

Copyright

by

Vivek Vasudeva

2015

The Dissertation Committee for Vivek Vasudeva Certifies that this is the approved

version of the following dissertation:

Global Optimization with Piecewise Linear Approximation

Committee:

Anantaram Balakrishnan, Supervisor

Leon Lasdon, Co-Supervisor

Jonathan F. Bard

Guoming Lai

Efstathios Tompaidis

 Global Optimization with Piecewise Linear Approximation

by

Vivek Vasudeva, B. Tech., M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2015

Dedication

This dissertation is dedicated to my parents and my sisters Madhvi and Priyanka whose

constant support helped me make it to and through graduate school.

 v

Acknowledgements

I would like to express my sincere gratitude to my advisers Prof. Anant

Balakrishnan and Prof. Leon Lasdon for their constant support and encouragement at

every step in the program. I thank my friends Alvin, Kathy, Qi, Qian, Vishwakant, Wen,

Yanzhen and Zhuoxin in the IROM department for providing reassurance that was often

required to handle the stresses of student life. I also thank my friends Dhaval, Rajani and

Jyoti who have influenced my life ever since I started my graduate studies. A special

thanks to Tarun for reviewing my documents and for providing intellectually stimulating

conversations. Finally, a note of appreciation for Cooper, Hyun, Laura, Lucy, Maria,

Patricia, Samantha and Vince—my friends at the local coffee shop—for cheering me

with their coffee in the mornings and the afternoons.

 vi

 Global Optimization with Piecewise Linear Approximation

Vivek Vasudeva, PhD

The University of Texas at Austin, 2015

Supervisors: Anant Balakrishnan and Leon Lasdon

Global optimization deals with the development of solution methodologies for

nonlinear nonconvex optimization problems. These problems, which could arise in

diverse situations ranging from optimizing hydro-power generation schedules to

estimating coefficients of non-linear regression models, are difficult for traditional

nonlinear solvers that iteratively search the neighborhood around a starting point. The

Piecewise Linear Approximation (PLA) method that we study in this dissertation seeks to

generate ‘good’ starting points, hopefully ones that lie in the basin of attraction of the

globally optimal solution. In this approach, we approximate the non-linear functions in

the optimization problem by piecewise linear functions defined over the vertices of a grid

that partitions the domain of each nonlinear function into cells. Based on this

approximation, we convert the original nonlinear program into a mixed integer program

(MIP) and use the solution to this MIP as a starting point for a local nonlinear solver. In

this dissertation, we validate the effectiveness of the PLA approach as a global

optimization approach by applying it to a diverse set of continuous and discrete nonlinear

optimization problems. Further, we develop various modeling and algorithmic strategies

for enhancing the basic approach. Our computational results demonstrate that the PLA

approach works well on non-convex problems and can, in some cases, provide better

solutions than those provided by existing nonlinear solvers.

 vii

Table of Contents

List of Tables ... xi

List of Figures .. xiii

Chapter 1: Introduction ...1

Chapter 2: Piecewise Linear Approximation ..8

2.1 Problem Reformulation ...8

2.2 Grid Selection ...9

2.3 MIP Formulation ...10

2.3.1 Lambda Model for One-Dimensional Function10

2.3.2 Logarithmic Lambda Model for Rectangular Grids15

2.3.3 Logarithmic Lambda Model for Union Jack Grid17

Chapter 3: Literature Review ..20

3.1 Functional Decomposition ..20

3.2 Grid Design ...20

3.3 MIP Modeling ...23

3.4 Global Optimization..25

Chapter 4: Improved Grid Design ...27

4.1 Effect of Grid Shape ...27

4.1.1 Union Jack Grid ..27

4.1.2 Crisscross Grid ..29

4.2 Effect of Relative Cell Size...32

4.2.1 One-Dimensional Shortest Path-based Method35

4.2.2. Alternating Shortest Path-based Method38

Chapter 5: MIP Model Strengthening ...42

5.1 Problem Strengthening Using Shared Grids ...42

5.2.1 Individual Grid Models ...43

5.2.1.1 Individual Grid Model with Segment-wise Adjacency ..44

 viii

5.2.1.2 Individual Grid Model with Cumulative Adjacency47

5.2.1.3 Individual Grid Model with Logarithmic Indexing49

5.2.1.4 Individual Grid Model with SOS-2-based adjacency50

5.2.2 Pattern-based Models ..51

5.2.2.1 Pattern-based Model with Segment-wise Adjacency57

5.2.2.2 Pattern-based Model with Cumulative Adjacency59

5.2.2.3 Pattern-based Model with Logarithmic Indexing60

5.2.2.4 Pattern-based model with SOS-2-based adjacency61

5.2.3 Combined Partition Models ..62

5.2.3.1 Combined Partition Model with Segment-wise Adjacency64

5.2.3.2 Combined Partition Model with Cumulative Adjacency 67

5.2.3.3 Combined Partition Model with Logarithmic Indexing ..69

5.2.3.4 Combined Partition Model with SOS-2-based Adjacency70

5.2 Problem Strengthening using Constraint-based Inequalities71

5.2.1 Upper Bound on a Variable Inducing an Upper Bound on another

Variable ...73

5.2.2 Upper Bound on a Variable Inducing a Lower Bound on another

Variable ...75

5.2.3 Lower Bound on a Variable Inducing an Upper Bound on another

Variable ...77

5.2.4 Lower Bound on a Variable Inducing a Lower Bound on another

Variable ...79

5.3 Problem Strengthening Using Bounds ..81

5.3.1 Problem Strengthening Using Variable Bounds81

5.3.2 Problem Strengthening Using Constraint-based Bounds86

Chapter 6: Computational Results ...88

6.1 Goals ..88

6.2 Introduction ...91

6.2.1 Hardware and Software Specifications91

6.2.2 Metrics for Measuring MIP Solution Quality92

6.2.3 Reformulation Guidelines ...94

 ix

6.2.3.1 Minimizing Number of Grids ...94

6.2.3.2 Applying Periodic Transformations96

6.2.3.3 Scaling Variables ..97

6.3 Applying the Basic PLA Method ..100

6.3.1 Baseline Results for Ali et al. Problems100

6.3.2 Baseline Results for Pooling Problems107

6.3.3 Baseline Results for Global-Lib Problems108

6.3.4 Baseline Results for MINLP-Lib Problems111

6.4 Effect of Increased Grid Resolution ...112

6.4.1 Effect of Increased Grid Resolution on Ali et al. Problems113

6.4.2 Effect of Increased Grid Resolution on Global-Lib Problems..116

6.4.3 Effect of Increased Grid Resolution on MINLP-Lib Problems 118

6.5 Effect of Non-uniform Grids ..120

6.6 Effect of Grid Shape ...126

6.7 Effect of Indexing Scheme..128

6.8 Comparison With CONOPT ...129

6.9 Comparing Grid-based and Pattern-based Models133

6.10 Comparing Pattern-based and Combined Partition Models................135

6.11 Effect of Problem Reduction and Problem Strengthening Techniques136

6.12 Comparison with DICOPT ...139

x

Chapter 7: Conclusions ..141

Appendix A1: Proof of Proposition 1 ..143

Appendix A2: Algorithm for One-dimensional Shortest Path-based Method145

Appendix A3: Alternating Shortest Path-based Method for Crisscross grids151

Appendix A4: Alternating Shortest Path-based Method for Union Jack Grids ...162

Appendix A5: Marginal Weight Consistency Constraints for a Combined Partition167

Appendix A6: Validity of Constraint-based Inequalities.....................................170

Appendix A7: Selected Functional Decompositions of Ali et al. Problems187

Appendix A8: Determining the Best Non-uniform Grid for an n-dimensional Function

...213

Appendix A9: Models and Reformulations for Gasnet220

Appendix A10: Model and Reformulation for Reactor Network Design228

Appendix A11: LP Equivalence of Segment-wise and Cumulative adjacency ...231

Appendix A12: Notation for MIP Models ...233

References ...235

 xi

List of Tables

Table 2.1: Standard binary indices ...13

Table 2.2: Reflected binary indices ...13

Table 6.1: Computational design ...90

Table 6.2: Baseline results for Ali et al. problems ...101

Table 6.3: Results for poor reformulations of selected Ali et al. problems104

Table 6.4: Data for Hartman 3 ...105

Table 6.5: Baseline results for pooling problems ..107

Table 6.6: Baseline results for Global-Lib problems ...108

Table 6.7: Baseline results for MINLP-Lib problems ...111

Table 6.8: Effect of increased grid resolution on Ali et al. problems113

Table 6.9: Effect of increased grid resolution on Global-Lib problems117

Table 6.10: Effect of increased grid resolution on MINLP-Lib problems119

Table 6.11: Effect of using non-uniform grids ..123

Table 6.12: Benchmarking grids generated by the shortest-path-based method .126

Table 6.13: Effect of using different grid shapes ...127

Table 6.14: Effect of using different indexing schemes128

Table 6.15: Ali et al. Problems that could not be solved by CONOPT130

Table 6.16: Global-Lib problems that could not be solved by CONOPT131

Table 6.17: Applying CONOPT to pooling problems ...132

Table 6.18: Comparing grid-based and pattern-based models133

Table 6.19: Comparing pattern-based and combined partition models135

Table 6.20: Effect of problem strengthening strategies137

Table 6.21: MINLP-Lib problems that could not be solved by DICOPT139

 xii

Table A7.1: Data for Hartman 3 ..192

Table A7.2: Parameter set I for Hartman 6 ..193

Table A7.3: Parameter set II for Hartman 6 ..193

Table A7.4: Data for the Kowalik Problem ...195

Table A7.5: Data for Meyer and Roth Problem ...197

Table A7.6: Data for Modified Langerman Problem...198

Table A7.7: Data for Price Transistor ..204

Table A7.8: Data for Shekel Problems ..207

 xiii

List of Figures

Figure 2.1: Common triangular grids...10

Figure 2.2: Approximating a function by a piecewise linear function11

Figure 2.3: Indexing of a one-dimensional grid using binary indices14

Figure 2.4: Indexing of a one-dimensional grid using reflected binary codes15

Figure 2.5: Binary indexing for a Union Jack grid ..18

Figure 3.1: Common triangulations ...22

Figure 4.1: Cell Orientation for K and Union Jack triangulations28

Figure 4.2: Cell orientation in a Crisscross triangulation30

Figure 4.3: Indexing scheme for a Crisscross triangulation31

Figure 4.4: Example of a uniform grid versus a non-uniform grid34

Figure 4.5: Building blocks of a Crisscross triangulation......................................39

Figure 4.6: Computing approximation error for a Crisscross triangulation40

Figure 5.1: Domain partitioning for functions f1 and f2 ..52

Figure 5.2: LP solution that is not feasible for a pattern-based model..................56

Figure 5.3: Example of a combined partition ..63

Figure 5.4: Relating break point indices in individual patterns and the combined

partition ...64

Figure 5.5: Comparing the strength of pattern-based and combined partition models

...67

Figure 5.6: Upper bound on X inducing an upper bound on Y73

Figure 5.7: Upper bound on X inducing a lower bound on Y75

Figure 5.8: Lower bound on X inducing an upper bound on Y77

Figure 5.9: Lower bound on X inducing a lower bound on Y79

 xiv

Figure 5.10: Bounding vertex weight variables using an external lower bound ...83

Figure 5.11: Bounding vertex weight variables using an external upper bound ...85

Figure 6.1: Non-uniform segments in Epistatic Michalewicz121

Figure 6.2: Plot of two-dimensional exponential function in ex8_3_1124

Figure 6.3: Nonuniform grid for the exponential function in ex8_3_1................125

Figure A1.1: Union Jack triangulation versus Crisscross triangulation143

Figure A3.1: Procedures for alternating shortest-path-based method152

Figure A3.2: Computing approximation error for a triangular pattern161

Figure A4.1: Orientations of the two dimensional Union Jack triangulation162

Figure A4.2: Triangular patterns for a two dimensional Union Jack triangulation162

Figure A4.3: Vertical and horizontal patterns for a Union Jack triangulation.....163

Figure A4.4: Approximation error for a break point pair along horizontal axis ..164

Figure A4.5: Approximation error for break point pair along the vertical axis ...164

Figure A4.6: Alternating shortest-path-based method for Union Jack grid.........166

Figure A5.1: Combined partition ...168

Figure A6.1: Upper bound on X inducing upper bound on Y171

Figure A6.2: Scenarios when upper bound on X induces an upper bound on Y ..173

Figure A6.3 Upper bound on X inducing a lower bound on Y175

Figure A6.4: Scenarios when upper bound on X induces a lower bound on Y177

Figure A6.5: Lower bound on X inducing an upper bound on Y179

Figure A6.6: Scenarios when lower bound on X induces an upper bound on Y ..181

Figure A6.7: Lower bound on X inducing a lower bound on Y183

Figure A6.8: Scenarios when lower bound on X induces a lower bound on Y185

1

Chapter 1: Introduction

Research on nonlinear optimization has made great strides in the last few decades.

Most of these problems are non-convex, which implies that local solvers, which start at

an initial point and move to the nearest local optimum, find it difficult to solve these

problems effectively. Global optimization seeks to find globally optimal solutions to

optimization problems. In this dissertation, we study the effectiveness of solving non-

linear programs by approximating the non-linear functions in the problem with piecewise

linear functions, thereby creating an approximate mixed integer program (MIP), which

can be solved by a MIP solver. The piecewise linear approximation (PLA) approach

involves using the MIP solution as a starting point for a local solver. If the MIP solution

lies in the basin of attraction of the globally optimal solution, then a local solver will

yield the globally optimal solution.

Nonlinear optimization problems appear in many contexts in operations

management, economics, and engineering. Hydropower generation (GonzAlez and

Castro 2001) involves storing water in a reservoir and then converting the potential

energy of the water into electrical energy by moving the water through a turbine. The

power produced by the turbine is a function of (a) the quantity of water flowing through

it, and (b) the height or head of the water column. Thus, to create a generation schedule

for the turbine, both the volume and the height of the water have to be considered.

Oil refineries buy crude oils of different grades and mix them in mixing tanks to

obtain different blends of gasoline. The quality of the blends and the crude oils is

measured in terms of attributes such as octane number, density, etc. When two or more

2

crude oils are mixed, the attribute value of the resulting blend is a weighted sum of the

attribute values of the input crude oils, where the weights are the proportions of the crude

oils mixed. These blends are sold as different products each with a specified selling price

and with a specified minimum or maximum level of the various attributes. This gives

rise to the pooling problem (Adhya et al. 1999) that involves determining the proportions

in which the input crude oils should be mixed so that the total profit is maximized.

Scheduling operations at an oil refinery is also a mixed integer nonlinear optimization

problem (Karuppiah et al. 2008).

Nonlinear optimization problems also arise in the optimization of oil extraction

process. Oil companies extract oil from a reservoir by injecting water into a reservoir

through a set of wells called injectors. This injection process forces a mixture of water

and oil to come out of another set of wells called producers. The quantity of mixture

coming out of the producer wells depends upon a) the injection schedule, b) the

connectivity between the wells, and c) the response delay (compressibility) of the

producer well. To estimate the connectivity and the response delay, non-linear regression

models (Yousef et al. 2006) are applied to historical injection and production data.

Correct estimation of these characteristics helps determine an oil production schedule that

maximizes total profit over the life span of the reservoir.

The Euclidean Multi-facility Location problem (Radó 1988) involves finding the

location (Euclidean co-ordinates) of a set of plants that supply a single commodity to a

set of demand points with pre-specified Euclidean coordinates and demand. Each plant

has a specified maximum production capacity. The cost of transporting a specific

quantity of the commodity from a plant to a demand point is the product of the quantity

3

transported and the Euclidean distance between the plant and the demand point. The goal

is to find the geographical positions of the plants so as to minimize the total

transportation cost.

Nonlinear convex problems like the ones described above have traditionally been

solved by local solvers which given a starting point, search for a descent direction (for a

minimization problem), choose a step size and then move to a better point. This

sequence of steps is repeated until the algorithm reaches a point at which it cannot find a

descent direction, i.e., it reaches a locally optimal solution. However, for a non-convex

problem, this solution need not be the globally optimal solution. Multi-start algorithms

try to get the globally optimal solution by applying the local search procedure to multiple

starting points and choosing the best among all the locally optimal solutions obtained.

However, different starting points often lead to the same locally optimal solution. We

say that these starting points lie in the basin of attraction of the locally optimal solution.

Piecewise linear approximation seeks to generate ‘good’ starting points, preferably ones

that lie in the basin of attraction of the globally optimal solution. In this approach, we

approximate the non-linear functions in the original objective function or constraints by

piecewise linear functions defined over the vertices of a grid that partitions the domain of

each nonlinear function into cells. Using an appropriate mixed integer programming

model, we approximate the original nonlinear program with a mixed integer program

(MIP) whose solution serves as a starting point for a local nonlinear solver. In this

dissertation, we validate the effectiveness of the PLA approach and propose various

algorithmic strategies to improve its performance.

4

Applying the piecewise linear approximation approach to a general nonlinear

problem requires the following four steps.

1. Function Decomposition: Depending upon the dimensionality of the grids that we

wish to use in the piecewise linear approximation, we can express each nonlinear

function within the optimization problem as a composition of other nonlinear functions,

each of which has no more than a specific dimension. This transformation generally

requires adding more variables and constraints to the original non-linear program. For

example, if the original problem contains a nonlinear function f(x1, x2, x3) then we can

either express f as a three dimensional function or we can create an intermediate function

y = g(x2, x3), express f as a composition of g(x2, x3), i.e., f(x1, x2, x3) = f(x1, g(x2, x3)) and

add a new constraint y = g(x2, x3) to the nonlinear program.

2. Grid Design: Given the decomposition of the nonlinear problem into appropriate

lower dimensional functions, we approximate each function using a grid that partitions

the domain of that function into cells such that the function value at any point within a

cell is approximated by a convex combination of the function values at the vertices of the

cell. Grid design refers to the design (i.e, the shape and size) of the cells of the grid.

3. MIP Modeling: After choosing the functions and the grids for approximating the

functions, we choose a mixed integer programming model to express the piecewise linear

function approximation as a mixed integer program and thereby convert the original

nonlinear program into an approximate mixed integer program. We then solve this mixed

integer program (to some pre-specified gap) using an MIP solver.

4. Local solution: Given the solution to the approximate MIP, we solve the original

nonlinear program with a local nonlinear solver which uses the MIP solution as a starting

5

point. For a Mixed Integer Nonlinear Program (MIINLP), we may choose to fix the

value of the integer variables in the original nonlinear problem to their values in the MIP

solution.

In our study, we apply the basic PLA approach to a diverse set of nonlinear

problems and develop various strategies that improve one or more of the four steps

mentioned above and thereby improve the effectiveness of the approach. We measure the

performance of the PLA approach in terms of both the time it takes to get a solution and

how close the PLA-based solution is to the globally optimal solution. The key

contributions of this research are as follows.

1. Although piecewise linear approximation of non-linear functions is not new, no

one has systematically studied the effectiveness of this approach as a global optimization

strategy. Using a diverse set of over 140 continuous and discrete nonlinear optimization

problems used as benchmarks by researchers, we show that the PLA approach is a

promising solution methodology.

2. We examine how the performance of the PLA approach is influenced by the

design of the grid used to create the approximation. We look at two aspects of grid

design: cell shape and cell size.

a. Cell shape: We evaluate how rectangular and triangular grids perform on various

problems. Within triangular grids, we examine the performance of different

triangulations such as Union Jack and Crisscross. We also prove that for the bilinear

function (z = x1x2), the Crisscross grid gives a smaller and stronger mixed integer

program than that obtained using a Union Jack grid.

6

3. Cell size: The cell size, which determines the grid resolution, affects the size of

the resulting mixed integer program. A small cell size or a high grid resolution increases

the chance of obtaining a MIP solution that is close to the globally optimal solution.

However, a high grid resolution also increases the size (and very often the solution time)

of the resulting MIP. A carefully designed non-uniform grid (with cells of different

sizes) can lead to a grid with a high approximation quality but a small MIP size. We

propose an algorithm to create good non-uniform grids in two dimensions by extending a

shortest path-based method already known in literature.

4. We examine how the performance of the PLA approach depends upon function

decomposition and provide guidelines on how to obtain good reformulations of nonlinear

programs. For example, we show how function decomposition can affect the size of the

mixed integer program and thereby determine whether or not we can solve it within a

reasonable time limit.

5. We propose stronger mixed integer programming models for applying the PLA

approach to nonlinear programs. The traditional PLA approach separately linearizes each

nonlinear function in a nonlinear program. However, if the same variable appears in

multiple functions, then we can exploit the fact that in the MIP solution, the variable will

take the same value across all the grids. This observation leads us propose smaller and

stronger mixed integer programming models for the PLA approach.

6. We propose problem strengthening strategies to improve the MIP solution

process, which determines the effectiveness of the overall approach.

a. Constraint-based valid inequalities: For those nonlinear programs in which the

variables present in the nonlinear functions are related by constraints, we propose valid

7

inequalities that use the constraint information to improve the LP relaxation values of the

PLA-based mixed integer program and help accelerate the branch and bound procedure

used for solving mixed integer programs.

b. Problem reduction strategies: Many nonlinear problems have pre-specified

bounds on the values of the dependent variables of nonlinear functions. When we

approximate these nonlinear functions, then we can use these bounds to exclude certain

regions of the domain of the function, which translates into removing variables from the

mixed integer program associated with the linearization. This process results in a smaller

and a stronger mixed integer program.

7. The PLA approach extends naturally to mixed integer nonlinear programs

(MINLP’s) which is one of the hardest classes of problems. We analyze the performance

of PLA on a modest set of small to medium-sized MINLP test problems.

8. Finally, we benchmark the performance of the PLA approach against some of the

widely used local NLP solvers such as CONOPT and local MINLP solvers such as

DICOPT. We found that the PLA approach can lead to better solutions than those

obtained by solvers such as CONOPT and DICOPT.

The structure of this dissertation is as follows. In Chapter 2, we discuss how to

apply the PLA method to a general nonlinear program. In Chapter 3, we review the

literature related to different aspects of piecewise linear approximation. We discuss our

methods for improved grid design in Chapter 4 and strategies for strengthening the PLA-

based MIP models in Chapter 5. We present the computational results in Chapter 6 and

conclude in Chaper 7.

8

Chapter 2: Piecewise Linear Approximation

In this chapter, we discuss how to solve a general nonlinear program using the

Piecewise Linear Approximation (PLA) approach. Applying the PLA method to a

general nonlinear program entails four steps—problem reformulation, grid selection, MIP

creation and application of a local nonlinear solver. We now discuss these methods in

more detail.

2.1 PROBLEM REFORMULATION

In the first step, we identify within the non-linear program those non-linear

functions whose dimension is greater than a specific value. We recursively express these

functions as compositions of lower dimensional functions until each function in the

nonlinear program has no more than a specific dimension. This generally requires adding

new variables and new equality constraints to the original nonlinear program such that

each equality constraint corresponds to a composition of functions in the original

nonlinear program. Recasting the nonlinear program in a higher dimensional space

(because of the addtition of new variables) is called reformulation.

There might be multiple ways of reformulating a non-linear program and the

effectiveness of the piecewise linear approximation approach will depend upon the

manner in which the non-linear functions are reformulated. For example, the non-linear

program]2,1[],20,10[,,Min 321

3

21  xxx
x

xx
y can be reformulated in two ways.

Reformulation R1 Min y such that 21

3

, xxw
x

w
y 

]2,1[],200,100[],20,10[, 321  xwxx

9

Reformulation R2

Min y such that
3

1
,2

x

x
uuxy 

]2,1[],20,5[],20,10[, 321  xuxx

For the same grid granularity, these two reformulations would differ in terms of

their approximation qualities and the qualities of the MIP solutions since the

reformulations involve different types of functions. Reformulation R2 might be preferred

to reformulation R1 since the domain of the u variable is much smaller than that of the w

variable which might result in better approximation quality for the grid that linearizes

3x

w
y  than for the one that linearizes 2uxy  .

2.2 GRID SELECTION

The second step in applying the PLA approach is to decide the shape and size of the grid

used to linearize each non-linear function. Grids can be of any shape—rectangular,

triangular, octagonal, etc. Further, triangular grids can again have different shapes as

shown in Figure 2.1. The advantage of a triangular grid is that each point in the function

domain can be uniquely expressed as a convex combination of the grid points, i.e., of the

vertices of the cells of the grid.

10

Figure 2.1: Common triangular grids.

2.3 MIP FORMULATION

The third step in the linearization process entails formulating a mixed integer

program. Here we can choose from a variety of MIP formulations (Vielma et al. 2014).

Each formulation ensures that for each point in the domain, we select the cell in which

that point lies and express the function value at that point as a convex combination of the

function value at the vertices of the chosen cell. We now review the one and two-

dimensional lambda-models (Vielma et al. 2010, Croxton et al. 2003).

2.3.1 Lambda Model for One-Dimensional Function

Given a function R],[:)(ulXf , we choose a partition uxxxl n  ...10

to divide the domain of f into n segments using n + 1 break points. The piecewise linear

approximation is defined by n pairs of real numbers),(ii cm such that

 nixxXcXmXf iiii ...,,1allfor],[,)(1   (2.1)

K triangulation Union Jack triangulation

11

Figure 2.2: Approximating a function by a piecewise linear function

We model this problem as a mixed integer program in which we associate a

continuous variable λ to each break point, a binary variable Z to each segment and then

add constraints that ensure that the variable value and the function value at a point is

given by a convex combination of the variable values and function values at the end

points of the segment in which that point lies. The lambda or the convex combination

model is described by Equations (2.2–2.7) (Croxton et al 2003).

 



n

i

iixX
0

 (2.2)

 



n

i

ii xfXf
0

)()( (2.3)

 niZiii ...,,2,1allfor1   (2.4)

 1
1




n

i

iZ (2.5)

a0 a1 a2 a3 a4

x

f(x)

12

 1
0




n

i

i (2.6)

 nii ,...,0allfor0  (2.7)

 niZi ...,,2,1allfor}1,0{  (2.8)

The basic lambda model can be improved further by observing that we can

identify n by using just)(log2 n bits of information. As shown by Vielma and

Nemhauser (2008, 2009), we can have an indexing scheme with)(log2 n binary variables

such that each segment is assigned a binary index comprised of  )(log2 nceil digits.

Subsequently, they add two constraints for each digit, each constraint forcing a set of

interval end points to have a weight of zero. These constraints ensure that the lambda

variables for exactly one interval can have a positive value. We now describe the

logarithmic lambda model.

Let)(qI be the set of break points each of which serves as the end point of a

segment whose binary index has a zero at the q’th position (from the left), and)(ˆ qI be the

set of break points each of which serves as the end point of a segment whose binary index

has a one at the q’th position. The logarithmic lambda model can then be described by

Equations (2.2–2.3), Equations (2.6–2.7) and Equations (2.8–2.9).

 nqBq

qIi

i 2

)(

log...,,2,1allfor 


 (2.8a)

  nqBq

qIi

i 2

)(ˆ

log...,,2,1allfor1 


 (2.8b)

  nqBq 2log...,,2,1allfor}1,0{  (2.9)

However, a naïve binary indexing scheme in which we index the intervals

sequentially by expressing their base-10 index in base-2 format will not work here. Say

13

we have 9 grid points and 8 cells that we index using 3 binary digits as shown in Table

2.1 and Figure 2.3.

Cell Binary Index Cell Binary Index

Cell 1 000 Cell 5 100

Cell 2 001 Cell 6 101

Cell 3 010 Cell 7 110

Cell 4 011 Cell 8 111

Table 2.1: Standard binary indices

Suppose the MIP chooses a point in Interval 1 with binary representation ‘000’.

In this case, Equations (2.8) yield the following.

1. λ6 + λ7 + λ8 + λ9  0 (since Digit 1 or 1B is equal to 0)

2. λ4 + λ8 + λ9  0 (since Digit 2 or 2B is equal to 0)

3. λ9  0 (since Digit 3 or 3B is equal to 0)

Cell Binary Index Cell Binary Index

Cell 1 000 Cell 5 110

Cell 2 001 Cell 6 111

Cell 3 011 Cell 7 101

Cell 4 010 Cell 8 100

Table 2.2: Reflected binary indices

14

Thus, λ4, λ6, λ7, λ8 and λ9 are set to zero, which implies λ1, λ2, λ3 and λ5 can all

have positive weights. However, the adjacency condition requires that if interval 1 is

selected, then only λ1and λ2 can have positive weights. Thus, as Vielma and Nemhauser

(2011) show, a naïve binary indexing scheme cannot be used. To resolve this issue,

Vielma and Nemhauser (2011) proposed that the indexing of the cells should be such that

adjacent cells differ in their representation by only one bit. Such a binary code is called a

reflected binary code or a gray code. One such indexing scheme is described in Table

2.2 and displayed in Figure 2.4. We can check that these binary codes let the MIP satisfy

the adjacency conditions for each cell.

Figure 2.3: Indexing of a one-dimensional grid using binary indices

1 2 3 4 5 6 7 8 9

Digit 1 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

Digit 2 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

Digit 3 1 2 3 4 5 6 7 8

 Digit has value 0

 Digit has value 1

15

Figure 2.4: Indexing of a one-dimensional grid using reflected binary codes

2.3.2 Logarithmic Lambda Model for Rectangular Grids

We now discuss the logarithmic lambda model for rectangular grids. Let us

assume that we are trying to approximate the function f(x, y) by using a rectangular grid.

For a rectangular grid, we can uniquely identify a cell by identifying the segments that

the cell corresponds to along the X and Y axes. Consider a rectangular grid with m

segments along the X-axis and n segments along the Y-axis. To identify a cell, we need

log2m digits to identify the X-segment and log2n digits to identify the Y-segment

corresponding to the cell. Thus, we need ‘log2m + log2n’ binary variables in the mixed

integer program, which we now describe.

1 2 3 4 5 6 7 8 9

Digit 1 1 2 4 5 6 7 8

1 2 3 4 5 6 7 8 9

 1 2 7 8

1 2 3 4 5 6 7 8 9

Digit 3 1 2 3 4 5 6 7 8

 Digit has value 0

 Digit has value 1

16

Notation

 V: set of vertices

 v: index over V

 Xn : number of segments along the X-axis

 Yn : number of segments along the Y-axis

 k: index over the digits of the reflected binary code for segments along the X-axis

 l: index over the digits of the reflected binary code for segments along the Y-axis

 vx : X-value of vertex v

 vy : Y-value of vertex v

 vf : function value for vertex v

)(0 kVX : set of vertices that correspond to an X-segment whose reflected binary

code has a zero at the k’th position

)(1 kVX : set of vertices that correspond to an X-segment whose reflected binary

code has a one at the k’th position

)(0 lVY : set of vertices that correspond to a Y-segment whose reflected binary code

has a zero at the l’th position

)(1 lVY : set of vertices that correspond to a Y-segment whose reflected binary code

has a one at the l’th position

 ĥ : approximate function value for f

Variables

 v : continuous variable that denotes the weight assigned to vertex v

 X

kB : binary variable that is one if we select an X-segment whose reflected binary

code has a one at the k’th position

17

 Y

lB : binary variable that is one if we select a Y-segment whose reflected binary

code has a one at the l’th position

Constraints





Vv

vv fh ˆ (2.10)





Vv

vv xx  (2.11)





Vv

vv yy  (2.12)

1
Vv

v (2.13)

)(log...,,1allfor 2

)(0

X

X

k

kVv

v nkB

X




 (2.14)

)(log...,,1allfor1 2

)(1

X

X

k

kVv

v nkB

X




 (2.15)

)(log...,,1allfor 2

)(0

Y

Y

l

lVv

v nlB

Y




 (2.14)

)(log...,,1allfor1 2

)(1

Y

Y

l

lVv

v nlB

Y




 (2.15)

)(log...,,1allfor}1,0{ 2 X

X

k nkB  (2.18)

)(log...,,1allfor}1,0{ 2 Y

Y

l nlB  (2.19)

Vvv  allfor0 (2.20)

2.3.3 Logarithmic Lambda Model for Union Jack Grid

We now discuss the logarithmic lambda model for a triangular Union Jack grid.

For such a grid with Xn segments along the X-axis and Yn segments along the Y-axis, we

need ‘log2 Xn + log2 Yn ’ bits to identify a pair of adjacent triangles belonging to a specific

18

segment combination along the X and Y axes. To differentiate between the two cells in

this pair, we shade one of the cells as gray, which corresponds to a binary index of zero,

and the other as white, which corresponds to a binary index of one. Thus, we can identify

each cell uniquely by ‘log2 Xn + log2 Yn + 1’ digits (Vielma 2011).

Figure 2.5: Binary indexing for a Union Jack grid

To obtain the model formulation for the Union Jack grid, we define an additional

binary variable XYQ that takes a value zero if we select a gray cell and a value one if we

select a white cell. Let 0

XYV be the set of vertices that touch a gray cell, and 1

XYV be the set

of vertices that touch a white cell. Then, the logarithmic lambda model for the Union

Jack grid is comprised of Equations (2.10–2.22).

XY

Vv

v Q

XY


 0

 (2.21)

XY

Vv

v Q

XY




1
1

 (2.22)

19

Thus, we find that triangular grids are modeled on similar lines as rectangular

grids except that they require additional binary variables. Further, the Union Jack

triangulation leads to the smallest mixed integer program among all triangular grids. In

the next chapter we will see how we can use another triangular that can do even better

than the Union Jack triangulation in terms of problem size.

20

Chapter 3: Literature Review

The literature on piecewise linearization can be broadly divided into four areas:

Functional decomposition, grid design, MIP modeling, and global optimization.

3.1 FUNCTIONAL DECOMPOSITION

Arnold (1963) shows that every continuous function of more than two variables

can be expressed as a composition of finitely many continuous functions of two variables.

This result is the basis of the functional decomposition technique that we use to express

higher dimensional functions as compositions of lower dimensional functions.

McCormick (1976) gave a procedure for obtaining the global solution to a

factorable nonlinear programming program which is a nonlinear program in which each

nonlinear function can be expressed as a product of two univariate nonlinear functions by

appropriately defining intermediate compositions of functions. For example, consider the

function f(x, y, z) = xyz, which is a product of three variables. This function can be

treated as a function of two variables by defining another function g(x, y) = w=xy and

then expressing f() as f(w, z) = wz. The procedure uses the fact that if we know lower

bounding convex functions and upper bounding concave functions for the two uni-variate

nonlinear functions, then we can find a lower bounding convex function and an upper

bounding concave function for the original nonlinear function.

3.2 GRID DESIGN

Grid design was initially studied for numerically solving differential equations

using Finite Element Methods in engineering and for obtaining fixed points of functions

in economics (Talman and Laan 1980). A distinction is made in finite element analysis

between a mesh and a grid. A mesh refers to any kind of partition of the domain whereas

21

a grid corresponds to a partition in which the cells have the same shape and can be

generated by knowing the location of the break points or segments along the boundary

the domain. Frey and George (2000) provide a comprehensive survey on mesh

generation methods for both structured and unstructured meshes. In a structured mesh,

we discretize the boundary of the domain and use these discretizations to create the mesh.

