not be the globally optimal solution.  Multi-start algorithms 

try to get the globally optimal solution by applying the local search procedure to multiple 

starting points and choosing the best among all the locally optimal solutions obtained.  

However, different starting points often lead to the same locally optimal solution.  We 

say that these starting points lie in the basin of attraction of the locally optimal solution.  

Piecewise linear approximation seeks to generate ‘good’ starting points, preferably ones 

that lie in the basin of attraction of the globally optimal solution.  In this approach, we 

approximate the non-linear functions in the original objective function or constraints by 

piecewise linear functions defined over the vertices of a grid that partitions the domain of 

each nonlinear function into cells.  Using an appropriate mixed integer programming 

model, we approximate the original nonlinear program with a mixed integer program 

(MIP) whose solution serves as a starting point for a local nonlinear solver.  In this 

dissertation, we validate the effectiveness of the PLA approach and propose various 

algorithmic strategies to improve its performance. 
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Applying the piecewise linear approximation approach to a general nonlinear 

problem requires the following four steps. 

1. Function Decomposition: Depending upon the dimensionality of the grids that we 

wish to use in the piecewise linear approximation, we can express each nonlinear 

function within the optimization problem as a composition of other nonlinear functions, 

each of which has no more than a specific dimension.  This transformation generally 

requires adding more variables and constraints to the original non-linear program.  For 

example, if the original problem contains a nonlinear function f(x1, x2, x3) then we can 

either express f as a three dimensional function or we can create an intermediate function 

y = g(x2, x3), express f as a composition of g(x2, x3), i.e., f(x1, x2, x3) = f(x1, g(x2, x3)) and 

add a new constraint y = g(x2, x3) to the nonlinear program. 

2. Grid Design: Given the decomposition of the nonlinear problem into appropriate 

lower dimensional functions, we approximate each function using a grid that partitions 

the domain of that function into cells such that the function value at any point within a 

cell is approximated by a convex combination of the function values at the vertices of the 

cell.  Grid design refers to the design (i.e, the shape and size) of the cells of the grid. 

3. MIP Modeling: After choosing the functions and the grids for approximating the 

functions, we choose a mixed integer programming model to express the piecewise linear 

function approximation as a mixed integer program and thereby convert the original 

nonlinear program into an approximate mixed integer program.  We then solve this mixed 

integer program (to some pre-specified gap) using an MIP solver. 

4. Local solution: Given the solution to the approximate MIP, we solve the original 

nonlinear program with a local nonlinear solver which uses the MIP solution as a starting 
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point.  For a Mixed Integer Nonlinear Program (MIINLP), we may choose to fix the 

value of the integer variables in the original nonlinear problem to their values in the MIP 

solution. 

In our study, we apply the basic PLA approach to a diverse set of nonlinear 

problems and develop various strategies that improve one or more of the four steps 

mentioned above and thereby improve the effectiveness of the approach.  We measure the 

performance of the PLA approach in terms of both the time it takes to get a solution and 

how close the PLA-based solution is to the globally optimal solution.  The key 

contributions of this research are as follows. 

1. Although piecewise linear approximation of non-linear functions is not new, no 

one has systematically studied the effectiveness of this approach as a global optimization 

strategy.  Using a diverse set of over 140 continuous and discrete nonlinear optimization 

problems used as benchmarks by researchers, we show that the PLA approach is a 

promising solution methodology. 

2. We examine how the performance of the PLA approach is influenced by the 

design of the grid used to create the approximation.  We look at two aspects of grid 

design: cell shape and cell size. 

a. Cell shape: We evaluate how rectangular and triangular grids perform on various 

problems.  Within triangular grids, we examine the performance of different 

triangulations such as Union Jack and Crisscross.  We also prove that for the bilinear 

function (z = x1x2), the Crisscross grid gives a smaller and stronger mixed integer 

program than that obtained using a Union Jack grid. 
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3. Cell size: The cell size, which determines the grid resolution, affects the size of 

the resulting mixed integer program.  A small cell size or a high grid resolution increases 

the chance of obtaining a MIP solution that is close to the globally optimal solution.  

However, a high grid resolution also increases the size (and very often the solution time) 

of the resulting MIP.  A carefully designed non-uniform grid (with cells of different 

sizes) can lead to a grid with a high approximation quality but a small MIP size.  We 

propose an algorithm to create good non-uniform grids in two dimensions by extending a 

shortest path-based method already known in literature. 

4. We examine how the performance of the PLA approach depends upon function 

decomposition and provide guidelines on how to obtain good reformulations of nonlinear 

programs.  For example, we show how function decomposition can affect the size of the 

mixed integer program and thereby determine whether or not we can solve it within a 

reasonable time limit. 

5. We propose stronger mixed integer programming models for applying the PLA 

approach to nonlinear programs.  The traditional PLA approach separately linearizes each 

nonlinear function in a nonlinear program.  However, if the same variable appears in 

multiple functions, then we can exploit the fact that in the MIP solution, the variable will 

take the same value across all the grids.  This observation leads us propose smaller and 

stronger mixed integer programming models for the PLA approach. 

6. We propose problem strengthening strategies to improve the MIP solution 

process, which determines the effectiveness of the overall approach.   

a. Constraint-based valid inequalities: For those nonlinear programs in which the 

variables present in the nonlinear functions are related by constraints, we propose valid 
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inequalities that use the constraint information to improve the LP relaxation values of the 

PLA-based mixed integer program and help accelerate the branch and bound procedure 

used for solving mixed integer programs. 

b. Problem reduction strategies: Many nonlinear problems have pre-specified 

bounds on the values of the dependent variables of nonlinear functions.  When we 

approximate these nonlinear functions, then we can use these bounds to exclude certain 

regions of the domain of the function, which translates into removing variables from the 

mixed integer program associated with the linearization.  This process results in a smaller 

and a stronger mixed integer program. 

7. The PLA approach extends naturally to mixed integer nonlinear programs 

(MINLP’s) which is one of the hardest classes of problems.  We analyze the performance 

of PLA on a modest set of small to medium-sized MINLP test problems. 

8. Finally, we benchmark the performance of the PLA approach against some of the 

widely used local NLP solvers such as CONOPT and local MINLP solvers such as 

DICOPT.  We found that the PLA approach can lead to better solutions than those 

obtained by solvers such as CONOPT and DICOPT. 

The structure of this dissertation is as follows.  In Chapter 2, we discuss how to 

apply the PLA method to a general nonlinear program.  In Chapter 3, we review the 

literature related to different aspects of piecewise linear approximation.  We discuss our 

methods for improved grid design in Chapter 4 and strategies for strengthening the PLA-

based MIP models in Chapter 5.  We present the computational results in Chapter 6 and 

conclude in Chaper 7. 
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Chapter 2:  Piecewise Linear Approximation 

In this chapter, we discuss how to solve a general nonlinear program using the 

Piecewise Linear Approximation (PLA) approach.  Applying the PLA method to a 

general nonlinear program entails four steps—problem reformulation, grid selection, MIP 

creation and application of a local nonlinear solver.  We now discuss these methods in 

more detail. 

2.1 PROBLEM REFORMULATION 

In the first step, we identify within the non-linear program those non-linear 

functions whose dimension is greater than a specific value.  We recursively express these 

functions as compositions of lower dimensional functions until each function in the 

nonlinear program has no more than a specific dimension.  This generally requires adding 

new variables and new equality constraints to the original nonlinear program such that 

each equality constraint corresponds to a composition of functions in the original 

nonlinear program.  Recasting the nonlinear program in a higher dimensional space 

(because of the addtition of new variables) is called reformulation. 

There might be multiple ways of reformulating a non-linear program and the 

effectiveness of the piecewise linear approximation approach will depend upon the 

manner in which the non-linear functions are reformulated.  For example, the non-linear 

program ]2,1[],20,10[,,Min 321

3

21  xxx
x

xx
y can be reformulated in two ways. 

Reformulation R1  Min y such that 21

3

, xxw
x

w
y   

]2,1[],200,100[],20,10[, 321  xwxx  
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Reformulation R2 

Min y such that 
3

1
,2

x

x
uuxy   

]2,1[],20,5[],20,10[, 321  xuxx      

For the same grid granularity, these two reformulations would differ in terms of 

their approximation qualities and the qualities of the MIP solutions since the 

reformulations involve different types of functions.  Reformulation R2 might be preferred 

to reformulation R1 since the domain of the u variable is much smaller than that of the w 

variable which might result in better approximation quality for the grid that linearizes

3x

w
y  than for the one that linearizes 2uxy  .  

2.2 GRID SELECTION 

The second step in applying the PLA approach is to decide the shape and size of the grid 

used to linearize each non-linear function.  Grids can be of any shape—rectangular, 

triangular, octagonal, etc.  Further, triangular grids can again have different shapes as 

shown in Figure 2.1.  The advantage of a triangular grid is that each point in the function 

domain can be uniquely expressed as a convex combination of the grid points, i.e., of the 

vertices of the cells of the grid.  
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Figure 2.1: Common triangular grids. 

2.3 MIP FORMULATION 

The third step in the linearization process entails formulating a mixed integer 

program.  Here we can choose from a variety of MIP formulations (Vielma et al. 2014).  

Each formulation ensures that for each point in the domain, we select the cell in which 

that point lies and express the function value at that point as a convex combination of the 

function value at the vertices of the chosen cell.  We now review the one and two-

dimensional lambda-models (Vielma et al. 2010, Croxton et al. 2003). 

2.3.1 Lambda Model for One-Dimensional Function 

Given a function R],[:)( ulXf , we choose a partition uxxxl n  ...10  

to divide the domain of f  into n segments using n + 1 break points.  The piecewise linear 

approximation is defined by n pairs of real numbers ),( ii cm  such that 

 nixxXcXmXf iiii ...,,1allfor],[,)( 1     (2.1) 

K triangulation Union Jack triangulation 
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Figure 2.2: Approximating a function by a piecewise linear function 

We model this problem as a mixed integer program in which we associate a 

continuous variable λ to each break point, a binary variable Z to each segment and then 

add constraints that ensure that the variable value and the function value at a point is 

given by a convex combination of the variable values and function values at the end 

points of the segment in which that point lies.  The lambda or the convex combination 

model is described by Equations (2.2–2.7) (Croxton et al 2003). 
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


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         (2.2) 
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
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  1
0




n

i

i         (2.6) 

  nii ,...,0allfor0        (2.7) 

  niZi ...,,2,1allfor}1,0{       (2.8) 

The basic lambda model can be improved further by observing that we can 

identify n by using just )(log2 n  bits of information.  As shown by Vielma and 

Nemhauser (2008, 2009), we can have an indexing scheme with )(log2 n  binary variables 

such that each segment is assigned a binary index comprised of  )(log2 nceil  digits.  

Subsequently, they add two constraints for each digit, each constraint forcing a set of 

interval end points to have a weight of zero.  These constraints ensure that the lambda 

variables for exactly one interval can have a positive value.  We now describe the 

logarithmic lambda model. 

Let )(qI be the set of break points each of which serves as the end point of a 

segment whose binary index has a zero at the q’th position (from the left), and )(ˆ qI  be the 

set of break points each of which serves as the end point of a segment whose binary index 

has a one at the q’th position.  The logarithmic lambda model can then be described by 

Equations (2.2–2.3), Equations (2.6–2.7) and Equations (2.8–2.9).  

 nqBq

qIi

i 2

)(

log...,,2,1allfor 


      (2.8a) 

  nqBq

qIi

i 2

)(ˆ

log...,,2,1allfor1 


      (2.8b) 

  nqBq 2log...,,2,1allfor}1,0{       (2.9) 

However, a naïve binary indexing scheme in which we index the intervals 

sequentially by expressing their base-10 index in base-2 format will not work here.  Say 
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we have 9 grid points and 8 cells that we index using 3 binary digits as shown in Table 

2.1 and Figure 2.3.  

 

Cell Binary Index Cell Binary Index 

Cell 1 000 Cell 5 100 

Cell 2 001 Cell 6 101 

Cell 3 010 Cell 7 110 

Cell 4 011 Cell 8 111 

Table 2.1: Standard binary indices 

Suppose the MIP chooses a point in Interval 1 with binary representation ‘000’.  

In this case, Equations (2.8) yield the following. 

1. λ6 + λ7 + λ8 + λ9         0   (since Digit 1 or 1B  is equal to 0) 

2. λ4 + λ8 + λ9     0  (since Digit 2 or 2B  is equal to 0)   

3. λ9     0   (since Digit 3 or 3B  is equal to 0) 

 

 

Cell Binary Index Cell Binary Index 

Cell 1 000 Cell 5 110 

Cell 2 001 Cell 6 111 

Cell 3 011 Cell 7 101 

Cell 4 010 Cell 8 100 

Table 2.2: Reflected binary indices 
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Thus, λ4, λ6, λ7, λ8 and λ9 are set to zero, which implies λ1, λ2, λ3 and λ5 can all 

have positive weights.  However, the adjacency condition requires that if interval 1 is 

selected, then only λ1and λ2 can have positive weights.  Thus, as Vielma and Nemhauser 

(2011) show, a naïve binary indexing scheme cannot be used.  To resolve this issue, 

Vielma and Nemhauser (2011) proposed that the indexing of the cells should be such that 

adjacent cells differ in their representation by only one bit.  Such a binary code is called a 

reflected binary code or a gray code.  One such indexing scheme is described in Table 

2.2 and displayed in Figure 2.4.  We can check that these binary codes let the MIP satisfy 

the adjacency conditions for each cell. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Indexing of a one-dimensional grid using binary indices 

 

1 2 3 4 5 6 7 8 9 

Digit 1 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 9 

Digit 2 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 9 

Digit 3 1 2 3 4 5 6 7 8 

 Digit has value 0 

 Digit has value 1 
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Figure 2.4: Indexing of a one-dimensional grid using reflected binary codes 

2.3.2 Logarithmic Lambda Model for Rectangular Grids 

We now discuss the logarithmic lambda model for rectangular grids.  Let us 

assume that we are trying to approximate the function f(x, y) by using a rectangular grid.  

For a rectangular grid, we can uniquely identify a cell by identifying the segments that 

the cell corresponds to along the X and Y axes.  Consider a rectangular grid with m 

segments along the X-axis and n segments along the Y-axis.  To identify a cell, we need 

log2m digits to identify the X-segment and log2n digits to identify the Y-segment 

corresponding to the cell.  Thus, we need ‘log2m + log2n’ binary variables in the mixed 

integer program, which we now describe.   

 

1 2 3 4 5 6 7 8 9 

Digit 1 1 2  4 5 6 7 8 

1 2 3 4 5 6 7 8 9 

 1 2     7 8 

1 2 3 4 5 6 7 8 9 

Digit 3 1 2 3 4 5 6 7 8 

 Digit has value 0 

 Digit has value 1 
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Notation 

 V: set of vertices 

 v: index over V 

 Xn : number of segments along the X-axis 

 Yn : number of segments along the Y-axis 

 k: index over the digits of the reflected binary code for segments along the X-axis 

 l: index over the digits of the reflected binary code for segments along the Y-axis 

 vx : X-value of vertex v 

 vy : Y-value of vertex v 

 vf : function value for vertex v 

 )(0 kVX : set of vertices that correspond to an X-segment whose reflected binary 

code has a zero at the k’th position 

 )(1 kVX : set of vertices that correspond to an X-segment whose reflected binary 

code has a one at the k’th position 

 )(0 lVY : set of vertices that correspond to a Y-segment whose reflected binary code 

has a zero at the l’th position 

 )(1 lVY : set of vertices that correspond to a Y-segment whose reflected binary code 

has a one at the l’th position 

 ĥ : approximate function value for f 

Variables 

 v : continuous variable that denotes the weight assigned to vertex v 

 X

kB : binary variable that is one if we select an X-segment whose reflected binary 

code has a one at the k’th position 
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 Y

lB : binary variable that is one if we select a Y-segment whose reflected binary 

code has a one at the l’th position 

Constraints 

 





Vv

vv fh ˆ          (2.10) 





Vv

vv xx           (2.11) 





Vv

vv yy           (2.12) 

1
Vv

v          (2.13) 

)(log...,,1allfor 2

)(0
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v nkB

X
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

     (2.14) 

 

)(log...,,1allfor1 2

)(1

X

X

k

kVv

v nkB

X




     (2.15) 

 

)(log...,,1allfor 2

)(0

Y

Y

l

lVv

v nlB

Y




     (2.14) 

 

)(log...,,1allfor1 2

)(1

Y

Y

l

lVv

v nlB

Y




     (2.15) 

)(log...,,1allfor}1,0{ 2 X

X

k nkB       (2.18) 

)(log...,,1allfor}1,0{ 2 Y

Y

l nlB       (2.19) 

Vvv  allfor0        (2.20) 

2.3.3 Logarithmic Lambda Model for Union Jack Grid 

We now discuss the logarithmic lambda model for a triangular Union Jack grid.  

For such a grid with Xn  segments along the X-axis and Yn  segments along the Y-axis, we 

need ‘log2 Xn  + log2 Yn ’ bits to identify a pair of adjacent triangles belonging to a specific 
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segment combination along the X and Y axes.  To differentiate between the two cells in 

this pair, we shade one of the cells as gray, which corresponds to a binary index of zero, 

and the other as white, which corresponds to a binary index of one.  Thus, we can identify 

each cell uniquely by ‘log2 Xn  + log2 Yn + 1’ digits (Vielma 2011).   

 

 

 

Figure 2.5: Binary indexing for a Union Jack grid 

 

To obtain the model formulation for the Union Jack grid, we define an additional 

binary variable XYQ  that takes a value zero if we select a gray cell and a value one if we 

select a white cell.  Let 0

XYV be the set of vertices that touch a gray cell, and 1

XYV be the set 

of vertices that touch a white cell.  Then, the logarithmic lambda model for the Union 

Jack grid is comprised of Equations (2.10–2.22).  
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Thus, we find that triangular grids are modeled on similar lines as rectangular 

grids except that they require additional binary variables.  Further, the Union Jack 

triangulation leads to the smallest mixed integer program among all triangular grids.  In 

the next chapter we will see how we can use another triangular that can do even better 

than the Union Jack triangulation in terms of problem size.  
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Chapter 3:  Literature Review 

The literature on piecewise linearization can be broadly divided into four areas: 

Functional decomposition, grid design, MIP modeling, and global optimization. 

3.1 FUNCTIONAL DECOMPOSITION 

Arnold (1963) shows that every continuous function of more than two variables 

can be expressed as a composition of finitely many continuous functions of two variables.  

This result is the basis of the functional decomposition technique that we use to express 

higher dimensional functions as compositions of lower dimensional functions. 

McCormick (1976) gave a procedure for obtaining the global solution to a 

factorable nonlinear programming program which is a nonlinear program in which each 

nonlinear function can be expressed as a product of two univariate nonlinear functions by 

appropriately defining intermediate compositions of functions.  For example, consider the 

function f(x, y, z) = xyz, which is a product of three variables.  This function can be 

treated as a function of two variables by defining another function g(x, y) = w=xy and 

then expressing f() as f(w, z)  = wz.  The procedure uses the fact that if we know lower 

bounding convex functions and upper bounding concave functions for the two uni-variate 

nonlinear functions, then we can find a lower bounding convex function and an upper 

bounding concave function for the original nonlinear function. 

3.2 GRID DESIGN 

Grid design was initially studied for numerically solving differential equations 

using Finite Element Methods in engineering and for obtaining fixed points of functions 

in economics (Talman and Laan 1980).  A distinction is made in finite element analysis 

between a mesh and a grid.  A mesh refers to any kind of partition of the domain whereas 
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a grid corresponds to a partition in which the cells have the same shape and can be 

generated by knowing the location of the break points or segments along the boundary 

the domain.  Frey and George (2000) provide a comprehensive survey on mesh 

generation methods for both structured and unstructured meshes.  In a structured mesh, 

we discretize the boundary of the domain and use these discretizations to create the mesh.  

In an unstructured mesh, boundary discretization is not enough to determine the actual 

domain partition.  Methods for unstructured mesh generation include spatial 

decomposition methods (such as Quadtree and Octree-based methods), advanced front 

methods (in which we construct the mesh element by element, starting from an initial 

front) and  Delaunay-based methods in which given an initial set of grid points, we 

alternate between creating a Delaunay triangulation and adding new grid points.  A 

triangulation is defined as a partition composed of triangles or simplices such that the 

intersection of any two triangles is either empty or the common side of those triangles 

(Talman and Laan 1980).  We depict the shapes of some common triangulations in Figure 

3.1. 

Within the context of the PLA approach, Chien and Kuh (1977) used simplicial 

subdivision to linearize the behavior of nonlinear resistive networks that contain resistors 

whose resistance values change with a change in temperature or light.  Al-Khayal and 

Falk (1983) used rectangular grids to solve problems involving bilinear functions.  They 

employed a branch and bound framework in which piecewise linear under-estimators 

were used to obtain lower bounds.  Linderoth (2005) partitioned the domain into triangles 

and obtained tighter under-estimators and solve a quadratically constrained quadratic 

program in a branch and bound algorithm. 
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Figure 3.1: Common triangulations 

Babayev (1997) used a K-triangulation (Lann 1980) to approximate a two 

dimensional non-linear function.  However, this approach did not involve using the MIP 

solution as a starting point for a local nonlinear solver.  González (2001) used the H-

triangulation to solve a short-term hydro-electric generation problem in which the power 

produced by a turbine is a non-linear function of the water head (pressure) and the 

quantity of water discharged.  Ambrosio et al. (2010) used a K-triangulation to solve the 

same hydro-generation problem.  Misener and Floudas (2010) approximated a three 

dimensional function by using three-dimensional simplices.  Meyer and Floudas (2004, 

2005) used simplicial subdivision to develop convex envelopes for trilinear and edge 

concave functions.  A function is said to be edge-concave if it is component-wise 

concave.  Wang and Zhang (2008) solve a nonlinear program with linear constraints via 

piecewise linear approximation of the objective function over a simplicial partition.  

However, all these models used one binary variable per cell.  Vielma and Nemhauser 

(2011) showed that we can develop a valid but smaller mixed integer programming 

H 

Triangulation 

Crisscross 

Triangulation 
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Triangulation K 

Triangulation 



 

 

 

 

23 

model if we can assign a binary address (string of zeroes and ones) to each cell such that 

any two adjacent cells differ in their address by only one bit, i.e., the binary addresses 

correspond to a gray code (Gilbert 1957).  Rovatti et al. (2014) proposed a (rectangular) 

grid-based piecewise linear approximation of nonlinear functions such that each point 

lying in the function domain is expressed as a convex combination of not just the vertices 

of the grid but also of a pre-specified set of sample points lying within the function 

domain.  They found that such a representation gives the piecwise linear representation 

has more degrees of freedom and provides better computational performance.  For a one 

dimensional grid, the design involves only the size of the cells (or segments).  In this 

context, Magnanti and Stratila (2012) derived a bound on the number of segments 

required to approximate a one-dimensional concave function with piecewise linear 

functions such that a desired approximation quality is achieved.   

3.3 MIP MODELING 

When we approximate a nonlinear function with a mixed integer program, we are 

interested in MIP formulations that are sharp and locally ideal (Vielma 2014).  Croxton et 

al. (2003) compared the three standard one dimensional MIP models for approximating 

non-linear functions with piecewise linear functions and showed that the three models—

multiple choice model (Balakrishnan and Graves 1989), incremental or delta model 

(Dantzig 1960) and convex combination or lambda model (Dantzig 1960) — give the 

same LP relaxation value.  These three formulations are sharp in that they provide the 

highest LP relaxation value as possible.  Li and Yu (1999) proposed another MIP 

formulation in which binary variables are required only for those segments in which the 

nonlinear function is nonconvex.  However, for a general non-convex function, this 
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representation does not offer any advantage over the other representations.  Li et al. 

(2009) proposed another two representations, one which used a Big-M and another that 

used a logarithmic number of binary variables.  However, both representations, which Li 

et al. (2009) claimed to be superior to existing representations, are not sharp, i.e., they 

have a lower LP relaxation value than the three standard formulations.  Vielma et al. 

(2010) present an LP solution for each of these representations and show that the LP 

relaxation value is lower than the LP relaxation value of the traditional models. 

An MIP formulation is locally ideal if the ‘local’ LP formed by the constraints in 

the MIP formulation corresponding to the linearization of a specific nonlinear term (while 

omitting all other constraints in the nonlinear program) has integral corner points.  Since 

there will be other variables and constraints in the model, a locally ideal formulation does 

not result in an MIP that has integral corner points.  However, in general, solving a sharp 

model will take fewer branch and bound nodes than solving a model that is not sharp.  

Padberg (200) showed that the incremental model is locally ideal whereas the convex-

combination model is not, though as Croxton et al. (2003) have shown, both these models 

are sharp.  Sherali (2001) proposed a locally ideal dis-aggregate convex combination 

model with two continuous variables per grid point.  Vielma et al. (2010) provided a 

unifying framework for creating piecewise linear representations of multidimensional 

nonlinear functions.  They extend the one-dimensional models to n-dimensions and also 

discuss a logarithmic indexing scheme which results in fewer binary variables than the 

traditional models.  Domschke et al. (2011) employed the locally ideal incremental model 

to linearize a two dimensional function appearing in a nonlinear program for solving a 

minimum cost flow problem over a gas network. 
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Keha et al. (2006) discuss how to enforce the adjacency conditions by defining 

appropriate variables as SOS-2 and solve a significantly smaller mixed integer program 

(with no binary variables) using specialized branching strategies that ensure that only 

adjacent grid points are selected.  Vielma and Nemhauser (2011) report that in terms of 

solution times, these models are second only to the logarithmic models. 

3.4 GLOBAL OPTIMIZATION 

Global optimization technniques aim at finding the optimal solution to 

optimization problems.  Most of the deterministic global optimization techniques are of 

the type ‘divide and conquer’, a framework first used by Falk and Soland (1969).  The 

algorithms in this category include the Branch and Reduce algorithm proposed by Ryoo 

and Sahinidis (1995), (1996), the α-Branch and Bound method proposed by Floudas et al 

(1995), the Branch and Contract algorithm proposed by Grossmann (1999), the Branch 

and Cut algorithm proposed by Kesavan and Barton (2000) and the Interval Analysis-

based algorithm proposed by Vaidyanathan and El-Halwagi (1996).  All these algorithms 

except the Interval Analysis-based algorithms require the computation of underestimating 

functions (convex envelopes) so as to obtain a lower bound on the function in a specific 

region of the function domain.  Other deterministic algorithms for global optimization 

include the Extended Cutting Plane method proposed by Westerlund et al. (1998) and 

Westerlund and Pörn (2002), and Outer Approximation algorithm proposed by Duran and 

Grossmann (1986).  Floudas and Gounaris (2009) provide a comprehensive survey on 

various global optimization techniques. 

The main difference between the branch-and-bound based methods and the PLA 

approach is that the PLA approach does not require the computation of convex envelopes 
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at every node in the branch and bound tree.  As a result, the PLA approach can possibly 

have smaller solution times.  However, the disadvantage is that the PLA method cannnot 

provide any information on the gap between the PLA solution and the globally optimal 

solution.  One possible way of improving the PLA approach is to compute the convex 

envelopes for the partitions that are used in the linearization and thereby provide a gap 

between the objective value of the current PLA solution and thart of the global solution.  

If the gap is too high, then we can apply the PLA approach to the original problem again 

but with a more refined grid.  
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Chapter 4:  Improved Grid Design 

In this chapter, we discuss how different aspects of grid design influence the 

performance of the piecewise linear approximation approach.  Grid design affects the 

performance of the piecewise linear approximation approach in two ways.  First, it affects 

the quality of approximation of the nonlinear functions and second, it influences how fast 

the corresponding mixed integer program could be solved.  For example, in a triangular 

grid, each point in the function domain has a unique representation in terms of the 

vertices of the triangle in which that domain point lies.  On the other hand, for a 

rectangular grid, a domain point can have multiple convex combination representations.  

Therefore, a triangular grid will have better approximation quality than that of a 

rectangular grid.  The design of the grid affects the size of the associated mixed integer 

program and therefore, the performance of the MIP solution procedure. 

We focus on two aspects of grid design—cell shape and relative cell size.  For cell 

shape, we discuss two types of grids—Union Jack and Crisscross—and show how for the 

bilinear function, a Crisscross grid can provide better approximation quality than a Union 

Jack grid.  For relative cell size, we show how carefully designed non-uniform grids can 

provide good approximation quality without a large mixed integer program.   

4.1 EFFECT OF GRID SHAPE 

4.1.1 Union Jack Grid 

The shape of a grid affects the size of the mixed integer program corresponding to 

the piecewise linear approximation of a function.  In a Union Jack triangulation, which 

has two triangular cells for each combination of horizontal and vertical segments, we 



 

 

 

 

28 

uniquely identify a cell by using an ‘orientation’ flag (i.e., an additional binary variable) 

such that one cell has an orientation of ‘one’ and the other has an orientation of ‘zero’.  In 

Figure 4.1, the shaded cells have an orientation value of one and the white cells have an 

orientation value of zero.  This orientation flag (or binary variable) is then used in an 

adjacency constraint to ensure that we assign positive weights only to the vertices of the 

chosen cell.  This constraint works as follows. If the binary variable (or the orientation 

flag) is zero, then we must choose a ‘white’ cell and therefore we cannot choose any grid 

point that does not touch a white cell and so any grid point that does not touch a white 

cell is assigned a vertex weight of zero.  Similarly, if the binary variable (or the 

orientation flag) has value one, then we must choose a ‘gray’ cell and any grid point that 

does not touch a gray cell is assigned a weight of zero.  The structure of the Union Jack 

grid helps us ensure adjacency by using just one variable for the entire grid in addition to 

the binary variables for the segments along the X and Y axes. 

 

 

 

 

 

 

 

 

Figure 4.1: Cell Orientation for K and Union Jack triangulations 

K-triangulation Union Jack triangulation 
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4.1.2 Crisscross Grid 

Although the Union Jack grid leads to a parsimonious mixed integer program, we 

have found that the Crissscross triangulation (Wahlbin 1998) used in finite element 

analysis can provide an even smaller mixed integer program for the bilinear function that 

appears in a number of industrial problems such as pooling and water management 

problems (Faria et al. 2011).   

Proposition1: For the bilinear function f(x, y) = xy, a Crisscross triangulation with 

uniform segments along each axis provides the same approximation quality as that 

provided by a Union Jack triangulation with twice the number of uniform segments along 

each axis. For proof, refer to Appendix A1. 

To create a mixed integer program based on the Crisscross triangulation, we need 

to create a valid indexing scheme.  To do so, we first need to ensure that the indexing 

satisfies the necessary ‘Gray Code’ condition.  As per this condition, binary addresses of 

adjacent cells differ by exactly one bit.  Let us assume that we have a Crisscross 

triangulation with one segment each along the two axes.  This gives rise to four cells, as 

shown in Figure 4.2a.  We seek an indexing scheme for these four cells such that 

neighboring cells differ by only one bit.  To do so, we use the sequence ‘00’, ‘01’, ‘11’ 

and ‘10’ in which consecutive elements differ from one another in only one bit.  This 

sequence can identify four cells using two binary digits, each of which can be considered 

as an orientation flag.  We call these flags Orientation I (Figure 4.2a) and Orientation II 

(Figure 4.2b).  For Orientation I, cells A and B have a flag value of 0 (shown as white) 

and cells C and D have a flag value of 1 (shown as gray).  For Orientation II, cells B and 
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C have a flag value of 0 (shown as white) and cells A and D have a bit value of 1 (shown 

as gray).  Thus, cells A, B, C and D have addresses ‘01’, ‘00’, ‘10’ and ‘11’ respectively. 

 

 

 

 

 

Figure 4.2: Cell orientation in a Crisscross triangulation 

Using these patterns as the building blocks, we create a Crisscross triangulation 

(shown in Figure 4.3) such that (a) two adjacent cells that belong to the same horizontal 

segment and the same vertical segment differ in their addresses by exactly one bit, and 

(b) two adjacent cells that correspond to consecutive vertical segments or consecutive 

horizontal segments have the same bit value for both orientations.  Thus, to identify a 

cell, we need to identify the horizontal and vertical segment to which that cell belongs 

and then identify the values of its Orientation I and Orientation II flags.  This indexing 

scheme works because when we choose a specific triangular cell, we choose a set of 

orientations and these orientations prevent us from selecting any other vertex (except 

those of the chosen cell) belonging to the set of four cells that correspond to the same 

combination of horizontal and vertical segments. 

