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During the last few decades, the quantification of hydrocarbon pore volume from 

borehole measurements has been widely studied for reservoir descriptions. Relatively less 

effort has been devoted to estimating in-situ fluid properties because (1) acquiring fluid 

samples is expensive, (2) reservoir fluids are a complex mixture of various miscible and 

non-miscible phases, and (3) they depend on environmental factors such as temperature 

and pressure. This dissertation investigates the properties of fluid mixtures based on 

various manifestations of their electromagnetic properties from the MHz to the THz 

frequency ranges. A variety of fluids, including water, alcohol, alkane, aromatics, cyclics, 

ether, and their mixtures, are analyzed with both laboratory experiments and numerical 

simulations.  

A new method is introduced to quantify in-situ hydrocarbon properties from 

borehole nuclear measurements. The inversion-based estimation method allows depth-

continuous assessment of compositional gradients at in-situ conditions and provides 

thermodynamically consistent interpretations of reservoir fluids that depend greatly on 

phase behavior. Applications of this interpretation method to measurements acquired in 
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two field examples, including one in a gas-oil transition zone, yielded reliable and 

verifiable hydrocarbon compositions.  

Dielectric properties of polar liquid mixtures were analyzed in the frequency 

range from 20 MHz to 20 GHz at ambient conditions. The Havriliak-Negami (HN) model 

was adapted for the estimation of dielectric permittivity and relaxation time. These 

experimental dielectric properties were compared to Molecular Dynamics (MD) 

simulations. Additionally, thermodynamic properties, including excess enthalpy, density, 

number of hydrogen bonds, and effective self-diffusion coefficient, were computed to 

cross-validate experimental results. Properties predicted from MD simulations are in 

excellent agreement with experimental measurements.  

The three most common optical spectroscopy techniques, i.e. Near Infrared (NIR), 

Infrared, and Raman, were applied for the estimation of compositions and physical 

properties of liquid mixtures. Several analytical techniques, including Principal 

Component Analysis (PCA), Radial Basis Functions (RBF), Partial Least-Squares 

Regression (PLSR), and Artificial Neural Networks (ANN), were separately 

implemented for each spectrum to build correlations between spectral data and properties 

of liquid mixtures. Results show that the proposed methods yield prediction errors from 

1.5% to 22.2% smaller than those obtained with standard multivariate methods. 

Furthermore, the errors can be decreased by combining NIR, Infrared, and Raman 

spectroscopy measurements.  

Lastly, the 1H NMR longitudinal relaxation properties of various liquid mixtures 

were examined with the objective of detecting individual components. Relaxation times 

and diffusion coefficients obtained via MD simulations for these mixtures are in 

agreement with experimental data. Also, the 1H-1H dipole-dipole relaxations for fluid 

mixtures were decomposed into the relaxations emanate from the intramolecular and 



 x 

intermolecular interactions. The quantification of intermolecular interactions between the 

same molecules and different molecules reveals how much each component contributes 

to the total NMR longitudinal relaxation of the mixture as well as the level of interactions 

between different fluids.  

Both experimental and numerical simulation results documented in this 

dissertation indicate that selecting measurement techniques that can capture the physical 

property of interest and maximize the physical contrasts between different components is 

important for reliable and accurate in-situ fluid identification.  
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Chapter 1:  Introduction 

This dissertation introduces new methods to analyze the in-situ properties of fluid 

mixtures using nuclear, dielectric, optical, and magnetic resonance measurements. These 

measurements are governed by different physics phenomena and use different ranges of 

electromagnetic radiations from MHz to THz. Fluids with various degrees of complexity 

are analyzed with each of the techniques and their responses compared to assess which of 

them provides the best differentiation contrast. First, I develop a thermodynamically 

consistent linear inversion technique to quantify in-situ hydrocarbon compositions using 

borehole nuclear measurements. Second, the dielectric properties of various fluid 

mixtures are measured and cross-validated with Molecular Dynamics (MD) simulations. 

Third, spectra of Near-Infrared (NIR), Infrared, and Raman optical measurements 

spectroscopies are acquired and compared for the estimation of compositions and 

properties of various fluid mixtures. Lastly, Nuclear Magnetic Resonance (NMR) 

properties of fluids are investigated with MD simulations to quantify the relaxation time 

originating from each hydrogen-based molecule.  

 

1.1  BACKGROUND  

Quantification of reservoir fluid properties is crucial for optimizing facilities and 

maximizing production. Hydrocarbons are the most complex fluids present in subsurface 

reservoirs and they are usually described in terms of density and viscosity. More detailed 

information including molecular compositions, Gas-Oil Ratio (GOR), bubble and dew 

points, and compressibility are related to Pressure, Volume, and Temperature (PVT) 

behavior. Therefore, it is necessary to consider phase behavior for reservoir fluid 

identification.  
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Conventional well logs are not adequate for fluid typing. Gamma-Ray (GR) logs 

are sensitive to mineral composition, while resistivity and SP logs are related to total pore 

volume and salinity of water. Sonic logs are sensitive to fluids present in rocks but the 

slowness response is dominated by the rock matrix. Although nuclear logs are responsive 

to both reservoir matrix and fluids, some of them are relatively insensitive to the rock 

matrix. Among the nuclear properties, migration length and Hydrogen Index (HI) can be 

good candidates for fluid characterizations because they are mainly affected by hydrogen 

atoms present in the fluids. 

The Downhole Fluid Analyzer (DFA) tool was introduced to determine 

hydrocarbon composition (Mullins et al., 2004) in open-hole wireline logging. A major 

application of the DFA tool is the use of optical spectroscopy measurements at a limited 

number of discrete depths. Integration of DFA measurements with NMR measurements 

could improve the accuracy of fluid typing (Steene et al., 2012) in that NMR provides 

longitudinal relaxation time, T
1
, transverse relaxation time, T

2
, and mass diffusion 

coefficient (D), which can lead to the indirect estimation of hydrocarbon viscosity. 

Although NMR measurements are affected by mud filtrate invasion due to a shallow 

radial depth of investigation (DOI), NMR provides unique information about in-situ 

fluids because it only measures the magnetization of hydrogen nuclei present in fluids.  

Dielectric measurements have been extensively studied for applications in the 

assessment of downhole (Hizem et al., 2008), water/hydrocarbon saturation (Chen et al., 

2016), heavy oil characterization (Yaarubi et al., 2012; Heaton et al., 2012), and 

wettability (Garcia et al., 2018). Most of the dielectric studies focus on the time 

relaxation of polar liquids. Because the physics of dielectric measurements is based on 

polarization phenomena, dielectric measurements are favorable for the characterization of 

polar liquids. In particular, mixtures of water and alcohol are part of the simplest model 
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containing hydrophobic groups. They are completely miscible but exhibit non-ideal 

thermodynamic behaviors when present in fluid mixtures. Also, these mixtures exhibit 

nonlinear relationships of dielectric permittivity and relaxation time as a function of 

concentrations. Comprehensive dielectric measurements have been reported (Sato et al., 

1999, 2003, and 2005) for water, methanol, and 2-propanol mixtures; the authors 

suggested that positive excess enthalpy of the mixtures at water-rich concentrations are 

related to a reduction of the local density of the hydrogen bond acceptor and donor sites.  

Optical spectroscopy measurements have been used in the oil industry for the last 

two decades. The DFA tool was introduced in open-hole wireline logging operations 

to assess compositional grading in real time (Fujisawa et al., 2008). Recently, Raman 

spectroscopy was applied to evaluate the resource potential of reservoirs (Bryndzia et al., 

2016). Downhole Reservoir Raman System (DRRS) contains a Raman spectrometer and 

sensor platform attached to a wireline tool that measures hydrocarbons dissolved in 

water. Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FTIR) 

spectroscopy is also an effective technique for the assessment of crude oil in terms of 

°API values (Filgueiras et al., 2014). Contrary to NIR absorptions, Infrared and Raman 

bands are rich in information concerning optical vibrational stretching and bending 

modes. Also, compared to NIR broad peaks, Infrared and Raman spectra exhibit sharp 

peaks with less blending. Despite these advantages, Infrared and Raman spectroscopy 

measurements are not widely used in field applications because of thermal noise, fiber 

optical materials, and fluorescence. However, some laboratory attempts were made to 

compare these spectroscopic techniques to analyze heavy petroleum products (Chung et 

al., 2000), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) in petroleum fuels 

(Cooper et al., 1997), diesel properties (Santos et al., 2005), and citrus oils (Schulz et al., 

2002).   
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NMR time relaxations have been widely used in the oil industry to characterize 

the properties of reservoir fluids. These NMR properties have been extensively studied 

both experimentally and theoretically. Recently, MD simulations became a reliable 

method with improved computing power to obtain numerical solutions of the classical 

equations of motion. There have been many studies of NMR relaxations using MD 

simulations with RNA (Villa et al., 2006), proteins (Caballero-Manrique et al., 2007; 

Ollila et al., 2018), polymers (Markelov et al., 2015), lipids (Lindahl et al., 2001), and 

hydrocarbons (Singer et al., 2018). Recent studies for short alkanes (Singer et al., 2017a) 

and polymer and heptane mixtures (Singer et al., 2017b) indicated that the relaxation 

process is mainly governed by both intramolecular and intermolecular dipole-dipole 

interactions between hydrogen atoms. 

Along with these conventional well logs and spectroscopic measurements, various 

interpretation techniques are typically applied to quantify the properties and 

concentrations of fluid mixtures. The complementary physics of different measurements 

can improve the evaluation of fluid properties.  

 

1.2  PROBLEM STATEMENT   

Characterizing in-situ fluid properties in reservoirs is important to prevent 

potential hazards, optimize production, and estimate hydrocarbon quality. A direct 

approach to analyzing hydrocarbon properties is to acquire fluid samples in 

boreholes using a wireline formation tester. This technique enable accurate and 

reliable estimations of in-situ hydrocarbon properties, but it is impossible to acquire 

samples from all reservoirs due to stability problems and financial constraints. SARA 

(Saturated, Aromatics, Resins, and Asphaltenes) analysis (Aske et al., 2001) is 
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another common method to separate oils into components. However, it normally 

takes two days to analyze the sample while leftover solvents are harmful to the 

environment. 

Evaluation of fluid properties from well logs is highly uncertain because fluids are 

typically a mixture of multiple components. Also, different components such as alkanes 

and aromatics can provide very similar log responses, making the assessment non-unique; 

PVT conditions also affect the phase behavior of reservoir fluids, and their response can 

vary accordingly. Therefore, identifying hydrocarbon components based on conventional 

well logs may lead to incorrect assessments because of the thermodynamic behavior of 

reservoir fluids.  

Dielectric measurements are widely used in downhole applications; their 

polarization mechanisms have been broadly studied. There have been several attempts to 

describe the dielectric properties at an atomic level with MD simulations. Some of the 

previous works could not reproduce experimental results and may need better simulation 

algorithms. Also, how the dipole moment and polarizability of individual liquid 

molecules are accumulated into the ensemble average of macroscopic dielectric 

properties needs to be quantitatively described.  

The Beer-Lambert law is the most common way to assess optical spectral 

absorption measurements. It states that the transmittance of the material sample is related 

to its thickness, L, and to its absorbance, A, as 

 

log
 

  
 

 i i

i

I
c L A

I
10

0

,                        (1.1) 

 

where I
0
 is the incident intensity, I is the intensity after traversing the sample, ε

i
 is the 
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molar absorptivity of component i, and c
i
 is the concentration of the i-th component in the 

sample. However, the measured optical spectra of various hydrocarbons often exhibit 

nonlinear absorption for various reasons, whereby, traditional linear multivariate methods 

can give rise to unreliable estimations of fluid properties.  

Magnetic resonance logging is broadly used in subsurface formations to 

determine its porosity and permeability. Previous works on NMR relaxations using MD 

simulations have successfully reproduced the available experimental data and calculated 

intramolecular and intermolecular interactions separately. However, no quantitative 

comparison has been published of dipole-dipole interactions between different types of 

hydrocarbons. Also, most fluid mixtures exhibit nonlinear relationships between NMR 

relaxation times and diffusion coefficients as a function of concentrations, and it is 

unclear how much each fluid contributes to the total time relaxation.  

 

1.3  RESEARCH OBJECTIVES    

The main purpose of the dissertation is to develop quantitative interpretation 

methods to estimate the compositions and properties of various in-situ fluid mixtures 

using nuclear, dielectric, optical, and magnetic resonance measurements. Secondary 

objectives of the dissertation are as follows:  

 

 To develop an algorithm to estimate the concentrations of hydrocarbon 

components using nuclear measurements. To achieve this objective, inversion 

techniques are implemented separately on different combinations of nuclear 

measurements. In order to account for phase behavior of reservoir hydrocarbons, 
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a thermodynamically consistent interpretation of nuclear measurements needs to 

be considered to enable continuous assessments of fluid compositional gradients. 

 To compare the viscosity calculated from the inversion of borehole nuclear 

measurements to the viscosity assessed from the NMR measurements. This 

comparison can cross-validate the hydrocarbon compositions estimated from 

borehole nuclear measurements.  

 To develop nonlinear inversion algorithms to appraise dielectric permittivity and 

relaxation time for liquid mixtures. Forward modeling can use the Havriliak-

Negami’s (HN) equation, the Cole-Davidson’s (CD) equation, or the Cole-Cole 

(CC) equation to reconstruct the real and imaginary parts of dielectric relaxations. 

 To reproduce dielectric properties of fluids using MD simulations and compare 

the simulation results to inversion-based calculations. The MD simulations can 

compute various dielectric and thermodynamic microscopic properties to explain 

the macroscopic ensemble average of dielectric properties obtained from 

experiments.  

 To build training and calibration models to appraise the concentrations and in-situ 

properties of liquid mixtures using optical spectroscopy measurements. These 

models can be constructed by implementing Radial Basis Functions (RBF) and 

Artificial Neural Networks (ANN). The Root-Mean-Square Errors (RMSE) 

associated with these methods are compared to the traditional multivariate 

method. 

