
The Thesis Committee for Daniel Ruiz Santa Maria Certifies
that this is the approved version of the following thesis:

Identifying Post-Silicon Bugs and Their Root Causes Through a

Hardware Introspection Engine

APPROVED BY

SUPERVISING COMMITTEE:

Mohit Tiwari, Supervisor

Andreas Gerstlauer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211337426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Identifying Post-Silicon Bugs and Their Root Causes Through a

Hardware Introspection Engine

by

Daniel Ruiz Santa Maria

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2017

Acknowledgments

I would like to thank Jae Youl Kim for giving me the opportunity to do research during

my graduate studies. I would also like to thank Samsung Electronics for the generosity of

funding this research.

iii

Identifying Post-Silicon Bugs and Their Root Causes Through a

Hardware Introspection Engine

Daniel Ruiz Santa Maria, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Mohit Tiwari

The goal of this project is to design, build, and evaluate new hardware mechanisms

to debug post-silicon bugs in Systems-on-Chip (SoCs). Specically, we aim to accelerate the

diagnosis of complex bugs such as deadlocks that are notoriously hard to identify using exist-

ing debugging mechanisms such as ARM CoreSight and hardware performance counters. We

will design and evaluate programmable introspection mechanisms that will analyze streams

of program and hardware-level trace data at test- and run-time, check correctness invariants,

and generate event summaries that point to root causes of bugs.

This thesis describes an on-chip hardware introspection engine (HIE) that detects

anomalous transactions and alerts the user of potential bugs that could lead to deadlock.

The HIE is a device that attaches to a bus and snoops on request and response transactions

and collects response latency metadata for the transactions it receives. From this meta-

data, HIE is able to evaluate the normal behavior of transactions and alert engineers when

anomalous behavior is detected at run-time. The HIE also separates the metadata it collects

for different address ranges, creating a local version of the memory map that allows easy

integration into existing systems. Synthesis on a FPGA and simulation of the HIE show

that minimal area overhead is required for implementation and 100% detection accuracy

is achievable for deadlock scenarios. The concept of learning address ranges and collecting

and analyzing metadata for these ranges can have many applications in different fields that

leverage anomaly detection, i.e. security, debug, etc.

iv

Table of Contents

Acknowledgments iii

Abstract iv

Chapter 1. Introduction 1

Chapter 2. Motivation: Post-Silicon Bugs and Existing Solutions 4

2.1 Deadlock Scenarios . 4

2.2 Existing Solutions . 6

2.3 Opportunities for HIE . 7

Chapter 3. Architecture of HIE 8

3.1 Transaction Buffer . 8

3.2 Range Entry Table . 9

3.2.1 Insert . 11

3.2.2 Update . 12

3.2.3 Split . 12

3.2.4 Merge . 13

3.2.5 Evict . 14

3.3 Trace Buffer . 15

Chapter 4. Implementation of HIE 17

4.1 Transaction Buffer Design . 17

4.2 RET Entry Description . 18

4.3 Sorting Logic . 19

Chapter 5. Experimental Setup 21

5.1 Gem5 Test Bed . 21

5.1.1 Bug Injection in Gem5 . 21

5.1.2 Bus Trace Monitor . 23

5.1.3 Creating the Trace Data . 23

5.2 Freedom U500 Testing Platform . 24

5.2.1 Architecture Configuration . 25

v

5.2.2 Bug Injection in Freedom SoC . 25

5.2.3 HIE Instantiation in Freedom . 25

5.2.4 Freedom Simulation . 26

Chapter 6. Parameter Evaluation 27

6.1 Transaction Buffer Size and Timeout Value 27

6.2 LRU THRESHOLD Values . 28

6.3 Update Period . 28

6.4 Range Entry Table Size . 29

6.5 Initial Average and Variance . 31

Chapter 7. Results 32

7.1 Detection Accuracy in Gem5 . 32

7.2 Detection Accuracy in Freedom . 33

7.3 Hardware Requirements . 34

7.3.1 Cycle Time . 34

7.3.2 Synthesis Report Analysis . 34

7.3.3 Final Implementation Results . 40

Chapter 8. Summary and Conclusion 42

Bibliography 43

vi

Chapter 1

Introduction

Hardware-level bugs that manifest after synthesis are extremely challenging to detect

and replicate. Determining the root cause of such bugs is even harder – for example, a typical

post-synthesis bug can take a few hours to manifest and require over a month of effort to

diagnose its root cause. This project aims to detect post-synthesis bugs quickly after they

manifest in order to provide better diagnostic root-cause information.

Post-synthesis bugs are challenging to diagnose because they often have long depen-

dency chains that were not explored in pre-fabrication testing and validation. For example,

a data corruption in a cache can flow through the program, get loaded into the address

register or the program counter, and lead to an illegal memory address or instruction value.

As a result, the processor or state machine logic will output illegal bus-level transactions and

cause some parts of the SoC to be deadlocked. By the time the actual error manifests, the

program may have processed millions of instructions and the corrupted data may have been

overwritten by a subsequent store instruction. Using ARM CoreSight, a designer can try to

re-run the program and if the bug is reproducible, then try to analyze the extremely large

volumes of data and use manual insight to identify the root cause. However, most of the

challenging bugs are not reproducible in a deterministic manner and collecting hardware-

level logs or running simulations until the bug manifests can take far too much memory and

time.

We present a hardware introspection engine (HIE) – a hardware unit that is attached

to the interconnect, snoops on all bus transactions among devices attached to the bus, and

populates a trace buffer with transaction information that its logic identifies as anomalous.

The HIE has multiple attributes that make it useful for debug and easy to deploy in a

practical SoC. These attributes are listed below:

1

• HIE is an IP that connects to the bus and snoops on all transactions – as a result,

using the HIE does not require all existing IP to be modified and limits debugging

functionality to a small, bus standard compliant IP to be added to the SoC. This

makes HIE practical to deploy.

• HIE uses statistics from transaction history to learn non-buggy behaviors of the SoC

traffic – as a result, other IP in the system can be designed without interfacing with

the HIE design team. Once the SoC components are synthesized and fabricated, post-

synthesis test vectors can be used to generate the baseline inputs to train the HIE’s

anomaly detection mechanisms. When a bug occurs, the HIE will detect anomalies in

bus traffic, record the source-destination-messages that are potentially relevant to the

anomaly, and record these messages to a trace buffer that the debug engineer can read

out.

• HIE adds little to no overhead to existing bus protocols or system flows. By learning

the normal behavior of SoC traffic, HIE requires no programming from the host, and

can begin learning SoC behavior after reset. Another benefit of learning SoC behavior

instead of being programmed is that human error is avoided in the HIE.

In this thesis, an HIE device that detects potential deadlock transactions is emulated

in Python with Gem5 traces and then realized on an FPGA inside a Freedom SoC. Gem5

is used to create trace data by running four SPEC2006 benchmarks and the Linux boot

sequence itself to create normal transaction behavior for the HIE to learn on. The simulator

is then injected with two deadlock scenarios (an invalid address transaction and a deadlocked

peripheral device) to create a buggy trace that is later used in conjunction with the clean

traces to evaluate the Python HIE model for accuracy and functionality.

The HIE design is then converted into RTL using Chisel HDL, integrated into a

multicore RISCV SoC, and synthesized onto a Xilinx Ultrascale FPGA. The SoC is injected

with a deadlocked peripheral device bug and Linux boot is ran to feed the HIE with clean

transactions. The final design of the HIE shows 100% detection accuracy for all deadlock

scenarios and adds an overhead of 17% more LUTs and 1% more Block RAMs to a SoC

2

with two out-of-order cores that have 32KB instruction and data caches (104245 LUTS, 137

Block RAMs).

The rest of this thesis is laid out as follows. Section 2 will discuss the motivation

behind this project and Section 3 will explain our proposed solution. The testing environment

will be explained in Section 4 and the results of simulation are explained in Section 5. Section

6 elaborates on hardware requirements and results of the HIE and Section 7 concludes this

thesis.