In an unstructured mesh, boundary discretization is not enough to determine the actual

domain partition. Methods for unstructured mesh generation include spatial

decomposition methods (such as Quadtree and Octree-based methods), advanced front

methods (in which we construct the mesh element by element, starting from an initial

front) and Delaunay-based methods in which given an initial set of grid points, we

alternate between creating a Delaunay triangulation and adding new grid points. A

triangulation is defined as a partition composed of triangles or simplices such that the

intersection of any two triangles is either empty or the common side of those triangles

(Talman and Laan 1980). We depict the shapes of some common triangulations in Figure

3.1.

Within the context of the PLA approach, Chien and Kuh (1977) used simplicial

subdivision to linearize the behavior of nonlinear resistive networks that contain resistors

whose resistance values change with a change in temperature or light. Al-Khayal and

Falk (1983) used rectangular grids to solve problems involving bilinear functions. They

employed a branch and bound framework in which piecewise linear under-estimators

were used to obtain lower bounds. Linderoth (2005) partitioned the domain into triangles

and obtained tighter under-estimators and solve a quadratically constrained quadratic

program in a branch and bound algorithm.

22

Figure 3.1: Common triangulations

Babayev (1997) used a K-triangulation (Lann 1980) to approximate a two

dimensional non-linear function. However, this approach did not involve using the MIP

solution as a starting point for a local nonlinear solver. González (2001) used the H-

triangulation to solve a short-term hydro-electric generation problem in which the power

produced by a turbine is a non-linear function of the water head (pressure) and the

quantity of water discharged. Ambrosio et al. (2010) used a K-triangulation to solve the

same hydro-generation problem. Misener and Floudas (2010) approximated a three

dimensional function by using three-dimensional simplices. Meyer and Floudas (2004,

2005) used simplicial subdivision to develop convex envelopes for trilinear and edge

concave functions. A function is said to be edge-concave if it is component-wise

concave. Wang and Zhang (2008) solve a nonlinear program with linear constraints via

piecewise linear approximation of the objective function over a simplicial partition.

However, all these models used one binary variable per cell. Vielma and Nemhauser

(2011) showed that we can develop a valid but smaller mixed integer programming

H

Triangulation

Crisscross

Triangulation

Union Jack

Triangulation K

Triangulation

23

model if we can assign a binary address (string of zeroes and ones) to each cell such that

any two adjacent cells differ in their address by only one bit, i.e., the binary addresses

correspond to a gray code (Gilbert 1957). Rovatti et al. (2014) proposed a (rectangular)

grid-based piecewise linear approximation of nonlinear functions such that each point

lying in the function domain is expressed as a convex combination of not just the vertices

of the grid but also of a pre-specified set of sample points lying within the function

domain. They found that such a representation gives the piecwise linear representation

has more degrees of freedom and provides better computational performance. For a one

dimensional grid, the design involves only the size of the cells (or segments). In this

context, Magnanti and Stratila (2012) derived a bound on the number of segments

required to approximate a one-dimensional concave function with piecewise linear

functions such that a desired approximation quality is achieved.

3.3 MIP MODELING

When we approximate a nonlinear function with a mixed integer program, we are

interested in MIP formulations that are sharp and locally ideal (Vielma 2014). Croxton et

al. (2003) compared the three standard one dimensional MIP models for approximating

non-linear functions with piecewise linear functions and showed that the three models—

multiple choice model (Balakrishnan and Graves 1989), incremental or delta model

(Dantzig 1960) and convex combination or lambda model (Dantzig 1960) — give the

same LP relaxation value. These three formulations are sharp in that they provide the

highest LP relaxation value as possible. Li and Yu (1999) proposed another MIP

formulation in which binary variables are required only for those segments in which the

nonlinear function is nonconvex. However, for a general non-convex function, this

24

representation does not offer any advantage over the other representations. Li et al.

(2009) proposed another two representations, one which used a Big-M and another that

used a logarithmic number of binary variables. However, both representations, which Li

et al. (2009) claimed to be superior to existing representations, are not sharp, i.e., they

have a lower LP relaxation value than the three standard formulations. Vielma et al.

(2010) present an LP solution for each of these representations and show that the LP

relaxation value is lower than the LP relaxation value of the traditional models.

An MIP formulation is locally ideal if the ‘local’ LP formed by the constraints in

the MIP formulation corresponding to the linearization of a specific nonlinear term (while

omitting all other constraints in the nonlinear program) has integral corner points. Since

there will be other variables and constraints in the model, a locally ideal formulation does

not result in an MIP that has integral corner points. However, in general, solving a sharp

model will take fewer branch and bound nodes than solving a model that is not sharp.

Padberg (200) showed that the incremental model is locally ideal whereas the convex-

combination model is not, though as Croxton et al. (2003) have shown, both these models

are sharp. Sherali (2001) proposed a locally ideal dis-aggregate convex combination

model with two continuous variables per grid point. Vielma et al. (2010) provided a

unifying framework for creating piecewise linear representations of multidimensional

nonlinear functions. They extend the one-dimensional models to n-dimensions and also

discuss a logarithmic indexing scheme which results in fewer binary variables than the

traditional models. Domschke et al. (2011) employed the locally ideal incremental model

to linearize a two dimensional function appearing in a nonlinear program for solving a

minimum cost flow problem over a gas network.

25

Keha et al. (2006) discuss how to enforce the adjacency conditions by defining

appropriate variables as SOS-2 and solve a significantly smaller mixed integer program

(with no binary variables) using specialized branching strategies that ensure that only

adjacent grid points are selected. Vielma and Nemhauser (2011) report that in terms of

solution times, these models are second only to the logarithmic models.

3.4 GLOBAL OPTIMIZATION

Global optimization technniques aim at finding the optimal solution to

optimization problems. Most of the deterministic global optimization techniques are of

the type ‘divide and conquer’, a framework first used by Falk and Soland (1969). The

algorithms in this category include the Branch and Reduce algorithm proposed by Ryoo

and Sahinidis (1995), (1996), the α-Branch and Bound method proposed by Floudas et al

(1995), the Branch and Contract algorithm proposed by Grossmann (1999), the Branch

and Cut algorithm proposed by Kesavan and Barton (2000) and the Interval Analysis-

based algorithm proposed by Vaidyanathan and El-Halwagi (1996). All these algorithms

except the Interval Analysis-based algorithms require the computation of underestimating

functions (convex envelopes) so as to obtain a lower bound on the function in a specific

region of the function domain. Other deterministic algorithms for global optimization

include the Extended Cutting Plane method proposed by Westerlund et al. (1998) and

Westerlund and Pörn (2002), and Outer Approximation algorithm proposed by Duran and

Grossmann (1986). Floudas and Gounaris (2009) provide a comprehensive survey on

various global optimization techniques.

The main difference between the branch-and-bound based methods and the PLA

approach is that the PLA approach does not require the computation of convex envelopes

26

at every node in the branch and bound tree. As a result, the PLA approach can possibly

have smaller solution times. However, the disadvantage is that the PLA method cannnot

provide any information on the gap between the PLA solution and the globally optimal

solution. One possible way of improving the PLA approach is to compute the convex

envelopes for the partitions that are used in the linearization and thereby provide a gap

between the objective value of the current PLA solution and thart of the global solution.

If the gap is too high, then we can apply the PLA approach to the original problem again

but with a more refined grid.

27

Chapter 4: Improved Grid Design

In this chapter, we discuss how different aspects of grid design influence the

performance of the piecewise linear approximation approach. Grid design affects the

performance of the piecewise linear approximation approach in two ways. First, it affects

the quality of approximation of the nonlinear functions and second, it influences how fast

the corresponding mixed integer program could be solved. For example, in a triangular

grid, each point in the function domain has a unique representation in terms of the

vertices of the triangle in which that domain point lies. On the other hand, for a

rectangular grid, a domain point can have multiple convex combination representations.

Therefore, a triangular grid will have better approximation quality than that of a

rectangular grid. The design of the grid affects the size of the associated mixed integer

program and therefore, the performance of the MIP solution procedure.

We focus on two aspects of grid design—cell shape and relative cell size. For cell

shape, we discuss two types of grids—Union Jack and Crisscross—and show how for the

bilinear function, a Crisscross grid can provide better approximation quality than a Union

Jack grid. For relative cell size, we show how carefully designed non-uniform grids can

provide good approximation quality without a large mixed integer program.

4.1 EFFECT OF GRID SHAPE

4.1.1 Union Jack Grid

The shape of a grid affects the size of the mixed integer program corresponding to

the piecewise linear approximation of a function. In a Union Jack triangulation, which

has two triangular cells for each combination of horizontal and vertical segments, we

28

uniquely identify a cell by using an ‘orientation’ flag (i.e., an additional binary variable)

such that one cell has an orientation of ‘one’ and the other has an orientation of ‘zero’. In

Figure 4.1, the shaded cells have an orientation value of one and the white cells have an

orientation value of zero. This orientation flag (or binary variable) is then used in an

adjacency constraint to ensure that we assign positive weights only to the vertices of the

chosen cell. This constraint works as follows. If the binary variable (or the orientation

flag) is zero, then we must choose a ‘white’ cell and therefore we cannot choose any grid

point that does not touch a white cell and so any grid point that does not touch a white

cell is assigned a vertex weight of zero. Similarly, if the binary variable (or the

orientation flag) has value one, then we must choose a ‘gray’ cell and any grid point that

does not touch a gray cell is assigned a weight of zero. The structure of the Union Jack

grid helps us ensure adjacency by using just one variable for the entire grid in addition to

the binary variables for the segments along the X and Y axes.

Figure 4.1: Cell Orientation for K and Union Jack triangulations

K-triangulation Union Jack triangulation

29

4.1.2 Crisscross Grid

Although the Union Jack grid leads to a parsimonious mixed integer program, we

have found that the Crissscross triangulation (Wahlbin 1998) used in finite element

analysis can provide an even smaller mixed integer program for the bilinear function that

appears in a number of industrial problems such as pooling and water management

problems (Faria et al. 2011).

Proposition1: For the bilinear function f(x, y) = xy, a Crisscross triangulation with

uniform segments along each axis provides the same approximation quality as that

provided by a Union Jack triangulation with twice the number of uniform segments along

each axis. For proof, refer to Appendix A1.

To create a mixed integer program based on the Crisscross triangulation, we need

to create a valid indexing scheme. To do so, we first need to ensure that the indexing

satisfies the necessary ‘Gray Code’ condition. As per this condition, binary addresses of

adjacent cells differ by exactly one bit. Let us assume that we have a Crisscross

triangulation with one segment each along the two axes. This gives rise to four cells, as

shown in Figure 4.2a. We seek an indexing scheme for these four cells such that

neighboring cells differ by only one bit. To do so, we use the sequence ‘00’, ‘01’, ‘11’

and ‘10’ in which consecutive elements differ from one another in only one bit. This

sequence can identify four cells using two binary digits, each of which can be considered

as an orientation flag. We call these flags Orientation I (Figure 4.2a) and Orientation II

(Figure 4.2b). For Orientation I, cells A and B have a flag value of 0 (shown as white)

and cells C and D have a flag value of 1 (shown as gray). For Orientation II, cells B and

30

C have a flag value of 0 (shown as white) and cells A and D have a bit value of 1 (shown

as gray). Thus, cells A, B, C and D have addresses ‘01’, ‘00’, ‘10’ and ‘11’ respectively.

Figure 4.2: Cell orientation in a Crisscross triangulation

Using these patterns as the building blocks, we create a Crisscross triangulation

(shown in Figure 4.3) such that (a) two adjacent cells that belong to the same horizontal

segment and the same vertical segment differ in their addresses by exactly one bit, and

(b) two adjacent cells that correspond to consecutive vertical segments or consecutive

horizontal segments have the same bit value for both orientations. Thus, to identify a

cell, we need to identify the horizontal and vertical segment to which that cell belongs

and then identify the values of its Orientation I and Orientation II flags. This indexing

scheme works because when we choose a specific triangular cell, we choose a set of

orientations and these orientations prevent us from selecting any other vertex (except

those of the chosen cell) belonging to the set of four cells that correspond to the same

combination of horizontal and vertical segments.

This is similar to identifying a cell in a Union Jack triangulation in which we first

identify the horizontal and vertical segments to which a cell belongs and then identify the

value of its orientation flag. For example, to identify a cell in the 2x2 Crisscross

 C

D B

 A

 C

D B

 A

Orientation-I Orientation-II

31

triangulation shown in Figure 4.3 with a logarithmic indexing scheme, we need four

bits—one bit for the horizontal segment (Figure 4.3b), one bit for the vertical segment

(Figure 4.3c), one bit to identify the Orientation I flag (Figure 4.3d) and one bit to

identify the Orientation II flag value for the cell (Figure 4.3e). On the other hand, if we

use a Union Jack triangulation (with logarithmic indexing) that gives the same

approximation quality, then we need to have 4 horizontal segments, 4 vertical segments

and 5 bits—two for the horizontal segment, two for the vertical segment and one bit to

identify the orientation.

In general, a Crisscross triangulation with m horizontal segments, n vertical

segments (i.e., 4mn cells), a logarithm indexing scheme requires log2(m) + log2(n) + 2

bits.

Figure 4.3: Indexing scheme for a Crisscross triangulation

 (b) (c)

(d) (e)

(a)

32

4.2 EFFECT OF RELATIVE CELL SIZE

A smaller cell size implies a finer resolution and therefore a grid with high

approximation quality in which for each point in the domain of the function, the

difference between the true function value and the function value given by the linear

approximation is small. By increasing the grid resolution, we increase the chances that

the solution to the mixed integer program is close to the globally optimal solution to the

original program. However, as we increase the grid resolution, the size of the mixed

integer program increases, often making the program harder to solve. A good grid

resolution is, therefore, the result of a trade-off between approximation quality and

difficulty level of the mixed integer program.

We can have the benefit of a high resolution grid without the associated large

mixed integer program by constructing a non-uniform grid that has high resolution only

in those areas of the domain where the linearity of the function is small or equivalently

where the curvature of the function is high. Although such non-uniform grids have been

created by various mesh generation methods in finite element analysis (e.g., Frey and

George 2000), they have not been used within the context of piecewise linear functions.

To understand how a carefully-constructed non-uniform grid might be better than a

uniform grid, let us approximate f(x) = log(x), x [1, 17], using two different piecewise

linear approximations with 4 segments. In the first approximation, we place break points

uniformly along the domain of the function, i.e., at x = 1, 5, 9, 13, and 17, whereas in the

second, we use a non-uniform grid with break points at x = 1, 3, 5, 9, and 17. We observe

that by placing the break points close to one another in regions with high curvature, the

non-uniform grid provides a much better approximation quality than the uniform grid

33

with the same number of break points (Figure 4.4). To create good nonlinear grids in one

and two dimensions, we use a shortest path-based method. Although the one-

dimensional version of this method is already known and used in the context of curve

approximation (Dahl and Realfsen 2000), to the best of our knowledge, no one has

actually used it to solve nonlinear programs within the PLA approach. In this section, we

describe the one dimensional shortest path-based method and then propose a heuristic

method that uses the same principle to generate good non-uniform grids in two

dimensions.

34

Figure 4.4: Example of a uniform grid versus a non-uniform grid

35

4.2.1 One-Dimensional Shortest Path-based Method

We employ a shortest path-based method to approximate a one-dimensional

function with a piecewise linear function over a non-uniform grid. In this method, we

divide the domain of the function into small non-overlapping intervals, create possible

groups/aggregations of consecutive intervals called segments, find/estimate the

approximation error for each segment and then choose a set of non-overlapping segments

that cover the entire domain and give the best approximation in terms of a specific error

metric.

The approximation error associated with a segment depends upon (a) the

approximation errors that arise when the domain points lying within the segment are

assigned an approximate function value given by a convex combination of the function

values at the lower limit and upper limit of that segment, and (b) the chosen error metric,

i.e., whether we are interested in the maximum or average of the absolute errors over the

domain points lying within the segment. Our objective is to aggregate intervals into

segments so that we get an approximation that minimizes a specific error metric while

having no more than a pre-specified number of segments, which ensures that we do not

have more than a specified number of binary variables in the resulting mixed integer

program.

To determine the best way of aggregating intervals into segments, we use the

shortest path method described in Dahl and Realfsen (2000), and Ahuja et al. (1993).

Dahl and Realfsen (2000) provide the basic recursion used in this method. However, we

operationalize the method and explain how to create a network from which we can obtain

the shortest path. Ahuja et al. (1993) show how to approximate a piecewise linear

36

function by choosing a subset of linear pieces. However, they do not put any limitation

on the number of arcs or hops that are allowed in the path, something that we model in

our algorithm. Our method entails creating a directed graph in which the nodes

correspond to the interval end points and the arcs correspond to segments. The nodes are

indexed in the order in which the corresponding interval end points appear along the

domain of the function. The nodes corresponding to the lower and the upper limit of the

function domain are called the source and sink respectively. For each pair of nodes, an

arc is created from the lower-indexed node to the higher-indexed node and assigned a

cost that depends upon the specified error metric and the approximation errors associated

with a fixed set of randomly chosen sample points.

Given this network, any path from the source node to the sink node corresponds

to a contiguous set of segments that cover the entire domain. Further, the cost of the path

is a measure of the quality of the linear approximation. To ensure that we have the best

linear approximation with no more than a given number of break points, we have to find

the least cost path from the source node to the sink node such that the path contains no

more than a specified number of arcs or hops. We call this problem the hop constrained

shortest path problem. Here again we need to specify a metric for expressing the cost of

a path as a function of the cost of the arcs lying on that path. For example, with a sum of

arc costs metric, which yields the min-sum path, path cost is given by the sum of the

costs of the arcs on that path. On the other hand, with a maximum arc cost metric, which

gives the min-max path, the path cost is expressed as the cost of the highest-cost arc on

that path. We now discuss this method more formally.

37

Consider a function f(x) with domain [l, u]. We divide [l, u] into n parts using

break points x0, x1, …, xn such that l = x0 < x1 < …< xn = u. Each pair of break points (xi,

xj) corresponds to a segment such that points lying between xi and xj are approximated by

the straight line joining f(xi) and f(xj). Given the desired number of segments H, and the

metrics for the arc and path costs, our aim is to combine the n intervals into H segments

by choosing a set of H+1 break points out of the n+1 break points such that the

approximation error is minimized.

To do so, we define a network with n+1 nodes corresponding to interval limits x0,

x1, …, xn with an arc from node i to node j only if i < j, where nji  ,0 . To find the h-

hop path from node 0 to node j, we apply a recursive procedure that uses information

about the (h-1) hop path to a node to determine the h-hop path to that node.

Notation

ijc : cost of arc (i, j)

L(j, h) : length of shortest path from node 0 to node j containing h or fewer arcs

where

j = 1, 2, …, n, h = 1, 2, …, m

Pred(j, h): predecessor of node j in the shortest h-hop path from node 1 to node j,

where j = 1, …, n, h = 1, 2, …, m

To get the min-sum path, we use the basic recursion in Equation (4.1).

    ijjih chiLMinhjLMinhjL   1,,1,),(11
 (4.1)

We observe that since arcs always go from lower-indexed nodes to higher-

indexed nodes, node i should be considered a candidate intermediate node only if index i

38

is less than index j. Also, since the path from the source node to node i can have at most i

arcs, we do not need to consider some node i if index i is less than h-1 since this option of

coming to node j via node i would have been considered in a previous iteration of the

algorithm.

The basic recursion for the min-max path follows the same idea and is given by

Equation (4.2).

      ijjih chiLMaxMinhjLMinhjL ,1,,1,),(11  
. (4.2)

We present the complete algorithm in Appendix A2. The computational

complexity of the algorithm is O(n
2
H) where the number of arcs in the graph is O(n

2
).

One possible extension (which we have not implemented) is to use a two-phase

approach that incorporates both the min-sum and the min-max metrics. In this approach,

we first create and solve a shortest-path problem using the min-max metric, then create a

new graph in which all the arcs with cost greater than the computed min-max cost are

removed. We then solve a shortest path problem on this reduced graph using the min-

sum metric. We note that in this approach, an arc can have two different arc lengths, one

each for the two metrics.

4.2.2. Alternating Shortest Path-based Method

Since two-dimensional functions frequently arise in nonlinear programs, we now

propose a heuristic method that uses the shortest path-based method to obtain good non-

uniform Crisscross grids in two dimensions. We first observe that a Crisscross grid

(Figure 4.5c) is a sequence of, what we call, vertical Crisscross patterns (Figure 4.5a) or

horizontal Crisscross patterns (Figure 4.5b).

39

We cannot directly apply the one dimensional shortest path-based method to a

two-dimensional function. Consider a two-dimensional function f(x1, x2) such that l1 x1

u1, l2x2u2. Let us try to apply the shortest path-based method along the x1-axis by

dividing the [l1, u1] range into small intervals and finding the best way of aggregating

contiguous intervals into non-overlapping segments that cover the range [l1, u1].

However, as shown in Figure 4.6(a), each arc in the network over which we solve a

shortest path problem now corresponds to a vertical pattern and to compute the arc cost,

we need to know how the range [l2, u2] has been divided into segments. Similarly, as

shown in Figure 4.6(b), to apply the shortest path-based method along the x2-axis and

divide the range [l2, u2] into non-overlapping segments, we need a network in which each

arc corresponds to a horizontal pattern and to compute the arc cost, we need to know how

the range [l1, u1] has been divided into non-overlapping segments. Thus, it is not possible

to decompose the two-dimensional problem into two one-dimensional problems.

Figure 4.5: Building blocks of a Crisscross triangulation

(a) (b) (c)

40

Figure 4.6: Computing approximation error for a Crisscross triangulation

To resolve this issue, we observe that if we fix the segments along one axis, then

we can use the one-dimensional shortest path-based method to obtain a set of segments

along the other axis. This suggests that we can apply an iterative procedure in which we

start with an initial set of segments along an axis and solve a series of shortest path

problems alternately along the x1 and x2 axes. Further, the shortest path-based segments

computed for an axis at the end of an iteration are treated as fixed segments in the

subsequent iteration. The iterative procedure stops when the application of the shortest

path-based method along one axis is unable to improve the approximation quality of the

grid. Since the number of possible combinations of intervals along the two axes is finite,

the algorithm always terminates. Although the solution obtained by the algorithm is not

necessarily optimal and depends upon the choice of the initial axis and the segments

l2

u2

u1

x2

x1

x2

l1 l1 u1

x1

l2

u2

(a) (b)

41

along that axis, the algorithm gave reasonably good solutions (compared to a uniform

grid) for the test problems on which it was applied.

We provide the formal algorithm for generating non-uniform Crisscross grids

using the alternating shortest path-based method in Appendix A3. A similar algorithm

can be used to get a non-uniform Union Jack grid for a two-dimensional function.

However, owing to the structure of the Union Jack triangulation, the network over which

we solve a shortest path problem is more complex. We explain the method for getting

good non-uniform Union Jack grids in Appendix A4.

42

Chapter 5: MIP Model Strengthening

For a given grid design, the effectiveness of the piecewise linear approximation

approach depends upon how well we can solve the mixed integer program resulting from

the reformulation and piecewise linearization of the nonlinear functions in the nonlinear

program. In this chapter, we examine different techniques to strengthen the PLA-based

mixed integer programming model. These techniques fall into three categories: (a)

problem strengthening using shared grids across functions that have common variables,

(b) problem strengthening using inequalities that arise when variables appearing in non-

linear functions are also linked by constraints, and (c) problem strengthening using

external bounds on variables. We discuss these three techniques in Sections 5.1, Section

5.2 and Section 5.3 respectively.

5.1 PROBLEM STRENGTHENING USING SHARED GRIDS

The traditional manner of solving nonlinear programs using the piecewise linear

approximation approach entails creating individual mixed integer programming models

for each of the nonlinear functions in the nonlinear program. We call such models

individual grid models. However, when different nonlinear functions contain a common

variable and the grids used for approximating these functions have the same granularity,

then we can approximate these functions using a common grid and create for these

functions a common mixed integer programming model that is smaller and tighter than

the model with individual grids. We call such a model a pattern-based model. We can

extend this concept further to handle situations in which different nonlinear functions

with a common variable are approximated by grids of different granularities. In this case,

we can conceptually create a single composite (or combined) grid that is an aggregation

43

of the individual grids and define a single mixed integer programming model over this

composite grid. This model, which we call a combined partition model, is even stronger

than the pattern based models.

We divide Section 5.1 into three sections to discuss these three models in more

detail. In Section 5.2.1, we discuss the individual grid models in which each function in

the nonlinear program is linearized by an individual grid. Depending upon how

adjacency is enforced, we can have different types of individual grid models. In the same

way, different ways of ensuring adjacency lead to analgous types of pattern-based and

combined partition models. We discuss the pattern-based models in Section 5.2.2 and the

combined partition models in Section 5.2.3.

5.2.1 Individual Grid Models

The individual grid models are characterized by the presence of separate mixed

integer programming models for each nonlinear function that appears in a nonlinear

program. These models correspond to the traditional manner of applying piecewise

linear approximation to solve nonlinear problems. We discuss these models here so that

it is eaiser to understand the transition to the stonger pattern-based and combined

partition models.

The models that we consider pertain to a single variable X. In an actual nonlinear

program, the model will have to be defined for each variable that exists in a nonlinear

function. Let G be the set of grids (functions) that contain variable X and g be a index

over P. Let gn be the number of segments in the partition for X in grid Gg . Let gI be

the set of break points in the partition for X in grid Gg and i be an index over gI such

that gI consists of 1gn break points indexed from i = 0 to i = gn in the order of

44

increasing X-values. Let g

ix be the X-value corresponding to break point gIi . Further,

let us index the segments along the partition in grid Gg such that segment i

corresponds to the interval between break points 1i and i.

Let gV be the set of vertices in grid Gg and  iV g be the set of vertices in grid

g that lie along break point gIi . Let g

vx and vf be the X-value and the function value

at vertex v respectively. Let  iV g be the set of vertices in grid g that lie along break

point gIi . Let gĥ be a variable that denotes the approximate function value for grid g.

and g

v the vertex weight variable for vertex gVv in grid Gg .

5.2.1.1 Individual Grid Model with Segment-wise Adjacency

In an individual grid model with segmentwise adjacency, we define two

additional sets of variables.

 g

iZ : binary variables defined for each segment gIi in grid Gg such that

g

iZ is one if we select segment gIi in grid Gg , and is zero otherwise

 g

i : marginal weight variable for break point gIi in grid Gg representing

the sum of the vertex weight variables along break point i

Given this setting, we can define a mixed integer programming model that selects

in each grid, a single segment along the X partition such that only the vertices that lie

along the selected segment can have a positive weight and the vertex weight variables

sum to one.

1) Function value constraint

The approximate function value for each grid is a convex combination of the function

values at the vertices of that grid.

45

 Ggfh
g

Vv

v

g

v

g  


allforˆ  (5.1)

2) Marginal weight constraint

For each break point gIi in grid Gg , the marginal weight is the sum of the vertex

weight variables along that break point.

g

iVv

g

v

g

i niGg
g

,...,0allfor,allfor
)(

 


 (5.2)

3) Variable value constraint

In each grid, the value that a variable takes is a convex combination of the variable values

at the vertices of that grid. The variable value can also be expressed in terms of the

marginal weight variables as shown in Equation (5.4).

GgxX
gVv

g

v

g

v  


allfor (5.3)

GgxX
g

g

n

i iVv

g

v

g

v  
 

allfor
0)(



GgxX
g

g

n

i iVv

g

v

g

i 













 

 

allfor
0)(



GgxX
gn

i

g

i

g

i 


allfor
0

 (5.4)

4) Convex combination constraint

In each grid, the sum of the vertex weight variables is equal to one. Equivalently, we

could say that the marginal weight variables sum to one.

Gg
gVv

g

v 


allfor1 (5.5)

46

Gg
g

n

i

g

i 


allfor1
0

 (5.6)

5) Segment-wise adjacency conditions

These constraints ensure that for each grid, a single segment is selected from the X

partition and only those marginal weight variables that correspond to the end points of the

selected segment can be strictly positive, which implies that only those vertices that lie

along the end points of the selected segment can have a positive vertex weight.

GgZ
g

n

i

g

i 


allfor1
1

 (5.7)

},...,1{allfor,allfor1 g

g

i

g

i

g

i niGgZ   (5.8)

GgZ gg  allfor10 (5.9a)

}1,...,1{,allfor1   g

g

i

g

i

g

i niGgZZ (5.9b)

GgZ g

g
n

g

g
n  allfor (5.9c)

6) Non-negativity constraints

The vertex weight variables must be non-negative, which also ensures that the marginal

weight variables are non-negative.

gg

v VvGg  ,allfor0 (5.10)

7) Binary variable constraints

},...1{allfor}1,0{ g

g

i niZ  (5.11)

We call the model formed by Equations (5.1–5.11) an individual grid model with

segment-wise adjacency (IND-SEG) because the adjacency conditions are defined for

each individual segment. In the next section, we show how we can define adjacency

conditions for groups of segments and create a stronger individual grid model.

47

5.2.1.2 Individual Grid Model with Cumulative Adjacency

The model defined by Equations (5.1–5.11) is not locally ideal i.e., the extreme

points of the polyhedron describing the piecewise linear function of X, without additional

constraints may have fractional extreme points. However, Padberg (2000) shows that by

defining the adjacency conditions over groups of segments, we can make the model

locally ideal. This entails replacing the segment-wise adjacency constraints (Equations

5.8–5.9) with the following constraints.

g

n

ii

g

i

n

ii

g

i niGgZ
gg

,...,2allfor,allfor
'

'

'

' 


 (5.12a)

1,...,1allfor,allfor
1'

'

'

'  


g

n

ii

g

i

n

ii

g

i niGgZ
gg

 (5.12b)

We now propose a different way of writing Equation (5.12) by creating auxiliary binary

variables that represent the cumulative segment selection decision. Specifically, for each

segment in the partition for X in grid Gg , let g

iW denote the cumulative segment

selection (binary) variable that takes the value one if the model selects segment i or

higher, defined for i = 1, …, gn .

 g

g
n

ii

g

i

g

i niZW ,...,1allfor
'

' 


Similarly, we create cumulative marginal weight variables for each break point in each

pattern defined as follows.

 g

g
n

ii

g

i

g

i ni ,...,0allfor
'

' 




Using these cumulative variables, we create the cumulative adjacency constraints as

shown in Equations (5.13–5.15). These constraints are less dense than the original

constraints (Equation 5.12) and can possibly reduce the chances of Cplex eliminating the

48

variables in these consrtaints during preprocessing. Note that we need Equation 5.13(c)

since 1,...,1allfor1   g

g

i

g

i

g

i niWZW .

 g

g

i

g

i niGgW ,...,2allfor,allfor  (5.13a)

1,...,1allfor,allfor1   g

g

i

g

i niGgW (5.13b)

 1,...,1allfor,allfor1   g

g

i

g

i niGgWW (5.13c)

Ggg  allfor10 (5.14a)

GgW g  allfor11 (5.14b)

 g

g

i niGgW ,...,1allfor,allfor}1,0{  (5.15)

Further, we replace the variable value constraint (Equation 5.4) with the cumulative

variable value constraint (Equation 5.16), and the marginal weight constraint (Equation

5.2) with the cumulative marginal weight constraint (Equations 5.17).

GgxxX g

g
n

g
n

g
n

i

g

i

g

ii  




 allfor)(

1

0

1  (5.16)

1,...,0allfor,allfor1

)(

 



 g

g

i

g

i

i
g

Vv

g

v niGg (5.17a)

g

g

i

i
g

Vv

g

v niGg 


allfor,allfor

)(

 (5.17b)

We call the model formed by the function value constraint (Equation 5.1), non-

negativity constraint (Equation 5.10), and Equations (5.13–5.17) an individual grid model

with cumulative adjacency (IND-CUM) because the adjacency conditions are defined

cumulatively and not for individual segments. As shown in Appendix A11, the

cumulative adjacency model has the same LP-relaxation value as the segment-wise

adjacency model. However, since the cumulative adjacency model is locally ideal, it

requires fewer branch and bound nodes and therefore can be solved in less time than that

required for the segment-wise adjacency model.

49

5.2.1.3 Individual Grid Model with Logarithmic Indexing

As discussed earlier, Vielma and Nemhauser (2011) show that we do not need n

binary variables for enforcing adjacency across n segments. Instead, we can do so by

using log2(n) binary variables such that each segment is assigned a binary address that

corresponds to a reflected binary code or gray code. A gray code is defined as a

logarithmic binary indexing scheme in which two successive values differ in only one bit

(Gilbert 1957). For example, intervals 0, 1, 2, and 3 can be identified by using two bits

by assigning the reflected binary codes 00, 01, 11 and 10. Similarly, intervals 0, 1, 2, 3,

4, 5, 6, and 7 can be identified by using three bits by assigning the reflected binary codes

000, 001, 011, 010, 110, 111, 101 and 100.

Given that we have gn segments in the partition for X in grid Gg , let us assign a

reflected binary code comprised of))((logceil 2 gn bits to each of these segments. Let

)(qI g be the set of break points in the partition for X in grid Gg such that each break

point serves as the end point of at least one segment whose reflected binary code has a

zero at position q. Similarly, let)(ˆ qI g
be the set of break points in the partition for X in

grid Gg such that each break point serves as the end point of at least one segment

whose reflected binary code has a one at position q.

Let us define binary variables)(log...,,1, 2 g

g

q nqB  such that g

qB takes the value

one if we select in grid Gg an X-segment whose reflected binary code contains a one

at position q and g

qB takes the value zero if we select in grid Gg an X-segment whose

reflected binary code contains a zero at position q. Using these variables, we define the

logarithmic adjacency constraints as per Equations (5.18–5.19).

50

GgnqB g

g

q

qIi

g

i

g




allfor)],(logceil[...,,2,1allfor 2

)(

 (5.18a)

GgnqB g

g

q

qIi

g

i

g




allfor)],([logceil...,,2,1allfor1 2

)(ˆ

 (5.18b)

GgnqB g

g

q  allfor)],(logceil[...,,2,1allfor}1,0{ 2 (5.19)

Equation (5.18a) ensures that if we select in grid Gg an X-segment whose

reflected binary code has a zero at position q (i.e., if g

qB is zero), then all the break points

that do not belong to)(qI g are assigned a marginal weight of zero, which also ensures

that the vertices corresponding to those break points are also assigned a vertex weight of

zero. On the other hand, Equation (5.18b) ensures that if we select in grid Gg an X-

segment whose reflected binary code has a one at position q (i.e., if g

qB is one), then all

the break points that do not belong to)(ˆ qI g
 are assigned a marginal weight of zero.

We call the model formed by the function value constraint (Equations 5.1),

marginal weight constraint (Equation 5.2), variable value constraint (Equation 5.4),

convex combination constraint (Equation 5.6), non-negativity constraint (Equation 5.10),

and logarithmic adjacency constraints (Equations 5.18–5.19) an individual grid model

with logarithmic adjacency (IND-LOG).

5.2.1.4 Individual Grid Model with SOS-2-based adjacency

We can also ensure adjacency by declaring the set of marginal weight variables in

each grid a Special Ordered Set of Type 2.