This is similar to identifying a cell in a Union Jack triangulation in which we first 

identify the horizontal and vertical segments to which a cell belongs and then identify the 

value of its orientation flag.  For example, to identify a cell in the 2x2 Crisscross 
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triangulation shown in Figure 4.3 with a logarithmic indexing scheme, we need four 

bits—one bit for the horizontal segment (Figure 4.3b), one bit for the vertical segment 

(Figure 4.3c), one bit to identify the Orientation I flag (Figure 4.3d) and one bit to 

identify the Orientation II flag value for the cell (Figure 4.3e).  On the other hand, if we 

use a Union Jack triangulation (with logarithmic indexing) that gives the same 

approximation quality, then we need to have 4 horizontal segments, 4 vertical segments 

and 5 bits—two for the horizontal segment, two for the vertical segment and one bit to 

identify the orientation. 

In general, a Crisscross triangulation with m horizontal segments, n vertical 

segments (i.e., 4mn cells), a logarithm indexing scheme requires log2(m) + log2(n) + 2 

bits. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Indexing scheme for a Crisscross triangulation 
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4.2 EFFECT OF RELATIVE CELL SIZE 

A smaller cell size implies a finer resolution and therefore a grid with high 

approximation quality in which for each point in the domain of the function, the 

difference between the true function value and the function value given by the linear 

approximation is small.  By increasing the grid resolution, we increase the chances that 

the solution to the mixed integer program is close to the globally optimal solution to the 

original program.  However, as we increase the grid resolution, the size of the mixed 

integer program increases, often making the program harder to solve.  A good grid 

resolution is, therefore, the result of a trade-off between approximation quality and 

difficulty level of the mixed integer program. 

We can have the benefit of a high resolution grid without the associated large 

mixed integer program by constructing a non-uniform grid that has high resolution only 

in those areas of the domain where the linearity of the function is small or equivalently 

where the curvature of the function is high.  Although such non-uniform grids have been 

created by various mesh generation methods in finite element analysis (e.g., Frey and 

George 2000), they have not been used within the context of piecewise linear functions.  

To understand how a carefully-constructed non-uniform grid might be better than a 

uniform grid, let us approximate f(x) = log(x), x [1, 17], using two different piecewise 

linear approximations with 4 segments.  In the first approximation, we place break points 

uniformly along the domain of the function, i.e., at x = 1, 5, 9, 13, and 17, whereas in the 

second, we use a non-uniform grid with break points at x = 1, 3, 5, 9, and 17.  We observe 

that by placing the break points close to one another in regions with high curvature, the 

non-uniform grid provides a much better approximation quality than the uniform grid 
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with the same number of break points (Figure 4.4).  To create good nonlinear grids in one 

and two dimensions, we use a shortest path-based method.  Although the one-

dimensional version of this method is already known and used in the context of curve 

approximation (Dahl and Realfsen 2000), to the best of our knowledge, no one has 

actually used it to solve nonlinear programs within the PLA approach.  In this section, we 

describe the one dimensional shortest path-based method and then propose a heuristic 

method that uses the same principle to generate good non-uniform grids in two 

dimensions. 
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Figure 4.4: Example of a uniform grid versus a non-uniform grid 
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4.2.1 One-Dimensional Shortest Path-based Method 

We employ a shortest path-based method to approximate a one-dimensional 

function with a piecewise linear function over a non-uniform grid.  In this method, we 

divide the domain of the function into small non-overlapping intervals, create possible 

groups/aggregations of consecutive intervals called segments, find/estimate the 

approximation error for each segment and then choose a set of non-overlapping segments 

that cover the entire domain and give the best approximation in terms of a specific error 

metric. 

The approximation error associated with a segment depends upon (a) the 

approximation errors that arise when the domain points lying within the segment are 

assigned an approximate function value given by a convex combination of the function 

values at the lower limit and upper limit of that segment, and (b) the chosen error metric, 

i.e., whether we are interested in the maximum or average of the absolute errors over the 

domain points lying within the segment.  Our objective is to aggregate intervals into 

segments so that we get an approximation that minimizes a specific error metric while 

having no more than a pre-specified number of segments, which ensures that we do not 

have more than a specified number of binary variables in the resulting mixed integer 

program. 

To determine the best way of aggregating intervals into segments, we use the 

shortest path method described in Dahl and Realfsen (2000), and Ahuja et al. (1993). 

Dahl and Realfsen (2000) provide the basic recursion used in this method.  However, we 

operationalize the method and explain how to create a network from which we can obtain 

the shortest path.  Ahuja et al. (1993) show how to approximate a piecewise linear 
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function by choosing a subset of linear pieces.  However, they do not put any limitation 

on the number of arcs or hops that are allowed in the path, something that we model in 

our algorithm.  Our method entails creating a directed graph in which the nodes 

correspond to the interval end points and the arcs correspond to segments.  The nodes are 

indexed in the order in which the corresponding interval end points appear along the 

domain of the function.  The nodes corresponding to the lower and the upper limit of the 

function domain are called the source and sink respectively.  For each pair of nodes, an 

arc is created from the lower-indexed node to the higher-indexed node and assigned a 

cost that depends upon the specified error metric and the approximation errors associated 

with a fixed set of randomly chosen sample points. 

Given this network, any path from the source node to the sink node corresponds 

to a contiguous set of segments that cover the entire domain.  Further, the cost of the path 

is a measure of the quality of the linear approximation.  To ensure that we have the best 

linear approximation with no more than a given number of break points, we have to find 

the least cost path from the source node to the sink node such that the path contains no 

more than a specified number of arcs or hops.  We call this problem the hop constrained 

shortest path problem.  Here again we need to specify a metric for expressing the cost of 

a path as a function of the cost of the arcs lying on that path.  For example, with a sum of 

arc costs metric, which yields the min-sum path, path cost is given by the sum of the 

costs of the arcs on that path.  On the other hand, with a maximum arc cost metric, which 

gives the min-max path, the path cost is expressed as the cost of the highest-cost arc on 

that path.  We now discuss this method more formally. 
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Consider a function f(x) with domain [l, u].  We divide [l, u] into n parts using 

break points x0, x1, …, xn such that l = x0 < x1 < …< xn  = u.  Each pair of break points (xi, 

xj) corresponds to a segment such that points lying between xi and xj are approximated by 

the straight line joining f(xi) and f(xj).  Given the desired number of segments H, and the 

metrics for the arc and path costs, our aim is to combine the n intervals into H segments 

by choosing a set of H+1 break points out of the n+1 break points such that the 

approximation error is minimized. 

To do so, we define a network with n+1 nodes corresponding to interval limits x0, 

x1, …, xn with an arc from node i to node j only if i < j, where nji  ,0 .  To find the h-

hop path from node 0 to node j, we apply a recursive procedure that uses information 

about the (h-1) hop path to a node to determine the h-hop path to that node. 
 

Notation 

ijc :  cost of arc (i, j)  

L(j, h) :  length of shortest path from node 0 to node j containing h or fewer arcs 

where  

j = 1, 2, …, n, h = 1, 2, …, m 

Pred(j, h): predecessor of node j in the shortest h-hop path from node 1 to node j, 

where        j = 1, …, n, h = 1, 2, …, m 

To get the min-sum path, we use the basic recursion in Equation (4.1).  

    ijjih chiLMinhjLMinhjL   1,,1,),( 11
    (4.1) 

We observe that since arcs always go from lower-indexed nodes to higher-

indexed nodes, node i should be considered a candidate intermediate node only if index i 
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is less than index j.  Also, since the path from the source node to node i can have at most i 

arcs, we do not need to consider some node i if index i is less than h-1 since this option of 

coming to node j via node i would have been considered in a previous iteration of the 

algorithm.   

The basic recursion for the min-max path follows the same idea and is given by 

Equation (4.2).  

      ijjih chiLMaxMinhjLMinhjL ,1,,1,),( 11  
.   (4.2) 

We present the complete algorithm in Appendix A2. The computational 

complexity of the algorithm is O(n
2
H) where the number of arcs in the graph is O(n

2
). 

One possible extension (which we have not implemented) is to use a two-phase 

approach that incorporates both the min-sum and the min-max metrics.  In this approach, 

we first create and solve a shortest-path problem using the min-max metric, then create a 

new graph in which all the arcs with cost greater than the computed min-max cost are 

removed.  We then solve a shortest path problem on this reduced graph using the min-

sum metric.  We note that in this approach, an arc can have two different arc lengths, one 

each for the two metrics. 

4.2.2. Alternating Shortest Path-based Method 

Since two-dimensional functions frequently arise in nonlinear programs, we now 

propose a heuristic method that uses the shortest path-based method to obtain good non-

uniform Crisscross grids in two dimensions.  We first observe that a Crisscross grid 

(Figure 4.5c) is a sequence of, what we call, vertical Crisscross patterns (Figure 4.5a) or 

horizontal Crisscross patterns (Figure 4.5b). 
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We cannot directly apply the one dimensional shortest path-based method to a 

two-dimensional function.  Consider a two-dimensional function f(x1, x2) such that l1 x1

u1, l2x2u2.  Let us try to apply the shortest path-based method along the x1-axis by 

dividing the [l1, u1] range into small intervals and finding the best way of aggregating 

contiguous intervals into non-overlapping segments that cover the range [l1, u1].  

However, as shown in Figure 4.6(a), each arc in the network over which we solve a 

shortest path problem now corresponds to a vertical pattern and to compute the arc cost, 

we need to know how the range [l2, u2] has been divided into segments.  Similarly, as 

shown in Figure 4.6(b), to apply the shortest path-based method along the x2-axis and 

divide the range [l2, u2] into non-overlapping segments, we need a network in which each 

arc corresponds to a horizontal pattern and to compute the arc cost, we need to know how 

the range [l1, u1] has been divided into non-overlapping segments.  Thus, it is not possible 

to decompose the two-dimensional problem into two one-dimensional problems. 

 

 

 

 

 

 

 

Figure 4.5: Building blocks of a Crisscross triangulation 
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Figure 4.6: Computing approximation error for a Crisscross triangulation 

To resolve this issue, we observe that if we fix the segments along one axis, then 

we can use the one-dimensional shortest path-based method to obtain a set of segments 

along the other axis.  This suggests that we can apply an iterative procedure in which we 

start with an initial set of segments along an axis and solve a series of shortest path 

problems alternately along the x1 and x2 axes.  Further, the shortest path-based segments 

computed for an axis at the end of an iteration are treated as fixed segments in the 

subsequent iteration.  The iterative procedure stops when the application of the shortest 

path-based method along one axis is unable to improve the approximation quality of the 

grid.  Since the number of possible combinations of intervals along the two axes is finite, 

the algorithm always terminates.  Although the solution obtained by the algorithm is not 

necessarily optimal and depends upon the choice of the initial axis and the segments 
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along that axis, the algorithm gave reasonably good solutions (compared to a uniform 

grid) for the test problems on which it was applied. 

We provide the formal algorithm for generating non-uniform Crisscross grids 

using the alternating shortest path-based method in Appendix A3.  A similar algorithm 

can be used to get a non-uniform Union Jack grid for a two-dimensional function.  

However, owing to the structure of the Union Jack triangulation, the network over which 

we solve a shortest path problem is more complex.  We explain the method for getting 

good non-uniform Union Jack grids in Appendix A4. 
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Chapter 5:  MIP Model Strengthening 

For a given grid design, the effectiveness of the piecewise linear approximation 

approach depends upon how well we can solve the mixed integer program resulting from 

the reformulation and piecewise linearization of the nonlinear functions in the nonlinear 

program.  In this chapter, we examine different techniques to strengthen the PLA-based 

mixed integer programming model.  These techniques fall into three categories: (a) 

problem strengthening using shared grids across functions that have common variables, 

(b) problem strengthening using inequalities that arise when variables appearing in non-

linear functions are also linked by constraints, and (c) problem strengthening using 

external bounds on variables.  We discuss these three techniques in Sections 5.1, Section 

5.2 and Section 5.3 respectively. 

5.1 PROBLEM STRENGTHENING USING SHARED GRIDS 

The traditional manner of solving nonlinear programs using the piecewise linear 

approximation approach entails creating individual mixed integer programming models 

for each of the nonlinear functions in the nonlinear program.  We call such models 

individual grid models.  However, when different nonlinear functions contain a common 

variable and the grids used for approximating these functions have the same granularity, 

then we can approximate these functions using a common grid and create for these 

functions a common mixed integer programming model that is smaller and tighter than 

the model with individual grids.  We call such a model a pattern-based model. We can 

extend this concept further to handle situations in which different nonlinear functions 

with a common variable are approximated by grids of different granularities.  In this case, 

we can conceptually create a single composite (or combined) grid that is an aggregation 
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of the individual grids and define a single mixed integer programming model over this 

composite grid.  This model, which we call a combined partition model, is even stronger 

than the pattern based models. 

We divide Section 5.1 into three sections to discuss these three models in more 

detail.  In Section 5.2.1, we discuss the individual grid models in which each function in 

the nonlinear program is linearized by an individual grid.  Depending upon how 

adjacency is enforced, we can have different types of individual grid models.  In the same 

way, different ways of ensuring adjacency lead to analgous types of pattern-based and 

combined partition models.  We discuss the pattern-based models in Section 5.2.2 and the 

combined partition models in Section 5.2.3. 

5.2.1 Individual Grid Models 

The individual grid models are characterized by the presence of separate mixed 

integer programming models for each nonlinear function that appears in a nonlinear 

program.  These models correspond to the traditional manner of applying piecewise 

linear approximation to solve nonlinear problems.  We discuss these models here so that 

it is eaiser to understand the transition to the stonger pattern-based and combined 

partition models. 

The models that we consider pertain to a single variable X.  In an actual nonlinear 

program, the model will have to be defined for each variable that exists in a nonlinear 

function.  Let G be the set of grids (functions) that contain variable X and g be a index 

over P.  Let gn be the number of segments in the partition for X in grid Gg . Let gI be 

the set of break points in the partition for X in grid Gg and i be an index over gI such 

that gI consists of 1gn break points indexed from i = 0 to i = gn  in the order of 
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increasing X-values.  Let g

ix be the X-value corresponding to break point gIi .  Further, 

let us index the segments along the partition in grid Gg  such that segment i 

corresponds to the interval between break points 1i  and i. 

Let gV be the set of vertices in grid Gg and  iV g be the set of vertices in grid 

g that lie along break point gIi .  Let g

vx and vf  be the X-value and the function value 

at vertex v respectively.  Let  iV g be the set of vertices in grid g that lie along break 

point gIi .  Let gĥ be a variable that denotes the approximate function value for grid g. 

and g

v the vertex weight variable for vertex gVv in grid Gg . 

5.2.1.1 Individual Grid Model with Segment-wise Adjacency 

In an individual grid model with segmentwise adjacency, we define two 

additional sets of variables. 

 g

iZ  : binary variables defined for each segment gIi in grid Gg  such that 

g

iZ is one if we select segment gIi in grid Gg , and is zero otherwise 

 g

i : marginal weight variable for break point gIi in grid Gg  representing 

the sum of the vertex weight variables along break point i 

Given this setting, we can define a mixed integer programming model that selects 

in each grid, a single segment along the X partition such that only the vertices that lie 

along the selected segment can have a positive weight and the vertex weight variables 

sum to one. 

1) Function value constraint 

The approximate function value for each grid is a convex combination of the function 

values at the vertices of that grid.  
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   Ggfh
g

Vv

v

g

v

g  


allforˆ      (5.1) 

2) Marginal weight constraint 

For each break point gIi in grid Gg , the marginal weight is the sum of the vertex 

weight variables along that break point. 
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3) Variable value constraint 

In each grid, the value that a variable takes is a convex combination of the variable values 

at the vertices of that grid.  The variable value can also be expressed in terms of the 

marginal weight variables as shown in Equation (5.4). 
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4) Convex combination constraint 

In each grid, the sum of the vertex weight variables is equal to one.  Equivalently, we 

could say that the marginal weight variables sum to one. 
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Gg
g

n

i

g

i 


allfor1
0

       (5.6) 

5) Segment-wise adjacency conditions 

These constraints ensure that for each grid, a single segment is selected from the X 

partition and only those marginal weight variables that correspond to the end points of the 

selected segment can be strictly positive, which implies that only those vertices that lie 

along the end points of the selected segment can have a positive vertex weight. 
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GgZ gg  allfor10        (5.9a) 
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i niGgZZ     (5.9b) 
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n  allfor        (5.9c) 

6) Non-negativity constraints 

The vertex weight variables must be non-negative, which also ensures that the marginal 

weight variables are non-negative. 

gg

v VvGg  ,allfor0       (5.10) 

7) Binary variable constraints 

},...1{allfor}1,0{ g

g

i niZ        (5.11) 

We call the model formed by Equations (5.1–5.11) an individual grid model with 

segment-wise adjacency (IND-SEG) because the adjacency conditions are defined for 

each individual segment.  In the next section, we show how we can define adjacency 

conditions for groups of segments and create a stronger individual grid model. 
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5.2.1.2 Individual Grid Model with Cumulative Adjacency 

The model defined by Equations (5.1–5.11) is not locally ideal i.e., the extreme 

points of the polyhedron describing the piecewise linear function of X, without additional 

constraints may have fractional extreme points.  However, Padberg (2000) shows that by 

defining the adjacency conditions over groups of segments, we can make the model 

locally ideal.  This entails replacing the segment-wise adjacency constraints (Equations 

5.8–5.9) with the following constraints. 
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We now propose a different way of writing Equation (5.12) by creating auxiliary binary 

variables that represent the cumulative segment selection decision.  Specifically, for each 

segment in the partition for X in grid Gg , let g

iW denote the cumulative segment 

selection (binary) variable that takes the value one if the model selects segment i or 

higher, defined for i = 1, …, gn . 
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Similarly, we create cumulative marginal weight variables for each break point in each 

pattern defined as follows. 
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Using these cumulative variables, we create the cumulative adjacency constraints as 

shown in Equations (5.13–5.15).  These constraints are less dense than the original 

constraints (Equation 5.12) and can possibly reduce the chances of Cplex eliminating the 
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variables in these consrtaints during preprocessing. Note that we need Equation 5.13(c) 

since 1,...,1allfor1   g

g

i

g

i

g

i niWZW . 

  g

g

i

g

i niGgW ,...,2allfor,allfor      (5.13a) 

1,...,1allfor,allfor1   g
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i niGgW    (5.13b)  

  1,...,1allfor,allfor1   g

g

i

g

i niGgWW    (5.13c) 

Ggg  allfor10        (5.14a) 

GgW g  allfor11        (5.14b) 

  g

g

i niGgW ,...,1allfor,allfor}1,0{       (5.15)  

Further, we replace the variable value constraint (Equation 5.4) with the cumulative 

variable value constraint (Equation 5.16), and the marginal weight constraint (Equation 

5.2) with the cumulative marginal weight constraint (Equations 5.17). 
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We call the model formed by the function value constraint (Equation 5.1), non-

negativity constraint (Equation 5.10), and Equations (5.13–5.17) an individual grid model 

with cumulative adjacency (IND-CUM) because the adjacency conditions are defined 

cumulatively and not for individual segments.  As shown in Appendix A11, the 

cumulative adjacency model has the same LP-relaxation value as the segment-wise 

adjacency model.  However, since the cumulative adjacency model is locally ideal, it 

requires fewer branch and bound nodes and therefore can be solved in less time than that 

required for the segment-wise adjacency model. 
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5.2.1.3 Individual Grid Model with Logarithmic Indexing 

As discussed earlier, Vielma and Nemhauser (2011) show that we do not need n 

binary variables for enforcing adjacency across n segments.  Instead, we can do so by 

using log2(n) binary variables such that each segment is assigned a binary address that 

corresponds to a reflected binary code or gray code.  A gray code is defined as a 

logarithmic binary indexing scheme in which two successive values differ in only one bit 

(Gilbert 1957).  For example, intervals 0, 1, 2, and 3 can be identified by using two bits 

by assigning the reflected binary codes 00, 01, 11 and 10.  Similarly, intervals 0, 1, 2, 3, 

4, 5, 6, and 7 can be identified by using three bits by assigning the reflected binary codes 

000, 001, 011, 010, 110, 111, 101 and 100.   

Given that we have gn segments in the partition for X in grid Gg , let us assign a 

reflected binary code comprised of ))((logceil 2 gn  bits to each of these segments.  Let 

)(qI g  be the set of break points in the partition for X in grid Gg such that each break 

point serves as the end point of at least one segment whose reflected binary code has a 

zero at position q.  Similarly, let )(ˆ qI g
be the set of break points in the partition for X in 

grid Gg such that each break point serves as the end point of at least one segment 

whose reflected binary code has a one at position q. 

Let us define binary variables )(log...,,1, 2 g

g

q nqB  such that g

qB takes the value 

one if we select in grid Gg  an X-segment whose reflected binary code contains a one 

at position q and g

qB takes the value zero if we select in grid Gg  an X-segment whose 

reflected binary code contains a zero at position q.  Using these variables, we define the 

logarithmic adjacency constraints as per Equations (5.18–5.19). 
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GgnqB g
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q  allfor)],(logceil[...,,2,1allfor}1,0{ 2   (5.19) 

Equation (5.18a) ensures that if we select in grid Gg  an X-segment whose 

reflected binary code has a zero at position q (i.e., if g

qB  is zero), then all the break points 

that do not belong to )(qI g  are assigned a marginal weight of zero, which also ensures 

that the vertices corresponding to those break points are also assigned a vertex weight of 

zero.  On the other hand, Equation (5.18b)  ensures that if we select in grid Gg  an X-

segment whose reflected binary code has a one at position q (i.e., if g

qB  is one), then all 

the break points that do not belong to )(ˆ qI g
 are assigned a marginal weight of zero.   

We call the model formed by the function value constraint (Equations 5.1), 

marginal weight constraint (Equation 5.2), variable value constraint (Equation 5.4), 

convex combination constraint (Equation 5.6), non-negativity constraint (Equation 5.10), 

and logarithmic adjacency constraints (Equations 5.18–5.19) an individual grid model 

with logarithmic adjacency (IND-LOG). 

5.2.1.4 Individual Grid Model with SOS-2-based adjacency 

We can also ensure adjacency by declaring the set of marginal weight variables in 

each grid a Special Ordered Set of Type 2.   

Ggg

g
n

g  allfor2SOS,,...0       (5.20) 

We call the model formed by the function value constraint (Equations 5.1), 

marginal weight constraint (Equation 5.2), variable value constraint (Equation 5.4), 

convex combination constraint (Equation 5.6), non-negativity constraint (Equation 5.10), 
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and Equations (5.20) an individual grid model with SOS-II constraints (IND-SOS).  The 

notation used in the different individual grid models in Appenix A12. 

In the next section, we discuss the pattern-based models that use common grids 

for functions that (a) share a common variable, and (b) are linearized using grids of the 

same granularity. 

 

5.2.2 Pattern-based Models 

Before discussing the formulation for the pattern-based models, we first consider 

an example that conveys the intuition behind these models.  Let us assume that we have a 

nonlinear program that is linear except for the presence of two nonlinear functions 

involving three bounded variables 1X , 2X , and 3X such that ),( 211 XXf is a non-separable 

function of 1X and 2X , and ),( 312 XXf is a non-separable function of 1X and 3X .  To 

apply the PLA approach to this problem, we 

a) partition the domain of 1f with a rectangular 44 (i.e., 4 segment   4 segment) 

uniform grid 1G , 

b) partition the domain of 2f with a rectangular 45 grid 2G , and 

c) create a mixed integer program that ensures that in each grid, (i) we select only one 

cell, and (ii) the approximate function value is given by a convex combination of the 

function values at the vertices of the selected cell. 
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Grid G1     Grid G2 

Figure 5.1: Domain partitioning for functions f1 and f2 

To create a mixed integer program, we index the break points for variables 1X , 

2X , and 3X using indices i, j and k where 40  i , 40  j  and 50  k .  Let ix1 , jx2 , 

and kx3 be the values of 1X , 2X ,and 3X at break points i, j and k respectively.  Let us define 

vertex weight variables
1

ij and 2

ik  for grids 1G and 2G respectively as continuous variables 

bounded between zero and one.  Let 1ĥ and 2ĥ be the approximate function values of 1f

and 2f respectively.  The segment-wise adjacency model for these two grids is comprised 

of the following constraints. 

1) Function value constraint 

The approximate function value for each grid is a convex combination of the function 

values at the vertices of that grid. 


 


4

0

4

0

21

1

1 ),(ˆ

i j

ji

ij xxfh      
 


4

0

5

0

31

2

2 ),(ˆ

i k

ki

ik xxfh   (5.21) 
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2) Variable value constraint 


 


4

0

4

0

1

1

1

i j

i

ij xX       
 


4

0

4

0

2

1

2

i j

j

ij xX    (5.22a) 
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ik xX       
 


4

0

5

0

3

2

3

i k

k

ik xX    (5.22b) 

In terms of the marginal wights, Equation (5.22a) can be expressed using Equation 

(5.23). 
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ijj    (5.23b) 

We call 1

1i the marginal weight associated with break point i for variable 1X  in grid 1G and 

it is equal to the sum of the vertex weights across all vertices in 1G that lie along break 

point i.  Similarly
1

2 j is the marginal weight associated with break point j for variable 2X

in grid 1G . 

Similarly, we can express Equation (5.22b) in terms of the marginal weights as Equation 

(5.24). 
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Here 2

1i is the marginal weight associated with break point i for variable 1X in grid 2G and

2

3k is the marginal weight associated with break point k for variable 3X in grid 2G . 

3) Convex combination constraint 

These constraints ensure that the sum of the vertex weights is equal to one. 
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
 


4

0

5

0

2 1
i k

ik          (5.25b) 

4) Adjacency constraints 

We need to ensure that exactly one cell is chosen in each grid.  This can be done 

by ensuring that exactly one segment is chosen along each dimension in a grid and the 

marginal weight variables at the two ends of the chosen segment sum to one.  Let 1

1iZ  be a 

binary variable that takes value one if we select segment i for variable 1X in grid 1G , and is 

zero otherwise.  Let
1

2 jZ be a binary variable that takes value one if we select segment j for 

variable 2X in grid 1G , and is zero otherwise.  Let 2

1iZ  be a binary variable that takes value 

one if we select segment i for variable 1X in grid 2G , and is zero otherwise.  Let 2

3kZ be a 

binary variable that takes value one if we select segment k for variable 3X in grid 2G , and 

is zero otherwise.  Then, the adjacency conditions for Grid 1G and 2G are given by 

Equations (5.26) and Equations (5.27) respectively. 

1
4

1

1

1 
i

iZ , }4,...,1{allfor1

1

1

1,1

1

1   iZ iii      (5.26a) 

1
4

1

1

2 
j

jZ , }4,...,1{allfor1

2

1

1,2

1

2   jZ jjj     (5.26b) 

1
4

1

2

1 
i

iZ , }4,...,1{allfor2

1

2

1,1

2

1   iZ iii     (5.27a) 

1
5

1

2

3 
k

kZ , }5,...,1{allfor2

3

2

1,3

2

3   kZ kkk     (5.27b) 

5) Non-negativity and binary variable constraints 

}4,...,0{},4,...,0{allfor01  jiij     (5.28a) 

}5,...,0{},4,...,0{allfor02  kiik     (5.28b) 

}4,...,1{allfor}1,0{1

1  iZ i
      (5.28c) 
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}4,...,1{allfor}1,0{1

2  jZ j
      (5.28d) 

}4,...,1{allfor}1,0{2

1  iZ i
      (5.28e) 

}5,...,1{allfor}1,0{2

3  kZ k
      (5.28f) 

The key observation is that although 1X appears in two different functions, yet it 

will have a single value in any solution to the mixed integer program.  Further, the value 

of 1X will belong to the same segment in both the grids and will also have the same set of 

marginal weights in both the grids.  In other words, 1

1i will be equal to 2

1i for all i.  Thus, 

we can define a single set of marginal weights for 1X and thereby create a smaller and 

tighter model.  We call such a model a patter-based model where a pattern is a partition 

induced by a set of break points along the domain of a function corresponding to a 

specific variable. 

A pattern-based model is not only smaller but also tighter than a traditional grid-

based model, which implies that there are fractional LP solutions that are feasible for the 

grid-based model but not for the pattern-based model.  Consider the example shown in 

Figure 5.2 where we have an LP solution that is feasible for a grid-based model.  

However, this LP solution is not feasible for the pattern-based model since (a) the 

marginal weight corresponding to break points 0 and 4 (along the X-axis) have a value of 

0.5 each in Grid G1 but values of zero each in Grid G2, and (b) the marginal weight 

corresponding to break points 1 and 3 (along the X-axis) have a value of 0 each in Grid 

G1 but values of 0.5 each in Grid G2.  Thus, the LP relaxation value of a pattern-based 

model can be higher than that of a grid-based model, which implies that the MIP solver 

might find it easier to solve a pattern-based model. 
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Grid G1     Grid G2 

Figure 5.2: LP solution that is not feasible for a pattern-based model 

 

Just as we had four types of grid-based models, we can have four types of pattern 

based models: pattern-based models with segment-wise adjacency, pattern-based models 

with cumulative adjacency, pattern-based models with logarithmic adjacency, and 

pattern-based models with SOS-2 based adjacency.  We now describe these models in 

more detail.  

We first define some additional notation.  For a comprehensive list of all the 

symbols, refer to Appendix A12. Let G be the set of grids (functions) that contain 

variable X and let P be the set of partitioning patterns for variable X used in the linear 

approximations of all functions that contain variable X.  Let g and p be indices over G 

and P respectively.  In the example discussed earlier, G will contain grids G1 and G2. 
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Let pn be the number of break points in partitioning pattern Pp and pJ be the 

set of break points in p such that pJ consists of pn break points indexed from j = 0 to j = 

pn  in the order of increasing X-values.  In the example discussed earlier, there is a single 

partition (with 5 break points) for variable X. 

Let pG be the set of grids (functions) that contain variable X and use pattern

Pp .  Let p(g) be the pattern used for X in grid g.  Let gV be the set of vertices in grid

Gg and  jV g be the set of vertices in grid g that lie along break point pJj .  Let gĥ

be the approximate function value for grid g. Let p

jx be the X-value corresponding to 

break point pJj in pattern Pp . 

Using the notation defined above, we now discuss the four types of pattern-based 

models. 

5.2.2.1 Pattern-based Model with Segment-wise Adjacency 

To create the segment-wise adjacency constraints, we define two additional types 

of variables.  Let 
p

j denote the (continuous) marginal weight variables defined for each 

break point },...,0{ pnj in each pattern Pp , and 
p

jS  be the binary variables defined 

for each segment },...,1{ pnj  in each pattern Pp .   

1) Pattern-based variable value constraint 

In each pattern, the value taken by X is a convex combination of the X-values 

corresponding to the break points of that pattern. 

  PpxX
p

n

j

p

j

p

j 


allfor
0

       (5.29) 

2) Pattern-based convex combination constraint 

For each pattern, the marginal weight variables sum to one. 



 

 

 

 

58 

Pp
p

n

j

p

j 


allfor1
0

       (5.30) 

3) Pattern-based marginal weight constraint 

For each grid, the sum of the vertex weight variables corresponding to a specific break 

point is equal to the marginal weight variable corresponding to that break point in the 

specific pattern (for X) that we use in that grid. 

 

)(

)(

)(

,...,0,allfor gp

gp

j

j
g

Vv

g

v njGg 


    (5.31) 

4) Segment-wise adjacency constraints 

These constraints ensure that (a) in each pattern for X, a single segment is selected, and 

(b) the marginal weight variables corresponding to the end points of only the selected 

segment can be strictly positive. 

PpS
p

n

j

p

j 


allfor1
1

       (5.32) 

},...,1{,allfor1 p
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j
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j

p

j njPpS       (5.33) 

PpS pp  allfor10        (5.34a) 

}1,...,1{,allfor1   p

p

j

p

j

p

j njPpSS     (5.34b) 

PpS p

p
n

p

p
n  allfor        (5.34c) 

5) Binary variable constraints 

p

p

j njPpS ,...,1allfor,allfor}1,0{      (5.35) 

We call the model formed by the function value constraint (Equation 5.1), and 

Equations (5.29–5.35) a pattern-based model with segment-wise adjacency (PAT-SEG). 
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5.2.2.2 Pattern-based Model with Cumulative Adjacency 

As in the individual grid model, we can create a pattern-based model using 

cumulative adjacency conditions.  To do so, we define for each partition p of the variable 

X, a variable p

jT that denotes the cumulative segment selection (binary) variable that takes 

the value one if the model selects segment j or higher, defined for j = 1, …, pn .  