3

Chapter 2

Motivation: Post-Silicon Bugs and Existing Solutions

In this section, we categorize the most significant categories of post-silicon bugs and

focus in on the bugs we specifically target. In practice, post-silicon hardware lockups can be

classified as ‘livelocks’ or ‘deadlocks’. Livelocks can be detected by software or can be easily

fixed using existing debugger tools – software being available as a debugging option is crucial

to solving livelocks. On the other hand, deadlocks caused by hardware design bugs do not

allow engineers to use the core debug logic that is used commonly for software debugging.

In this research, we focus on developing an IP to detect deadlocks – our target is finding

the deadlock condition earlier and even finding main cause if possible. As a side effect, since

anomaly detection is a general-purpose primitive, the system can be updated with new IP

cores and the HIE will adapt its parameters to the new system.

2.1 Deadlock Scenarios

We classified deadlock scenarios into five cases based on the location of the cause.

1. Core bug. If a bug inside of the core causes deadlock, it is almost impossible

to find the main cause from an SoC debug tool. Most CPU designs have their own debug

feature that will help in system debug, but we are not going to handle core deadlocks in this

research.

2. Load/Store unit bug. There are many transaction ordering conditions applied

to the load and store units in each core – such as barriers, ordered transactions, hazard

conditions, etc. Since bugs inside the host core cannot be found by SOC debug tools, these

bugs are not targeted in this research.

3. Transaction missing due to incomplete address mapping in SOC. This is the most

common design bug that causes system lockup. Each IP designer usually only focus on

4

their own dedicated address space, causing some address ranges to be left unhandled. These

address ranges usually dont create problems if software works correctly or hardware doesnt

make an unexpected transaction. When either of these happen, however, this bug becomes

a difficult one to identify and pin-point the root cause for. Figure 2.1 shows an example of

a request ignored by the bus arbiter. RAM is mapped to the address range 0x4000-0xFFFF

and a peripheral device (PERI) is mapped to 0x0000-0x1FFF. If the CPU sends a request

to address 0x3000, the arbiter will have no destination to send the transaction and will most

likely drop the request. The CPU will not receive a response and will halt the progress of

the executing program if a later instruction is dependent on the deadlocked transaction.

Figure 2.1: Deadlock caused by incomplete address mapping

4. Clock or power control logic bugs. The wrong sequence of clock or power control

requests can cause system lockup as well. This could be caused by a missing signal or protocol

handling error by software or hardware. Figure 2.2 shows a diagram of transactions sent out

by the CPU during a clock gating sequence and a peripheral device does not respond to a

request. There is a chance that the CPU sends clock gating requests out of order and the

device stops responding because it entered a clock gated state sooner than expected. This

phenomenon is almost the same as the incomplete address mapping case, but it is harder

to find the root cause because it is difficult to reproduce cases that occur sporadically in

executions with multiple masters.

5. Bus design error. Bus components themselves usually dont cause any problem,

but bridges (especially an asynchronous bridge crossing), up or down sizers, and all other

components which connect different types of devices are vulnerable to design bugs. For

example, data is missed at an asynchronous crossing in specific timing corner cases, or an

5

Figure 2.2: Deadlock caused by SoC

up or down sizer chops or merges data and the data size is no longer supported by other bus

components.

This research covers the third and fourth scenarios where an unmapped address is

accessed and a peripheral device does not respond to a request. The bus design error was

not successfully integrated into the testing environment and was not covered in this research.

2.2 Existing Solutions

The inability to access internal signals inside an SoC limits the controllability and

observability of logic to debug engineers. The most common design-for-debug (DfD) tech-

niques are JTAG and embedded logic analyzers. JTAG is an IEEE standardized hardware

interface that allows engineers to write and read flip-flop values in the internal logic of a

circuit. This gives validation engineers the ability to initialize the state of a circuit, clock

the circuit for one or more cycles with the initialized values, and then view the values of the

flops in the circuit to analyze the behavior. JTAG is useful in sensitizing paths when a bug

is reproducible, but when a bug occurs non-deterministically JTAG is not capable of storing

the events that lead to the bug. Embedded logic analyzers (ELAs) provide a solution to

the limitations of JTAG by storing a restricted group of signals before and after an event

in embedded memory [1], but they are limited by the amount of data they can hold [9].

6

The combination of JTAG and ELAs increase the speed of bug diagnosis, but both of these

techniques are still limited by the bandwidth they can drive off-chip.

Industry tools have evolved to allow engineers to have more observability when they

debug SoCs. ARM Coresight, Xilinx Chipscope, and Intel Trace Hub are a few of the leading

tools that allow the user to set a trigger event and capture various signals for debug. These

tools add to JTAG and ELAs by giving the engineer the ability to reconfigure which signals

are available for debug. Although these tools are very useful and have significantly helped

in faster bug diagnosis, the increasing complexity of SoCs adds an overwhelming amount of

data that engineers have to process manually.

Singerman et al. [10] and DeOrio et al. [5] propose using pre-silicon methodologies

to better assist post-silicon debug. By using the observability of pre-silicon simulations, a

database is created off-chip that stores transactions and events that occur in various scenarios

in the design. Debug circuitry is inserted on-chip to capture the data that represents all the

events that can take place. DeOrio et al. also claim that by having very specialized hardware,

reproducing a bug is not required because most of the previous events are stored for the

engineer to observe in the design. The results of these two designs are very promising and can

greatly improve time-to-market by using pre-silicon observability to collect data on-chip that

allows engineers to have a higher level of abstraction when debugging, but they can be limited

by re-usability. Unless next generation products have only incremental changes, maintaining

the on-chip circuitry and transaction databases will require development overhead that could

actually the delay the product release. This is a trade-off that must be considered by SoC

architects.

2.3 Opportunities for HIE

HIE provides a solution that learns the behavior of a SoC on-chip and provides trans-

action history to the debug engineer. HIE does not provide a self-contained solution to

post-silicon debug, but when combined with existing DfD techniques, it can provide valu-

able insight to post-silicon engineers. The re-usability of HIE is only limited by the protocol

interface of the bus it is attached to.

7

Chapter 3

Architecture of HIE

The HIE is an IP Core that attaches to the system interconnect using standard

interfaces (AXI or Tilelink protocols). As a result, no other IP core in an SoC needs to

be modified in order to be monitored by the HIE. Interestingly, ARM-based SoC tracing

solutions today enable designers to get visibility into runtime executions. However, these

solutions require the engineer to collect and process the trace data manually. Instead, HIE

includes the logic required to process these traces at runtime and then creates warnings/alerts

for the debuggers during post-silicon validation.

The HIE architecture consists of three modules called the Transaction buffer (XB),

Range Entry Table (RET), and Trace Buffer (TB). Figure 3.1 shows a top level diagram of

the HIE. These three components work together to learn the behavior of the transactions by

matching responses with request, analyzing the response times of the new transactions with

past behavior, and storing anomalous transactions for the engineer to debug. The following

sections go into further detail about each module in the HIE.

3.1 Transaction Buffer

The Transaction Buffer (XB) is tasked with tracking the response time of each trans-

action. This block gets populated with requests and counts the number of cycles it takes to

receive a response. After a response is matched with its request, the response is checked to

see if it was sent with a response error. A transaction with a response error is sent to the

Trace Buffer and not to the RET because a bad response could potentially skew the response

times the RET is tracking, i.e. a response is received faster than usual because it was sent

with an error. If the response does not have an error, the data stored in the XB is sent to

the RET for response time analysis. Any anomalous behavior detected after a request is

8

Figure 3.1: Top Level Diagram of the HIE

matched with a response is handled by the RET.