Ggg

g
n

g  allfor2SOS,,...0  (5.20)

We call the model formed by the function value constraint (Equations 5.1),

marginal weight constraint (Equation 5.2), variable value constraint (Equation 5.4),

convex combination constraint (Equation 5.6), non-negativity constraint (Equation 5.10),

51

and Equations (5.20) an individual grid model with SOS-II constraints (IND-SOS). The

notation used in the different individual grid models in Appenix A12.

In the next section, we discuss the pattern-based models that use common grids

for functions that (a) share a common variable, and (b) are linearized using grids of the

same granularity.

5.2.2 Pattern-based Models

Before discussing the formulation for the pattern-based models, we first consider

an example that conveys the intuition behind these models. Let us assume that we have a

nonlinear program that is linear except for the presence of two nonlinear functions

involving three bounded variables 1X , 2X , and 3X such that),(211 XXf is a non-separable

function of 1X and 2X , and),(312 XXf is a non-separable function of 1X and 3X . To

apply the PLA approach to this problem, we

a) partition the domain of 1f with a rectangular 44 (i.e., 4 segment  4 segment)

uniform grid 1G ,

b) partition the domain of 2f with a rectangular 45 grid 2G , and

c) create a mixed integer program that ensures that in each grid, (i) we select only one

cell, and (ii) the approximate function value is given by a convex combination of the

function values at the vertices of the selected cell.

52

Grid G1 Grid G2

Figure 5.1: Domain partitioning for functions f1 and f2

To create a mixed integer program, we index the break points for variables 1X ,

2X , and 3X using indices i, j and k where 40  i , 40  j and 50  k . Let ix1 , jx2 ,

and kx3 be the values of 1X , 2X ,and 3X at break points i, j and k respectively. Let us define

vertex weight variables
1

ij and 2

ik for grids 1G and 2G respectively as continuous variables

bounded between zero and one. Let 1ĥ and 2ĥ be the approximate function values of 1f

and 2f respectively. The segment-wise adjacency model for these two grids is comprised

of the following constraints.

1) Function value constraint

The approximate function value for each grid is a convex combination of the function

values at the vertices of that grid.


 


4

0

4

0

21

1

1),(ˆ

i j

ji

ij xxfh  
 


4

0

5

0

31

2

2),(ˆ

i k

ki

ik xxfh  (5.21)

53

2) Variable value constraint


 


4

0

4

0

1

1

1

i j

i

ij xX  
 


4

0

4

0

2

1

2

i j

j

ij xX  (5.22a)


 


4

0

5

0

1

2

1

i k

i

ik xX  
 


4

0

5

0

3

2

3

i k

k

ik xX  (5.22b)

In terms of the marginal wights, Equation (5.22a) can be expressed using Equation

(5.23).

 
 
















4

0

4

0

1

11

i j

ij

ixX  or  



4

0

1

111

i

i

ixX  where 



4

0

11

1

j

iji  (5.23a)

 
 











4

0

4

0

1

22

j i

ij

jxX  or  



4

0

1

222

j

j

jxX  where 



4

0

11

2

i

ijj  (5.23b)

We call 1

1i the marginal weight associated with break point i for variable 1X in grid 1G and

it is equal to the sum of the vertex weights across all vertices in 1G that lie along break

point i. Similarly
1

2 j is the marginal weight associated with break point j for variable 2X

in grid 1G .

Similarly, we can express Equation (5.22b) in terms of the marginal weights as Equation

(5.24).

 
 











4

0

5

0

2

11

i k

ik

ixX  or  



4

0

2

111

i

i

ixX  where 



5

0

22

1

k

iki  (5.24a)

 
 











5

0

4

0

2

33

k i

ik

kxX  or  



5

0

2

333

k

k

kxX  where 



4

0

22

3

i

ikk  (5.24b)

Here 2

1i is the marginal weight associated with break point i for variable 1X in grid 2G and

2

3k is the marginal weight associated with break point k for variable 3X in grid 2G .

3) Convex combination constraint

These constraints ensure that the sum of the vertex weights is equal to one.


 


4

0

4

0

1 1
i j

ij (5.25a)

54


 


4

0

5

0

2 1
i k

ik (5.25b)

4) Adjacency constraints

We need to ensure that exactly one cell is chosen in each grid. This can be done

by ensuring that exactly one segment is chosen along each dimension in a grid and the

marginal weight variables at the two ends of the chosen segment sum to one. Let 1

1iZ be a

binary variable that takes value one if we select segment i for variable 1X in grid 1G , and is

zero otherwise. Let
1

2 jZ be a binary variable that takes value one if we select segment j for

variable 2X in grid 1G , and is zero otherwise. Let 2

1iZ be a binary variable that takes value

one if we select segment i for variable 1X in grid 2G , and is zero otherwise. Let 2

3kZ be a

binary variable that takes value one if we select segment k for variable 3X in grid 2G , and

is zero otherwise. Then, the adjacency conditions for Grid 1G and 2G are given by

Equations (5.26) and Equations (5.27) respectively.

1
4

1

1

1 
i

iZ , }4,...,1{allfor1

1

1

1,1

1

1   iZ iii  (5.26a)

1
4

1

1

2 
j

jZ , }4,...,1{allfor1

2

1

1,2

1

2   jZ jjj  (5.26b)

1
4

1

2

1 
i

iZ , }4,...,1{allfor2

1

2

1,1

2

1   iZ iii  (5.27a)

1
5

1

2

3 
k

kZ , }5,...,1{allfor2

3

2

1,3

2

3   kZ kkk  (5.27b)

5) Non-negativity and binary variable constraints

}4,...,0{},4,...,0{allfor01  jiij (5.28a)

}5,...,0{},4,...,0{allfor02  kiik (5.28b)

}4,...,1{allfor}1,0{1

1  iZ i
 (5.28c)

55

}4,...,1{allfor}1,0{1

2  jZ j
 (5.28d)

}4,...,1{allfor}1,0{2

1  iZ i
 (5.28e)

}5,...,1{allfor}1,0{2

3  kZ k
 (5.28f)

The key observation is that although 1X appears in two different functions, yet it

will have a single value in any solution to the mixed integer program. Further, the value

of 1X will belong to the same segment in both the grids and will also have the same set of

marginal weights in both the grids. In other words, 1

1i will be equal to 2

1i for all i. Thus,

we can define a single set of marginal weights for 1X and thereby create a smaller and

tighter model. We call such a model a patter-based model where a pattern is a partition

induced by a set of break points along the domain of a function corresponding to a

specific variable.

A pattern-based model is not only smaller but also tighter than a traditional grid-

based model, which implies that there are fractional LP solutions that are feasible for the

grid-based model but not for the pattern-based model. Consider the example shown in

Figure 5.2 where we have an LP solution that is feasible for a grid-based model.

However, this LP solution is not feasible for the pattern-based model since (a) the

marginal weight corresponding to break points 0 and 4 (along the X-axis) have a value of

0.5 each in Grid G1 but values of zero each in Grid G2, and (b) the marginal weight

corresponding to break points 1 and 3 (along the X-axis) have a value of 0 each in Grid

G1 but values of 0.5 each in Grid G2. Thus, the LP relaxation value of a pattern-based

model can be higher than that of a grid-based model, which implies that the MIP solver

might find it easier to solve a pattern-based model.

56

Grid G1 Grid G2

Figure 5.2: LP solution that is not feasible for a pattern-based model

Just as we had four types of grid-based models, we can have four types of pattern

based models: pattern-based models with segment-wise adjacency, pattern-based models

with cumulative adjacency, pattern-based models with logarithmic adjacency, and

pattern-based models with SOS-2 based adjacency. We now describe these models in

more detail.

We first define some additional notation. For a comprehensive list of all the

symbols, refer to Appendix A12. Let G be the set of grids (functions) that contain

variable X and let P be the set of partitioning patterns for variable X used in the linear

approximations of all functions that contain variable X. Let g and p be indices over G

and P respectively. In the example discussed earlier, G will contain grids G1 and G2.

57

Let pn be the number of break points in partitioning pattern Pp and pJ be the

set of break points in p such that pJ consists of pn break points indexed from j = 0 to j =

pn in the order of increasing X-values. In the example discussed earlier, there is a single

partition (with 5 break points) for variable X.

Let pG be the set of grids (functions) that contain variable X and use pattern

Pp . Let p(g) be the pattern used for X in grid g. Let gV be the set of vertices in grid

Gg and  jV g be the set of vertices in grid g that lie along break point pJj . Let gĥ

be the approximate function value for grid g. Let p

jx be the X-value corresponding to

break point pJj in pattern Pp .

Using the notation defined above, we now discuss the four types of pattern-based

models.

5.2.2.1 Pattern-based Model with Segment-wise Adjacency

To create the segment-wise adjacency constraints, we define two additional types

of variables. Let
p

j denote the (continuous) marginal weight variables defined for each

break point },...,0{ pnj in each pattern Pp , and
p

jS be the binary variables defined

for each segment },...,1{ pnj in each pattern Pp .

1) Pattern-based variable value constraint

In each pattern, the value taken by X is a convex combination of the X-values

corresponding to the break points of that pattern.

 PpxX
p

n

j

p

j

p

j 


allfor
0

 (5.29)

2) Pattern-based convex combination constraint

For each pattern, the marginal weight variables sum to one.

58

Pp
p

n

j

p

j 


allfor1
0

 (5.30)

3) Pattern-based marginal weight constraint

For each grid, the sum of the vertex weight variables corresponding to a specific break

point is equal to the marginal weight variable corresponding to that break point in the

specific pattern (for X) that we use in that grid.

)(

)(

)(

,...,0,allfor gp

gp

j

j
g

Vv

g

v njGg 


 (5.31)

4) Segment-wise adjacency constraints

These constraints ensure that (a) in each pattern for X, a single segment is selected, and

(b) the marginal weight variables corresponding to the end points of only the selected

segment can be strictly positive.

PpS
p

n

j

p

j 


allfor1
1

 (5.32)

},...,1{,allfor1 p

p

j

p

j

p

j njPpS   (5.33)

PpS pp  allfor10 (5.34a)

}1,...,1{,allfor1   p

p

j

p

j

p

j njPpSS (5.34b)

PpS p

p
n

p

p
n  allfor (5.34c)

5) Binary variable constraints

p

p

j njPpS ,...,1allfor,allfor}1,0{  (5.35)

We call the model formed by the function value constraint (Equation 5.1), and

Equations (5.29–5.35) a pattern-based model with segment-wise adjacency (PAT-SEG).

59

5.2.2.2 Pattern-based Model with Cumulative Adjacency

As in the individual grid model, we can create a pattern-based model using

cumulative adjacency conditions. To do so, we define for each partition p of the variable

X, a variable p

jT that denotes the cumulative segment selection (binary) variable that takes

the value one if the model selects segment j or higher, defined for j = 1, …, pn .

Similarly, we define
p

j as the cumulative marginal weight variable for each break point

in each pattern.

 p

p
n

jj

p

j

p

j njST ,...,1allfor
'

' 


 p

p
n

jj

p

j

p

j nj ,...,0allfor
'

' 




Using these cumulative variables, we create the pattern-based cumulative adjacency

constraint as shown in Equation (5.36).

PpnjT p

p

j

p

j  ,,...,2allfor (5.36a)

PpnjT p

p

j

p

j   ,1,...,1allfor1 (5.36b)

Ppp  allfor10 (5.36c)

PpT p  allfor11 (5.36d)

 PpnjTT p

p

j

p

j   ,1,...,1allfor1 (5.36e)

We also need the pattern-based cumulative variable value constraint (Equation 5.37),

and the pattern-based cumulative marginal weight constraint (Equation 5.38).

PpxxX p

p
n

p

p
n

p
n

j

p

j

p

j

p

j  




 allfor)(

1

0

1  (5.37)

60

1,...,0,allfor)(1

)(

 



 gp

p

j

p

j

j
g

Vv

g

v njGg (5.38a)

)(

)(

,allfor gp

p

j

j
g

Vv

g

v njGg 


 (5.38b)

We call the model formed by the function value constraint (Equation 5.1), non-

negativity constraint (Equation 5.10), and Equations (5.36–5.38) a pattern-based model

with cumulative adjacency (PAT-CUM).

5.2.2.3 Pattern-based Model with Logarithmic Indexing

As in the individual grid model, we can have a log-based pattern-based model.

Given that we have pn segments in partition p, let us assign a reflected binary code

comprised of))((logceil 2 pn bits to each of these segments. Let)(qJ p be the set of break

points in pattern p such that each break point serves as the vertex of at least one cell

whose reflected binary code contains a zero at the position q. Similarly, let)(ˆ qJ p
be the

set of break points in pattern p such that each break point serves as the vertex of at least

one cell whose reflected binary code contains a one at position q.

Let us define binary variables PpnqC p

p

q ),(log...,,1for, 2 such that p

qC takes

the value one if we select a cell whose reflected binary code contains a one at position q

and p

qC takes the value zero if we select a cell whose reflected binary code contains a zero

at position q. We then have the following adjacency constraints.

.

PpnqC p

p

q

qJj

p

j

p




allfor)](logceil[...,,2,1allfor 2

)(

 (5.39a)

PpnqC p

p

q

qJj

p

j

p




allfor)],([logceil...,,2,1allfor1 2

)(ˆ

 (5.39b)

PpnqC p

p

q  allfor)],(logceil[...,,2,1allfor}1,0{ 2 (5.40)

61

Equation (5.39a) ensures that if we select a segment in pattern p whose reflected

binary code has a zero at position q (i.e., if p

qC is zero), then all the break points that do

not belong to)(qJ p are assigned a marginal weight of zero, which also ensures that the

vertices corresponding to that break point are also assigned a vertex weight of zero. On

the other hand, Equation (5.39b) ensures that if we select a segment in pattern p whose

reflected binary value has a one at position q (i.e., if p

qC is one), then all the break points

that do not belong to)(ˆ qJ p
 are assigned a marginal weight of zero.

We call the model formed by the function value constraint (Equations 5.1), non-

negativity constraint (Equation 5.10), pattern-based variable value constraint (Equation

5.29), pattern-based convex combination constraint (Equation 5.30), pattern-based

marginal weight constraint (Equation 5.31), and Equations (5.39–5.40) a pattern-based

model with logarithmic adjacency (PAT-LOG).

5.2.2.4 Pattern-based model with SOS-2-based adjacency

As in the individual grid models, adjacency can also be enforced by defining for

each pattern, the set of marginal weight variables as a Special Ordered Set of Type 2.

Ppp

p
n

p  allfor2SOS,...,0  (5.41)

We call the model formed by the function value constraint (Equations 5.1), non-

negativity constraint (Equation 5.10), pattern-based variable value constraint (Equation

5.29), pattern-based convex combination constraint (Equation 5.30), pattern-based

marginal weight constraint (Equation 5.31), and Equation (5.41) a pattern-based model

62

with SOS-2 adjacency (PAT-SOS). The notation used in the different pattern-based

models is summarized in Appenix A12.

5.2.3 Combined Partition Models

The pattern-based models discussed in the previous section take advantage of

common partitions of the same variable in different grids. However, in a pattern–based

model, the adjacency conditions have to be defined for each pattern. If we have multiple

patterns for a given variable, then we could further a stronger model by defining a

combined partition that contains all the break points that occur in the various partitions

for a given variable. We then define a single set of adjacency conditions for this

combined partition and express the marginal weights in the individual patterns in terms of

the marginal weights in the combined partition. We show a combined partition in Figure

5.3. As with pattern-based models, we can have four types of combined partition models:

combined partition models with segment-wise adjacency, combined partition models with

cumulative adjacency, combined partition models with logarithmic adjacency, and

combined partition models with SOS-2 based adjacency. We now discuss these models

in more detail.

63

Figure 5.3: Example of a combined partition

We recall that pn denotes the number of break points in partitioning pattern

Pp and pJ is the set of break points in p such that pJ consists of pn break points

indexed from j = 0 to j = pn in the order of increasing X-values. Let the combined

partition contain m break points and let K denote the set of these break points. Let k be

an index over the break point (and segments) in the combined partition such that k can

take values over the set { m,...,0 }. Let kx , Kk be the value of X at break point k in

the combined partition and let p

jx be the value of X at break point j in pattern p. Let

 pkj , be the closest break point in pattern p that either coincides with break point k of

the combined partition or lies strictly to the right of break point k of the combined

partition, i.e.,   KkPpxxjMinpkj k

p

j  ,allfor ,:, .

Let  pjk , be the break point in the combined partition that coincides with break

point i in pattern p, i.e. ,   pk

p

j JjPpxxkpjk  allfor,allfor ,:, .

64

Let  jK p be the set of break points in the combined partition that lie in the

interior of segment j in partition p, defined for all PpJj p  },0{\ . In other words,

  }1),(,...1),1({  pjkpjkjK p . Further, let us define a parameter kp for all

},...,0{ mk  and Pp as follows.

}0{\,allfor
1),(),(

1),(
KkPp

xx

xx
p

pkjpkj

p

pkjk

kp 








 . (5.42)

Figure 5.4: Relating break point indices in individual patterns and the combined partition

5.2.3.1 Combined Partition Model with Segment-wise Adjacency

Let k be the marginal weight variable for breakpoint k in the combined partition,

defined for },...,0{ mk  . We enforce adjacency by defining binary variables for each

segment in the combined partition and then adding forcing constraints that ensure that in

the combined partition (a) exactly one segment is chosen, and (b) only the marginal

weight variables corresponding to the end points of the chosen segment can have positive

weights. Let us define a binary variable },...1{, mkRk  that is one if we select segment k

in the combined partition.

1) Variable value constraint for combined partition

65

The variable value constraint, defined for the combined partition, ensures that the value

of the variable (X) is equal to a convex combination of the variable values corresponding

to the break points in the combined partition.





m

k

kk xX
0

 (5.43)

2) Convex combination constraint for combined partition

The sum of the marginal weights across all the break points of the combined partition

must sum to one.

1
0




m

k

k (5.44)

3) Marginal weight constraint for combined partition

The marginal weight for a break point in an individual pattern is a linear combination of

the marginal weights corresponding to the break points in the combined partition. The

validity of these equations has been proved in Appendix A5.

},0{\allfor,allfor)1(
)1()(

),(pp

j
p

Kk

kkp

j
p

Kk

kkppjk

p

j nJjPp  


 (5.45a)

0,allfor)1(
)1(

),( 


jPp
j

p
Kk

kkppjk

p

j  (5.45b)

p

j
p

Kk

kkppjk

p

j njPp  


,allfor
)(

),( (5.45c)

4) Segment-wise adjacency constraint for combined partition

These constraints ensure that we select a single segment in the combined partition and

only those marginal weight variables that correspond to the end points of the selected

segment can be strictly positive.

66

1
1




m

k

kR (5.46a)

},...,1{allfor1 mkRkkk   (5.47a)

10 R (5.47b)

}1,...,1{allfor1   mkRR kkk (5.47c)

mm R (5.47d)

5) Binary variable constraint

mkRk ,...,1allfor}1,0{  (5.48)

We call the model formed by the function value constraint (Equation 5.1), the

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint

(Equation 5.31), and Equations (5.43–5.48) a combined partition model with segment-

wise adjacency (CPAR-SEG).

The combined partition model is not only smaller but also tighter than the pattern-

based model. Consider the example discussed in Figure 5.5 in which we show an LP

solution that is feasible for a pattern-based model but not for a combined partition model,

which would have four uniform segments for the X1 variable (as used in Grid G2) and will

re-distribute the marginal weights of 0.5 along break points 1 and 3 in Grid G2 over the

break points 0, 1, 2 for the X1 pattern in Grid G1. This re-distribution, done using

Equation (5.36a), will assign marginal weights of 0.25, 0.5 and 0.25 to break points 0, 1

and 2 respectively for the X1 pattern in Grid G1, which are different from the current

marginal weights of 0.5 each for break points 0 and 4 for the X1 pattern in Grid G1. Thus,

the LP relaxation value of the combined partition model could be higher than that of a

67

pattern-based model, which implies that a MIP solver might find it easier to solve a

combined partition model.

Figure 5.5: Comparing the strength of pattern-based and combined partition models

5.2.3.2 Combined Partition Model with Cumulative Adjacency

 As in the other cumulative adjacency modesl, we can use cumulative segment

selection and cumulative marginal weight variables for the combined partition and create

cumulative adjacency constraints to enforce adjacency in the combined partition.

 Let kM denote the cumulative segment selection (binary) variable for the

combined partition that takes the value 1 if the model selects segment k or higher, defined

for mk ...,,1 and let k be the cumulative marginal weight for break point k of the

combined partition such that mk
m

kk

kk ,...,1allfor
'

' 


 .

 We can then have the following cumulative adjacency constraints for the

combined partition.

68

mkMkk ,...,2allfor  (5.49a)

1,...,1allfor1   mkM kk (5.49b)

 1,...,1allfor1   mkMM kk (5.49c)

10  (5.50a)

11 M (5.50b)

mkMk ,...,1allfor}1,0{  (5.50c)

We also need the cumulative variable value constraint for combined partition (Equation

5.51), and the cumulative marginal weight constraint for combined partition (Equation

5.52).

mm

m

k

kkk xxX  






1

0

1)((5.51)

   

  },0{\,)1(
)1(

1),(),(

)(

1),(),(1),(),(

pp

j
p

Kk

pjkpjkkp

j
p

Kk

pjkpjkkppjkpjk

p

j

nJjPp 



















 (5.52a)

    0,)1(
)1(

1),(),(1),(),( 


 jPp
j

p
Kk

pjkpjkkppjkpjk

p

j  (5.52b)

   
p

j
p

Kk

pjkpjkkppjkpjk

p

j njPp  


 ,
)(

1),(),(1),(),( (5.52c)

We call the model formed by the function value constraint (Equations 5.1), the

non-negativity constraint (Equation 5.10), the pattern-based marginal weight constraint

(Equation 5.31) and Equations (5.49–5.52) a combined partition model with cumulative

adjacency (CPAR-CUM).

69

5.2.3.3 Combined Partition Model with Logarithmic Indexing

We could also enforce adjacency in the combined partition by using a logarithmic

indexing scheme. To each of the m segments in the combined partition, let us assign a

reflected binary code comprised of))((logceil 2 m bits. Let)(qK be the set of break

points in the combined partition that serve as the vertex of at least one cell whose

reflected binary code contains a zero at the position q, and)(ˆ qK be the set of break points

in the combined partition that serve as the vertex of at least one cell whose reflected

binary code contains a one at position q. Let us define binary variables

)(log...,,1, 2 mqDq  such that qD takes the value one if we select a cell whose reflected

binary code contains a one at position q and qD takes the value zero if we select a cell

whose reflected binary code contains a zero at position q. The logarithmic adjacency

conditions for the combined partition are as follows.

)](logceil[...,,2,1for 2

)(

mqDq

qKk

k 


 (5.53a)

)]([logceil...,,2,1for1 2

)(ˆ

mqDq

qKk

k 


 (5.53b)

)](logceil[...,,2,for}1,0{ 2 mqDq  (5.54)

Equation (5.53a) ensures that if we select a segment in the combined partition whose

reflected binary code has a zero at position k (i.e., if qD is zero), then all the break points

that do not belong to)(qK are assigned a weight of zero. On the other hand, Equation

(5.53b) ensures that if we select a segment in the combined partition whose reflected

binary value has a one at position k (i.e., if qD is one), then all the break points that do

not belong to)(ˆ qK have a weight of zero.

70

We call the model formed by the function value constraint (Equation 5.1), the

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint

(Equation 5.31), the variable value constraint for combined partition (Equation 5.43), the

convex combination constraint for combined partition (Equation 5.44), the marginal

weight constraint for combined partition (Equation 5.45), and Equations (5.53–5.54) a

combined partition model with logarithmic adjacency (CPAR-LOG).

5.2.3.4 Combined Partition Model with SOS-2-based Adjacency

We could also enforce adjacency in the combined partition by defining the marginal

weight variables in the combined partition as SOS-2 (Equation 5.55).

2SOS,...,0 m (5.55)

We call the model formed by the function value constraint (Equation 5.1), the

non-negativity constraint (Equation 5.10), pattern-based marginal weight constraint

(Equation 5.31), the variable value constraint for combined partition (Equation 5.43), the

convex combination constraint for combined partition (Equation 5.44), the marginal

weight constraint for combined partition (Equation 5.45), and Equations (5.55) a

combined partition model with SOS-2 adjacency (CPAR-SOS).

The notation used in the four types of combined partition models is summarized

in Appenix A12.

71

5.2 PROBLEM STRENGTHENING USING CONSTRAINT-BASED INEQUALITIES

If a nonlinear program contains constraints involving two or more variables that

also appear as independent variables of the same or different nonlinear functions, then we

can strengthen the PLA-based mixed integer program by adding valid inequalities which

relate the segment-selection and marginal weight variables corresponding to those

independent variables. These valid inequalities arise beacuse the valid segment-selection

and marginal weight variables corresponding to the independent variables are now

dependent on one another. These valid inequalities strengthen the LP relaxation value of

the PLA-based mixed integer program and as shown in the computational results, help us

tackle some of the more difficult problems in our problem set.

Consider a situation in which we have a nonlinear program with a linear

constraint involving variables X and Y such that X and Y also appear as independent

variables either in the same nonlinear function or in two different nonlinear functions.

We can have four types of linear constraints involing X and Y.

1. baXY  : In this case, an upper bound on X induces an upper bound on Y.

2. baXY  : In this case, an upper bound on X induces a lower bound on Y.

3. baXY  : In this case, a lower bound on X induces an upper bound on Y.

4. baXY  : In this case, a lower bound on X induces a lower bound on Y.

We now discuss each of these four cases sepately and show how these induced bounds

can be used to generate valid inequalities relating the binary and marginal weight

variables for the X and Y patterns.

72

Notation

I: set of break points in the X partition

J: set of break points in the Y partition

i: index for break points and segments for the X partition

j: index for break points and segments for the Y partition

Xn : number of segments in the X partition

Yn : number of segments in the Y partition

X
i marginal weight variable for break point i along the X partition

X
i cumulative marginal weight variable for break point i along the X partition

Y
j marginal weight variable for break point j along the Y partition

Y
j cumulative marginal weight variable for break point j along the X partition

X
iS segment selection variable for segment i along the X partition, which is one if we

select segment i and is zero otherwise

X
iT segment selection variable for segment i along the X partition, which is one if we

select a segment with index i or higher, and is zero otherwise

Y
jS segment selection variable for segment j along the Y partition, which is one if we

select segment j and is zero otherwise

Y
jT segment selection variable for segment j along the Y partition, which is one if we

select a segment with index j or higher, and is zero otherwise

73

5.2.1 Upper Bound on a Variable Inducing an Upper Bound on another Variable

Consider the situation where X and Y are present in two different nonlinear

functions but are related by the constraint baXY  . In this situation, an upper bound

on X induces an upper bound on Y. Let us assume that we select an X segment with index

i or lower. This implies that X cannot exceed ix . Let ji ybaxjij  :min)(. Then, we

cannot select a Y segment whose index is greater than)(ij . This gives us the following

valid inequalities.

Figure 5.6: Upper bound on X inducing an upper bound on Y

a) Inequalities relating binary variables

Let 1I be the set of break points in the X pattern such that }1)(1:{1  YnijiI . Then, if

we select an X segment with index i or lower, then we must select a Y segment with index

)(ij or less. So, we have the following inequality.

111)(everyfor11 IiTT X
i

Y
ij   (5.56)

74

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has an upper bound of ix , Y has an upper bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition.

Consider a case where we want to choose

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and

i-1, and

 segment j(i) for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break points

j(i) and j(i)-1.

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (5.57)

  iii
X
i

Y
ij qqp )(where

1)()(

1)(










ijij

iji

i
yy

yy
p and

1)()(

1)(1










ijij

iji

i
yy

yy
q

  iii
X
i

Y
ij qqp )(since in this case X

i
X
i   and

Y
ij

Y
ij)()(  (5.58)

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to

break point i, then we have an upper bound on the cumulative weight variable for break

point j(i). This leads us to the following inequality.

  X

i

Y

iji

X

iiii

X

i

Y

ij TTqTqqp 1)(1)()1()1(  (5.59)

The proof of the validity of this inequality is provided in Appendix A6.

75

5.2.2 Upper Bound on a Variable Inducing a Lower Bound on another Variable

Consider the situation where X and Y are present in two different nonlinear functions but

are related by the constraint baXY  . In this situation, an upper bound on X induces a

lower bound on Y. Let us assume that we select an X segment with index i or lower. This

implies that X cannot exceed ix . Let ji ybaxjij  :max)(. Then, we cannot select a

Y segment whose index is less than 1)(ij . This gives us the following valid inequalities.

Figure 5.7: Upper bound on X inducing a lower bound on Y

a) Inequalities relating binary variables

Let 2I be the set of break points in the X pattern such that }1)(2:{2  YnijiI . Then, if

we select an X segment with index i or lower, then we must select a Y segment with index

1)(ij or higher. So, we have the following inequality.

211)(everyfor1 IiTT X
i

Y
ij   (5.60)

76

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has an upper bound of ix , Y has a lower bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition, and consequently a lower bound on the cumulative marginal weight

for break point 1)(ij along the Y partition. Consider a case where we want to choose

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and

i-1

 segment 1)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break

points)(ij and 1)(ij

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (5.61)

  iii
X
i

Y
ij qqp )(where

)(1)(

1)(

ijij

iij

i
yy

yy
p









and

)(1)(

11)(

ijij

iij

i
yy

yy
q










  iii
X
i

Y
ij qqp    1)(1 since X

i
X
i   and

Y
ij

Y
ij 1)()(1  

 ii
X
ii

Y
ij qpq  )1(1)((5.62)

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to

break point i, then we have a lower bound on the cumulative weight variable for break

point 1)(ij . This leads us to the following inequality.

   Y
ijiii

X
i

X
ii

Y
ij TqqpTq 2)(11)()1)(1(   (5.63)

The proof of the validity of this inequality is provided in Appendix A6.

77

5.2.3 Lower Bound on a Variable Inducing an Upper Bound on another Variable

Consider the situation where X and Y are present in two different nonlinear functions but

are related by the constraint baXY  . In this situation, a lower bound on X induces an

upper bound on Y. Let us assume that we select an X segment with index i+1 or lower.

This implies that X has a lower bound of ix . Let ji ybaxjij  :min)(. Then, we

cannot select a Y segment whose index is greater than)(ij . This gives us the following

valid inequalities.

Figure 5.8: Lower bound on X inducing an upper bound on Y

a) Inequalities relating binary variables

Let 3I be the set of break points in the X partition such that }1)(1:{3  YnijiI . Then,

if we select an X segment with index 1i or higher, then we must select a Y segment with

index)(ij or lower. So, we have the following inequality.

311)(everyfor1 IiTT X
i

Y
ij   (5.64)

78

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has a lower bound of ix , Y has an upper bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition, and consequently an upper bound on the cumulative marginal

weight for break point)(ij along the Y partition. Consider a case where we want to

choose

 segment i+1 for the X variable with weights X
i and X

i1 assigned to break points i

and i+1, and

 segment)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break points

)(ij and 1)(ij .

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (5.65)

  iii
X
i

Y
ij qqp )(where

1)()(

1)(










ijij

iji

i
yy

yy
p and

1)()(

1)(1










ijij

iji

i
yy

yy
q

  iii
X
i

Y
ij qqp  )1(1)( since X

i
X
i 11   and

Y
ij

Y
ij)()( 

 ii
X
ii

Y
ij qpp  1)( (5.66)

Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for

break point)(ij . This leads us to the following inequality.

)1()1()(1)(11)(

X

i

Y

iji

X

iii

X

ii

Y

ij TTqqpTp    (5.67)

The proof of the validity of this inequality is provided in Appendix A6.

79

5.2.4 Lower Bound on a Variable Inducing a Lower Bound on another Variable

Consider the situation where X and Y are present in two different nonlinear functions but

are related by the constraint baXY  . In this situation, a lower bound on X induces a

lower bound on Y. Let us assume that we select an X segment with index 1i or higher.

This implies that X cannot be lower than ix . Let ji ybaxjij  :max)(. Then, we

cannot select a Y segment whose index is less than 1)(ij . This gives us the following

valid inequalities.

Figure 5.9: Lower bound on X inducing a lower bound on Y

a) Inequalities relating binary variables

Let 4I be the set of break points in the X pattern such that }1)(1:{4  YnijiI . Then,

if we select an X segment with index 1i or higher, then we must select a Y segment with

index 1)(ij or higher. So, we have the following inequality.

111)(everyfor IiTT X
i

Y
ij   (5.68)

80

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has a lower bound of ix , Y has a lower bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition and consequently a lower bound on the cumulative marginal weight

for break point 1)(ij along the Y partition. Consider a case where we want to choose

 segment 1i for the X variable with weights X
i and X

i1 assigned to break points i

and i+1

 segment 1)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break

points)(ij and 1)(ij .

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (5.69)

  iii
X
i

Y
ij qqp )(where

)(1)(

1)(

ijij

iij

i
yy

yy
p









and

)(1)(

11)(

ijij

iij

i
yy

yy
q










  iii
X
i

Y
ij qqp  )1(1 11)( since in this case X

i
X
i 11   and

Y
ij

Y
ij 1)()(1  

  iii
X
iii

Y
ij qqpqp   11)(1 

  X
iiii

Y
ij qpp 11)()1(   (5.70)

Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1 to

break point 1i , then we have an upper bound on the cumulative weight variable for

break point 1)(ij along the Y partition. This leads us to the following inequality.

  Y
iji

X
ii

X
iii

Y
ij TqTpqp 2)(111)()1(   (5.71)

The proof of the validity of this inequality is provided in Appendix A6.

81

5.3 PROBLEM STRENGTHENING USING BOUNDS

5.3.1 Problem Strengthening Using Variable Bounds

If a nonlinear program contains a nonlinear function such that the function value

has an externally specified upper or lower bound, then there might be domain points that

violate these bounds and therefore can never be present in a feasible solution to the PLA-

based mixed integer program. In such a case, we can remove from the PLA-based mixed

integer program the vertex weight variables corresponding to these infeasible domain

points. Before discussing how to do so, we need to define some notation.

Notation

V set of vertices in the grid used for the piecewise linear approximation of the

nonlinear functions

C set of cells formed by the grid

v, v' index over V

c index over C

V(c) set of vertices for cell c

C(v) set of cells with a vertex at point v

f (.) nonlinear function that is being approximated

L, U exogenous lower and upper bounds on f (.) either explicitly specified in the

nonlinear program or implied by some constraint

vf function value at vertex point v

N(v) set of vertices (excluding v) with which v can form a convex combination, given

by vcV
vCc

\)(
)(




82

min

f Minimum function value across all vertices with which vertex v can form a

convex combination, i.e. ,)(':Min '

min vNff  

max

f Maximum function value across all vertices with which vertex v can form a

convex combination, i.e. ,)(':Max '
max vNff  

v vertex weight variable for vertex v

We now consider two scenarios in which a vertex might have an associated function

value that violates the externally specified bounds for that variable.

1) Vertex with function value less than L

Consider a vertex v such that vf is less than L. It is possible that this vertex could form a

convex combination with another vertex v' belonging to N(v). We can have two cases.

Case 1: All vertices belonging to N(v) have a function value less than L. For example,

the vertex P2 in Figure 5.10 has a function value less than L and all the neighboring

vertices with which it can form a convex combination have also a function value less than

L. Therefore, the convex combination of vertex v with any neighboring vertex cannot be

feasible and so we can remove the vertex weight variable associated with vertex v in the

PLA-based mixed integer program.