 To combine multiple optical spectroscopy measurements in order to improve the 

accuracy of in-situ fluid property estimations. Careful selection of spectral bands 

is required to avoid integrating redundant features of the spectra. 
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 To quantify intramolecular and intermolecular 1H-1H dipole-dipole interactions 

between binary mixtures of various liquids and to appraise their contributions to 

the total NMR relaxation process. Similarly, mass diffusion coefficients for each 

component are computed separately and compared to the effective mass diffusion 

coefficient of the liquid mixtures.  

 To diagnose the advantages and limitations of each measurement and to identify 

which measurement provides the best contrast of physical properties of individual 

fluids present in a mixture.  

 

1.4  OUTLINE OF THE DISSERTATION      

This dissertation is composed of the current introductory chapter, four technical 

chapters, and a final chapter that summarizes the findings and provides conclusions and 

recommendations for future work.  

The first technical part of the dissertation is Chapter 2. This chapter presents a 

thermodynamically consistent interpretation of nuclear measurements for the assessment 

of hydrocarbon compositions. Viscosities computed from one synthetic example and two 

field data yield good agreements to the viscosity derived from NMR measurements.  

Chapter 3 discusses the dielectric and thermodynamic properties of polar liquids. 

These properties are investigated with laboratory measurements, while nonlinear 

inversions provide estimates of the dielectric permittivity and relaxation time of various 

fluid mixtures. The calculated properties are validated and described with MD simulation 

results.  

In Chapter 4, three types of optical spectroscopy measurements of fluid mixtures 

are analyzed and compared. The main contribution is that the proposed methods provide 
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much smaller errors in the assessment of the compositional and in-situ properties of the 

samples compared to traditional multivariate methods. Estimations are further improved 

with the combination of multiple spectral measurements.  

Chapter 5 describes the successful quantification of NMR time relaxations of 

liquid mixtures via MD simulations. The distance and angle between hydrogen atom 

pairs provide the quantification of relaxational contributions of each atom and molecule. 

A new finding obtained from this chapter is the identification of NMR relaxations of 

individual molecules which are hard to measure with experimental approaches.  

Following the technical chapters, the last chapter summarizes the dissertation’s 

contributions, conclusions, and recommendations for future research. 

 

1.6  LIST OF PUBLICATIONS  

Several journal and conference papers based on the research documented in this 

dissertation have been published or will be submitted for review. They are listed below. 

1.6.1  Refereed Journal Publications  

Lee, H. and Torres-Verdín, C., 2019a, Estimation of liquid mixture compositions from 

near-Infrared spectrum data using radial basis functions and artificial neural 

network, (to be submitted for publication). 

Lee, H. and Torres-Verdín, C., 2019b, Comparison of NIR, Infrared, and Raman 

spectroscopies for the estimation of density and viscosity using PLSR and 

artificial neural network analysis, (to be submitted for publication). 

Lee, H. and Torres-Verdín, C., 2019c, Investigation of dielectric and thermodynamic 

properties of polar liquids by dielectric spectroscopy and molecular dynamics 

simulation, (to be submitted for publication). 

Lee, H., Medellin, D., and Torres-Verdín, C., 2019d, NMR relaxation times and diffusion 

coefficients of the liquid mixtures from molecular dynamics simulations, (to be 

submitted for publication). 
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1.6.2  Refereed Conference Proceedings  

Lee, H. and Torres-Verdín, C., 2015, Thermodynamically consistent estimation of 

hydrocarbon composition from nuclear and magnetic resonance measurements, 

SPWLA Annual Conference, Long Beach, California, July 18-22. 
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Chapter 2: Thermodynamically Consistent Estimation of Hydrocarbon 

Composition from Nuclear and Magnetic Resonance Measurements1  

Accurate assessment of hydrocarbon compositions is critical for optimizing oil 

and gas production. However, in-situ assessment of hydrocarbon properties is difficult 

because of environmental conditions and fluid sample quality. Fluid samples can be 

acquired using Wireline Formation Testers (WFT) for laboratory analysis, but the number 

of samples is limited to discrete depths. Reservoir fluid samples tested in the laboratory 

may not exhibit the same properties as in-situ samples because the phase behavior of 

hydrocarbons varies significantly with temperature and pressure. Thermodynamically 

consistent fluid interpretations are crucial for obtaining accurate estimates of in-situ 

hydrocarbon properties and composition. 

I introduce a new method to quantify in-situ hydrocarbon properties from 

borehole nuclear measurements. These measurements are influenced by fluid and rock 

matrix. After separating matrix, water, and hydrocarbon effects on borehole nuclear 

measurements, I use the hydrocarbon-dependent portion of the nuclear response to assess 

composition. Applying the new hydrocarbon composition method to two field examples, 

including one in a gas-oil transition zone, yielded reliable and verifiable results. Oil-

viscosity values derived from NMR T
2
 distributions and WFT pressure data confirmed 

the estimated hydrocarbon composition. This estimation method allows continuous 

assessment of compositional gradients at in-situ conditions and provides 

thermodynamically consistent interpretations of reservoir fluids that depend greatly on 

                                                 

1 This chapter is based on the following paper and I am a primary author.  

Lee, H. and Torres-Verdín, C., 2015, Thermodynamically consistent estimation of 

hydrocarbon composition from nuclear and magnetic resonance measurements, SPWLA 

Annual Conference, Long Beach, California, July 18-22. 

 



 12 

phase behavior. Combining nuclear and NMR measurements identifies variations within 

hydrocarbon columns, diagnoses reservoir connectivity, and facilitates optimized 

hydrocarbon production.  

 

2.1  INTRODUCTION  

Identifying fluid properties in reservoirs is important to prevent potential hazard, 

optimize production, and estimate hydrocarbon quality. The conventional approach to 

analyzing hydrocarbon properties is to acquire fluid samples directly from boreholes 

using a wireline formation tester. This technique provides accurate and reliable 

estimation of in-situ hydrocarbon properties, but it is not possible to acquire samples 

from all reservoirs due to stability problems and financial constraints. Properties of fluid 

samples may also differ from those of in-situ fluid because of mud filtrate contamination 

or temperature and pressure changes. 

Petrophysical assessment of hydrocarbon properties is highly non-unique because 

the phase behavior of hydrocarbons can vary greatly with Pressure, Volume, and 

Temperature (PVT). Hydrocarbon typing based on triple- or quad-combo logs can be 

uncertain. Gamma-Ray (GR) response is mainly affected by the matrix, and electrical 

resistivity is determined by the pore volume of conductive formation water. Cross-over of 

bulk density (ϕ
b
) and neutron porosity (ϕ

N
) indicates the existence of hydrocarbon 

components. However, identifying hydrocarbon components solely on the basis of 

density and neutron cross-over may lead to incorrect assessments because of shale-

suppressing effects.  

To mitigate this uncertainty, I introduce thermodynamically consistent 

interpretations of hydrocarbon properties. Fluid type is assessed using PVT flash 
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calculations and the Schlumberger Nuclear PARameter calculation program (SNUPAR, 

McKeon and Scott, 1989). SNUPAR allows us to take into account the nuclear properties 

of hydrocarbons and water as a function of pressure, temperature, and salinity (Ortega et 

al., 2013). Various nuclear properties, including density (ρ), neutron capture cross-section 

(Σ), Hydrogen Index (HI), inverse of migration length (ξ), PEF, and neutron porosity 

(ϕ
N
), were used for inversions. 

This chapter describes a new method for estimating hydrocarbon properties from 

both nuclear and NMR measurements. Figure 2.1 indicates that nuclear properties 

change between ethane and pentane. To maximize their differences, hydrocarbon 

components are classified into three pseudo-components, C
1
, C

2-5
, and C

6+
. Linear 

inversion using these nuclear properties estimates the volumetric concentration of each 

hydrocarbon component. I tested both synthetic and field examples using various 

combinations of nuclear properties derived from SNUPAR to estimate hydrocarbon 

compositions. These synthetic and field examples illustrate how hydrocarbon properties 

derived from nuclear measurements can be reconciled with estimated complementary 

NMR measurements. 

 

2.2  METHOD  

Analyzing hydrocarbon properties begins with constructing a hydrocarbon library. 

Computer Modeling Group (CMG) software can calculate phase behavior and 

corresponding properties of hydrocarbon mixtures at various temperatures and pressures. 

Peng-Robinson’s Equation-Of-State (EOS) was implemented (Robinson and Peng, 1978) 

to estimate the PVT properties of hydrocarbon mixtures.  
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Because hydrocarbons present in a reservoir are a mixture of different 

components, I simplified them into three types: C
1
 for methane, C

2
 to C

5
 for light alkanes, 

and C
6+

 for medium alkanes. These pseudo-hydrocarbon components are mixed in 

thermodynamic equilibrium. If a hydrocarbon mixture is unstable as a single-phase fluid 

at the pressure and temperature of interest, it will separate into two phases. In this case, 

flash calculations estimate the volumes of both liquid and vapor phases. By changing the 

composition of each hydrocarbon component with various temperatures and pressures, I 

constructed a library for the various properties, including density, viscosity, fugacity, 

molar volume, z-factor, molar weight, entropy (S), enthalpy (H), and heat capacity (Cp) 

for hydrocarbon mixtures. Among these properties, computed density can be used as an 

input for SNUPAR to assess nuclear properties.  

SNUPAR yields various nuclear properties including density (ρ), migration length 

(Lm), Sigma (Σ), hydrogen index (HI), and PEF. Because the response of PEF from 

mixtures does not combine volumetrically, for interpretation purposes, a new parameter, 

U, named volumetric cross section (Ellis et al., 2007) was developed. This index exhibits 

a volumetric linear relationship for mixtures. Also, instead of migration length, inverse of 

migration length, ξ, is recommended for inversion as it exhibits a closer linear response 

with detector count rates than migration length (Mendoza et al., 2007). Migration length 

can be converted into neutron porosity (Edwin et al., 2014) using nonlinear relationships 

between neutron porosity and migration length. 

Limitations of the hydrocarbon library are its ranges for temperature and pressure; 

80 to 240 degrees F and 500 to 9,000 psia, respectively. It is also assumed that 

hydrocarbons are combinations of only alkanes without aromatic, cyclic, or inorganic 

components. Another limitation of this method is that mud filtrate invasion and borehole 

effects (wash-out and mudcake) are negligible.  
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The inversion-based interpretation method developed in this chapter is reliable 

when applied to vertical wells with high porosity and low water saturation. High salinity 

contrasts between borehole and formation are recommended for inversion with Sigma. 

 

2.3  FORMULATION OF THE INVERSION   

The nuclear properties derived from SNUPAR are influenced by fluid and matrix. 

Figure 2.2 graphically describes the formation. For simplicity, I assumed that the matrix 

is composed of sand and shale for siliciclastic formations and limestone and dolomite for 

carbonate formations. Porosity is saturated with water and hydrocarbons.  

To calculate only fluid properties, total porosity is pre-defined to eliminate the 

contribution of the matrix for each log measurement. Total porosity is estimated by the 

SNUPAR-based interactive analysis workflow (Heidari, 2011; Ijasan et al., 2013) or 

computed from NMR measurements. Total porosity estimation needs to be very careful 

because small misreading in total porosity can propagate to big errors on the estimation 

of fluid properties. In a similar manner, water saturation needs to be assessed precisely 

prior to excluding the contribution of water for each log measurement. After 

decomposing nuclear measurements into the matrix, water, and hydrocarbon, only the 

hydrocarbon portion can be input into the inversion. The forward models used to 

reconstruct nuclear measurements can be expressed as  

 

1 1 2 2 3 3( ) (1 ) (1 )      eff w w w mx x x S S         ,     (2.1) 

 

( ) ( ) ( )      eff w w w mx x x S S        1 1 2 2 3 3 1 1 ,    (2.2) 

 



 16 

( ) ( ) ( )      eff w w w mHI x HI x HI x HI S HI S HI  1 1 2 2 3 3 1 1 ,         (2.3) 

 

where ρ
eff

, Σ
eff

, and HI
eff

, are the effective density, effective Sigma, and effective 

hydrogen index, respectively. Volumetric concentrations of each hydrocarbon component 

are x
1
, x

2
, and x

3
 respectively, and each measurement with subscript numbers is the 

contribution of the corresponding hydrocarbon component. Measurements with 

subscripts w and m are the properties of water and matrix, respectively. Input 

measurements can be any combination of the six nuclear properties. Because each 

hydrocarbon component has different nuclear properties that depend on temperature and 

pressure, it is important to select suitable values for each reservoir.  

These well logs are used to estimate volumetric concentrations of three pseudo-

hydrocarbon components, x
1
, x

2
, and x

3
. Equations can be reorganized for hydrocarbon 

contributions in matrix form as 
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In equation (2.4), density, Sigma, and hydrogen index can be replaced by other 

nuclear properties such as neutron density, inverse of migration length, or PEF. After 

selecting suitable variables, unknown parameters, x
1
, x

2
, and x

3
, can be estimated using 

the least-squares minimization method (Aster et al., 2013), which can be written as 

 

     
T

d m mC(x) W f(x) d f(x) d2

,         (2.4) 
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where C(x) is the cost function to be minimized, W
d
 is the data weighting matrix, f(x) is 

the reconstructed nuclear measurements, and d
m
 is the original nuclear property used in 

the inversion. The mass balance equation and non-negative constraints are applied to 

avoid unrealistic results. 

 

2.4  ESTIMATION OF HYDROCARBON VISCOSITY   

Inversion results can be used to compute hydrocarbon viscosity using the Jossi-

Stiel-Thodos (JST) Correlation (Jossi et al., 1962) with the 4th order of polynomial 

coefficients. The viscosity of hydrocarbon mixtures can be assessed based on the 

assumption that total hydrocarbon viscosity is proportional to the viscosity of each 

hydrocarbon component with molecular volumetric concentration. The viscosity derived 

from inversion results can be cross-validated by NMR measurements. 