There is a chance that a request does not get a response back. Since the XB has

limited space, requests that dont receive a response after a certain amount of time need to

be removed. A parameterizable timeout value is used to invalidate entries in the XB once

the counters reach this value. Once a request has timed out it will be added to the trace

buffer as an anomalous transaction and the entry will be invalidated. Chapter 6 will discuss

the timeout values chosen and the size of the XB. In the case that a request is matched at

the same time it reaches the timeout value, the data will be forwarded to the RET instead

of the TB. This is required because the TB will stop collecting transactions if a timeout is

detected. Section 3.3 will explain the halting of trace data in more detail.

3.2 Range Entry Table

The RET is a special type of cache where each entry holds metadata (response time

statistics) for the address range that it represents. This structure is similar to the Range

Cache in [11] where special operations like insert, split and merge modify the data held in

9

the table. The purpose of storing address ranges instead of point addresses is to try and

learn the memory map of the SOC. The HIE needs to differentiate transactions targeting

devices with slow response times from transactions that target devices with slow response

times in order to to not flag every transaction sent to slow responding devices as anomalous.

For example, if most transactions are routed to a DRAM controller and few transactions

are routed to a USB device, the HIE should know that USB transactions take longer to

respond than main memory transactions and are therefore behaving normally. This can be

accomplished by storing response statistics for an address range as they are seen over time.

We chose to have the HIE learn the memory map instead of being programmed with

the address space of different devices in order to provide an IP that has minimal overhead

when incorporated into an existing system. This makes the HIE a simple plug and play

device that makes no intrusion to existing flows in current and future SoCs. The HIE will

also be free of programming error if it learns the memory map instead of being configured. If

an engineer makes a mistake in the programming of the memory map, the HIE would learn

on a bad memory map and would be useless for debug.

The RET tracks the response time averages of the different address ranges it detects.

The HIE IP is placed at the outer boundary of the CPU, so the only commands tracked by

the RET are read, write, and miscellaneous commands, where miscellaneous commands are

anything other than the read and write opcodes. Therefore, each entry in the RET holds

the average response time for three different categories of commands as well as a minimum

variance for each category. Response time variance is necessary when a device can have

variable response times due to events such as queueing latency or resource congestion. The

RET must also have the most up-to-date response times to make accurate decisions with

each transaction. Dynamic frequency scaling can change the response time of a device,

so all of the commands are updated periodically by keeping a running sum of response

times and response time variance. The Implementation section describes how the update is

accomplished.

When the RET receives a transaction, it looks for the address of the transaction in

its entries. There should be no overlap in the entries of the RET so the lookup will match

10

with one entry (hit) or no entries (miss). The RET handles adding, updating, and removing

entries with the special operations insert, update, split, merge, and evict. If the lookup results

in a miss, then the insert operation adds the transaction data into the RET. If the result

is a hit, then the RET will either update the entry that matched or it will split the entry

into two entries with different statistics. When the RET becomes full, the merge and evict

operations create space for future transactions. The following sections go into further detail

for each operation.

3.2.1 Insert

The insert operation occurs when there is a RET miss. An entry is created that

starts at the 4KB page of the transaction address and ends at the largest address possible

in a 48-bit address space. For example, if the first transaction the HIE sees is for address

0x0000 0000 0100, then the insert operation will create an entry with a start address of

0x0 0000 0000 (top 36 bits of the address) and an end address of 0xFFFF FFFF FFFF. The

read/write/misc averages and variances are initialized to a parameterizable value on entry

creation, and the current transaction response time overwrites the initial value for its corre-

sponding command. Initial values are needed because the RET would become fragmented

very quickly if the average and variance fields are initialized to 0. Figure 3.2 shows an

example of this fragmentation. When a read response for address 0x8000 0000 arrives, an

entry is created ranging from 0x8000 0000 to 0xFFFF FFFF FFFF. The initial values for write

and invalidate are set to 0. When a write response matches with this range (0x8200 1000

in Figure 3.2) its response time is checked with the entry's write average to determine if

it is anomalous. Since the write average is set to zero, the HIE will determine the write

transaction to be anomalous and will split the entry into two entries because it believes the

significant difference in the write response times result in it being a different device. In

reality, the write transaction should not split because it is for the same device but the initial

value of the entry created the error in the HIE. The initial values chosen are explained in

the Parameter Evaluation section.

Evictions of addresses can cause future transactions to miss in the RET. In this case

the RET must find the largest address range possible for each new entry. A state machine

11

iterates through the valid entries in the RET to find the next highest start address with

respect to the current transaction. The entries must be sorted in order to know what ranges

are present at the moment. The Implementation section will explain the logic inside this

state machine. Once the next highest address is known, an entry is created starting at the

transaction address and ends at the next highest start address - 1. By spanning as much of

the address space as possible the amount of fragmentation in the RET is kept to a minimum.

3.2.2 Update

The update operation occurs when there is a hit in the RET and the transaction’s

response time falls within the variance of the matching entry’s command. After a transaction

is matched with an entry, the difference between the response time and entry’s average is

calculated and then squared to find the magnitude of the error. This value is then added

to a field in the entry that holds the running sum of errors since the last periodic update.

The response time is also added to a field that holds the running sum of response times

since the last periodic update to calculate the current average response time. Finally, an

update counter for the specific command the transaction was for is incremented. The Imple-

mentation section will describe the logic that calculates the squared error and the periodic

update.

3.2.3 Split

If the address hits in the RET but is outside the variance of the matching entry,

then a split operation is performed. A split can be the result of a transaction taking longer

than usual due to queueing or bus congestion, or because the address is mapped to a device

that has longer access time than that of the matching entry. In either case, the entry that

resulted in a hit will be split into two entries with different average response times for that

command. The new entry created from the split starts at the current transaction address

and ends at the original end address of the entry accessed. The original entry has to end at

the page right before the new entry to avoid any overlaps. For example, if the transaction

address is 0x0 8500 0000 and hit inside the entry [0x0 0008 0000, 0x0 0008 FFFF], the split

would modify the existing entry to [0x0 0008 0000, 0x0 0008 4FFF] and create a new entry

12

with a range of [0x0 0008 5000, 0x0 0008 FFFF]. This new entry is initialized the same way

an insert operation initializes an entry and is then added to the RET.

A transaction with a longer than normal response time is seen as a potential anomaly

by the HIE. If an anomaly is flagged for every transaction that causes a split, then the HIE

would create a lot of false alarms for the debug engineers. To minimize the number of false

alarms, the HIE only flags transactions that took longer than AVG ANOM MULT times the

average response time of the entry that matched. AVG ANOM MULT is a parameterizable

constant and the evaluation section explains what value was chosen for the design.

3.2.4 Merge

Merge operations are performed when the RET has reached its max capacity. Trans-

actions that took longer (or shorter) than usual to respond will cause entries to split in the

RET, but because the HIE does not know the true memory map of the SoC, it is possible

that the RET becomes full with entries that were created erroneously. These entries created

through splits will eventually converge to the same average response time as the original

entry, and therefore can be merged back into a single entry.

The first event that takes place in a merge is to sort all the entries in the RET. Once

the order of the entries is determined, the RET decides whether to merge an entry based on

three cases. The first case is if the average of one of the two entries falls within the bounds of

the other entry. The second case is if an entry has had minimal access since it was created.

This alleviates the scenario when one transaction took anomalously longer than usual to

respond and a new entry was created for it, but subsequent transactions did not target this

new entry again. Finally, if an address range has not been accessed in a long time it will be

forced to merge. These three cases are listed below with more detail.

Case 1: The two entries being evaluated for a merge are tested to see if they lie within each

other’s bounds. The bounds are calculated the same way as in the update operation where

the difference in the averages are tested to be within the variance of each entry. If the read,

write, and misc. averages fall within either of the entries' variances, the entries are merged

13

into one range spanning both of the entries. The entry with the higher address range is then

invalidated in the RET.