Case 2: One or more vertices belonging to N (v) have a function value greater than L.

For example, the vertices P1 and P3 in Figure 5.10 have a function value less than L but

they can form a convex combination with one of their neighbors such the value of this

convex combination is less than L. Therefore, such vertices can have a positive vertex

weight in the MIP solution.

83

Figure 5.10: Bounding vertex weight variables using an external lower bound

However, if a vertex v has a function value less than L but it can form a

combination with a neighboring vertex with a function value less than L then we can

obtain an upper bound on the vertex weight variable associated with v as given by

Equation (5.72).

vv

v
v

ff

Lf






max

max

 (5.72)

Proof: Let us assume that the solution to the PLA-based mixed integer program chooses

vertex v (with weight v) and distributes a weight of (1- v) across other vertices

belonging to N(v). Then, if there is at least one vertex in the set N(v) with a function

value greater than L, then we have the following.

 Lff
vNv

vvvv  
)('

''

84

 Lff
vNv

vvvv  
)('

max

'

 Lff vvvv )1('

max 

vv

v
v

ff

Lf






max

max



2) Vertex with function value greater than U

Consider a vertex v such that vf is greater than U. This vertex could form a convex

combination with another vertex v' belonging to N (v). We can have two cases.

Case 1: All vertices belonging to N (v) have a function value greater than U. Therefore, v

cannot form a feasible convex combination with any vertex in N (v) and we can remove

the vertex weight variable associated with vertex v in the PLA-based mixed integer

program. For example, vertex P2 in Figure 5.11 cannot have a positive vertex weight

because it cannot form a feasible convex combination with any of its neighbors.

Case 2: One or more vertices belonging to N (v) have a function value less than U.

Therefore, v can form a feasible convex combination with some vertex and can have a

positive vertex weight in the MIP solution. For example, vertices P1 and P3 can form a

feasible convex combination with one of their neighbors. In this case, we can have an

upper bound on the vertex weight variable associated with v given by Equation (5.73).

min

min

vv

v
v

ff

fU




 (5.73)

85

Figure 5.11: Bounding vertex weight variables using an external upper bound

Proof: Let us assume that the solution to the PLA-based mixed integer program chooses

vertex v (with weight v) and distributes a weight of (1- v) across other vertices

belonging to N(v). Then, if there is at least one vertex in the set N(v) with a function

value less than U, then we have the following.

Uff
vNv

vvvv  
)('

''

 Uff
vNv

vvvv  
)('

min

'

 Uff vvvv )1(min 

min

min

vv

v
v

ff

fU






86

5.3.2 Problem Strengthening Using Constraint-based Bounds

Consider a situation where we have a non-linear program with (a) an actual or an implied

nonlinear function),,(21 YXXf involving variables 1X , 2X and Y , where Y is a (possible

empty) vector of variables, and (b) a constraint 0),(21 XXh , which can be linear or

nonlinear. We call 0),(21 XXh an implied nonlinear function if it is not present in the

original nonlinear program but has been derived from other constraints in the nonlinear

program. Consider the grid used to create a piecewise linear approximation of f . If

there are vertices in this grid that do not satisfy the constraint 0),(21 XXh , then using a

reasoning similar to that in the previous section, we can come up with a bound on the

vertex weight variables.

We first define some additional notation. Let vh be the value of h at vertex point v

and min
vh be the smallest value of h across all vertices with which vertex v can form a

convex combination, i.e. ,)(':Min '

min vNhh   .

Consider a vertex v such that vh is greater than 0. This vertex could form a

convex combination with another vertex v' belonging to N (v). We can have two cases.

Case 1: All vertices v' belonging to N (v) have an 'vh value greater than 0. Therefore, v

cannot form a feasible convex combination with any vertex in N (v) and we can remove

the vertex weight variable associated with vertex v in the PLA-based mixed integer

program.

Case 2: One or more vertices v' belonging to N (v) have an 'vh value less than 0.

Therefore, v can form a feasible convex combination with some vertex and can have a

positive vertex weight in the MIP solution. In this case, we can have an upper bound on

87

the vertex weight variable associated with v given by Equation (5.74). We could prove

this result by the same reasoning that we used in the proofs in Section 5.3.1.

min

min0

vv

v
v

hh

h






min

min

vv

v
v

hh

h


 (5.74)

88

Chapter 6: Computational Results

6.1 GOALS

The aim of the computations is to demonstrate the effectiveness of the PLA approach and

of the various enhancements in terms of problem reformulation, grid design, and MIP

modeling.

1) Problem reformulation: We show how different reformulations of the nonlinear

program result in different MIP solutions and thereby different local solver solutions.

2) Grid design: We show how the absolute size, the relative size and the shape of the

cells affect the performance of the PLA approach.

3) MIP modeling: We illustrate the effectiveness of three types of MIP modeling

enhancements: model formulation, model reduction and model strengthening.

a. Model formulation-based enhancements involve using different MIP

representations of a piecewise linear function. Depending upon how

adjacency conditions are imposed in a model, we can have four types of

model formulations.

(i) Models with segmentwise non-logarithmic adjacency involve defining

adjacency conditions for each segment along each dimension of a non-linear

function.

(ii) Models with cumulative non-logarithmic adjacency have adjacency

constraints defined for groups of contiguous segments along each dimension

of a nonlinear function.

(iii) Models with logarithmic adjacency use a logarithmic indexing

scheme and corresponding adjacency conditions.

89

(iv) Models with SOS-2-based adjacency enforce adjacency by defining

certain variables as SOS-2.

b. Model reduction techniques seek to decrease the size of the PLA-based mixed

integer program by using variable bounds

c. Model strengthing techniques seek to increase the LP relaxation value of the

mixed integer program by (i) creating stronger models based on the presence

of common variables in different nonlinear functions, and (ii) adding valid

inequalities based on the relationships between different variables that exist

within one or more nonlinear functions. For the former, we have three

different model types: (i) individual grid model in which we have a PLA-

based MIP model for each variable in each non-linear function in the

nonlinear program, (ii) pattern-based model, in which we have an individual

PLA-based MIP model for each pattern and variable combination, and (iii)

combined partition model, in which we have a single PLA-based MIP model

for each variable that appears in some nonlinear function in the non-linear

program. As mentioned earlier, a pattern is a partition induced by a set of

break points along the domain of a function. For the latter, we have model

strengthening based on valid inequalities that arise when the nonlinear

program has constraints that link two or more variables present in one or more

(linear or nonlinear) functions in the nonlinear program.

To demonstrate the effectiveness of the PLA approach and of the enhancements based

on problem reformulation, grid design, and MIP modeling, we use the following sets of

problems.

90

1) 55 Unconstrained problems from Ali et al. (2005)

2) 13 pooling problems from Adhya et al. (1999)

3) 48 constrained nonlinear problems with continuos variables from Global-Lib, an

online repository available at http://www.gamsworld.org/global/globallib.htm.

4) 22 constrained mixed integer nonlinear problems from MINLP-Lib, an online

repository available at http://www.gamsworld.org/minlp/minlplib/minlpstat.htm.

Table 6.1 provides a summary of how these problem sets will be used to accomplish

these goals.

Section Goal Problem Sets

6.2 Introduction -

6.3 Apply the basic PLA method

Ali et al., Global-

Lib, Pooling,

MINLP-Lib

6.4 Effect of increased grid resolution
Ali et al. Global-

Lib, MINLP-Lib

6.5 Effect of non-uniform grids
Ali et al., Global-

Lib

6.6 Effect of grid shape Pooling

6.7 Effect of indexing scheme Pooling

6.8 Comparison with CONOPT
Ali et al., Global-

Lib, Pooling

6.9 Comparing grid-based and pattern-based models MINLP-Lib

6.10 Comparing pattern-based and combined partition models MINLP-Lib

6.11 Effect of problem reduction and strengthening strategies MINLP-Lib

6.12 Comparison with DICOPT MINLP-Lib

Table 6.1: Computational design

91

6.2 INTRODUCTION

We now discuss the process that we used to apply the PLA method to the various

problem sets. This discussion includes (a) the hardware and software specifications of

the environment in which these computations have been performed, (b) the different

metrics that we have used to measure the quality of the PLA-based solutions, and (c) the

guidelines that we have used to reformulate the nonlinear programs into a form that the

PLA method can work on.

6.2.1 Hardware and Software Specifications

For our runs, we used a Windows machine with a RAM of 32 GB and a 3.40 GHz

Intel Core i7-3770 processor. We implemented the PLA algorithm as a C callable library

that (a) reads from a grid specification file the set of variables, linear constraints,

nonlinear functions and grid specifications for each of the nonlinear functions in the

nonlinear program, (b) generates a mixed integer model, (c) solves the mixed integer

program to optimality using Cplex 12.6 C-callable library, and (d) passes the MIP

solution to CONOPT (version 3.15N), which acts as the local nonlinear solver.

The grid specification file contains the following information for each nonlinear

function that exists in the nonlinear program.

1) Grid dimension

2) Grid shape

3) No of segments along each dimension

4) Whether the grid is uniform or non-uniform

5) No. of intervals along each dimension (for non-uniform grids)

6) Error metrics for the shortest path (for non-uniform grids)

92

7) Number of sample points for estimating the arc costs (for non-uniform grids)

To apply the PLA method to mixed integer nonlinear programs, we fix the integer

variables based on the MIP solution thereby creating a continuous nonlinear program that

can be solved using CONOPT.

We used the following specifications for Cplex.

1) Presolve: On

2) MIP emphasis : Balance optimality and feasibility

3) MIP search method: Dynamic search

4) MIP termination criteria: CPU time of 600 seconds or 0% integrality gap

6.2.2 Metrics for Measuring MIP Solution Quality

We use the following metrics for assessing the quality of the MIP solution.

1) Relative MIP-global distance (δ) quantifies how close the MIP solution is to the

globally optimal solution. If
gx and

mx denote the global and MIP solutions, then δ is

defined as follows.






















gmg

gmg

g

g

gm

xx0x

xx0x

0x
x

xx

,if%100

,if%0

if%100
||||

||||



For our computations, a value less than 10
-6

 is treated as zero.

2) Relative MIP approximation error (σ) quantifies the difference between the MIP

objective value as given by the MIP solver and the true function value of the MIP

solution. The true function value of the MIP solution is the solution’s objective

function value in the original non-linear program. If sol
mz denotes the objective value

93

of the MIP as given by the solver and mz denotes the true value of the MIP solution,

then σ is defined as follows.






















m

sol

mm

m

sol

mm

m

m

sol

mm

zzz

zzz

z
z

zz

,0if%100

,0if%0

0if%100
||

||



3) Relative MIP-global gap (μ) indicates how close the true value of the MIP solution is

to the objective value of the global solution. If gz denotes the objective value of the

global solution and mz denotes the true cost of the MIP solution, then μ is defined as

follows.






















gmg

gmg

g

g

gm

zzz

zzz

z
z

zz

,0if%100

,0if%0

0if%100
||

||



4) Fraction of feasible constraints (φ) indicates the fraction of constraints in the original

nonlinear program that are satisfied by the MIP solution. This metric is used only for

constrained optimization problems.

 = No. of constraints satisfied by MIP solution / Total no. of original constraints

5) Fraction of correctly identified integer variables (ψ) indicates the fraction of integer

variables in the original nonlinear program that have the same value in the MIP

solution as in the globally optimal solution to the original nonlinear program. This

metric is used only for mixed integer nonlinear problems.

ψ = No. of correctly identified integer variables / Total no. of integer variables

94

6) Relative local-global gap (η), which indicates how close the objective value of the

final local solution (found by the local nonlinear solver) is to the objective value of

the global solution. If gz denotes the objective value of the global solution and nz

denotes the objective value of the final local (nonlinear) solution, then η is defined as

follows.






















gng

gng

g

g

gn

zzz

zzz

z
z

zz

,0if%100

,0if%0

0if%100
||

||



6.2.3 Reformulation Guidelines

The following guidelines were used for the functional reformulations.

6.2.3.1 Minimizing Number of Grids

In general, we attempted to create reformulations that resulted in fewer grids and

thereby a smaller mixed integer program. However, there are exceptions to this

guideline. For example, if we can only choose from uniform grids, then for a function

such as 2)sin(xxf(x)  , it might be useful to have a single grid for both the terms. But

if we can use non-uniform grids, then it might be better to choose two different non-

uniform grids for the two terms so that we can have an overall better approximation

quality.

We now illustrate the effectiveness of using fewer grids for Neumaier-3 and the

Shekel Foxholes problems.

a) Shekel Foxholes

The Shekel Foxholes problem, shown in Equation (6.1), can have two different

reformulations.

95

 



























30

1

1

2

1
Min

j
n

i

jiij axc

z }...,,1{,100.. nixts i  (6.1)

Reformulation I





30

1

Min
j

juz (6.2)

}30...,,1{,
1

 j
w

u
j

j
 (6.3)

  30,...,1,2)(
1

2  


jxaaycw
n

i

ijijiijj (6.4)

}...,,1{,)(2 nixy ii  (6.5)

Reformulation II





30

1

Min
j

juz (6.6)

}30...,,1{,
1

 j
w

u
j

j
 (6.7)

30,...,1,)(
1

2  


jvcw
n

i

jijj (6.8)

}30...,,1{},...,,1{,)(2  jniaxv jiiji (6.9)

Since Reformulation I can provide the same approximation quality with 30n one-

dimensional grids as that provided by Reformulation II with 3030 n grids, we used

Reformulation I for the Shekel and the Shekel Foxholes problems.

b) Neumaier-3

The Neumaier-3 problem, shown in Equation (6.10), can have two different

reformulations.

   







n

i

ii

n

i

i xxxz
2

1

1

2
1Min (6.10)

96

}..,,1{,.. 22 ninxnts i 

Reformulation I





n

i

i

n

i

i wyz
21

Min (6.11)

  }..,,1{,1
2

nixy ii  (6.12)

}..,,2{,1 nixxw iii   (6.13)

Reformulation II







1

11

2

2
Min

n

n

i

i

n

i

i uuyz (6.14)

  }..,,1{,1
2

nixy ii  (6.15)

}1..,,1{, 22  n
iii ixvu (6.16)

12/  nnn xxu (6.17)

}1,..,2,1{, 21212  
n

iii ixxv (6.18)

Reformulation I has n one-dimensional grids and 1n two-dimensional grids

whereas Reformulation II contains n one-dimensional grids, 12/ n two-dimensional

grids and an additional 12/ n constraints. Since Reformulation II leads to a smaller

mixed integer program, we used it for the Neumaier-3 problem.

6.2.3.2 Applying Periodic Transformations

For problems that involve trigonometric functions defined over an interval whose

length is greater than 2π, we used a trigonometric transformation that significantly

improves the approximation quality at the cost of adding a few integer variables to the

PLA-based mixed integer program. Consider the function y = sin(x) such that

2,  luuxl . Since this function repeats every 2π units, we can set x = 2K π + w,

97

where w is a continuous variable that lies within [0, 2π] and K an integer variable such

that      2/,2/)2(ulK  . We obtain these bounds on K as follows.

1) Lower bound: lx  , or, lwK 2 , or  2/)2(2/)( lwlK

2) Upper bound: ux  , or, uwK 2 , or,  2/2/)(uwuK 

 Since sin(x) = sin(w), we have effectively defined the approximation over the

smaller interval [0, 2π] rather than over the original interval larger [l, u]. This

transformation applies to any periodic function. We used this transformation in problems

such as LM-1, LM2-n5, LM2-n10, Shubert, ZeldaSine10 and ZeldaSine20 and could

effectively solve them using a coarse 8-segment grid.

6.2.3.3 Scaling Variables

In some problems, the range of one function acts as a domain of another function.

Therefore, by reducing the range of values that one function can take, we can reduce the

domain of another function and thereby improve the approximation quality of a grid

without actually increasing the size of the mixed integer program.

We use scaling to reduce the range of some of the functions in the Storn Tchebychev

problem.

321Min pppz  (6.19)

 





n

i

i

in
xu

1

2.1 (6.20)

 










duif

duifdu
p

0

2

1 (6.21)

 





n

i

i

in
xv

1

2.1 (6.22)

 










dvif

dvifdv
p

0

2

2 (6.23)

98
















n

i

i

in

j x
m

j
w

1

1
2

 (6.24)

 
 

















110

11

11
2

2

j

jj

jj

j

wif

wifw

wifw

q (6.25)





m

j

jqp
0

3 (6.26)

  60,661.72,256,256:9For  mdxn i

  100,145.10558,32768,32768:17For  mdxn i

This problem can be reformulated in two ways: one with the original variables

and another with the scaled variables. For Storn Tchebychev-17, the x variable can take

values from 32768 to32768 . As a result, the u, v and w variables can take values over a

very large range, which lead to a very large domain for the square functions. However, if

we scale the problem by dividing the x variables by 32768, then x/32768 takes values

between -1 and 1. As a result, the domains for the square functions become very small,

and we can get a good approximation even with a coarse 8-segment grid. For example, in

the non-scaled problem, u lies between 61047.3  and 61047.3  but in the scaled

problem, u takes values between 17 and17 .

Reformulation I (without scaling)

321Min pppz  (6.27)

 





n

i

i

in
xu

1

2.1 (6.28)

udp '1
 (6.29)

 211 'pp  (6.30)

 





n

i

i

in
xv

1

2.1 (6.31)

99

vdp '2
 (6.32)

 222 'pp  (6.33)

mjx
m

j
w

n

i

i

in

j ,...,0for 1
2

1















 (6.34)

mjwr jj ,...,0for 1'  (6.35)

  mjrr jj ,...,0for '
2

 (6.36)

mjws jj ,...,0for 1'  (6.37)

  mjss jj ,...,0for '
2

 (6.38)

mjsrq jjj ,...,0for  (6.39)





m

j

jqp
0

3 (6.40)

Reformulation II (with scaling)

321'Min pppz  (6.41)

 













n

i

iin

F

x
u

1

2.1 (6.42)

u
F

d
p '1 (6.43)

 211 'pp  (6.44)

 













n

i

iin

F

x
v

1

2.1 (6.45)

v
F

d
p '2 (6.46)

 222 'pp  (6.47)

mj
F

x

m

j
w

n

i

i

in

j ,...,0for 1
2

1























 (6.48)

mj
F

wr jj ,...,0for
1

'  (6.49)

  mjrr jj ,...,0for '
2

 (6.50)

100

mj
F

ws jj ,...,0for
1

'  (6.51)

  mjss jj ,...,0for '
2

 (6.52)

mjsrq jjj ,...,0for  (6.53)





m

j

jqp
0

3 (6.54)

6.3 APPLYING THE BASIC PLA METHOD

We now discuss the results that we obtained by applying a uniform 8-segment

rectangular grid with a pattern-based model to the various test problems. We call these

results baseline results since they depict the performance of the basic method without any

enhancements in terms of grid design or MIP-modeling.

6.3.1 Baseline Results for Ali et al. Problems

We first discuss the baseline results for the Ali et al. problems which are a set of

unconstrained nonlinear problems designed to have multiple localy optimal solutions. 10

of the 55 problems involve functions with discontinuous derivatives whereas the rest

involve functions with continuous derivatives. The distribution of the number of

variables in the problems is as follows: 24 problems with 2–3 variables, 13 problems with

4–5 variables, 16 problems with 6–10 variables and two problems with 11–20 variables.

Further, 25 problems involve trigonometric functions and 13 problems involve the

exponential function. For each problem, we used the best reformulation that we could

create. Refer to Appendix A7 for more details.

101

Problem

NLP

Size

(cont)

MIP Size

(cont/bin/constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Rel. MIP

Global

Obj. Gap

μ

Rel. Local

Global

Obj. Gap

η

Ackleys 10 143/96/289 0 0% 0% 0% 0%

AluffiPentini 2 23/16/47 0 100% 0% 100% 0%

BeckerLago 2 23/16/47 0 >100% 0% 0% 0%

Bohachevsky1 2 23/16/47 0 0% 0% 0% 0%

Bohachevsky2 2 103/16/64 0 0% 0% 0% 0%

Branin 2 103/16/64 0 7% 0% >100% 0%

Camel3 2 109/16/64 0 0% 0% 0% 0%

Camel6 2 103/16/64 0 >100% 0% >100% 0%

CosMix2 2 23/16/47 0 0% 0% 0% 0%

CosMix4 4 45/32/93 0 0% 0% 0% 0%

Dekkers Aarts 2 103/16/64 0 0% 0% 0% 0%

Easom 2 103/16/64 0 20% 0% 72% 0%

EMichalewicz 5 61/40/121 0 37% 16% 47% 25%

Expo 10 122/88/255 0 0% 0% 0% 0%

GoldPrice 2 103/16/64 0 0% 0% 0% 0%

Griewank 10 922/144/579 0 0% 0% 0% 0%

Gulf 3 761/24/95 0 45% 0% >100% 0%

Hartman3 3 87/56/175 12 21% 88% 34% 0%

Hartman6 6 129/80/253 0 24% 49% 20% 0%

Helical 3 114/24/87 0 >100% 0% >100% 0%

Hosaki 2 103/16/64 0 8% 0% 5% 0%

Kowalik 4 6603/32/126 0 45% 0% 63% 0%

LM1 3 230/48/176 0 0% >100% 0% 0%

LM2n5 5 528/88/345 209 27% 14% >100% 0%

LM2n10 10 1043/168/665 5129 26% 8% >100% >100%

Table 6.2: Baseline results for Ali et al. problems

102

Problem

NLP

Size

(cont)

MIP Size

(cont/bin/constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Rel. MIP

Global

Obj. Gap

μ

Rel. Local

Global

Obj. Gap

η

McCormic 2 103/16/64 0 16% 0% 6% 0%

MeyerRoth 3 761/24/95 0 >100% 0% >100% >100%

MieleCantrell 4 288/32/147 0 0% 0% 0% 0%

ModLangerman 10 206/120/391 0 7% >100% 99% 72%

ModRosenbrock 2 103/16/64 0 100% 0% >100% 0%

MultiGauss 2 78/56/167 0 100% >100% 1% 0%

Neumaier2 4 97/64/197 0 25% 24% >100% 0%

Neumaier3 10 561/112/418 384 48% >100% >100% 0%

OddSquare 10 214/116/336 5120 >100% >100% >100% 0%

Paviani 10 132/88/265 0 4% 4% 6% 0%

Periodic 2 103/16/64 0 0% 0% 0% 0%

Powell 4 288/32/147 0 0% 0% 0% 0%

Price 9 60682/128/750 1207 >100% 25% >100% >100%

Rastrigin 10 111/80/231 0 0% 0% 0% 0%

Rosenbrock 10 848/80/401 0 100% >100% >100% 0%

Salomon 5 77/56/163 0 0% 0% 0% 0%

Schaffer1 2 103/16/64 0 0% 0% 0% 0%

Schaffer2 2 103/16/64 0 0% 0% 0% 0%

Schwefel 2 111/80/231 0 11% 0% 56% 0%

Shekel5 10 100/72/213 0 6% >100% 70% 0%

Shekel7 4 122/88/261 0 6% >100% 69% 0%

Shekel10 4 155/112/333 0 6% >100% 68% 0%

ShekelFox5 4 386/280/836 28225 12% >100% 92% 0%

ShekelFox10 5 441/320/951 35002 11% >100% 96% 0%

Shubert 10 225/96/306 2238 >100% 8% 0.1% 0%

Table 6.2 contd.: Baseline results for Ali et al. problems

103

Problem

NLP

Size

(cont)

MIP Size

(cont/bin/constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Rel. MIP

Global

Obj. Gap

μ

Rel. Local

Global

Obj. Gap

η

StChebychev9 10 1501/992/3104 0 1% 0% 0% 0%

StChebychev17 20 2469/1632/5104 0 7% >100% 0% 0%

Wood 9 287/32/146 0 100% 0% >100% 0%

ZeldaSine10 17 1721/208/915 1199 6% 2% 32% 0%

ZeldaSine20 4 3641/448/1955 8701 6% 4% 40% 0%

Table 6.2 contd.: Baseline results for Ali et al. problems

1. For all except five problems, the basic PLA method is able to provide a starting point

that lies in the basin of attraction of the global solution. The problems for which the

PLA method does not lead to the global solution are: EMichalewicz, LM2N10,

MeyerRoth, ModLangerman, and Price.

2. For problems such as LM1, the periodic function transformation gives a MIP solution

that is actually the global solution. This is the not the case when we use a

conventional reformulation without the periodic transformation.

3. If we attempt problems such as LM2n5 and LM2n10 without the periodic

transformation, the quality of the MIP solution, as shown in Table 6.3, is relatively

poor. For example, without a periodic transformation, the relative MIP global

distance increases from 14% to 25% for LM2n5 and from 8% to 25% for LM2n10.

4. For problems such as StChebychev9 and StChebychev17, scaling the variables leads

to a MIP solution that is also the global solution. As shown in Table 6.3, non-scaled

reformulations provide MIP solutions that have a very poor quality in terms of the

104

relative MIP approximation error, which is the difference between the objective value

of the MIP solution and the true cost of the MIP solution. This is probably due to the

squared terms in the objective function which magnifies the approximation error

especially when the range of the variables is large as it is in the non-scaled

reformulation.

5. For oddSquare, the quality of the MIP solution is not good probably because of the

shape of the function in which the contour lines resemble a pond with rectangular

ripples.

6. For ShekelFox problems, the function landscape is such that there are a large number

of depressions or troughs, one of which is the global minimum. And the MIP solution

yielded by a coarse grid happens to be far from the global minimum.

Problem

NLP

Size

(cont)

MIP Size

(cont/bin/constr)

MIP

nodes

Rel.MIP

Global

Distance

δ

Rel.

MIP Approx.

error|

σ

Abs MIP

Global

Obj. Gap

Abs.

Local

Global

Obj. Gap

LM2n5 5 381/40/189 0 25.00% 0% 0.1 0.021

LM2n10 10 841/80/394 0 25.00% 0% 0.1469 0

StChebychev9 9 1501/992/3104 0 0.60% 1.43 x 10
5
 0.0009 0

StChebychev17 17 2469/1632/5104 0 29.88% 1.91 x 10
4
 49.8446 0

Table 6.3: Results for poor reformulations of selected Ali et al. problems

7. For problems such as Hartman-3 and Hartman-6, we have a hierarchy of functions

such that the range of the functions at a lower level (say Level I) affects the domain

of the function at a higher level (say Level II). Consider the Hartman-3 problem

given by Equation (6.55).

105

  
 
















4

1

3

1

2
expMin

i j

ijjiji pxacz (6.55)

}3,2,1{,10..  jxts j , constants aij, pij and ci as in Table 1.

i ci
aij pij

j=1 j=2 j=3 j=1 j=2 j=3

1 1 3 10 30 0.3689 0.117 0.2673

2 1.2 0.1 10 35 0.4699 0.4387 0.747

3 3 3 10 30 0.1091 0.8732 0.5547

4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table 6.4: Data for Hartman 3

We reformulate this problem as follows.





4

1

Min
i

iiucz (6.56)

s.t. }4,3,2,1{,
3

1




iyw
j

iji (6.57)

  }3,2,1{},4,3,2,1{,
2

 jipxay ijjijij (6.58)

  }4,3,2,1{,exp  iwu ii (6.59)

The functions defined by Equations (6.58) are Level I functions whereas the

functions defined by Equation (6.59) are Level II functions. We found that in the MIP

solution for Hartman-3, the MIP solver always chose a grid point for the Level 1

functions. This phenomenon is also observed in other problems such as Hartman-6 and

Odd-Square in which there is a hierarchy of grids and there are no constraints to prevent

the dependent variables from taking certain values. The advantage of this phenomeon is

106

that we can need not have any adjacency conditions from the Level-I grids and thereby

decrease the size of the overall mixed integer program.

8. The solution time for the price problem is quite high (57 seconds) perhaps

because of the size of the MIP, which follows from the presence of nine four-dimensional

in the problem. We will later discuss how we can solve this problem by using a mix of

high and low-dimensional grids such that the low-dimensional grids have a high-

resolution and the high dimensional grids have a low resolution.

107

6.3.2 Baseline Results for Pooling Problems

We now show how the basic PLA method performs on pooling problems which

contain the bilinear function in the constraints but have a linear objective function.

Problem

NLP

Size

(var/con

str)

MIP Size

(cont/bin/constr)

MIP

nodes

MIP

time

(CPU

s)

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel. Local

Global

Obj. Gap

η

adhya1 21/40 2789/ 128/ 1022 3954 4.098 6.60% 31.72% 29/40 87.50%

adhya2 25/60 2809/ 128/ 1042 4235 4.748 8.32% 32.99% 45/60 0.00%

adhya3 38/66 2846/ 128/ 1056 4320 7.645 111.65% 36.65% 44/66 18.60%

adhya4 26/48 2802/ 128/ 1038 193 1.159 94.23% 43.48% 40/48 0.00%

foulds2 10/6 1000/ 146/ 686 0 0.061 18.34% >100% 11/12 0.00%

foulds3 41/28 11888/ 1088/ 5534 0 2.063 56.96% 9.08% 35/40 0.00%

foulds4 26/12 11888/ 1088/ 5534 0 2.198 69.32% 9.37% 33/40 0.00%

foulds5 168/40 5960/ 544/ 2810 55 2.56 75.63% 9.04% 28/36 0.00%

bental4 168/40 259/ 41/ 195 0 0.124 0.00% >100% 6/6 0.00%

bental5 100/36 2929/ 210/ 1320 0 0.564 100.00% 0.00% 23/28 0.00%

haverly1 9/6 258/ 41/ 193 0 0.156 0.00% >100% 5/6 0.00%

haverly2 9/6 258/ 41/ 193 0 0.165 >100% 0% 6/6 0%

haverly3 9/6 258/ 41/ 193 0 0.039 >100% 0% 6/6 0%

Table 6.5: Baseline results for pooling problems

 For 9 out of the 11 pooling problems, the MIP solution led CONOPT to obtain the

globally optimal solution. The two pooling problems that are currently unsolved are

adhya-1 and adhya-2.

108

6.3.3 Baseline Results for Global-Lib Problems

We now show how the basic PLA method performs on the Global-Lib problems

which contain a wide variety of one and higher dimensional nonlinear functions such as

the power function, the multiplicative inverse function, the exponential function, the

logarithmic function and the bilinear function.

Problem

NLP

Size

(cont/

constr)

MIP Size

(cont/bin/

constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel. Local

Global

Obj. Gap

η

ex14_1_1 4/5 108/16/72 0 0% 100% 3/5 0%

ex14_1_2 7/10 383/40/199 0 0% 20% 5/10 0%

ex14_1_3 4/5 106/16/70 0 0% 29% 3/5 0%

ex14_1_5 7/7 59102/40/163 0 0% 22% 2/7 0%

ex14_1_6 10/16 336/64/257 0 0% 96% 9/16 0%

ex14_1_8 4/5 105/16/69 0 0% 4% 3/5 0%

ex14_1_9 3/3 14/8/27 0 0% 67% 2/3 0%

ex14_2_1 6/8 6636/48/398 10 0% 0% 5/8 0%

ex14_2_2 5/6 454/32/192 0 0% 0% 4/6 0%

ex14_2_3 7/10 428/72/296 0 0% 3% 6/10 0%

ex14_2_4 6/8 2787/80/435 0 0% 0% 5/8 0%

ex14_2_5 5/6 526/24/188 0 0% 0% 4/6 0%

ex14_2_6 6/8 636/104/429 117 0% 3% 5/8 0%

ex14_2_7 7/10 7394/128/576 0 0% 32% 6/10 0%

ex14_2_8 5/6 511/72/314 0 0% 50% 4/6 0%

ex14_2_9 5/6 690/24/226 23 0% 0% 4/6 0%

Table 6.6: Baseline results for Global-Lib problems

109

Problem

NLP

Size

(cont/

constr)

MIP Size

(cont/bin/

constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel. Local

Global

Obj. Gap

η

ex2_1_1 6/2 57/40/118 0 0% 0% 1/2 0%

ex2_1_10 21/11 223/160/473 0 9% 0% 10/11 0%

ex2_1_2 7/3 58/40/119 0 0% 0% 2/3 0%

ex2_1_3 14/10 55/32/103 0 0% 0% 9/10 0%

ex2_1_4 7/6 17/8/29 0 0% 0% 6/6 0%

ex2_1_5 11/12 82/56/174 0 0% 0% 10/12 0%

ex2_1_6 11/6 112/80/237 0 0% 0% 5/6 0%

ex2_1_7 21/11 222/160/472 0 5% 22% 10/11 1%

ex2_1_9 11/2 1257/152/676 10328 12% 37% 1/2 0%

ex3_1_1 9/7 491/64/278 0 0% 27% 4/7 0%

ex3_1_2 6/7 626/40/251 4 >100% 0% 4/7 0%

ex3_1_3 7/7 67/48/145 0 88% 0% 6/7 0%

ex3_1_4 4/4 307/48/196 0 0% >100% 4/4 0%

ex4_1_1 2/1 12/8/24 0 0% 69% 0/1 0%

ex4_1_3 2/1 12/8/24 0 0% 1% 0/1 0%

ex4_1_4 2/1 12/8/24 0 0% 100% 1/1 0%

ex4_1_6 2/1 12/8/24 0 0% 17% 0/1 0%

ex4_1_7 2/1 12/8/24 0 0% 25% 0/1 0%

ex4_1_8 3/2 23/16/48 0 0% 7% 1/2 0%

ex4_1_9 3/3 15/8/28 0 0% 2% 2/3 0%

ex5_2_2_case1 10/7 201/24/111 0 0% 62% 4/7 0%

ex5_2_2_case2 10/7 201/24/111 0 0% 44% 3/7 0%

ex5_2_2_case3 10/7 201/24/111 0 0% 49% 5/7 0%

ex5_2_4 8/7 567/56/279 0 2% 6% 4/7 0%

ex5_3_2 23/17 1097/80/465 0 0% 7% 8/17 0%

Table 6.6 contd.: Baseline results for Global-Lib problems

110

Problem

NLP

Size

(cont/

constr)

MIP Size

(cont/bin/

constr)

MIP

nodes

Rel.

MIP

Approx.

error|

σ

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel. Local

Global

Obj. Gap

η

ex5_4_2 9/7 491/64/278 0 0% 36% 3/7 0%

ex5_4_3 17/14 781/96/430 0 0% 0% 13/14 0%

ex6_1_2 5/4 371/32/170 0 >100% 79% 1/4 >100%

ex6_1_4 7/5 4444/48/308 21 >100% 55% 1/5 0%

ex6_2_14 5/3 1029/32/323 0 0% 0% 2/3 0%

ex7_2_2 7/6 391/48/216 0 0% >100% 1/6 0%

ex8_3_1 116/113
16969/840/

6053
14060 0% 89% 11/78 0%

Table 6.6 contd.: Baseline results for Global-Lib problems

 46 out of 48 problems could be solved to global optimality using the PLA approach.

In Section 6.8, we discuss the performance of CONOPT on the Ali et al. and the

Global-Lib problems using a default starting point in which every variable has a value

of zero.

 ex2_1_7 and ex8_3_1, which could not be solved to global optimality, are solved

using a finer grid. Refer to Section 6.4.2 for more details.