Similarly, we define 
p

j  as the cumulative marginal weight variable for each break point 

in each pattern. 

 p

p
n

jj

p

j

p

j njST ,...,1allfor
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' 


 

  p

p
n

jj

p

j

p

j nj ,...,0allfor
'

' 


  

Using these cumulative variables, we create the pattern-based cumulative adjacency 

constraint as shown in Equation (5.36). 

PpnjT p

p

j

p

j  ,,...,2allfor      (5.36a) 

PpnjT p

p

j

p

j   ,1,...,1allfor1     (5.36b)  

Ppp  allfor10        (5.36c) 

PpT p  allfor11        (5.36d) 

  PpnjTT p

p

j

p

j   ,1,...,1allfor1                  (5.36e) 

We also need the pattern-based cumulative variable value constraint (Equation 5.37), 

and the pattern-based cumulative marginal weight constraint (Equation 5.38). 
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1,...,0,allfor )(1
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 



 gp

p

j

p

j

j
g

Vv
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v njGg    (5.38a)  
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,allfor gp
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j
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Vv

g

v njGg 


      (5.38b) 

We call the model formed by the function value constraint (Equation 5.1), non-

negativity constraint (Equation 5.10), and Equations (5.36–5.38) a pattern-based model 

with cumulative adjacency (PAT-CUM). 

5.2.2.3 Pattern-based Model with Logarithmic Indexing 

As in the individual grid model, we can have a log-based pattern-based model.  

Given that we have pn segments in partition p, let us assign a reflected binary code 

comprised of ))((logceil 2 pn  bits to each of these segments.  Let )(qJ p  be the set of break 

points in pattern p such that each break point serves as the vertex of at least one cell 

whose reflected binary code contains a zero at the position q.  Similarly, let )(ˆ qJ p
be the 

set of break points in pattern p such that each break point serves as the vertex of at least 

one cell whose reflected binary code contains a one at position q.   

Let us define binary variables PpnqC p

p

q  ),(log...,,1for, 2 such that p

qC takes 

the value one if we select a cell whose reflected binary code contains a one at position q 

and p

qC takes the value zero if we select a cell whose reflected binary code contains a zero 

at position q.  We then have the following adjacency constraints. 

. 

PpnqC p

p

q

qJj

p

j

p




allfor)](logceil[...,,2,1allfor 2

)(

   (5.39a) 

PpnqC p

p

q

qJj

p

j

p




allfor)],([logceil...,,2,1allfor1 2

)(ˆ

  (5.39b) 

PpnqC p

p

q   allfor)],(logceil[...,,2,1allfor}1,0{ 2   (5.40) 
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Equation (5.39a) ensures that if we select a segment in pattern p whose reflected 

binary code has a zero at position q (i.e., if p

qC  is zero), then all the break points that do 

not belong to )(qJ p  are assigned a marginal weight of zero, which also ensures that the 

vertices corresponding to that break point are also assigned a vertex weight of zero.  On 

the other hand, Equation (5.39b)  ensures that if we select a segment in pattern p whose 

reflected binary value has a one at position q (i.e., if p

qC  is one), then all the break points 

that do not belong to )(ˆ qJ p
 are assigned a marginal weight of zero.   

We call the model formed by the function value constraint (Equations 5.1), non-

negativity constraint (Equation 5.10), pattern-based variable value constraint (Equation 

5.29), pattern-based convex combination constraint (Equation 5.30), pattern-based 

marginal weight constraint (Equation 5.31), and Equations (5.39–5.40) a pattern-based 

model with logarithmic adjacency (PAT-LOG). 

 

5.2.2.4 Pattern-based model with SOS-2-based adjacency 

As in the individual grid models, adjacency can also be enforced by defining for 

each pattern, the set of marginal weight variables as a Special Ordered Set of Type 2. 

  

Ppp

p
n

p  allfor2SOS,...,0       (5.41) 

We call the model formed by the function value constraint (Equations 5.1), non-

negativity constraint (Equation 5.10), pattern-based variable value constraint (Equation 

5.29), pattern-based convex combination constraint (Equation 5.30), pattern-based 

marginal weight constraint (Equation 5.31), and Equation (5.41) a pattern-based model 
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with SOS-2 adjacency (PAT-SOS). The notation used in the different pattern-based 

models is summarized in Appenix A12. 

 

5.2.3 Combined Partition Models 

The pattern-based models discussed in the previous section take advantage of 

common partitions of the same variable in different grids.  However, in a pattern–based 

model, the adjacency conditions have to be defined for each pattern.  If we have multiple 

patterns for a given variable, then we could further a stronger model by defining a 

combined partition that contains all the break points that occur in the various partitions 

for a given variable.  We then define a single set of adjacency conditions for this 

combined partition and express the marginal weights in the individual patterns in terms of 

the marginal weights in the combined partition.  We show a combined partition in Figure 

5.3. As with pattern-based models, we can have four types of combined partition models: 

combined partition models with segment-wise adjacency, combined partition models with 

cumulative adjacency, combined partition models with logarithmic adjacency, and 

combined partition models with SOS-2 based adjacency.  We now discuss these models 

in more detail. 
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Figure 5.3: Example of a combined partition 

 

We recall that pn denotes the number of break points in partitioning pattern 

Pp and pJ is the set of break points in p such that pJ consists of pn break points 

indexed from j = 0 to j = pn  in the order of increasing X-values.  Let the combined 

partition contain m break points and let K denote the set of these break points.  Let k be 

an index over the break point (and segments) in the combined partition such that k can 

take values over the set { m,...,0 }.  Let kx , Kk be the value of X at break point k in 

the combined partition and let p

jx be the value of X at break point j in pattern p.  Let 

 pkj , be the closest break point in pattern p that either coincides with break point k of 

the combined partition or lies strictly to the right of break point k of the combined 

partition, i.e.,   KkPpxxjMinpkj k

p

j   ,allfor ,:, .  

Let  pjk , be the break point in the combined partition that coincides with break 

point i in pattern p, i.e. ,   pk

p

j JjPpxxkpjk   allfor,allfor ,:, . 
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Let  jK p  be the set of break points in the combined partition that lie in the 

interior of segment j in partition p, defined for all PpJj p  },0{\ .  In other words, 

  }1),(,...1),1({  pjkpjkjK p .  Further, let us define a parameter kp for all

},...,0{ mk  and Pp as follows.  

}0{\,allfor
1),(),(

1),(
KkPp

xx

xx
p

pkjpkj

p

pkjk

kp 








 .   (5.42)  

 

Figure 5.4: Relating break point indices in individual patterns and the combined partition 

5.2.3.1 Combined Partition Model with Segment-wise Adjacency 

Let k be the marginal weight variable for breakpoint k in the combined partition, 

defined for },...,0{ mk  .  We enforce adjacency by defining binary variables for each 

segment in the combined partition and then adding forcing constraints that ensure that in 

the combined partition (a) exactly one segment is chosen, and (b) only the marginal 

weight variables corresponding to the end points of the chosen segment can have positive 

weights.  Let us define a binary variable },...1{, mkRk   that is one if we select segment k 

in the combined partition. 

1) Variable value constraint for combined partition 
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The variable value constraint, defined for the combined partition, ensures that the value 

of the variable (X) is equal to a convex combination of the variable values corresponding 

to the break points in the combined partition. 





m

k

kk xX
0

         (5.43) 

2) Convex combination constraint for combined partition 

The sum of the marginal weights across all the break points of the combined partition 

must sum to one. 

1
0




m

k

k         (5.44) 

3) Marginal weight constraint for combined partition 

The marginal weight for a break point in an individual pattern is a linear combination of 

the marginal weights corresponding to the break points in the combined partition.  The 

validity of these equations has been proved in Appendix A5. 
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4) Segment-wise adjacency constraint for combined partition 

These constraints ensure that we select a single segment in the combined partition and 

only those marginal weight variables that correspond to the end points of the selected 

segment can be strictly positive. 
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1
1




m

k

kR          (5.46a) 

},...,1{allfor1 mkRkkk        (5.47a) 

10 R          (5.47b) 

}1,...,1{allfor1   mkRR kkk      (5.47c) 

mm R          (5.47d) 

5) Binary variable constraint 

mkRk ,...,1allfor}1,0{        (5.48) 

We call the model formed by the function value constraint (Equation 5.1), the 

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint 

(Equation 5.31), and Equations (5.43–5.48) a combined partition model with segment-

wise adjacency (CPAR-SEG). 

The combined partition model is not only smaller but also tighter than the pattern-

based model.  Consider the example discussed in Figure 5.5 in which we show an LP 

solution that is feasible for a pattern-based model but not for a combined partition model, 

which would have four uniform segments for the X1 variable (as used in Grid G2) and will 

re-distribute the marginal weights of 0.5 along break points 1 and 3 in Grid G2 over the 

break points 0, 1, 2 for the X1 pattern in Grid G1.  This re-distribution, done using 

Equation (5.36a), will assign marginal weights of 0.25, 0.5 and 0.25 to break points 0, 1 

and 2 respectively for the X1 pattern in Grid G1, which are different from the current 

marginal weights of 0.5 each for break points 0 and 4 for the X1 pattern in Grid G1.  Thus, 

the LP relaxation value of the combined partition model could be higher than that of a 
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pattern-based model, which implies that a MIP solver might find it easier to solve a 

combined partition model. 

 

Figure 5.5: Comparing the strength of pattern-based and combined partition models 

5.2.3.2 Combined Partition Model with Cumulative Adjacency 

 As in the other cumulative adjacency modesl, we can use cumulative segment 

selection and cumulative marginal weight variables for the combined partition and create 

cumulative adjacency constraints to enforce adjacency in the combined partition.   

 Let kM denote the cumulative segment selection (binary) variable for the 

combined partition that takes the value 1 if the model selects segment k or higher, defined 

for mk ...,,1 and let k be the cumulative marginal weight for break point k of the 

combined partition such that mk
m

kk

kk ,...,1allfor
'

' 


 .  

 We can then have the following cumulative adjacency constraints for the 

combined partition. 
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mkMkk ,...,2allfor        (5.49a) 

1,...,1allfor1   mkM kk      (5.49b)  

  1,...,1allfor1   mkMM kk                    (5.49c) 

10           (5.50a) 

11 M         (5.50b) 

mkMk ,...,1allfor}1,0{       (5.50c) 

We also need the cumulative variable value constraint for combined partition (Equation 

5.51), and the cumulative marginal weight constraint for combined partition (Equation 

5.52). 
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We call the model formed by the function value constraint (Equations 5.1), the 

non-negativity constraint (Equation 5.10), the pattern-based marginal weight constraint 

(Equation 5.31) and Equations (5.49–5.52) a combined partition model with cumulative 

adjacency (CPAR-CUM).  
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5.2.3.3 Combined Partition Model with Logarithmic Indexing 

We could also enforce adjacency in the combined partition by using a logarithmic 

indexing scheme.  To each of the m segments in the combined partition, let us assign a 

reflected binary code comprised of ))((logceil 2 m  bits.  Let )(qK  be the set of break 

points in the combined partition that serve as the vertex of at least one cell whose 

reflected binary code contains a zero at the position q, and )(ˆ qK be the set of break points 

in the combined partition that serve as the vertex of at least one cell whose reflected 

binary code contains a one at position q.  Let us define binary variables 

)(log...,,1, 2 mqDq  such that qD takes the value one if we select a cell whose reflected 

binary code contains a one at position q and qD takes the value zero if we select a cell 

whose reflected binary code contains a zero at position q.  The logarithmic adjacency 

conditions for the combined partition are as follows. 

 

)](logceil[...,,2,1for 2

)(

mqDq

qKk

k 


     (5.53a) 

)]([logceil...,,2,1for1 2

)(ˆ

mqDq

qKk

k 


     (5.53b) 

)](logceil[...,,2,for}1,0{ 2 mqDq      (5.54) 

Equation (5.53a) ensures that if we select a segment in the combined partition whose 

reflected binary code has a zero at position k (i.e., if qD  is zero), then all the break points 

that do not belong to )(qK  are assigned a weight of zero.  On the other hand, Equation 

(5.53b)  ensures that if we select a segment in the combined partition whose reflected 

binary value has a one at position k (i.e., if qD  is one), then all the break points that do 

not belong to )(ˆ qK  have a weight of zero.   
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We call the model formed by the function value constraint (Equation 5.1), the 

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint 

(Equation 5.31), the variable value constraint for combined partition (Equation 5.43), the 

convex combination constraint for combined partition (Equation 5.44), the marginal 

weight constraint for combined partition (Equation 5.45), and Equations (5.53–5.54) a 

combined partition model with logarithmic adjacency (CPAR-LOG). 

 

5.2.3.4 Combined Partition Model with SOS-2-based Adjacency 

We could also enforce adjacency in the combined partition by defining the marginal 

weight variables in the combined partition as SOS-2 (Equation 5.55). 

2SOS,...,0 m         (5.55) 

We call the model formed by the function value constraint (Equation 5.1), the 

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint 

(Equation 5.31), the variable value constraint for combined partition (Equation 5.43), the 

convex combination constraint for combined partition (Equation 5.44), the marginal 

weight constraint for combined partition (Equation 5.45), and Equations (5.55) a 

combined partition model with SOS-2 adjacency (CPAR-SOS).  

The notation used in the four types of combined partition models is summarized 

in Appenix A12.  
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5.2 PROBLEM STRENGTHENING USING CONSTRAINT-BASED INEQUALITIES 

If a nonlinear program contains constraints involving two or more variables that 

also appear as independent variables of the same or different nonlinear functions, then we 

can strengthen the PLA-based mixed integer program by adding valid inequalities which 

relate the segment-selection and marginal weight variables corresponding to those 

independent variables.  These valid inequalities arise beacuse the valid segment-selection 

and marginal weight variables corresponding to the independent variables are now 

dependent on one another.  These valid inequalities strengthen the LP relaxation value of 

the PLA-based mixed integer program and as shown in the computational results, help us 

tackle some of the more difficult problems in our problem set. 

Consider a situation in which we have a nonlinear program with a linear 

constraint involving variables X and Y such that X and Y also appear as independent 

variables either in the same nonlinear function or in two different nonlinear functions.  

We can have four types of linear constraints involing X and Y. 

1. baXY  : In this case, an upper bound on X induces an upper bound on Y. 

2. baXY  : In this case, an upper bound on X induces a lower bound on Y. 

3. baXY  : In this case, a lower bound on X induces an upper bound on Y. 

4. baXY  : In this case, a lower bound on X induces a lower bound on Y. 

We now discuss each of these four cases sepately and show how these induced bounds 

can be used to generate valid inequalities relating the binary and marginal weight 

variables for the X and Y patterns.  
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Notation 

I: set of break points in the X partition 

J: set of break points in the Y partition 

i: index for break points and segments for the X partition 

j: index for break points and segments for the Y partition 

Xn : number of segments in the X partition 

Yn : number of segments in the Y partition 

X
i  marginal weight variable for break point i along the X partition 

X
i  cumulative marginal weight variable for break point i along the X partition 

Y
j  marginal weight variable for break point j along the Y partition 

Y
j  cumulative marginal weight variable for break point j along the X partition 

X
iS  segment selection variable for segment i along the X partition, which is one if we 

select segment i and is zero otherwise 

X
iT  segment selection variable for segment i along the X partition, which is one if we 

select a segment with index i or higher, and is zero otherwise 

Y
jS  segment selection variable for segment j along the Y partition, which is one if we 

select segment j and is zero otherwise 

Y
jT  segment selection variable for segment j along the Y partition, which is one if we 

select a segment with index j or higher, and is zero otherwise 
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5.2.1 Upper Bound on a Variable Inducing an Upper Bound on another Variable 

Consider the situation where X and Y are present in two different nonlinear 

functions but are related by the constraint baXY  .  In this situation, an upper bound 

on X induces an upper bound on Y. Let us assume that we select an X segment with index 

i or lower.  This implies that X cannot exceed ix . Let ji ybaxjij  :min)( .  Then, we 

cannot select a Y segment whose index is greater than )(ij .  This gives us the following 

valid inequalities.  

 

 

Figure 5.6: Upper bound on X inducing an upper bound on Y 

a) Inequalities relating binary variables 

Let 1I be the set of break points in the X pattern such that }1)(1:{1  YnijiI .  Then, if 

we select an X segment with index i or lower, then we must select a Y segment with index 

)(ij or less.  So, we have the following inequality. 

111)( everyfor11 IiTT X
i

Y
ij       (5.56) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  .  Then, if X has an upper bound of ix , Y has an upper bound of iy .  This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition.  

Consider a case where we want to choose  

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and 

i-1, and 

 segment j(i) for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break points 

j(i) and j(i)-1. 

Since baXY  , we get the following. 

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij   ))1(()1( 11)()()()(      (5.57) 
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  iii
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i

Y
ij qqp  )(  since in this case X

i
X
i   and

Y
ij

Y
ij )()(     (5.58) 

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to 

break point i, then we have an upper bound on the cumulative weight variable for break 

point j(i).  This leads us to the following inequality.  

  X

i

Y

iji

X

iiii

X

i

Y

ij TTqTqqp 1)(1)( )1()1(       (5.59) 

The proof of the validity of this inequality is provided in Appendix A6. 
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5.2.2 Upper Bound on a Variable Inducing a Lower Bound on another Variable 

Consider the situation where X and Y are present in two different nonlinear functions but 

are related by the constraint baXY  .  In this situation, an upper bound on X induces a 

lower bound on Y.  Let us assume that we select an X segment with index i or lower.  This 

implies that X cannot exceed ix .  Let ji ybaxjij  :max)( .  Then, we cannot select a 

Y segment whose index is less than 1)( ij .  This gives us the following valid inequalities.  

 

 

Figure 5.7: Upper bound on X inducing a lower bound on Y 

 

a) Inequalities relating binary variables 

Let 2I be the set of break points in the X pattern such that }1)(2:{2  YnijiI .  Then, if 

we select an X segment with index i or lower, then we must select a Y segment with index 

1)( ij or higher.  So, we have the following inequality. 

211)( everyfor1 IiTT X
i

Y
ij        (5.60) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  .  Then, if X has an upper bound of ix , Y has a lower bound of iy .  This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition, and consequently a lower bound on the cumulative marginal weight 

for break point 1)( ij  along the Y partition.  Consider a case where we want to choose  

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and 

i-1 

 segment 1)( ij for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break 

points )(ij and 1)( ij  

Since baXY  , we get the following. 
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Y
ijij

Y
ij   ))1(()1( 11)()()()(     (5.61) 
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i
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i   and 

Y
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ij 1)()( 1    

 ii
X
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Y
ij qpq   )1(1)(        (5.62) 

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to 

break point i, then we have a lower bound on the cumulative weight variable for break 

point 1)( ij .  This leads us to the following inequality.  

    Y
ijiii

X
i

X
ii

Y
ij TqqpTq 2)(11)( )1)(1(       (5.63) 

The proof of the validity of this inequality is provided in Appendix A6. 
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5.2.3 Lower Bound on a Variable Inducing an Upper Bound on another Variable 

Consider the situation where X and Y are present in two different nonlinear functions but 

are related by the constraint baXY  .  In this situation, a lower bound on X induces an 

upper bound on Y.  Let us assume that we select an X segment with index i+1 or lower.  

This implies that X has a lower bound of ix . Let ji ybaxjij  :min)( . Then, we 

cannot select a Y segment whose index is greater than )(ij .  This gives us the following 

valid inequalities. 

 

 

Figure 5.8: Lower bound on X inducing an upper bound on Y 

a) Inequalities relating binary variables 

Let 3I be the set of break points in the X partition such that }1)(1:{3  YnijiI .  Then, 

if we select an X segment with index 1i  or higher, then we must select a Y segment with 

index )(ij or lower.  So, we have the following inequality. 

311)( everyfor1 IiTT X
i

Y
ij        (5.64) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  .  Then, if X has a lower bound of ix , Y has an upper bound of iy .  This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition, and consequently an upper bound on the cumulative marginal 

weight for break point )(ij  along the Y partition.  Consider a case where we want to 

choose  

 segment i+1 for the X variable with weights X
i and X

i1 assigned to break points i 

and i+1, and  

 segment )(ij  for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break points 

)(ij  and 1)( ij . 

Since baXY  , we get the following. 
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Thus, if we select segment 1i  for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for 

break point )(ij .  This leads us to the following inequality.  

)1()1()( 1)(11)(
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iji
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iii

X

ii

Y

ij TTqqpTp       (5.67) 

The proof of the validity of this inequality is provided in Appendix A6. 
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5.2.4 Lower Bound on a Variable Inducing a Lower Bound on another Variable 

Consider the situation where X and Y are present in two different nonlinear functions but 

are related by the constraint baXY  .  In this situation, a lower bound on X induces a 

lower bound on Y.  Let us assume that we select an X segment with index 1i or higher.  

This implies that X cannot be lower than ix .  Let ji ybaxjij  :max)( .  Then, we 

cannot select a Y segment whose index is less than 1)( ij .  This gives us the following 

valid inequalities. 

 

 

Figure 5.9: Lower bound on X inducing a lower bound on Y 

a) Inequalities relating binary variables 

Let 4I be the set of break points in the X pattern such that }1)(1:{4  YnijiI .  Then, 

if we select an X segment with index 1i or higher, then we must select a Y segment with 

index 1)( ij or higher.  So, we have the following inequality. 

111)( everyfor IiTT X
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ij        (5.68) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  .  Then, if X has a lower bound of ix , Y has a lower bound of iy .  This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition and consequently a lower bound on the cumulative marginal weight 

for break point 1)( ij along the Y partition.  Consider a case where we want to choose  

 segment 1i  for the X variable with weights X
i and X

i1 assigned to break points i 

and i+1  

 segment 1)( ij  for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break 

points )(ij  and 1)( ij . 

Since baXY  , we get the following. 
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Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1 to 

break point 1i , then we have an upper bound on the cumulative weight variable for 

break point 1)( ij  along the Y partition.  This leads us to the following inequality.  
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Y
ij TqTpqp 2)(111)( )1(         (5.71) 

The proof of the validity of this inequality is provided in Appendix A6. 
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5.3 PROBLEM STRENGTHENING USING BOUNDS 

5.3.1 Problem Strengthening Using Variable Bounds 

If a nonlinear program contains a nonlinear function such that the function value 

has an externally specified upper or lower bound, then there might be domain points that 

violate these bounds and therefore can never be present in a feasible solution to the PLA-

based mixed integer program.  In such a case, we can remove from the PLA-based mixed 

integer program the vertex weight variables corresponding to these infeasible domain 

points.  Before discussing how to do so, we need to define some notation.  

Notation 

V  set of vertices in the grid used for the piecewise linear approximation of the 

nonlinear functions 

C  set of cells formed by the grid 

v, v' index over V 

c index over C 

V(c) set of vertices for cell c 

C(v) set of cells with a vertex at point v 

f (.) nonlinear function that is being approximated 

L, U exogenous lower and upper bounds on f (.) either explicitly specified in the 

nonlinear program or implied by some constraint  

vf  function value at vertex point v 

N(v) set of vertices (excluding v) with which v can form a convex combination, given 

by vcV
vCc

\)(
)(



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min

f  Minimum function value across all vertices with which vertex v can form a 

convex combination, i.e. , )(':Min '

min vNff    

max

f  Maximum function value across all vertices with which vertex v can form a 

convex combination, i.e. , )(':Max '
max vNff    

v  vertex weight variable for vertex v 

We now consider two scenarios in which a vertex might have an associated function 

value that violates the externally specified bounds for that variable. 

1) Vertex with function value less than L 

Consider a vertex v such that vf is less than L.  It is possible that this vertex could form a 

convex combination with another vertex v' belonging to N(v).  We can have two cases. 

Case 1: All vertices belonging to N(v) have a function value less than L.  For example, 

the vertex P2 in Figure 5.10 has a function value less than L and all the neighboring 

vertices with which it can form a convex combination have also a function value less than 

L.  Therefore, the convex combination of vertex v with any neighboring vertex cannot be 

feasible and so we can remove the vertex weight variable associated with vertex v in the 

PLA-based mixed integer program.  

Case 2: One or more vertices belonging to N (v) have a function value greater than L.  

For example, the vertices P1 and P3 in Figure 5.10 have a function value less than L but 

they can form a convex combination with one of their neighbors such the value of this 

convex combination is less than L.  Therefore, such vertices can have a positive vertex 

weight in the MIP solution. 
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Figure 5.10: Bounding vertex weight variables using an external lower bound 

However, if a vertex v has a function value less than L but it can form a 

combination with a neighboring vertex with a function value less than L then we can 

obtain an upper bound on the vertex weight variable associated with v as given by 

Equation (5.72).   

  
vv

v
v

ff

Lf






max

max

       (5.72) 

Proof: Let us assume that the solution to the PLA-based mixed integer program chooses 

vertex v (with weight v ) and distributes a weight of (1- v ) across other vertices 

belonging to N(v).  Then, if there is at least one vertex in the set N(v) with a function 

value greater than L, then we have the following. 

  Lff
vNv

vvvv  
 )('

''  
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   Lff
vNv

vvvv  
 )('

max

'  

   Lff vvvv  )1( '

max    

   
vv

v
v

ff

Lf






max

max

   

2) Vertex with function value greater than U 

Consider a vertex v such that vf is greater than U.  This vertex could form a convex 

combination with another vertex v' belonging to N (v).  We can have two cases. 

Case 1: All vertices belonging to N (v) have a function value greater than U.  Therefore, v 

cannot form a feasible convex combination with any vertex in N (v) and we can remove 

the vertex weight variable associated with vertex v in the PLA-based mixed integer 

program.  For example, vertex P2 in Figure 5.11 cannot have a positive vertex weight 

because it cannot form a feasible convex combination with any of its neighbors. 

Case 2: One or more vertices belonging to N (v) have a function value less than U.  

Therefore, v can form a feasible convex combination with some vertex and can have a 

positive vertex weight in the MIP solution.  For example, vertices P1 and P3 can form a 

feasible convex combination with one of their neighbors.  In this case, we can have an 

upper bound on the vertex weight variable associated with v given by Equation (5.73).   

min

min

vv

v
v

ff

fU




        (5.73) 
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Figure 5.11: Bounding vertex weight variables using an external upper bound 

Proof: Let us assume that the solution to the PLA-based mixed integer program chooses 

vertex v (with weight v ) and distributes a weight of (1- v ) across other vertices 

belonging to N(v).  Then, if there is at least one vertex in the set N(v) with a function 

value less than U, then we have the following. 

Uff
vNv

vvvv  
 )('

''    

  Uff
vNv

vvvv  
 )('

min

'  

  Uff vvvv  )1(min   

  
min

min

vv

v
v

ff

fU




  
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5.3.2 Problem Strengthening Using Constraint-based Bounds 

Consider a situation where we have a non-linear program with (a) an actual or an implied 

nonlinear function ),,( 21 YXXf involving variables 1X , 2X  and Y , where Y is a (possible 

empty) vector of variables, and (b) a constraint 0),( 21 XXh , which can be linear or 

nonlinear.  We call 0),( 21 XXh  an implied nonlinear function if it is not present in the 

original nonlinear program but has been derived from other constraints in the nonlinear 

program.  Consider the grid used to create a piecewise linear approximation of f .  If 

there are vertices in this grid that do not satisfy the constraint 0),( 21 XXh , then using a 

reasoning similar to that in the previous section, we can come up with a bound on the 

vertex weight variables. 

We first define some additional notation.  Let vh be the value of h at vertex point v 

and min
vh be the smallest value of h across all vertices with which vertex v can form a 

convex combination, i.e. , )(':Min '

min vNhh   . 

Consider a vertex v such that vh is greater than 0.  This vertex could form a 

convex combination with another vertex v' belonging to N (v).  We can have two cases. 

Case 1: All vertices v' belonging to N (v) have an 'vh value greater than 0.  Therefore, v 

cannot form a feasible convex combination with any vertex in N (v) and we can remove 

the vertex weight variable associated with vertex v in the PLA-based mixed integer 

program.  

Case 2: One or more vertices v' belonging to N (v) have an 'vh value less than 0.  

Therefore, v can form a feasible convex combination with some vertex and can have a 

positive vertex weight in the MIP solution.  In this case, we can have an upper bound on 
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the vertex weight variable associated with v given by Equation (5.74).  We could prove 

this result by the same reasoning that we used in the proofs in Section 5.3.1. 

 

min

min0

vv

v
v

hh

h




    

 
min

min

vv

v
v

hh

h


       (5.74) 
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Chapter 6: Computational Results 

6.1 GOALS  

The aim of the computations is to demonstrate the effectiveness of the PLA approach and 

of the various enhancements in terms of problem reformulation, grid design, and MIP 

modeling. 

1) Problem reformulation: We show how different reformulations of the nonlinear 

program result in different MIP solutions and thereby different local solver solutions. 

2) Grid design: We show how the absolute size, the relative size and the shape of the 

cells affect the performance of the PLA approach. 

3) MIP modeling: We illustrate the effectiveness of three types of MIP modeling 

enhancements: model formulation, model reduction and model strengthening.  

a. Model formulation-based enhancements involve using different MIP 

representations of a piecewise linear function.  Depending upon how 

adjacency conditions are imposed in a model, we can have four types of 

model formulations. 

(i) Models with segmentwise non-logarithmic adjacency involve defining 

adjacency conditions for each segment along each dimension of a non-linear 

function. 

(ii) Models with cumulative non-logarithmic adjacency have adjacency 

constraints defined for groups of contiguous segments along each dimension 

of a nonlinear function. 

(iii) Models with logarithmic adjacency use a logarithmic indexing 

scheme and corresponding adjacency conditions. 



 

 

 

 

89 

(iv) Models with SOS-2-based adjacency enforce adjacency by defining 

certain variables as SOS-2. 

b. Model reduction techniques seek to decrease the size of the PLA-based mixed 

integer program by using variable bounds 

c. Model strengthing techniques seek to increase the LP relaxation value of the 

mixed integer program by (i) creating stronger models based on the presence 

of common variables in different nonlinear functions, and (ii) adding valid 

inequalities based on the relationships between different variables that exist 

within one or more nonlinear functions.  For the former, we have three 

different model types: (i) individual grid model in which we have a PLA-

based MIP model for each variable in each non-linear function in the 

nonlinear program, (ii) pattern-based model, in which we have an individual 

PLA-based MIP model for each pattern and variable combination, and (iii) 

combined partition model, in which we have a single PLA-based MIP model 

for each variable that appears in some nonlinear function in the non-linear 

program.  As mentioned earlier, a pattern is a partition induced by a set of 

break points along the domain of a function.  For the latter, we have model 

strengthening based on valid inequalities that arise when the nonlinear 

program has constraints that link two or more variables present in one or more 

(linear or nonlinear) functions in the nonlinear program. 

To demonstrate the effectiveness of the PLA approach and of the enhancements based 

on problem reformulation, grid design, and MIP modeling, we use the following sets of 

problems. 
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1) 55 Unconstrained problems from Ali et al. (2005) 

2) 13 pooling problems from Adhya et al. (1999) 

3) 48 constrained nonlinear problems with continuos variables from Global-Lib, an 

online repository available at http://www.gamsworld.org/global/globallib.htm. 

4) 22 constrained mixed integer nonlinear problems from MINLP-Lib, an online 

repository available at http://www.gamsworld.org/minlp/minlplib/minlpstat.htm. 

Table 6.1 provides a summary of how these problem sets will be used to accomplish 

these goals. 

 

Section Goal Problem Sets 

6.2 Introduction - 

6.3 Apply the basic PLA method 

Ali et al., Global-

Lib, Pooling, 

MINLP-Lib 

6.4 Effect of increased grid resolution 
Ali et al. Global-

Lib,  MINLP-Lib 

6.5 Effect of non-uniform grids 
Ali et al., Global-

Lib 

6.6 Effect of grid shape Pooling 

6.7 Effect of indexing scheme Pooling 

6.8 Comparison with CONOPT 
Ali et al., Global-

Lib, Pooling 

6.9 Comparing grid-based and pattern-based models MINLP-Lib 

6.10 Comparing pattern-based and combined partition models MINLP-Lib 

6.11 Effect of problem reduction and strengthening strategies MINLP-Lib 

6.12 Comparison with DICOPT MINLP-Lib 

Table 6.1: Computational design 
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6.2 INTRODUCTION  

We now discuss the process that we used to apply the PLA method to the various 

problem sets.  This discussion includes (a) the hardware and software specifications of 

the environment in which these computations have been performed, (b) the different 

metrics that we have used to measure the quality of the PLA-based solutions, and (c) the 

guidelines that we have used to reformulate the nonlinear programs into a form that the 

PLA method can work on. 