Case 2: is necessary to reduce fragmentation in the RET. If neither of the entries fell within

each other's bounds as described in Case 1, then evictions would be necessary to create

space for new address ranges. This case is useful when a range splits due to one anomalous

transaction and the newly created entry is not hit frequently. Using the same example above

for the Split operation, the range [0x8000 0000, 0x8FFF FFFF] would split into [0x8000 0000,

0x84FF FFFF] and [0x8500 0000, 0x8FFF FFFF] if a transaction to 0x8500 0000 was seen as

anomalous. If the range [0x8500 0000, 0x8FFF FFFF] is not accessed frequently then it will

waste space and should be merged back into [0x8000 0000, 0x8FFF FFFF]. This case occurs

when the LRU counter of an entry is greater than parameter LRU THRESHOLD MIN and

if the entry has not gone through a periodic update.

Case 3: also reduces fragmentation. This case will force a merge to occur if an entry’s LRU

counter is above the parameter LRU THRESHOLD MAX. This case includes entries that

have gone through a periodic update.

After an entry is merged, it is invalidated and the next highest address range is tested

to be merged. If an entry cannot be merged then the next valid entry in the index table

is tested with its next highest address for merging. This continues until all address ranges

have been checked for merging.

3.2.5 Evict

There are times when the RET is full and none of the entries can be merged. This can

occur when all entries that have not been updated have not reached LRU THRESHOLD MIN

and all entries that are updated are below LRU THRESHOLD MAX. This leads to an evic-

tion of the least recently used entry. The RET becomes fragmented when entries are evicted

and ends up leading to more evictions. Setting the LRU thresholds to lower values minimizes

the evictions that occur over time.

14

3.3 Trace Buffer

The Trace Buffer holds transaction information that was deemed anomalous and

raises an interrupt when an anomalous transaction is detected. There are three types of

anomalies that the HIE will detect: a deadlock, a significantly long or short response time,

and a response error. Deadlocks are detected when the XB counters timeout and data is sent

to the TB. When this activity occurs, the Deadlock error interrupt signal is used to signal

that a deadlock was detected. Long or short response times are detected by the RET and

forwarded to the TB for future analysis. The Delay error interrupt signal notifies the user

that this event occurred. These interrupts are raised after a transaction is loaded into the

TB. The response error transactions that the Trace Buffer receives do not raise any interrupt

flags. Since the request received a response, it will not cause deadlock and it is assumed that

the original requester will know how to react to a transaction with the error field set.

The TB also stops keeping track of transactions after the deadlock error interrupt

asserts. This prevents succeeding transactions from overwriting the anomalous transaction

that caused the deadlock. The delay error interrupt does not halt the Trace Buffer because

long response times for a few transactions might not lead to failure, and long response times

occur more frequently than deadlocks.

15

Figure 3.2: Example of fragmentation due to initial values starting at zero

16

Chapter 4

Implementation of HIE

This chapter describes the microarchitecture and algorithms implemented inside HIE.

4.1 Transaction Buffer Design

The XB matches responses with requests to track response times. Each transaction

is first decoded to find whether it is a request or response. Requests are added to the XB

and a counter is triggered to count the number of cycles it takes to receive a response. Each

request registered in the buffer is associated with a counter that increments at every clock

cycle to get a measurement of the response time. These counters are cleared when the valid

bit toggles from high to low and start incrementing when the valid bit is set. Responses can

be received out of order, therefore a lookup process, similar to a cache lookup, is required to

match responses with their request entries. For fast lookup times, a tag is created to match

requests with their responses. Figure 4.1 shows the fields of a XB entry and the fields that

are used to make the tag. The response opcode is used for matching to reduce the lookup

time.

Figure 4.1: Transaction Buffer Entry

When a response arrives, the fields required to create the tag are concatenated, and a

parallel search of this value is done with all entries in the buffer. When the matching request

is found the valid bit is cleared, and the tag and other transaction fields are propagated to

17

the RET. If an entry’s counter reaches the TIMEOUT value, the entry is invalidated and

forwarded to the Trace Buffer. Due to the fact that the XB has two separate data paths to

the RET and TB, there is no contention if an entry times out and a response is matched in

the same cycle. In the scenario that a response is matched with a request in the same cycle

that a counter reaches the TIMEOUT value, the transaction data is sent to the RET to be

determined if it is anomalous or not. Figure 4.2 shows a microarchitecture diagram of the

Transaction Buffer.

Figure 4.2: Transaction Buffer Microarchitecture Diagram

4.2 RET Entry Description

Figure 4.3 shows all the fields in an entry. The start address and end address fields

are the values used to find a matching entry in the RET. A simple comparison of whether a

transaction address lies within these fields leads to a hit in the RET. The Read/Write/Misc.

average fields are used to track the average response times for that range. Response times can

vary due to queueing latency and resource congestion, so the variance fields create bounds

for the HIE to detect anomalies. Since we do not have unlimited memory to track the average

response times of a range over the lifetime of an application, we need to periodically update

18

the average response times to have the most recent data for each range. We use the sum

fields to keep a running sum of response times and the count fields as the total number of

transactions seen since the last update. The period for updating is parameterizable and the

evaluation section explains what thresholds are best for detecting anomalies. The errsqrd

fields have a similar function as the sum fields. This is the running sum of the squared

error in response time of each transaction where the error is the difference between the range

average and the current transaction response time. In order to avoid using a multiplier to

compute the square, we use shift registers and shift the error value by log2 of the next highest

power of 2 number. For example, if the error is 30 cycles then the number thirty is shifted

left by 5 bits, creating a value close to 302. With this technique, we sacrifice accuracy in

the variance that is calculated but as the results show, this does not affect the end result.

The errsqrd field is used to update the variance at the same time the average is updated.

The valid bit is used to insert and evict data in the RET and the update field is used by

the merge operation to minimize fragmentation (further explained in the next section). ID

is used by the merge and insert operation to sort the entries in ascending order. The LRU

field increments any time the RET is accessed to create new entry or to update an existing

entry.

Figure 4.3: RET entry fields

4.3 Sorting Logic

A state machine iterates through all the entries in the RET to order the transactions

from lowest to highest. To avoid doing a O(n2) sort on the RET, N comparators and one

index table are needed for N entries in the RET, where N is the max entries the RET can

hold. The comparators are loaded with the end address of the entry being analyzed and

19

the start address of all of the entries. The output of the comparators result in 1 if the end

address is larger than the start address and 0 otherwise. The result of all the comparators are

passed to an adder to sum how many entries represent a lower address range. After having

this sum, the ID of the entry is stored in the index table, where the index is the sum of the

adder minus 1. Figure 4.4 shows a brief example of sorting for merge in a 4-entry RET. The

left input to the comparators is the End Address 0x8500 0FFF and the other inputs are the

start addresses of all the other entries. Three of the four comparators will be true ,so the

output of the adder will be three. This sum is then subtracted by 1 and used as the index

to the index table.

Figure 4.4: Logic used to sort RET entries

20

Chapter 5

Experimental Setup

For proof of concept and quick prototyping, the HIE was first simulated using a

python model and transaction data was generated with Gem5 [4]. Two bugs were injected

into the simulation to create the deadlock scenarios and multiple SPEC2006 benchmarks

were ran to create a wide variation of transaction data to test the HIE design. After this,

the HIE RTL was developed and integrated into the Freedom U500 SoC and tested on a

Xilinx VU190 Ultrascale FPGA. The following sections go into more detail on each of these

environments.

5.1 Gem5 Test Bed

The Gem5 simulator was used because it can model a Realview ARM platform with

up to 64 heterogeneous out-of-order cores and boot unmodified Linux using the AARCH64

(ARM 64-bit) ISA. The trace-based CPU model, event-driven memory system, and flexible

addition of peripheral devices allows for the creation of transaction data from a complex

system topology. Our simulation environment, shown in Figure 5.1, established 4 ARMv8

cores with 32K Bytes L1 Instruction Cache, and 64K Bytes L1 private data caches, and one

2M Bytes L2 shared cache. The CPU cores ran at 2Ghz and the crossbar bus clock ran at

1Ghz. All components attached to the crossbar run at the same speed as bus with some

delay. The Linux kernel used was genericarmv8 3.16.0-rc6, and the benchmark programs ran

were the SPEC2006 BZIP2, GCC, HMMR, and LibQuantum.