 For all problems except ex14_1_5, ex14_2_1, and ex2_1_9, the MIP was solved

within 1 second. For these three problems, the Cplex took between two to three

seconds to solve the PLA-based MIP.

 For most of the problems, the relative MIP approximation error is zero. This implies

that the MIP solution occurs at a gid point in spite of the presence of constraints.

111

6.3.4 Baseline Results for MINLP-Lib Problems

We now discuss the results when we apply the PLA method to mixed integer

nonlinear problems which are the hardest problems in our set. As part of the solution

process, we fix the integer variables in the MINLP to their PLA solution values and then

use CONOPT to solve the resulting continuous nonlinear program.

Problem

NLP Size

(cont/int/const

r)

MIP

Size

(cont/bin

/ constr)

MIP

nodes

MIP

time

(CPU

sec)

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Fraction

of

correctly

identified

integer

variables

ψ

Rel.

Local

Global

Obj.

Gap

η

ex1221 3/3/6 19/52 0 0.0 61% 3/6 2/3 3%

ex1222 3/1/4 9/28 0 0.0 0% 3/4 1/1 0%

ex1223 8/4/14 60/180 0 0.1 47% 13/14 3/4 27%

ex1223a 4/4/10 28/82 0 0.0 42% 9/10 3/4 27%

ex1223b 4/4/10 60/176 0 0.1 42% 9/10 3/4 27%

ex1224 4/8/8 32/105 0 0.1 3% 5/8 8/8 0%

ex1225 3/6/11 22/74 0 0.0 0% 11/11 6/6 0%

ex1226 3/3/6 19/71 0 0.1 0% 5/6 3/3 0%

ex1233 41/12/65 236/981 0 1.7 12% 56/65 12/12 0%

ex1244 73/23/130 397/1705 86 2.6 59% 122/130 23/23 0%

ex1252 25/15/44 255/1112 9570 5.6 15% 35/44 10/15 2%

ex1252a 16/9/35 243/1103 8325 5.1 93% 28/35 2/9 9%

ex1263 21/72/56 232/800 358 0.6 26% 56/56 62/72 0%

ex1263a 1/24/36 164/780 2579 1.7 65% 34/36 6/24 9%

ex1264 21/68/56 228/800 734 1.4 54% 55/56 57/68 0%

ex1264a 1/24/36 164/780 676 0.8 222% 32/36 5/24 3%

Table 6.7: Baseline results for MINLP-Lib problems

112

Problem

NLP Size

(cont/int/const

r)

MIP

Size

(cont/bin

/ constr)

MIP

nodes

MIP

time

(CPU

sec)

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Fraction

of

correctly

identified

integer

variables

ψ

Rel.

Local

Global

Obj.

Gap

η

ex1265 31/100/75 340/1210 558 1.2 0% 74/75 100/100 0%

ex1265a 1/35/45 245/1180 9287 6.7 266% 44/45 12/35 0%

ex1266 43/138/96 474/1704 0 0.5 35% 96/96 131/138 0%

ex1266a 1/48/54 342/1662 3485 6.1 314% 54/54 11/48 0%

gasnet 81/10/70 598/2816 15323 601.5 11% 32/70 5/10 2%

synheat 45/12/65 236/984 0 1.7 10% 61/65 12/12 0%

Table 6.7 contd.: Baseline results for MINLP-Lib problems

1. For 13 out of 22 problems, the PLA approach could lead to the globally optimal

solution.

2. The problems for which the local solution was not the global solution (i.e., ex1221,

ex1223, ex1223a, ex1223b, ex1252, ex1252a, ex1263a, ex1264a, and gasnet) become

candidates for applying more sophisticated techniques.

3. In Section 6.4.3, we discuss how to solve ex1221, ex1223, ex1223a, ex1223b,

ex1252, and ex1252a using a finer grid. In Section 6.11, we discuss how to solve

gasnet. The PLA method could not solve ex1263a and ex1264a.

6.4 EFFECT OF INCREASED GRID RESOLUTION

For those problems for which the MIP solution quality as measured by the MIP-

global objective difference was high, we applied the PLA method with high-resolution

grids and found that for many problems, the solution quality improves significantly as the

grid becomes finer.

113

6.4.1 Effect of Increased Grid Resolution on Ali et al. Problems

We first discuss the effect of applying high resolution grids to the Ali et al.

problems. Here we use another metric which we call the absolute MIP-Global Objective

gap which is the absolute difference between the objective value of the global solution

and the true cost of the MIP solution. This metric is more useful than the relative MIP-

Global Objective gap for problems that have a global objective value of zero since it

helps us observe how for these problems, the true cost of the MIP solution approaches the

objective value of the global solution as we increase the grid resolution.

Problem
No. of

Segments
MIP nodes

Rel.MIPGlobal

Distance

δ

Rel.

MIP

Approx.

error|

σ

Abs

MIP-

Global

Obj. gap

Rel. MIP

Global

Obj. Gap

μ

AluffiPentini 32 0 19.42% 0.00% 0.0565 16.03%

AluffiPentini 64 0 10.43% 0.00% 0.0123 3.49%

AluffiPentini 128 0 4.50% 0.00% 0.0026 0.75%

Camel6 32 0 48.24% 0.00% 0.5155 49.97%

Camel6 64 0 2.10% 0.00% 0.0012 0.11%

Camel6 128 0 2.10% 0.00% 0.0012 0.11%

EMichalewicz 32 0 28.53% 0.00% 0.4705 10.04%

EMichalewicz 64 0 19.84% 0.00% 0.1749 3.73%

EMichalewicz 128 0 0.53% 0.00% 0.0402 0.86%

Gulf 32 0 16.84% 0.00% 0.0023 100%

Gulf 64 0 5.50% 0.00% 0.0006 100%

Helical 32 0 25.00% 0.00% 6.25 100%

Helical 64 0 6.25% 0.00% 0.3906 100%

Helical 128 0 6.25% 0.00% 0.3906 100%

Table 6.8: Effect of increased grid resolution on Ali et al. problems

114

Problem
No. of

Segments
MIP nodes

Rel.MIPGlobal

Distance

δ

Rel.

MIP

Approx.

error|

σ

Abs

MIP-

Global

Obj. gap

Rel. MIP

Global

Obj. Gap

μ

MeyerRoth 32 0 9.74% 0.00% 0.0001 125.64%

MeyerRoth 64 0 4.20% 0.00% 0 42.85%

ModLangerman 32 0 1.55% 27.20% 0.2096 21.72%

ModLangerman 64 0 0.54% 2.94% 0.0285 2.96%

ModRosenbrock 32 0 6.25% 0.00% 0.441 100%

ModRosenbrock 64 0 128.71% 0.00% 0.1006 100%

ModRosenbrock 128 0 122.72% 0.00% 0.0103 100%

Neumaier2 32 0 20.34% 4.79% 12.1327 100%

Neumaier2 64 0 3.59% 4.20% 4.6847 100%

Neumaier2 128 0 0.42% 2.29% 0.4459 100%

Neumaier3 32 4072 9.27% 21.63% 29.375 13.99%

Neumaier3 64 17188 3.06% 3.60% 6.4258 3.06%

Price 6–16 1367 114.37% 18.33% 136264 0%

Rosenbrock 32 0 100.00% 800.00% 1 100%

Rosenbrock 64 0 6.25% 9.00% 0.3472 100%

Rosenbrock 128 0 6.25% 9.00% 0.3472 100%

Shekel5 32 0 1.56% 14.99% 1.3469 13.27%

Shekel5 64 0 1.56% 14.60% 1.3469 13.27%

Shekel5 128 363 0.39% 0.88% 0.0978 0.96%

Shekel7 32 0 7.95% 335.86% 7.8025 75.00%

Shekel7 64 253 1.78% 18.80% 1.6815 16.16%

Shekel7 128 0 0.39% 0.90% 0.098 0.94%

Shekel10 32 194 7.95% 319.67% 7.8033 74.06%

Shekel10 64 1001 1.78% 18.52% 1.6802 15.95%

Shekel10 128 2041 0.39% 0.89% 0.0985 0.93%

Table 6.8 contd.: Effect of increased grid resolution on Ali et al. problems

115

Problem
No. of

Segments
MIP nodes

Rel.MIPGlobal

Distance

δ

Rel.

MIP

Approx.

error|

σ

Abs

MIP-

Global

Obj. gap

Rel. MIP

Global

Obj. Gap

μ

Wood 32 0 84.09% 0.00% 10.3594 100%

Wood 64 0 6.25% 0.00% 0.8164 100%

Wood 128 0 25.48% 0.00% 0.533 100%

ZeldaSine10 16 182 3.00% 1.22% 0.4432 12.66%

ZeldaSine20 16 8896 3.13% 1.00% 0.7689 21.97%

Table 6.8 contd.: Effect of increased grid resolution on Ali et al. problems

1) For problems such as AluffiPentini, Camel6, EMichalewicz, Neumaier3, Shekel5,

Shekel7, and Shekel10, 128-segment grids can provide MIP solutions that have a cost

that is within 1% of the objective value of the global solution.

2) Out of the five unsolved problems, two problems (MeyerRoth, and

ModLangerman) can be solved to global optimality by using finer grids.

3) If a problem contains both low-dimensional and high-dimensional functions, then

we can use a high-resolution grid for the low-dimensional functions and low-resolution

grids for the high-dimensional functions. We employ this method in solving the price

problem, which is expressed as follows

 



4

1

222Min
k

kkz  (6.60)

245857315321 }1)]*001.0**001.0*({exp[)1(xggxgxggxxxx kkkkkk 

4,...,1for k (6.61)

kkkkkkk gxgxgxgggxxxx 4159473216421 }1)]*001.0**001.0*({exp[)1(

116

 4,...,1for k (6.62)

4231 xxxx  (6.63)

Reformulation

 



4

1

Min
k

kk qptz (6.64)

321)1(xxxu  (6.65)

421)1(xxxv  (6.66)

4,...,1for*001.0**001.0* 85731  kxgxggr kkkk (6.67)

4,...,1for*001.0**001.0* 947321  kxgxgggs kkkkk (6.68)

  4,...,1for}1]{exp[
2

2455  kxggrxup kkkk (6.69)

  4,...,1for}1]{exp[
2

4156  kgxgsxvq kkkk (6.70)

2

4231)(xxxxt  (6.71)

We used three-dimensional grids for Equations (6.65) and (6.67), and four-

dimensional grids for linearizing Equations (6.68 – 6.71). Further, by using 6 segments

per dimension for the four-dimensional grids and 16-segments per dimension for the

three-dimensional grids, we are able to get a MIP solution that lies in the basin of

attraction of the global solution.

4) In Section 6.5, we discuss how we solved the two unsolved Ali et al. problems

(EMichalewicz and LM2n10) using non-uniform grids.

6.4.2 Effect of Increased Grid Resolution on Global-Lib Problems

We now discuss the effect of applying high resolution grids to Global-Lib

problems.

117

Problem
No. of

Segments

MIP Size

(cont/bin/

constr)

MIP

time

(CPU

sec)

MIP

nodes

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel.

Local

Global

Obj. Gap

η

ex14_1_3 8 106/16/70 0.031 0 29.37% 3/5 0.00%

ex14_1_3 16 330/32/134 0.037 0 11.78% 3/5 0.00%

ex14_2_7 8 7394/128/576 0.655 0 32.14% 6/10 0.00%

ex14_2_7 16
86146/256/11

20

281.3

6
426 0.45% 6/10 0.00%

ex14_2_8 8 511/72/314 0.047 0 50.32% 4/6 0.00%

ex14_2_8 16 1623/144/610 0.234 4 1.71% 4/6 0.00%

ex2_1_7 8 222/160/472 0.179 0 21.70% 10/11 0.76%

ex2_1_7 16 382/320/952 0.125 0 0.00% 7/11 0.00%

ex2_1_9 8 1257/152/676 2.447 10328 37.34% 1/2 0.00%

ex2_1_9 16
4113/304/134

0
9.227 21272 14.10% 1/2 0.00%

ex3_1_1 8 491/64/278 0.108 0 26.84% 4/7 0.00%

ex3_1_1 16 1595/128/550 0.468 618 4.13% 4/7 0.00%

ex4_1_1 8 12/8/24 0.001 0 68.52% 0/1 0.00%

ex4_1_1 16 20/16/48 0 0 0.32% 0/1 0.00%

ex4_1_6 8 12/8/24 0.001 0 16.67% 0/1 0.00%

ex4_1_6 16 20/16/48 0 0 4.17% 0/1 0.00%

ex4_1_7 8 12/8/24 0.003 0 25.00% 0/1 0.00%

ex4_1_7 16 20/16/48 0 0 25.00% 0/1 0.00%

ex5_2_2_case1 8 201/24/111 0.007 0 62.44% 4/7 0.00%

ex5_2_2_case1 16 641/48/215 0.079 0 43.60% 3/7 0.00%

Table 6.9: Effect of increased grid resolution on Global-Lib problems

118

Problem
No. of

Segments

MIP Size

(cont/bin/

constr)

MIP

time

(CPU

sec)

MIP

nodes

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel.

Local

Global

Obj. Gap

η

ex5_2_2_case2 8 201/24/111 0.149 0 44.41% 3/7 0.00%

ex5_2_2_case2 16 641/48/215 0.031 0 24.35% 3/7 0.00%

ex5_2_2_case3 8 201/24/111 0.009 0 49.12% 5/7 0.00%

ex5_2_2_case3 16 641/48/215 0.25 0 32.57% 4/7 0.00%

ex5_4_2 8 491/64/278 0.188 0 35.83% 3/7 0.00%

ex5_4_2 16 1595/128/550 0.406 485 6.18% 4/7 0.00%

ex6_1_2 8 371/32/170 0.007 0 79.16% 1/4 100.01%

ex6_1_2 16 1235/64/330 0.328 61 20.02% 1/4 0.00%

ex6_1_4 8 4444/48/308 0.313 21 55.18% 1/5 0.00%

ex6_1_4 16 29596/96/596 2.826 101 0.96% 1/5 0.00%

Table 6.9 contd.: Effect of increased grid resolution on Global-Lib problems

1) The two Global-Lib problems (ex2_1_7 and ex6_1_2) which could not be solved

using the basic PLA method could be solved to global optimality by increasing the

grid resolution.

2) The relative MIP-Global distance metric also improves as we increase the grid

granularity. However, in most cases, the fraction of feasible constraints does not

improve with grid resolution.

6.4.3 Effect of Increased Grid Resolution on MINLP-Lib Problems

We now discuss the effect of applying the PLA method with high resolution grids

to MINLP-Lib problems.

119

Problem
No. of

Segments

MIP Size

(cont/bin/constr)

MIP

nodes

MIP

time

(CPU

sec)

Rel.MIP

Global

Distance

δ

Fraction of

feasible

constraints

φ

Rel.

Local

Global

Obj.

Gap

η

ex1221 8 23/19/52 0 0.0 61% 3/6 3%

 16 39/35/100 0 0.0 2% 4/6 0%

ex1223 8 83/60/180 0 0.1 47% 13/14 27%

 16 139/116/348 0 0.0 1% 13/14 0%

ex1223a 8 37/28/82 0 0.0 42% 9/10 27%

 16 61/52/154 0 0.0 2% 9/10 0%

ex1223b 8 79/60/176 0 0.1 42% 9/10 27%

 16 135/116/344 0 0.0 2% 9/10 0%

ex1252 8 21223/255/1112 9570 5.6 15% 35/44 2%

 16 255463/495/2168 10058 17.4 13% 33/44 0%

ex1252a 8 21220/243/1103 8325 5.1 93% 28/35 9%

 16 255460/483/2159 21220 31.0 69% 25/35 0%

ex1263a 8 1513/164/780 2579 1.7 65% 34/36 9%

 16 5001/324/1516 8940 33.7 60% 36/36 2%

ex1264a 8 1513/164/780 676 0.8 222% 32/36 3%

 16 5001/324/1516 1271 4.0 188% 32/36 3%

Table 6.10: Effect of increased grid resolution on MINLP-Lib problems

1) Of the nine MINLP problems that could not be solved by uniform 8-segment grids,

six could be solved by increasing the grid resolution.

120

2) In many cases, the relative MIP-global distance improves as the grid becomes refined.

However, the fraction of feasible constraints generally remains the same.

3) We do not show gasnet in the table above since with a 16-segment grid, Cplex could

not find any feasible MIP solution within 600 seconds. In Section 6.11, we show how

to solve gasnet using a combination of problem reduction technqiues and constraint-

based valid inequalities.

4) Two problems (ex1263a and ex1264a) which could not to be solved to global

optimality contain product functions of pure (non-binary) integers. These problems

are the only MINLP problems that we could not solve using the PLA approach.

adhya1 and adhya3 are the other two problems that we could not solve using the PLA

approach.

6.5 EFFECT OF NON-UNIFORM GRIDS

Some problems for which we need high-resolution uniform grids to get good quality

MIP solutions can be solved quite effectively by low resolution non-uniform grids.

These include Ali et al. problems Epistatic Michalewicz, LM2n5 and LM2n10, and

Global-Lib problem ex_8_3_1. The Ali et al. problems involve trigonometric functions,

whereas the ex_8_3_1 involves a two-dimensional exponential function used in the

design of chemical reactor design. For Epistatic Michalewicz, we require uniform one-

dimensional grids with 128 segments before we can get an MIP solution that lies in the

basin of attraction of the global solution. However, we can solve this problem with only

8 segments if we use a non-uniform grid that creates these 8 segments by aggregating 128

intervals. As shown in Equation (6.72), the nonlinear program for this problem contains

the function
202

111))/)(sin(sin()(yyyf  . The shape of this function is shown in Figure

121

6.1, which also shows the position of the break points obtained from the shortest path-

based method. As we can see in the figure, the grid resolution is finer only in those

regions where the curvature of the function is high, which results in good approximation

quality with fewer segments.















 






nix

nixx

nixx

yiyyz

i

ii

ii

i

n

i

m

ii

,

...,,4,2),sin()cos(

..,,3,1),sin()cos(

where))/)(sin(sin(Min 1

1

1

22 





 10,6/},...,,2,1{,0  mnixi  (6.72)

Figure 6.1: Non-uniform segments in Epistatic Michalewicz

Similarly, for LM2n10, we need a rectangular grid with 12 segments along each

dimension before we can get into the basin of attraction of the global solution. If we use

122

a Crisscross grid with the same resolution (144 cells created by 6 segments per

dimension), then the absolute difference between the true cost of the MIP solution and

the objective value of the global solution decreases from 0.0485 to 0.0427. However, if

we use a non-uniform Crisscross grid in which we aggregate 36 intervals over 6

segments, we further decrease this difference to 0.0064. Thus, the MIP solution quality

improves as we use a carefully designed non-uniform grid. The same behavior is

exhibited by LM2n5.

 The Global-Lib problem ex8_3_1 deals with designing a chemical reactor

network to maximize the yield of a specific chemical product. The complete nonlinear

formulation and the PLA-based reformulation are described in Appendix A10. The

nonlinear program involves two types of nonlinear functions: bilinear functions and non-

linear functions of the form  ybxyxf /exp),( where b is a constant. For b = 7971,

we graphically depict this function and its contour lines in Figure 6.2. If we try to solve

this problem using 2x2 (i.e., two segments along the two axes) uniform rectangular grids

for linearizing the bilinear functions and 4x4 uniform Crisscross grids for the exponential

functions, then we cannot find a MIP solution that lies in the basin of attraction of the

global solution. However, if instead we use 2x2 uniform rectangular grids for linearizing

the bilinear functions and 4x4 non-uniform Crisscross grids (based on the alternating

shortest-path method) for the exponential functions, then we can obtain a MIP solution

that leads to a local solution whose objective value is within 3.46% of the global

objective value. We show the non-uniform grid in Figure 6.3. As we can see, the

alternating shortest path method results in a grid that has a higher resolution in those

areas of the domain where the curvature of the function is high.

123

Problem Grid Type
No. of Segments/No. of

Intervals

Rel.MIP

Global

Distance

δ

Rel.

MIP

Approx.

error|

σ

Abs MIP-

Global

Obj. Gap

Rel. Local

Global

Obj. Gap

η

EMichalewicz Uniform/1D 8 36.86% 15.89% 2.1821 25.43%

EMichalewicz Non-uniform/ID 8/128 1.28% 0.00% 0.0746 0%

LM2n5 Uniform/Rec 12 14.65% 105.02% 0.0208 0%

LM2n5 Uniform/Rec 6 13.15% 258.82% 0.0149 0%

LM2n5 Non-uniform/CC 6/36 4.98% 194.01% 0.0045 0%

LM2n10 Uniform/Rec 12 15.69% 44.92% 0.0485 0%

LM2n10 Uniform/Rec 6 15.01% 90.47% 0.0427 0%

LM2n10 Non-uniform/CC 6/36 5.24% 292.79% 0.0064 0%

ex8_3_1 Uniform/Rec/CC Rec: 2/2, CC: 4/4 115% 0% - >100%

ex8_3_1 Non-uniform/Rec/CC Rec: 2/2, CC: 4/8 99.6% 0% - 3.5%

Table 6.11: Effect of using non-uniform grids

124

Figure 6.2: Plot of two-dimensional exponential function in ex8_3_1

125

Figure 6.3: Nonuniform grid for the exponential function in ex8_3_1

The problem of obtaining the best non-uniform grid for a two-dimensional

function can be formulated as a set-covering problem as described in Appendix A8.

However, Cplex takes a long time to solve this pure-integer program even for medium

grid sizes. For certain functions, we have solved this set-covering problem for low grid

resolutions, obtained the best non-uniform grids and then compared the approximation

126

quality of the best non-uniform grid with that of the one obtained from the shortest-path-

based method. We report the results in Table 6.12. To estimate the overall

approximation error, we use a set of sample points located at equidistant points along the

domain of the function and compute the sum of the absolute errors over all the sample

points. As is clear from the data, the approximation error from the shortest-path-based

grid is the same as that of the grid obtained from the set covering problem. Thus, for

these specific grid resolutions and these specific functions, the shortest-path gives the

best non-uniform grid.

Function Domain

No. of

Segments/No

of Intervals

No. of

Sample

Points

Approx.

Error using

Set Covering

Formulation

Approx. Error

using

Alternating

Shortest Path-

based Method

y1 = x1 x2
1 ≤ x1≤ 2

10 ≤ x2≤ 20
6/18 4000 114459.9 114459.9

y2 = x1 (x2)
2 1 ≤ x1≤ 2

10 ≤ x2≤ 20
6/18 4000 3640467.8 3640467.8

y3 = (x1)
2
 x2

 1 ≤ x1≤ 2

10 ≤ x2≤ 20
6/18 4000 365905.1 365905.1

Table 6.12: Benchmarking grids generated by the shortest-path-based method

6.6 EFFECT OF GRID SHAPE

To understand the effect of grid shape, we compare the performance of 16-segment

rectangular grids with 8-segment Crisscross grids (both with 256 cells) for selected

127

pooling problems. We used the pattern-based model with cumulative adjacency for these

runs

Problem Grid Type
MIP Size

(cont/bin/constr)

Rel.MIP

Global

Distance

δ

Rel. Local Global

Obj. Gap

η

adhya1 Rectangular (9573/256/1918) 2.74% 87.50%

 Crisscross (4837/192/1150) 0.48% 87.50%

adhya2 Rectangular (9573/256/1938) 6.00% 88.18%

 Crisscross (4857/192/1170) 5.41% 0.00%

adhya3 Rectangular (9630/256/1952) 112.43% 88.41%

 Crisscross (4894/192/1184) 112.45% 0.00%

adhya4 Rectangular (9586/256/1934) 93.04% 0.00%

 Crisscross (4850/192/1166) 93.04% 0.00%

Table 6.13: Effect of using different grid shapes

1. The results indicate that in general, the Crisscross grid does better than the

rectangular grid either in terms of the relative MIP global distance or in terms of the

relative NLP-global gap, which indicates the gap between the objective value of the

local solution and that of the global solution.

2. These results are expected because in a Crisscross grid, each point in the function

domain had a unique representation in terms of the vertices of the cell in which it lies.

This is not true for a rectangular grid in which a point can have multiple convex

combination representations, some of which can have inferior approximation quality.

However, because of this non-unique representation, we can solve the MIP (for

pooling problems) using rectangular grids in less time than by using Crisscross grids.

128

6.7 EFFECT OF INDEXING SCHEME

To understand the impact of the indexing scheme on the performance of the PLA

approach, we apply the PLA method to selected pooling propbelms using rectangular

grids with (a) pattern based cumulative adjacency model and (b) pattern-based

logarithmic model. A time limit of 600 seconds was imposed on the MIP solver.l

Problem
No. of

segments

Non-logarithmic Indexing Logarithmic Indexing

MIP Size

(cont/bin/constr

)

MIP

Time

MIP

Gap

MIP Size

(cont/bin/const

r)

MIP

Time
MIP Gap

adhya1 16 9573/256/1918 58.8 0.00% 9573/64/1342 56.5 0.00%

adhya2 16 9593/256/1938 31.3 0.00% 9593/64/1362 58.8 0.00%

adhya3 16 9630/256/1952 91.2 0.00% 9630/64/1376 57.0 0.00%

adhya4 16 9586/256/1934 12.0 0.00% 9586/64/1358 6.1 0.00%

adhya1 32 35429/512/3710 601.6 1.98% 35429/80/2398 600.1 2.38%

adhya2 32 35449/512/3730 600.3 1.92% 35449/80/2418 600.1 7.81%

adhya3 32 35486/512/3744 600.1 0.36% 35486/80/2432 600.1 0.95%

adhya4 32 35442/512/3726 60.4 0.00% 35442/80/2414 430.8 0.00%

Table 6.14: Effect of using different indexing schemes

1. The results indicate that, in general, for medium grid resolutions (that we have

considered), the logarithmic indexing scheme does not offer a significant advantage

over the non-logarithmic indexing scheme in terms of MIP times and MIP gaps at

termination.

129

2. These results are expected because advantages of a logarithmic indexing scheme

become more pronounced only at higher grid resolutions. However, for most of our

problems, even medium granularity grids yield good MIP solutions that lie in the

basin of attraction of the global solution.

6.8 COMPARISON WITH CONOPT

We now compare the performance of the PLA approach with that of CONOPT

using the default CONOPT settings and without a specific starting point. We use the Ali

et al. problems, the Global-Lib problems and the pooling problems for this comparison.

As shown in Table 6.15 and Table 6.16, CONOPT could not solve 21 Ali et al. problems

and 20 Global-Lib problems. However, we can solve all these problems using the PLA

approach. Further, only 3 of the 13 pooling problems could be solved using CONOPT

whereas with the PLA method, we could solve 11 of the 13 pooling problems.

130

Problem

Global

Objective

Value

Objective Value

CONOPT

Absolute Gap

CONOPT

Relative Gap

CONOPT

beckerLago 0.00 50.00 50.00 100%

camel6 -1.03 0.00 1.03 100%

dekkersAarts -24776.52 0.00 24776.52 100%

easom -1.00 0.00 1.00 100%

eMichalewicz -4.69 0.00 4.69 100%

goldPrice 3.00 30.00 27.00 900%

hosaki -2.35 0.00 2.35 100%

lm1 0.00 1.12 1.12 100%

meyerRoth 0.00 0.12 0.12 100%

modLangerman -0.97 0.00 0.97 100%

oddSquare -1.14 -1.00 0.14 13%

price 0.00 190.80 190.80 100%

schwefel -4189.83 0.00 4189.83 100%

shekel5 -10.15 -5.06 5.10 50%

shekel7 -10.40 -5.09 5.32 51%

shekel10 -10.54 -5.13 5.41 51%

shekelFox5 -10.41 -1.58 8.83 85%

shekelFox10 -10.21 -1.48 8.73 86%

shubert -186.73 0.07 186.80 100%

zeldaSine10 -3.50 -1.00 2.50 71%

zeldaSine20 -3.50 -1.00 2.50 71%

Table 6.15: Ali et al. Problems that could not be solved by CONOPT

131

Problem

Global

Objective

Value

Objective Value

CONOPT

Absolute Gap

CONOPT

Relative Gap

CONOPT

ex14_1_6 0.00 1.00 1.00 100%

ex14_1_8 0.00 0.04 0.04 100%

ex2_1_1 -17.00 0.00 17.00 100%

ex2_1_3 -15.00 -10.11 4.89 33%

ex2_1_6 -39.00 -21.13 17.88 46%

ex2_1_7 -4150.41 -407.25 3743.16 90%

ex2_1_9 -0.38 -0.33 0.04 11%

ex3_1_3 -310.00 -132.00 178.00 57%

ex4_1_1 -7.49 -0.52 6.97 93%

ex4_1_3 -443.67 0.00 443.67 100%

ex4_1_6 7.00 250.00 243.00 3471%

ex4_1_9 -5.51 -4.05 1.45 26%

ex5_2_2_case1 -400.00 0.00 400.00 100%

ex5_2_2_case2 -600.00 0.00 600.00 100%

ex5_2_2_case3 -750.00 0.00 750.00 100%

ex5_2_4 -450.00 0.00 450.00 100%

ex5_3_2 1.86 1.00 -0.87 46%

ex5_4_3 4845.46 5801.02 955.56 20%

ex6_1_4 -0.29 0.00 0.29 100%

ex6_2_14 -0.70 0.10 0.79 114%

Table 6.16: Global-Lib problems that could not be solved by CONOPT

132

Problem

Global

Objective

Value

Objective Value

CONOPT

Relative Gap

CONOPT

Relative Gap

PLA

adhya1 -549.8031 0 100.0% 87.50%

adhya2 -549.8031 0 100.0% 0.00%

adhya3 -561.0447 0 100.0% 18.60%

adhya4 -877.6457 0 100.0% 0.00%

foulds2 -1100 -1000 9.1% 0.00%

foulds3 -8 -7 12.5% 0.00%

foulds4 -8 -4 50.0% 0.00%

foulds5 -8 -3 62.5% 0.00%

bental4 -450 -450 0.0% 0.00%

bental5 -3500 -900 74.3% 0.00%

haverly1 -400 -400 0.0% 0.00%

haverly2 -600 -400 33.3% 0%

haverly3 -750 -750 0.0% 0%

Table 6.17: Applying CONOPT to pooling problems

133

6.9 COMPARING GRID-BASED AND PATTERN-BASED MODELS

We now compare the pattern-based and the grid-based models for selected

MINLP problems. We use four-segment rectangular grids for this comparison and solve

the resulting MIPs to optimality.

Problem Adjacency

Grid-based Pattern-based

MIP size

(cont/bin/

constr)

MIP nodes
MIP

time

MIP size

(cont/bin/

constr)

MIP

nodes
MIP time

ex1252 Seg. 2560/219/896 13653 3.8 2455/135/644 5799 1.2

 Cum. 2560/219/794 6034 1.1 2455/135/584 3400 0.6

 SOS-2 2560/15/386 175693 22.4 2455/15/344 18064 3.6

 Log 2560/117/590 17090 5.0 2455/75/464 6776 1.2

ex1252a Seg. 2557/207/887 14242 3.5 2452/123/635 5408 1.0

 Cum. 2557/207/785 7211 1.2 2452/123/575 3338 0.7

 SOS-2 2557/3/377 1262429 101.0 2452/3/335 51259 7.2

 Log 2557/105/581 20101 4.5 2452/63/455 8664 1.4

ex1263 Seg. 597/200/616 1697 0.6 537/152/472 1780 0.6

 Cum. 597/200/552 387 0.4 537/152/432 422 0.4

 SOS-2 597/72/296 2072 0.4 537/72/272 3763 0.4

 Log 597/136/424 983 0.4 537/112/352 1821 0.5

ex1264 Seg. 597/196/616 1003 0.5 537/148/472 769 0.4

 Cum. 597/196/552 625 0.4 537/148/432 640 0.3

 SOS-2 597/68/296 5240 0.6 537/68/272 3653 0.4

 Log 597/132/424 3744 0.8 537/108/352 734 0.4

Table 6.18: Comparing grid-based and pattern-based models

134

Problem Adjacency

Grid-based Pattern-based

MIP size

(cont/bin/

constr)

MIP nodes
MIP

time

MIP size

(cont/bin/

constr)

MIP

nodes
MIP time

ex1265 Seg. 931/300/950 2361 0.9 831/220/710 815 0.5

 Cum. 931/300/850 295 0.5 831/220/650 0 0.3

 SOS-2 931/100/450 7910 1.0 831/100/410 5494 0.9

 Log 931/200/650 1725 0.6 831/160/530 838 0.4

synheat Seg. 1320/140/624 338 0.5 1300/124/576 235 0.6

 Cum. 1320/140/560 0 0.2 1300/124/520 0 0.3

 SOS-2 1320/12/304 475 0.5 1300/12/296 0 0.3

 Log 1320/76/432 0 0.3 1300/68/408 267 0.5

Table 6.18 contd.: Comparing grid-based and pattern-based models

1) As expected, a pattern-based model is smaller and easier to solve than the

corresponding grid-based model.

2) We found that all the four types of grid-based models have the same LP relaxation

value. Similary, all the four types of pattern-based models have the same LP

relaxation value. In fact, we prove in Appendix A11 that the MIP model with

segment-wise adjacency is LP-equivalent to the MIP model with cumulative

adjacency. Further, for each of the problems in Table 6.18, the LP value at the root of

the branch and bound tree (before CPLEX does any preprocessing or adds any cuts),

the LP value of the grid-based model is equal to the LP value of the pattern-based

model. However, we found that in many cases, CPLEX is able to generate better cuts

for the pattern-based models than for the grid-based models and therefore the LP

135

value after pre-processing and cuts is higher for a pattern-based model than for the

corresponding grid-based model. Finally, in most cases, a pattern-based model

requires fewer branch and bound nodes and less time than required by the

corresponding grid-based model.

3) In most cases, the pattern-based model with cumulative adjacency does the best both

in terms of number of MIP nodes and the MIP time.

6.10 COMPARING PATTERN-BASED AND COMBINED PARTITION MODELS

We now compare the performance of the pattern-based model with that of a

combined partition model for a specific reformulation of the gasnet problem. In this

reformulation, we use a 2-segment grid for four-dimensional functions and 4-segment

grids for two-dimensional functions. Also, we removed/updated vertex variables using

constraint and function information for these runs. The time limit was set at 600 seconds

and we enabled variable elimination using external bounds.

 Pattern-based Model Combined Partition Model

Problem Adjacency
LP value at

root
MIP Time

MIP

Gap

LP value at

root

MIP

Time
MIP Gap

gasnet Seg. 834983.6 600 1.12% 834984.0 483 0.00%

 Cum. 834983.6 358 0.00% 834984.0 147 0.00%

 SOS-2 834983.6 600 56.67% 834984.0 600 31.62%

 Log 823097.9 600 14.67% 823097.9 600 14.69%

Table 6.19: Comparing pattern-based and combined partition models

136

1) We find that the log model has lower LP value at the root node. This is due to the

variable reduction strategies that we have enabled in these runs. If we do not emply

these strategies, then the LP value at the root node is the same for all the four models.

2) A combined partition model has a slightly higher LP relaxation value than that of the

corresponding combined partition model.

3) The combined partition model does better than the corresponding pattern-based

model in terms of the overall MIP solution time and the MIP gap at termination.