6.2.1 Hardware and Software Specifications 

For our runs, we used a Windows machine with a RAM of 32 GB and a 3.40 GHz 

Intel Core i7-3770 processor.  We implemented the PLA algorithm as a C callable library 

that (a) reads from a grid specification file the set of variables, linear constraints, 

nonlinear functions and grid specifications for each of the nonlinear functions in the 

nonlinear program, (b) generates a mixed integer model, (c) solves the mixed integer 

program to optimality using Cplex 12.6 C-callable library, and (d) passes the MIP 

solution to CONOPT (version 3.15N), which acts as the local nonlinear solver.   

The grid specification file contains the following information for each nonlinear 

function that exists in the nonlinear program.  

1) Grid dimension  

2) Grid shape 

3) No of segments along each dimension 

4) Whether the grid is uniform or non-uniform 

5) No. of intervals along each dimension (for non-uniform grids) 

6) Error metrics for the shortest path (for non-uniform grids) 
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7) Number of sample points for estimating the arc costs (for non-uniform grids) 

To apply the PLA method to mixed integer nonlinear programs, we fix the integer 

variables based on the MIP solution thereby creating a continuous nonlinear program that 

can be solved using CONOPT.   

We used the following specifications for Cplex. 

1) Presolve: On 

2) MIP emphasis : Balance optimality and feasibility 

3) MIP search method: Dynamic search 

4) MIP termination criteria: CPU time of 600 seconds or 0% integrality gap 

 

6.2.2 Metrics for Measuring MIP Solution Quality 

We use the following metrics for assessing the quality of the MIP solution. 

1) Relative MIP-global distance (δ) quantifies how close the MIP solution is to the 

globally optimal solution.  If
gx and 

mx  denote the global and MIP solutions, then δ is 

defined as follows. 
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For our computations, a value less than 10
-6

 is treated as zero. 

2) Relative MIP approximation error (σ) quantifies the difference between the MIP 

objective value as given by the MIP solver and the true function value of the MIP 

solution.  The true function value of the MIP solution is the solution’s objective 

function value in the original non-linear program.  If sol
mz denotes the objective value 
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of the MIP as given by the solver and mz  denotes the true value of the MIP solution, 

then σ is defined as follows. 


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3) Relative MIP-global gap (μ) indicates how close the true value of the MIP solution is 

to the objective value of the global solution.  If gz  denotes the objective value of the 

global solution and mz  denotes the true cost of the MIP solution, then μ is defined as 

follows. 
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4) Fraction of feasible constraints (φ) indicates the fraction of constraints in the original 

nonlinear program that are satisfied by the MIP solution.  This metric is used only for 

constrained optimization problems. 

 = No. of constraints satisfied by MIP solution / Total no. of original constraints  

5) Fraction of correctly identified integer variables (ψ) indicates the fraction of integer 

variables in the original nonlinear program that have the same value in the MIP 

solution as in the globally optimal solution to the original nonlinear program.  This 

metric is used only for mixed integer nonlinear problems. 

ψ = No. of correctly identified integer variables / Total no. of integer variables 
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6) Relative local-global gap (η), which indicates how close the objective value of the 

final local solution (found by the local nonlinear solver) is to the objective value of 

the global solution.  If gz  denotes the objective value of the global solution and nz  

denotes the objective value of the final local (nonlinear) solution, then η is defined as 

follows. 
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6.2.3 Reformulation Guidelines 

The following guidelines were used for the functional reformulations. 

6.2.3.1 Minimizing Number of Grids 

In general, we attempted to create reformulations that resulted in fewer grids and 

thereby a smaller mixed integer program.  However, there are exceptions to this 

guideline.  For example, if we can only choose from uniform grids, then for a function 

such as 2)sin( xxf(x)  , it might be useful to have a single grid for both the terms. But 

if we can use non-uniform grids, then it might be better to choose two different non-

uniform grids for the two terms so that we can have an overall better approximation 

quality. 

We now illustrate the effectiveness of using fewer grids for Neumaier-3 and the 

Shekel Foxholes problems. 

a) Shekel Foxholes 

The Shekel Foxholes problem, shown in Equation (6.1), can have two different 

reformulations. 
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Reformulation II 





30

1

Min
j

juz         (6.6) 

}30...,,1{,
1

 j
w

u
j

j
       (6.7) 

30,...,1,)(
1

2  


jvcw
n

i

jijj       (6.8) 

}30...,,1{},...,,1{,)( 2  jniaxv jiiji      (6.9) 

Since Reformulation I can provide the same approximation quality with 30n one-

dimensional grids as that provided by Reformulation II with 3030 n grids, we used 

Reformulation I for the Shekel and the Shekel Foxholes problems. 

b) Neumaier-3 

The Neumaier-3 problem, shown in Equation (6.10), can have two different 

reformulations. 
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}1,..,2,1{, 21212  
n

iii ixxv        (6.18) 

Reformulation I has n one-dimensional grids and 1n  two-dimensional grids 

whereas Reformulation II contains n one-dimensional grids, 12/ n  two-dimensional 

grids and an additional 12/ n  constraints.  Since Reformulation II leads to a smaller 

mixed integer program, we used it for the Neumaier-3 problem. 

 

6.2.3.2 Applying Periodic Transformations 

For problems that involve trigonometric functions defined over an interval whose 

length is greater than 2π, we used a trigonometric transformation that significantly 

improves the approximation quality at the cost of adding a few integer variables to the 

PLA-based mixed integer program.  Consider the function y = sin(x) such that

2,  luuxl .  Since this function repeats every 2π units, we can set x = 2K π + w, 
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where w is a continuous variable that lies within [0, 2π] and K an integer variable such 

that      2/,2/)2( ulK  .  We obtain these bounds on K as follows.   

1) Lower bound: lx  , or, lwK 2 , or  2/)2(2/)(  lwlK  

2) Upper bound: ux  , or, uwK 2 , or,  2/2/)( uwuK   

 Since sin(x) = sin(w), we have effectively defined the approximation over the 

smaller interval [0, 2π] rather than over the original interval larger [l, u].  This 

transformation applies to any periodic function.  We used this transformation in problems 

such as LM-1, LM2-n5, LM2-n10, Shubert, ZeldaSine10 and ZeldaSine20 and could 

effectively solve them using a coarse 8-segment grid. 

6.2.3.3 Scaling Variables 

In some problems, the range of one function acts as a domain of another function.  

Therefore, by reducing the range of values that one function can take, we can reduce the 

domain of another function and thereby improve the approximation quality of a grid 

without actually increasing the size of the mixed integer program.  

We use scaling to reduce the range of some of the functions in the Storn Tchebychev 

problem. 
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  60,661.72,256,256:9For  mdxn i

  100,145.10558,32768,32768:17For  mdxn i  

This problem can be reformulated in two ways: one with the original variables 

and another with the scaled variables.  For Storn Tchebychev-17, the x variable can take 

values from 32768 to32768 .  As a result, the u, v and w variables can take values over a 

very large range, which lead to a very large domain for the square functions.  However, if 

we scale the problem by dividing the x variables by 32768, then x/32768 takes values 

between -1 and 1.  As a result, the domains for the square functions become very small, 

and we can get a good approximation even with a coarse 8-segment grid.  For example, in 

the non-scaled problem, u lies between 61047.3  and 61047.3  but in the scaled 

problem, u  takes values between 17 and17 .    

Reformulation I (without scaling) 
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Reformulation II (with scaling) 
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6.3 APPLYING THE BASIC PLA METHOD 

We now discuss the results that we obtained by applying a uniform 8-segment 

rectangular grid with a pattern-based model to the various test problems.  We call these 

results baseline results since they depict the performance of the basic method without any 

enhancements in terms of grid design or MIP-modeling.  

 

6.3.1 Baseline Results for Ali et al. Problems 

We first discuss the baseline results for the Ali et al. problems which are a set of 

unconstrained nonlinear problems designed to have multiple localy optimal solutions. 10 

of the 55 problems involve functions with discontinuous derivatives whereas the rest 

involve functions with continuous derivatives.  The distribution of the number of 

variables in the problems is as follows: 24 problems with 2–3 variables, 13 problems with 

4–5 variables, 16 problems with 6–10 variables and two problems with 11–20 variables.  

Further, 25 problems involve trigonometric functions and 13 problems involve the 

exponential function.  For each problem, we used the best reformulation that we could 

create.  Refer to Appendix A7 for more details. 
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Problem 

NLP 

Size 

(cont) 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP

Global 

Distance 

δ 

Rel. MIP 

Global 

Obj. Gap 

μ 

Rel. Local 

Global 

Obj. Gap 

η 

Ackleys 10 143/96/289 0 0% 0% 0% 0% 

AluffiPentini 2 23/16/47 0 100% 0% 100% 0% 

BeckerLago 2 23/16/47 0 >100% 0% 0% 0% 

Bohachevsky1 2 23/16/47 0 0% 0% 0% 0% 

Bohachevsky2 2 103/16/64 0 0% 0% 0% 0% 

Branin 2 103/16/64 0 7% 0% >100% 0% 

Camel3 2 109/16/64 0 0% 0% 0% 0% 

Camel6 2 103/16/64 0 >100% 0% >100% 0% 

CosMix2 2 23/16/47 0 0% 0% 0% 0% 

CosMix4 4 45/32/93 0 0% 0% 0% 0% 

Dekkers Aarts 2 103/16/64 0 0% 0% 0% 0% 

Easom 2 103/16/64 0 20% 0% 72% 0% 

EMichalewicz 5 61/40/121 0 37% 16% 47% 25% 

Expo 10 122/88/255 0 0% 0% 0% 0% 

GoldPrice 2 103/16/64 0 0% 0% 0% 0% 

Griewank 10 922/144/579 0 0% 0% 0% 0% 

Gulf 3 761/24/95 0 45% 0% >100% 0% 

Hartman3 3 87/56/175 12 21% 88% 34% 0% 

Hartman6 6 129/80/253 0 24% 49% 20% 0% 

Helical 3 114/24/87 0 >100% 0% >100% 0% 

Hosaki 2 103/16/64 0 8% 0% 5% 0% 

Kowalik 4 6603/32/126 0 45% 0% 63% 0% 

LM1 3 230/48/176 0 0% >100% 0% 0% 

LM2n5 5 528/88/345 209 27% 14% >100% 0% 

LM2n10 10 1043/168/665 5129 26% 8% >100% >100% 

Table 6.2: Baseline results for Ali et al. problems 
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Problem 

NLP 

Size 

(cont) 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP

Global 

Distance 

δ 

Rel. MIP 

Global 

Obj. Gap 

μ 

Rel. Local 

Global 

Obj. Gap 

η 

McCormic 2 103/16/64 0 16% 0% 6% 0% 

MeyerRoth 3 761/24/95 0 >100% 0% >100% >100% 

MieleCantrell 4 288/32/147 0 0% 0% 0% 0% 

ModLangerman 10 206/120/391 0 7% >100% 99% 72% 

ModRosenbrock 2 103/16/64 0 100% 0% >100% 0% 

MultiGauss 2 78/56/167 0 100% >100% 1% 0% 

Neumaier2 4 97/64/197 0 25% 24% >100% 0% 

Neumaier3 10 561/112/418 384 48% >100% >100% 0% 

OddSquare 10 214/116/336 5120 >100% >100% >100% 0% 

Paviani 10 132/88/265 0 4% 4% 6% 0% 

Periodic 2 103/16/64 0 0% 0% 0% 0% 

Powell 4 288/32/147 0 0% 0% 0% 0% 

Price 9 60682/128/750 1207 >100% 25% >100% >100% 

Rastrigin 10 111/80/231 0 0% 0% 0% 0% 

Rosenbrock 10 848/80/401 0 100% >100% >100% 0% 

Salomon 5 77/56/163 0 0% 0% 0% 0% 

Schaffer1 2 103/16/64 0 0% 0% 0% 0% 

Schaffer2 2 103/16/64 0 0% 0% 0% 0% 

Schwefel 2 111/80/231 0 11% 0% 56% 0% 

Shekel5 10 100/72/213 0 6% >100% 70% 0% 

Shekel7 4 122/88/261 0 6% >100% 69% 0% 

Shekel10 4 155/112/333 0 6% >100% 68% 0% 

ShekelFox5 4 386/280/836 28225 12% >100% 92% 0% 

ShekelFox10 5 441/320/951 35002 11% >100% 96% 0% 

Shubert 10 225/96/306 2238 >100% 8% 0.1% 0% 

Table 6.2 contd.: Baseline results for Ali et al. problems 
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Problem 

NLP 

Size 

(cont) 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP

Global 

Distance 

δ 

Rel. MIP 

Global 

Obj. Gap 

μ 

Rel. Local 

Global 

Obj. Gap 

η 

StChebychev9 10 1501/992/3104 0 1% 0% 0% 0% 

StChebychev17 20 2469/1632/5104 0 7% >100% 0% 0% 

Wood 9 287/32/146 0 100% 0% >100% 0% 

ZeldaSine10 17 1721/208/915 1199 6% 2% 32% 0% 

ZeldaSine20 4 3641/448/1955 8701 6% 4% 40% 0% 

Table 6.2 contd.: Baseline results for Ali et al. problems 

1. For all except five problems, the basic PLA method is able to provide a starting point 

that lies in the basin of attraction of the global solution.  The problems for which the 

PLA method does not lead to the global solution are: EMichalewicz, LM2N10, 

MeyerRoth, ModLangerman, and Price.  

2. For problems such as LM1, the periodic function transformation gives a MIP solution 

that is actually the global solution.  This is the not the case when we use a 

conventional reformulation without the periodic transformation. 

3. If we attempt problems such as LM2n5 and LM2n10 without the periodic 

transformation, the quality of the MIP solution, as shown in Table 6.3, is relatively 

poor.  For example, without a periodic transformation, the relative MIP global 

distance increases from 14% to 25% for LM2n5 and from 8% to 25% for LM2n10. 

4. For problems such as StChebychev9 and StChebychev17, scaling the variables leads 

to a MIP solution that is also the global solution.  As shown in Table 6.3, non-scaled 

reformulations provide MIP solutions that have a very poor quality in terms of the 



 

 

 

 

104 

relative MIP approximation error, which is the difference between the objective value 

of the MIP solution and the true cost of the MIP solution.  This is probably due to the 

squared terms in the objective function which magnifies the approximation error 

especially when the range of the variables is large as it is in the non-scaled 

reformulation.  

5. For oddSquare, the quality of the MIP solution is not good probably because of the 

shape of the function in which the contour lines resemble a pond with rectangular 

ripples. 

6. For ShekelFox problems, the function landscape is such that there are a large number 

of depressions or troughs, one of which is the global minimum. And the MIP solution 

yielded by a coarse grid happens to be far from the global minimum. 

Problem 

NLP 

Size 

(cont) 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

Rel.MIP

Global 

Distance 

δ 

Rel. 

MIP Approx. 

error| 

σ 

Abs MIP 

Global 

Obj. Gap 

Abs. 

Local 

Global 

Obj. Gap 

LM2n5 5 381/40/189 0 25.00% 0% 0.1 0.021 

LM2n10 10 841/80/394 0 25.00% 0% 0.1469 0 

StChebychev9 9 1501/992/3104 0 0.60% 1.43 x 10
5
 0.0009 0 

StChebychev17 17 2469/1632/5104 0 29.88% 1.91 x 10
4
 49.8446 0 

Table 6.3: Results for poor reformulations of selected Ali et al. problems 

7. For problems such as Hartman-3 and Hartman-6, we have a hierarchy of functions 

such that the range of the functions at a lower level (say Level I) affects the domain 

of the function at a higher level (say Level II).  Consider the Hartman-3 problem 

given by Equation (6.55). 
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expMin

i j

ijjiji pxacz       (6.55)  

}3,2,1{,10..  jxts j , constants aij, pij and ci as in Table 1.     

 

i ci 
aij pij 

j=1 j=2 j=3 j=1 j=2 j=3 

1 1 3 10 30 0.3689 0.117 0.2673 

2 1.2 0.1 10 35 0.4699 0.4387 0.747 

3 3 3 10 30 0.1091 0.8732 0.5547 

4 3.2 0.1 10 35 0.03815 0.5743 0.8828 

Table 6.4: Data for Hartman 3 

We reformulate this problem as follows. 





4

1

Min
i

iiucz          (6.56) 

s.t. }4,3,2,1{,
3

1




iyw
j

iji        (6.57) 

  }3,2,1{},4,3,2,1{,
2

 jipxay ijjijij       (6.58) 

  }4,3,2,1{,exp  iwu ii         (6.59) 

The functions defined by Equations (6.58) are Level I functions whereas the 

functions defined by Equation (6.59) are Level II functions.  We found that in the MIP 

solution for Hartman-3, the MIP solver always chose a grid point for the Level 1 

functions.  This phenomenon is also observed in other problems such as Hartman-6 and 

Odd-Square in which there is a hierarchy of grids and there are no constraints to prevent 

the dependent variables from taking certain values.  The advantage of this phenomeon is 
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that we can need not have any adjacency conditions from the Level-I grids and thereby 

decrease the size of the overall mixed integer program. 

8. The solution time for the price problem is quite high (57 seconds) perhaps 

because of the size of the MIP, which follows from the presence of nine four-dimensional 

in the problem.  We will later discuss how we can solve this problem by using a mix of 

high and low-dimensional grids such that the low-dimensional grids have a high-

resolution and the high dimensional grids have a low resolution.   
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6.3.2 Baseline Results for Pooling Problems 

We now show how the basic PLA method performs on pooling problems which 

contain the bilinear function in the constraints but have a linear objective function.  

 

Problem 

NLP 

Size 

(var/con

str) 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

MIP 

time 

(CPU 

s) 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Rel. Local 

Global 

Obj. Gap 

η 

adhya1 21/40 2789/ 128/ 1022 3954 4.098 6.60% 31.72% 29/40 87.50% 

adhya2 25/60 2809/ 128/ 1042 4235 4.748 8.32% 32.99% 45/60 0.00% 

adhya3 38/66 2846/ 128/ 1056 4320 7.645 111.65% 36.65% 44/66 18.60% 

adhya4 26/48 2802/ 128/ 1038 193 1.159 94.23% 43.48% 40/48 0.00% 

foulds2 10/6 1000/ 146/ 686 0 0.061 18.34% >100% 11/12 0.00% 

foulds3 41/28 11888/ 1088/ 5534 0 2.063 56.96% 9.08% 35/40 0.00% 

foulds4 26/12 11888/ 1088/ 5534 0 2.198 69.32% 9.37% 33/40 0.00% 

foulds5 168/40 5960/ 544/ 2810 55 2.56 75.63% 9.04% 28/36 0.00% 

bental4 168/40 259/ 41/ 195 0 0.124 0.00% >100% 6/6 0.00% 

bental5 100/36 2929/ 210/ 1320 0 0.564 100.00% 0.00% 23/28 0.00% 

haverly1 9/6 258/ 41/ 193 0 0.156 0.00% >100% 5/6 0.00% 

haverly2 9/6 258/ 41/ 193 0 0.165 >100% 0% 6/6 0% 

haverly3 9/6 258/ 41/ 193 0 0.039 >100% 0% 6/6 0% 

Table 6.5: Baseline results for pooling problems 

 For 9 out of the 11 pooling problems, the MIP solution led CONOPT to obtain the 

globally optimal solution.  The two pooling problems that are currently unsolved are 

adhya-1 and adhya-2.  
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6.3.3 Baseline Results for Global-Lib Problems 

We now show how the basic PLA method performs on the Global-Lib problems 

which contain a wide variety of one and higher dimensional nonlinear functions such as 

the power function, the multiplicative inverse function, the exponential function, the 

logarithmic function and the bilinear function.   

 

 

Problem 

NLP 

Size 

(cont/ 

constr) 

MIP Size 

(cont/bin/ 

constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Rel. Local 

Global 

Obj. Gap 

η 

ex14_1_1 4/5 108/16/72 0 0% 100% 3/5 0% 

ex14_1_2 7/10 383/40/199 0 0% 20% 5/10 0% 

ex14_1_3 4/5 106/16/70 0 0% 29% 3/5 0% 

ex14_1_5 7/7 59102/40/163 0 0% 22% 2/7 0% 

ex14_1_6 10/16 336/64/257 0 0% 96% 9/16 0% 

ex14_1_8 4/5 105/16/69 0 0% 4% 3/5 0% 

ex14_1_9 3/3 14/8/27 0 0% 67% 2/3 0% 

ex14_2_1 6/8 6636/48/398 10 0% 0% 5/8 0% 

ex14_2_2 5/6 454/32/192 0 0% 0% 4/6 0% 

ex14_2_3 7/10 428/72/296 0 0% 3% 6/10 0% 

ex14_2_4 6/8 2787/80/435 0 0% 0% 5/8 0% 

ex14_2_5 5/6 526/24/188 0 0% 0% 4/6 0% 

ex14_2_6 6/8 636/104/429 117 0% 3% 5/8 0% 

ex14_2_7 7/10 7394/128/576 0 0% 32% 6/10 0% 

ex14_2_8 5/6 511/72/314 0 0% 50% 4/6 0% 

ex14_2_9 5/6 690/24/226 23 0% 0% 4/6 0% 

Table 6.6: Baseline results for Global-Lib problems 
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Problem 

NLP 

Size 

(cont/ 

constr) 

MIP Size 

(cont/bin/ 

constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Rel. Local 

Global 

Obj. Gap 

η 

ex2_1_1 6/2 57/40/118 0 0% 0% 1/2 0% 

ex2_1_10 21/11 223/160/473 0 9% 0% 10/11 0% 

ex2_1_2 7/3 58/40/119 0 0% 0% 2/3 0% 

ex2_1_3 14/10 55/32/103 0 0% 0% 9/10 0% 

ex2_1_4 7/6 17/8/29 0 0% 0% 6/6 0% 

ex2_1_5 11/12 82/56/174 0 0% 0% 10/12 0% 

ex2_1_6 11/6 112/80/237 0 0% 0% 5/6 0% 

ex2_1_7 21/11 222/160/472 0 5% 22% 10/11 1% 

ex2_1_9 11/2 1257/152/676 10328 12% 37% 1/2 0% 

ex3_1_1 9/7 491/64/278 0 0% 27% 4/7 0% 

ex3_1_2 6/7 626/40/251 4 >100% 0% 4/7 0% 

ex3_1_3 7/7 67/48/145 0 88% 0% 6/7 0% 

ex3_1_4 4/4 307/48/196 0 0% >100% 4/4 0% 

ex4_1_1 2/1 12/8/24 0 0% 69% 0/1 0% 

ex4_1_3 2/1 12/8/24 0 0% 1% 0/1 0% 

ex4_1_4 2/1 12/8/24 0 0% 100% 1/1 0% 

ex4_1_6 2/1 12/8/24 0 0% 17% 0/1 0% 

ex4_1_7 2/1 12/8/24 0 0% 25% 0/1 0% 

ex4_1_8 3/2 23/16/48 0 0% 7% 1/2 0% 

ex4_1_9 3/3 15/8/28 0 0% 2% 2/3 0% 

ex5_2_2_case1 10/7 201/24/111 0 0% 62% 4/7 0% 

ex5_2_2_case2 10/7 201/24/111 0 0% 44% 3/7 0% 

ex5_2_2_case3 10/7 201/24/111 0 0% 49% 5/7 0% 

ex5_2_4 8/7 567/56/279 0 2% 6% 4/7 0% 

ex5_3_2 23/17 1097/80/465 0 0% 7% 8/17 0% 

Table 6.6 contd.: Baseline results for Global-Lib problems 
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Problem 

NLP 

Size 

(cont/ 

constr) 

MIP Size 

(cont/bin/ 

constr) 

MIP 

nodes 

Rel. 

MIP 

Approx. 

error| 

σ  

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Rel. Local 

Global 

Obj. Gap 

η 

ex5_4_2 9/7 491/64/278 0 0% 36% 3/7 0% 

ex5_4_3 17/14 781/96/430 0 0% 0% 13/14 0% 

ex6_1_2 5/4 371/32/170 0 >100% 79% 1/4 >100% 

ex6_1_4 7/5 4444/48/308 21 >100% 55% 1/5 0% 

ex6_2_14 5/3 1029/32/323 0 0% 0% 2/3 0% 

ex7_2_2 7/6 391/48/216 0 0% >100% 1/6 0% 

ex8_3_1 116/113 
16969/840/ 

6053 
14060 0% 89% 11/78 0% 

Table 6.6 contd.: Baseline results for Global-Lib problems 

 46 out of 48 problems could be solved to global optimality using the PLA approach.  

In Section 6.8, we discuss the performance of CONOPT on the Ali et al. and the 

Global-Lib problems using a default starting point in which every variable has a value 

of zero.  

 ex2_1_7 and ex8_3_1, which could not be solved to global optimality, are solved 

using a finer grid. Refer to Section 6.4.2 for more details.  

 For all problems except ex14_1_5, ex14_2_1, and ex2_1_9, the MIP was solved 

within 1 second.  For these three problems, the Cplex took between two to three 

seconds to solve the PLA-based MIP.  

 For most of the problems, the relative MIP approximation error is zero.  This implies 

that the MIP solution occurs at a gid point in spite of the presence of constraints. 
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6.3.4 Baseline Results for MINLP-Lib Problems 

We now discuss the results when we apply the PLA method to mixed integer 

nonlinear problems which are the hardest problems in our set.  As part of the solution 

process, we fix the integer variables in the MINLP to their PLA solution values and then 

use CONOPT to solve the resulting continuous nonlinear program. 

 

Problem 

NLP Size 

(cont/int/const

r) 

MIP 

Size 

(cont/bin

/ constr) 

MIP 

nodes 

MIP 

time 

(CPU 

sec) 

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Fraction 

of 

correctly 

identified 

integer 

variables 

ψ 

Rel. 

Local 

Global 

Obj. 

Gap 

η 

ex1221 3/3/6 19/52 0 0.0 61% 3/6 2/3 3% 

ex1222 3/1/4 9/28 0 0.0 0% 3/4 1/1 0% 

ex1223 8/4/14 60/180 0 0.1 47% 13/14 3/4 27% 

ex1223a 4/4/10 28/82 0 0.0 42% 9/10 3/4 27% 

ex1223b 4/4/10 60/176 0 0.1 42% 9/10 3/4 27% 

ex1224 4/8/8 32/105 0 0.1 3% 5/8 8/8 0% 

ex1225 3/6/11 22/74 0 0.0 0% 11/11 6/6 0% 

ex1226 3/3/6 19/71 0 0.1 0% 5/6 3/3 0% 

ex1233 41/12/65 236/981 0 1.7 12% 56/65 12/12 0% 

ex1244 73/23/130 397/1705 86 2.6 59% 122/130 23/23 0% 

ex1252 25/15/44 255/1112 9570 5.6 15% 35/44 10/15 2% 

ex1252a 16/9/35 243/1103 8325 5.1 93% 28/35 2/9 9% 

ex1263 21/72/56 232/800 358 0.6 26% 56/56 62/72 0% 

ex1263a 1/24/36 164/780 2579 1.7 65% 34/36 6/24 9% 

ex1264 21/68/56 228/800 734 1.4 54% 55/56 57/68 0% 

ex1264a 1/24/36 164/780 676 0.8 222% 32/36 5/24 3% 

Table 6.7: Baseline results for MINLP-Lib problems 
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Problem 

NLP Size 

(cont/int/const

r) 

MIP 

Size 

(cont/bin

/ constr) 

MIP 

nodes 

MIP 

time 

(CPU 

sec) 

Rel.MIP 

Global 

Distance 

δ 

Fraction of 

feasible 

constraints  

φ  

 

Fraction 

of 

correctly 

identified 

integer 

variables 

ψ 

Rel. 

Local 

Global 

Obj. 

Gap 

η 

ex1265 31/100/75 340/1210 558 1.2 0% 74/75 100/100 0% 

ex1265a 1/35/45 245/1180 9287 6.7 266% 44/45 12/35 0% 

ex1266 43/138/96 474/1704 0 0.5 35% 96/96 131/138 0% 

ex1266a 1/48/54 342/1662 3485 6.1 314% 54/54 11/48 0% 

gasnet 81/10/70 598/2816 15323 601.5 11% 32/70 5/10 2% 

synheat 45/12/65 236/984 0 1.7 10% 61/65 12/12 0% 

Table 6.7 contd.: Baseline results for MINLP-Lib problems 

1. For 13 out of 22 problems, the PLA approach could lead to the globally optimal 

solution.  

2. The problems for which the local solution was not the global solution (i.e., ex1221, 

ex1223, ex1223a, ex1223b, ex1252, ex1252a, ex1263a, ex1264a, and gasnet) become 

candidates for applying more sophisticated techniques. 

3. In Section 6.4.3, we discuss how to solve ex1221, ex1223, ex1223a, ex1223b, 

ex1252, and ex1252a using a finer grid. In Section 6.11, we discuss how to solve 

gasnet. The PLA method could not solve ex1263a and ex1264a. 

6.4 EFFECT OF INCREASED GRID RESOLUTION 

For those problems for which the MIP solution quality as measured by the MIP-

global objective difference was high, we applied the PLA method with high-resolution 

grids and found that for many problems, the solution quality improves significantly as the 

grid becomes finer.  
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6.4.1 Effect of Increased Grid Resolution on Ali et al. Problems  

We first discuss the effect of applying high resolution grids to the Ali et al. 

problems.  Here we use another metric which we call the absolute MIP-Global Objective 

gap which is the absolute difference between the objective value of the global solution 

and the true cost of the MIP solution.  This metric is more useful than the relative MIP-

Global Objective gap for problems that have a global objective value of zero since it 

helps us observe how for these problems, the true cost of the MIP solution approaches the 

objective value of the global solution as we increase the grid resolution.   

 

Problem 
No. of 

Segments 
MIP nodes 

Rel.MIPGlobal 

Distance 

δ 

Rel. 

MIP 

Approx. 

error| 

σ 

Abs 

MIP-

Global 

Obj. gap 

Rel. MIP 

Global 

Obj. Gap 

μ 

AluffiPentini 32 0 19.42% 0.00% 0.0565 16.03% 

AluffiPentini 64 0 10.43% 0.00% 0.0123 3.49% 

AluffiPentini 128 0 4.50% 0.00% 0.0026 0.75% 

Camel6 32 0 48.24% 0.00% 0.5155 49.97% 

Camel6 64 0 2.10% 0.00% 0.0012 0.11% 

Camel6 128 0 2.10% 0.00% 0.0012 0.11% 

EMichalewicz 32 0 28.53% 0.00% 0.4705 10.04% 

EMichalewicz 64 0 19.84% 0.00% 0.1749 3.73% 

EMichalewicz 128 0 0.53% 0.00% 0.0402 0.86% 

Gulf 32 0 16.84% 0.00% 0.0023 100% 

Gulf 64 0 5.50% 0.00% 0.0006 100% 

Helical 32 0 25.00% 0.00% 6.25 100% 

Helical 64 0 6.25% 0.00% 0.3906 100% 

Helical 128 0 6.25% 0.00% 0.3906 100% 

Table 6.8: Effect of increased grid resolution on Ali et al. problems 
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Problem 
No. of 

Segments 
MIP nodes 

Rel.MIPGlobal 

Distance 

δ 

Rel. 