5.1.1 Bug Injection in Gem5

Gem5 has an event-driven memory system which includes caches, crossbars, and a

DRAM controller model. To create a scenario where an unmapped memory address is ac-

21

Figure 5.1: Architecture Diagram

cessed, a pre-defined ‘non-responsive memory transaction’ is created. An address is arbitrar-

ily chosen and labeled as a ‘non-mapped-address’ to trigger the non-responsive transaction

scenario. This address is seen at the crossbar and tagged as a ‘bug’, and then forwarded to

its target destination. The slave will check the ‘bug’ tag and drop the request, skipping the

response generation. Since a master (CPU in this case) will never get a response back from

the slave, the request transaction will not be retired and the system deadlock situation is

simulated. Once the bug is manifested in the simulation, the master (CPU) that generates

the transaction will never retire the transaction, and the master will stop the execution of the

running program. However, other masters (CPU and other components) can keep generat-

ing transactions because the system bus is still functional unless they generate a transaction

that hits the bug again or make a transaction that has a hazard condition with the bug

transaction.

The second deadlock scenario simulated was a non-responsive device bug. The Uart

IP inside Gem5 is connected to the terminal (TTY device) and generates various interrupts

during simulation, so a similar infrastructure of creating a ‘non-responsive transaction’ was

used to simulate a system deadlock caused by the Uart. After a large arbitrary number

of accesses to the Uart, the Uart IP sets the bug tag in the response transaction and the

crossbar does not send the response back to the master (CPU). This bug causes the master

to go into deadlock by not allowing it to retire the bug transaction, but it also causes the

Uart to go into deadlock as well. The bug specifically targets a register inside Uart that

clears its interrupts, so the Uart will stop generating interrupts after the bug is hit because

the Uart logic believes there is a interrupt in flight for the rest of the simulation. This

creates a deadlocked core because it never receives a response as well as an IP that is no

22

longer functional for the rest of the system.

5.1.2 Bus Trace Monitor

To collect transaction data from Gem5, a bus debug monitor was used to create a log

file of all the transactions sent through the crossbar. The bus monitor module was placed

between the L2 cache and the crossbar component as shown in Figure 5.2. By having the

bus monitor at this hierarchy, all device and memory transactions are captured in the trace

file. The information collected by the monitor includes the transaction opcode, address, size,

source ID, and cycle time.

Figure 5.2: Bus Monitor

5.1.3 Creating the Trace Data

The trace data was created by running both the Linux boot sequence and SPEC2006

benchmarks before encountering the bug. This allowed the HIE model to learn the behavior

of the SoC with at least 500,000 transactions to determine the bug.

The debug monitor began collecting transaction data for the Linux boot sequence

from the start of execution. If the simulation was started with the deadlock scenarios com-

piled into the simulator, the memory bug would be triggered by DMA transactions and the

system would hang before the boot sequence finished. To circumvent this issue, the Linux

boot sequence was traced without either of the deadlock scenarios and a Gem5 checkpoint

was created to save the state of the simulator after boot. Modifications can be made to

the simulator after a checkpoint is created, and the state of the simulation can be restored

from the checkpoint after the modifications are made. Once the simulation was saved in a

checkpoint, the bugs were compiled separately into the design so they would not interfere

23

with each other. As a result of compiling two different binaries, the traces were different for

each bug after restoring from the checkpoint. The simulation and trace were started again

after injecting each bug, and a custom program was executed to trigger the deadlocks. The

purpose of the program was to create memory transactions through multiple memory alloca-

tion commands and eventually issue a request to the non-responsive address and trigger the

memory bug. The program was also used to trigger the deadlock scenario for the uart bug

by printing text to the terminal and generating a uart transaction every time a character

was printed to the screen. After encountering each bug, the simulator was allowed to keep

tracing transaction data for about 3ms. By not stopping the trace earlier, the scenario where

the active cores would continue their normal operation while one core was deadlocked was

simulated.

For the SPEC2006 benchmarks, the simulation started at the checkpoint after booting

Linux and the debug monitor began collecting traces from the checkpoint until the simulation

was stopped. Unlike the Linux boot sequence where the simulator had to be bug-free in order

to not create a deadlock, these benchmarks ran with each bug pre-compiled into the simulator

separately. The different binaries created with each bug created slightly different traces for

each benchmark and provided more variety of transaction information to analyze the HIE

model. After the benchmarks finished running, the custom program was executed to trigger

the bugs and create the deadlock scenarios. In the same fashion as the boot sequence, these

traces ran for approximately 3ms after hitting the bug to allow the active cores to continue

processing instructions. Chapter 6 describes the results acquired from processing the trace

data.

5.2 Freedom U500 Testing Platform

For RTL development, the Freedom U500 SoC from SiFive was selected because it is

an open source SoC design that allows for easy configuration of cache sizes, number of cores,

transaction data size, and attachment of peripheral components. Freedom U500 integrates

the Rocket-Chip generator described in [2] and has undergone full functionality testing for

academic and industry research. This SoC implements the RISCV ISA and is written in

24

Chisel HDL for quick development. The RISCV-toolchain also allows conversion of Chisel to

Verilog, which allows for existing industry tools to be used for validation and testing. The

HIE RTL was written in Chisel, integrated into Freedom, and then converted to verilog to be

synthesized onto a Xilinx Ultrascale FPGA using the Vivado 2017.1 tool suite. Linux 4.6.2

was used to boot the SoC and was compiled with riscv64-unknown-linux-gnu-gcc version

6.1.0. The following sections go into further detail of the SoC design and configuration.

5.2.1 Architecture Configuration

The Freedom U500 SoC was configured to have two 64-bit Rocket cores with 32KB L1

instruction and data caches. The L2 cache has been removed by SiFive because of multiple

bugs, and it is not used in this experiment. The processors and crossbar peripherals all

run at 62.5 MHz and an asynchronous crossing is used to interface with the DDR4 memory

controller. There are three devices (Bootrom, UART, GPIO) connected to the SoC in which

one is used to generate the deadlock situation.

5.2.2 Bug Injection in Freedom SoC

A non-responsive peripheral bug was injected into the Freedom platform to create a

deadlock scenario. This bug was created by adding a counter inside the UART to count the

number of requests that are sent to the UART. A large arbitrary number of transactions was

chosen (between 1 to 2 million) before the counter triggered the deadlock. Upon seeing the

number of transactions we chose, the UART ties the valid signal for the response transactions

to zero and the last request is never retired.

5.2.3 HIE Instantiation in Freedom

Unlike Gem5, there is no global crossbar in the U500 SoC where all transactions

can be seen. The peripheral devices are connected to an MMIO crossbar and the DRAM

memory is connected to a separate crossbar. We ran experiments with the HIE connected

to the MMIO crossbar only and to both of the crossbars. By snooping at the port where

the cores connect to each of these crossbars, the HIE can keep track of all the requests that

25

go out of the cores. Freedom adds Tilelink Fragmenters throughout the crossbars and these

modules take one request and split it into multiple requests. We chose to connect the HIE

at the connection of the CPU cluster to each crossbar instead of the Fragmenters to avoid

large code modification to the Freedom RTL.

5.2.4 Freedom Simulation

After synthesis and implementation, the HIE was tested on the Freedom U500 design

by booting unmodified Linux. The uart bug was synthesized into the design from the be-

ginning of boot and the print messages generated by the Linux kernel were used to generate

uart transactions. The bug was encountered after about 1.5 million uart transactions. It

was not possible to run the SPEC2006 benchmarks on the FPGA because the HIE detected

a deadlock before the Linux boot sequence finished. This could be due to a bug in the design

that was not covered during unit testing or if the SoC has a way to poll data and not expect

a response for every request, i.e. polling for an Ethernet device that does not exist.