6.11 EFFECT OF PROBLEM REDUCTION AND PROBLEM STRENGTHENING TECHNIQUES

The problem reduction strategies use external bounds on the independent

variables of nonlinear function to either eliminate vertex-weight variables in the PLA-

based MIP or set a bound on certain vertex based variables that are adjacenct to infeasible

vertices. Problem strengthening strategies involve adding the constraint-based

inequalities to the model. Table 6.20 summarizes the effects of these enhacements on

three different reformulations of gasnet, which is the hardest problem in our problem set.

Reformulations gasnet-1, gasnet-2, and gasnet-3 (which correspond to Model-1, Model-2

and Model-3 in Appendix A9) differ in terms of the types of constraints present in the

model. Speciafically, gasnet-1, gasnet-2, and gasnet-3 contain constraints of the form

0 yx , 0 yx , and 0 yx respectively. These reformulations help us

demonstrate the effectiveness of different types of valid inequalities for each of these

constraint types.

137

Problem
Problem

Reduction

Constraint

-based

inequalitie

s

Vertex

vars

modified

Vertex

vars

deleted

LP value

at root

LP value

after cuts

MIP

Time

(CPU s)

MIP

Gap

Rel.

Local

Global

Obj.

Gap

η

gasnet-1 No No 0 0 811309 2081203 1806 11.6% 0.66%

 Yes No 2393 2614 2128123 2214295 1806 5.4% 0.66%

 No Yes 0 0 811309 2242709 882 0.0% 0.07%

 Yes Yes 2393 2614 2130191 2312883 1042 0.0% 0.66%

gasnet-2 No No 0 0 811309 2098723 1805 15.5% 1.77%

 Yes No 2393 2614 2128123 2293765 1807 3.9% 0.07%

 No Yes 0 0 811309 2117416 1018 0.0% 0.66%

 Yes Yes 2393 2614 2159649 2319815 1234 0.0% 0.07%

gasnet-3 No No 0 0 811309 1907000 1808 13.9% 0.07%

 Yes No 2393 2614 2128123 2253946 1806 5.2% 0.07%

 No Yes 0 0 811309 2241496 969 0.0% 0.07%

 Yes Yes 2393 2614 2128185 2321628 1098 0.0% 0.00%

Table 6.20: Effect of problem strengthening strategies

1) We find that the problem reduction strategy increases the LP relaxation value at the

root node, which indicates that the original LP solution was assigning a positive

weight to a number of infeasible vertices.

2) The constraint-based inequalities do not improve the LP relaxation value of the mixed

integer program. However, they help Cplex generate better cuts for the problems,

thereby leading to a higher value of the LP value after preprocessing and cuts,

depicted in the seventh column in Table 6.20.

138

3) Using both the problem reduction strategies and the constraint-based inequalities is

more effective than using only one of these two techniques in terms of the LP

relaxation value after preprocessing and cuts.

4) For this particular problem, the constraint-based inequalities seem to do better in the

absence of problem reduction strategies than when used in conjunction with problem

reduction.

139

6.12 COMPARISON WITH DICOPT

We now compare the performance of the PLA approach with that of DICOPT using the

default DICOPT settings and with a specific starting point of zero. We use the MINLP-

Lib problems for this comparison.

Problem Global Obj. Value
DICOPT

Objective Value Absolute gap Relative gap

ex1221 7.67 NA NA 13%

ex1243 83402.51 421713.71 338311.21 406%

ex1244 82042.91 87646.38 5603.48 7%

ex1252 128893.74 NA NA NA

ex1252a 128893.74 NA NA NA

ex1263 19.60 20.60 1.00 5%

ex1263a 19.60 21.00 1.40 7%

ex1264 8.60 9.30 0.70 8%

ex1264a 8.60 10.30 1.70 20%

ex1265 10.30 15.10 4.80 47%

ex1265a 10.30 NA NA NA

ex1266 16.30 NA NA NA

ex1266a 16.30 NA NA NA

gasnet 6999381.56 7045326.89 45945.33 1%

Table 6.21: MINLP-Lib problems that could not be solved by DICOPT

For 6 of the 14 MINLP problems, DICOPT could not find a feasible solution. For

the other eight problems, DICOPT could find a feasible solution but not the global

optimal solution. Except for ex1263a and ex1264a, the PLA method could solve all the

other MINLP problems. Further, as shown in Table 6.12, the PLA approach could solve

140

ex1263a to gap of 2% and ex1264a to a gap of 3%. Thus, the PLA approach can do

much better than DICOPT.

141

Chapter 7: Conclusions

Piecewise linear approximation is a promising global optimization technique that

works well on a broad range of nonlinear nonconvex problems. Although this approach

does not provide a guarantee of optimality, yet, as we demonstrate, it does provide good

solutions for a large number of problems. Solvers which work in a branch and bound

framework need a lot more time to solve a problem since they have to solve a subproblem

at every node of the branch and bound tree. Thus, if one just needs a good-enough

solution quickly, then one might consider using the PLA approach. The PLA-based

method is particularly suited to mixed integer nonlinear optimization problems which are

among the hardest nonlinear non-convex optimization problems.

In our study, we have demonstrated the effectiveness of the PLA apprpoach and

proposed various enhancements that can make this approach a powerful global

optimization strategy. There are a number of avenues for future research. First, as of

now, the non-uniform grid generation method can only deal with two dimensional grids.

It might be interesting to see whether this method can scale up to three or higher-

dimensional functions. Second, in our study, we have only examined the Union Jack and

Crisscross triangulations. However, there might be functions where other triangulations

such as H and K could provide better approximation qualities than that provided by the

Union Jack triangulation. In fact, the Union Jack triangulation, which can be seen as a

hybrid of the H and K triangulations, will have an inferior approximation quality than

either the H or the K triangulation for many functions including the bilinear function.

The question is how to develop a mixed integer programming model for these

triangulations that is as parsimonious as the Union Jack triangulation. Third, the current

142

set of constraint-based valid inequalities can only handle two-variable constraints. It

might be interesting to develop constraint-based valid inequalities using constraints with

more than two variables. Also, the current constraint-based inequalities are applicable to

a non-logarithmic PLA model. It should be possible to extend them to logarithmic PLA

models. Fourth, there are problems that involve nonlinear functions of pure integers. It

seems that specialized models could be developed for applying the PLA approach to such

functions. Lastly, a more ambitious goal will be to compute, within the PLA framework,

the convex envelopes for the various functions and thereby have a PLA-based method

that not only gives a solution but also provides an optimality gap for that solution. This

would help us quantify the quality of the PLA-based solutions and then benchmark the

PLA-approach against solvers such as BARON (Ryoo and Sahinidis 1996).

143

Appendix A1: Proof of Proposition 1

Proposition1: For the bilinear function f(x, y) = xy, a Crisscross triangulation with

uniform segments along both axes provides the same approximation quality as that

provided by a Union Jack triangulation with twice the number of uniform segments along

both axes.

Proof: Consider the bilinear function f(x, y) = xy, x[a1, a3] , y[b1, b3]. Let us

approximate this function by a Crisscross triangulation with break points {a1, a3} and

{b1, b3} (along the two axes) and by a Union Jack triangulation with equally spaced break

points {a1, a2, a3} and {b1, b2, b3} along the two axes. (Refer Figure A1)

 (a) (b)

Figure A1.1: Union Jack triangulation versus Crisscross triangulation

I

L

2
b1

M

2
b2

N

2
b3

K

J

H
G

a1

a2

a3

 O

I

L

2
b1

M

2
b2

N

2
b3

K

J

H
G

a1

a2

a3

 O

144

Let L(a1, b1), M(a1, b2), N(a1, b3), and O(a2, b2) be grid points lying in the

domain of f. Since the segments are equally spaced, M is equidistant from L and N. Let

L'(a1, b1, f(a1, b1)), M'(a1, b2, f(a1, b2)), N'(a1, b3, f(a1, b3)), and O'(a2, b2, f(a2, b2)) be

points in three dimensional space that represent the function values at points L, M, N and

O respectively. Consider the three dimensional plane formed by L', O' and N'. Let the

equation of this plane be px + qy + rz + s = 0. Since L' and N' lie on this plane, therefore

pa1 + qb1 + r f(a1, b1) + s = 0 (A1.1)

pa1 + qb3 + r f(a1, b3) + s = 0. (A1.2)

Adding Equation (A1.1) and Equation (A1.2) and dividing by 2, we get:

pa1 + q(b1 + b3)/2 + r[f(a1, b1)+ f(a1, b3)] /2 + s = 0. (A1.3)

Since M is equidistant from L and N, b2 = (b1 + b3)/2. Therefore we get

pa1 + qb2 + r[f(a1, b1)+ f(a1, b3)] /2 + s = 0. (A1.4)

M'(a1, b2, f(a1, b2)) will lie on the plane through L', O' and N' if

pa1 + qb2 + r f(a1, b2) + s = 0 (A1.5)

or f(a1, b2) = [f(a1, b1)+ f(a1, b3)] /2. (A1.6)

Since the bilinear function satisfies the condition given by Equation (A1.6), M' lies on

the plane through L', O' and N'. Therefore, the quality of approximation provided by

ΔLOM and ΔMON is the same as the quality of approximation provided by ΔLON. The

same argument holds for ΔLOJ, ΔJOH and ΔHON.

145

Appendix A2: Algorithm for One-dimensional Shortest Path-based Method

This algorithm takes as input a one-dimensional function, a set of break points that divide

the function domain into intervals and the number of segments into which we wish to

partition the domain. It returns a set of break points that partition the domain into no

more than the desired number of segments and have the lowest approximation error as

computed by pre-specified metrics for the arc and the path costs. The algorithm is

composed of two procedures: create graph, which specifies how to create the directed

graph, and get break points, which describes how to obtain a set of break points that

correspond to the least cost path in the graph such that the path contains no more than a

fixed number of arcs.

Notation

f nonlinear function for which a piecewise linear approximation is required

n no. of equal-sized intervals into which we initially divide the domain

H number of segments required

X set of break points given as an input

Ω set of sample points given as an input

G = (N, A) directed graph with node set N and arc set A

i, j, k index over N

a index over A

ω index overΩ

ijc cost of arc (i, j)

ji xx , break points corresponding to nodes i and j

 jiΩ , sample points lying between break points ix and
jx

146

 if true function value at break point ix

 f true function value at sample point ω

  approximate function value at sample point ω

 jifωConv ,,, convex combination of the function values at break points ix and

jx using weights that express  as a convex combination of ix and

jx

A metric for computing arc costs, is either Sum of Errors or Maximum Error

P metric for computing path cost, is either Sum of Arc Costs or Maximum

Arc Cost

L(j, h) Length of the shortest path from node 0 to node j containing no more than

h arcs (the shortest h-hop path)

Pred(j, h) Predecessor node of node j in the shortest h-hop path to node j

B* set of break points that provide the best approximation

 cost of the shortest path

Algorithm A1: get best segments  fHn PA ,,,, 

begin

 G = create graph  fn A,,

  *,B = get break points  PHnG ,,,

end

147

Procedure P1: create graph  fn A,,

begin

 Create node set N = {0, 1, …, n}

 Add arcs to arc-set A, i.e., add arc(i, j) such that

 i = 0, 1, …, n – 1

 j = i + 1, i + 2,…, n

 for all   Aji , do

 0:σ

 :

 for  jiΩω , do

   : =  fjiωConv ,,,

    ωωfδ :

 δσσ :

 if δμ  then δμ :

 end if

 next 

 if A = Sum of Errors then
ijc : = σ

 else if A = Maximum Error then
ijc : = μ

 end if

 next  ji,

 G := (N, A)

return G

end procedure

148

Procedure P2: get break points  PHnG ,,,

begin

 L(j, 1) : =
jc0
 for j = 1, …, n

 Pred(j, 1) := 0 for j = 1, …, n (Initialization)

 for h = 2, …, H do

 for j = 1, …, n do

 L(j, h) : = L(j, h – 1)

 Pred(j, h) : = Pred(j, h – 1)

 if j  h then (Loop 1)

 for i = h –1 to j – 1 do

 if P = Sum of Arc Costs

 if L(i, h – 1) +
ijc < L(j, h) then

 L(j, h) : = L(i, h – 1) +
ijc

 Pred(j, h) : = i

 end if

 else if P = Maximum Arc Costs

 if     hjLchiL ij ,,1,Max  then

 L(j, h) : =   ijchiL ,1,Max 

 Pred(j, h) : = i

 end if

149

 end if

 next i

 end if

 next j

 next h

 j : = n

 h : = m

 while j 0 do

 add
jx to B*

 j : = Pred(j, h)

 h : = h – 1

 end while

end procedure

1) At the end of stage h, the algorithm obtains the shortest paths of length at most h from

the source to all the nodes.

2) In the initialization phase, we identify the one-hop path to every node, which is

simply the arc connecting the source node to that node.

3) Since the path from the source node to node j can have at most j arcs, L(j, h+1) will

be equal to L(j, h) for all h greater than or equal to j . Thus, the code in Loop 1 is

executed only if j is greater than h. This observation makes the code more efficient,

though it does not improve the worst-case complexity of the procedure.

150

4) We recover the nodes on the shortest path by starting with the sink node and

iteratively identifying the predecessors until we reach node 0.

5) The computational complexity of the algorithm is O(n
2
H) where the number of arcs

in the graph is O(n
2
).

151

Appendix A3: Alternating Shortest Path-based Method for Crisscross grids

This algorithm takes as input a two-dimensional function, a set of break points along the

horizontal and vertical axis and the desired number of segments along each axis. It

returns a set of break points along the two axes such that along each axis, the number of

segments is less than the desired number of segments along that axis and the segments

yield a Crisscross triangulation that has the lowest approximation error as computed by

pre-specified metrics for the arc and the path costs. The algorithm, which we name get

best non-uniform grid calls three procedures: create graph X-axis, create graph Y-axis

and get break points. (See Figure A2 for a schematic)

1. The create graph X-axis procedure takes as inputs the break points along the Y-axis

and creates a directed graph over which a shortest path problem could be solved to

get a set of good break points along the X-axis. This procedure internally calls the

procedure get error vertical pattern to compute the arc costs in the directed graph.

2. The create graph Y-axis procedure takes as inputs the break points along the X-axis

and creates a directed graph over which a shortest path problem could be solved to

get a set of good break points along the Y-axis. This procedure internally calls the

procedure get error horizontal pattern to compute the arc costs in the directed graph.

3. The procedure get break points is the procedure that we used to solve a shortest path

problem over a directed network corresponding to a one dimensional function.

152

Figure A3.1: Procedures for alternating shortest-path-based method

The procedures get error vertical pattern and get error horizontal pattern internally call

the procedure get error triangular pattern which gives the approximation error for a

triangular pattern corresponding to a combination of a horizontal break point pair and a

vertical break point pair.

Notation

f nonlinear function that has to be approximated

Xn no. of intervals into which we initially divide the domain along the X-axis

Yn no. of into which we initially divide the domain along the Y-axis

Xh no. of segments required along the X-axis

Yh no. of segments required along the Y-axis

get best non-uniform grid

create graph X-axis

get error vertical pattern

get error horizontal pattern

get break points

get error triangular pattern

get error triangular pattern

create graph Y-axis

153

X set of break points along the X-axis =  
Xnxxxx ,...,,, 210

Y set of break points along the Y-axis =  
Ynyyyy ,...,,, 210

XB subset of break points along the X-axis

YB subset of break points along the Y-axis

*

XB best subset of break points along the X-axis

*

YB best subset of break points along the Y-axis

Ω set of sample points

P set of grid points

ω index over Ω

ji, indices over X

lk, indices over Y

),(kip grid point corresponding to break points ix and ky along the X and

Y axes

mid

ijklp grid point corresponding to intersection of the diagonals of the rectangle

 formed by grid points  kip , ,  kjp , ,  ljp , ,  lip , .

 srΩ , sample points lying in the rectangle defined by break point pair r along the

X-axis and break point pair s along the Y-axis

 pf true function value at grid point p

 f true function value at sample point 

  approximate function value at sample point 

321 ,, ppp Indices over P

154

 fpppωConv ,,,, 321 convex combination of the function values at grid points

21, pp and 3p using weights that express  as a convex

combination of 21, pp and 3p

A metric for computing arc costs, is either Sum of Errors or Maximum Error

P metric for computing path cost, is either Sum of Arcs Costs or Maximum

Arc Cost

G = (N, A) directed graph with node set N and arc set A

a index over A

ijc cost of arc (i, j)

L(j, h) Length of the shortest path from node 0 to node j containing no more than

h arcs (the shortest h-hop path)

Pred(j, h) Predecessor node of node j in the shortest h-hop path to node j

 cost of the shortest path

* current best approximation cost for the algorithm

155

Algorithm A2: get best non-uniform grid  fhhnn PAYXYX ,,,,,,,axis initial 

begin

 if initial axis = X-axis then

 Populate
cur

YB with uniform break points along the Y-axis

 current axis : = X-axis

 else if initial axis = Y-axis then

 Populate
cur

XB with uniform break points along the X-axis

 current axis : = Y-axis

 end if

 * : = 

 continue flag : = TRUE

 while continue flag = TRUE do

 if current axis = X-axis then

 G : = create graph X-axis  fΩPBn AYX ,,,,, 

  ,XB : = get break points  PXX hnG ,,,

 if  < * then

 XX BB :*

  :*

 current axis : = Y-axis

 else continue flag : = FALSE

 end if

 else if Current axis = Y-axis then

 G : = create graph Y-axis  fΩPBn AXY ,,,,, 

156

  ,YB : = get best break points  PYY hnG ,,,

 if  < * then

 YY BB :*

  :*

 current axis : = Y-axis

 else continue flag : = FALSE

 end if

 end if

 end while

 return  ** , YX BB

end procedure

 Procedure P3: create graph X-axis  fΩPBn AYX ,,,,, 

begin

 Create node set  XnN ...,,1,0 corresponding to break points

 
Xnxxxx ,...,,, 210

 Add arc(i, j) to arc set A such that

 i = 0, 1, …, 1Xn

 j = i + 1, i + 2, …, Xn

 :ijc get error vertical pattern  fΩPBji AY ,,,,,, 

 G: = (N, A)

 return G

157

end procedure

Procedure P4: create graph Y-axis  fΩPBn AXY ,,,,, 

begin

Create node set  YnI ...,,1,0 corresponding to break points

 
Ynyyyy ,...,,, 210

 Add arc(k, l) to arc set A such that

 k = 0, 1, …, 1Yn

 l = i + 1, i + 2, …, Yn

 :klc get error horizontal pattern  fΩPBlk AX ,,,,,, 

 G: = (N, A)

 return G

end procedure

158

Procedure P6: get error vertical pattern  fπΩPBji AY ,,,,,,

begin

 0:σ

 :μ

 for 1Bto1 Y b do

 :δ get error triangular pattern  fΩPbBbBji AYY ,,,],1[],[,, 

 δσσ :

 if δμ  then δμ :

 end if

 next b

 if A = Sum of Errors then pattern error : = σ

 else if A = Maximum Error then pattern error : = μ

 end if

end

return pattern error

end procedure

Procedure P7: get error horizontal pattern  fΩPBlk AX ,,,,,, 

begin

 0:σ

 :μ

 for 1Bto1 X b do

159

 :δ get error triangular pattern  fΩPlkbBbB AXX ,,,,,],1[],[

 δσσ :

 if δμ  then δμ :

 end if

 next b

 if A = Sum of Errors then pattern error : = σ

 else if A = Maximum Error then pattern error : = μ

 end if

 return pattern error

end procedure

160

 Procedure P8: get error triangular pattern  fΩPlkji A,,,,,,, 

begin

Define grid points 54321 and,,,, ppppp such that

 kipp ,1 

 kjpp ,2 

 ljpp ,3 

 lipp ,4 

mid

ijklpp 5

 0:σ

 :μ

 for all  srΩω , do

 if ω lies in  521 ppp then    fpppωConvω ,,,,: 521

 else if  lies in  532 ppp then    fpppωConvω ,,,,: 532

 else if  lies in  543 ppp then    fpppωConvω ,,,,: 543

 else if  lies in  514 ppp then    fpppωConvω ,,,,: 514

 end if

    ωωfδ :

 δσσ :

 if δμ  then δμ :

 end if

 next 

 end if

161

 if A = Sum of Errors then pattern error : = σ

 else if A = Maximum Error then pattern error : = μ

 end if

 return pattern error

end procedure

1) In procedure get error triangular pattern, we consider all the sample points that lie

within the rectangle formed by the vertical and the horizontal break point pairs. For

each point, we compute the approximate function value using the triangulation shown

in Figure A3. We then compute the approximation error for each sample point, which

is the absolute value of the difference between the true and the approximate function

value for the sample point.

Figure A3.2: Computing approximation error for a triangular pattern

2) Depending upon the whether the error metric is Sum of errors or Maximum Error, the

approximation error for the entire pattern is either the sum or the maximum of the

approximation errors for all the sample points lying within that pattern.

p2

p3 p4

p1

p5

162

Appendix A4: Alternating Shortest Path-based Method for Union Jack Grids

To apply the alternating shortest path method for obtaining Union Jack grids, we have to

view this grid in terms of its building blocks. We first observe that the Union Jack

triangulation can have two different orientations, which we call UJ-I and UJ-II. (Figure

A4.1)

 UJ-I UJ-II

 Figure A4.1: Orientations of the two dimensional Union Jack triangulation

The smallest building blocks of this grid are the two basic types of triangular

patterns, which we call UJ-T1 and UJ-T2. We show these patterns in Figure A4.2.

 UJ-T1 UJ-T2

Figure A4.2: Triangular patterns for a two dimensional Union Jack triangulation

163

A horizontal sequence of alternating types of triangular patterns gives rise to what we

call a horizontal pattern. Depending upon the type of the starting triangular pattern, we

can have two kinds of horizontal patterns, which we call UJ-H1 and UJ-H2. Similarly, a

vertical sequence of alternating types of triangular patterns gives rise to a vertical pattern,

which also can have two types, UJ-V1 and UJ-V2, depending upon the type of the

starting triangular pattern (Figure A4.3). A Union jack grid can be visualized either as a

sequence of alternating vertical patterns or as a sequence of alternating horizontal

patterns. Since each pattern is followed by a pattern of a different type, the starting

pattern determines the orientation of the entire grid. Thus, a UJ-I grid starts with a UJ-

H1 horizontal pattern at its base or a UJ-V1 vertical pattern at its extreme left. On the

other hand, a UJ-II grid starts with a UJ-H2 horizontal pattern or a UJ-V2 vertical

pattern.

Figure A4.3: Vertical and horizontal patterns for a Union Jack triangulation

UJ-V1 UJ-V2

UJ-H2

UJ-H1

164

To apply the alternating shortest path method to obtain a Union Jack grid, we fix

the segments (break points) along one of the axes and then solve a shortest path problem

along the other axis to get the best set of (segments) break points along the other axis.

However, since each break point pair can have two costs, one for each Union Jack

pattern, the network for the shortest path problem in this case is slightly different from

the one we used in the one dimensional scenario. We now describe this network.

 (a) UJ-V1 (b) UJ-V2

Figure A4.4: Approximation error for a break point pair along horizontal axis

 (a) UJ-H1 (b) UJ-H2

Figure A4.5: Approximation error for break point pair along the vertical axis

165

The nodes of this specially constructed network correspond to the break points.

There is one node for each of the two domain end points. The node corresponding to the

lower limit is called the source node and the one corresponding to the upper limit is

called the sink node. Each of the other break points is associated with two nodes — one

Type-A and a Type B node. A Type-A node indicates the beginning of a UJ-V1 pattern

(for the horizontal axis) or the beginning of the UJ-H1 pattern (for the vertical axis). On

the other hand, a Type-B node indicates the beginning of a UJ-V2 pattern (for the

horizontal axis) or the beginning of the UJ-H2 pattern (for the vertical axis). Similarly,

there are two kinds of arcs in the network — Type-A and Type B arcs. Type-A arcs

emanate either from the source node or from a Type-A node and end either in the sink

node or in a Type-B node that corresponds to a higher-indexed break point. The cost of a

Type-A arc is a function of the approximation error for domain points that lie within the

horizontal or vertical pattern, assuming that the pattern is of type UJ-H1 or UJ-V1

(Figure A4.3). Type-B arcs emanate either from the source node or from a Type-B node

and end either in the sink node or in a Type-A node that corresponds to a higher-indexed

break point. The cost of a Type-B arc is a function of the approximation error for domain

points that lie within the horizontal or vertical pattern, assuming that the pattern is of type

UJ-H2 or UJ-V2 (Figure A4.3). This function is called the error metric. As in the one

dimensional case, we could either have the sum of error or the maximum error as the

error metric.

The structure of this graph (Figure A4.6) ensures that in any path from the source

node to the sink node, a Type-B arc will always follow a Type-A arc and a Type-A

166

always follows a Type-B arc. In other words, any path from the source node to the sink

node would either be an alternating sequence of vertical patterns or an alternating

sequence of horizontal patterns, and would thus correspond to a valid Union Jack

approximation of the two dimensional function.

Figure A4.6: Alternating shortest-path-based method for Union Jack grid

…

…

 Source
Sink

Type-I node

Type-II node

Type-I arc

Type-II arc

167

Appendix A5: Marginal Weight Consistency Constraints for a Combined Partition

In this appendix, we describe how to obtain the marginal weight consistency constraint

for combined partitions. We first recall the notation.

Notation

P set of patterns for variable X

p index over P

pn number of segments in partitioning pattern Pp

pJ set of break points in p

m number of segments in the combined partition for X

K set of break points in the combined partition for X; indexed from mk ,...,0 in

the order of increasing X values

k index over K

p

j marginal weight variable for break point j in pattern Pp , defined for

pnj ,...,1,0

k marginal weight variable for breakpoint k in the combined partition, defined for

mk ,...,1

kx value of X at break point k in the combined partition

p

jx value of X at break point j in partition Pp

 pkj , closest break point in pattern p that either coincides with break point k of the

combined partition or lies strictly to the right of break point k of the combined

partition, i.e.,   KkPpxxjpkj k

p

j  ,allfor ,:Min,

 pjk , break point in the combined partition that coincides with break point j in pattern

p, i.e. ,   pk

p

j JjPpxxkpjk  allfor,allfor ,:,

168

 jK p set of break points in the combined partition that lie in the interior of segment j in

partition p, defined for all PpJj p  },0{\ . In other words,

  }1),(...,,1),1({  pjkpjkjK p .

We wish to prove the validity of Equation A5.1

},0{\,allfor)1(
)1()(

),(pp

j
p

Kk

kkp

j
p

Kk

kkppjk

p

j nJjPp  


 (A5.1)

where }0{\,allfor
1),(),(

1),(
KkPp

xx

xx
p

pkj

p

pkj

p

pkjk

kp 








 (A5.2)

Figure A5.1: Combined partition

Break point j in pattern p can have a positive weight when the chosen value for X either

lies in segment j or in segment j+1.

Let us assume that the integer solution to the PLA model assigns a value x to variable X

and x lies in segment j of some pattern p, i.e.),(),1(pjkpjk xxx  . Therefore,

),(),(

)(

),1(),1(pjkpjk

jKk

kkpjkpjk xxxx
p

  


 (A5.3)

1),(

)(

),1( 


 pjk

jKk

kpjk

p

 (A5.4)

169

),(and),1(allfor0 pjkkpjkkk  (A5.5)

However, any break point k in the combined partition located between),1(pjk  and

),(pjk can be expressed as a convex combination of),1(pjkx  and),(pjkx . Therefore,

),1(),()1(pjkkppjkkpk xxx   . (A5.6)

Substituting this value of jx in Equation (A5.3), we get,

 
),(),(

)(

),1(),(),1(),1()1(pjkpjk

jKk

pjkkppjkkpkpjkpjk xxxxx
p

  


 (A5.7)

or),(

)(

),(),1(

)(

),1()1(pjj

jKk

kpkpjkpjk

jKk

kpkpjk xxx
pp





























 







  (A5.8)

or)()1(1 jk

p

jjk

p

j xxx    (A5.9)

where },0{\,allfor)1(
)1()(

),(pp

j
p

Kk

kkp

j
p

Kj

kkppjk

p

j nJjPp  


 .

170

Appendix A6: Validity of Constraint-based Inequalities

If two variables that appear in two different nonlinear functions are related by a linear

constraint, then we can develop cuts that relate the binary segment selection variables and

the marginal weight variables across the partitions for X and Y.

Notation

I: set of break points in the X partition

J: set of break points in the Y partition

i: index for break points and segments for the X partition

j: index for break points and segments for the Y partition

Xn : number of segments in the X partition

Yn : number of segments in the Y partition

X
i marginal weight variable for break point i along the X partition

X
i cumulative marginal weight variable for break point i along the X partition

Y
j marginal weight variable for break point j along the Y partition

Y
j cumulative marginal weight variable for break point j along the X partition

X
iS segment selection variable for segment i along the X partition, which is one if we

select segment i and is zero otherwise

X
iT segment selection variable for segment i along the X partition, which is one if we

select a segment with index i or higher, and is zero otherwise

Y
jS segment selection variable for segment j along the Y partition, which is one if we

select segment j and is zero otherwise

Y
jT segment selection variable for segment j along the Y partition, which is one if we

select a segment with index j or higher, and is zero otherwise

171

1. Upper bound on X induces an upper bound on Y

Consider the situation where X and Y are related by the constraint baXY  . In this

situation, an upper bound on X induces an upper bound on Y.

Let us assume that we select an X segment with index i or lower. This implies that X

cannot exceed ix . Let ji ybaxjij  :min)(.Then, we cannot select a Y segment whose

index is greater than)(ij . This gives us the following valid inequalities.

Figure A6.1: Upper bound on X inducing upper bound on Y

a) Inequalities relating binary variables

Let 1I be the set of break points in the X pattern such that }1)(1:{1  YnijiI . Then, if

we select an X segment with index i or lower, then we must select a Y segment with index

)(ij or less. So, we have the following inequality.

111)(everyfor11 IiTT X
i

Y
ij   (A6.1)

172

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has an upper bound of ix , Y has an upper bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition.

Consider a case where we want to choose

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and

i-1, and

 segment j(i) for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break points

j(i) and j(i)-1.

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (A6.2)

Or bxaaxxayyy i
X
iii

X
iijijij

Y
ij   111)(1)()()()(

Or baxxxayyy iii
X
iijijij

Y
ij   111)(1)()()()()(

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yxxayyy  where baxy ii 1

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yaxaxyyy 

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yyyyyy  where baxy ii 

Or 1)(111)()()()()(  ijiii
X
iijij

Y
ij yyyyyy 

Or 1)(11)(11)(1)()()())(()(  ijiijiiji
X
iijij

Y
ij yyyyyyyy 

Or
1)()(

1)(1

1)()(

1)(1

1)()(

1)(

)(










































ijij

iji

ijij

iji

ijij

ijiX
i

Y
ij

yy

yy

yy

yy

yy

yy
 since 1)()( ijij yy

Or   iii
X
i

Y
ij qqp )(where

1)()(

1)(










ijij

iji

i
yy

yy
p and

1)()(

1)(1










ijij

iji

i
yy

yy
q

Or   iii
X
i

Y
ij qqp )(since in this case X

i
X
i   and

Y
ij

Y
ij)()(  (A6.3)

173

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to

break point i, then we have an upper bound on the cumulative weight variable for break

point j(i). This leads us to the following inequality.

  X

i

Y

iji

X

iiii

X

i

Y

ij TTqTqqp 1)(1)()1()1(  (A6.4)

Proof of validity To show that this inequality is valid, we have to consider two cases.

Case 1: 11)(  iij yy

Case 2: 11)(  iij yy

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to

Case 1 and Scenarios 1, 2 and 4 apply to Case 2.

Case 1: 11)(  iij yy Case 2: 11)(  iij yy

Figure A6.2: Scenarios when upper bound on X induces an upper bound on Y

i) Scenario 1: Select X segment with index i and Y segment with index)(ij

This implies 01 
X

iT and 1)(Y
ijT , therefore   iii

X
i

Y
ij qqp )(, which is what we

derived in Equation A6.4.

174

ii) Scenario 2: Select X segment with index i and Y segment with index 1)(ij or lower

This implies 01 
X

iT and 0)(Y
ijT , therefore  )01()01()( iiii

X
i

Y
ij qqqp or

 ii
X
i

Y
ij qp )(. This equation is valid because

Y
ij)( is equal to zero (because we select

a Y segment with index 1)(ij or lower) and   0 ii
X
i qp since ii qp  .

iii) Scenario 3: Select X segment with index 1i or lower and Y segment with index)(ij

This implies 01 
X

iT , 0X
i and 1)(Y

ijT , therefore  )11()01(0)( iiii
Y

ij qqqp or

i
Y

ij q)( or i
Y

ij q)( ,or
1)()(

1)(1

)(










ijij

ijiY
ij

yy

yy
 which is the bound that one would get on

Y
ij)( by considering an upper bound of 1ix on the X variable. This scenario is valid only

for Case 1 above.

iv) Scenario 4: Select X segment with index 1i or lower and Y segment with index

1)(ij or lower

This implies 01 
X

iT , 0X
i and 0)(Y

ijT , therefore  )01()01(0)( iiii
Y

ij qqqp or

0)(Y
ij , which is valid because

Y
ij)( takes a value of zero since we choose a Y segment

with index 1)(ij or lower.

175

2. Upper bound on X induces a lower bound on Y

Consider the situation where X and Y are related by the constraint baXY  . In this

situation, an upper bound on X induces a lower bound on Y. Let us assume that we select

an X segment with index i or lower. This implies that X cannot exceed ix . Let

ji ybaxjij  :max)(.Then, we cannot select a Y segment whose index is less than

1)(ij . This gives us the following valid inequalities.

Figure A6.3 Upper bound on X inducing a lower bound on Y

a) Inequalities relating binary variables

Let 2I be the set of break points in the X pattern such that }1)(2:{2  YnijiI . Then, if

we select an X segment with index i or lower, then we must select a Y segment with index

1)(ij or higher. So, we have the following inequality.

211)(everyfor1 IiTT X
i

Y
ij   (A6.5)

176

b) Inequalities relating marginal weight variables

Let baxy ii  . Then, if X has an upper bound of ix , Y has a lower bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition, and consequently a lower bound on the cumulative marginal weight

for break point 1)(ij along the Y partition. Consider a case where we want to choose

 segment i for the X variable with weights X
i and X

i1 assigned to break points i and

i-1

 segment 1)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break

points)(ij and 1)(ij

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (A6.6)

Or)()()(111)(1)()()(baxaxaxyyy iii
X
iijijij

Y
ij   

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yaxaxyyy  where)11 baxy ii  

Or 111)()(1)()()()(  iii
X
iijijij

Y
ij yaxaxyyy 

Or 11)(1)(1)()()()(  iijii
X
iijij

Y
ij yyaxaxyy 

Or 11)(1)(1)()())(()(  iijii
X
iijij

Y
ij yybaxbaxyy 

Or 11)(1)(1)()()()(  iijii
X
iijij

Y
ij yyyyyy 

Or 11)(11)(1)()(1)()())(()(  iijiijiij
X
iijij

Y
ij yyyyyyyy 

Or
)(1)(

11)(

)(1)(

11)(

)(1)(

1)(

)(

ijij

iij

ijij

iij

ijij

iijX
i

Y
ij

yy

yy

yy

yy

yy

yy











































Or   iii
X
i

Y
ij qqp )(where

)(1)(

1)(

ijij

iij

i
yy

yy
p









and

)(1)(

11)(

ijij

iij

i
yy

yy
q










Or   iii
X
i

Y
ij qqp    1)(1 since X

i
X
i   and

Y
ij

Y
ij 1)()(1  

177

Or  ii
X
ii

Y
ij qpq  )1(1)((A6.7)

Thus, if we select segment i for the X variable and assign a cumulative weight of X
i to

break point i, then we have a lower bound on the cumulative weight variable for break

point 1)(ij . This leads us to the following inequality.