Several studies (Coates et al., 1999; Bryan et al., 2005) suggest empirical 

correlations between hydrocarbon viscosity and NMR T
2
. Other studies show that mass 

diffusion coefficient is proportional to the ratio of temperature to viscosity (Lo, 1999; 

Freed, 2005). In general, hydrocarbon viscosity exhibits inverse relationship to the 

temperature, T
2
, and mass diffusion coefficient. However, Straley (2006) shows that 

universal linear correlations cannot exist for NMR parameters versus viscosity for suites 

of liquids. Thus, I computed NMR viscosity based on the traditional empirical correlation 

with fitting constants. 
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2.5  SYNTHETIC EXAMPLE   

This section shows the application of the method to a synthetic case. Figure 2.3 

describes the synthetic vertical well example that contains 113 layers with 0.5 ft of 

thickness each. Well logs used in the synthetic model are simulated with UTAPWeLS 

(The University of Texas at Austin Petrophysical and Well-Log Simulator, Voss et al., 

2009). This is a typical siliciclastic formation composed of two sands containing water, 

oil, and gas. Table 1 summarizes compositions and properties of both fluids and minerals 

for grouped layers. Shale is a mixture of illite, chlorite, and montmorillonite. Upper and 

lower sands contain hydrocarbons and irreducible water. Hydrocarbon density gradually 

decreases from top to bottom in both sands due to gravity segregation. 

Figure 2.4 discusses the earth model and inversion results using six different 

combinations of nuclear measurements. Show the improbable hydrocarbon values, 

Tracks 2 and 3, which were obtained from combinations of nuclear measurement without 

density. Also, combinations of nuclear measurements with Sigma, neutron porosity, and 

hydrogen index provide reliable results compared to those with volumetric cross section 

and inverse of migration length. A possible reason for the inadequacy of using U as an 

input for inversion is the dominant contribution of matrix on the measurement compared 

to fluid. Also, inversion results tend to be in disagreement with synthetic earth model 

values in depth of intervals with low porosity and high water saturation. Viscosities 

derived from NMR and inversion results are shown in Track (h) cross-validate the 

inversion-based interpretation method.  Figure 2.5 describes ternary diagrams of three 

hydrocarbon components from the earth model and inversion results using various 

combinations of nuclear properties. Case B and D show undesirable results due to an ill-

posed condition caused by single nuclear property. The ternary diagram in case E, shows 

an improved estimation of in-situ hydrocarbon compositions using both density and 



 19 

hydrogen index. Ternary diagrams in cases C and F indicate that inversion provides more 

accurate estimation of hydrocarbon compositions with combinations of multiple nuclear 

measurements. Inversion results can be validated by Modular Formation Dynamics 

Tester (MDT) samples or by optical fluorescence measurements (Fujisawa et al., 2008).  

In order to investigate the reliability of this method for estimating hydrocarbon 

composition with noisy measurements, I added 5% zero-mean random Gaussian noise to 

each nuclear property. I observe how random noise propagates into inversion results. 

Figure 2.6 describes the estimated hydrocarbon compositions and their error bars. As 

porosity or hydrocarbon saturation decreases, uncertainty increases in that relative 

contribution of hydrocarbon to the measurements decreases. Therefore, perturbations on 

nuclear measurements lead to a larger error on the inversion results where hydrocarbon 

volume is relatively small. Inversion results with U on Track (d) show incorrect 

estimations because U is mainly affected by rock matrix. Lengths of error bars decrease 

when inversion is performed with more than two nuclear properties. This behavior 

confirms the stability of the inversion-based interpretation method. From the sensitivity 

analysis, I found that density is essential, Sigma and neutron porosity are recommended, 

while volumetric cross section is optional for inversion. 

 

2.6  FIELD CASES   

The application of this method to field examples is designed to assess the 

reliability of inversion with nuclear properties and to reconcile inversion results with the 

interpretation from NMR measurements. Well data used in this example were acquired in 

a siliciclastic reservoir in the deep water Gulf of Mexico. This highly laminated turbidite 

sequence was drilled with Oil-Based Mud (OBM). Sigma measurements were acquired at 
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a later stage. The inversion technique is implemented in two field examples to estimate 

in-situ hydrocarbon properties: (I) in a gas-to-oil transition zone, where accurate 

thermodynamic analysis is critical for phase identification, and (II) in an oil-bearing sand, 

where Sigma was measured in open-hole logs with depth shifts. 

Field Case I, gas and oil-bearing sand; The first case is Well α sand CC. Available 

measurements include density, PEF, neutron porosity, Sigma, NMR T
2
 distributions, and 

MDT pressure samples. Figure 2.7 shows the basic well log set together with core data 

and NMR T
2
 distributions. Good agreement among total porosity and NMR porosity 

except at the upper sand is observed along the interval XXX00 – XXX50 ft, where NMR 

porosity shows low values compared to core data. This effect is due to the low value of 

hydrogen index of the gas in this region, as denoted by the low values of density porosity 

(
D
) compared to neutron porosity (

N
). Neutron porosity and density porosity were 

corrected for shale concentration. P- and S-wave slownesses indicate the reservoir is 

unconsolidated. NMR T
2
 distributions shown in Figure 2.8 also confirm the presence of 

gas in the upper part of the hydrocarbon column as amplitudes of T
2
 distributions are 

suppressed due to low hydrogen index. MDT pressure samples exhibit two distinct 

pressure gradients, which correspond to gas and oil, respectively. Inversion results from 

different combinations of nuclear properties are shown in tracks (b) to (f). Although all 

results indicate the presence of gas mainly in the upper part of sand CC, inversion V 

results in Track (f) indicate gas at the bottom. This is due to the usage of U in the 

inversion that is mainly affected by matrix, hence may cause misleading results. 

Comparing inversion results for Tracks (d) and (g) also indicate that the usage of U or 

depth-shifted Sigma in the inversion degrades the estimation accuracy of hydrocarbon 

compositions. Hydrocarbon density calculated from bulk density can be cross-validated 

from MDT pressure samples. Hydrocarbon density and viscosity can be estimated from 
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the hydrocarbon library for any mixture of three pseudo-hydrocarbon components with 

corresponding temperature and pressure. Track (i) shows agreement between 

hydrocarbon density estimated from bulk density and hydrocarbon density obtained from 

MDT pressure samples. Track (j) shows the hydrocarbon viscosity estimated from 

inversion results, which is consistent with hydrocarbon viscosity obtained from both 

NMR T2 distributions and pressure samples. 

Field Case II, oil-bearing sand: In the lower sand of Well α, the oil column is 

filled with light oil. Figure 2.9 shows field measurements with interpreted porosity, 

water saturation, and shale concentration. This sand contains many thin shale streaks, 

such that most logs are affected by shoulder beds due to their limited vertical resolution. 

Figure 2.10 describes inversion results obtained using various combination of nuclear 

measurements. Most inversion results indicate that dominant fluids are a mixture of light 

and medium alkane, which is in agreement with pressure data and NMR T
2
 distributions. 

Pressure data exhibit a constant gradient from the top to the bottom of sand EE. However, 

inversion results using Sigma in Track (c) show erroneous gas streaks due to local depth 

shifting mismatches. Also, inversion results obtained from U in Track (c) exhibit 

unrealistic estimations of continuous gas from the top to the bottom of the hydrocarbon 

column. Track (i) and (j) show the resemblance of each hydrocarbon density and 

viscosity derived from inversion, NMR T
2
 distributions, and MDT pressure samples. 

Because the radial length of investigation of NMR tools is very shallow, about 1.5 to 4 

inches from the borehole, NMR hydrocarbon viscosity can be affected by mud filtrate 

invasion. 
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2.7  CONCLUSIONS   

Properties of fluids, especially hydrocarbons in reservoirs, are highly affected by 

temperature and pressure due to phase behavior. I developed a linear inversion algorithm 

using various nuclear properties to estimate hydrocarbon compositions. Compositional 

fluid analysis for multi-component mixtures can be achieved using SNUPAR and PVT 

flash calculations. Linear inversions render molecular volumetric compositions of three 

pseudo- hydrocarbon components. 

The advantages of this method are (1) thermodynamic consistent interpretation of 

hydrocarbon compositions in complex phases, (2) reconciliation of SNUPAR-based 

nuclear properties with NMR measurements, and (3) continuous and reliable assessments 

of hydrocarbon properties without fluid sampling. 

Results from a synthetic case example indicate that density is a key measurement, 

Sigma and neutron porosity are recommended and volumetric cross section is optional 

because it is controlled by matrix, not by fluid. Noise or incorrect porosity or water 

saturation propagates into inversion results and increase the uncertainty of results. Lastly, 

viscosity calculated from NMR T
2
 distributions honors viscosity computed from 

inversion results. Discrepancies between the two viscosities can be explained by mud 

filtrate invasion because their DOIs are not equal. 

The field examples examined in this chapter confirm that molecular volumetric 

compositions of in-situ hydrocarbon can be quantitatively appraised from conventional 

nuclear logs. Thermodynamically consistent assessments of hydrocarbon components 

based on the integration of inversion results, NMR T
2
 distributions, and MDT pressure 

samples yield a better understanding of the vertical variation of fluids in the formation. 
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Table 2.1: Summary of solid and fluid properties for the synthetic layered earth model. 

Two hydrocarbon bearing sands are located between shale layers. 

 

 

Layer Number 

Ranges of volumetric concentrations [%] 

Solids Fluids 

Quartz Shale C1 C2-C5 C6+ H2O 

1-17 Shale 1 43-49 40-43 0 0 0-1 9-12 

18-80 Sand 1 55-63 3-12 2-24 5-15 4-14 4-11 

81-88 Shale 2 47-48 32-34 0 0 0-1 17-18 

89-109 Sand 2 64-69 5-10 4-9 2-4 1-4 9-19 

110-113 Shale 3 55-56 33-34 0 0 0-1 10-11 
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Figure 2.1: Nuclear properties with regard to hydrocarbon carbon number. Sigma, 

density, hydrogen index, and migration length show distinguishable 

changes between ethane (C
2
) and pentane (C

5
) with fixed temperature and 

pressure. 
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Figure 2.2:  Graphical description of a formation that consists of matrix and fluid. 

Matrix is composed of sand and shale, fluid is filled with hydrocarbon and 

water, respectively. Hydrocarbon components are classified into three 

pseudo-components, C
1
, C

2-5
, and C

6+
, to augment their contrasts. 
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(a)                  (b)                  (c)                   (d)                 (e)                   (f)                   (g)                  (h) 

 

Figure 2.3:  Example of a synthetic earth model. Upper sand represents a typical capillary transition zone with fluid 

segregation by gravity. (a): Gamma-ray log. (b): Shallow (blue curve) and deep (red curve) resistivity. (c): 

Volumetric shale concentration. (d): Neutron and density porosities and their cross-over. (e): Volumetric fluid 

distributions. (f): Fluid density. (g): Synthetic NMR T
2
 distributions. (h): Hydrocarbon viscosity derived from 

NMR (blue curve) and inversion (red curve). 
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 (a)                    (b)                    (c)                   (d)                   (e)                    (f)                    (g)  

 

Figure 2.4:  Synthetic earth model and inversion results using selected combinations of nuclear properties. Nuclear 

measurement combinations with single property (Tracks b and c) exhibit one or two hydrocarbon components 

only, thereby yielding undesirable results. (a): Earth Model. (b): Inversion results with volumetric cross section. 

(c): Inversion results with inverse of migration length. (d): Inversion results with density and Sigma. (e): 

Inversion results with density and hydrogen index. (f): Inversion results with density, Sigma, and neutron 

porosity. (g): Inversion results with density, hydrogen index, and neutron porosity. 
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Figure 2.5:  Ternary diagrams of three hydrocarbon components from the earth model and inversion results using selected 

combinations of nuclear properties. Whereas inversion with ill-posed conditions typically identify two types of 

hydrocarbons, inversion with three different nuclear measurements provide reliable estimations of in-situ 

hydrocarbon properties. 
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 (a)                     (b)                     (c)                    (d)                     (e)                    (f)                     (g)  

 

Figure 2.6:  Synthetic earth model and the inversion results with 5% random Gaussian noise. (a): Earth Model. (b): 

Inversion results with density. (c): Inversion results with Sigma. (d): Inversion results with volumetric cross 

section. (e): Inversion results with inverse of migration length. (f): Inversion results with hydrogen index. (g): 

Inversion results with neutron porosity.
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       (a)        (b)              (c)                (d)                  (e)                (f)                (g)                (h)  

 

Figure 2.7:  Field case No. 1: Well α Sand CC. (a): Masked depth. (b): Gamma-ray log. (c): Shallow (blue curve) and deep 

(red curve) resistivities. (d): Shale corrected neutron and density porosity (blue and red curves) and their cross-

over, total porosity and NMR porosity (black and green curves), and core data. (e): Estimated water saturation 

and core data. (f): Estimated shale concentration and core data. (g): SDR and Timur-Coates permeabilities, and 

core data. (h): P-wave slowness (blue curve) and S-wave slowness (red curve). 
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     (a)         (b)              (c)              (d)             (e)              (f)               (g)                  (h)               (i)               (j) 

 

Figure 2.8:  Field case No. 1: Well α Sand CC. (a): Depth. (b): Inversion result with density. (c): Inversion results with 

Sigma. (d): Inversion results with density and volumetric cross section. (e): Inversion results with density and 

neutron porosity. (f): Inversion results with neutron porosity and volumetric cross section. (g): NMR T2 

distributions and T2 cutoff. (h): MDT pressure samples. (i): Estimated hydrocarbon densities from bulk density 

(red curve) and MDT pressure samples (black dots). (j): Hydrocarbon viscosities derived from NMR (blue 

curve), inversion (red curve), and MDT pressure samples (black dots). 
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                         (a)        (b)             (c)               (d)                 (e)               (f)                (g)              (h)  

 

Figure 2.9:  Field case No. 2: Well α Sand EE. (a): Masked depth. (b): Gamma-ray log. (c): Shallow (blue curve) and deep 

(red curve) resistivities. (d): Shale corrected neutron and density porosity (blue and red curves) and their cross-

over, total porosity and NMR porosity (black and green curves), and core data. (e): Estimated water saturation 

and core data. (f): Estimated shale concentration and core data. (g): SDR and Timur-Coates permeabilities, and 

core data. (h): P-wave slowness (blue curve) and S-wave slowness (red curve). 
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    (a)         (b)              (c)              (d)             (e)              (f)                (g)                 (h)                (i)                (j) 

 

Figure 2.10: Field case No. 2: Well α Sand EE. (a): Depth. (b): Inversion result with density. (c): Inversion results with 

Sigma. (d): Inversion results with density and volumetric cross section. (e): Inversion results with density and 

neutron porosity. (f): Inversion results with neutron porosity and volumetric cross section. (g): NMR T2 

distributions and T2 cutoff. (h): MDT pressure samples. (i): Estimated hydrocarbon densities from bulk density 

(red curve) and MDT pressure samples (black dots). (j): Hydrocarbon viscosities derived from NMR (blue 

curve), inversion (red curve), and MDT pressure samples (black dots). 
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Chapter 3:  Investigation of Dielectric and Thermodynamic Properties 

of Polar Liquids by Dielectric Spectroscopy and Molecular Dynamics 

Simulation 

In this chapter, dielectric permittivity of polar liquid mixtures were measured over 

an extensive composition range of 20 MHz to 20 GHz at ambient conditions. A series of 

fluid samples including water, 2-propanol, methanol, and their mixtures were measured 

for dielectric relaxation spectra. One Havriliak-Negami (HN) model is adapted for the 

mathematical inversion to estimate dielectric permittivity and relaxation time. These 

dielectric properties were calculated using molecular dynamics (MD) simulations with 

OPLS/AA (Optimized Potential for Liquid Simulations-All Atoms) force field and are 

compared with experimental results. Also, thermodynamic properties including excess 

enthalpy, density, number of hydrogen bonds, and effective self-diffusion coefficient are 

computed to cross-validate the experimental results. These properties predicted from MD 

simulations exhibit excellent agreements with experimental results. Furthermore, it is 

shown that the average number of hydrogen bonds per unit volume is strongly correlated 

with the dielectric relaxation time and mass diffusion coefficient. The MD simulation 

results show that predictions of microscopic and macroscopic properties can be improved 

with a better-optimized parameterization of molecules and the force field. 