MIP 

Approx. 

error| 

σ 

Abs 

MIP-

Global 

Obj. gap 

Rel. MIP 

Global 

Obj. Gap 

μ 

MeyerRoth 32 0 9.74% 0.00% 0.0001 125.64% 

MeyerRoth 64 0 4.20% 0.00% 0 42.85% 

ModLangerman 32 0 1.55% 27.20% 0.2096 21.72% 

ModLangerman 64 0 0.54% 2.94% 0.0285 2.96% 

ModRosenbrock 32 0 6.25% 0.00% 0.441 100% 

ModRosenbrock 64 0 128.71% 0.00% 0.1006 100% 

ModRosenbrock 128 0 122.72% 0.00% 0.0103 100% 

Neumaier2 32 0 20.34% 4.79% 12.1327 100% 

Neumaier2 64 0 3.59% 4.20% 4.6847 100% 

Neumaier2 128 0 0.42% 2.29% 0.4459 100% 

Neumaier3 32 4072 9.27% 21.63% 29.375 13.99% 

Neumaier3 64 17188 3.06% 3.60% 6.4258 3.06% 

Price 6–16 1367 114.37% 18.33% 136264 0% 

Rosenbrock 32 0 100.00% 800.00% 1 100% 

Rosenbrock 64 0 6.25% 9.00% 0.3472 100% 

Rosenbrock 128 0 6.25% 9.00% 0.3472 100% 

Shekel5 32 0 1.56% 14.99% 1.3469 13.27% 

Shekel5 64 0 1.56% 14.60% 1.3469 13.27% 

Shekel5 128 363 0.39% 0.88% 0.0978 0.96% 

Shekel7 32 0 7.95% 335.86% 7.8025 75.00% 

Shekel7 64 253 1.78% 18.80% 1.6815 16.16% 

Shekel7 128 0 0.39% 0.90% 0.098 0.94% 

Shekel10 32 194 7.95% 319.67% 7.8033 74.06% 

Shekel10 64 1001 1.78% 18.52% 1.6802 15.95% 

Shekel10 128 2041 0.39% 0.89% 0.0985 0.93% 

Table 6.8 contd.: Effect of increased grid resolution on Ali et al. problems 
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Problem 
No. of 

Segments 
MIP nodes 

Rel.MIPGlobal 

Distance 

δ 

Rel. 

MIP 

Approx. 

error| 

σ 

Abs 

MIP-

Global 

Obj. gap 

Rel. MIP 

Global 

Obj. Gap 

μ 

Wood 32 0 84.09% 0.00% 10.3594 100% 

Wood 64 0 6.25% 0.00% 0.8164 100% 

Wood 128 0 25.48% 0.00% 0.533 100% 

ZeldaSine10 16 182 3.00% 1.22% 0.4432 12.66% 

ZeldaSine20 16 8896 3.13% 1.00% 0.7689 21.97% 

Table 6.8 contd.: Effect of increased grid resolution on Ali et al. problems 

1) For problems such as AluffiPentini, Camel6, EMichalewicz, Neumaier3, Shekel5, 

Shekel7, and Shekel10, 128-segment grids can provide MIP solutions that have a cost 

that is within 1% of the objective value of the global solution.  

2) Out of the five unsolved problems, two problems (MeyerRoth, and 

ModLangerman) can be solved to global optimality by using finer grids.   

3) If a problem contains both low-dimensional and high-dimensional functions, then 

we can use a high-resolution grid for the low-dimensional functions and low-resolution 

grids for the high-dimensional functions.  We employ this method in solving the price 

problem, which is expressed as follows 

 

 



4

1

222Min
k

kkz          (6.60)

245857315321 }1)]*001.0**001.0*({exp[)1( xggxgxggxxxx kkkkkk    

4,...,1for k   (6.61) 

kkkkkkk gxgxgxgggxxxx 4159473216421 }1)]*001.0**001.0*({exp[)1(   
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                                                                                                4,...,1for k   (6.62) 

4231 xxxx           (6.63) 

Reformulation 

 



4

1

Min
k

kk qptz         (6.64) 

321 )1( xxxu           (6.65) 

421 )1( xxxv           (6.66) 

4,...,1for*001.0**001.0* 85731  kxgxggr kkkk     (6.67) 

4,...,1for*001.0**001.0* 947321  kxgxgggs kkkkk    (6.68)  

  4,...,1for}1]{exp[
2

2455  kxggrxup kkkk        (6.69) 

  4,...,1for}1]{exp[
2

4156  kgxgsxvq kkkk                 (6.70) 

2

4231 )( xxxxt                       (6.71) 

We used three-dimensional grids for Equations (6.65) and (6.67), and four-

dimensional grids for linearizing Equations (6.68 – 6.71).  Further, by using 6 segments 

per dimension for the four-dimensional grids and 16-segments per dimension for the 

three-dimensional grids, we are able to get a MIP solution that lies in the basin of 

attraction of the global solution.  

4) In Section 6.5, we discuss how we solved the two unsolved Ali et al. problems 

(EMichalewicz and LM2n10) using non-uniform grids. 

6.4.2 Effect of Increased Grid Resolution on Global-Lib Problems  

We now discuss the effect of applying high resolution grids to Global-Lib 

problems. 
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Problem 
No. of 

Segments 

MIP Size 

(cont/bin/ 

constr) 

MIP 

time 

(CPU 

sec) 

MIP 

nodes  

 

Rel.MIP

Global 

Distance 

δ 

Fraction of 

feasible 

constraints 

φ 

 

Rel. 

Local 

Global 

Obj. Gap 

η 

ex14_1_3 8 106/16/70 0.031 0 29.37% 3/5 0.00% 

ex14_1_3 16 330/32/134 0.037 0 11.78% 3/5 0.00% 

ex14_2_7 8 7394/128/576 0.655 0 32.14% 6/10 0.00% 

ex14_2_7 16 
86146/256/11

20 

281.3

6 
426 0.45% 6/10 0.00% 

ex14_2_8 8 511/72/314 0.047 0 50.32% 4/6 0.00% 

ex14_2_8 16 1623/144/610 0.234 4 1.71% 4/6 0.00% 

ex2_1_7 8 222/160/472 0.179 0 21.70% 10/11 0.76% 

ex2_1_7 16 382/320/952 0.125 0 0.00% 7/11 0.00% 

ex2_1_9 8 1257/152/676 2.447 10328 37.34% 1/2 0.00% 

ex2_1_9 16 
4113/304/134

0 
9.227 21272 14.10% 1/2 0.00% 

ex3_1_1 8 491/64/278 0.108 0 26.84% 4/7 0.00% 

ex3_1_1 16 1595/128/550 0.468 618 4.13% 4/7 0.00% 

ex4_1_1 8 12/8/24 0.001 0 68.52% 0/1 0.00% 

ex4_1_1 16 20/16/48 0 0 0.32% 0/1 0.00% 

ex4_1_6 8 12/8/24 0.001 0 16.67% 0/1 0.00% 

ex4_1_6 16 20/16/48 0 0 4.17% 0/1 0.00% 

ex4_1_7 8 12/8/24 0.003 0 25.00% 0/1 0.00% 

ex4_1_7 16 20/16/48 0 0 25.00% 0/1 0.00% 

ex5_2_2_case1 8 201/24/111 0.007 0 62.44% 4/7 0.00% 

ex5_2_2_case1 16 641/48/215 0.079 0 43.60% 3/7 0.00% 

Table 6.9: Effect of increased grid resolution on Global-Lib problems 
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Problem 
No. of 

Segments 

MIP Size 

(cont/bin/ 

constr) 

MIP 

time 

(CPU 

sec) 

MIP 

nodes  

 

Rel.MIP

Global 

Distance 

δ 

Fraction of 

feasible 

constraints 

φ 

 

Rel. 

Local 

Global 

Obj. Gap 

η 

ex5_2_2_case2 8 201/24/111 0.149 0 44.41% 3/7 0.00% 

ex5_2_2_case2 16 641/48/215 0.031 0 24.35% 3/7 0.00% 

ex5_2_2_case3 8 201/24/111 0.009 0 49.12% 5/7 0.00% 

ex5_2_2_case3 16 641/48/215 0.25 0 32.57% 4/7 0.00% 

ex5_4_2 8 491/64/278 0.188 0 35.83% 3/7 0.00% 

ex5_4_2 16 1595/128/550 0.406 485 6.18% 4/7 0.00% 

ex6_1_2 8 371/32/170 0.007 0 79.16% 1/4 100.01% 

ex6_1_2 16 1235/64/330 0.328 61 20.02% 1/4 0.00% 

ex6_1_4 8 4444/48/308 0.313 21 55.18% 1/5 0.00% 

ex6_1_4 16 29596/96/596 2.826 101 0.96% 1/5 0.00% 

Table 6.9 contd.: Effect of increased grid resolution on Global-Lib problems 

1) The two Global-Lib problems (ex2_1_7 and ex6_1_2) which could not be solved 

using the basic PLA method could be solved to global optimality by increasing the 

grid resolution. 

2) The relative MIP-Global distance metric also improves as we increase the grid 

granularity.  However, in most cases, the fraction of feasible constraints does not 

improve with grid resolution. 

6.4.3 Effect of Increased Grid Resolution on MINLP-Lib Problems 

We now discuss the effect of applying the PLA method with high resolution grids 

to MINLP-Lib problems. 
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Problem 
No. of 

Segments 

MIP Size 

(cont/bin/constr) 

MIP 

nodes 

MIP 

time 

(CPU 

sec) 

Rel.MIP

Global 

Distance 

δ 

Fraction of 

feasible 

constraints 

φ 

 

Rel. 

Local 

Global 

Obj. 

Gap 

η 

ex1221 8 23/19/52 0 0.0 61% 3/6 3% 

 16 39/35/100 0 0.0 2% 4/6 0% 

ex1223 8 83/60/180 0 0.1 47% 13/14 27% 

 16 139/116/348 0 0.0 1% 13/14 0% 

ex1223a 8 37/28/82 0 0.0 42% 9/10 27% 

 16 61/52/154 0 0.0 2% 9/10 0% 

ex1223b 8 79/60/176 0 0.1 42% 9/10 27% 

 16 135/116/344 0 0.0 2% 9/10 0% 

ex1252 8 21223/255/1112 9570 5.6 15% 35/44 2% 

 16 255463/495/2168 10058 17.4 13% 33/44 0% 

ex1252a 8 21220/243/1103 8325 5.1 93% 28/35 9% 

 16 255460/483/2159 21220 31.0 69% 25/35 0% 

ex1263a 8 1513/164/780 2579 1.7 65% 34/36 9% 

 16 5001/324/1516 8940 33.7 60% 36/36 2% 

ex1264a 8 1513/164/780 676 0.8 222% 32/36 3% 

 16 5001/324/1516 1271 4.0 188% 32/36 3% 

Table 6.10: Effect of increased grid resolution on MINLP-Lib problems 

1) Of the nine MINLP problems that could not be solved by uniform 8-segment grids, 

six could be solved by increasing the grid resolution. 
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2) In many cases, the relative MIP-global distance improves as the grid becomes refined.  

However, the fraction of feasible constraints generally remains the same. 

3) We do not show gasnet in the table above since with a 16-segment grid, Cplex could 

not find any feasible MIP solution within 600 seconds.  In Section 6.11, we show how 

to solve gasnet using a combination of problem reduction technqiues and constraint-

based valid inequalities. 

4) Two problems (ex1263a and ex1264a) which could not to be solved to global 

optimality contain product functions of pure (non-binary) integers.  These problems 

are the only MINLP problems that we could not solve using the PLA approach.  

adhya1 and adhya3 are the other two problems that we could not solve using the PLA 

approach. 

6.5 EFFECT OF NON-UNIFORM GRIDS 

Some problems for which we need high-resolution uniform grids to get good quality 

MIP solutions can be solved quite effectively by low resolution non-uniform grids.  

These include Ali et al. problems Epistatic Michalewicz, LM2n5 and LM2n10, and 

Global-Lib problem ex_8_3_1.  The Ali et al. problems involve trigonometric functions, 

whereas the ex_8_3_1 involves a two-dimensional exponential function used in the 

design of chemical reactor design.  For Epistatic Michalewicz, we require uniform one-

dimensional grids with 128 segments before we can get an MIP solution that lies in the 

basin of attraction of the global solution.  However, we can solve this problem with only 

8 segments if we use a non-uniform grid that creates these 8 segments by aggregating 128 

intervals. As shown in Equation (6.72), the nonlinear program for this problem contains 

the function
202

111 ))/)(sin(sin()( yyyf  .  The shape of this function is shown in Figure 
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6.1, which also shows the position of the break points obtained from the shortest path-

based method.  As we can see in the figure, the grid resolution is finer only in those 

regions where the curvature of the function is high, which results in good approximation 

quality with fewer segments. 
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Figure 6.1: Non-uniform segments in Epistatic Michalewicz 

Similarly, for LM2n10, we need a rectangular grid with 12 segments along each 

dimension before we can get into the basin of attraction of the global solution.  If we use 
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a Crisscross grid with the same resolution (144 cells created by 6 segments per 

dimension), then the absolute difference between the true cost of the MIP solution and 

the objective value of the global solution decreases from 0.0485 to 0.0427.  However, if 

we use a non-uniform Crisscross grid in which we aggregate 36 intervals over 6 

segments, we further decrease this difference to 0.0064.  Thus, the MIP solution quality 

improves as we use a carefully designed non-uniform grid.  The same behavior is 

exhibited by LM2n5. 

 The Global-Lib problem ex8_3_1 deals with designing a chemical reactor 

network to maximize the yield of a specific chemical product.  The complete nonlinear 

formulation and the PLA-based reformulation are described in Appendix A10.  The 

nonlinear program involves two types of nonlinear functions: bilinear functions and non-

linear functions of the form  ybxyxf /exp),(   where b is a constant.  For b = 7971, 

we graphically depict this function and its contour lines in Figure 6.2.  If we try to solve 

this problem using 2x2 (i.e., two segments along the two axes) uniform rectangular grids 

for linearizing the bilinear functions and 4x4 uniform Crisscross grids for the exponential 

functions, then we cannot find a MIP solution that lies in the basin of attraction of the 

global solution.  However, if instead we use 2x2 uniform rectangular grids for linearizing 

the bilinear functions and 4x4 non-uniform Crisscross grids (based on the alternating 

shortest-path method) for the exponential functions, then we can obtain a MIP solution 

that leads to a local solution whose objective value is within 3.46% of the global 

objective value.  We show the non-uniform grid in Figure 6.3.  As we can see, the 

alternating shortest path method results in a grid that has a higher resolution in those 

areas of the domain where the curvature of the function is high.  
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Problem Grid Type 
No. of Segments/No. of 

Intervals 

Rel.MIP

Global 

Distance 

δ 

Rel. 

MIP 

Approx. 

error| 

σ 

Abs MIP-

Global 

Obj. Gap 

  

Rel. Local 

Global 

Obj. Gap 

η 

EMichalewicz Uniform/1D 8 36.86% 15.89% 2.1821 25.43% 

EMichalewicz Non-uniform/ID 8/128 1.28% 0.00% 0.0746 0% 

LM2n5 Uniform/Rec 12 14.65% 105.02% 0.0208 0% 

LM2n5 Uniform/Rec 6 13.15% 258.82% 0.0149 0% 

LM2n5 Non-uniform/CC 6/36 4.98% 194.01% 0.0045 0% 

LM2n10 Uniform/Rec 12 15.69% 44.92% 0.0485 0% 

LM2n10 Uniform/Rec 6 15.01% 90.47% 0.0427 0% 

LM2n10 Non-uniform/CC 6/36 5.24% 292.79% 0.0064 0% 

ex8_3_1 Uniform/Rec/CC Rec: 2/2, CC: 4/4 115% 0% - >100% 

ex8_3_1 Non-uniform/Rec/CC Rec: 2/2,  CC: 4/8 99.6% 0% - 3.5% 

Table 6.11: Effect of using non-uniform grids 
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Figure 6.2: Plot of two-dimensional exponential function in ex8_3_1 
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Figure 6.3: Nonuniform grid for the exponential function in ex8_3_1 

The problem of obtaining the best non-uniform grid for a two-dimensional 

function can be formulated as a set-covering problem as described in Appendix A8.  

However, Cplex takes a long time to solve this pure-integer program even for medium 

grid sizes.  For certain functions, we have solved this set-covering problem for low grid 

resolutions, obtained the best non-uniform grids and then compared the approximation 



 

 

 

 

126 

quality of the best non-uniform grid with that of the one obtained from the shortest-path-

based method.  We report the results in Table 6.12.  To estimate the overall 

approximation error, we use a set of sample points located at equidistant points along the 

domain of the function and compute the sum of the absolute errors over all the sample 

points.  As is clear from the data, the approximation error from the shortest-path-based 

grid is the same as that of the grid obtained from the set covering problem.  Thus, for 

these specific grid resolutions and these specific functions, the shortest-path gives the 

best non-uniform grid. 

 

Function Domain 

No. of 

Segments/No

of Intervals 

No. of 

Sample 

Points 

Approx. 

Error using 

Set Covering 

Formulation 

Approx. Error 

using 

Alternating 

Shortest Path-

based Method 

y1 = x1 x2 
1 ≤ x1≤ 2 

10 ≤ x2≤ 20 
6/18 4000 114459.9 114459.9 

y2 = x1 (x2)
2 1 ≤ x1≤ 2 

10 ≤ x2≤ 20 
6/18 4000 3640467.8 3640467.8 

y3 = (x1)
2
 x2

 1 ≤ x1≤ 2 

10 ≤ x2≤ 20 
6/18 4000 365905.1 365905.1 

Table 6.12: Benchmarking grids generated by the shortest-path-based method 

 

6.6 EFFECT OF GRID SHAPE 

To understand the effect of grid shape, we compare the performance of 16-segment 

rectangular grids with 8-segment Crisscross grids (both with 256 cells) for selected 
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pooling problems.  We used the pattern-based model with cumulative adjacency for these 

runs 

 

Problem Grid Type 
MIP Size 

(cont/bin/constr) 

Rel.MIP 

Global 

Distance 

δ 

Rel. Local Global 

Obj. Gap 

η 

adhya1 Rectangular (9573/256/1918) 2.74% 87.50% 

 Crisscross (4837/192/1150) 0.48% 87.50% 

adhya2 Rectangular (9573/256/1938) 6.00% 88.18% 

 Crisscross (4857/192/1170) 5.41% 0.00% 

adhya3 Rectangular (9630/256/1952) 112.43% 88.41% 

 Crisscross (4894/192/1184) 112.45% 0.00% 

adhya4 Rectangular (9586/256/1934) 93.04% 0.00% 

 Crisscross (4850/192/1166) 93.04% 0.00% 

Table 6.13: Effect of using different grid shapes 

1. The results indicate that in general, the Crisscross grid does better than the 

rectangular grid either in terms of the relative MIP global distance or in terms of the 

relative NLP-global gap, which indicates the gap between the objective value of the 

local solution and that of the global solution. 

2. These results are expected because in a Crisscross grid, each point in the function 

domain had a unique representation in terms of the vertices of the cell in which it lies.  

This is not true for a rectangular grid in which a point can have multiple convex 

combination representations, some of which can have inferior approximation quality.  

However, because of this non-unique representation, we can solve the MIP (for 

pooling problems) using rectangular grids in less time than by using Crisscross grids. 
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6.7 EFFECT OF INDEXING SCHEME 

To understand the impact of the indexing scheme on the performance of the PLA 

approach, we apply the PLA method to selected pooling propbelms using rectangular 

grids with (a) pattern based cumulative adjacency model and (b) pattern-based 

logarithmic model.  A time limit of 600 seconds was imposed on the MIP solver.l 

 

Problem 
No. of 

segments 

Non-logarithmic Indexing Logarithmic Indexing 

MIP Size 

(cont/bin/constr

) 

MIP 

Time 

MIP 

Gap 

MIP Size 

(cont/bin/const

r) 

MIP 

Time 
MIP Gap 

adhya1 16 9573/256/1918 58.8 0.00% 9573/64/1342 56.5 0.00% 

adhya2 16 9593/256/1938 31.3 0.00% 9593/64/1362 58.8 0.00% 

adhya3 16 9630/256/1952 91.2 0.00% 9630/64/1376 57.0 0.00% 

adhya4 16 9586/256/1934 12.0 0.00% 9586/64/1358 6.1 0.00% 

adhya1 32 35429/512/3710 601.6 1.98% 35429/80/2398 600.1 2.38% 

adhya2 32 35449/512/3730 600.3 1.92% 35449/80/2418 600.1 7.81% 

adhya3 32 35486/512/3744 600.1 0.36% 35486/80/2432 600.1 0.95% 

adhya4 32 35442/512/3726 60.4 0.00% 35442/80/2414 430.8 0.00% 

Table 6.14: Effect of using different indexing schemes 

1. The results indicate that, in general, for medium grid resolutions (that we have 

considered), the logarithmic indexing scheme does not offer a significant advantage 

over the non-logarithmic indexing scheme in terms of MIP times and MIP gaps at 

termination.  
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2. These results are expected because advantages of a logarithmic indexing scheme 

become more pronounced only at higher grid resolutions.  However, for most of our 

problems, even medium granularity grids yield good MIP solutions that lie in the 

basin of attraction of the global solution. 

6.8 COMPARISON WITH CONOPT 

We now compare the performance of the PLA approach with that of CONOPT 

using the default CONOPT settings and without a specific starting point.  We use the Ali 

et al. problems, the Global-Lib problems and the pooling problems for this comparison.  

As shown in Table 6.15 and Table 6.16, CONOPT could not solve 21 Ali et al. problems 

and 20 Global-Lib problems.  However, we can solve all these problems using the PLA 

approach.  Further, only 3 of the 13 pooling problems could be solved using CONOPT 

whereas with the PLA method, we could solve 11 of the 13 pooling problems. 
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Problem 

Global 

Objective 

Value 

Objective Value 

CONOPT 

Absolute Gap 

CONOPT 

Relative Gap 

CONOPT 

beckerLago 0.00 50.00 50.00 100% 

camel6 -1.03 0.00 1.03 100% 

dekkersAarts -24776.52 0.00 24776.52 100% 

easom -1.00 0.00 1.00 100% 

eMichalewicz -4.69 0.00 4.69 100% 

goldPrice 3.00 30.00 27.00 900% 

hosaki -2.35 0.00 2.35 100% 

lm1 0.00 1.12 1.12 100% 

meyerRoth 0.00 0.12 0.12 100% 

modLangerman -0.97 0.00 0.97 100% 

oddSquare -1.14 -1.00 0.14 13% 

price 0.00 190.80 190.80 100% 

schwefel -4189.83 0.00 4189.83 100% 

shekel5 -10.15 -5.06 5.10 50% 

shekel7 -10.40 -5.09 5.32 51% 

shekel10 -10.54 -5.13 5.41 51% 

shekelFox5 -10.41 -1.58 8.83 85% 

shekelFox10 -10.21 -1.48 8.73 86% 

shubert -186.73 0.07 186.80 100% 

zeldaSine10 -3.50 -1.00 2.50 71% 

zeldaSine20 -3.50 -1.00 2.50 71% 

Table 6.15: Ali et al. Problems that could not be solved by CONOPT 

 

 

 



 

 

 

 

131 

Problem 

Global 

Objective 

Value 

Objective Value 

CONOPT 

Absolute Gap 

CONOPT 

Relative Gap 

CONOPT 

ex14_1_6 0.00 1.00 1.00 100% 

ex14_1_8 0.00 0.04 0.04 100% 

ex2_1_1 -17.00 0.00 17.00 100% 

ex2_1_3 -15.00 -10.11 4.89 33% 

ex2_1_6 -39.00 -21.13 17.88 46% 

ex2_1_7 -4150.41 -407.25 3743.16 90% 

ex2_1_9 -0.38 -0.33 0.04 11% 

ex3_1_3 -310.00 -132.00 178.00 57% 

ex4_1_1 -7.49 -0.52 6.97 93% 

ex4_1_3 -443.67 0.00 443.67 100% 

ex4_1_6 7.00 250.00 243.00 3471% 

ex4_1_9 -5.51 -4.05 1.45 26% 

ex5_2_2_case1 -400.00 0.00 400.00 100% 

ex5_2_2_case2 -600.00 0.00 600.00 100% 

ex5_2_2_case3 -750.00 0.00 750.00 100% 

ex5_2_4 -450.00 0.00 450.00 100% 

ex5_3_2 1.86 1.00 -0.87 46% 

ex5_4_3 4845.46 5801.02 955.56 20% 

ex6_1_4 -0.29 0.00 0.29 100% 

ex6_2_14 -0.70 0.10 0.79 114% 

Table 6.16: Global-Lib problems that could not be solved by CONOPT 
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Problem 

Global 

Objective 

Value 

Objective Value 

CONOPT 

Relative Gap 

CONOPT 

Relative Gap 

PLA 

adhya1 -549.8031 0 100.0% 87.50% 

adhya2 -549.8031 0 100.0% 0.00% 

adhya3 -561.0447 0 100.0% 18.60% 

adhya4 -877.6457 0 100.0% 0.00% 

foulds2 -1100 -1000 9.1% 0.00% 

foulds3 -8 -7 12.5% 0.00% 

foulds4 -8 -4 50.0% 0.00% 

foulds5 -8 -3 62.5% 0.00% 

bental4 -450 -450 0.0% 0.00% 

bental5 -3500 -900 74.3% 0.00% 

haverly1 -400 -400 0.0% 0.00% 

haverly2 -600 -400 33.3% 0% 

haverly3 -750 -750 0.0% 0% 

Table 6.17: Applying CONOPT to pooling problems 
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6.9 COMPARING GRID-BASED AND PATTERN-BASED MODELS 

We now compare the pattern-based and the grid-based models for selected 

MINLP problems.  We use four-segment rectangular grids for this comparison and solve 

the resulting MIPs to optimality.  

 

Problem Adjacency 

Grid-based Pattern-based 

MIP size 

(cont/bin/ 

constr) 

MIP nodes 
MIP 

time 

MIP size 

(cont/bin/ 

constr) 

MIP 

nodes 
MIP time 

ex1252 Seg. 2560/219/896 13653 3.8 2455/135/644 5799 1.2 

 Cum. 2560/219/794 6034 1.1 2455/135/584 3400 0.6 

 SOS-2 2560/15/386 175693 22.4 2455/15/344 18064 3.6 

 Log 2560/117/590 17090 5.0 2455/75/464 6776 1.2 

ex1252a Seg. 2557/207/887 14242 3.5 2452/123/635 5408 1.0 

 Cum. 2557/207/785 7211 1.2 2452/123/575 3338 0.7 

 SOS-2 2557/3/377 1262429 101.0 2452/3/335 51259 7.2 

 Log 2557/105/581 20101 4.5 2452/63/455 8664 1.4 

ex1263 Seg. 597/200/616 1697 0.6 537/152/472 1780 0.6 

 Cum. 597/200/552 387 0.4 537/152/432 422 0.4 

 SOS-2 597/72/296 2072 0.4 537/72/272 3763 0.4 

 Log 597/136/424 983 0.4 537/112/352 1821 0.5 

ex1264 Seg. 597/196/616 1003 0.5 537/148/472 769 0.4 

 Cum. 597/196/552 625 0.4 537/148/432 640 0.3 

 SOS-2 597/68/296 5240 0.6 537/68/272 3653 0.4 

 Log 597/132/424 3744 0.8 537/108/352 734 0.4 

Table 6.18: Comparing grid-based and pattern-based models 
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Problem Adjacency 

Grid-based Pattern-based 

MIP size 

(cont/bin/ 

constr) 

MIP nodes 
MIP 

time 

MIP size 

(cont/bin/ 

constr) 

MIP 

nodes 
MIP time 

ex1265 Seg. 931/300/950 2361 0.9 831/220/710 815 0.5 

 Cum. 931/300/850 295 0.5 831/220/650 0 0.3 

 SOS-2 931/100/450 7910 1.0 831/100/410 5494 0.9 

 Log 931/200/650 1725 0.6 831/160/530 838 0.4 

synheat Seg. 1320/140/624 338 0.5 1300/124/576 235 0.6 

 Cum. 1320/140/560 0 0.2 1300/124/520 0 0.3 

 SOS-2 1320/12/304 475 0.5 1300/12/296 0 0.3 

 Log 1320/76/432 0 0.3 1300/68/408 267 0.5 

Table 6.18 contd.: Comparing grid-based and pattern-based models 

1) As expected, a pattern-based model is smaller and easier to solve than the 

corresponding grid-based model.   

2) We found that all the four types of grid-based models have the same LP relaxation 

value.  Similary, all the four types of pattern-based models have the same LP 

relaxation value.  In fact, we prove in Appendix A11 that the MIP model with 

segment-wise adjacency is LP-equivalent to the MIP model with cumulative 

adjacency.  Further, for each of the problems in Table 6.18, the LP value at the root of 

the branch and bound tree (before CPLEX does any preprocessing or adds any cuts), 

the LP value of the grid-based model is equal to the LP value of the pattern-based 

model.  However, we found that in many cases, CPLEX is able to generate better cuts 

for the pattern-based models than for the grid-based models and therefore the LP 
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value after pre-processing and cuts is higher for a pattern-based model than for the 

corresponding grid-based model.  Finally, in most cases, a pattern-based model 

requires fewer branch and bound nodes and less time than required by the 

corresponding grid-based model. 

3) In most cases, the pattern-based model with cumulative adjacency does the best both 

in terms of number of MIP nodes and the MIP time.  

 

6.10 COMPARING PATTERN-BASED AND COMBINED PARTITION MODELS 

We now compare the performance of the pattern-based model with that of a 

combined partition model for a specific reformulation of the gasnet problem.  In this 

reformulation, we use a 2-segment grid for four-dimensional functions and 4-segment 

grids for two-dimensional functions.  Also, we removed/updated vertex variables using 

constraint and function information for these runs.  The time limit was set at 600 seconds 

and we enabled variable elimination using external bounds.  

 

 

  Pattern-based Model Combined Partition Model 

Problem Adjacency 
LP value at 

root 
MIP Time 

MIP 

Gap 

LP value at 

root 

MIP 

Time 
MIP Gap 

gasnet Seg. 834983.6 600 1.12% 834984.0 483 0.00% 

 Cum. 834983.6 358 0.00% 834984.0 147 0.00% 

 SOS-2 834983.6 600 56.67% 834984.0 600 31.62% 

 Log 823097.9 600 14.67% 823097.9 600 14.69% 

Table 6.19: Comparing pattern-based and combined partition models 
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1) We find that the log model has lower LP value at the root node.  This is due to the 

variable reduction strategies that we have enabled in these runs.  If we do not emply 

these strategies, then the LP value at the root node is the same for all the four models.   

2) A combined partition model has a slightly higher LP relaxation value than that of the 

corresponding combined partition model. 

3) The combined partition model does better than the corresponding pattern-based 

model in terms of the overall MIP solution time and the MIP gap at termination. 

6.11 EFFECT OF PROBLEM REDUCTION AND PROBLEM STRENGTHENING TECHNIQUES 

The problem reduction strategies use external bounds on the independent 

variables of nonlinear function to either eliminate vertex-weight variables in the PLA-

based MIP or set a bound on certain vertex based variables that are adjacenct to infeasible 

vertices.  Problem strengthening strategies involve adding the constraint-based 

inequalities to the model.  Table 6.20 summarizes the effects of these enhacements on 

three different reformulations of gasnet, which is the hardest problem in our problem set.  

Reformulations gasnet-1, gasnet-2, and gasnet-3 (which correspond to Model-1, Model-2 

and Model-3 in Appendix A9) differ in terms of the types of constraints present in the 

model.  Speciafically, gasnet-1, gasnet-2, and gasnet-3 contain constraints of the form

0 yx , 0 yx , and 0 yx  respectively.  These reformulations help us 

demonstrate the effectiveness of different types of valid inequalities for each of these 

constraint types. 
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Problem 
Problem 

Reduction 

Constraint

-based 

inequalitie

s 

Vertex 

vars 

modified 

Vertex 

vars 

deleted 

LP value 

at root 

LP value 

after cuts 

MIP 

Time 

(CPU s) 

MIP 

Gap 

Rel. 

Local 

Global 

Obj. 

Gap 

η 

gasnet-1 No No 0 0 811309 2081203 1806 11.6% 0.66% 

 Yes No 2393 2614 2128123 2214295 1806 5.4% 0.66% 

 No Yes 0 0 811309 2242709 882 0.0% 0.07% 

 Yes Yes 2393 2614 2130191 2312883 1042 0.0% 0.66% 

gasnet-2 No No 0 0 811309 2098723 1805 15.5% 1.77% 

 Yes No 2393 2614 2128123 2293765 1807 3.9% 0.07% 

 No Yes 0 0 811309 2117416 1018 0.0% 0.66% 

 Yes Yes 2393 2614 2159649 2319815 1234 0.0% 0.07% 

gasnet-3 No No 0 0 811309 1907000 1808 13.9% 0.07% 

 Yes No 2393 2614 2128123 2253946 1806 5.2% 0.07% 

 No Yes 0 0 811309 2241496 969 0.0% 0.07% 

 Yes Yes 2393 2614 2128185 2321628 1098 0.0% 0.00% 

Table 6.20: Effect of problem strengthening strategies 

1) We find that the problem reduction strategy increases the LP relaxation value at the 

root node, which indicates that the original LP solution was assigning a positive 

weight to a number of infeasible vertices. 