26

Chapter 6

Parameter Evaluation

As was mentioned earlier, the HIE requires the user to set parameters to get proper

functionality from the HIE. This chapter explains the exact parameter values used and the

size of the data structures in the HIE. From the trace data collected in Gem5, the parameters

in the RET were varied in the python model to find the smallest values that would capture

each bug. The graphs use a y-axis with logarithmic values because some benchmarks issued

significantly more transactions during the experiments. The raw numbers made it difficult

to visualize the data for the benchmarks that generated less transactions. All of the plots

show the results of the evictions generated for the traces with the memory bug and uart bug

injected. As was mentioned in section 5.1.3, the traces for each benchmark was different so

the results for both of the bugs were analyzed to verify that the parameters were not skewed

towards the transaction behavior of one of the bugs.

6.1 Transaction Buffer Size and Timeout Value

The Transaction Buffer is dependent on how many transactions can be in flight in a

system. If no more than 32 transactions can be in flight at a time, then a XB of size 32 is

enough for a system. Our implementation used a XB of size 64 for all of our experiments and

a timeout value of 1500 cycles. In general, the smaller the timeout value is the faster the HIE

can detect an anomaly, but setting the timeout value too small can create false positives by

evicting requests from the XB that will get a response. We found that increasing the timeout

value to more than 1500 cycles did not decrease the number of false positives produced.

27

6.2 LRU THRESHOLD Values

The LRU threshold values were refined based on the periods where the HIE would

evict the most entries from the RET. At the beginning of each trace, the HIE would evict

entries with LRU fields that were greater than 3000, meaning more than 3000 transactions

had been analyzed since this entry was last hit. After about a million transactions, the HIE

became fragmented and was evicting entries with LRU fields set to around 100. To prevent

the RET from being fragmented even further, the LRU THRESHOLD MIN parameter was

varied from 25 to 100 to find the value that generated the least amount of evictions. Figure 6.1

shows the results for Linux Boot and four SPEC benchmarks for the Uart bug and Memory

bug.

Smaller thresholds force the entries to merge at a faster rate, leading to less evictions.

The final value used in our implementation was 25.

Using the minimum LRU Threshold of 25, the max threshold was tested using the

values 100, 500, 1000, 1500, and 2000. We wanted the max threshold to be significantly larger

than the minimum threshold so that the RET would not merge entries too soon after they

had split. Figure 6.2 shows the number of evictions for these values. The results were similar

to those of LRU THRESHOLD MIN where the smaller thresholds led to less evictions. The

larger values allowed infrequently used entries to occupy space in the RET that could not be

merged with the minimum threshold and had to be evicted to create space. A larger RET

can help in minimizing evictions with the tradeoff of increasing area, but to minimize the

area cost we chose the threshold of 100 for LRU THRESHOLD MAX in our design. These

values remained the same with our RTL implementation of HIE.

6.3 Update Period

Using the LRU thresholds of 25 and 100, we iterated through values between 10 and

100 to find the optimal point to update RET entry averages and variances. Figure 6.3 shows

the number of splits generated for all the benchmarks with both bugs. We compared the

number of splits produced because the HIE will split the entries too frequently if the averages

are not accurate and evictions will begin to occur. By updating the averages and variances

28

Figure 6.1: Evictions produced for different LRU THRESHOLD MIN values

Figure 6.2: Evictions produced for different LRU THRESHOLD MAX values

at a faster rate, the HIE is able to learn the behavior of an address range faster and diagnose

bugs faster. In both scenarios, the shorter update periods produced slightly less splits than

longer update intervals. For this reason, we chose 10 in our final solution for the update

period. In our HIE implementation, the value 16 was used instead of 10. This allowed us

to do the division with shifting instead of having a lot of logic to division of numbers with

non-powers of 2.

6.4 Range Entry Table Size

With the optimal values for LRU thresholds and update period given above, we then

varied the size of the RET to find the smallest size that would yield the least amount of

evictions and keep as much address range data in the RET. Figure 6.4 shows the results

from this experiment. There were little to no evictions produced when the RET had more

29

Figure 6.3: Splits produced for different update frequencies.

entries to use. The smaller RETs had less space to use and evicted entries when new data

was found. The tradeoff we had to consider was the amount of area the larger RETs would

require to implement with the amount of evictions that were generated. The 8-entry RET

produced too many evictions to be useful in a system so this configuration was not useful.

A 16-entry RET produced significantly less evictions than the 8-entry RET but still more

than the 24-entry RET. All the RETs of 24 entries or more produced little to no evictions,

so the 32 and 40 entry RETs were ignored and the two RET sizes left to consider were the

16 entry and the 24 entry. Our RTL implementation used the 16-entry RET because the

larger RET caused the area of the HIE to grow significantly larger. The Area Cost section

explains more on this.

Figure 6.4: Evictions produced for different RET sizes

30

6.5 Initial Average and Variance

The initial values used for the Read/Write/Invalidate averages were chosen based

on the statistics of the GEM5 simulator. GEM5 tracks the average latency of transactions

sent to the crossbar and gives the average queueing latency and bus latency. By using the

average access time as the average and calculating the variance to have a range that adds

the queuing and bus latency, we were able to predict the response times of the transactions

enough to minimize split operations. We used the same parameters from Gem5 in our

Freedom implementation. Since there is no monitor on the FPGA, it is difficult to measure

response times accurately. Finding accurate measurements would entail developing hardware

that would act as a monitor and measure the response times.

31

Chapter 7

Results

The following sections evaluate the implementation details (area and delay costs)

and the detection accuracy of the HIE in both the Gem5 and Freedom platforms. VCS

simulations were ran to find the delay costs and Vivado synthesis/implementation reports

were used to find the physical requirements of the HIE.

7.1 Detection Accuracy in Gem5

The HIE uses the AVG ANOM MULT parameter to label transactions that take

significantly longer than usual as anomalous, and the value of this parameter had a great

effect on the total alerts raised by the HIE. For the deadlock scenarios simulated, the HIE

had a 100% true positive rate of detecting the deadlock for parameter values of 8 to 16. No

false alarms were raised for deadlock scenarios in any of the simulations.

However, the HIE aims to alert the engineer of anomalous response behavior as well

as deadlocks, and the AVG ANOM MULT parameter had it’s largest effect on detection

accuracy when reporting anomalous response latencies. The HIE found a few transactions

that behaved anomalously during the simulations, and the rate of false positives grew signif-

icantly for smaller values of AVG ANOM MULT. Figure 7.1 plots the rate of false positives

for the values 8 through 16. Flagging anomalies only when a transaction’s response time was

greater than 16 times the address range’s average yielded the least amount of false alarms

for all of the benchmarks and a few of the traces did not generate a false positive at all. The

value of 16 filtered out almost all of the outliers in response times created from bus con-

tention and resource congestion. High values for AVG ANOM MULT limited the precision

of the anomalous behavior that was detected by the HIE, and values of 13 or higher made

the design less sensitive to response time variation. Lower values detected smaller variations

32

in response times but the number of false alarms grew significantly with values below 10,

and this contradicted the goal of the HIE to mitigate the amount of data an engineer has

to analyze to speed up the debug process. In order to have the most accurate and precise

anomaly detection for all of the benchmarks, a value of 11 or 12 provided the best results.

Figure 7.1: False Positive Rate of Anomalies Flagged by HIE for Different Multiplier Values

7.2 Detection Accuracy in Freedom

As was mentioned before, the HIE was instantiated to snoop on device traffic only

and snoop on both memory and device traffic. When only device traffic was snooped, the

HIE detected the bug 100% of the time and the detection window was 1500 cycles after

the initial request occurred. The HIE halted the trace of other transactions into the Trace

Buffer, and the anomalous transaction could always be found in the Trace Buffer. When both

the memory and device crossbar traffic was input into the HIE, there was a 55% detection

accuracy of the bug during Linux Boot on the FPGA. When the bug counter was below

1.5 million transactions, the bug was almost always detected. When the counter was set to

values above 1.5 million, the HIE would register a memory transaction as a deadlock and

stop the trace of instructions before the bug was actually hit. This could be caused by the

initial parameters not being precise for the FPGA, and leading to a lot of stalls and some

responses probably being dropped because the HIE is busy processing previous transactions.