  

3.1  INTRODUCTION 

There have been many studies to estimate thermodynamic and dielectric 

properties using molecular dynamics (MD) simulations. Investigations of water (Rønne et 

al., 1997) and mixtures of water and various liquids (Wensink et al., 2003; Jia et al., 

2009; Pascal et al., 2012; Dzida et al., 2015; Galicia-Andrés et al., 2015; Caro et al., 

2016) have been made to elucidate the microscopic and macroscopic properties of 
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liquids. Although several studies have focused on methanol and 2-propanol, the influence 

of microscopic properties on the mixture’s ensemble average of macroscopic dielectric 

properties has not been well quantitatively described. Also, the MD simulation results of 

previous studies may require better modeling of simulation that honor the data. The 

question that I would like to answer is whether experimental dielectric static permittivity 

and relaxation time of liquid mixtures can be described by microscopic properties 

calculated from numerical simulations. Measurements of dielectric relaxation spectra are 

the results of ensemble averages. Therefore, if MD simulations can cross-validate the 

experimental observations, they can be explained in terms of microscopic properties. The 

microscopic properties are generated from the interaction forces between bonded and 

non-bonded atoms including Lennard-Jones and Coulomb potentials. Thus, from the 

trajectories and velocities of molecules, I can calculate various microscopic and 

macroscopic properties of liquid mixtures. The MD simulation method is admissible for 

analyzing these microscopic properties that can be computed from the dynamic evolution 

of the system which is the result of interactions of atoms and molecules and their 

trajectories. In this study, I present the mixing effects on macroscopic dielectric 

permittivity and relaxation time in terms of various thermodynamic properties computed 

from MD simulations.  

This chapter is organized as follows: First, the laboratory experiment section 

describes the procedures of how frequency dependent dielectric spectra were measured 

and processed for the quantitative analysis. Following the MD simulation section, theory 

and simulation methods will be presented. Also, the effect of mixing on dielectric static 

permittivity is investigated, along with reorientational relaxation time, to develop a better 

understanding of polar molecule alignments in the direction of the external electric field. 
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The results and discussion section presents a comparison of dielectric properties based on 

spectroscopic measurements and MD simulations for liquid mixtures.  

 

3.2  LABORATORY EXPERIMENTS 

The laboratory experiments were designed to estimate dielectric properties of 

fluid mixtures. A series of fluid samples was prepared by mixing deionized (DI) water, 2-

propanol, and methanol. Immediately after mixing these fluids, the samples were sealed 

in glass containers for spectral measurements. All measurements were taken at room 

temperature and ambient pressure. The dielectric spectra of fluid samples were recorded 

on an Agilent E5071C Network Analyzer over a frequency range of 20 MHz to 20 GHz 

at ambient conditions. The resolution of collected spectra was set to 1,601 points and the 

calibration spectra of air and water were recorded immediately before each measurement 

for the reference. Measured spectra of water and methanol mixtures, water and 2-

propanol mixtures, and methanol and 2-propanol mixtures are shown in Figure 3.1. 

These measurements were analyzed using least squares mathematical inversion 

and applied for the real and imaginary part of the dielectric spectra. To fit the asymmetric 

shape of the complex dielectric spectra, Havriliak-Negami (HN) equation is used as 
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where ε
0
 and ε

∞
 are dielectric permittivity at zero and infinity frequency, ω is angular 

frequency, τ is dielectric relaxation time, and the exponents α and β are asymmetric and 

broadness parameters of the corresponding spectra. Note that α = 1 leads the HN equation 

to the Cole-Davidson equation and β = 1 causes it to the Cole-Cole equation, 
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respectively. The measured dielectric relaxation spectra are in GHz range with main 

dispersion only; the second and third relaxation terms are not necessary because they 

cover the motion of the end-standing alcohol monomers and the fast switching of OH-

groups (Sato et al., 2005). Also, these second and third relaxations increase the number of 

unknown parameters, making the inversion more unstable. 

The quadratic overall cost function is expressed as 

 

0

22 2

m 2 2
( ) (x) d   d xC x W d W x x ,       (3.2) 

 

where W
d
 is a data weighting matrix, d

m
 is the dielectric measurement which is a function 

of frequency, λ is the regularization parameter, W
x
 is a model weighting matrix, and x

0
 is 

the initial guess for the unknown parameters, respectively. Since nonlinear minimization 

of the cost function is an iterative process, I use the regularized Occam’s method (Aster 

et al., 2005; Hansen, 1994) as  

 
2T T T

d x x dJ W J W W x J W e    ,       (3.3) 

 
2( )m Re d d x Jx x   

,        (3.4) 

 

where d(x) is the vector of forward modeling constructed by HN model, e is the misfit 

between the measurements and forward modeling, and J is the Jacobian matrix. The 

corresponding Jacobian matrix has the form, 
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where N is the number of the measured point of the dielectric spectra (1,601). The partial 

derivatives of the five unknown parameters are 
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The linear least squares inversion is ill-conditioned, requiring reasonable initial 

guesses for the unknown parameters. Table 3.1 summarizes estimated dielectric 

permittivities and relaxation times for liquid mixtures used in this study. 
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3.3  MOLECULAR DYNAMICS SIMULATIONS 

I chose the software package GROMACS 5.1.4 (Abraham et al., 2017) to perform 

MD simulations because of its high performance and user-friendly interface. I tested 

similar mixtures of water and monohydroxy alcohol molecules in a cubic box with 

periodic boundary condition (PBC). The bulk water was prepared using an SPC/E model 

(Berendsen et al., 1987). For the MD simulations, selection of the proper force field is 

critical. A comparison (Coleman et al., 2012) between the GAFF (Wang et al., 2004), 

OPLS/AA (Jorgensen et al., 1996), and CHARMM (Vanommeslaeghe et al., 2010 ) force 

fields showed that OPLS/AA force field provides more accurate predictions of physical 

properties of various liquids than GAFF force field. This is because OPLS/AA force field 

was parametrized for liquids. The CHARMM force field is hardly better for the 

estimation of density and enthalpy of vaporization. I have compared the CHARMM36 

(Best el al., 2012) and OPLS/AA force fields for the various liquid mixtures and found 

that the OPLS/AA force field converged slightly faster and provided more accurate 

microscopic properties, but the differences are very small. Thus, in this chapter, I applied 

the OPLS/AA force field for the MD simulations because it has been optimized to 

reproduce the liquid thermodynamic and structural properties at room temperature.  

The numbers of water and alcohol molecules are tabulated in Table 3.2. The 

velocity-rescaling scheme (Bussi et al., 2007) was selected for the thermostat to control 

constant temperature. The Berendsen algorithm (Berendsen et al., 1984) was 

implemented for pressure control. The potential energy of the system was minimized and 

the box size was adjusted by applying canonical ensemble (NVT) and isothermal-isobaric 

ensemble (NPT). The grid spacing was defined at 0.12 nm and the radius for Lennard-

Jones interactions and Particle Mesh Ewald (PME) electrostatic interactions (Essmann et 

al., 1995) are limited to 1.5 nm for large molecules (Jorgensen et al., 1996). After the 

https://en.wikipedia.org/wiki/Particle_mesh_Ewald
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system was equilibrated, a production run was applied for 6 ns and the Verlet algorithm 

(Swope et al., 1982) was used for the equation of motion with a time step of 2.0 fs. 

Simulation times of more than 5 ns are essential to obtain well-converged properties of 

liquid mixtures. I calculated density, mass diffusion coefficient, excess enthalpy, dipole 

moment, dielectric permittivity, and a number of hydrogen bonds of the system and 

compared them to the experimental results. Simulation results show that the dielectric 

relaxation process can be explained as the collegial motion of the water and alcohol 

molecule ensemble.  

 

3.4  RESULTS AND DISCUSSION   

In this section measured dielectric spectra of liquid mixtures and their 

corresponding properties derived from numerical inversion results and those from MD 

simulations are presented, discussed, analyzed, and compared.  

 

3.4.1  Density 

Density is a key property of liquids. The density of most liquid mixtures is not 

linearly proportional to the concentration due to excess volume. Also, the density of 

liquid will affect other properties such as dielectric permittivity and mass diffusion 

coefficient. Accurate modeling of density and excess volume for liquid mixtures is 

important. The NPT simulations at ambient condition (298.15 K and 1 bar) can produce 

the density of liquid mixtures. Calculated densities and their error bars together with 

experimental data (Noda et al., 1982; Wei et al., 1984; Pang et al., 2007) are illustrated in 

Figure 3.2. The molar fraction given in the figure is the fraction of the second 

component. Although the density of methanol and 2-propanol is slightly overestimated by 
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1-2 %, the MD simulation provides a reasonable density of liquid mixtures. The reason 

for the overestimated density is the dipole moment and partial charges of the molecules, 

which will be explained in the dielectric permittivity section.  

 

3.4.2  Enthalpy 

Enthalpy changes of liquid mixtures are mainly caused by the intermolecular 

forces between molecules. Interactions of hydrogen bonding, dipole-dipole, and induced 

dipole generate strong attraction forces and exhibit a lower enthalpy of the mixture. Most 

liquids are non-ideal mixtures and the deviation from the ideal mixing can be expressed 

as an excess enthalpy, 

 

1 1 2 2( )mix mixH H X H X H              (3.11) 

 

where ΔHmix is the enthalpy of mixing, X
1
 and X

2
 are the molar fraction of component 1 

and 2, and H
1
 and H

2
 are their corresponding enthalpy. Calculated excess enthalpy and 

the experimental data (Benjamin et al., 1963; Lama et al., 1965; Martínez-Jiménez et al., 

2018) are compared in Figure 3.3. Excess enthalpy of water and methanol mixtures 

shows reasonable agreements with the experimental results. This could not be made for 

the previous studies (Wensink et al., 2003; Guevara-Carrion et al., 2011; Pascal et al., 

2012; Galicia-Andrés et al., 2015; Caro et al., 2016; Martínez-Jiménez et al., 2018) in 

which either the molar fraction of the minimum ΔH
mix

 is higher or the absolute value of 

ΔH
mix

 is smaller than experimental data. For the water and 2-propanol mixtures, the 

negative trend of excess enthalpy in the water-rich side and positive on the alcohol-rich 

side are well predicted as experimental data. Excess enthalpy of methanol and 2-propanol 
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mixtures is poorly described, but the experimental values are still in the range of error 

bars.  

 

3.4.3  Dielectric Permittivity 

Dielectric permittivity from the MD simulation is a difficult property to emulate 

from experimental data. Calculation of dielectric permittivity with the MD simulation 

uses the dipole moment fluctuations (Neumann, 1983) of the polar liquids in Periodic 

Boundary Conditions (PBC) as 
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,          (3.12) 

 

where <M2>-<M>2 is dipole moment fluctuations, kB is the Boltzmann constant, T is the 

absolute temperature, V is volume, and ε0 is the vacuum permittivity, respectively. Figure 

3.4 presents the dielectric permittivity and its error bars estimated from the MD 

simulation compared to the experimental data as a function of the molar fraction. The 

dielectric permittivity estimated from the simulations showed similar slopes of the 

experimental data but yield generally smaller values. Previous literature (Rønne et al., 

1997; Jia et al., 2009; Caleman et al., 2012; Galicia-Andrés et al., 2015; Martínez-

Jiménez et al., 2018) also shows that dielectric permittivity calculated from the MD 

simulation is lower than the experimental values. Several possible reasons for these 

discrepancies are: (a) explicit polarization is not enough, (b) the size of the simulation 

box and number of molecules (in this study, 1,000) is too small to represent real liquid 

status, (c) partial charges of the OPLS force field are not optimized, and (d) the 

convergence of the fluctuations of total dipole moment takes a long time to reach a state 
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of equilibrium. However, as shown in Figure 3.5, the dielectric permittivity of most 

mixtures are well converged after 5 ns. Thus, a better-parameterized force field with a 

larger molecular number would be in better agreement with the experimental results. 

Also, the average values of multiple MD simulations can reduce statistical errors. Several 

attempts have been made on architectural modifications of water (Fuentes-Azcatl et al., 

2014) and methanol (Salas et al., 2014) molecules to improve the estimation of dielectric 

permittivity by modifying the energy of non-bonded interactions and partial charges. 