2) The constraint-based inequalities do not improve the LP relaxation value of the mixed 

integer program.  However, they help Cplex generate better cuts for the problems, 

thereby leading to a higher value of the LP value after preprocessing and cuts, 

depicted in the seventh column in Table 6.20. 
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3) Using both the problem reduction strategies and the constraint-based inequalities is 

more effective than using only one of these two techniques in terms of the LP 

relaxation value after preprocessing and cuts. 

4) For this particular problem, the constraint-based inequalities seem to do better in the 

absence of problem reduction strategies than when used in conjunction with problem 

reduction. 
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6.12 COMPARISON WITH DICOPT 

We now compare the performance of the PLA approach with that of DICOPT using the 

default DICOPT settings and with a specific starting point of zero.  We use the MINLP-

Lib problems for this comparison. 

 

Problem Global Obj. Value 
DICOPT 

Objective Value Absolute gap Relative gap 

ex1221 7.67 NA NA 13% 

ex1243 83402.51 421713.71 338311.21 406% 

ex1244 82042.91 87646.38 5603.48 7% 

ex1252 128893.74 NA NA NA 

ex1252a 128893.74 NA NA NA 

ex1263 19.60 20.60 1.00 5% 

ex1263a 19.60 21.00 1.40 7% 

ex1264 8.60 9.30 0.70 8% 

ex1264a 8.60 10.30 1.70 20% 

ex1265 10.30 15.10 4.80 47% 

ex1265a 10.30 NA NA NA 

ex1266 16.30 NA NA NA 

ex1266a 16.30 NA NA NA 

gasnet 6999381.56 7045326.89 45945.33 1% 

Table 6.21: MINLP-Lib problems that could not be solved by DICOPT 

For 6 of the 14 MINLP problems, DICOPT could not find a feasible solution.  For 

the other eight problems, DICOPT could find a feasible solution but not the global 

optimal solution.  Except for ex1263a and ex1264a, the PLA method could solve all the 

other MINLP problems.  Further, as shown in Table 6.12, the PLA approach could solve 
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ex1263a to gap of 2% and ex1264a to a gap of 3%.  Thus, the PLA approach can do 

much better than DICOPT. 
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Chapter 7: Conclusions 

Piecewise linear approximation is a promising global optimization technique that 

works well on a broad range of nonlinear nonconvex problems.  Although this approach 

does not provide a guarantee of optimality, yet, as we demonstrate, it does provide good 

solutions for a large number of problems.  Solvers which work in a branch and bound 

framework need a lot more time to solve a problem since they have to solve a subproblem 

at every node of the branch and bound tree.  Thus, if one just needs a good-enough 

solution quickly, then one might consider using the PLA approach.  The PLA-based 

method is particularly suited to mixed integer nonlinear optimization problems which are 

among the hardest nonlinear non-convex optimization problems. 

In our study, we have demonstrated the effectiveness of the PLA apprpoach and 

proposed various enhancements that can make this approach a powerful global 

optimization strategy.  There are a number of avenues for future research.  First, as of 

now, the non-uniform grid generation method can only deal with two dimensional grids.  

It might be interesting to see whether this method can scale up to three or higher-

dimensional functions.  Second, in our study, we have only examined the Union Jack and 

Crisscross triangulations.  However, there might be functions where other triangulations 

such as H and K could provide better approximation qualities than that provided by the 

Union Jack triangulation.  In fact, the Union Jack triangulation, which can be seen as a 

hybrid of the H and K triangulations, will have an inferior approximation quality than 

either the H or the K triangulation for many functions including the bilinear function.  

The question is how to develop a mixed integer programming model for these 

triangulations that is as parsimonious as the Union Jack triangulation.  Third, the current 
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set of constraint-based valid inequalities can only handle two-variable constraints.  It 

might be interesting to develop constraint-based valid inequalities using constraints with 

more than two variables.  Also, the current constraint-based inequalities are applicable to 

a non-logarithmic PLA model.  It should be possible to extend them to logarithmic PLA 

models.  Fourth, there are problems that involve nonlinear functions of pure integers. It 

seems that specialized models could be developed for applying the PLA approach to such 

functions.  Lastly, a more ambitious goal will be to compute, within the PLA framework, 

the convex envelopes for the various functions and thereby have a PLA-based method 

that not only gives a solution but also provides an optimality gap for that solution.  This 

would help us quantify the quality of the PLA-based solutions and then benchmark the 

PLA-approach against solvers such as BARON (Ryoo and Sahinidis 1996). 
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Appendix A1: Proof of Proposition 1 

Proposition1: For the bilinear function f(x, y) = xy, a Crisscross triangulation with 

uniform segments along both axes provides the same approximation quality as that 

provided by a Union Jack triangulation with twice the number of uniform segments along 

both axes. 

Proof: Consider the bilinear function f(x, y) = xy, x[a1, a3] , y[b1, b3]. Let us 

approximate this function by a Crisscross triangulation with break points {a1, a3} and 

{b1, b3} (along the two axes) and by a Union Jack triangulation with equally spaced break 

points {a1, a2, a3} and {b1, b2, b3} along the two axes. (Refer Figure A1)  

 

    

 

 

 

 

 

 

 

 

       (a)        (b) 

Figure A1.1: Union Jack triangulation versus Crisscross triangulation 
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Let L(a1, b1),  M(a1, b2),  N(a1, b3), and O(a2, b2) be grid points lying in the 

domain of f.  Since the segments are equally spaced, M is equidistant from L and N.  Let 

L'(a1, b1, f(a1, b1)), M'(a1, b2, f(a1, b2)), N'(a1, b3, f(a1, b3)), and O'(a2, b2, f(a2, b2)) be 

points in three dimensional space that represent the function values at points L, M, N and 

O respectively.  Consider the three dimensional plane formed by L', O' and N'.  Let the 

equation of this plane be px + qy + rz + s = 0. Since L' and N' lie on this plane, therefore  

pa1 + qb1 + r f(a1, b1) + s = 0     (A1.1) 

pa1 + qb3 + r f(a1, b3) + s = 0.     (A1.2) 

Adding Equation (A1.1) and Equation (A1.2) and dividing by 2, we get: 

pa1 + q(b1 + b3)/2 + r[ f(a1, b1)+ f(a1, b3) ] /2 + s = 0. (A1.3) 

Since M is equidistant from L and N, b2 = (b1 + b3)/2.  Therefore we get 

pa1 + qb2 + r[ f(a1, b1)+ f(a1, b3) ] /2 + s = 0.   (A1.4) 

M'(a1, b2, f(a1, b2)) will lie on the plane through L', O' and N' if  

pa1 + qb2 + r f(a1, b2) + s = 0     (A1.5) 

or  f(a1, b2) = [ f(a1, b1)+ f(a1, b3) ] /2.    (A1.6)  

Since the bilinear function satisfies the condition given by Equation (A1.6), M' lies on 

the plane through L', O' and N'.  Therefore, the quality of approximation provided by 

ΔLOM and ΔMON is the same as the quality of approximation provided by ΔLON.  The 

same argument holds for ΔLOJ, ΔJOH and ΔHON.  
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Appendix A2: Algorithm for One-dimensional Shortest Path-based Method 

This algorithm takes as input a one-dimensional function, a set of break points that divide 

the function domain into intervals and the number of segments into which we wish to 

partition the domain.  It returns a set of break points that partition the domain into no 

more than the desired number of segments and have the lowest approximation error as 

computed by pre-specified metrics for the arc and the path costs.  The algorithm is 

composed of two procedures: create graph, which specifies how to create the directed 

graph, and get break points, which describes how to obtain a set of break points that 

correspond to the least cost path in the graph such that the path contains no more than a 

fixed number of arcs.  

Notation 

f  nonlinear function for which a piecewise linear approximation is required 

n  no. of equal-sized intervals into which we initially divide the domain 

H  number of segments required 

X  set of break points given as an input 

Ω   set of sample points given as an input 

G = (N, A) directed graph with node set N and arc set A 

i, j, k  index over N 

a  index over A 

ω   index overΩ  

ijc   cost of arc (i, j) 

ji xx ,   break points corresponding to nodes i and j 

 jiΩ ,   sample points lying between break points ix and 
jx  
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 if   true function value at break point ix  

 f   true function value at sample point ω  

    approximate function value at sample point ω  

 jifωConv ,,,  convex combination of the function values at break points ix and 

jx using weights that express   as a convex combination of ix and 

jx  

A   metric for computing arc costs, is either Sum of Errors or Maximum Error 

P  metric for computing path cost, is either Sum of Arc Costs or Maximum 

Arc Cost 

L(j, h) Length of the shortest path from node 0 to node j containing no more than 

h arcs (the shortest h-hop path) 

Pred(j, h) Predecessor node of node j in the shortest h-hop path to node j 

B*  set of break points that provide the best approximation 

   cost of the shortest path  

 

 

Algorithm A1: get best segments  fHn PA ,,,,   

begin 

      G = create graph  fn A,,  

       *,B  = get break points  PHnG ,,,  

end  
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Procedure P1: create graph  fn A,,  

begin 

      Create node set N = {0, 1, …, n} 

      Add arcs to arc-set A, i.e., add arc(i, j) such that  

            i = 0, 1, …, n – 1  

            j = i + 1, i + 2,…, n 

      for all   Aji ,  do 

            0:σ  

            :  

            for  jiΩω ,  do 

                          : =  fjiωConv ,,,  

                           ωωfδ :  

                        δσσ :  

                        if δμ  then δμ :  

                        end if 

       next   

            if A = Sum of Errors then
ijc : = σ  

            else if A = Maximum Error then
ijc : = μ  

      end if 

     next  ji,  

     G := (N, A) 

return G 

end procedure 
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Procedure P2: get break points  PHnG ,,,  

begin 

      L(j, 1)  : = 
jc0
 for j = 1, …, n  

      Pred(j, 1) := 0 for j = 1, …, n     (Initialization) 

      for h = 2, …, H do 

            for j = 1, …, n do 

                  L(j, h) : = L(j, h – 1) 

                  Pred(j, h) : = Pred(j, h – 1)  

                  if j   h then      (Loop 1) 

                        for i = h –1 to j – 1 do 

                              if P = Sum of Arc Costs 

                                    if L(i, h – 1) + 
ijc  < L(j, h) then 

                                          L(j, h) : = L(i, h – 1) + 
ijc  

                                          Pred(j, h) : = i 

                                    end if 

                              else if P = Maximum Arc Costs 

                                    if     hjLchiL ij ,,1,Max   then 

                                          L(j, h) : =   ijchiL ,1,Max   

                                          Pred(j, h) : = i 

                                    end if 
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                              end if 

                        next i 

                  end if 

            next j 

      next h 

      j : = n 

      h : = m 

      while  j 0 do 

            add 
jx to B* 

            j : = Pred(j, h) 

            h : = h – 1 

      end while 

end procedure 

 

 

1) At the end of stage h, the algorithm obtains the shortest paths of length at most h from 

the source to all the nodes.  

2) In the initialization phase, we identify the one-hop path to every node, which is 

simply the arc connecting the source node to that node.  

3) Since the path from the source node to node j can have at most j arcs, L(j, h+1) will 

be equal to L(j, h) for all h greater than or equal to j .  Thus, the code in Loop 1 is 

executed only if j is greater than h.  This observation makes the code more efficient, 

though it does not improve the worst-case complexity of the procedure. 
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4) We recover the nodes on the shortest path by starting with the sink node and 

iteratively identifying the predecessors until we reach node 0. 

5) The computational complexity of the algorithm is O(n
2
H) where the number of arcs 

in the graph is O(n
2
). 
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Appendix A3: Alternating Shortest Path-based Method for Crisscross grids 

This algorithm takes as input a two-dimensional function, a set of break points along the 

horizontal and vertical axis and the desired number of segments along each axis.  It 

returns a set of break points along the two axes such that along each axis, the number of 

segments is less than the desired number of segments along that axis and the segments 

yield a Crisscross triangulation that has the lowest approximation error as computed by 

pre-specified metrics for the arc and the path costs.  The algorithm, which we name get 

best non-uniform grid calls three procedures: create graph X-axis, create graph Y-axis 

and get break points.  (See Figure A2 for a schematic) 

1. The create graph X-axis procedure takes as inputs the break points along the Y-axis 

and creates a directed graph over which a shortest path problem could be solved to 

get a set of good break points along the X-axis.  This procedure internally calls the 

procedure get error vertical pattern to compute the arc costs in the directed graph. 

2. The create graph Y-axis procedure takes as inputs the break points along the X-axis 

and creates a directed graph over which a shortest path problem could be solved to 

get a set of good break points along the Y-axis.  This procedure internally calls the 

procedure get error horizontal pattern to compute the arc costs in the directed graph.  

3. The procedure get break points is the procedure that we used to solve a shortest path 

problem over a directed network corresponding to a one dimensional function. 
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Figure A3.1: Procedures for alternating shortest-path-based method 

 

The procedures get error vertical pattern and get error horizontal pattern internally call 

the procedure get error triangular pattern which gives the approximation error for a 

triangular pattern corresponding to a combination of a horizontal break point pair and a 

vertical break point pair.  

Notation 

f  nonlinear function that has to be approximated 

Xn  no. of intervals into which we initially divide the domain along the X-axis 

Yn  no. of into which we initially divide the domain along the Y-axis 

Xh  no. of segments required along the X-axis 

Yh   no. of segments required along the Y-axis 

get best non-uniform grid 

create graph X-axis 

get error vertical pattern 

get error horizontal pattern 

get break points 

get error triangular pattern 

get error triangular pattern 

create graph Y-axis 
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X  set of break points along the X-axis  =  
Xnxxxx ,...,,, 210

 

Y  set of break points along the Y-axis  =  
Ynyyyy ,...,,, 210

 

XB   subset of break points along the X-axis 

YB   subset of break points along the Y-axis 

*

XB   best subset of break points along the X-axis 

*

YB   best subset of break points along the Y-axis 

Ω   set of sample points 

P  set of grid points 

ω   index over Ω  

ji,   indices over X 

lk,   indices over Y 

),( kip   grid point corresponding to break points ix and ky along the X and 

Y axes  

mid

ijklp               grid point corresponding to intersection of the diagonals of the rectangle   

                     formed by grid points  kip , ,  kjp , ,  ljp , ,  lip , . 

 srΩ ,  sample points lying in the rectangle defined by break point pair r along the 

X-axis and break point pair s along the Y-axis 

 pf   true function value at grid point p  

 f   true function value at sample point   

    approximate function value at sample point   

321 ,, ppp        Indices over P 
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 fpppωConv ,,,, 321  convex combination of the function values at grid points 

21, pp  and 3p  using weights that express   as a convex 

combination of 21, pp  and 3p  

A   metric for computing arc costs, is either Sum of Errors or Maximum Error 

P  metric for computing path cost, is either Sum of Arcs Costs or Maximum 

Arc Cost 

G = (N, A) directed graph with node set N and arc set A 

a  index over A 

ijc   cost of arc (i, j) 

L(j, h) Length of the shortest path from node 0 to node j containing no more than 

h arcs (the shortest h-hop path) 

Pred(j, h) Predecessor node of node j in the shortest h-hop path to node j 

   cost of the shortest path  

*   current best approximation cost for the algorithm  
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Algorithm A2: get best non-uniform grid  fhhnn PAYXYX ,,,,,,,axis initial   

begin 

      if initial axis = X-axis then 

            Populate 
cur

YB  with uniform break points along the Y-axis  

            current axis : = X-axis  

      else if initial axis = Y-axis then 

            Populate 
cur

XB  with uniform break points along the X-axis  

            current axis : = Y-axis  

      end if 

      *  : =        

      continue flag : = TRUE  

      while continue flag = TRUE do 

            if current axis = X-axis then 

                  G : = create graph X-axis  fΩPBn AYX ,,,,,   

                   ,XB  : = get break points  PXX hnG ,,,  

                  if   < *  then 

                        XX BB :*
 

                         :*  

                        current axis : = Y-axis 

                  else continue flag : = FALSE  

                  end if  

            else if Current axis = Y-axis then 

                  G : = create graph Y-axis  fΩPBn AXY ,,,,,    



 

 

 

 

156 

                   ,YB : = get best break points  PYY hnG ,,,   

                  if   < *  then 

                        YY BB :*
 

                         :*  

                        current axis : = Y-axis 

                  else continue flag : = FALSE  

                  end if  

            end if  

      end while  

      return  ** , YX BB  

end procedure 

 

 

 Procedure P3: create graph X-axis  fΩPBn AYX ,,,,,   

begin 

            Create node set  XnN ...,,1,0  corresponding to break points 

 
Xnxxxx ,...,,, 210

 

            Add arc(i, j) to arc set A such that  

                        i = 0, 1, …, 1Xn  

                        j = i + 1, i + 2, …, Xn  

                       :ijc  get error vertical pattern  fΩPBji AY ,,,,,,   

            G: = (N, A) 

            return G 
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end procedure 

 

 

Procedure P4: create graph Y-axis  fΩPBn AXY ,,,,,   

begin 

Create node set  YnI ...,,1,0  corresponding to break points 

 
Ynyyyy ,...,,, 210

 

            Add arc(k, l) to arc set A such that  

                        k = 0, 1, …, 1Yn  

                        l = i + 1, i + 2, …, Yn  

                       :klc  get error horizontal pattern  fΩPBlk AX ,,,,,,   

            G: = (N, A) 

            return G 

end procedure 
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Procedure P6: get error vertical pattern  fπΩPBji AY ,,,,,,  

begin 

      0:σ  

      :μ  

      for 1Bto1 Y b  do 

            :δ  get error triangular pattern  fΩPbBbBji AYY ,,,],1[],[,,   

            δσσ :  

            if δμ  then δμ :  

            end if 

      next b 

      if A = Sum of Errors then pattern error : =  σ  

      else if A = Maximum Error then pattern error : = μ  

      end if 

end 

return pattern error 

end procedure 

 

 

Procedure P7: get error horizontal pattern  fΩPBlk AX ,,,,,,   

begin 

      0:σ  

      :μ  

      for 1Bto1 X b  do 
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            :δ  get error triangular pattern  fΩPlkbBbB AXX ,,,,,],1[],[   

            δσσ :  

            if δμ  then δμ :  

            end if 

      next b 

      if A = Sum of Errors then pattern error : = σ  

      else if A = Maximum Error then pattern error : = μ  

      end if 

      return pattern error 

end procedure 
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 Procedure P8: get error triangular pattern  fΩPlkji A,,,,,,,   

begin 

Define grid points 54321 and,,,, ppppp  such that 

 kipp ,1   

 kjpp ,2   

 ljpp ,3   

 lipp ,4   

mid

ijklpp 5  

      0:σ  

      :μ  

      for all  srΩω ,  do 

            if ω  lies in  521 ppp then    fpppωConvω ,,,,: 521   

            else if   lies in  532 ppp then    fpppωConvω ,,,,: 532   

            else if   lies in  543 ppp then    fpppωConvω ,,,,: 543   

            else if   lies in  514 ppp then    fpppωConvω ,,,,: 514   

            end if  

               ωωfδ :  

            δσσ :  

            if δμ   then δμ :  

            end if  

            next   

      end if 
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      if A = Sum of Errors then pattern error : = σ  

      else if A = Maximum Error then pattern error : = μ  

      end if  

      return pattern error 

end procedure 

 

1) In procedure get error triangular pattern, we consider all the sample points that lie 

within the rectangle formed by the vertical and the horizontal break point pairs.  For 

each point, we compute the approximate function value using the triangulation shown 

in Figure A3.  We then compute the approximation error for each sample point, which 

is the absolute value of the difference between the true and the approximate function 

value for the sample point. 

 

 

 

 

Figure A3.2: Computing approximation error for a triangular pattern 

 

2) Depending upon the whether the error metric is Sum of errors or Maximum Error, the 

approximation error for the entire pattern is either the sum or the maximum of the 

approximation errors for all the sample points lying within that pattern. 

 

p2 

p3 p4 

p1 

p5 
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Appendix A4: Alternating Shortest Path-based Method for Union Jack Grids 

To apply the alternating shortest path method for obtaining Union Jack grids, we have to 

view this grid in terms of its building blocks.  We first observe that the Union Jack 

triangulation can have two different orientations, which we call UJ-I and UJ-II.  (Figure 

A4.1) 

  

 

 

 

 

 

 

      UJ-I                UJ-II 

  Figure A4.1: Orientations of the two dimensional Union Jack triangulation 

The smallest building blocks of this grid are the two basic types of triangular 

patterns, which we call UJ-T1 and UJ-T2.  We show these patterns in Figure A4.2. 

 

 

 

       UJ-T1           UJ-T2 

Figure A4.2: Triangular patterns for a two dimensional Union Jack triangulation 
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A horizontal sequence of alternating types of triangular patterns gives rise to what we 

call a horizontal pattern.  Depending upon the type of the starting triangular pattern, we 

can have two kinds of horizontal patterns, which we call UJ-H1 and UJ-H2.  Similarly, a 

vertical sequence of alternating types of triangular patterns gives rise to a vertical pattern, 

which also can have two types, UJ-V1 and UJ-V2, depending upon the type of the 

starting triangular pattern (Figure A4.3).  A Union jack grid can be visualized either as a 

sequence of alternating vertical patterns or as a sequence of alternating horizontal 

patterns.  Since each pattern is followed by a pattern of a different type, the starting 

pattern determines the orientation of the entire grid.  Thus, a UJ-I grid starts with a UJ-

H1 horizontal pattern at its base or a UJ-V1 vertical pattern at its extreme left.  On the 

other hand, a UJ-II grid starts with a UJ-H2 horizontal pattern or a UJ-V2 vertical 

pattern.  

 

 

 

 

 

 

 

 

Figure A4.3: Vertical and horizontal patterns for a Union Jack triangulation 

 

UJ-V1 UJ-V2 

UJ-H2 

UJ-H1 
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To apply the alternating shortest path method to obtain a Union Jack grid, we fix 

the segments (break points) along one of the axes and then solve a shortest path problem 

along the other axis to get the best set of (segments) break points along the other axis.  

However, since each break point pair can have two costs, one for each Union Jack 

pattern, the network for the shortest path problem in this case is slightly different from 

the one we used in the one dimensional scenario.  We now describe this network.  

 

 

 

 

 

 

    (a) UJ-V1                                         (b) UJ-V2 

Figure A4.4: Approximation error for a break point pair along horizontal axis 

 

 

 

 

 

 

 

   (a) UJ-H1                                                   (b) UJ-H2 

Figure A4.5: Approximation error for break point pair along the vertical axis 
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The nodes of this specially constructed network correspond to the break points.  

There is one node for each of the two domain end points.  The node corresponding to the 

lower limit is called the source node and the one corresponding to the upper limit is 

called the sink node.  Each of the other break points is associated with two nodes — one 

Type-A and a Type B node.  A Type-A node indicates the beginning of a UJ-V1 pattern 

(for the horizontal axis) or the beginning of the UJ-H1 pattern (for the vertical axis).  On 

the other hand, a Type-B node indicates the beginning of a UJ-V2 pattern (for the 

horizontal axis) or the beginning of the UJ-H2 pattern (for the vertical axis).  Similarly, 

there are two kinds of arcs in the network — Type-A and Type B arcs.  Type-A arcs 

emanate either from the source node or from a Type-A node and end either in the sink 

node or in a Type-B node that corresponds to a higher-indexed break point.  The cost of a 

Type-A arc is a function of the approximation error for domain points that lie within the 

horizontal or vertical pattern, assuming that the pattern is of type UJ-H1 or UJ-V1 

(Figure A4.3).  Type-B arcs emanate either from the source node or from a Type-B node 

and end either in the sink node or in a Type-A node that corresponds to a higher-indexed 

break point.  The cost of a Type-B arc is a function of the approximation error for domain 

points that lie within the horizontal or vertical pattern, assuming that the pattern is of type 

UJ-H2 or UJ-V2 (Figure A4.3).  This function is called the error metric.  As in the one 

dimensional case, we could either have the sum of error or the maximum error as the 

error metric. 

The structure of this graph (Figure A4.6) ensures that in any path from the source 

node to the sink node, a Type-B arc will always follow a Type-A arc and a Type-A 
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always follows a Type-B arc.  In other words, any path from the source node to the sink 

node would either be an alternating sequence of vertical patterns or an alternating 

sequence of horizontal patterns, and would thus correspond to a valid Union Jack 

approximation of the two dimensional function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.6: Alternating shortest-path-based method for Union Jack grid 

… 

… 

          Source 
Sink 

Type-I node 

Type-II node 
 

Type-I arc 

Type-II arc 
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Appendix A5: Marginal Weight Consistency Constraints for a Combined Partition 

In this appendix, we describe how to obtain the marginal weight consistency constraint 

for combined partitions. We first recall the notation. 

Notation 

P set of patterns for variable X 

p index over P 

pn  number of segments in partitioning pattern Pp   

pJ  set of break points in p 

m number of segments in the combined partition for X 

K set of break points in the combined partition for X; indexed from mk ,...,0 in 

the order of increasing X values 

k index over K 

p

j  marginal weight variable for break point j in pattern Pp , defined for 

pnj ,...,1,0  

k  marginal weight variable for breakpoint k in the combined partition, defined for 

mk ,...,1  

kx  value of X at break point k in the combined partition 

p

jx  value of X at break point j in partition Pp  

 pkj ,  closest break point in pattern p that either coincides with break point k of the 

combined partition or lies strictly to the right of break point k of the combined 

partition, i.e.,   KkPpxxjpkj k

p

j   ,allfor ,:Min,  

 pjk ,   break point in the combined partition that coincides with break point j in pattern 

p, i.e. ,   pk

p

j JjPpxxkpjk  allfor,allfor ,:,  
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 jK p   set of break points in the combined partition that lie in the interior of segment j in 

partition p, defined for all PpJj p  },0{\ . In other words,

  }1),(...,,1),1({  pjkpjkjK p .  

 

We wish to prove the validity of Equation A5.1 

},0{\,allfor)1(
)1()(

),( pp

j
p

Kk

kkp

j
p

Kk

kkppjk

p

j nJjPp  


  (A5.1) 

where }0{\,allfor
1),(),(

1),(
KkPp

xx

xx
p

pkj

p

pkj

p

pkjk

kp 








     (A5.2)  

                      

 

Figure A5.1: Combined partition 

Break point j in pattern p can have a positive weight when the chosen value for X either 

lies in segment j or in segment j+1.  

Let us assume that the integer solution to the PLA model assigns a value x to variable X 

and x lies in segment j of some pattern p, i.e. ),(),1( pjkpjk xxx  . Therefore, 

),(),(

)(

),1(),1( pjkpjk

jKk

kkpjkpjk xxxx
p

  


      (A5.3) 

1),(

)(

),1(  


 pjk

jKk

kpjk

p

       (A5.4) 
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),(and),1(allfor0 pjkkpjkkk      (A5.5) 

However, any break point k in the combined partition located between ),1( pjk  and 

),( pjk can be expressed as a convex combination of ),1( pjkx  and ),( pjkx . Therefore,  

),1(),( )1( pjkkppjkkpk xxx   .     (A5.6) 

Substituting this value of jx in Equation (A5.3), we get, 

 
),(),(

)(

),1(),(),1(),1( )1( pjkpjk

jKk

pjkkppjkkpkpjkpjk xxxxx
p

  


  (A5.7) 

or ),(

)(

),(),1(

)(

),1( )1( pjj

jKk

kpkpjkpjk

jKk

kpkpjk xxx
pp





























 







    (A5.8) 

or )()1(1 jk

p

jjk

p

j xxx           (A5.9) 

 

where },0{\,allfor)1(
)1()(

),( pp

j
p

Kk

kkp

j
p

Kj

kkppjk

p

j nJjPp  


 .  
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Appendix A6: Validity of Constraint-based Inequalities 

If two variables that appear in two different nonlinear functions are related by a linear 

constraint, then we can develop cuts that relate the binary segment selection variables and 

the marginal weight variables across the partitions for X and Y. 

Notation 

I: set of break points in the X partition 

J: set of break points in the Y partition 

i: index for break points and segments for the X partition 

j: index for break points and segments for the Y partition 

Xn : number of segments in the X partition 

Yn : number of segments in the Y partition 

X
i  marginal weight variable for break point i along the X partition 

X
i  cumulative marginal weight variable for break point i along the X partition 

Y
j  marginal weight variable for break point j along the Y partition 

Y
j  cumulative marginal weight variable for break point j along the X partition 

X
iS  segment selection variable for segment i along the X partition, which is one if we 

select segment i and is zero otherwise 

X
iT  segment selection variable for segment i along the X partition, which is one if we 

select a segment with index i or higher, and is zero otherwise 

Y
jS  segment selection variable for segment j along the Y partition, which is one if we 

select segment j and is zero otherwise 

Y
jT  segment selection variable for segment j along the Y partition, which is one if we 

select a segment with index j or higher, and is zero otherwise  
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1. Upper bound on X induces an upper bound on Y 

Consider the situation where X and Y are related by the constraint baXY  . In this 

situation, an upper bound on X induces an upper bound on Y. 

 

Let us assume that we select an X segment with index i or lower. This implies that X 

cannot exceed ix . Let ji ybaxjij  :min)( .Then, we cannot select a Y segment whose 

index is greater than )(ij . This gives us the following valid inequalities.  

 

 

Figure A6.1: Upper bound on X inducing upper bound on Y 

 

a) Inequalities relating binary variables 

Let 1I be the set of break points in the X pattern such that }1)(1:{1  YnijiI . Then, if 

we select an X segment with index i or lower, then we must select a Y segment with index 

)(ij or less. So, we have the following inequality. 

111)( everyfor11 IiTT X
i

Y
ij       (A6.1) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  . Then, if X has an upper bound of ix , Y has an upper bound of iy . This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition.  

 

Consider a case where we want to choose  

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and 

i-1, and 

 segment j(i) for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break points 

j(i) and j(i)-1. 

Since baXY  , we get the following. 

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij   ))1(()1( 11)()()()(      (A6.2) 

Or bxaaxxayyy i
X
iii

X
iijijij

Y
ij   111)(1)()()( )(   

Or baxxxayyy iii
X
iijijij

Y
ij   111)(1)()()( )()(   

Or 111)(1)()()( )()(   iii
X
iijijij

Y
ij yxxayyy   where baxy ii 1  

Or 111)(1)()()( )()(   iii
X
iijijij

Y
ij yaxaxyyy    

Or 111)(1)()()( )()(   iii
X
iijijij

Y
ij yyyyyy   where baxy ii   

Or 1)(111)()()( )()(   ijiii
X
iijij

Y
ij yyyyyy    

Or 1)(11)(11)(1)()()( ))(()(   ijiijiiji
X
iijij

Y
ij yyyyyyyy    
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
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X
i

Y
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Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to 

break point i, then we have an upper bound on the cumulative weight variable for break 

point j(i). This leads us to the following inequality.  

  X

i

Y

iji

X

iiii

X

i

Y

ij TTqTqqp 1)(1)( )1()1(       (A6.4) 

Proof of validity To show that this inequality is valid, we have to consider two cases. 

Case 1: 11)(   iij yy  

Case 2: 11)(   iij yy  

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to 

Case 1 and Scenarios 1, 2 and 4 apply to Case 2. 

  

  

Case 1: 11)(   iij yy     Case 2: 11)(   iij yy  

Figure A6.2: Scenarios when upper bound on X induces an upper bound on Y 

 

i) Scenario 1: Select X segment with index i and Y segment with index )(ij  

This implies 01 
X

iT  and 1)( Y
ijT , therefore   iii

X
i

Y
ij qqp  )( , which is what we 

derived in Equation A6.4.  
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ii) Scenario 2: Select X segment with index i and Y segment with index 1)( ij or lower 

This implies 01 
X

iT  and 0)( Y
ijT , therefore   )01()01()(  iiii

X
i

Y
ij qqqp or 

 ii
X
i

Y
ij qp  )( . This equation is valid because 

Y
ij )( is equal to zero (because we select 

a Y segment with index 1)( ij or lower) and   0 ii
X
i qp since ii qp  .  

 

iii) Scenario 3: Select X segment with index 1i  or lower and Y segment with index )(ij  

This implies 01 
X

iT , 0X
i and 1)( Y

ijT , therefore   )11()01(0)(  iiii
Y

ij qqqp or 

i
Y

ij q)( or i
Y

ij q)( ,or 
1)()(

1)(1

)(










ijij

ijiY
ij

yy

yy
  which is the bound that one would get on

Y
ij )( by considering an upper bound of 1ix on the X variable. This scenario is valid only 

for Case 1 above. 