   Y
ijiii

X
i

X
ii

Y
ij TqqpTq 2)(11)()1)(1(   (A6.8)

Proof of validity To show that this inequality is valid, we have to consider two cases.

Case 1: 11)(  iij yy

Case 2: 11)(  iij yy

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to

Case 1 and Scenarios 1, 2 and 4 apply to Case 2.

Case 1: 11)(  iij yy Case 2: 11)(  iij yy

Figure A6.4: Scenarios when upper bound on X induces a lower bound on Y

i) Scenario 1: Select X segment with index i and Y segment with index 1)(ij

This implies 01 
X

iT and 02)(
Y

ijT , which gives  )0()01)(1(1)(iii
X
ii

Y
ij qqpq   ,

178

or  ii
X
ii

Y
ij qpq  )1(1)(, which is what we derived in Equation A2.2.4.

ii) Scenario 2: Select X segment i and Y segment with index 2)(ij or higher

This implies 01 
X

iT and 12)(
Y

ijT , which gives  )1()01)(1(1)(iii
X
ii

Y
ij qqpq   ,

or   iii
X
ii

Y
ij qqpq  )1(1)(, or  ii

X
i

Y
ij qp   11)(, which is valid because

Y
ij 1)( is equal to one (because we selected Y segment with index 2)(ij or higher) and

 ii
X
i qp 1 lies between zero and one because ii qp  .

iii) Scenario 3: Select X segment with index 1i or lower and Y segment 1)(ij

This implies 01 
X

iT , 0X
i and 02)(

Y
ijT , which gives

 )0(0)01)(1(1)(iiii
Y

ij qqpq  ,

or)1(1)(i
Y

ij q , or
Y

ijiq 1)(1   , or
Y

ijiq)( or
)(1)(

11)(

)(

ijij

iijY
ij

yy

yy









 which is the bound

on
Y

ij)( by considering an upper bound of 1ix on the X variable. This scenario is valid

only for Case 1 above.

iv) Scenario 4: Select X segment with index 1i or lower and Y segment with index

2)(ij or higher

This implies 01 
X

iT , 0X
i and 12)(

Y
ijT , which gives

 )1(0)01)(1(1)(iiii
Y

ij qqpq  , or 11)(
Y

ij which is valid since
Y

ij 1)( takes a

value of zero since we choose a Y segment with index 2)(ij or higher.

179

3. Lower bound on X induces an upper bound on Y

Consider the situation where X and Y are related by the constraint baXY  . In this

situation, a lower bound on X induces an upper bound on Y. Let us assume that we select

an X segment with index i+1 or lower. This implies that X has a lower bound of ix . Let

ji ybaxjij  :min)(.Then, we cannot select a Y segment whose index is greater than

)(ij . This gives us the following valid inequalities.

Figure A6.5: Lower bound on X inducing an upper bound on Y

a) Inequalities relating binary variables

Let 3I be the set of break points in the X partition such that }1)(1:{3  YnijiI . Then,

if we select an X segment with index 1i or higher, then we must select a Y segment

with index)(ij or lower. So, we have the following inequality.

311)(everyfor1 IiTT X
i

Y
ij   (A6.9)

b) Inequalities relating marginal weight variables

180

Let baxy ii  . Then, if X has a lower bound of ix , Y has an upper bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition, and consequently an upper bound on the cumulative marginal

weight for break point)(ij along the Y partition. Consider a case where we want to

choose

 segment i+1 for the X variable with weights X
i and X

i1 assigned to break points i

and i+1, and

 segment)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break points

)(ij and 1)(ij .

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (A6.10)

Or)()()(111)(1)()()(baxaxaxyyy iii
X
iijijij

Y
ij   

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yaxaxyyy  where baxy ii   11

Or 1)(111)()()()()(  ijiii
X
iijij

Y
ij yyaxaxyy 

Or 1)(111)()()())(()(  ijiii
X
iijij

Y
ij yybaxbaxyy 

Or 1)(111)()()()()(  ijiii
X
iijij

Y
ij yyyyyy 

Or 1)(11)(11)(1)()()())(()(  ijiijiiji
X
iijij

Y
ij yyyyyyyy 

Or
1)()(

1)(1

1)()(

1)(1

1)()(

1)(

)(










































ijij

iji

ijij

iji

ijij

ijiX
i

Y
ij

yy

yy

yy

yy

yy

yy


Or   iii
X
i

Y
ij qqp )(where

1)()(

1)(










ijij

iji

i
yy

yy
p and

1)()(

1)(1










ijij

iji

i
yy

yy
q

Or   iii
X
i

Y
ij qqp  )1(1)( since X

i
X
i 11   and

Y
ij

Y
ij)()( 

Or  ii
X
ii

Y
ij qpp  1)( (A6.11)

181

Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for

break point)(ij . This leads us to the following inequality.

)1()1()(1)(11)(

X

i

Y

iji

X

iii

X

ii

Y

ij TTqqpTp    (A6.12)

Proof of validity To show that this inequality is valid, we have to consider two cases.

Case 1: 11)(  iij yy

Case 2: 11)(  iij yy

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to

Case 1 and Scenarios 1, 2 and 4 apply to Case 2.

Case 1: 11)(  iij yy Case 2: 11)(  iij yy

Figure A6.6: Scenarios when lower bound on X induces an upper bound on Y

182

i) Scenario 1: Select X segment with index 1i and Y segment with index)(ij

This implies 11 
X

iT and 1)(Y
ijT , which gives)11()(1)(  i

X
iiii

Y
ij qqpp  , or

X
iiii

Y
ij qpp 1)()(  , which is what we derived in Equation A2.3.4.

ii) Scenario 2: Select X segment 1i and Y segment with index 1)(ij or lower

This implies 11 
X

iT and 0)(Y
ijT , which gives)01()(1)(  i

X
iiii

Y
ij qqpp  or

)1)((1)(
X
iii

Y
ij qp   ., which is valid because

Y
ij)( is zero (since we selected a Y

segment with index 1)(ij or lower) and)1)((1
X
iii qp   is positive because ii qp  and

10 1  
X
i .

iii) Scenario 3: Select X segment with index 2i or higher and Y segment with indes)(ij

This implies 11 
X

iT , 11 
X
i and 1)(Y

ijT , which gives)11()()( iiii
Y

ij qqpp ,

or i
Y

ij q)( , or i
Y

ij q)( or
1)()(

1)(1

)(










ijij

ijiY
ij

yy

yy
 which is the bound on

Y
ij)( given that X

has a lower bound of 1ix . This scenario is valid only for Case 1 above.

iv) Scenario 4: Select X segment with index 2i or higher and Y segment with index

1)(ij or lower

This implies 11 
X

iT , 11 
X
i and 0)(Y

ijT , which gives)01()()( iiii
Y

ij qqpp , or

0)(Y
ij which is valid since

Y
ij)( is equal to zero as we select a Y segment with index

1)(ij or .

183

4. Lower bound on X induces a lower bound on Y

Consider the situation where X and Y are related by the constraint baXY  . In this

situation, a lower bound on X induces a lower bound on Y. Let us assume that we select

an X segment with index 1i or higher. This implies that X cannot be lower than ix . Let

ji ybaxjij  :max)(.Then, we cannot select a Y segment whose index is less than

1)(ij . This gives us the following valid inequalities.

Figure A6.7: Lower bound on X inducing a lower bound on Y

a) Inequalities relating binary variables

Let 4I be the set of break points in the X pattern such that }1)(1:{4  YnijiI . Then, if

we select an X segment with index 1i or higher, then we must select a Y segment with

index 1)(ij or higher. So, we have the following inequality.

111)(everyfor IiTT X
i

Y
ij   (A6.13)

b) Inequalities relating marginal weight variables

184

Let baxy ii  . Then, if X has a lower bound of ix , Y has a lower bound of iy . This

implies that there is an upper bound on the marginal weight variable for break point j(i)

along the Y partition and consequently a lower bound on the cumulative marginal weight

for break point 1)(ij along the Y partition. Consider a case where we want to choose

 segment 1i for the X variable with weights X
i and X

i1 assigned to break points i

and i+1

 segment 1)(ij for the Y variable with weights
Y

ij)( and
Y

ij)(1  assigned to break

points)(ij and 1)(ij .

Since baXY  , we get the following.

bxxayy i
X
ii

X
iij

Y
ijij

Y
ij  ))1(()1(11)()()()( (A6.14)

Or baxxaxayyy ii
X
ii

X
iijijij

Y
ij   111)(1)()()()(

Or 111)(1)()()()()(  iii
X
iijijij

Y
ij yaxaxyyy  where baxy ii 1

Or 1)(111)()()()()(  ijiii
X
iijij

Y
ij yyaxaxyy 

Or 11)(1)(1)()()()(  iijii
X
iijij

Y
ij yyaxaxyy 

Or 11)(1)(1)()())(()(  iijii
X
iijij

Y
ij yybaxbaxyy 

Or 11)(1)(1)()()()(  iijii
X
iijij

Y
ij yyyyyy  where baxy ii 

Or 11)(1)(11)()(1)()())()(()(  iijiijiij
X
iijij

Y
ij yyyyyyyy 

Or
)(1)(

11)(

)(1)(

1)(

)(1)(

11)(

)(

ijij

iij

ijij

iij

ijij

iijX
i

Y
ij

yy

yy

yy

yy

yy

yy









































 since)(1)(ijij yy 

Or   iii
X
i

Y
ij qqp )(where

)(1)(

1)(

ijij

iij

i
yy

yy
p









and

)(1)(

11)(

ijij

iij

i
yy

yy
q










Or   iii
X
i

Y
ij qqp  )1(1 11)( since in this case X

i
X
i 11   and

Y
ij

Y
ij 1)()(1  

Or   iii
X
iii

Y
ij qqpqp   11)(1 

185

Or   X
iiii

Y
ij qpp 11)()1(   (A6.15)

Thus, if we select segment 1i for the X variable and assign a cumulative weight of X
i 1

to break point 1i , then we have an upper bound on the cumulative weight variable for

break point 1)(ij along the Y partition. This leads us to the following inequality.

  Y
iji

X
ii

X
iii

Y
ij TqTpqp 2)(111)()1(   (A6.16)

Proof of validity To show that this inequality is valid, we have to consider two cases.

Case 1: 11)(  iij yy

Case 2: 11)(  iij yy

We consider four scenarios that cover these two cases. Scenarios 1, 2, 3 and 4 apply to

Case 1 and Scenarios 1, 2 and 4 apply to Case 2.

Case 1: 1)(1   iji yy Case 2: 1)(1   iji yy

Figure A6.8: Scenarios when lower bound on X induces a lower bound on Y

186

i) Scenario 1: Select X segment 1i and Y segment 1)(ij

This implies 11 
X

iT and 02)(
Y

ijT , therefore  )0()1(11)(ii
X
iii

Y
ij qpqp    , or

 )1(11)(i
X
iii

Y
ij pqp    , which is what we derived in Equation (A2.2.4).

ii) Scenario 2: Select X segment 1i and Y segment with index 2)(ij or higher

This implies 11 
X

iT and 12)(
Y

ijT , therefore   ii
X
iii

Y
ij qpqp  )1(11)( or

 )1(1 11)(
X
iii

Y
ij qp    , which is valid because

Y
ij 1)( is equal to one (since we select

a Y segment with index 2)(ij or higher) and  )1(1 1
X
iii qp   is less than 1 since

ii qp  and 10 1  
X
i .

iii) Scenario 3: Select X segment with index 2i or higher and Y segment with index

1)(ij

This implies 11 
X

iT , 11 
X
i and 02)(

Y
ijT , therefore  )0()1()1(1)(iiii

Y
ij qpqp  or

i
Y

ij q 11)( or i
Y

ij q 1)(1  or i
Y

ij q)( or
)(1)(

11)(

)(

ijij

iijY
ij

yy

yy









 which is the upper bound

on
Y

ij)( given that X has a lower bound of 1ix . This scenario is only applicable for the

case when 1)(1   iji yy .

iv) Scenario 4: Select X segment with index 2i or higher and Y segment with index

2)(ij or higher

This implies 11 
X

iT , 11 
X
i and 12)(

Y
ijT , therefore   iiii

Y
ij qpqp )1(1)( or

11)(
Y

ij , which is valid because
Y

ij 1)( takes a value of one (since we select Y segment

with index 2)(ij or higher).

187

Appendix A7: Selected Functional Decompositions of Ali et al. Problems

In this appendix, we describe how we decomposed the non-linear functions in some of

the test problems that we used in our study.

1) Ackleys

  exnxnz
n

i

i

n

i

i 





















 







 202cosexp02.0exp20Min
1

1

1

21  (A7.1)

}...,,2,1{,3030..s nixt i 

Reformulation:

evuz  2020Min (A7.1.2)

subject to 



n

i

iyy
1

 (A7.1.3)





n

i

iww
1

 (A7.1.4)

}...,,2,1{,2 nixy ii  (A7.1.5)

  }...,,2,1{,2cos nixw ii   (A7.1.6)

 ynu 102.0exp  (A7.1.7)

 wnv 1exp  (A7.1.8)

We used one-dimensional grids to linearize Equations (A7.1.5 –A7.1.8). Also, n =10.

2) AluffiPentini

2

21

2

1

4

1 5.01.05.025.0Min xxxxz  (A7.2.1)

}2,1{,1010..  ixts i

Reformulation

21Min yyz  (A7.2.2)

s.t. 1

2

1

4

11 1.05.025.0 xxxy  (A7.2.3)

188

2

22 5.0 xy  (A7.2.4)

We used one dimensional grids to linearize Equations (7.2.2 – 7.2.4).

3) Becker and Lago Problem

   22

2

1 5||5||Min  xxz (A7.3.1)

}2,1{,1010..  ixts i

Reformulation

21Min yyz  (A7.3.2)

s.t.  211 5||  xy (A7.3.3)

 222 5||y  x (A7.3.4)

We used one dimensional grids to linearize Equations (7.3.2 – 7.3.4).

4) Bohachevsky I

    7.04cos4.03cos3.02Min 21

2

2

2

1  xxxxz  (A7.4.1)

}2,1{,5050..  ixts i

Reformulation

7.0Min 21  yyz (A7.4.2)

s.t.  1

2

11 3cos3.0y xx  (A7.4.3)

 2

2

22 4cos4.02 xxy  (A7.4.4)

We used one dimensional grids to linearize Equations (7.4.2 – 7.4.4).

5) Bohachevsky II

    3.04cos3cos3.02Min 21

2

2

2

1  xxxxz  (A7.5.1)

}2,1{,5050..  ixts i

We used a single two-dimensional grid to linearize Equation (7.5.1).

6) Branin

189

      gxhgdcxbxxaz  1

2

1

2

12 cos1Min (A7.6.1)

150,105.. 21  xxts

 8
1,10,6,5,

4
1.5,1where 2  hgdcba

We used a single two-dimensional grid to linearize Equation (7.6.1).

7) Camel Back 3

2

221

6

1

4

1

2

1 6.105.12Min xxxxxxz  (A7.7.1)

}2,1{,55..  ixts i

We used a single two-dimensional grid to linearize Equation (7.7.1).

8) Camel Back 6

4

2

2

221

6

1

4

1

2

1 44
3

1
1.24Min xxxxxxxz  (A7.8.1)

}2,1{,55..  ixts i

We used a single two-dimensional grid to linearize Equation (7.8.1).

9) Cosine Mixture Problem

  



n

i

i

n

i

i xxz
1

2

1

5cos1.0Min  (A7.9.1)

}...,,2,1{,11..s nixt i 

Reformulation





n

i

iyz
1

Min (A7.9.2)

s.t.   }...,,2,1{,5cos1.0y 2

i nixx ii   (A7.9.3)

We used one-dimensional grids to linearize Equations (7.9.3). Also, n = 2, 4.

10) Dekkers and Aarts Problem

   42

2

2

1

5

21

22

2

2

1

2

2

2

1

5 1010Min xxxxxxxxz  
 (A7.10.1)

190

}2,1{,2020..  ixts i

We used a single two-dimensional grid to linearize Equation (7.10.1).

11) Easom Problem

        2

2

2

121 expcoscosMin   xxxxz (A7.11.1)

}2,1{,1010..  ixts i

We used a single two-dimensional grid to linearize Equation (7.11.1).

12) Epistatic Michalewicz Problem

 




















n

i

m

i
i

iy
yz

1

2
2

sincosMin


 (A7.12.1)

   
   















 



nix

nixx

nixx

yts

i

ii

ii

i

,

...,6,4,2,sincos

...,5,3,1,sincos

.. 1

1





 (A7.12.2)

10,
6

},...,,2,1{,0  mnixi


We used a single one-dimensional grid to linearize Equation (7.12.1). Also, n was

taken as 5.

13) Exponential Problem









 



n

i

ixz
1

25.0expMax (A7.13.1)

}...,,2,1{,11.. nixts i 

Reformulation:

uz Min (A7.13.2)

subject to)5.0exp(yu  (A7.13.3)

191





n

i

iyy
1

 (A7.13.4)

}...,,2,1{,2 nixy ii  (A7.13.5)

We used one-dimensional grids to linearize Equation (7.13.3) and (7.13.5). Also, n

was taken as 10.

14) Goldstein and Price

    

    2

2212

2

11

2

21

2

2212

2

11

2

21

2736481232183230

*

36143141911Min

xxxxxxxx

xxxxxxxxz





 (A7.14.1)

}2,1{,22..  ixts i

We used a single two-dimensional grid to linearize Equation (7.14.1).

15) Griewank Problem














n

i

i
n

i

i
i

x
xz

11

2 cos
4000

1
1Min (A7.15.1)

}2,1{,22..  ixts i

Reformulation (n=10)

n

n

i

i ywz  
14000

1
1Min (A7.15.2)

s.t. }...,,2,1{,2 nixw ii  (A7.15.3)



















2
cos

1
cos 21

2

xx
y (A7.15.4)

}...,,3{,cos1 ni
i

x
yy i

ii 







  (A7.15.5)

We used a one-dimensional grids to linearize Equation (7.15.3) and two-dimensional

grids to linearize Equations (7.15.4 –7.15.5).

192

16) Gulf Research Problem

 

 
























 


99

1

2

1

2 01.0expMin
3

i

x

i i
x

xu
z (A7.16.1)

   5.1
1

01.0ln5025where iui 

50,6.250,1001.0 321  xxx

We used a single three-dimensional grid to linearize Equations (7.16.1).

17) Hartman 3

  
 
















4

1

3

1

2
expMin

i j

ijjiji pxacz (A7.17.1)

}3,2,1{,10..  jxts j
, constants aij, pij and ci as in Table 7.1.

i ci
aij pij

j=1 j=2 j=3 j=1 j=2 j=3

1 1 3 10 30 0.3689 0.117 0.2673

2 1.2 0.1 10 35 0.4699 0.4387 0.747

3 3 3 10 30 0.1091 0.8732 0.5547

4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table A7.1: Data for Hartman 3

 Reformulation:





4

1

Min
i

iiucz (A7.17.2)

s.t. }4,3,2,1{,
3

1




iyw
j

iji (A7.17.3)

193

  }3,2,1{},4,3,2,1{,
2

 jipxay ijjijij (A7.17.4)

  }4,3,2,1{,exp  iwu ii (A7.17.5)

We used one-dimensional grids to linearize Equations (A7.17.4–A 7.17.5).

18) Hartman 6

  
 
















4

1

6

1

2
expMin

i j

ijjiji pxacz (A7.18.1)

}6..,,1{,10..  jxts j
and constants aij , pij and cj given in Tables 7.2 and 7.3.

i ci
aij

j=1 j=2 j=3 j=4 j=5 j=6

1 1 10 3 17 3.5 1.7 8

2 1.2 0.05 10 17 0.1 8 14

3 3 3 3.5 1.7 10 17 8

4 3.2 17 8 0.05 10 0.1 14

Table A7.2: Parameter set I for Hartman 6

i
pij

j=1 j=2 j=3 j=4 j=5 j=6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table A7.3: Parameter set II for Hartman 6

Reformulation

194





4

1

Min
i

iiucz (A7.18.2)

}4,3,2,1{,
6

1




iyw
j

iji (A7.18.3)

  }6..,,1{},4,3,2,1{,
2

 jipxay ijjijij (A7.18.4)

  }4,3,2,1{,exp  iwu ii (A7.18.5)

We used one-dimensional grids to linearize Equations (A7.18.4–A7.18.5).

19) Helical Valley

    2

3

2
2

2

2

1

2

2 110100Min xxxxz 






  (A7.19.1)
































0,
2

1
tan

0,tan

where

1
1

21

2
1

1
1

21

2
1

xif
x

x

xif
x

x







}3..,,1{,1010  ixi

Reformulation:

312Min wwz  (A7.19.2)

subject to

   










































0,
2

1
tan

0,tan

where

110100

1
1

21

2
1

1
1

21

2
1

2

3

2
2

2

2

1

2

212

xif
x

x

xif
x

x

xxxxw









 (A7.19.3)

2

33 xw  (A7.19.4)

We used a one-dimensional grid for Equations (A7.19.4) and a two dimensional grid for

Equation (A7.19.3).

195

20) Hosaki

        2

2

2

4

1

3

1

2

11 exp
4

1
3

7781Min xxxxxxz  (A7.20.1)

60,50.. 21  xxts

We used a single two-dimensional grid to linearize Equation (A7.20.1).

21) Kowalik

 
 


















11

1

2

2

43

21

1

1
Min

i ii

i
i

bxbx

bxx
az (A7.21.1)

}4..,,1{,42.00..  ixts i and the values of ai and bi as given in Table 7.4.

i ai bi

1 0.1957 0.25

2 0.1947 0.50

3 0.1735 1.0

4 0.16 2.0

5 0.0884 4.0

6 0.0627 6.0

7 0.0456 8.0

8 0.0342 10.0

9 0.0323 12.0

10 0.0235 14.0

11 0.0246 16.0

Table A7.4: Data for the Kowalik Problem

We used a four-dimensional grid to linearize Equations (A7.21.1).

196

22) Levy and Montalvo I

          
















 







2
1

1

1

22

1

2 1sin1011sin10Min n

n

i

ii yyyy
n

z 


 (A7.22.1)

 125.01where  ii xy

}..,,1{,1010 nixi 

Reformulation














n

i

iu
n

z
0

Min


 (A7.22.2)

 1

2

0 sin10 yu  (A7.22.3)

     }1..,,1{,sin1011 1

22
  niyyu iii  (A7.22.4)

 21 nn yu (A7.22.5)

  }..,,1{,125.01 nixy ii  (A7.22.6)

We used one-dimensional grids to linearize Equations (A7.22.3) and Equations

(A7.22.5), and two-dimensional grids to linearize Equation (A7.22.4).

23) Levi and Montalvo 2

            







 





 nn

n

i

ii xxxxxz  2sin113sin113sin1.0Min 22
1

1

1

22

1

2

 (A7.23.1)

}..,,1{,55.. nixts i 

Reformulation:





n

i

iuz
0

1.0Min (A7.23.2)

 1

2

0 3sin xu  (A7.23.3)

     }1..,,1{,3sin11 1

22
  nixxu iii  (A7.23.4)

197

    nnn xxu 2sin11 22
 (A7.23.5)

We used one-dimensional grids to linearize Equations (A7.23.3) and (A7.23.5), and two-

dimensional grids to linearize Equations (A7.23.4).

24) McCormick Problem

    15.25.1sinMin 21

2

2121  xxxxxxz (A7.24.1)

33,45.1.. 21  xxts

We used one-dimensional grids to linearize Equations (A7.24.1).

25) Meyer and Roth Problem

 

















5

1

2

21

31

1
Min

i

i

ii

i y
vxtx

txx
z (A7.25.1)

}3..,,1{,1010..  jxts j

The values of the parameters ti, vi and yi are given in Table 7.5.

i ti vi yi

1 1.0 1.0 0.126

2 2.0 1.0 0.219

3 1.0 2.0 0.076

4 2.0 2.0 0.126

5 0.1 0.0 0.186

Table A7.5: Data for Meyer and Roth Problem

Reformulation

We used a three-dimensional grid to linearize Equations (A7.25.1).

26) Miele and Cantrell Problem

198

        8

1

4

43

6

32

4

21 tan100expMin xxxxxxxz  (A7.26.1)

}4..,,1{,11..  ixts i

Reformulation

4321Min yyyyz  (A7.26.2)

  4211 exp xxy  (A7.26.3)

 6322 100y xx  (A7.26.4)

  4433 tany xx  (A7.26.5)

8

14 xy  (A7.26.6)

We used a one-dimensional grid to linearize Equations (A7.26.6) and two-dimensional

grids to linearize equations (A7.26.3–A7.26.5).

27) Modified Langerman Problem

 












5

1

expcosMin
j

j

j

j d
d

cz 


 (A7.27.1)

 



n

i

jiij axd
1

2
where (A7.27.2)

}..,,1{,100 nixi 

The values of the parameters cj and aji are given in Tables 7.6 and 7.7.

 aji
cj

j i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

1 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.02 0.806

2 9.4 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 0.517

3 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 0.1

4 2.196 0.415 5.649 6.979 9.51 9.166 6.304 6.054 9.377 1.426 0.908

5 8.074 8.777 3.467 1.867 6.708 6.349 4.534 0.276 7.633 1.567 0.965

Table A7.6: Data for Modified Langerman Problem

199

Reformulation





5

1

Min
i

juz (A7.27.3)

  }..,,1{},5..,,1{,
2

nijaxw jiiji  (A7.27.4)

}5..,,1{,
1




jwd
n

i

jij (A7.27.5)

  }5..,,1{,expcos 







 jd

d
cu j

j

jj 


 (A7.27.6)

We used one-dimensional grids to linearize Equations (A7.27.4) and Equations

(A7.27.6).

28) Modified Rosenbrock Problem

    21

2

2

22

12 6.05.04.6100Min  xxxxz (A7.28.1)

}2,1{,55..  ixts i

We used a two-dimensional grid to linearize Equation (A7.28.1).

29) Multi-Gaussian Problem

   















 


5

1
2

i

2

2

2

1

d
expMax

i

ii
i

cxbx
az (A7.29.1)

}2,1{,22..  ixts i

Reformulation





5

1

Max
i

iyz (A7.29.2)

s.t.
   

}5..,,1{,
d

expy
2

i

2

2

2

1
i 













 
 i

cxbx
a ii

i (A7.29.3)

200

We used two-dimensional grids to linearize Equation (A7.29.3).

30) Neumaier 2 Problem

  
 











n

k

n

i

k

ik xbz
1

2

1

Min (A7.30.1)

}..,,1{,0.. ninxts i 

Reformulation





n

k

kuz
1

Min (A7.30.2)

  }..,,1{},..,,1{, nknixy
k

iik  (A7.30.3)

}..,,1{,
1

nkyw
n

i

ikk 


 (A7.30.4)

  }..,,1{,
2

nkwbu kkk  (A7.30.5)

We used one-dimensional grids to linearize Equations (A7.30.3) and Equations

(A7.30.5), and used n = 4 and b = {8, 18, 44, 114}.

31) Neumaier 3 Problem

   







n

i

ii

n

i

i xxxz
2

1

1

2
1Min (A7.31.1)

}..,,1{,.. 22 ninxnts i 

Reformulation





n

i

i

n

i

i wyz
21

Min (A7.31.2)

  }..,,1{,1
2

nixy ii  (A7.31.3)

}..,,2{,1 nixxw iii   (A7.31.4)

201

We used one-dimensional grids to linearize Equations 7.31.3 and two-dimensional grids

to linearize Equations 7.31.4.

32) Odd Square Problem

  

















2
expcos

1.0

2.00.1
Min

D
D

D

d
z (A7.32.1)

 



n

i

ii bxd
1

2 (A7.32.2)

 ii bxnD  max (A7.32.3)

}20..,,1{,1515  ixi










1.4 0.5, 0.6,- 0.2,- 1.6, 1.3,- 4,- 0.8, 1.3, 1,

1.4, 0.5, 6,- 2,- 1.6, 1.3,- 0.4,- 0.8, 1.3, 1,
b

Reformulation

yz Min (A7.32.4)

s. t.   }..,,1{,
2

nibxw iii  (A7.32.5)





n

i

iwu
1

 (A7.32.6)

ud  (A7.32.7)

  }..,,1{, nibxnD ii  (A7.32.8)

  }..,,1{, nixbnD ii  (A7.32.9)

1.0

2.00.1
y1






D

d
 (A7.32.10)

   



2

expcosy2
DD  (A7.32.11)

21yyy  (A7.32.12)

We used one-dimensional grids to linearize Equations (A7.32.5), (A7.32.7), and

(A7.32.11); and two-dimensional grids to linearize Equations (A7.32.10) and (A7.32.12).

202

33) Paviani

       
 











10

1

2.0
10

1

222
10ln2lnMin

i i

iii xxxz (A7.33.1)

}10..,,1{,102..  ixts i

Reformulation

       
 
























10

1

10

1

222
log2.0exp10ln2lnMin

i i

iii xxxz (A7.33.2)

Or          
 











10

1

10

1

222
log2.0exp10ln2lnMin

i i

iii xxxz (A7.33.3)

Or vyz
n

i

i 
1

Min (A7.33.4)

      }..,,1{,10ln2ln
22

nixxy iii  (A7.33.5)

  }..,,1{,log nixw ii  (A7.33.6)





n

i

iww
1

 (A7.33.7)

 wv 2.0exp (A7.33.8)

We used one-dimensional grids to linearize Equations (A7.33.5), (A7.33.6), and

(A7.33.8).

34) Periodic Problem

     2

2

2

12

2

1

2 exp1.0sinsin1Min xxxxz  (A7.34.1)

}2,1{,1010..  ixts i

We used a two-dimensional grid to linearize Equation (A7.34.1).

35) Powell’s Quadratic Problem

203

       441

4

32

2

43

2

11 102510Min xxxxxxxxz  (A7.35.1)

}4...,,1{,1010..  ixts i

Reformulation

4321Min yyyyz  (A7.35.2)

 2111 10xxy  (A7.35.3)

 2432 5 xxy  (A7.35.4)

 4323 2xxy  (A7.35.5)

 4414 10 xxy  (A7.35.6)

We used a one dimensional grid to linearize Equation (A7.35.3) and two-dimensional

grids to linearize Equations (A7.35.4–A7.35.6).

36) Price Transistor

We used two six-dimensional grids and one four-dimensional grid to linearize the

nonlinear function in this problem.

 



4

1

222Min
k

kkz  (A7.36.1)

245857315321 }1)]*001.0**001.0*({exp[)1(xggxgxggxxxx kkkkkk 

4,...,1for k (A7.36.2)

kkkkkkk gxgxgxgggxxxx 4159473216421 }1)]*001.0**001.0*({exp[)1(

4,...,1for k (A7.36.3)

4231 xxxx  (A7.36.4)

204

i
 ikg

k =1 2 3 4

1 0.485 0.752 0.869 0.982

2 0.369 1.254 0.703 1.455

3 5.2095 10.0677 22.9274 20.2153

4 23.3037 101.779 111.461 191.267

5 28.5132 111.8467 134.3884 211.4823

Table A7.7: Data for Price Transistor

Reformulation

 



4

1

Min
k

kk qptz (A7.36.5)

321)1(xxxu  (A7.36.6)

421)1(xxxv  (A7.36.7)

4,...,1for*001.0**001.0* 85731  kxgxggr kkkk (A7.36.8)

4,...,1for*001.0**001.0* 947321  kxgxgggs kkkkk (A7.36.9)

  4,...,1for}1]{exp[
2

2455  kxggrxup kkkk (A7.36.10)

  4,...,1for}1]{exp[
2

4156  kgxgsxvq kkkk (A7.36.11)

2

4231)(xxxxt  (A7.36.12)

We used three-dimensional grids for Equations (A36.6) and (A36.7), and four-

dimensional grids for linearizing Equations (A36.10–A36.12).

37) Rastrigin Problem

  



n

i

ii xxnz
1

2 2cos1010Min  (A7.37.1)

}...,,1{,12.512.5.. nixts i 

205

Reformulation





n

i

iynz
1

10Min (A7.37.2)

  }..,,1{,2cos102 nixxy iii   (A7.37.3)

We used a one-dimensional grid to linearize Equation (A7.37.3).

38) Rosenbrock Problem

    




 
1

1

222

1 1Min
n

i

iii xxxz (A7.38.1)

}...,,1{,3030.. nixts i 

Reformulation







1

1

Min
n

i

iwz (A7.38.2)

    }1..,,1{,1
222

1   nixxxw iiii
 (A7.38.3)

We used two-dimensional grids to linearize Equations (A7.38.3).

39) Salomon Problem

  ||||1.0||||2cos1Min xxz   (A7.39.1)





n

i

ixx
1

2||||where (A7.39.2)

}...,,1{,100100.. nixts i 

Reformulation

uz 1Min (A7.39.3)

}..,,1{,2 nixy ii  (A7.39.4)

206





n

i

iyy
1

 (A7.39.5)

  yyu 1.02cos   (A7.39.6)

We used one-dimensional grids to linearize Equations (A7.39.4) and (A7.39.6).

40) Schaffer 1

  
  22

2

2

1

2
2

2

2

1

001.01

5.0sin
5.0Min

xx

xx
z




 (A7.40.1)

}2,1{,100100..  ixts i

We used a two-dimensional grid to linearize Equations (A7.40.1).

41) Schaffer 2

     150sinMin
1.02

2

2

1

225.02

2

2

1  xxxxz (A7.41.1)

}2,1{,100100..  ixts i

We used a two-dimensional grid to linearize Equations (A7.41.1).

42) Shubert

    
 
















n

i j

i jxjjz
1

5

1

1cosMin (A7.42.1)

}...,,1{,1010.. nixts i 

We used a two-dimensional grid to linearize Equations (A7.42.1) for n = 2.

43) Schwefel Problem

207

  



n

j

ii xxz
1

||sinMin (A7.43.1)

}...,,1{,500500.. nixts i 

Reformulation





n

i

iyz
1

Min (A7.43.2)

 ||sin iii xxy 

We used one-dimensional grids to linearize Equations (A7.43.2).