Although their estimation of dielectric permittivity is improved, the estimation of other 

properties is deteriorated. A recent study (Martínez-Jiménez et al., 2018) presented a 

four-site potential model of methanol by incorporating a united atom of a massless 

methyl group into the charge distribution of the methanol monomer. Although their 

dielectric permittivity accurately reproduced experimental data, the agreement of mass 

diffusion coefficient and excess enthalpy of water and methanol mixtures are 

unsatisfactory. To fit the dielectric permittivity, increased dipole moment is required 

which causes more attractive interactions between molecules, eventually decreasing mass 

diffusion coefficient and increasing density. Therefore, more robust model with 

optimized parameters need to be developed for accurate estimations of both dielectric and 

thermodynamic properties of liquid mixtures.  

 

3.4.4  Dielectric Relaxation Time 

Dielectric relaxation time can be estimated by calculating interaction time 

between total dipole moment of molecules and applied electric field. Auto Correlation 

Function (ACF) of total dipole moment is considered as an exponential decay function 

(McQuarrie, 1976) as,  
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where τ
D
 is a dielectric relaxation time and the angular brackets in the equation mean an 

average of equilibrium ensemble. The original Debye theory expressed dielectric 

behavior as a single exponential decay, but the correlation function could not be fully 

captured by one or two exponential decays due to the statistical properties. Thus, NMR-

like inversion is implemented to calculate dielectric relaxation time. The autocorrelation 

functions of liquid mixtures calculated from MD simulations and inversion results 

together with experimental data are presented in Figure 3.6. Inverted dielectric relaxation 

times from both experiments and MD simulations are plotted together in Figure 3.7. 

Although the simulations yield faster relaxation time at some points, the overall trends of 

dielectric relaxation time for all liquid mixtures are qualitatively similar with the 

experimental results. Deviations are mainly due to the statistical fluctuations of ACF, 

which diverges from the exponential decaying behaviors.  

 

3.4.5  Mass Diffusion Coefficient 

The mass diffusion coefficients of liquid mixtures are calculated as a function of 

the molar fraction. As two liquids are mixed, attractive and repulsive interactions 

between molecules govern the effective diffusion coefficient. To quantify mass diffusion 

coefficient of liquid mixtures, a well-known Einstein’s relation is applied as, 
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where r(t) is a distance a molecule travels in time t. The mass diffusion coefficient D is 

proportional to the slope of Mean-Square Displacement (MSD) over time, which can be 

calculated by tracing the trajectory of all atoms. A comparison of calculated mass 

diffusion coefficients from the MD simulation and experimental values (Pratt et al., 1975; 

Derlacki et al., 1985) is given in Figure 3.8. Although the overall shapes of the curves for 

liquid mixtures are analogous to the experimental results, there are some discrepancies 

between the MD simulation and experimental results. The minimum mass diffusion 

coefficient of the water and methanol mixtures is observed at a lower methanol molar 

fraction compared to the experimental data. Also, the mass diffusion coefficients of 

methanol and 2-propanol are underestimated especially on the alcohol-rich side. This is 

because of the enhanced dipole moments, which increase attracting forces between the 

molecules. As a result, they travel a shorter distance in a given time. Estimation of mass 

diffusion coefficients from previous studies (Wensink et al., 2003; Guevara-Carrion et 

al., 2011; Galicia-Andrés et al., 2015; Martínez-Jiménez et al., 2018) also showed 

qualitatively correct results with the OPLS force field, but also some discrepancies in 

details compared to the experimental data. 

 

3.4.6  Hydrogen Bond 

A hydrogen bond is electrostatic attraction between a hydrogen atom and other 

electronegative atom such as oxygen. To investigate the effect of hydrogen bond to 

dielectric relaxation time, numbers of hydrogen bonds between all donors and acceptors 

are calculated from MD simulations. Two popular geometric criteria is applied to count 

the number of hydrogen bonds: (1) the distance between donor and acceptor is less than 

0.35 nm and (2) the angle is less than 30 degrees. Figure 3.9 represents the average 
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number of hydrogen bonds per molecule as a function of molar composition. To validate 

simulation results, I compared the number of hydrogen bonds per water molecule. An 

average number of hydrogen bonds per water molecule from previous literature varies: 

3.3 from X-ray absorption spectrum (Smith et al., 2004), 3.46 from NMR (Hoffmann et 

al., 1997), 3.58 from neutron diffraction (Soper el al., 1997), and 3.19 from Monte Carlo 

simulations (Kalinichev et al., 1997). These distributions are due to their different 

definitions of the hydrogen bond, diverse experimental or simulation techniques, and 

interpretational uncertainties. Thus, our simulation results of 3.48 can be considered a 

reasonable estimation. Panel (B) of Figure 3.9 shows that the average number of 

hydrogen bonds between two components become maximum at molar fraction of 0.6 

while panel (A) and (C) show the maximum at 0.5. This can be explained by the size 

difference between water and 2-propanol molecules, which is greater than the size 

differences between water and methanol and 2-propanol and methanol molecules.  

The number of hydrogen bonds per unit volume decreases with an increasing 

dielectric relaxation time, as demonstrated by three series of liquid mixtures in Figure 

3.10. This tendency conforms to the wait-and-switch model (Kaatze et al., 2002) that 

dielectric relaxation time is primarily determined by the availability of neighboring 

hydrogen bond sites. If larger number of alternative hydrogen bonds exist in suitable 

positions, a molecule needs less time to jump to an unoccupied bond to create a new 

hydrogen bond. This changing time is governed by the strength of hydrogen bonds and 

availability of a hydrogen bond donor or acceptor located nearby. Therefore, dielectric 

relaxation time can be considered as a period between a molecule is captured in the 

hydrogen bond network until it is released (Sato et al., 2005). This is supported by the 

previous studies of reorientation of water (Sciortino et al., 1992) and alcohol 

(Senthilkumar et al., 2018) molecules. Furthermore, dielectric relaxation time is related to 
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the size of the molecule. While monohydric alcohol contains alkyl group, water has only 

hydroxyl group, which occupies smaller volume. Water can generate up to four hydrogen 

bonds per molecule and construct a tetrahedral structure, whereas alcohols have only 

three possible hydrogen bonds per molecule. In terms of molar volume, methanol and 2-

propanol have the same hydroxyl group, but methanol is able to build more hydrogen 

bonds per unit volume than 2-propanol because it has a shorter chain length. Because 

chain length is independent of the hydrogen bond energy (Kaatze et al., 2002), dielectric 

relaxation times for alcohols and aqueous solutions are substantially dependent upon the 

numbers of hydrogen bonds per unit volume.  

The effect of hydrogen bonds on mass diffusion coefficient is similar to the 

dielectric relaxation time in that hydrogen bonding retards the mass diffusion of 

molecules (Su et al., 2010). In the case of water and alcohol mixtures, water molecules 

inserted into methanol or 2-propanol molecules causes a rapid rearrangement of hydrogen 

bonds. The average lifetime of a hydrogen bond is only several picoseconds (Luzar et al., 

1996), donors and acceptors continue breaking and forming hydrogen bonds. According 

to the transition state theory, both relaxation and diffusion motions need to overcome the 

energy barrier of hydrogen bonds. Thus, a molecule with a certain amount of energy can 

diffuse less with a greater number of hydrogen bonds in the system. Therefore, the 

dielectric relaxation time and mass diffusion coefficient of liquid mixtures are mainly 

attributed to the collective dynamics of hydrogen bonds, dipole-dipole interactions, and 

hydrophobic alkyl group interactions.  
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3.5  LIMITATIONS OF MOLECULAR DYNAMICS SIMULATION    

Despite these accurate predictions, there are limitations to the MD simulations. In 

order to acquire numerical stability, it requires simulation time of several ns with short 

time steps, which are computationally intensive. Also, most force fields including 

OPLS/AA are intrinsically an approximation. Additionally, one needs to repeat the same 

simulation to avoid statistical errors. However, the MD simulation can be considered an 

effective approach to investigate properties of complex liquid mixtures under various 

conditions. Therefore, MD simulation can serve as a bridge between theory and 

laboratory measurements for a better description of the dielectric behaviors.  

  

3.6  CONCLUSIONS     

I have measured the complex dielectric relaxation of water, methanol, and 2-

propanol mixtures in the microwave region at ambient condition. These spectra were 

inverted with one HN model to estimate dielectric permittivity and relaxation time. To 

cross-validate experimental results, I have explored comprehensive MD simulations to 

estimate various dielectric and thermodynamic properties of the mixtures. These mixing 

properties computed from the MD simulations are able to capture the main aspects of 

experimental results. It is observed that dielectric relaxation time and mass diffusion 

coefficient of polar liquid mixtures are mainly governed by the average number of 

hydrogen bonds per unit volume. This is the consequence of the hydrogen bonding 

aggregates between alcohol hydroxyl groups and the tetrahedral water structures that 

hinder the collective motion and rotation of the molecules. Also, enhanced dipole 

moment of methanol and 2-propanol leads increased dielectric permittivity at the cost of 

increased density and decreased mass diffusion coefficients. This indicates that attractive 

interactions between molecules are slightly inflated compared to the repulsive 
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interactions. Thus, balanced partial charges for these molecules are required to 

compromise between dielectric and thermodynamic properties. Along with more refined 

modeling of molecules, optimized parameterization of the force fields should be 

scrutinized for the better estimation of liquid mixture properties.  
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Table 3.1: Measured dielectric permittivity and relaxation time for the three series of 

liquid mixtures at various concentrations at 298.15 K. The volumetric and 

molar fractions given in the table are the fraction of the second component. 

 

Liquid 

mixtures 

XV  

[V/V] 

XM  

[mol/mol] 

Dielectric 

permittivity 

Relaxation 

time [ps] 

Water and 

Methanol 

0.0000 

0.2500 

0.4500 

0.6002 

0.7508 

0.9009 

1.0000 

0.0000 

0.1294 

0.2673 

0.4010 

0.5732 

0.8021 

1.0000 

80.2235 

70.9251 

62.6175 

56.3463 

48.7368 

40.9499 

34.8324 

9.4088 

20.5037 

26.7417 

32.3808 

39.2639 

55.0305 

63.2194 

Water and  

2-propanol 

0.0000 

0.2857 

0.4000 

0.6129 

0.7037 

0.7997 

0.8996 

0.9300 

1.0000 

0.0000 

0.0863 

0.1360 

0.2720 

0.3592 

0.4851 

0.6790 

0.7582 

1.0000 

80.2335 

65.1739 

56.9736 

40.4826 

34.3042 

27.4433 

23.3298 

21.6109 

20.7252 

9.4088 

27.7308 

32.4633 

55.0305 

67.9373 

106.5633 

164.2381 

206.8963 

416.4861 

Methanol and 

2-propanol 

0.0000 

0.2500 

0.4500 

0.6500 

0.8000 

0.9000 

1.0000 

0.0000 

0.1500 

0.3022 

0.4957 

0.6792 

0.8265 

1.0000 

34.8324 

31.5460 

28.7796 

25.6558 

23.4614 

22.5057 

20.7252 

63.2194 

83.5190 

121.8446 

166.3822 

251.8723 

285.7552 

416.4861 
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Table 3.2: The number of molecules of water (NW), methanol (NM), and 2-propanol 

(NP) and the corresponding box length used in the MD simulations. 

 

Water and  

Methanol mixtures 

Water and  

2-propanol mixtures 

Methanol and  

2-propanol mixtures 

NW NM Lbox (nm) NW NP Lbox (nm) NM NP Lbox (nm) 

1000 

870 

750 

540 

360 

170 

0 

0 

130 

250 

460 

640 

830 

1000 

3.11677 

3.24513 

3.36256 

3.59335 

3.73541 

3.88923 

4.04898 

1000 

940 

880 

630 

350 

220 

0 

0 

60 

120 

370 

650 

780 

1000 

3.11677 

3.26712 

3.42546 

3.98970 

4.49634 

4.69401 

4.98465 

1000 

830 

660 

490 

320 

160 

0 

0 

170 

340 

510 

680 

840 

1000 

4.04898 

4.24661 

4.40497 

4.58746 

4.75733 

4.87248 

4.98465 
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Figure 3.1:  Frequency dependence of dielectric dispersion (ε΄) and absorption (ε΄΄) 

spectra of the fluid mixtures of (A) water and methanol, (B) water and 

2-propanol, and (C) methanol and 2-propanol at various concentrations 

at 298.15 K and 1 bar. 
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Figure 3.2:  The density of (A) water and methanol, (B) water and 2-propanol, and (C) methanol and 2-propanol 

mixtures from NPT MD simulation results versus experimental data. 
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Figure 3.3:  Estimated excess mixing enthalpy, ΔHmix as a function of molar 

concentration of the second component at 298.15 K and 1 bar. The 

water and methanol mixtures (solid blue line with circles), water and 

2-propanol mixtures (solid red line with squares), and methanol and 2-

propanol mixtures (solid magenta line with stars) are compared with 

the experimental data (dashed lines). Simulation results show good 

agreement with experimental data over the entire composition range. 
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Figure 3.4:  Estimated dielectric permittivity obtained by MD simulations as a function of time for (A) water and 

methanol, (B) water and 2-propanol, and (C) methanol and 2-propanol mixtures at different molar 

concentrations. The dielectric permittivity is stabilized to the asymptote values after 4 ns.
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Figure 3.5:  The dielectric permittivity as a function of the molar concentration of 

the second component at 298.15 K and 1 bar. The measured water and 

methanol mixtures (solid blue line with circles), water and 2-propanol 

mixtures (solid red line with squares), and methanol and 2-propanol 

mixtures (solid magenta line with stars) are compared with MD 

simulation results (dashed lines) with error bars. 
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Figure 3.6:   Normalized total dipole moment autocorrelation functions (ACF) for (A) water and methanol, (B) water 

and 2-propanol, and (C) methanol and 2-propanol mixtures at different molar concentration. The 

mathematical inversion is applied to the first 1,000 ps of each ACF to estimate dielectric relaxation time, 

and corresponding forward modeling is represented as red dashed lines. The three bottom figures represent 

the inversion results of the corresponding figure above.
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Figure 3.7:   Comparison of measured dielectric relaxation times τD as a function of 

molar concentration of the second component for water and methanol 

mixtures (solid blue line with circles), water and 2-propanol mixtures 

(solid red line with squares), and methanol and 2-propanol mixtures 

(solid magenta line with stars) with the MD simulation results (dashed 

lines with error bars).  
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Figure 3.8:  Mass diffusion coefficients calculated from the Einstein relation with 

MSD as a function of molar concentration of the second component at 

298.15 K and 1 bar. The water and methanol mixtures (dashed blue 

line with error bars), water and 2-propanol mixtures (dashed red line 

with error bars), and methanol and 2-propanol mixtures (dashed 

magenta line with error bars) are compared with the experimental data 

(solid lines).
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Figure 3.9:  The average number of hydrogen bonds per molecule as a function of molar concentration of the second 

component at 298.15 K and 1 bar. With two geometric criteria (see description in the text), the average 

numbers of hydrogen bonds are presented in (A) water and methanol mixtures (solid blue line with error 

bars), (B) water and 2-propanol mixtures (solid red line with error bars), and (C) methanol and 2-propanol 

mixtures (solid magenta line with error bars). 
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Figure 3.10: Measured dielectric relaxation time τD versus average number of 

hydrogen bonds per unit volume for water and methanol (o), water and 

2-propanol alcohol (□), and methanol and 2-propanol (*) mixtures.
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Chapter 4:  Comparison of NIR, Infrared, and Raman Spectroscopies 

for the Estimation of Compositions and Physical Properties of Liquid 

Mixtures  

This chapter proposes methodologies for the estimation of compositions and 

physical properties of liquid mixtures from various spectroscopic measurements. The three 

most common spectroscopies Near Infrared (NIR), Infrared, and Raman have been 

successfully applied to a series of fluid samples including Alkanes, Ethers, Alcohols, 

water, Cyclics, Aromatics, and their mixtures. 