 

iv) Scenario 4: Select X segment with index 1i  or lower and Y segment with index

1)( ij or lower 

This implies 01 
X

iT , 0X
i and 0)( Y

ijT , therefore   )01()01(0)(  iiii
Y

ij qqqp or

0)( Y
ij , which is valid because 

Y
ij )( takes a value of zero since we choose a Y segment 

with index 1)( ij or lower. 
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2. Upper bound on X induces a lower bound on Y 

Consider the situation where X and Y are related by the constraint baXY  . In this 

situation, an upper bound on X induces a lower bound on Y. Let us assume that we select 

an X segment with index i or lower. This implies that X cannot exceed ix . Let 

ji ybaxjij  :max)( .Then, we cannot select a Y segment whose index is less than

1)( ij . This gives us the following valid inequalities.  

 

 

Figure A6.3 Upper bound on X inducing a lower bound on Y 

a) Inequalities relating binary variables 

Let 2I be the set of break points in the X pattern such that }1)(2:{2  YnijiI . Then, if 

we select an X segment with index i or lower, then we must select a Y segment with index 

1)( ij or higher. So, we have the following inequality. 

211)( everyfor1 IiTT X
i

Y
ij        (A6.5) 
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b) Inequalities relating marginal weight variables 

Let baxy ii  . Then, if X has an upper bound of ix , Y has a lower bound of iy . This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition, and consequently a lower bound on the cumulative marginal weight 

for break point 1)( ij  along the Y partition. Consider a case where we want to choose  

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and 

i-1 

 segment 1)( ij for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break 

points )(ij and 1)( ij  

Since baXY  , we get the following. 

bxxayy i
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X
iij

Y
ijij

Y
ij   ))1(()1( 11)()()()(     (A6.6) 
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Or   iii
X
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Y
ij qqp    1)(1 since X

i
X
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ij 1)()( 1    



 

 

 

 

177 

Or  ii
X
ii

Y
ij qpq   )1(1)(       (A6.7) 

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to 

break point i, then we have a lower bound on the cumulative weight variable for break 

point 1)( ij . This leads us to the following inequality.  

    Y
ijiii

X
i

X
ii

Y
ij TqqpTq 2)(11)( )1)(1(       (A6.8) 

Proof of validity To show that this inequality is valid, we have to consider two cases. 

Case 1: 11)(   iij yy  

Case 2: 11)(   iij yy  

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to 

Case 1 and Scenarios 1, 2 and 4 apply to Case 2. 

 

  

Case 1: 11)(   iij yy     Case 2: 11)(   iij yy  

Figure A6.4: Scenarios when upper bound on X induces a lower bound on Y 

 

i) Scenario 1: Select X segment with index i and Y segment with index 1)( ij  

This implies 01 
X

iT and 02)( 
Y

ijT , which gives   )0()01)(1(1)( iii
X
ii

Y
ij qqpq   , 
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or  ii
X
ii

Y
ij qpq   )1(1)( , which is what we derived in Equation A2.2.4. 

 

ii) Scenario 2: Select X segment i and Y segment with index 2)( ij  or higher 

This implies 01 
X

iT and 12)( 
Y

ijT , which gives   )1()01)(1(1)( iii
X
ii

Y
ij qqpq   , 
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X
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Y
ij qqpq   )1(1)( , or  ii

X
i

Y
ij qp   11)(  , which is valid because 

Y
ij 1)(  is equal to one (because we selected Y segment with index 2)( ij  or higher) and 

 ii
X
i qp 1  lies between zero and one because ii qp  . 

 

iii) Scenario 3: Select X segment with index 1i  or lower and Y segment 1)( ij  

This implies 01 
X

iT , 0X
i and 02)( 
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ijT , which gives

  )0(0)01)(1(1)( iiii
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or )1(1)( i
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Y
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)(1)(
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iijY
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 which is the bound 

on 
Y

ij )( by considering an upper bound of 1ix on the X variable. This scenario is valid 

only for Case 1 above. 

 

iv) Scenario 4: Select X segment with index 1i  or lower and Y segment with index

2)( ij or higher 

This implies 01 
X

iT , 0X
i and 12)( 

Y
ijT , which gives

  )1(0)01)(1(1)( iiii
Y

ij qqpq  , or 11)( 
Y

ij which is valid since 
Y

ij 1)(  takes a 

value of zero since we choose a Y segment with index 2)( ij  or higher. 
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3. Lower bound on X induces an upper bound on Y 

Consider the situation where X and Y are related by the constraint baXY  . In this 

situation, a lower bound on X induces an upper bound on Y. Let us assume that we select 

an X segment with index i+1 or lower. This implies that X has a lower bound of ix . Let 

ji ybaxjij  :min)( .Then, we cannot select a Y segment whose index is greater than

)(ij . This gives us the following valid inequalities.  

 

Figure A6.5: Lower bound on X inducing an upper bound on Y 

 

a) Inequalities relating binary variables 

Let 3I be the set of break points in the X partition such that }1)(1:{3  YnijiI . Then, 

if we select an X segment with index 1i  or higher, then we must select a Y segment 

with index )(ij or lower. So, we have the following inequality. 

311)( everyfor1 IiTT X
i

Y
ij        (A6.9) 

 

b) Inequalities relating marginal weight variables 
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Let baxy ii  . Then, if X has a lower bound of ix , Y has an upper bound of iy . This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition, and consequently an upper bound on the cumulative marginal 

weight for break point )(ij  along the Y partition. Consider a case where we want to 

choose  

 segment i+1 for the X variable with weights X
i and X

i1 assigned to break points i 

and i+1, and  

 segment )(ij  for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break points 

)(ij  and 1)( ij . 

Since baXY  , we get the following. 
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Thus, if we select segment 1i  for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for 

break point )(ij . This leads us to the following inequality.  

)1()1()( 1)(11)(

X

i

Y

iji

X

iii

X

ii

Y

ij TTqqpTp      (A6.12) 

Proof of validity To show that this inequality is valid, we have to consider two cases. 

Case 1: 11)(   iij yy  

Case 2: 11)(   iij yy  

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to 

Case 1 and Scenarios 1, 2 and 4 apply to Case 2. 

 

  

Case 1: 11)(   iij yy    Case 2: 11)(   iij yy  

Figure A6.6: Scenarios when lower bound on X induces an upper bound on Y 
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i) Scenario 1: Select X segment with index 1i  and Y segment with index )(ij  

This implies 11 
X

iT and 1)( Y
ijT , which gives )11()( 1)(   i

X
iiii

Y
ij qqpp  , or 

X
iiii

Y
ij qpp 1)( )(   , which is what we derived in Equation A2.3.4. 

 

ii) Scenario 2: Select X segment 1i  and Y segment with index 1)( ij  or lower  

This implies 11 
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iT and 0)( Y
ijT , which gives )01()( 1)(   i

X
iiii

Y
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)1)(( 1)(
X
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Y
ij qp   ., which is valid because 

Y
ij )( is zero (since we selected a Y 

segment with index 1)( ij  or lower) and )1)(( 1
X
iii qp   is positive because ii qp  and 

10 1  
X
i . 

 

iii) Scenario 3: Select X segment with index 2i  or higher and Y segment with indes )(ij  

This implies 11 
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yy
  which is the bound on 

Y
ij )( given that X 

has a lower bound of 1ix . This scenario is valid only for Case 1 above. 

 

iv) Scenario 4: Select X segment with index 2i  or higher and Y segment with index

1)( ij or lower 

This implies 11 
X

iT , 11 
X
i and 0)( Y

ijT , which gives )01()()(  iiii
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ij qqpp , or 

0)( Y
ij which is valid since 

Y
ij )( is equal to zero as we select a Y segment with index

1)( ij  or . 
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4. Lower bound on X induces a lower bound on Y 

Consider the situation where X and Y are related by the constraint baXY  . In this 

situation, a lower bound on X induces a lower bound on Y. Let us assume that we select 

an X segment with index 1i or higher. This implies that X cannot be lower than ix .  Let 

ji ybaxjij  :max)( .Then, we cannot select a Y segment whose index is less than 

1)( ij . This gives us the following valid inequalities.  

 

 

Figure A6.7: Lower bound on X inducing a lower bound on Y 

 

a) Inequalities relating binary variables 

Let 4I be the set of break points in the X pattern such that }1)(1:{4  YnijiI . Then, if 

we select an X segment with index 1i or higher, then we must select a Y segment with 

index 1)( ij or higher. So, we have the following inequality. 

111)( everyfor IiTT X
i

Y
ij       (A6.13) 

b) Inequalities relating marginal weight variables 
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Let baxy ii  . Then, if X has a lower bound of ix , Y has a lower bound of iy . This 

implies that there is an upper bound on the marginal weight variable for break point j(i) 

along the Y partition and consequently a lower bound on the cumulative marginal weight 

for break point 1)( ij along the Y partition. Consider a case where we want to choose  

 segment 1i  for the X variable with weights X
i and X

i1 assigned to break points i 

and i+1  

 segment 1)( ij  for the Y variable with weights
Y

ij )( and 
Y

ij )(1  assigned to break 

points )(ij  and 1)( ij . 

Since baXY  , we get the following. 

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij   ))1(()1( 11)()()()(     (A6.14) 

Or baxxaxayyy ii
X
ii

X
iijijij

Y
ij   111)(1)()()( )(   

Or 111)(1)()()( )()(   iii
X
iijijij

Y
ij yaxaxyyy   where baxy ii 1  

Or 1)(111)()()( )()(   ijiii
X
iijij

Y
ij yyaxaxyy    

Or 11)(1)(1)()( )()(   iijii
X
iijij

Y
ij yyaxaxyy    

Or 11)(1)(1)()( ))(()(   iijii
X
iijij

Y
ij yybaxbaxyy   

Or 11)(1)(1)()( )()(   iijii
X
iijij

Y
ij yyyyyy   where baxy ii   

Or 11)(1)(11)()(1)()( ))()(()(   iijiijiij
X
iijij

Y
ij yyyyyyyy    

Or 
)(1)(

11)(

)(1)(

1)(

)(1)(

11)(

)(

ijij

iij

ijij

iij

ijij

iijX
i

Y
ij

yy

yy

yy

yy

yy

yy









































  since )(1)( ijij yy   

Or   iii
X
i

Y
ij qqp  )(  where

)(1)(

1)(

ijij

iij

i
yy

yy
p









and

)(1)(

11)(

ijij

iij

i
yy

yy
q









 

Or   iii
X
i

Y
ij qqp   )1(1 11)(   since in this case X

i
X
i 11   and

Y
ij

Y
ij 1)()( 1    

Or   iii
X
iii

Y
ij qqpqp   11)(1    
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Or   X
iiii

Y
ij qpp 11)( )1(         (A6.15) 

Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for 

break point 1)( ij  along the Y partition. This leads us to the following inequality.  

  Y
iji

X
ii

X
iii

Y
ij TqTpqp 2)(111)( )1(        (A6.16) 

Proof of validity To show that this inequality is valid, we have to consider two cases. 

Case 1: 11)(   iij yy  

Case 2: 11)(   iij yy  

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to 

Case 1 and Scenarios 1, 2 and 4 apply to Case 2. 

 

                            

Case 1: 1)(1   iji yy      Case 2: 1)(1   iji yy  

Figure A6.8: Scenarios when lower bound on X induces a lower bound on Y 
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i) Scenario 1: Select X segment 1i  and Y segment 1)( ij  

This implies 11 
X

iT  and 02)( 
Y

ijT , therefore   )0()1(11)( ii
X
iii

Y
ij qpqp    , or 

  )1(11)( i
X
iii

Y
ij pqp    , which is what we derived in Equation (A2.2.4).  

 

ii) Scenario 2: Select X segment 1i  and Y segment with index 2)( ij or higher 

This implies 11 
X

iT  and 12)( 
Y

ijT , therefore   ii
X
iii

Y
ij qpqp   )1(11)(  or 

  )1(1 11)(
X
iii

Y
ij qp    , which is valid because 

Y
ij 1)(  is equal to one (since we select 

a Y segment with index 2)( ij or higher) and    )1(1 1
X
iii qp    is less than 1 since

ii qp  and 10 1  
X
i .  

 

iii) Scenario 3: Select X segment with index 2i  or higher and Y segment with index

1)( ij  

This implies 11 
X

iT , 11 
X
i and 02)( 

Y
ijT , therefore   )0()1()1(1)( iiii

Y
ij qpqp  or 

i
Y

ij q 11)( or i
Y

ij q 1)(1  or i
Y

ij q)( or 
)(1)(

11)(

)(

ijij

iijY
ij

yy

yy









 which is the upper bound 

on
Y

ij )( given that X has a lower bound of 1ix . This scenario is only applicable for the 

case when 1)(1   iji yy . 

 

iv) Scenario 4: Select X segment with index 2i or higher and Y segment with index

2)( ij or higher 

This implies 11 
X

iT , 11 
X
i and 12)( 

Y
ijT , therefore   iiii

Y
ij qpqp  )1(1)( or

11)( 
Y

ij , which is valid because 
Y

ij 1)(   takes a value of one (since we select Y segment 

with index 2)( ij  or higher).  
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Appendix A7: Selected Functional Decompositions of Ali et al. Problems 

In this appendix, we describe how we decomposed the non-linear functions in some of 

the test problems that we used in our study. 

1) Ackleys 

  exnxnz
n

i

i

n

i

i 





















 







 202cosexp02.0exp20Min
1

1

1

21   (A7.1) 

}...,,2,1{,3030..s nixt i         

Reformulation: 

evuz  2020Min        (A7.1.2) 

subject to 



n

i

iyy
1

       (A7.1.3)





n

i

iww
1

         (A7.1.4)

}...,,2,1{,2 nixy ii          (A7.1.5) 

  }...,,2,1{,2cos nixw ii          (A7.1.6) 

 ynu 102.0exp          (A7.1.7) 

 wnv 1exp           (A7.1.8) 

We used one-dimensional grids to linearize Equations (A7.1.5 –A7.1.8).  Also, n =10. 

2) AluffiPentini 

2

21

2

1

4

1 5.01.05.025.0Min xxxxz       (A7.2.1)  

}2,1{,1010..  ixts i         

Reformulation 

21Min yyz          (A7.2.2) 

s.t.  1

2

1

4

11 1.05.025.0 xxxy        (A7.2.3) 
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2

22 5.0 xy           (A7.2.4) 

We used one dimensional grids to linearize Equations (7.2.2 – 7.2.4). 

3) Becker and Lago Problem 

   22

2

1 5||5||Min  xxz       (A7.3.1) 

}2,1{,1010..  ixts i         

Reformulation 

21Min yyz          (A7.3.2) 

s.t.   211 5||  xy         (A7.3.3) 

 222 5||y  x        (A7.3.4) 

We used one dimensional grids to linearize Equations (7.3.2 – 7.3.4). 

4) Bohachevsky I 

    7.04cos4.03cos3.02Min 21

2

2

2

1  xxxxz     (A7.4.1)

}2,1{,5050..  ixts i        

Reformulation 

7.0Min 21  yyz        (A7.4.2) 

s.t.   1

2

11 3cos3.0y xx         (A7.4.3) 

 2

2

22 4cos4.02 xxy        (A7.4.4) 

We used one dimensional grids to linearize Equations (7.4.2 – 7.4.4). 

5) Bohachevsky II 

    3.04cos3cos3.02Min 21

2

2

2

1  xxxxz      (A7.5.1)

}2,1{,5050..  ixts i        

We used a single two-dimensional grid to linearize Equation (7.5.1). 

6) Branin 
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      gxhgdcxbxxaz  1

2

1

2

12 cos1Min    (A7.6.1) 

150,105.. 21  xxts        

 8
1,10,6,5,

4
1.5,1where 2  hgdcba  

We used a single two-dimensional grid to linearize Equation (7.6.1). 

7) Camel Back 3 

2

221

6

1

4

1

2

1 6.105.12Min xxxxxxz       (A7.7.1) 

}2,1{,55..  ixts i         

We used a single two-dimensional grid to linearize Equation (7.7.1). 

8) Camel Back 6 

4

2

2

221

6

1

4

1

2

1 44
3

1
1.24Min xxxxxxxz       (A7.8.1) 

}2,1{,55..  ixts i         

We used a single two-dimensional grid to linearize Equation (7.8.1). 

9) Cosine Mixture Problem 

  



n

i

i

n

i

i xxz
1

2

1

5cos1.0Min        (A7.9.1) 

}...,,2,1{,11..s nixt i         

Reformulation 





n

i

iyz
1

Min         (A7.9.2) 

s.t.    }...,,2,1{,5cos1.0y 2

i nixx ii        (A7.9.3) 

We used one-dimensional grids to linearize Equations (7.9.3). Also, n = 2, 4. 

10) Dekkers and Aarts Problem 

   42

2

2

1

5

21

22

2

2

1

2

2

2

1

5 1010Min xxxxxxxxz  
   (A7.10.1) 
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}2,1{,2020..  ixts i        

We used a single two-dimensional grid to linearize Equation (7.10.1). 

11) Easom Problem 

        2

2

2

121 expcoscosMin   xxxxz    (A7.11.1) 

}2,1{,1010..  ixts i         

We used a single two-dimensional grid to linearize Equation (7.11.1). 

 

12) Epistatic Michalewicz Problem 

 




















n

i

m

i
i

iy
yz

1

2
2

sincosMin


     (A7.12.1) 

   
   















 



nix

nixx

nixx

yts

i

ii

ii

i

,

...,6,4,2,sincos

...,5,3,1,sincos

.. 1

1





    (A7.12.2) 

10,
6

},...,,2,1{,0  mnixi
      

We used a single one-dimensional grid to linearize Equation (7.12.1). Also, n was 

taken as 5. 

 

13) Exponential Problem 









 



n

i

ixz
1

25.0expMax        (A7.13.1) 

}...,,2,1{,11.. nixts i         

Reformulation: 

uz Min         (A7.13.2) 

subject to )5.0exp( yu         (A7.13.3) 
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



n

i

iyy
1

         (A7.13.4)

}...,,2,1{,2 nixy ii         (A7.13.5) 

We used one-dimensional grids to linearize Equation (7.13.3) and (7.13.5).  Also, n 

was taken as 10. 

14) Goldstein and Price 

    

    2

2212

2

11

2

21

2

2212

2

11

2

21

2736481232183230

*

36143141911Min

xxxxxxxx

xxxxxxxxz





 (A7.14.1) 

}2,1{,22..  ixts i         

We used a single two-dimensional grid to linearize Equation (7.14.1). 

15) Griewank Problem 














n

i

i
n

i

i
i

x
xz

11

2 cos
4000

1
1Min      (A7.15.1) 

}2,1{,22..  ixts i         

Reformulation (n=10) 

n

n

i

i ywz  
14000

1
1Min       (A7.15.2) 

s.t. }...,,2,1{,2 nixw ii        (A7.15.3) 



















2
cos

1
cos 21

2

xx
y        (A7.15.4) 

}...,,3{,cos1 ni
i

x
yy i

ii 







        (A7.15.5) 

We used a one-dimensional grids to linearize Equation (7.15.3) and two-dimensional 

grids to linearize Equations (7.15.4 –7.15.5). 
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16) Gulf Research Problem 

 

 
























 


99

1

2

1

2 01.0expMin
3

i

x

i i
x

xu
z      (A7.16.1) 

   5.1
1

01.0ln5025where iui         

50,6.250,1001.0 321  xxx       

We used a single three-dimensional grid to linearize Equations (7.16.1). 

 

17) Hartman 3 

  
 
















4

1

3

1

2
expMin

i j

ijjiji pxacz      (A7.17.1) 

}3,2,1{,10..  jxts j
, constants aij, pij and ci as in Table 7.1.   

 

 

i ci 
aij pij 

j=1 j=2 j=3 j=1 j=2 j=3 

1 1 3 10 30 0.3689 0.117 0.2673 

2 1.2 0.1 10 35 0.4699 0.4387 0.747 

3 3 3 10 30 0.1091 0.8732 0.5547 

4 3.2 0.1 10 35 0.03815 0.5743 0.8828 

Table A7.1: Data for Hartman 3 

 

 Reformulation: 





4

1

Min
i

iiucz         (A7.17.2) 

s.t. }4,3,2,1{,
3

1




iyw
j

iji       (A7.17.3) 
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  }3,2,1{},4,3,2,1{,
2

 jipxay ijjijij      (A7.17.4) 

  }4,3,2,1{,exp  iwu ii        (A7.17.5) 

We used one-dimensional grids to linearize Equations (A7.17.4–A 7.17.5). 

 

18) Hartman 6 

  
 
















4

1

6

1

2
expMin

i j

ijjiji pxacz      (A7.18.1) 

}6..,,1{,10..  jxts j
and constants aij , pij  and cj given in Tables 7.2 and 7.3.  

 

i ci 
aij 

j=1 j=2 j=3 j=4 j=5 j=6 

1 1 10 3 17 3.5 1.7 8 

2 1.2 0.05 10 17 0.1 8 14 

3 3 3 3.5 1.7 10 17 8 

4 3.2 17 8 0.05 10 0.1 14 

Table A7.2: Parameter set I for Hartman 6 

 

i 
pij 

j=1 j=2 j=3 j=4 j=5 j=6 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665 

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

Table A7.3: Parameter set II for Hartman 6 

 

Reformulation 
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



4

1

Min
i

iiucz         (A7.18.2) 

}4,3,2,1{,
6

1




iyw
j

iji        (A7.18.3) 

  }6..,,1{},4,3,2,1{,
2

 jipxay ijjijij      (A7.18.4) 

  }4,3,2,1{,exp  iwu ii        (A7.18.5) 

We used one-dimensional grids to linearize Equations (A7.18.4–A7.18.5). 

 

19) Helical Valley 

    2

3

2
2

2

2

1

2

2 110100Min xxxxz 






      (A7.19.1) 
































0,
2

1
tan

0,tan

where

1
1

21

2
1

1
1

21

2
1

xif
x

x

xif
x

x





       

}3..,,1{,1010  ixi         

Reformulation: 

312Min wwz          (A7.19.2) 

subject to 

   










































0,
2

1
tan

0,tan

where

110100

1
1

21

2
1

1
1

21

2
1

2

3

2
2

2

2

1

2

212

xif
x

x

xif
x

x

xxxxw









   (A7.19.3) 

2

33 xw          (A7.19.4) 

We used a one-dimensional grid for Equations (A7.19.4) and a two dimensional grid for 

Equation (A7.19.3). 
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20) Hosaki 

        2

2

2

4

1

3

1

2

11 exp
4

1
3

7781Min xxxxxxz     (A7.20.1) 

60,50.. 21  xxts         

We used a single two-dimensional grid to linearize Equation (A7.20.1). 

21) Kowalik 

 
 


















11

1

2

2

43

21

1

1
Min

i ii

i
i

bxbx

bxx
az       (A7.21.1) 

}4..,,1{,42.00..  ixts i and the values of ai and bi as given in Table 7.4.   

  

 

i ai bi 

1 0.1957 0.25 

2 0.1947 0.50 

3 0.1735 1.0 

4 0.16 2.0 

5 0.0884 4.0 

6 0.0627 6.0 

7 0.0456 8.0 

8 0.0342 10.0 

9 0.0323 12.0 

10 0.0235 14.0 

11 0.0246 16.0 

Table A7.4: Data for the Kowalik Problem 

We used a four-dimensional grid to linearize Equations (A7.21.1). 
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22) Levy and Montalvo I 

          
















 







2
1

1

1

22

1

2 1sin1011sin10Min n

n

i

ii yyyy
n

z 


 (A7.22.1) 

 125.01where  ii xy         

}..,,1{,1010 nixi          

Reformulation 














n

i

iu
n

z
0

Min


        (A7.22.2) 

 1

2

0 sin10 yu          (A7.22.3) 

     }1..,,1{,sin1011 1

22
  niyyu iii      (A7.22.4) 

 21 nn yu          (A7.22.5) 

  }..,,1{,125.01 nixy ii        (A7.22.6) 

We used one-dimensional grids to linearize Equations (A7.22.3) and Equations 

(A7.22.5), and two-dimensional grids to linearize Equation (A7.22.4). 

 

23) Levi and Montalvo 2 

            







 





 nn

n

i

ii xxxxxz  2sin113sin113sin1.0Min 22
1

1

1

22

1

2
  

          (A7.23.1) 

}..,,1{,55.. nixts i          

Reformulation: 





n

i

iuz
0

1.0Min         (A7.23.2) 

 1

2

0 3sin xu          (A7.23.3) 

     }1..,,1{,3sin11 1

22
  nixxu iii       (A7.23.4) 
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    nnn xxu 2sin11 22
        (A7.23.5) 

We used one-dimensional grids to linearize Equations (A7.23.3) and (A7.23.5), and two-

dimensional grids to linearize Equations (A7.23.4). 

24) McCormick Problem 

    15.25.1sinMin 21

2

2121  xxxxxxz     (A7.24.1) 

33,45.1.. 21  xxts         

We used one-dimensional grids to linearize Equations (A7.24.1). 

 

25) Meyer and Roth Problem 

 

















5

1

2

21

31

1
Min

i

i

ii

i y
vxtx

txx
z       (A7.25.1) 

}3..,,1{,1010..  jxts j
        

The values of the parameters ti, vi and yi are given in Table 7.5. 

  

i ti vi yi 

1 1.0 1.0 0.126 

2 2.0 1.0 0.219 

3 1.0 2.0 0.076 

4 2.0 2.0 0.126 

5 0.1 0.0 0.186 

Table A7.5: Data for Meyer and Roth Problem 

Reformulation 

We used a three-dimensional grid to linearize Equations (A7.25.1). 

 

26) Miele and Cantrell Problem 
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        8

1

4

43

6

32

4

21 tan100expMin xxxxxxxz     (A7.26.1) 

}4..,,1{,11..  ixts i         

Reformulation 

4321Min yyyyz         (A7.26.2)  

  4211 exp xxy          (A7.26.3)  

 6322 100y xx          (A7.26.4)  

  4433 tany xx          (A7.26.5)  

8

14 xy           (A7.26.6)  

We used a one-dimensional grid to linearize Equations (A7.26.6) and two-dimensional 

grids to linearize equations (A7.26.3–A7.26.5). 

27) Modified Langerman Problem 

 












5

1

expcosMin
j

j

j

j d
d

cz 


      (A7.27.1)

 



n

i

jiij axd
1

2
where        (A7.27.2)

}..,,1{,100 nixi          

The values of the parameters cj and aji are given in Tables 7.6 and 7.7. 

 aji 
cj 

j i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 

1 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.02 0.806 

2 9.4 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517 

3 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 0.1 

4 2.196 0.415 5.649 6.979 9.51 9.166 6.304 6.054 9.377 1.426 0.908 

5 8.074 8.777 3.467 1.867 6.708 6.349 4.534 0.276 7.633 1.567 0.965 

Table A7.6: Data for Modified Langerman Problem 
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Reformulation 





5

1

Min
i

juz          (A7.27.3) 

  }..,,1{},5..,,1{,
2

nijaxw jiiji       (A7.27.4)

}5..,,1{,
1




jwd
n

i

jij        (A7.27.5)

  }5..,,1{,expcos 







 jd

d
cu j

j

jj 


     (A7.27.6) 

We used one-dimensional grids to linearize Equations (A7.27.4) and Equations 

(A7.27.6). 

 

28) Modified Rosenbrock Problem 

    21

2

2

22

12 6.05.04.6100Min  xxxxz     (A7.28.1) 

}2,1{,55..  ixts i         

We used a two-dimensional grid to linearize Equation (A7.28.1). 

 

29) Multi-Gaussian Problem 

   















 


5

1
2

i

2

2

2

1

d
expMax

i

ii
i

cxbx
az      (A7.29.1) 

}2,1{,22..  ixts i         

Reformulation 





5

1

Max
i

iyz          (A7.29.2) 

s.t.  
   

}5..,,1{,
d

expy
2

i

2

2

2

1
i 













 
 i

cxbx
a ii

i    (A7.29.3) 
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We used two-dimensional grids to linearize Equation (A7.29.3). 

 

30) Neumaier 2 Problem 

  
 











n

k

n

i

k

ik xbz
1

2

1

Min        (A7.30.1) 

}..,,1{,0.. ninxts i          

Reformulation 





n

k

kuz
1

Min          (A7.30.2) 

  }..,,1{},..,,1{, nknixy
k

iik        (A7.30.3)

}..,,1{,
1

nkyw
n

i

ikk 


        (A7.30.4) 

  }..,,1{,
2

nkwbu kkk         (A7.30.5) 

We used one-dimensional grids to linearize Equations (A7.30.3) and Equations 

(A7.30.5), and used n = 4 and b = {8, 18, 44, 114}. 

 

31) Neumaier 3 Problem 

   







n

i

ii

n

i

i xxxz
2

1

1

2
1Min       (A7.31.1) 

}..,,1{,.. 22 ninxnts i          

Reformulation 





n

i

i

n

i

i wyz
21

Min         (A7.31.2) 

  }..,,1{,1
2

nixy ii         (A7.31.3) 

}..,,2{,1 nixxw iii          (A7.31.4) 
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We used one-dimensional grids to linearize Equations 7.31.3 and two-dimensional grids 

to linearize Equations 7.31.4. 

 

32) Odd Square Problem 

  

















2
expcos

1.0

2.00.1
Min

D
D

D

d
z      (A7.32.1)

 



n

i

ii bxd
1

2         (A7.32.2)

 ii bxnD  max         (A7.32.3)

}20..,,1{,1515  ixi         










1.4 0.5, 0.6,- 0.2,- 1.6, 1.3,- 4,- 0.8, 1.3, 1,

1.4, 0.5, 6,- 2,- 1.6, 1.3,- 0.4,- 0.8, 1.3, 1,
b      

Reformulation 

yz Min          (A7.32.4) 

s. t.   }..,,1{,
2

nibxw iii        (A7.32.5)





n

i

iwu
1

         (A7.32.6)

ud           (A7.32.7)

  }..,,1{, nibxnD ii                   (A7.32.8)

  }..,,1{, nixbnD ii                              (A7.32.9)

1.0

2.00.1
y1






D

d
                  (A7.32.10) 

   



2

expcosy2
DD                             (A7.32.11)

21yyy                      (A7.32.12) 

We used one-dimensional grids to linearize Equations (A7.32.5), (A7.32.7), and 

(A7.32.11); and two-dimensional grids to linearize Equations (A7.32.10) and (A7.32.12). 
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33) Paviani 

       
 











10

1

2.0
10

1

222
10ln2lnMin

i i

iii xxxz     (A7.33.1)

}10..,,1{,102..  ixts i         

Reformulation 

       
 
























10

1

10

1

222
log2.0exp10ln2lnMin

i i

iii xxxz   (A7.33.2) 

Or          
 











10

1

10

1

222
log2.0exp10ln2lnMin

i i

iii xxxz   (A7.33.3) 

Or vyz
n

i

i 
1

Min         (A7.33.4)

      }..,,1{,10ln2ln
22

nixxy iii       (A7.33.5)

  }..,,1{,log nixw ii         (A7.33.6)





n

i

iww
1

         (A7.33.7)

 wv 2.0exp          (A7.33.8)  

We used one-dimensional grids to linearize Equations (A7.33.5), (A7.33.6), and 

(A7.33.8). 

 

34) Periodic Problem 

     2

2

2

12

2

1

2 exp1.0sinsin1Min xxxxz      (A7.34.1) 

}2,1{,1010..  ixts i         

We used a two-dimensional grid to linearize Equation (A7.34.1). 

35) Powell’s Quadratic Problem 
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       441

4

32

2

43

2

11 102510Min xxxxxxxxz     (A7.35.1)

}4...,,1{,1010..  ixts i         

Reformulation 

4321Min yyyyz         (A7.35.2)

 2111 10xxy          (A7.35.3)

 2432 5 xxy          (A7.35.4)

 4323 2xxy          (A7.35.5)

 4414 10 xxy          (A7.35.6) 

We used a one dimensional grid to linearize Equation (A7.35.3) and two-dimensional 

grids to linearize Equations (A7.35.4–A7.35.6).  

 

36) Price Transistor 

We used two six-dimensional grids and one four-dimensional grid to linearize the 

nonlinear function in this problem.  