More analysis of the behavior of the memory transactions is required to avoid all of the false

positives the HIE flags.

33

7.3 Hardware Requirements

The following sections describe the area cost and cycle time of implementing the HIE.

The RTL was written in Chisel and the implementation was tested on a Freedom U500 SoC

synthesized on a Xilinx Ultrascale FPGA.

7.3.1 Cycle Time

The HIE can take many cycles to process a transaction, and can lead to stalls to

process new transactions. An Insert operation takes 18 cycles because it needs to sort the

RET to find the largest range it can span and then add the range into the RET. Update and

Split operations require three cycles to finish modifying the RET. A Merge operation can

take up to 50 cycles to finish because it has to sort all the entries and then iterate through

every entry and check the averages and variances in order from lowest to highest, taking two

cycles for each entry. The Evict Operation takes 50 cycles because it is the last check done

by the Merge Operation.

The worst case scenario where the RET would be busy while new transactions are

ready to be processed is when a transaction is inserted and causes the RET to become full,

and a merge operation is triggered to make space for new ranges. This process requires 50

cycles to finish before the RET is ready to process new transactions. A 16-entry fifo was the

smallest that was able to capture the Non-responsive peripheral bug in the Freedom SoC.

7.3.2 Synthesis Report Analysis

Table 7.2 shows the RTL component breakdown of the Transaction Buffer created by

Vivado. The 16 adders are used to increment the timers for each entry. The 36-bit registers

are the Address fields in all the entries and the 13-bit registers are the Timer fields. The

8-bit registers are the Source field, the 4-bit registers are the Mask field, the 3-bit registers

are for the Size, Opcode, and Param fields, the 2-bit registers are the Cmd Type field, and

the 1-bit registers are for the Valid bit in each entry. The 11-bit register is the response

tag that is created when a response transaction is received. There are a few more registers

than the 16 that are needed for each entry and this can be attributed to boilerplate logic in

34

Field Size Quantity Total

Valid 1 bit 1 1 bit
Opcode 3 bits 1 3 bits
Source 8 bits 1 8 bits

Address 36 bits 1 36 bits
Mask 4 bits 1 4 bits
Size 3 bits 1 3 bits

Param 3 bits 1 3 bits
Timer 13 bits 1 13 bits

Cmd Type 2 bits 1 2 bits
Total 73 bits

Table 7.1: Size of Transaction Buffer entry fields

the design (flops for input and output). The majority of the muxes are used to output the

data in the Transaction Buffer that has matched with a response. The two input 36, 13, 8,

4, 3, 2, and 1 bit muxes are used to select the entry data that goes to the RET or to the

Trace buffer. The 16 input 4-bit mux indexes into the highest available entry out to add

new requests. Response opcode decoding is done by the 5 input 3-bit mux and finding the

command type is done with the 6 input 2-bit mux. The 32 input mux is a valid signal that

is sent to Trace Buffer. This mux has 32 inputs instead of 64 because a timeout error or a

response error can send data to the Trace Buffer.

Table 7.3 shows the size of the fields in a RET entry for a 16-entry RET. Address

ranges are represented at the page level so Start and End Address only require 36 bits of

memory for a 48-bit address. Using these field sizes, one RET entry requires 51 bytes (407

bits) of memory. A 16-entry RET would then require a minimum of 816 bytes of memory

for implementation.

Table 7.4 and Table 7.5 show the Vivado component breakdown of the RET. The

36-bit adders are used to calculate the new start and end addresses when a Split or Insert

operation take place. 32-bit adders are used throughout the RET to increment LRUs and

the Squared Error fields, and to calculate the bounds for considering splits and merges.

Updating the running sum is done by the 2 input 13-bit adders and the 3 input 13-bit

adders compare new transactions for long anomalous response times. The 16 input 5-bit

35

Component Number of Inputs Output Size Quantity

Adder 2 13 bit 16
Mux 2 36 bit 32
Mux 2 13 bit 16
Mux 2 8 bit 32
Mux 2 4 bit 32
Mux 16 4 bit 1
Mux 5 3 bit 1
Mux 2 3 bit 96
Mux 6 2 bit 1
Mux 2 2 bit 32
Mux 2 1 bit 113
Mux 16 1 bit 4
Mux 32 1 bit 2
Mux 17 1 bit 1

Register 36 bit 18
Register 13 bit 17
Register 11 bit 1
Register 8 bit 18
Register 4 bit 18
Register 3 bit 54
Register 2 bit 17
Register 1 bit 21

Table 7.2: Vivado Component Report for Transaction Buffer

36

adder is used to sum the comparators for the index into the sort table, and the other 5-bit

adders are used for tracking the periodic update, iterating through all of the entries when

sorting, and subtracting 1 from the 16 input adder to have the proper bounds in the sort

table. The 4-bit adders are used for the counters in the merge operation to skip over invalid

entries.

The registers implemented are mostly all inside the RET. There are two 32-bit reg-

isters inside each RET entry (errSq, variance) for three different commands plus an LRU

counter, and there are 16 entries which yield 112 32-bit registers for all the entries. There

are two 36-bit register in every entry which comes out to 32 36-bit registers required for the

RET. There are a few more 36-bit registers implemented because they are needed for storing

the new start and end addresses when a Split or Insert is done. Each entry also has one

register to keep track of the average and sum for each command, leading to one 13-bit and

17-bit register in each entry. The 5-bit register accumulate because of the three count fields

in each entry and the 4-bit registers are used for the entry id in each entry and to store the

order of the RET in the sort table. The 1-bit registers are the valid bits and other flags used

to select data out of muxes or to choose the next state.

The synthesis tool used over 9000 muxes to implement the logic inside the RET. This

large amount of muxes is needed for all the possibilities that can occur when sorting the RET,

and then accessing the RET based on that order. The amount of branching that the state

machine has to do based on its calculations also adds to the sum of muxes. These signals

are mostly bulked in the 2-input 1-bit mux quantity. As was mentioned in the Cycle Time

section, stalls can occur in the RET logic. When the HIE was connected to the Memory and

Peripheral Buses, it required a 16-entry Queue to be able to catch the bug. The Queue data

is the inputs to stage 1 from stage 0, so each entry contains the opcode, source, address,

mask, size, param, timer, and Cmdtype for each transaction. For a 16-entry Queue, each

entry requires 72 bits, and in 16 entries, 144 bytes are needed for implementation. The

synthesis tool implemented this queue as Block RAM on the FPGA.