For NIR absorption spectra, Radial Basis Function (RBF) and Artificial 

Neural Network (ANN) approaches were separately applied to build correlations 

between spectral data and concentrations of each component. On these calibrations, 

the Principal Component Analysis (PCA) model was implemented. Both RBF and 

ANN methods were trained by the first 5 Principal Components (PCs) obtained from 

two hundred absorption spectra of liquid mixture samples. The trained systems were 

tested with 27 laboratory measurements and both results show excellent predictions of 

component concentrations with a Root-Mean-Square Errors (RMSE) of 2.5%. This 

result shows that RBF and ANN methods yield prediction error 50% less than 

standard multivariate methods.  

I also compared the estimation results of physical properties using Partial Least 

Square Regression (PLSR) and ANN analysis for each spectral techniques. The PCA was 

implemented to each spectrum to extract PCs for the calibration and training of PLSR 

and ANN models. These models were tested with 51 mixture samples and the RMSE and 

correlation coefficient (R2) were calculated to compare the prediction performance of 

these models. In the case of density estimation from ANN model, RMSE in the range of 

0.7-1.1% (1.5-2.1%) for the training (test) data sets were obtained. For the viscosity 
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estimation with the ANN model, RMSE in the range of 4.4-5.6% (13-22.2%) were 

observed. ANN model decreases RMSE of 0.3-0.4% and 9.2-19.7% for the estimation of 

density and viscosity, respectively compared to the PLSR model. Furthermore, these 

errors can be decreased with a combined spectra of NIR, Infrared, and Raman. The 

reciprocal physics of these complementary spectroscopic techniques is key to improving 

analytical performance. 

 

4.1  INTRODUCTION  

Conventional techniques used to analyze Infrared spectra are multivariate 

analysis such as PCA (Sato, 1994; Fujisawa et al., 2008) and PLSR (Indo et al., 

2015). Both PCA and PLSR provide linear calibration models for estimating 

components and concentrations of mixture samples. These works with NIR data are 

based on Beer-Lamberts law that the optical absorbance of a material is linearly 

proportional to the path length, absorptivity, and molecular concentration.  However, 

the linearity of the Beer-Lambert law breaks down with  

(1) Electrostatic interactions between molecules, 

(2) Scattering of light, 

(3) Very high or low concentrations, 

(4) Chemical deviations due to pH changes. 

Due to these reasons, summation of the individual component absorptions can be 

different from the absorption of the mixture, and conventional approaches may cause 

erroneous results. 

To mitigate these non-linear correlations, I introduce two methodologies to 

estimate liquid mixture compositions using NIR spectra. The first method is RBF 



 64 

interpolation that provides nonlinear approximation by using a mapping function 

from inputs to outputs. A linear combination of normalized Gaussian function 

depends on the Euclidean distance between the input points to the estimating point. 

The RBF method has been applied to many well-logging problems in that it can be 

used for any types of measurements with arbitrary dimensions of input and output 

data. Freedman (2006) applied RBF mapping function to nuclear measurements to 

predict formation Sigma. Anand et al. (2011) adapt RBF method to use porosity, 

irreducible water saturation, and NMR T
2
 distributions to estimate effective 

permeability.  

The second method is Artificial Neural Network (ANN). The artificial neural 

network is designed to mimic the neuron network of a human brain. The concept of 

neural networks was developed several decades ago and is widely used for pattern 

recognition in many areas. Hegeman et al. (2009) used ANN to estimate fluid Gas-

Oil Ratio (GOR) and Falla et al. (2006) used ANN to predicted distillation properties 

of crude petroleum. Similar to RBF interpolations, the advantage of ANN is 

applicable to petrophysical problems without a priori knowledge of physical 

equations and forward models. The RBF and ANN calculations were performed with 

scripts programmed in the Matlab R2015b (Mathworks Inc.) environment. 

I introduce the combined interpretation of NIR, Infrared, and Raman 

spectroscopies to analyze fluid properties. The three spectroscopic techniques are 

complementary with some materials being better suited for Infrared, while others are 

better suited for Raman. While Infrared spectroscopy is sensitive to the vibration of polar 

molecular bonds, which change the dipole moment, Raman spectroscopy relies on the 

inelastic scattering of photons. The energy from these photons is absorbed by non-polar 

bonds, which alter the polarization of the molecule, and is re-emitted at a different 
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frequency. Thus, Infrared spectroscopy information corresponds to the ionic bonds, and 

information from Raman spectroscopy is responsible to the covalent bonds of the 

molecule samples. For these reasons, some absorption peaks show strong amplitudes in 

NIR and Infrared, but they appear weak in Raman, and vice versa. These complementary 

techniques can improve the analytical performance of fluid property estimations.  

To analyze spectroscopic measurements, I applied multivariate analysis to NIR, 

Infrared, and Raman spectra to estimate the density and viscosity of 51 liquid mixture 

samples. The PLSR is commonly used in spectral analysis and provides calibration 

models for estimating effective properties of mixture samples (Luinge et al., 1995; Kilner 

et al., 2011; Meksiarun et al., 2017). In addition to the traditional multivariate method, 

ANN model is applied for quantitative analysis.  

This chapter is organized as follows: First, the laboratory experiment section 

describes the procedures of how NIR, Infrared, and Raman spectra were measured and 

prepared for the quantitative analysis. In the Radial basis function interpolation and 

Artificial neuron network sections, concepts and mathematical equations for model 

training are presented. The Results and discussion section compares the estimated 

component concentrations and RMSE for the assessment of compositions using each 

method. Also, PLSR calibration and ANN training models based on three spectroscopic 

measurements for the estimation of fluid density and viscosity will be presented. 

Additionally, the feasibility of the integrated spectroscopic measurements is investigated, 

along with multivariate and artificial neural network analysis, for the improvement of 

density and viscosity estimations. Finally, the prediction results obtained with NIR, 

Infrared, Raman, and their combined spectroscopies and two chemometric methods will 

be compared based on their corresponding RMSE and correlation coefficient squared R2. 
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4.2  LABORATORY EXPERIMENT  

Laboratory experiments were designed to appraise the performance of 

estimating components and concentrations, and petrophysical properties of fluid 

mixtures. A series of fluid samples were prepared by mixing DI water, Acetone, 

Cyclohexane, n-Decane, n-Heptane, 2-propanol, n-Pentane, Tetrahydrofuran, Toluene, 

and Methanol. These fluids are purchased from Fisher Scientific with 99% purity or 

higher. Density and viscosity for these fluid mixtures vary from 0.7 to 0.9 g/cm3 and from 

0.3 to 1.8 cP, respectively. These samples were chosen because they have a variety of 

chemical bonds representing their molecular structures and corresponding optical 

properties with absorption and scattering. For instance, the molecular structure of 

Tetrahydrofuran is similar to that of Cyclohexane, but it exhibits distinct absorption 

peaks due to COC bond.  Immediately after mixing the fluids, samples were sealed in 

glass containers for spectral measurements. All measurements were taken at room 

temperature and ambient pressure. A set of 51 samples with independently varying 

concentrations of each component are presented in Table 4.1. 

The NIR spectra of fluid samples were recorded on an Agilent Cary 5000 

spectrometer at room temperature and ambient pressure. Samples were injected into 

Starna cells Quartz cuvettes with 1 mm optical path length and the spectral resolution 

was set to 1 nm. An empty cuvette filled with air was measured as the reference. The 

measured wavenumbers ranged from 1,000 to 2,500 nm (4,000 to 10,000 cm-1). The 

background spectrum of air was recorded immediately before each measurement of the 

single-beam sample spectrum. This range covers the first and second overtones, and 

combination regions of chemical bonds of interests. The first overtone was used as 

the main target for spectrum analysis because the second overtone has a much lower 

intensity, due to excitation probability. Combination mode is much more complex to 
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interpret in that multiple excitations from stretching and bending blend with each 

other.  

Confocal Raman spectra were obtained with a Witec Alpha 300 for Stokes 

scatterings. Samples were dropped onto the premium plain glass microscope slides 

specially coated with aluminum using the Cooke Ebeam/Sputter Deposition System. 

Aluminum coatings provide stable background scattering signals compared to 

commercial Reynolds aluminum foils. The spectral resolution was set to 1 cm-1. An 

average number of accumulations of 5 scans and a typical integration time of 2 seconds 

was designed to minimize the noise level. An excitation wavelength of the laser was 488 

nm. Aluminum background and fluorescence signals were removed manually.  

For the Infrared spectra, Mattson Infinity Gold FTIR spectrometer from Thermo 

Mattson was used to measure absorption spectra of the samples. The spectrometer is 

equipped with a liquid nitrogen cooled Narrow Band MCT detector and Attenuated Total 

Reflectance (ATR) cell equipped with a GATR Germanium crystal. The spectral 

resolution was set to 2 cm-1 covering from 700 to 4,000 cm-1 spectral range and each 

spectrum has an average of 256 scans to ensure a high signal-to-noise ratio. Like NIR and 

Raman, background spectra of air was measured before each measurement for the 

baseline correction.  

Measured NIR, Infrared, and Raman spectra require pre-treatment to minimize 

variations of spectra irrelevant to the change of concentrations. Such undesirable 

variations are irrelevant to the chemical property, which can mislead interpretations. 

Thus, it is important to apply appropriate pre-treatment to reduce such unrelated effects in 

order to construct more robust input data for the chemometric analysis. 

The spectral truncation is the simplest and most practical procedure because 

the elimination of uninformative spectral regions can significantly improve the 
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performance of the calibration model (Jiang et al., 2002). After truncation, baseline 

corrections were applied to the selected wavelength region. Among commonly used 

pre-treatment methods such as Derivatives, Standard Normal Variate (SNV, Barnes 

et al., 1989), Multiplicative Scatter Correction (MSC, Dhanoa et al., 1994), and 

Extended Multiplicative Signal Correction (EMSC, Martens et al., 2003), I choose 

SNV due to the effectiveness in scattering correction. The derivatives are not used 

because of noise enhancement. These pre-treatments allow more robust input data for 

RBF and ANN models in that it minimizes variations of absorption spectra irrelevant 

to the change of concentrations.  

For NIR spectral measurements, I applied PCA method for dimension-

reduction. It is a mathematical procedure that uses an orthogonal transformation to 

convert correlated variables, which is measured spectra, into a set of linearly 

uncorrelated variables called principal components. The first five PC account for 

99.02% of the variability in the spectrum. Thus, instead of the entire spectrum, these 

five PCs can be used as input data for the RBF and ANN analysis to reduce 

computational time. The input vector x has 5 PCs extracted from NIR spectra and 

output vector y has 6 concentrations of Acetone, Cyclohexane, Decane, 2-propanol, 

Tetrahydrofuran, and Toluene. The data is divided into two sets, training data and 

test data. Training data is prepared with mixtures of random combinations of 

component concentrations constructed by Beer-Lamberts law. Laboratory measured 

absorption spectra and extracted principal components used for the test data is 

presented in Figure 4.1. The distinct features of each component and corresponding 

NIR spectral peaks are summarized in Table 4.2. 

The three sets of optical spectra, NIR absorption, Infrared absorption, and Raman 

Stokes scattering, have different characteristic bands. Observed NIR absorption spectra 
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correspond to first overtones of CH and OH stretches (5,000 - 6,000 cm-1) and 

combination regions (4,000 - 5,000 cm-1). On the other hand, Infrared and Raman 

scattering spectra show fundamental stretching (2,800 - 3,100 cm-1) and bending (500 - 

1,800 cm-1) modes associated with carbon, hydrogen, and oxygen bonds. Baseline 

corrections were applied to each measured spectrum to reduce various instrumental and 

scattering effects. Experimental results show that each of these spectra can establish 

calibration models for fluid mixture samples. 

  

4.3 METHODS  

To analyze measured optical spectra, several techniques are applied including 

Principal Component Analysis (PCA), Partial Least Squares Regression (PLSR), Radial 

Basis Function (RBF), and Artificial Neural Networks (ANN). This section describes 

multiple approaches to investigate optical spectra measured from three different 

spectroscopies. 