44) Shekel 5 Problem

 


























5

1
4

1

2

1
Min

i

j

ijji axc

z }4...,,1{,100..  jxts i (A7.44.1)

Problem i aij ci

j=1 j=2 j=3 j=4

S5 1 4 4 4 4 0.1

 2 1 1 1 1 0.2

 3 8 8 8 8 0.2

 4 6 6 6 6 0.4

 5 3 7 3 7 0.4

S7 6 2 9 2 9 0.6

 7 5 5 3 3 0.3

 8 8 1 8 1 0.7

S10 9 6 2 6 2 0.5

 10 7 3.6 7 3.6 0.5

Table A7.8: Data for Shekel Problems

208

Reformulation





5

1

Min
i

iuz (A7.44.2)

}5...,,1{,
1

 i
w

u
i

i (A7.44.3)

5,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii (A7.44.4)

}4...,,1{,)(2  jxy jj (A7.44.5)

We used one-dimensional grids to linearize Equations (A7.44.3) and (A7.44.5).

45) Shekel 7 Problem

 


























7

1
4

1

2

1
Min

i

j

ijji axc

z (A7.45.1)

}4...,,1{,100..  jxts i

Reformulation





7

1

Min
i

iuz (A7.45.2)

}7...,,1{,
1

 i
w

u
i

i (A7.45.3)

7,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii (A7.45.4)

}4...,,1{,)(2  jxy jj (A7.45.5)

We used one-dimensional grids to linearize Equations (A7.45.3) and (A7.45.5).

46) Shekel 10 Problem

209

 


























10

1
4

1

2

1
Min

i

j

ijji axc

z (A7.46.1)

}4...,,1{,100..  jxts i

Reformulation





10

1

Min
i

iuz (A7.46.2)

}10...,,1{,
1

 i
w

u
i

i (A7.46.3)

10,...,1,2)(
4

1

2  


ixaaycw
j

jijijjii (A7.46.4)

}4...,,1{,)(2  jxy jj (A7.46.5)

We used one-dimensional grids to linearize Equations (A7.45.3) and (A7.45.5).

47) Sinusoidal Problem

    







 



n

i

i

n

i

i CxBCxAz
11

sinsinMin (A7.47.1)

}...,,1{,1800.. nixts i 

Our tests were performed with A = 2.5, B = 5, C = 30, n= 20.

Reformulation

 sAyz Min (A7.47.2)

  }20...,,1{,sin  iCxu ii (A7.47.3)

}10...,,1{,212   juuv jjj
 (A7.47.4)

}5...,,1{,212   kvvw kkk (A7.47.5)

211 wwy  (A7.47.6)

210

432 wwy  (A7.47.7)

213 yyy  (A7.47.8)

53wyy  (A7.47.9)

   }...,,1{,sin niCxBp ii  (A7.47.10)

}10...,,1{,212   jppq jjj
 (A7.47.11)

}5...,,1{,212   kqqr kkk (A7.47.12)

211 rrs  (A7.47.13)

432 rrs  (A7.47.14)

213 sss  (A7.47.15)

53rss  (A7.47.16)

We used one-dimensional grids to linearize Equations (A7.47.3) and (A7.47.10), and two

dimensional grids to linearize (A7.47.4–A7.47.9) and (A7.47.12–A7.47.16).

48) Storn’s Tchebychev Problem

321Min pppz  (A7.48.1)

 





n

i

i

in
xu

1

2.1 (A7.48.2)

 










duif

duifdu
p

0

2

1 (A7.48.3)

 





n

i

i

in
xv

1

2.1 (A7.48.4)

 










dvif

dvifdv
p

0

2

2 (A7.48.5)

211
















n

i

i

in

j x
m

j
w

1

1
2

 (A7.48.6)

 
 

















110

11

11
2

2

j

jj

jj

j

wif

wifw

wifw

q (A7.48.7)





m

j

jqp
0

3 (A7.48.8)

  60,661.72,128,128:9For
9

 mdxn i

  100,145.10558,32768,32768:17For
17

 mdxn i

Reformulation

256::9For  Fn

32678::17For  Fn

321'Min pppz  (A7.48.9)

 













n

i

iin

F

x
u

1

2.1 (A7.48.10)

u
F

d
p '1 (A7.48.11)

 211 'pp  (A7.48.12)

 













n

i

iin

F

x
v

1

2.1 (A7.48.13)

v
F

d
p '2 (A7.48.14)

 222 'pp  (A7.48.15)

mj
F

x

m

j
w

n

i

i

in

j ,...,0for 1
2

1























 (A7.48.16)

mj
F

wr jj ,...,0for
1

'  (A7.48.17)

  mjrr jj ,...,0for '
2

 (A7.48.18)

212

mj
F

ws jj ,...,0for
1

'  (A7.48.19)

  mjss jj ,...,0for '
2

 (A7.48.20)

mjsrq jjj ,...,0for  (A7.48.21)





m

j

jqp
0

3 (A7.48.22)

49) Wood’s function

       

        118.19111.10

1901100Min

42

2

4

2

2

2

3

22

34

2

1

22

12





xxxx

xxxxxxz
 (A7.49.1)

}4...,,1{,1010..  ixts i ‘

Reformulation

321Min yyyz  (A7.49.2)

   21

22

121 1100y xxx  (A7.49.3)

   23

22

342 190y xxx  (A7.49.4)

        118.19111.10y 42

2

4

2

25  xxxx (A7.49.5)

We used two-dimensional grids to linearize Equations (A7.49.3–A7.48.5).

213

Appendix A8: Determining the Best Non-uniform Grid for an n-dimensional

Function

Given a n-dimensional function),...,(1 nxxf , iii uxl  and a set of break points along

each dimension, partition the domain along each dimension into segments and the entire

space into n-dimensional boxes such that the sum of the approximation errors over all the

boxes is minimized. The approximation error arises when the function values at the

points that lie on or inside a box are approximated by convex combination of the function

values at the vertices of the box.

Sets and parameters

D set of dimensions

d index over D

n number of dimensions

dI set of intervals along dimension d

dS set of segments along dimension d

i index over dI for all Dd

s index over dS for all Dd

d
is parameter that is one if interval dIi belongs to segment dSs along dimension

d , and is zero otherwise

B set of n-dimensional boxes

b index over B

bc approximation error (or cost) associated with box b

),(dbs segment corresponding to box b along dimension d

d number of segments required along dimension d

214

),(dsB set of boxes corresponding to segment s along dimension d

 total number of boxes required; 



Dd

d

 set of all possible interval combinations along all the dimensions ;

nIII  ...21

 index over  ; each  can be conceptualized as a box in n-dimensional space such

that each edge of this box corresponds to an interval. We call such a box a pixel.

)(B set of boxes that cover pixel

Variables

d
sX binary variable that is one if we select segment s along dimension d , and is zero

otherwise

bY binary variable that is one if we select box b , and is zero otherwise

Objective

Our goal is to minimize the sum of the approximation errors over each selected box


Bb

bbYcMin (A8.1)

Constraints

1) Interval selection constraint

Each interval along each dimension must be covered by exactly one segment.





dSs

dd
s

d
is DdIiX ,allfor1 (A8.2)

2) Segment selection constraint

215

For each dimension, the number of segments selected should be equal to desired

number of segments along that dimension.

DdX
dSs

dd

s 


allfor (A8.3)

3) Box selection constraint

For each box, if we select each of the segments that the box corresponds to along

each dimension, then we must select that box.

BbnXY
Dd

d
dbsb 



allfor1),(

 (A8.4)

4) Total number of boxes constraint

The total number of boxes selected must be equal to the required number of boxes.


Bb

bY (A8.5)

5) Box forcing constraint

If we select a segment along dimension d, then we must select a specified number of

boxes (equal to
d /) along that segment.

DdSsXY dd

sd
dsBb

b 











,allfor
),(


 (A8.6)

6) Pixel covering constraint

Each pixel in n-dimensional space must be covered by exactly one box.







allfor1
)(Bb

bY (A8.7)

7) Binary Variable constraint

The segment selection and box selection constraints are binary.

dd
s SsDdX  ,allfor}1,0{ (A8.8)

216

BbYb  allfor}1,0{ (A8.9)

Note: If we are using the maximum error metric, then we define:

 a parameters bĉ which indicates the approximation error associated with box b based

on the maximum error metric, and

 a continuous variable W that indicates the maximum error over all the selected boxes.

We need a new objective as given by Equation (A8.10) and a new constraint as given by

Equation (A8.11). The model is comprised of Equations (A8.2 –A8.11).

WMin (A8.10)

BbYc bb  allforˆW (A8.11)

Strengthening the aggregate box selection inequality

We can strengthen the box selection constraint by aggregating it over multiple boxes that

have the property that they cannot all be present in a feasible integer solution. For each

dimension Dd ¸ let us define d as the set of all possible combinations of segments

along that dimension such that in each combination, the segments cover a common

interval. This implies that in a feasible integer solution, no more than one segment can be

selected from a segment combination.

Let ||21 ... D be the product of the segment combinations along each

dimension and let  be an index over  . Each combination product  corresponds to

(a) a set of segment-combinations along each dimension such each segment

combination shares a common interval, and

(b) a set of boxes which share a common space.

Further, let)(dS be the set of segments along dimension d that are present in the

combination product  , and)(B be the set of boxes formed by the set of segments in

217

the combination product  . Then, the aggregate box selection inequality is given by

Equation (A8.9).

 
 




allfor1
)()(Dd Ss

d

s

Bb

b nXY
d

 (A8.12)

This inequality is valid because (a) on the right hand side, for each dimension, no more

than one segment can be selected, since the segments cover a common interval, and (b)

on the left hand side, no more than one box can be chosen depending upon the segments

chosen along each dimension. We now provide an LP solution that does not satisfy the

aggregate box selection inequality.

LP solution violating the box selection inequality

Consider a scenario in which we have a two-dimensional grid with two intervals along

each dimension, and we wish to create a grid with two segments along each dimension.

In this case, the only solution is to choose each interval as a segment. Let us now see how

the mixed integer program defined by Equations (A8.1) – (A8.6) will solve this problem.

To do so, we first need to define some sets and parameters.

Notation

21, II set of intervals along Dimension 1 and Dimension 2 respectively

qp, indices over
1I

sr, indices over
2I

1S set of segments along Dimension 1; a segment covering intervals p through q is

denoted by the ordered pair (p, q)

2S set of segments along Dimension 2; a segment covering intervals r through s is

denoted by the ordered pair (r, s)

218

B set of boxes; a box formed by segments (p, q) along Dimension 1 and (r, s) along

Dimension 2 is denoted by the 4-tuple (p, q, r, s)

1

pqX binary variable that is 1 if we select segment (p, q) along Dimension 1, and zero

otherwise

2

rsX binary variable that is 1 if we select segment (r, s) along Dimension 2, and zero

otherwise

pqrsY binary variable that is 1 if we select box (p, q, r, s), and zero otherwise

In the current case, where we have a 2x2 grid, the various sets can be listed as follows.

 }2,1{1 I , }2,1{2 I

)}2,2(),2,1(,)1,1{(1 S ,)}2,2(),2,1(,)1,1{(2 S

Consider the following LP solution.

)}2,2(),2,1(,)1,1{(),(allfor
2

11  qpX pq (A8.13a)

)}2,2(),2,1(,)1,1{(),(allfor
2

12  srX rs (A8.13b)

)}2,2(),2,1(,)1,1{(),()},2,2(),2,1(,)1,1{(),(allfor0  srqpYpqrs

 (A8.13c)

This solution satisfies the box selection constraint but since it does not assign a strictly

positive value to any of the box selection variables, it can achieve an objective value of

zero. However, if we apply the aggregate box inequality for the overlapping segments

sets)}2,1(,)1,1{(1  and)}2,1(,)1,1{(2  , we get the Equation (A8.11).

12

12

2

11

1

12

1

111112121111121111  XXXXYYYY (A8.14)

The left hand side of this equation has a value of 1 and therefore it forces one or more of

the box selection variables (on the left hand side) to take a strictly positive value. Thus,

219

the LP solution given by Equation (A8.10) will be removed by the aggregate box

inequality.

220

Appendix A9: Models and Reformulations for Gasnet

The gasnet model involves designing a gas pipeline system that can transport a fixed

amount of gas from point A to points B and C. The pressure, temperature and

composition of the gas at points A, B, and C are known. The configuration of the pipeline

system is shown in Figure 1. There are a total of twelve pipeline segments and ten

compressors. Each segment has five associated variables: the flow rate (Q), the inlet

pressure (dp) which is also the discharge pressure from the upstream compressor, the

outlet pressure (sp) which is also the suction pressure for the downstream compressor,

the pipe diameter (D), and the length of the pipeline segment (L). The objective is to

design a pipe at the lowest cost.

Model-I

Sets

I set of segments of pipes, ji, indices over I

C set of compressors c index over C

B set of branches b index over B

)(cIu set of pipe segments that are immediately upstream of compressor c

)(cId set of pipe segments that are immediately downstream of compressor c

)(iIu set of pipe segments that are immediately upstream of segment i

)(iId set of pipe segments that are immediately downstream of segment i

)(ic compressor downstream of segment i

nontermI set of non-terminal pipe segments

)(bI set of pipe segments that belong to branch b

221

Figure A9.1: Pipeline system

Parameters

k ratio of specific heat at constant pressure to the specific heat at constant volume at

suction conditions, assumed to be 1.26

s1 s0 s2 s3

c1 c2 c3 A c4

s7

s5

s6

s4

c5

c6

c7

B

s9

s8

c8

c9

c10

s10

s11

C

222

 compressibility factor of gas at suction conditions, assumed to be 0.88

t suction temperature in
o
R, assumed to be 520

fix fixed cost for a compressor

var variable cost for a compressor, expressed in dollars per unit work done by the

compressor

op operating cost for a compressor, expressed in dollars per unit work done by the

compressor

 fixed cost for pipe, expressed in dollars per unit length per unit diameter of the

pipe

b length of branch b

max

c maximum compression ratio allowed for compressor c

Variables

iL length of pipe segment i

idP discharge pressure for pipe segment i

isP suction pressure for pipe segment i

iD diameter of pipe segment i

iQ flow in pipe segment i

c compression ratio for compressor c

cW work done by compressor c

cY binary variable that takes value 1 if compressor c is selected, and takes value zero

otherwise

Objective

223

Our objective is to minimize the sum of the fixed, variable and operating costs of the

compressors and the fixed pipe costs.





Cc

cop

Cc

cfix

Ii

ii YYDL)(Min var  (A9.1)

Constraints

1) Pressure drop in pipe segments

For each pipe, the discharge pressure must be greater than or equal to the suction

pressure.

IiPP
ii sd  allfor0 (A9.2)

2) Length of branches

The total length of the segments in a particular branch must be equal to the specified

branch length.

BbL b

bIi

i 


allfor
)(

 (A9.3)

3) Flow Equation

The flow equation links the flow rate, pipe length, pipe diameter, discharge pressure

and suction pressure for the pipe segment.

      IiPPD
L

Q
ii sdi

i

i  allfor871.0
1 223/1622

 (A9.4)

or       IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
 (A9.5)

4) Compressor work definition

The compressor work definition expresses the work done by a compressor in terms of

the suction temperature (t), the ratio of specific heat at constant pressure to the

specific heat at constant volume (k), the compressibility factor of gas at suction

224

conditions (), the compression ratio for compressor (), and the flow rate through

the compressor.

 )(,allfor1
1

08531.0 /)1(cIiCc
k

k
QtW d

kk

ic 


  (A9.6)

5) Maximum compression

For each compressor, the compression ratio must be between 1and the maximum

compression ratio for that compressor.

  CcYccc  allfor11 max (A9.7)

6) Compression definition

For each compressor, the compression ratio is the ratio of the discharge pressure into

the downstream pipe segment and the suction pressure in the upstream pipe.

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i  (A9.8)

7) Flow balance

The flow rate out of a compressor is 99.5% of the flow rate into the compressor.

nontermici

iIj

ji IiYQQQ
d

 


allfor005.0)(

)(

 (A9.9)

Reformulation

We present four different models of the gasnet problem.

Model 0

1) We use a two dimensional grid for linearizing the first term in Equation (A9.1).

2) We use a four dimensional grid to linearize Equation (A9.5).

3) We use a two dimensional grid to linearize Equation (A9.6), Equation (A9.7) and

Equation (A9.8).

225

Model 1

1) We use a two dimensional grid for linearizing the first term in Equation (A9.1).

2) We use a four dimensional grid to linearize Equation (A9.5).

3) We use a two dimensional grid to linearize Equation (A9.6) and Equation (A9.8).

4) Let iQ̂ be the upper bound on iQ . Then, instead of creating a two dimensional grid for

Equation (A3.9), we use the transformation given by Equations (A9.10–A9.13) which

ensures that

a. when)(icY is equal to one, then i

iIj

j QQ
d

995.0
)(




 , and

b. when)(icY is equal to zero, then i

iIj

j QQ
d


)(

.

nontermicii

iIj

j IiYQQQ
d




allfor)1(ˆ005.0995.0)(

)(

 (A9.10)

nontermi

iIj

ji IiQQQ
d

 


allfor995.0
)(

 (A9.11)

nontermici

iIj

ji IiYQQQ
d

 


allforˆ005.0)(

)(

 (A9.12)

When)(icY is equal to one, Equation (A9.10) becomes Equation (A9.13), which together

with Equation (A9.11) leads to Equation (A9.14), which is condition (a) above.

nontermi

iIj

j IiQQ
d




allfor995.0
)(

 (A9.13)

nontermi

iIj

j IiQQ
d




allfor995.0
)(

 (A9.14)

When)(icY is equal to zero, Equation (A9.12) can be replaced by Equation (A9.15), which

together with Equation (A9.11) leads to Equation (A9.16), which is condition (b) above.

nonterm

iIj

ji IiQQ
d

 


allfor
)(

 (A9.15)

nontermi

iIj

j IiQQ
d




allfor
)(

 (A9.16)

226

Model-II

Model-II is the same as Model I except that we make the following changes.

a) Replace the
idP variables by a new set of variables

idP such that IiPP
ii dd  allfor .

b) Replace Equation (A9.2) with Equation (A9.17) which contains
idP variables.

      IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
 (A9.17)

c) Replace Equation (A9.5) Equation (A9.18) which contains
idP variables.

IiPP
ii sd  allfor0 (A9.18)

d) Replace Equation (A9.8) by Equation (A9.19) which contains the
idP variables.

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i  (A9.19)

Model-II is comprised of Equations (A9.1), Equations (A9.3–A9.4), Equations (A9.6–

A9.7), Equation (A9.9), and Equations (A9.17–A9.19).

We reformulate Model-II in the same manner as we reformulate Model-I. Further, we use

two-dimensional grids to linearize Equations (A9.19).

Model-III

Model-III is the same as Model I except that we make the following changes.

a) Replace the
isP variables by a new set of variables

isP such that IiPP
ii ss  allfor .

b) Replace Equation (A9.2) with Equation (A9.20) which contains the
isP variables.

      IiPPD
Q

L
ii sdi

i

i  allfor871.0
1 223/162

2
 (A9.20)

c) Replace Equation (A9.5) with Equation (A9.21) which contains the
isP variables.

IiPP
ii sd  allfor0 (A9.21)

227

d) Replace Equation (A9.8) with Equation (A9.22) which contains the
isP variables.

)(),(,allfor cIjcIiCc
P

P
du

s

d

c

j

i  (A9.22)

Model-III is comprised of Equations (A9.1), Equations (A9.3–A9.4), Equations (A9.6–

A9.7), Equation (A9.9), and Equations (A9.20–A9.22).

We reformulate Model-III in the same manner as we reformulated Model-I. Further, we

use two-dimensional grids to linearize Equations (A9.22).

228

Appendix A10: Model and Reformulation for Reactor Network Design

The chemical reactor network design model involves determining the types, sizes, and

interconnections of reactors which optimize a desired performance objective. In the

model considered here, the reactors are of the type Continuous Stirred Tank Reactors

(CSTR).

Model

Sets

I set of components, i indices over I

J set of reactions j index over J

L set of CSTR units l index over L

R set of feeds r index over R

P set of products p index over P

Parameters

ijv coefficient of reactant Ii in reaction Jj

jk̂ rate constant, defined for Jj

jE activation energy, defined for Jj

R gas constant

a

rF flow rate of feed streams, defined for Rr

a

ric flow rate of species in feed streams, defined for IiRr  ,

)(ji reactant for reaction Jj

Variables

ad

rlF flow rate from feed splitters to CSTR mixers, defined for LlRr  ,

d

lF flow rate into CSTR units, defined for Ll

229

g

lF flow rate out of CSTR units, defined for Ll

gd

llF ', flow rate from CSTR outlets to CSTR inlets, defined for LlLl  ',

gh

lpF flow rate from CSTR outlets to product mixers, defined for PpLl  ,

h

pF flow rate of product streams, defined for Pp

d

lic concentration of species in the CSTR inlet streams, defined for IiLl  ,

g

lic concentration of species in the CSTR outlet streams, defined for IiLl  ,

h

pic concentration of species in the product streams, defined for IiPp  ,

m

lT temperatures in the CSTR units, defined for Ll

m

lV volumes of the CSTR units, defined for Ll

m

ljr rate of reaction j in reactor l, defined for JjLl  ,

Objective

The current problem specifcations are as follows.

Set of components },,,{ DCBAI 

No. of reactions: 3

CBA
kk
 21

ˆˆ

DA
k
 3

ˆ
2

 No. of CSTR units: 5

 No. of feeds: 1

No. of products: 1

Our objective is to maximize the yield of B.

h

Bc1Max (A10.1)

Constraints

1) Flow conservation at the feed splitter

230

RrFF
Ll

ad

rl

a

r 


allfor (A10.2)

2) CSTR inlet mixer total balance

LlFFF
Rr Ll

gd

ll

ad

rl

d

l  
 

allfor
'

' (A10.3)

3) CSTR inlet mixer component balance

LlIiFcFcFc
Rr Ll

gd

ll

g

il

ad

rl

a

ri

d

l

d

li  
 

,allfor
'

'' (A10.4)

4) CSTR total balance

LlFF d

l

g

l  allfor (A10.5)

5) CSTR component balance

LlIirvVFcFc
Jj

m

ljij

m

l

d

l

d

li

g

l

g

li  


,allfor (A10.6)

6) CSTR reaction rates

  LlJjc
RT

E
kr

ijvg

jlim

l

j

j

m

lj 









 ,allforexpˆ

)((A10.7)

7) CSTR outlet splitter

LlFFF
Pp

gh

lp

Ll

gd

ll

g

l  


allfor
'

' (A10.8)

8) Product mixer total balance

PpFF
Ll

gh

lp

h

p 


allfor (A10.9)

9) Product mixer component balance

PpIiFcFc
Ll

gh

lp

g

li

h

p

h

pi 


,allfor (A10.10)

Reformulation

1) We use two dimensional grids for linearizing the product terms in Equation (A10.4),

Equation (A10.6), and Equation (A10.10), and the exponential terms in Equation

(A10.7).

231

Appendix A11: LP Equivalence of Segment-wise and Cumulative adjacency

Given an NLP and its associated PLA reformulation, let [P] be the MIP model for

the PLA problem. Formulation [P] can use either segment-wise adjacency or cumulative

adjacency constraints for the combined partition of every variable, but we assume that it

does not contain any additional constraints on the segment selection (z) variables such as

valid inequalities relating z-values across grids. We consider the relationship between

two relaxations of problem [P]: (i) the LP relaxation obtained by relaxing the integrality

restrictions on the z-variables, and (ii) the Adjacency relaxation obtained by omitting the

adjacency conditions and z-variables from [P].

Let V
LP

 and V
Adj

 denote the optimal values of these two relaxations. For any

variable x of the original NLP problem, suppose the combined partition contains (n + 1)

breakpoints (and associated) marginal weight variables, indexed from i = 0, 1, …, n; the

corresponding segments are indexed from i = 1, 2, …, n such that segment i extends from

the (i – 1)
st
 breakpoint to the i

th
 breakpoint. For variable x, let),(xx z and

x̂

respectively denote the vectors of marginal weights and segment selection values in these

optimal solutions to the LP and Adjacency relaxations. (Based on the following result,

we can show that the two relaxations have optimal solutions with the same optimal values

for the vertex weight variables, i.e., -variables. So, we do not consider these variables

in our discussions.)

Proposition: V
LP

 = V
Adj

, and, for every variable x, we can construct an optimal solution

x̂ to the Adjacency relaxation from the solution),(xx z to the LP relaxation, and vice

versa.

232

Proof: For any x, given the solution),(xx z to the LP relaxation, the solution
xx   is

feasible for the Adjacency relaxation. Hence, V
LP

 > V
Adj

.

Given the optimal solution
x̂ to the Adjacency relaxation, consider the solution

xx  ˆ

and
xxxz 101

ˆ
2

1ˆ   ,
x

i

x

i

x

iz  ˆ
2

1ˆ
2

1
1   for i = 2, 3, …., n – 1, and

x

n

x

n

x

nz  ˆˆ
2

1
1   .

 This solution),(xx z is feasible for the LP relaxation, i.e., it satisfies the adjacency

conditions (either cumulative or segment-wise) and the requirement that 1
1




n

i

x

iz .

Hence, V
LP

 < V
Adj

, implying that V
LP

 = V
Adj

. The solution transformations above show

how we can obtain an optimal solution for one relaxation from the optimal solution to the

other.

233

Appendix A12: Notation for MIP Models

In this appendix, we discuss the notation for the individual grid models, the pattern-based

models and the combined partition models discussed in Chapter 5.

G: set of grids (functions) that contain variable X

g: index over G

gn : number of segments in the partition for X in grid Gg

i: index over break points/segments in the partition for X in grid Gg

gV : set of vertices in grid Gg

  iV g

 set of vertices in grid g that lie along break point i

g

vx : X-value at vertex v

vf : function value at vertex v

gĥ : approximate function value for grid Gg

g

v : vertex weight variable for vertex gVv in grid Gg

g

iZ : binary segment selection variable defined for each segment gIi in grid Gg

g

i : marginal weight variable for break point i in grid Gg

g

iW : binary cumulative segment selection variable for segment i in grid Gg

g

i : cumulative marginal weight variable for break point i in grid Gg

q: index over reflected binary codes

g

qB : binary variable that is one if we select in the partition for X in grid Gg a

segment that has a one at the q’th position in its gray code

P: set of partitioning patterns for variable X

p: index over P

234

pG : set of grids (functions) that contain variable X and use pattern Pp

pn : number of break points in partitioning pattern Pp

j: index over break points/segments in partitioning pattern Pp

p

jS : binary segment selection variable for segment j in partitioning pattern Pp

p

j : marginal weight variable for break point j in partitioning pattern Pp

p

jT : cumulative segment selection (binary) variable for segment j in partitioning

pattern Pp

p

j : cumulative marginal weight variable (continuous) for break point j in partitioning

pattern Pp

p

qC : binary variable that is one if we select in partitioning pattern Pp a segment that

has a one at the q’th position in its gray code

m: number of break points in the combined partition for X

k: index over break points and segments in the combined partition for X

kR : binary segment selection variable defined for segment k

k : marginal weight variable for break point k

 kM : cumulative segment selection (binary) variable for segment k in the combined

partition for X

k : cumulative marginal weight variable (continuous) for break point k in the

combined partition for X

qD : binary variable that is one if we select in the combined pattern for X a segment

that has a one at the q’th position in its gray code

235

 References

Adhya A, Tawarmalani, M, Sahinidis, NV (1999) A Lagrangian approach to the

pooling problem. Ind. Eng. Chem. Res. 38: 1956–1972

Al-Khayyal FA, Falk JE (1983) Jointly constrained biconvex programming. Mathematics

of Operations Research 8(2): 273–286

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows—Theory, Algorithms and

Applications,Prentice Hall, New Jersey.

Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several

stochastic algorithms on selected continuous global optimization test problems.

Journal of Global Optimization 31: 635–632.

Androulakis IP, Maranas CD, Floudas CA (1995) Alpha bb: A global optimization

method for general constrained nonconvex problems. Journal of Global Optimization,

7(4):337–363.

Arnold, VI (1963) On functions of three variables. Givental, AB, ed Vladimir I. Arnold:

Collected Works, Volume 1, Representations of Functions, Celestial Mechanics and

KAM Theory (Springer), 5–8.

Babayev, DA (1997) Piece-wise linear approximation of functions of two variables.

Journal of Heuristics 2: 313–320.

Balakrishnan, A, Graves SC (1989) A composite algorithm for a concave-cost network

flow problem. Networks 19: 175–202.

Chien M, Kuh E (1977) Solving nonlinear resistive networks using piecewise-linear

analysis and simplicial subdivision. IEEE Trans. Circuits Syst. 24(6): 305–317

236

Croxton, KL, Gendron B, Magnanti TL (2003) A comparison of mixed-integer

programming models for non-convex piecewise linear cost minimization problems.

Management Science 49(9): 1268–1273.

Dahl G., Realfsen B (2000) Curve approximation constrained shortest path problems.

Networks, 36: 1–8

D'Ambrosio, C, Lodi A, Martello S (2010) Piecewise linear approximation of functions

of two variables in MILP models. Operations Research Letters 38: 39–46.

Dantzig, GB (1963) Linear Programming and Extensions. (Princeton University Press,

Princeton, NJ).

Domschke P, Geißler B, Kolb O, Lang J, Martin A, Morsi A (2010), Combination of

Nonlinear and Linear Optimization of Transient Gas Networks. INFORMS Journal

on Computing 23(4): 1–13

Duran, MA and Grossman IE (1986) An outer-approximation algorithm for a class of

mixed-integer nonlinear programs Mathematical Programming 36(3), 307-339

Falk, JE and Soland, RM (1969) An algorithm for separable nonconvex programming

problems.Management Science 15:550–569

Faria DC, Bagajewicz MJ (2011) Novel bound contraction procedure for global

optimization of bilinear MINLP problems with applications to water management

problems. Computers and Chemical Engineering 35: 446–455

Floudas, CA, Gounaris, CE (2009) A review of recent advances in global optimization.

Journal of global optimization 45(1):3–38

Frey, PJ, George PL (2000) Mesh Generation–Application to finite elements (Hermes

Science Publishing, UK) 97–133.

237

Gilbert, EN (1957) Gray codes and paths on the n-Cube. The Bell System Technical

Journal, May 1957.

GonzAlez, JG, Castro GA (2001) Short-term hydro scheduling with cascaded and head-

dependent reservoirs based on mixed-integer linear programming. 2001 IEEE Porto

Power Tech Conference.

Karuppiah, R., Furman, KC., Grossmann, I E(2008) Global optimization for scheduling

refinery crude oil operations. Computers and Chemical Engineering 32 (11), 2745–

2766

Kesavan P and Barton PI (2000). Generalized branch-and-cut framework for mixed-

integer nonlinear optimization problems. Computers & Chemical Engineering,

24:1361–1366

Li, HL, Hu CS (1999) Global optimization method for nonconvex separable

programming problems. European Journal of Operational Research 117(2):275–292

Li, HL, Lu HC, Huang CH, Hu NZ (2009) A superior representation method for

piecewise linear functions. INFORMS Journal on Computing 21(2):314–321

Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically

constrained quadratic programs. Math. Program. Ser. B 103: 251–282

Marnanti TL, Stratilla D (2012) Separable concave optimization approximately equals

piecewise linear optimization. Bienstock D, Nemhauser G, eds. Integer Programming

and Combinatorial Optimization, Lecture Notes in Computer Science Volume 3064,

2004: 234–243

Meyer, CA, Floudas CA (2004) Trilinear monomials with mixed sign domains: Facets of

the convex and concave envelopes. J. Glob. Optim. 29(2): 125–155

238

Meyer, CA, Floudas, CA (2005) Convex envelopes for edge-concave functions. Math.

Program. 103(2): 207–224

Misener, R, Floudas CA (2010) Piecewise-linear approximations of multidimensional

functions. Journal of Optimization Theory and Applications 145: 120–147

Padberg, M (2000) Approximating separable nonlinear functions via mixed zero-one

programs. Oper. Res. Lett. 27: 1–5

Price KV, Storn RM, Lampinen JA (1998) Differential Evolution—A Practical Approach

to Global Optimization, Springer, Berlin Heidelberg New York

Radó F (1988) The Euclidean Multifacility Location Problem. Operations Research.

36(3): 485-492

Rovatti, R, Ambrosia CA, Lodi A, Martello S (2014) Optimistic MILP modeling of

nonlinear optimization problems. European Journal of Operational Research 239: 32–

45

Ryoo, HS and Sahinidis NV (1995) Global optimization of nonconvex nlps and minlps

with applications in process design. Computers & Chemical Engineering, 19(5):551–

566

Ryoo, HS and Sahinidis NV (1996) A branch-and-reduce approach to global optimization

Journal of Global Optimization. 8(2):107–138

Sherali, HD (2001) On mixed-integer zero-one representations for separable lower-semi-

continuous piecewise-linear functions. Operations Research Letters 28: 155–160.

Laan, GV, Talman AJJ (1980) Simplicial Fixed Point Algorithms, (Mathematisch

Centrum 1980, Amsterdam)

239

Todd, M (1977) Union Jack triangulations. Karamardian S, ed Fixed Points: Algorithms

and Applications (Academic Press, New York), 315–336.

Wahlbin LB (1998) General principles of superconvergence in Galerkin finite element

methods. Krízek M, Neittaanmäki P, Stenberg R, eds. Finite Element Methods –

Superconvergence, Post-processing and a Posteriori Estimates, Lecture Notes in Pure

and Applied Mathematics, Volume 196, 2004: 269–285

Westerlund T and Pörn R (2002) Solving pseudo-convex mixed integer optimization

problems by cutting plane techniques. Optimization and Engineering, 3:235–280

Westerlund T, Skrifvars H, Harjunkoski I, Pörn R (1998) An extended cutting plane

method for a class of non-convex minlp problems. Computers & Chemical

Engineering, 22(3):357–365.

Vaidyanathan R and El-Halwagi M (1996). Global optimization of nonconvex minlps by

interval analysis. Grossmann IE, ed Global Optimization in Engineering Design,

Kluwer Academic Publishers, Dordrecht, 175–193

Vielma, JP, Ahmed S, Nemhauser G. (2010) Mixed-integer models for nonseparable

piecewise-linear optimization: Unifying framework and extensions. Operations

Research 58(2): 303–315.

Vielma, JP, Ahmed S, Nemhauser G. (2010) A note on ‘A superior representation

method for piecewise linear functions’. INFORMS Journal on Computing 22(3):

493–497.

Vielma, JP, Nemhauser G (2011) Modeling disjunctive constraints with a logarithmic

number of binary variables and constraints. Mathematical Programming, Series A.

128: 49–72.

240

Vielma, JP (2014) Mixed Integer Linear Programming Formulation Techniques (To

appear in the Society for Industrial and Applied Mathematics (SIAM)

Wahlbin LB (1998) General principles of superconvergence in Galerkin finite element

methods. Krizek M, Neittaanmaki P, Stenberg R (eds) Finite Element Methods,

(CRC Press): 269–285

Yousef AA, Gentil P, Jensen JL, Lake LW (2006) A capacitance model to infer interwell

connectivity from production and injection rate fluctuations. SPE Reservoir

Evaluation and Engineering 9(6):630-646

Zamora JM and Grossmann IE (1999) A branch and contract algorithm for problems with

concave univariate, bilinear and linear fractional terms. Journal of Global ptimization,

14:217:249

Zhang, H, Wang S (2008) Linearly constrained global optimization via piecewise-linear

approximation. Journal of Computational and Applied Mathematics. 214: 111 – 120