A 128-entry Trace Buffer was used to capture the anomalous transactions. Since

entries in the Trace Buffer had the same fields as the Transaction Buffer entry minus the

37

Field Size Quantity Total

Start Address 36 bits 1 36 bits
End Address 36 bits 1 36 bits

Valid 1 bit 1 1 bit
Update 1 bit 1 1 bit

ID 4 bits 1 4 bits
LRU 32 bits 1 32 bits

Average 13 bits 3 96 bits
Variance 64 bits 3 192 bits

Sum 64 bits 3 192 bits
ErrSqrd 64 bits 3 192 bits
Count 5 bits 3 15 bits
Total 797 bits

Table 7.3: Size of RET entry fields

Component Number of Inputs Output Size Quantity

Adder 2 36 bit 2
Adder 2 32 bit 19
Adder 2 17 bit 3
Adder 3 16 bit 3
Adder 3 13 bit 3
Adder 2 13 bit 3
Adder 2 5 bit 7
Adder 16 5 bit 1
Adder 2 4 bit 1

Register 36 bit 39
Register 32 bit 116
Register 17 bit 48
Register 16 bit 48
Register 8 bit 2
Register 5 bit 52
Register 4 bit 40
Register 3 bit 7
Register 2 bit 1
Register 1 bit 39

Table 7.4: Vivado Component Report for Range Entry Table

38

Component Number of Inputs Output Size Quantity

Mux 2 36 Bit 1157
Mux 2 32 Bit 418
Mux 16 32 Bit 1
Mux 2 17 Bit 465
Mux 3 17 Bit 16
Mux 2 16 Bit 464
Mux 4 16 Bit 16
Mux 2 13 Bit 515
Mux 2 5 Bit 1013
Mux 3 5 Bit 16
Mux 4 5 Bit 4
Mux 16 4 Bit 2
Mux 2 4 Bit 31
Mux 5 4 Bit 2
Mux 2 3 Bit 13
Mux 6 3 Bit 1
Mux 3 3 Bit 1
Mux 2 2 Bit 231
Mux 2 1 Bit 4578
Mux 5 1 Bit 18
Mux 16 1 Bit 2
Mux 4 1 Bit 2
Mux 15 1 Bit 1
Mux 8 1 Bit 1
Mux 7 1 Bit 1

Table 7.5: Vivado Component Report for Range Entry Table Continued

39

Component Number of Inputs Output Size Quantity

RAM 4608 bit 1
RAM 1024 bit 1
RAM 512 bit 1
RAM 384 bit 3
Mux 2 36 bit 1
Mux 2 8 bit 1
Mux 2 4 bit 1
Mux 2 3 bit 3
Mux 2 1 bit 8

Table 7.6: Vivado Component Report for Trace Buffer

timer and valid fields, each entry required 8 bytes (59 bits) of storage. This means the Trace

Buffer would require a minimum of 1024 bytes of storage to be implemented. Table 7.6 shows

the Component report for the Trace Buffer implementation. JTAG was not implemented in

the design and in order to have the Vivado synthesize the Trace Buffer, the fields of each

Trace Buffer entry was output to the top level of the HIE. The muxes implemented were

used to select data from Stage 0 or Stage 2 to add to the Trace Buffer. The 4608-bit RAM

stored the Address for the 128 entries and the 1024-bit RAM saved the Source fields of the

anomalous transaction. For the Param, Size, and Opcode fields, Vivado created three 384-bit

RAMs as storage and the Mask Field was stored in the 512-bit RAM.

7.3.3 Final Implementation Results

Table 7.7 shows the FPGA resource breakdown for the entire Freedom SoC, the HIE,

and each of the components in the HIE. The HIE used 17% of the total LUTs used to

implement the design and 10% of the total registers. The areas where the HIE required

more hardware was with F7 and F8 muxes, using 36% and 79% of all the muxes respectively.

Only one tile of Block RAM was used in the HIE implementation and this was used for the

Trace Buffer.

Table 7.8 shows the resource utilization of the HIE and of one Rocket core. Each core

required about 13503 LUTs, 9693 registers, 376 carry chains, 170 F7 muxes, 34 F8 muxes,

36 Block RAM tiles, and 8 DSP slices for implementation. The total LUTs used for the

40

Module CLB LUTs CLB Registers Carry8 F7 Muxes F8 Muxes Block RAM Tiles DSPs

Freedom U500 104245 77497 1692 3385 636 136.5 11
HIE 17682 (17%) 7702 (10%) 318 (19%) 1228 (36%) 505 (79%) 1 (1%) 0 (0%)

Transaction Buffer 531 703 32 0 0 0 0
Range Entry Table 16854 6954 282 1228 505 0 0

Trace Buffer 297 11 4 0 0 1 0

Table 7.7: HIE Utilization Report after Implementation

Module CLB LUTs CLB Registers Carry8 F7 Muxes F8 Muxes Block RAM Tiles DSPs

Freedom U500 104245 77497 1692 3385 636 136.5 11
Rocket Core 13503 (13%) 9693 (13%) 376 (22%) 170 (5%) 34 (5%) 36 (26%) 4 (36%)

HIE 17682 (17%) 7702 (10%) 318 (19%) 1228 (36%) 505 (79%) 1 (1%) 0 (0%)

Table 7.8: FPGA Resource Utilization for HIE and Coreplex

HIE amounted to 37% more LUTs than one single Rocket core, and the registers and carry

chains were fewer but comparable. The most significant difference was the amount of Block

RAM tiles required for implementation. One core needed 36 block RAM tiles while the HIE

used only one. Each Block RAM tile in the Xilinx Virtex Ultrascale architecture has 36Kb

of data storage [7] and this considerably increases the area of the core. In summary, the

HIE uses 37% more logic than a single core, but only needs 3% of the total storage, making

the HIE small and deployable in an SoC if the size of SRAM is larger than that of standard

cells.

41

Chapter 8

Summary and Conclusion

The existing solutions for post-silicon bug diagnosis require the debug engineer to

manually dissect the data collected through debug tools in order to find the root cause of a

bug. As SoCs add more cores (masters) and devices, the manual analysis of debug data will

increase the time to diagnose a bug and increase a product’s time to market. The HIE design

presented in this thesis presents a solution that will provide faster bug diagnosis by learning

the response times of transaction data on-chip and flagging anomalous transaction behavior

before trace data can be overwritten by the progress of different masters. By only having

to adhere to the protocol behavior of the interconnect, the HIE has quick development time

and adds little overhead to the design phase of a product.

The HIE is a step in the right direction to provide an on-chip debug solution that

can streamline the debug effort for engineers working on post-silicon products. This current

design adds a significant area overhead to the SoC, but there is room for improvement by

changing the logic and using different components for implementation. If HIE can be de-

ployed into an existing system and allow engineers to have a real-time diagnosis to deadlocks

and other bugs, time to market can be greatly reduced and products can be sold faster. With

the help of HIE, heterogenous SoCs can continue to grow in complexity, and either maintain

or reduce the design effort of current SoCs.

42

Bibliography

[1] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard Memmi,

and Dave Miller. A reconfigurable design-for-debug infrastructure for socs. In Proceed-

ings of the 43rd annual Design Automation Conference, pages 7–12. ACM, 2006.

[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,

Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al.

The rocket chip generator. EECS Department, University of California, Berkeley, Tech.

Rep. UCB/EECS-2016-17, 2016.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas

Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in

a scala embedded language. In Proceedings of the 49th Annual Design Automation

Conference, pages 1216–1225. ACM, 2012.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,

et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,

2011.

[5] Andrew DeOrio, Jialin Li, and Valeria Bertacco. Bridging pre-and post-silicon debug-

ging with biped. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM International

Conference on, pages 95–100. IEEE, 2012.

[6] Andrew DeOrio, Qingkun Li, Matthew Burgess, and Valeria Bertacco. Machine learning-

based anomaly detection for post-silicon bug diagnosis. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2013, pages 491–496. IEEE, 2013.

[7] Xilinx Inc. Ultrascale architecture configurable logic block, 2017.

43

[8] David Lin, Ted Hong, Yanjing Li, S Eswaran, Sharad Kumar, Farzan Fallah, Nagib

Hakim, Donald S Gardner, and Subhasish Mitra. Effective post-silicon validation of

system-on-chips using quick error detection. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 33(10):1573–1590, 2014.

[9] Nikola Nicolici and Ho Fai Ko. Design-for-debug for post-silicon validation: Can high-

level descriptions help? IEEE International High Level Design Validation and Test

Workshop, November 2009.

[10] Eli Singerman, Yael Abarbanel, and Sean Baartmans. Transaction based pre-to-post

silicon validation. In Proceedings of the 48th Design Automation Conference, pages

564–568. ACM, 2011.

[11] Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan Valamehr, and Timothy

Sherwood. A small cache of large ranges: Hardware methods for efficiently searching,

storing, and updating big dataflow tags. Proceedings of the International Symposium

on Microarchitecture, November 2008.

44