 

4.3.1  Principal Component Analysis 

Principal Component Analysis (Pearson, 1901) is a widely used statistical method to 

transform the data of possibly correlated variables into a set of linearly uncorrelated 

variables called Principal Components (PC). This method is an analogue of the 

Singular Value Decomposition (SVD) or Eigenvalue Decomposition (EVD) 

technique in that it is based on the covariance and eigenvector analysis. Variance and 

covariance are important terms in describing PCA. Variance can be explained as a 

measure of the data spread, and covariance is expressed as a joint variability of two 

data. Given a data of n points with p variables as, 
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1 2( , , ..., ) px x x x .         (4.1) 

 

The kth PC of the data is defined by the linear transformation as, 

 

( 1, 2, ..., ) T

k kz a x k p ,       (4.2) 

 

where a
k
 is an eigenvector of the covariance matrix S corresponding to eigenvalue λ

k
 

for the variable x. The eigenvector is chosen such that the variance of the z
k
 is 

maximized. In other words, PCA finds a normalized direction in p dimensional space 

that makes the variance of data is maximized. The benefit of PCA is a dimension 

reduction or data compression. Because a large amount of variances are mainly 

associated with the first several principal components, one can discard the other 

insignificant components.  

 

4.3.2  Partial Least Square Regression 

Another statistical method applied to optical spectroscopy measurements is Partial 

Least Squares Regression (PLSR, Wold et al., 2001) that finds a linear regression 

model by projecting the predicted variables and the measured variables to a new 

space. A PLSR model finds the multidimensional direction in the X space that 

explains the maximum multidimensional variance direction in the Y space as, 

 

 TX T P E ,         (4.3) 
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 TY U Q F ,         (4.4) 

 

where X and Y are matrices of predictors and responses, T and U are projections of X 

and Y, P and Q are orthogonal loading matrices for the projected X and Y scores, and 

E and F are the residual terms for X and Y, respectively. The decompositions of X 

and Y are evaluated to maximize the covariance between T and U. Therefore, PLSR 

is identifying the features that explain the most variance between the predictors and 

responses; use these features to predict the responses. Both PLSR and PCA are linear 

decomposition techniques to reduce dimensions but construct their components 

differently. While components created from PCA explain the variability in the 

predictor variables (X) without considering the response variables (Y), PLSR takes 

account the response variables (Y) to build models.  

 

4.3.3  Radial Basis Function 

Radial Basis Function (RBF) is used to build up approximations of the form 

 

 
1

( )
N

i i

i

F x y w x x


  
,        (4.5) 

 

where the interpolation function y(x) is a sum of N radial basis functions. w
i
 is a 

weighting coefficient, which can be calculated using linear least square method. ϕ is 

a type of radial basis functions with Gaussian function as,  

 
2

2
( , ) exp

2

i

i

x x
x x



 
  

 
  .         (4.6) 
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The distance between two features x and x
i
 is recognized as the squared Euclidean 

distance, and σ is a standard deviation that controls the width of the distributions. The 

most important feature of RBF is a strong dependence on the distance. This means 

the points far from x have negligible contributions to RBF. This localized Gaussian 

RBF can be normalized as  
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
.        (4.7) 

 

Using Nadaraya-Watson Regression Estimator (NWRE, Nadaraya, 1964) with a 

simple approximation of neglecting the overlap of RBFs, the weighting coefficient w
i
 

in equation (4.5) can be replaced to y
i
 and the estimator becomes a linear smoother. 

Coupling the equation (4.5) and (4.7) yields  

 
2
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


,       (4.4) 

 

which is the NWRE mapping function. This equation is a weighted average of the 

output data with RBF governed by the Euclidean distance. The equation (4.4) was 

used for data training and the trained interpolation surface is shown in Figure 4.2. 
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For visualization, the figure plots only PC1 and PC2 but it can be expanded to an 

arbitrary dimension. 

 

4.3.4  Artificial Neural Networks  

A neural network with three layers used in this study is represented in Figure 

4.3. The first layer, called input layer, has n
i+1

 neurons, where n
i
 is the number of 

input units and the additional neuron is called the bias unit, which always has a value 

of one. This bias value is important for training because it allows the activation 

functions to shift. Similarly, the numbers of neurons in the hidden layer and output 

layer are represented as n
h
 and n

o
, respectively.  

The regularized cost function for the neural network is given by  

 
1

( ) (i) ( ) (i) (l) 2

k k ,

1 1 1 1 1

1
( ) log(( (x )) ) (1 ) log(1 ( (x )) ) ( )
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




    

         
o h in n nm L
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k k j k

i k l j k

J y h y h
m m

, (3.5) 

 

where m is a number of input data, L is a total number of layers, y
k
 is the 

concentration of a kth component, λ is a regularization parameter, Θ(l)
j,k

 is a weight 

from a k-th unit of l layer to a j-th unit of the l+1 layer. These weights are randomly 

initialized for symmetry breaking and are computed to the optimized values through 

the training process. Also, h
ϴ
(x)k is the activation of the k-th output unit as 

 
1

( )
1 


 x

h x
e

.          (3.6) 

 

The sigmoid function was applied to an activation function (Cybenko, 1989); 

it enables a smooth transition as input values vary. I implemented feedforward 
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propagation for neural networks to predict component concentrations. Feedforward 

neural network computes h
ϴ
(x)k for every input data, and summation of all costs. 

Once cost functions are calculated, backpropagation can be implemented to calculate 

gradients (Rumelhart et al., 1986). The idea of backpropagation is that activations 

calculated from feedforward can be compared to the true output values and measure 

how much each neuron is subject to the difference. This is an iterative process of 

gradient descent to minimize the overall cost that simultaneously calculates weights 

for neurons and gradients. The difference between gradients calculated from 

backpropagation and numerical gradients is very small, showing that the 

backpropagation provides a good approximation of gradients with much less 

computation time.  

To avoid an overfitting problem, an optimal regularization parameter was 

calculated by trying a range of different regularization parameters. Comparing the 

costs on a cross-validation data, selection of a regularization parameter that yields the 

minimum error is shown in Figure 4.4. Learning curves represented in Figure 4.5 

can diagnose whether training is suffering from an overfitting problem. It shows 

training and cross-validation errors as a function of training data size. As the training 

data size increases, average training errors increase and average cross-validation 

errors decrease because training with larger number of data ensures better 

generalizing to new data. 

  

4.4  RESULTS AND DISCUSSION  

Characterizing the performance of trained models requires a test dataset. The test 

data is independent of the training process but has the same probability distributions. 
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Thus, cost functions calculated from test data can provide an unbiased evaluation of the 

trained model. Figure 4.6 and figure 4.7 show the comparisons between estimated and 

actual concentrations for RBF and ANN methods, respectively. The excellent prediction 

capability is observed for both methods by comparing the actual and predicted 

concentrations of test data. To assess the accuracy, Root Mean Squared Error (RMSE) 

was calculated for the predictions. Figure 4.8 shows RMSE of individual components 

calculated for both training data and test data with RBF and ANN methods. While RBF 

could predict the concentration with an average RMSE of 2.01%, ANN shows similar 

prediction with an average RMSE of 2.27%. Traditional multivariate methods provide an 

average RMSE of 5.17% with the same test data and be considered as outliers because 

they deviate from Beer-Lambert law. However, RBF and ANN can successfully adapt 

those data with errors of less than half compared to the traditional method.  

It is worth mentioning that the RMSE of Cyclohexane and Decane estimated from 

RBF method is larger than others. This is because these components have comparable 

chemical structures of methylene. The proximity of methylene absorption peaks of 

Cyclohexane and Decane leads to similar principal component values. Corresponding 

Euclidean distance is closer than other components and this degrades the estimation of 

Cyclohexane and Decane concentrations. Decreasing grid size can improve the accuracy 

of RBF estimation compared to coarser interpolation. Interpolation with a smaller grid 

size requires more CPU time, so certain compromises are required between computation 

time and accuracy. Neural networks with increased number of hidden layers were also 

tested. However, a MultiLayer Perceptron (MLP) with multiple hidden layers tends to 

overfit the training data with the structure of 5 PC inputs and 6 component concentration 

outputs. For a number of neurons in the hidden layer, it is recommended to have a similar 

size of input and output layer to avoid overfitting problem.  
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The three spectral measurements of NIR, Infrared, and Raman spectra of liquid 

mixtures are presented in Figure 4.9. While the absorption bands of NIR are broad and 

overlap, Infrared absorption and Raman scattering signals are sharp with a lower signal-

noise ratio. The main reason of this broad absorption peaks is collisional broadening. I 

attempted property estimations with the full spectral range, but the calibration and 

training results were poor. Therefore, spectral truncations are applied to eliminate 

uninformative spectral regions, which can significantly improve the estimation accuracy. 

For NIR spectra, I chose the first overtone as a main target. This is because the second 

overtone has a much lower intensity than the first due to excitation probability. Also, the 

combination region has multiple peaks blending with each other, which make 

interpretations more complex. For the Infrared and Raman spectra, bending vibrational 

modes (500 - 1,500 cm-1) are chosen over the fundamental stretching region (2,700 - 

3,100 cm-1) because they have well-resolved peaks of various vibrational motions such as 

rocking, scissoring, wagging, and twisting. Details of selected wavenumber ranges and 

corresponding functional groups for NIR, Infrared, and Raman spectra are summarized in 

Table 4.3. These bands deliver the most significant information about molecular 

structures; thus, they can discriminate different physical properties of liquid mixtures. 

Note that the OH band is strong in the NIR and Infrared spectra but weak on Raman 

scattering. 

To compare NIR, Infrared, and Raman spectra, each spectral data are L2-norm 

normalized to make sure intensities are on the same scale for comparison. Standard 

Normal Variate (SNV) was applied (Barnes et al., 1989) to normalized spectra due to the 

effectiveness of the scattering correction. The derivatives are not used because of noise 

enhancement. Thereafter, PCA is applied for dimension-reduction (Pearson, 1901). The 

PCA is a mathematical procedure that uses an orthogonal transformation to convert 
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correlated variables (measured spectra) into a set of linearly uncorrelated variables 

(principal components). The first seven scores account for 99.29% of the total variation 

in the spectra. Thus, instead of the whole spectrum, these seven scores can be used as 

input data to reduce computational time. The PCA score plot with the first three principal 

components, shown in Figure 4.10, describes fluid mixtures categorized by the variance 

of measured optical spectra. 

For quantitative analysis of spectroscopy data, PLSR and ANN were implemented 

to determine the density and viscosity of liquid mixtures. The performance of PLSR and 

ANN models with NIR, Infrared, Raman, and the combinations of these spectra are 

compared to estimate density and viscosity of various liquid mixtures. Density and 

viscosity of liquid mixtures were prepared based on the CoolProp (Bell et al., 2014) 

database, which is an open-source thermophysical property library. These 

thermodynamic properties, obtained from multiparameter Helmholtz-energy-explicit-type 

formulations, provide an equivalent accuracy level as the REFPROP (Lemmon et al., 

2013), which is the most generally used commercial library from the United States 

National Institutes of Standards and Technology (NIST). All data processing, PLSR and 

ANN calculations were performed with scripts programmed in the Matlab R2015b 

(Mathworks Inc.) environment. 

The input vector has seven scores extracted from spectra, and output vector 

includes petrophysical properties such as density and viscosity of the corresponding fluid 

mixture. Measured data is divided into training data and test data. The training data 

consists of pure component sample spectra and their mixtures with random combinations 

of concentrations. Characterizing the performance of calibrated PLSR and trained ANN 

models requires a test dataset. Test data is prepared with 51 optical spectra of liquid 

mixtures measured from laboratory, which are independent of the calibration or training 
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process but have the same probability distributions. Thus, the cost function with test data 

can provide an unbiased evaluation.  

To find the fundamental relations between input and output data, ANN algorithms 

are applied. Details of ANN cost function, feedforward (Svozil et al., 1997), and 

backpropagation (Rumelhart et al., 1986) are presented in Appendix A. To avoid an 

overfitting problem, the optimal regularization parameter was calculated by trying a 

range of different regularization parameters and observing which gives the minimum 

costs on cross-validation data. As the training data size increases, average training error 

increases and average cross-validation error decreases because training with more data 

ensures better generalizing to new data. To compare two methods, I used the same 

number of samples to calibrate PLSR and to train ANN.  

Seven different input data are considered to assess and compare NIR, Infrared, 

and Raman spectroscopy measurements. The input data and their corresponding PLSR 

and ANN training and test results are tabulated in Table 4.4. Comparisons between 

estimated and actual densities for PLSR and ANN methods are illustrated in Figure 4.11 

and Figure 4.12, respectively. The excellent prediction capability is observed for both 

methods by comparing the actual and estimated values of test data. Note that NIR, 

Infrared, and Raman inputs for the density estimation presents RMSE values less than 

2.6, for both PLSR and ANN models. Viscosity estimations with PLSR and ANN are 

presented in Figure 4.13 and Figure 4.14, respectively. In general, estimated density and 

viscosity obtained with the ANN model have moderately smaller RMSE values than 

those obtained with the PLSR model. This can be explained by the fact that ANN can 

account for the nonlinearity of measured spectra, which is explicitly excluded in 

traditional approaches. Estimation results of viscosity with PLSR and ANN are 

summarized in values in Table 4.5. 
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Upon comparing three spectroscopic measurements, Infrared and Raman spectra 

achieved slightly better prediction results than NIR in terms of RMSE values for the 

estimation of density and viscosity. NIR alone provides the highest RMSE values 

because Infrared and Raman spectra contain information of bending vibrations directly 

related to the molecular structures. On the other hand, the first overtone of NIR spectra 

have only stretching vibrations, which highly overlap each other. Also, Infrared spectra 

work better than Raman spectra in the estimation of density and viscosity for both PLSR 

and ANN models. 

The results show that the prediction accuracy can be improved by combining the 

multiple spectra. The combined spectra of NIR, Infrared, and Raman for the estimation of 

density and viscosity are more accurate than the single spectral input. This is important 

for downhole applications because NIR and Infrared spectra are highly vulnerable to the 

contamination of Water-Based Mud (WBM) filtrate due to its strong dipole moment. 