 

 



4

1

222Min
k

kkz         (A7.36.1)

245857315321 }1)]*001.0**001.0*({exp[)1( xggxgxggxxxx kkkkkk    

4,...,1for k  (A7.36.2) 

kkkkkkk gxgxgxgggxxxx 4159473216421 }1)]*001.0**001.0*({exp[)1(   

4,...,1for k  (A7.36.3) 

4231 xxxx          (A7.36.4) 
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i 
                              ikg  

k =1 2 3 4 

1 0.485 0.752 0.869 0.982 

2 0.369 1.254 0.703 1.455 

3 5.2095 10.0677 22.9274 20.2153 

4 23.3037 101.779 111.461 191.267 

5 28.5132 111.8467 134.3884 211.4823 

Table A7.7: Data for Price Transistor 

 

Reformulation 

 



4

1

Min
k

kk qptz        (A7.36.5) 

321 )1( xxxu          (A7.36.6) 

421 )1( xxxv          (A7.36.7) 

4,...,1for*001.0**001.0* 85731  kxgxggr kkkk    (A7.36.8) 

4,...,1for*001.0**001.0* 947321  kxgxgggs kkkkk   (A7.36.9)  

  4,...,1for}1]{exp[
2

2455  kxggrxup kkkk       (A7.36.10) 

  4,...,1for}1]{exp[
2

4156  kgxgsxvq kkkk                (A7.36.11) 

2

4231 )( xxxxt                      (A7.36.12) 

We used three-dimensional grids for Equations (A36.6) and (A36.7), and four-

dimensional grids for linearizing Equations (A36.10–A36.12).   

 

37) Rastrigin Problem 

  



n

i

ii xxnz
1

2 2cos1010Min        (A7.37.1)

}...,,1{,12.512.5.. nixts i         
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Reformulation 





n

i

iynz
1

10Min         (A7.37.2)

  }..,,1{,2cos102 nixxy iii         (A7.37.3) 

We used a one-dimensional grid to linearize Equation (A7.37.3).  

 

38) Rosenbrock Problem 

    




 
1

1

222

1 1Min
n

i

iii xxxz       (A7.38.1)

}...,,1{,3030.. nixts i         

Reformulation 







1

1

Min
n

i

iwz          (A7.38.2)

    }1..,,1{,1
222

1   nixxxw iiii
     (A7.38.3) 

We used two-dimensional grids to linearize Equations (A7.38.3). 

 

39) Salomon Problem 

  ||||1.0||||2cos1Min xxz         (A7.39.1)





n

i

ixx
1

2||||where         (A7.39.2)

}...,,1{,100100.. nixts i           

Reformulation 

uz 1Min          (A7.39.3)

}..,,1{,2 nixy ii          (A7.39.4)
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



n

i

iyy
1

         (A7.39.5) 

  yyu 1.02cos          (A7.39.6) 

We used one-dimensional grids to linearize Equations (A7.39.4) and (A7.39.6). 

 

40) Schaffer 1 

  
  22

2

2

1

2
2

2

2

1

001.01

5.0sin
5.0Min

xx

xx
z




       (A7.40.1)

}2,1{,100100..  ixts i         

We used a two-dimensional grid to linearize Equations (A7.40.1). 

 

41) Schaffer 2 

     150sinMin
1.02

2

2

1

225.02

2

2

1  xxxxz      (A7.41.1)

}2,1{,100100..  ixts i         

We used a two-dimensional grid to linearize Equations (A7.41.1). 

 

42) Shubert 

    
 
















n

i j

i jxjjz
1

5

1

1cosMin       (A7.42.1)

}...,,1{,1010.. nixts i          

We used a two-dimensional grid to linearize Equations (A7.42.1) for n = 2.  

 

43) Schwefel Problem 
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  



n

j

ii xxz
1

||sinMin        (A7.43.1)

}...,,1{,500500.. nixts i         

Reformulation 





n

i

iyz
1

Min          (A7.43.2)

 ||sin iii xxy           

We used one-dimensional grids to linearize Equations (A7.43.2). 

 

44) Shekel 5 Problem 

 


























5

1
4

1

2

1
Min

i

j

ijji axc

z  }4...,,1{,100..  jxts i   (A7.44.1) 

       

Problem i aij ci 

j=1 j=2 j=3 j=4 

S5 1 4 4 4 4 0.1 

 2 1 1 1 1 0.2 

 3 8 8 8 8 0.2 

 4 6 6 6 6 0.4 

 5 3 7 3 7 0.4 

S7 6 2 9 2 9 0.6 

 7 5 5 3 3 0.3 

 8 8 1 8 1 0.7 

S10 9 6 2 6 2 0.5 

 10 7 3.6 7 3.6 0.5 

Table A7.8: Data for Shekel Problems 
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Reformulation 





5

1

Min
i

iuz         (A7.44.2) 

}5...,,1{,
1

 i
w

u
i

i         (A7.44.3) 

5,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii      (A7.44.4)

}4...,,1{,)( 2  jxy jj        (A7.44.5)  

We used one-dimensional grids to linearize Equations (A7.44.3) and (A7.44.5). 

 

45) Shekel 7 Problem 

 


























7

1
4

1

2

1
Min

i

j

ijji axc

z       (A7.45.1) 

}4...,,1{,100..  jxts i         

Reformulation 





7

1

Min
i

iuz         (A7.45.2) 

}7...,,1{,
1

 i
w

u
i

i         (A7.45.3) 

7,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii      (A7.45.4) 

}4...,,1{,)( 2  jxy jj        (A7.45.5)  

We used one-dimensional grids to linearize Equations (A7.45.3) and (A7.45.5). 

 

46) Shekel 10 Problem 
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 


























10

1
4

1

2

1
Min

i

j

ijji axc

z       (A7.46.1)

}4...,,1{,100..  jxts i         

Reformulation 





10

1

Min
i

iuz         (A7.46.2) 

}10...,,1{,
1

 i
w

u
i

i         (A7.46.3) 

10,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii      (A7.46.4) 

}4...,,1{,)( 2  jxy jj        (A7.46.5)  

We used one-dimensional grids to linearize Equations (A7.45.3) and (A7.45.5). 

 

47) Sinusoidal Problem 

    







 



n

i

i

n

i

i CxBCxAz
11

sinsinMin     (A7.47.1) 

}...,,1{,1800.. nixts i          

Our tests were performed with A = 2.5, B = 5, C = 30, n= 20. 

Reformulation 

 sAyz Min         (A7.47.2) 

  }20...,,1{,sin  iCxu ii        (A7.47.3) 

}10...,,1{,212   juuv jjj
       (A7.47.4) 

}5...,,1{,212   kvvw kkk        (A7.47.5) 

211 wwy           (A7.47.6) 
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432 wwy           (A7.47.7) 

213 yyy           (A7.47.8) 

53wyy                      (A7.47.9) 

   }...,,1{,sin niCxBp ii                    (A7.47.10) 

}10...,,1{,212   jppq jjj
                                                   (A7.47.11) 

}5...,,1{,212   kqqr kkk                                                    (A7.47.12) 

211 rrs                  (A7.47.13) 

432 rrs                 (A7.47.14) 

213 sss                      (A7.47.15) 

53rss                      (A7.47.16) 

We used one-dimensional grids to linearize Equations (A7.47.3) and (A7.47.10), and two 

dimensional grids to linearize (A7.47.4–A7.47.9) and (A7.47.12–A7.47.16). 

48) Storn’s Tchebychev Problem 

321Min pppz          (A7.48.1) 

 





n

i

i

in
xu

1

2.1         (A7.48.2)

 










duif

duifdu
p

0

2

1        (A7.48.3)

 





n

i

i

in
xv

1

2.1         (A7.48.4)

 










dvif

dvifdv
p

0

2

2        (A7.48.5) 
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














n

i

i

in

j x
m

j
w

1

1
2

        (A7.48.6)

 
 

















110

11

11
2

2

j

jj

jj

j

wif

wifw

wifw

q        (A7.48.7)





m

j

jqp
0

3          (A7.48.8) 

  60,661.72,128,128:9For
9

 mdxn i  

  100,145.10558,32768,32768:17For
17

 mdxn i  

Reformulation 

256::9For  Fn       

32678::17For  Fn  

321'Min pppz          (A7.48.9) 

 













n

i

iin

F

x
u

1

2.1         (A7.48.10) 

u
F

d
p '1          (A7.48.11) 

 211 'pp           (A7.48.12)

 













n

i

iin

F

x
v

1

2.1         (A7.48.13) 

v
F

d
p '2          (A7.48.14) 

 222 'pp           (A7.48.15) 

mj
F

x

m

j
w

n

i

i

in

j ,...,0for 1
2

1























     (A7.48.16) 

mj
F

wr jj ,...,0for 
1

'         (A7.48.17) 

  mjrr jj ,...,0for '
2

        (A7.48.18)  
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mj
F

ws jj ,...,0for 
1

'         (A7.48.19) 

  mjss jj ,...,0for '
2

        (A7.48.20)  

mjsrq jjj ,...,0for         (A7.48.21) 





m

j

jqp
0

3          (A7.48.22) 

49) Wood’s function 

       

        118.19111.10

1901100Min

42

2

4

2

2

2

3

22

34

2

1

22

12





xxxx

xxxxxxz
   (A7.49.1) 

}4...,,1{,1010..  ixts i        ‘ 

Reformulation 

321Min yyyz          (A7.49.2) 

   21

22

121 1100y xxx         (A7.49.3) 

   23

22

342 190y xxx         (A7.49.4) 

        118.19111.10y 42

2

4

2

25  xxxx     (A7.49.5) 

We used two-dimensional grids to linearize Equations (A7.49.3–A7.48.5).  
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Appendix A8: Determining the Best Non-uniform Grid for an n-dimensional 

Function 

Given a n-dimensional function ),...,( 1 nxxf , iii uxl  and a set of break points along 

each dimension, partition the domain along each dimension into segments and the entire 

space into n-dimensional boxes such that the sum of the approximation errors over all the 

boxes is minimized. The approximation error arises when the function values at the 

points that lie on or inside a box are approximated by convex combination of the function 

values at the vertices of the box. 

Sets and parameters 

D  set of dimensions 

d  index over D  

n  number of dimensions 

dI  set of intervals along dimension d 

dS  set of segments along dimension d 

i  index over dI for all Dd  

s  index over dS for all Dd  

d
is  parameter that is one if interval dIi  belongs to segment dSs along dimension 

d , and is zero otherwise 

B  set of n-dimensional boxes 

b  index over B  

bc  approximation error (or cost) associated with box b  

),( dbs  segment corresponding to box b along dimension d  

d  number of segments required along dimension d  
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),( dsB set of boxes corresponding to segment s along dimension d  

  total number of boxes required;  



Dd

d  

  set of all possible interval combinations along all the dimensions ; 

nIII  ...21  

  index over  ; each  can be conceptualized as a box in n-dimensional space such 

that each edge of this box corresponds to an interval. We call such a box a pixel. 

)(B  set of boxes that cover pixel  

Variables 

d
sX  binary variable that is one if we select segment s along dimension d , and is zero 

otherwise 

bY  binary variable that is one if we select box b , and is zero otherwise 

Objective 

Our goal is to minimize the sum of the approximation errors over each selected box 

 


Bb

bbYcMin         (A8.1) 

Constraints 

1) Interval selection constraint 

Each interval along each dimension must be covered by exactly one segment. 

 





dSs

dd
s

d
is DdIiX ,allfor1      (A8.2) 

2) Segment selection constraint 
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For each dimension, the number of segments selected should be equal to desired 

number of segments along that dimension. 

 

DdX
dSs

dd

s 


allfor      (A8.3) 

3) Box selection constraint 

For each box, if we select each of the segments that the box corresponds to along 

each dimension, then we must select that box. 

BbnXY
Dd

d
dbsb 



allfor1),(

     (A8.4) 

4) Total number of boxes constraint 

The total number of boxes selected must be equal to the required number of boxes. 


Bb

bY         (A8.5) 

5) Box forcing constraint 

If we select a segment along dimension d, then we must select a specified number of 

boxes (equal to
d / ) along that segment.  

DdSsXY dd

sd
dsBb

b 











,allfor
),( 


   (A8.6) 

6) Pixel covering constraint 

Each pixel in n-dimensional space must be covered by exactly one box.  

 







allfor1
)(Bb

bY      (A8.7) 

7) Binary Variable constraint 

The segment selection and box selection constraints are binary. 

dd
s SsDdX  ,allfor}1,0{      (A8.8) 
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BbYb  allfor}1,0{       (A8.9) 

Note: If we are using the maximum error metric, then we define: 

 a parameters bĉ which indicates the approximation error associated with box b  based 

on the maximum error metric, and  

 a continuous variable W that indicates the maximum error over all the selected boxes. 

We need a new objective as given by Equation (A8.10) and a new constraint as given by 

Equation (A8.11). The model is comprised of Equations (A8.2 –A8.11). 

WMin        (A8.10)

BbYc bb  allforˆW         (A8.11) 

Strengthening the aggregate box selection inequality 

We can strengthen the box selection constraint by aggregating it over multiple boxes that 

have the property that they cannot all be present in a feasible integer solution. For each 

dimension Dd ¸ let us define d as the set of all possible combinations of segments 

along that dimension such that in each combination, the segments cover a common 

interval. This implies that in a feasible integer solution, no more than one segment can be 

selected from a segment combination.  

Let ||21 ... D be the product of the segment combinations along each 

dimension and let  be an index over  . Each combination product  corresponds to  

(a) a set of segment-combinations along each dimension such each segment 

combination shares a common interval, and 

(b) a set of boxes which share a common space. 

Further, let )(dS be the set of segments along dimension d that are present in the 

combination product  , and )(B be the set of boxes formed by the set of segments in 
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the combination product  . Then, the aggregate box selection inequality is given by 

Equation (A8.9). 

 
 




allfor1
)()( Dd Ss

d

s

Bb

b nXY
d

   (A8.12) 

This inequality is valid because (a) on the right hand side, for each dimension, no more 

than one segment can be selected, since the segments cover a common interval, and (b) 

on the left hand side, no more than one box can be chosen depending upon the segments 

chosen along each dimension. We now provide an LP solution that does not satisfy the 

aggregate box selection inequality. 

LP solution violating the box selection inequality 

Consider a scenario in which we have a two-dimensional grid with two intervals along 

each dimension, and we wish to create a grid with two segments along each dimension. 

In this case, the only solution is to choose each interval as a segment. Let us now see how 

the mixed integer program defined by Equations (A8.1) – (A8.6) will solve this problem. 

To do so, we first need to define some sets and parameters. 

Notation 

 
21, II  set of intervals along Dimension 1 and Dimension 2 respectively 

qp,  indices over 
1I  

sr,  indices over 
2I  

1S  set of segments along Dimension 1; a segment covering intervals p through q is 

denoted by the ordered pair  (p, q) 

2S  set of segments along Dimension 2; a segment covering intervals r through s is 

denoted by the ordered pair  (r, s) 
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B  set of boxes; a box formed by segments (p, q) along Dimension 1 and (r, s) along 

Dimension 2 is denoted by the 4-tuple (p, q, r, s) 

1

pqX  binary variable that is 1 if we select segment (p, q) along Dimension 1, and zero 

otherwise 

2

rsX  binary variable that is 1 if we select segment (r, s) along Dimension 2, and zero 

otherwise 

pqrsY  binary variable that is 1 if we select box (p, q, r, s), and zero otherwise 

In the current case, where we have a 2x2 grid, the various sets can be listed as follows. 

 }2,1{1 I , }2,1{2 I  

)}2,2(),2,1(,)1,1{(1 S , )}2,2(),2,1(,)1,1{(2 S  

Consider the following LP solution.  

)}2,2(),2,1(,)1,1{(),(allfor
2

11  qpX pq     (A8.13a) 

)}2,2(),2,1(,)1,1{(),(allfor
2

12  srX rs     (A8.13b) 

)}2,2(),2,1(,)1,1{(),()},2,2(),2,1(,)1,1{(),(allfor0  srqpYpqrs
 

 (A8.13c) 

This solution satisfies the box selection constraint but since it does not assign a strictly 

positive value to any of the box selection variables, it can achieve an objective value of 

zero. However, if we apply the aggregate box inequality for the overlapping segments 

sets )}2,1(,)1,1{(1  and )}2,1(,)1,1{(2  , we get the Equation (A8.11).  

12

12

2

11

1

12

1

111112121111121111  XXXXYYYY    (A8.14) 

The left hand side of this equation has a value of 1 and therefore it forces one or more of 

the box selection variables (on the left hand side) to take a strictly positive value. Thus, 
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the LP solution given by Equation (A8.10) will be removed by the aggregate box 

inequality.   
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Appendix A9: Models and Reformulations for Gasnet  

The gasnet model involves designing a gas pipeline system that can transport a fixed 

amount of gas from point A to points B and C. The pressure, temperature and 

composition of the gas at points A, B, and C are known. The configuration of the pipeline 

system is shown in Figure 1. There are a total of twelve pipeline segments and ten 

compressors. Each segment has five associated variables: the flow rate (Q), the inlet 

pressure ( dp ) which is also the discharge pressure from the upstream compressor, the 

outlet pressure  ( sp ) which is also the suction pressure for the downstream compressor, 

the pipe diameter (D), and the length of the pipeline segment (L). The objective is to 

design a pipe at the lowest cost. 

Model-I 

Sets 

I  set of segments of pipes,   ji,  indices over I  

C  set of compressors   c  index over C  

B  set of branches   b  index over B  

)(cIu  set of pipe segments that are immediately upstream of compressor c 

)(cId  set of pipe segments that are immediately downstream of compressor c 

)(iIu  set of pipe segments that are immediately upstream of segment i 

)(iId  set of pipe segments that are immediately downstream of segment i 

)(ic  compressor downstream of segment i 

nontermI  set of non-terminal pipe segments 

)(bI  set of pipe segments that belong to branch b 
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Figure A9.1: Pipeline system 

Parameters 

k  ratio of specific heat at constant pressure to the specific heat at constant volume at 

suction conditions, assumed to be 1.26 

s1 s0 s2 s3 

c1 c2 c3 A c4 

s7 

s5 

s6 

s4 

c5 

c6 

c7 

B 

s9 

s8 

c8 

c9 

c10 

s10 

s11 

C 
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  compressibility factor of gas at suction conditions, assumed to be 0.88 

t  suction temperature in 
o
R, assumed to be 520 

fix  fixed cost for a compressor 

var  variable cost for a compressor, expressed in dollars per unit work done by the 

compressor 

op  operating cost for a compressor, expressed in dollars per unit work done by the 

compressor 

  fixed cost for pipe, expressed in dollars per unit length per unit diameter of the 

pipe 

b  length of branch b 

max

c  maximum compression ratio allowed for compressor c 

Variables 

iL  length of pipe segment i 

idP  discharge pressure for pipe segment i 

isP  suction pressure for pipe segment i 

iD  diameter of pipe segment i 

iQ  flow in pipe segment i 

c  compression ratio for compressor c 

cW  work done by compressor c 

cY  binary variable that takes value 1 if compressor c is selected, and takes value zero 

otherwise 

Objective 
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Our objective is to minimize the sum of the fixed, variable and operating costs of the 

compressors and the fixed pipe costs. 





Cc

cop

Cc

cfix

Ii

ii YYDL )(Min var      (A9.1) 

Constraints 

1) Pressure drop in pipe segments 

For each pipe, the discharge pressure must be greater than or equal to the suction 

pressure. 

IiPP
ii sd  allfor0       (A9.2) 

2) Length of branches 

The total length of the segments in a particular branch must be equal to the specified 

branch length. 

BbL b

bIi

i 


allfor
)(

       (A9.3) 

3) Flow Equation 

The flow equation links the flow rate, pipe length, pipe diameter, discharge pressure 

and suction pressure for the pipe segment. 

      IiPPD
L

Q
ii sdi

i

i  allfor871.0
1 223/1622

   (A9.4)  

or         IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
   (A9.5)  

4) Compressor work definition 

The compressor work definition expresses the work done by a compressor in terms of 

the suction temperature (t), the ratio of specific heat at constant pressure to the 

specific heat at constant volume (k), the compressibility factor of gas at suction 
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conditions ( ), the compression ratio for compressor  (  ), and the flow rate through 

the compressor. 

  )(,allfor1
1

08531.0 /)1( cIiCc
k

k
QtW d

kk

ic 


   (A9.6)  

5) Maximum compression  

For each compressor, the compression ratio must be between 1and the maximum 

compression ratio for that compressor.  

  CcYccc  allfor11 max      (A9.7) 

6) Compression definition 

For each compressor, the compression ratio is the ratio of the discharge pressure into 

the downstream pipe segment and the suction pressure in the upstream pipe. 

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i      (A9.8) 

7) Flow balance  

The flow rate out of a compressor is 99.5% of the flow rate into the compressor.  

nontermici

iIj

ji IiYQQQ
d

 


allfor005.0 )(

)(

    (A9.9) 

 

Reformulation 

We present four different models of the gasnet problem. 

Model 0 

1) We use a two dimensional grid for linearizing the first term in Equation (A9.1). 

2) We use a four dimensional grid to linearize Equation (A9.5). 

3)  We use a two dimensional grid to linearize Equation (A9.6), Equation (A9.7) and 

Equation (A9.8). 



 

 

 

 

225 

 

Model 1 

1) We use a two dimensional grid for linearizing the first term in Equation (A9.1). 

2) We use a four dimensional grid to linearize Equation (A9.5). 

3)  We use a two dimensional grid to linearize Equation (A9.6) and Equation (A9.8). 

4) Let iQ̂ be the upper bound on iQ . Then, instead of creating a two dimensional grid for 

Equation (A3.9), we use the transformation given by Equations (A9.10–A9.13) which 

ensures that  

a. when )(icY is equal to one, then i

iIj

j QQ
d

995.0
)(




 , and  

b. when )(icY is equal to zero, then i

iIj

j QQ
d


 )(

.  

nontermicii

iIj

j IiYQQQ
d




allfor)1(ˆ005.0995.0 )(

)(

 (A9.10) 

nontermi
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
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)(

  (A9.11) 

nontermici
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ji IiYQQQ
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

allforˆ005.0 )(

)(

  (A9.12) 

When )(icY is equal to one, Equation (A9.10) becomes Equation (A9.13), which together 

with Equation (A9.11) leads to Equation (A9.14), which is condition (a) above. 

nontermi

iIj

j IiQQ
d




allfor995.0
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   (A9.13) 

nontermi
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

allfor995.0
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   (A9.14) 

When )(icY is equal to zero, Equation (A9.12) can be replaced by Equation (A9.15), which 

together with Equation (A9.11) leads to Equation (A9.16), which is condition (b) above. 

nonterm

iIj

ji IiQQ
d
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Model-II 

Model-II is the same as Model I except that we make the following changes. 

a) Replace the
idP variables by a new set of variables 

idP such that IiPP
ii dd  allfor . 

b) Replace Equation (A9.2) with Equation (A9.17) which contains 
idP variables. 

      IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
  (A9.17)  

c) Replace Equation (A9.5) Equation (A9.18) which contains 
idP variables. 

IiPP
ii sd  allfor0      (A9.18) 

d) Replace Equation (A9.8) by Equation (A9.19) which contains the
idP variables. 

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i    (A9.19) 

Model-II is comprised of Equations (A9.1), Equations (A9.3–A9.4), Equations (A9.6–

A9.7), Equation (A9.9), and Equations (A9.17–A9.19). 

We reformulate Model-II in the same manner as we reformulate Model-I. Further, we use 

two-dimensional grids to linearize Equations (A9.19).  

Model-III 

Model-III is the same as Model I except that we make the following changes. 

a) Replace the
isP variables by a new set of variables 

isP such that IiPP
ii ss  allfor . 

b) Replace Equation (A9.2) with Equation (A9.20) which contains the 
isP variables. 

      IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
  (A9.20)  

c) Replace Equation (A9.5) with Equation (A9.21) which contains the 
isP variables. 

IiPP
ii sd  allfor0      (A9.21) 
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d) Replace Equation (A9.8) with Equation (A9.22) which contains the 
isP variables. 

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i    (A9.22) 

Model-III is comprised of Equations (A9.1), Equations (A9.3–A9.4), Equations (A9.6–

A9.7), Equation (A9.9), and Equations (A9.20–A9.22). 

We reformulate Model-III in the same manner as we reformulated Model-I. Further, we 

use two-dimensional grids to linearize Equations (A9.22). 
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Appendix A10: Model and Reformulation for Reactor Network Design  

The chemical reactor network design model involves determining the types, sizes, and 

interconnections of reactors which optimize a desired performance objective.  In the 

model considered here, the reactors are of the type Continuous Stirred Tank Reactors 

(CSTR). 

Model 

Sets 

I  set of components,   i  indices over I  

J  set of reactions  j  index over J  

L  set of CSTR units  l  index over L  

R  set of feeds   r  index over R  

P  set of products   p  index over P  

Parameters 

ijv  coefficient of reactant Ii in reaction Jj  

jk̂  rate constant, defined for Jj  

jE  activation energy, defined for Jj  

R  gas constant 

a

rF  flow rate of feed streams, defined for Rr  

a

ric  flow rate of species in feed streams, defined for IiRr  ,  

)( ji  reactant for reaction Jj  

Variables 

ad

rlF  flow rate from feed splitters to CSTR mixers, defined for LlRr  ,  

d

lF  flow rate into CSTR units, defined for Ll  
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g

lF  flow rate out of CSTR units, defined for Ll  

gd

llF ',  flow rate from CSTR outlets to CSTR inlets, defined for LlLl  ',  

gh

lpF  flow rate from CSTR outlets to product mixers, defined for PpLl  ,  

h

pF  flow rate of product streams, defined for Pp  

d

lic  concentration of species in the CSTR inlet streams, defined for IiLl  ,  

g

lic  concentration of species in the CSTR outlet streams, defined for IiLl  ,  

h

pic  concentration of species in the product streams, defined for IiPp  ,  

m

lT  temperatures in the CSTR units, defined for Ll  

m

lV  volumes of the CSTR units, defined for Ll  

m

ljr  rate of reaction j in reactor l, defined for JjLl  ,  

Objective 

The current problem specifcations are as follows. 

Set of components },,,{ DCBAI   

No. of reactions: 3 

CBA
kk
 21

ˆˆ
 

DA
k
 3

ˆ
2  

 No. of CSTR units: 5 

 No. of feeds: 1 

No. of products: 1 

Our objective is to maximize the yield of B. 

h

Bc1Max         (A10.1) 

Constraints 

1) Flow conservation at the feed splitter 
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RrFF
Ll
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rl

a

r 


allfor      (A10.2) 

2) CSTR inlet mixer total balance 

LlFFF
Rr Ll

gd

ll

ad

rl

d

l  
 

allfor
'

'     (A10.3) 

3) CSTR inlet mixer component balance 

LlIiFcFcFc
Rr Ll

gd

ll

g

il

ad

rl

a

ri

d

l

d

li  
 

,allfor
'

''   (A10.4)  

4) CSTR total balance 

LlFF d

l

g

l  allfor      (A10.5)  

5) CSTR component balance  

LlIirvVFcFc
Jj

m

ljij

m

l

d

l

d

li

g

l

g

li  


,allfor    (A10.6) 

6) CSTR reaction rates 

  LlJjc
RT

E
kr

ijvg

jlim

l

j

j

m

lj 









 ,allforexpˆ

)(   (A10.7) 

7) CSTR outlet splitter  

LlFFF
Pp

gh

lp

Ll

gd

ll

g

l  


allfor
'

'     (A10.8) 

8) Product mixer total balance 

PpFF
Ll

gh

lp

h

p 


allfor      (A10.9) 

9) Product mixer component balance 

PpIiFcFc
Ll

gh

lp

g

li

h

p

h

pi 


,allfor     (A10.10) 

Reformulation 

1) We use two dimensional grids for linearizing the product terms in Equation (A10.4), 

Equation (A10.6), and Equation (A10.10), and the exponential terms in Equation 

(A10.7).  
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Appendix A11: LP Equivalence of Segment-wise and Cumulative adjacency 

Given an NLP and its associated PLA reformulation, let [P] be the MIP model for 

the PLA problem.  Formulation [P] can use either segment-wise adjacency or cumulative 

adjacency constraints for the combined partition of every variable, but we assume that it 

does not contain any additional constraints on the segment selection (z) variables such as 

valid inequalities relating z-values across grids.  We consider the relationship between 

two relaxations of problem [P]: (i) the LP relaxation obtained by relaxing the integrality 

restrictions on the z-variables, and (ii) the Adjacency relaxation obtained by omitting the 

adjacency conditions and z-variables from [P]. 

Let V
LP

 and V
Adj

 denote the optimal values of these two relaxations.  For any 

variable x of the original NLP problem, suppose the combined partition contains (n + 1) 

breakpoints (and associated) marginal weight variables, indexed from i = 0, 1, …, n; the 

corresponding segments are indexed from i = 1, 2, …, n such that segment i extends from 

the (i – 1)
st
 breakpoint to the i

th
 breakpoint.  For variable x, let ),( xx z  and 

x̂

respectively denote the vectors of marginal weights and segment selection values in these 

optimal solutions to the LP and Adjacency relaxations.  (Based on the following result, 

we can show that the two relaxations have optimal solutions with the same optimal values 

for the vertex weight variables, i.e., -variables.  So, we do not consider these variables 

in our discussions.) 

 

Proposition:  V
LP

 = V
Adj

, and, for every variable x, we can construct an optimal solution 

x̂ to the Adjacency relaxation from the solution ),( xx z to the LP relaxation, and vice 

versa.   
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Proof:  For any x, given the solution ),( xx z to the LP relaxation, the solution
xx    is 

feasible for the Adjacency relaxation.  Hence, V
LP

 > V
Adj

.   

Given the optimal solution 
x̂ to the Adjacency relaxation, consider the solution

xx  ˆ  

and 
xxxz 101

ˆ
2

1ˆ   , 
x

i

x

i

x

iz  ˆ
2

1ˆ
2

1
1   for i = 2, 3, …., n – 1, and 

x

n

x

n

x

nz  ˆˆ
2

1
1   . 

 This solution ),( xx z is feasible for the LP relaxation, i.e., it satisfies the adjacency 

conditions (either cumulative or segment-wise) and the requirement that 1
1




n

i

x

iz .  

Hence, V
LP

 < V
Adj

, implying that V
LP

 = V
Adj

.  The solution transformations above show 

how we can obtain an optimal solution for one relaxation from the optimal solution to the 

other.   
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Appendix A12: Notation for MIP Models 

In this appendix, we discuss the notation for the individual grid models, the pattern-based 

models and the combined partition models discussed in Chapter 5. 

 

G:  set of grids (functions) that contain variable X 

g:  index over G 

gn :  number of segments in the partition for X in grid Gg  

i:   index over break points/segments in the partition for X in grid Gg  

gV :  set of vertices in grid Gg  

  iV g

 set of vertices in grid g that lie along break point i 

g

vx :  X-value at vertex v  

vf :  function value at vertex v  

gĥ :  approximate function value for grid Gg  

g

v :  vertex weight variable for vertex gVv in grid Gg  

g

iZ  :  binary segment selection variable defined for each segment gIi in grid Gg  

g

i :  marginal weight variable for break point i in grid Gg  

g

iW : binary cumulative segment selection variable for segment i in grid Gg  

g

i :  cumulative marginal weight variable for break point i in grid Gg  

q:  index over reflected binary codes 

g

qB :  binary variable that is one if we select in the partition for X in grid Gg a 

segment that has a one at the q’th position in its gray code 

P:   set of partitioning patterns for variable X 

p:  index over P 
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pG :  set of grids (functions) that contain variable X and use pattern Pp  

pn :  number of break points in partitioning pattern Pp  

j:   index over break points/segments in partitioning pattern Pp  

p

jS  :  binary segment selection variable for segment j in partitioning pattern Pp  

p

j :  marginal weight variable for break point j in partitioning pattern Pp  

p

jT  :  cumulative segment selection (binary) variable for segment j in partitioning 

pattern Pp  

p

j :   cumulative marginal weight variable (continuous) for break point j in partitioning 

pattern Pp  

p

qC :  binary variable that is one if we select in partitioning pattern Pp a segment that 

has a one at the q’th position in its gray code 

m:  number of break points in the combined partition for X 

k:   index over break points and segments in the combined partition for X 

kR :   binary segment selection variable defined for segment k 

k :   marginal weight variable for break point k 

 kM  : cumulative segment selection (binary) variable for segment k in the combined 

partition for X 

k :   cumulative marginal weight variable (continuous) for break point k in the 

combined partition for X 

qD :  binary variable that is one if we select in the combined pattern for X a segment 

that has a one at the q’th position in its gray code 
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