Raman spectra are relatively less influenced because they are only sensitive to a molecule 

polarizability. Also, the combination of Infrared and Raman spectra is more accurate than 

the combination of NIR and Infrared or NIR and Raman spectra except the training with 

ANN model. Also, there is no notable difference in the density estimations between the 

combination of NIR and Infrared spectra, and the combination of Infrared and Raman 

spectra.  

To examine the prediction capability of these models for the multiple liquid 

mixtures, the number of components used in the liquid mixtures was gradually increased. 

As the number of components increases from 2 to 10 by subsequently adding a new 

liquid, resulting each time in a discrete mixture, RMSE increases and corresponding 

correlation coefficient R2 decreases. These results are presented in Figure 4.15 and 

Figure 4.16 for the density and viscosity, respectively. The abrupt increases of prediction 
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errors in component 9 and 10 are mainly related to the spectral similarity of n-Decane to 

those of n-Heptane and n-Pentane.  

Despite these accurate predictions, there are some limitations for the downhole 

application. Sample contaminations with water can deteriorate the prediction 

performance because substantial absorption peaks caused by strong dipole moment of 

water will blend with other absorption peaks. Also, Infrared cannot detect homonuclear 

diatomic molecules because the change in the dipole moment with respect to a change in 

the vibration is zero. In this case, Raman scattering can be an alternative option. 

However, strong fluorescence needs to be properly handled for Raman scattering spectra. 

Additionally, in order to apply ATR FTIR into downhole wireline tools, the detector must 

be maintained at a low temperature to avoid thermal noise. Another drawback is that 

ANN training process takes a longer time than multivariate methods and is 

computationally expensive. Nevertheless, NIR, Infrared, and Raman spectroscopies 

combined with PLSR, RBF or ANN analysis is suitable for predicting petrophysical 

properties of liquid mixtures. 

 

4.4  CONCLUSIONS  

Developing a calibration model to estimate component compositions from 

nonlinear NIR absorption spectra has proved challenging. Contrary to the traditional 

multivariate methods, this nonlinearity is explicitly included in RBF and ANN 

approaches. In order to have accurate predictions, building a robust training model is a 

key factor; requires pre-treatments of NIR absorption spectra, optimization of the 

regularization parameter, and constructing a mapping function. I have demonstrated that 

well-trained RBF and ANN models can successfully estimate concentrations of each 
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component and the prediction error for test data shows remarkable reduction compared to 

the traditional methods.  

Also, I demonstrated quantitative comparisons between NIR, Infrared, and Raman 

spectral data for the prediction of density and viscosity. Both calibrated PLSR and trained 

ANN models were successfully associated with physical properties of liquid mixtures to 

corresponding spectral data. The spectral pre-treatment including baseline corrections, 

truncations, and normalizations is important to maximize the correlations between 

spectral features and liquid properties. These spectra and their combinations associated 

with PLSR and ANN models yield accurate estimations of fluid properties with low 

prediction RMSE.  

Comparisons of density and viscosity assessments conclude that spectroscopic 

measurements associated with ANN model yield considerable reduction of RMSE 

compared to the traditional methods. This is because nonlinearity is explicitly included in 

the ANN approach, which is not in PLSR methods. Also, complementary spectroscopic 

techniques can be incorporated together to improve analytical performance of liquid 

characterizations. Hence, Infrared and Raman detectors can be useful tools to 

characterize downhole in-situ fluids. Although the spectral analysis presented in this 

chapter is focused on the estimation of composition, density and viscosity, the same 

methodology can be used for evaluating other petrophysical and geophysical properties. 
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Table 4.1: The list of liquid mixture samples with corresponding components and 

concentrations. Water (WAT), acetone (ACE), cyclohexane (CYC), decane 

(DEC), heptane (HEP), 2-propanol (IPA), pentane (PEN), 

Tetrahydrofuran (THF), toluene (TOL), and methanol (MET) are mixed 

with different concentrations. 

 

 WAT ACE CYC DEC HEP IPA PEN THF TOL MET 

Sample 1 0 0.86 0.14 0 0 0 0 0 0 0 

Sample 2 0 0.60 0 0 0 0.40 0 0 0 0 

Sample 3 0 0.53 0 0 0 0 0 0.47 0 0 

Sample 4 0 0 0 0 0 0.16 0 0.84 0 0 

Sample 5 0.13 0 0 0 0 0 0 0 0 0.87 

Sample 6 0 0.42 0 0 0 0 0 0 0 0.58 

Sample 7 0 0 0.59 0 0 0 0 0 0 0.41 

Sample 8 0 0 0 0 0 0.18 0 0 0 0.82 

Sample 9 0 0 0 0 0 0 0 0.47 0 0.53 

Sample 10 0 0 0 0 0 0 0 0 0.22 0.78 

Sample 11 0 0 0.96 0 0 0 0 0 0 0 

Sample 12 0.11 0 0.89 0 0 0 0 0 0 0 

Sample 13 0 0 0.86 0 0.14 0 0 0 0 0 

Sample 14 0 0 0.54 0 0 0 0.46 0 0 0 

Sample 15 0 0 0 0.21 0 0.79 0 0 0 0 

Sample 16 0 0 0 0 0 0.94 0.06 0 0 0 

Sample 17 0 0 0 0 0 0.48 0 0 0.52 0 

Sample 18 0 0 0.35 0 0 0 0 0 0.65 0 

Sample 19 0 0 0 0.06 0 0 0 0 0.94 0 

Sample 20 0 0 0 0 0.35 0 0 0 0.65 0 

Sample 21 0 0 0 0 0 0 0.17 0 0.83 0 

Sample 22 0 0 0 0 0 0 0 0.56 0.44 0 

Sample 23 0 0 0.36 0 0 0 0 0.64 0 0 
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Table 4.1 continued. 

 

 WAT ACE CYC DEC HEP IPA PEN THF TOL MET 

Sample 24 0 0 0 0 0 0 0.59 0.41 0 0 

Sample 25 0 0 0.43 0 0.57 0 0 0 0 0 

Sample 26 0 0 0 0.79 0 0 0.21 0 0 0 

Sample 27 0 0 0 0 0 0.82 0 0.18 0 0 

Sample 28 0 0.56 0 0 0 0 0.44 0 0 0 

Sample 29 0 0.99 0 0 0 0 0 0 0.01 0 

Sample 30 0 0 0 0 0 0.25 0 0 0 0.75 

Sample 31 0 0 0 0.20 0 0.80 0 0 0 0 

Sample 32 0 0 0 0 0.98 0 0 0 0.02 0 

Sample 33 0 0 0 0 0.99 0 0 0 0.01 0 

Sample 34 0 0.14 0 0 0.86 0 0 0 0 0 

Sample 35 0 0.09 0 0 0 0 0.91 0 0 0 

Sample 36 0 0.94 0 0 0 0 0 0 0.06 0 

Sample 37 0 0 0.47 0.53 0 0 0 0 0 0 

Sample 38 0 0 0.35 0 0.65 0 0 0 0 0 

Sample 39 0 0 0.78 0 0 0 0.22 0 0 0 

Sample 40 0 0 0.34 0 0 0 0 0.66 0 0 

Sample 41 0 0 0.55 0 0 0 0 0 0.45 0 

Sample 42 0 0 0 0.52 0 0 0.48 0 0 0 

Sample 43 0 0 0 0.34 0 0 0 0 0.66 0 

Sample 44 0 0 0 0 0.44 0.56 0 0 0 0 

Sample 45 0 0 0 0 0.67 0 0.33 0 0 0 

Sample 46 0 0 0 0 0.19 0 0 0.81 0 0 

Sample 47 0 0 0 0 0 0.36 0.64 0 0 0 

Sample 48 0 0 0 0 0 0.29 0 0 0.71 0 

Sample 49 0 0 0 0 0 0 0.23 0.77 0 0 

Sample 50 0 0 0 0 0 0 0.12 0 0.88 0 

Sample 51 0 0 0 0 0 0 0 0.74 0.26 0 
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Table 4.2:  The diagnostic absorption ranges of NIR spectra for functional groups of 

components used in the study.  

 

 

Functional 

Group 

Band position in 

nm Component 

CH3
 1690-1700 Decane, Cyclohexane, Toluene, 2-

propanol, Acetone 

CH2
 1720-1760 Decane, Cyclohexane, 

Tetrahydrofuran 

OH 1370-1400 2-propanol 

Benzene Ring 1680 Toluene 

C=O 1880-1950 Acetone 
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Table 4.3: Spectral regions of NIR, Infrared, and Raman spectroscopy measurements 

used in the PLS calibration and ANN training models.  

 

Spectroscopic 

Technique 

Spectral 

regions [cm-1] 
Functional Group 

NIR 1,440-1,500 

1,680-1,800 

OH stretching 

CH2 and CH3 stretching 

Infrared 

1,020-1,040 

1,065-1,075 

1,100-1,165 

 

1,215-1,240 

1,340-1,420 

CO stretching 

COC out-phase bending 

CCO out-phase bending 

and CH3 rocking 

CCC out-phase bending 

CH3 in-phase bending 

Raman 

515-530 

780-820 

 

890-930 

 

1,000-1,050 

1,200-1,240 

1,280-1,320 

1,410-1,490 

C=O ricking 

Ring in-phase and CCC in-

phase stretching 

5 membered ring in-phase 

stretching 

CO stretching 

CCC out-phase bending 

CH2 in-phase twist 

CH2 and CH3 bending 
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Table 4.4: Summary of density estimation results using PLSR and ANN methods for 

the mixture of 7 components (Acetone, Cyclohexane, n-Decane, 2-

propanol, Tetrahydrofuran, Toluene, and Methanol).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied spectra 

PLSR ANN 

Calibration Test Training Test 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

NIR 

Infrared 

Raman 

 

NIR+Infrared 

NIR+Raman 

Infrared+Raman 

 

NIR+Infrared+Raman 

0.647 

0.647 

0.647 

 

0.647 

0.647 

0.647 

 

0.647 

0.986 

0.986 

0.986 

 

0.986 

0.986 

0.986 

 

0.986 

2.421 

2.316 

2.596 

 

2.074 

2.468 

1.996 

 

1.815 

0.795 

0.868 

0.898 

 

0.896 

0.903 

0.921 

 

0.928 

0.861 

0.509 

0.448 

 

0.448 

0.417 

0.436 

 

0.399 

0.984 

0.991 

0.993 

 

0.993 

0.994 

0.994 

 

0.994 

1.676 

2.066 

2.157 

 

1.741 

2.067 

1.684 

 

1.576 

0.873 

0.865 

0.884 

 

0.895 

0.887 

0.908 

 

0.919 
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Table 4.5: Summary of viscosity estimation results using PLSR and ANN methods for 

the mixture of 7 components (Acetone, Cyclohexane, n-Decane, 2-

propanol, Tetrahydrofuran, Toluene, and Methanol).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied spectra 

PLSR ANN 

Calibration Test Training Test 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

NIR 

Infrared 

Raman 

 

NIR+Infrared 

NIR+Raman 

Infrared+Raman 

 

NIR+Infrared+Raman 

3.534 

3.534 

3.534 

 

3.534 

3.534 

3.534 

 

3.534 

0.991 

0.991 

0.991 

 

0.991 

0.991 

0.991 

 

0.991 

117.2 

20.26 

27.29 

 

23.70 

25.59 

22.65 

 

23.62 

0.459 

0.918 

0.887 

 

0.922 

0.897 

0.939 

 

0.939 

2.916 

1.891 

2.009 

 

1.815 

1.884 

2.026 

 

1.750 

0.992 

0.995 

0.995 

 

0.995 

0.995 

0.995 

 

0.995 

33.73 

13.86 

22.21 

 

13.94 

20.32 

11.62 

 

11.40 

0.820 

0.921 

0.880 

 

0.929 

0.892 

0.959 

 

0.964 
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                                                     (a)                                                                                                       (b) 

 

Figure 4.1:  A series of measured NIR spectra. Panel (a) shows complicated absorption peaks of overtones and combination 

regions over the wavelength range from 1000 to 2500 nm for 27 liquid mixtures. Panel (b) represents that the 

first several principal components can explain the most variance of the measured optical spectra. 
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Figure 4.2:  Two-dimensional plot showing the estimated concentration surface trained 

by training data over the first two principal components. Training data 

(blue circles) used for the mapping function and test data (red circles) used 

for verification are agreed to the estimated surface. 
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Figure 4.3:  A feedforward neural network with three layers. The first column of blue 

circles are the input layer and the last column of green circles are the 

output layer. A hidden layer marked as red circles is consist of n neurons 

plus one offset biased unit that transforms the sum of weighted input data 

using activation function. Connections between Input and hidden layers 

and connections between hidden and output layers have corresponding 

weights that express the strength of connections between two neurons. 
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Figure 4.4:  A selection of an optimized regularization parameter. While the regularization parameter is increased, training 

error is gradually increased but validation error becomes minimum at the optimum regularization. This indicates 

the regularization parameter is effectively alleviate overfitting from the training data. 
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Figure 4.5:  A learning curve plot with training and test error as a function of training data size. While the number of 

training data is increased, training error is increased and test error is decreased respectively. This indicates the 

regularization parameter is effectively alleviate overfitting from the training data. 
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Figure 4.6:  Cross-plot for the comparison of concentrations predicted using RBF 

method with the actual values. The training data are marked with blue 

squares and the test data are marked as red circles. The solid line is the 

ideal fit line, and the dashed lines indicate an absolute deviation of ± 10% 

concentrations. 
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Figure 4.7:  Cross-plot for the comparison of concentrations predicted using ANN 

method with the actual values. The training data are marked with blue 

squares and the test data are marked as red circles. The solid line is the 

ideal fit line, and the dashed lines indicate an absolute deviation of ± 10% 

concentrations. 
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Figure 4.8:  Root mean square error of estimated concentrations to corresponding actual concentrations for each sample. 

The top figures are RMSE of training data and test data for ANN method. The bottom figures are RMSE of 

training data and test data for RBF methods. The performance of the methods is compared by assessing the 

error function using an independent test data. 
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Figure 4.9:  Measured spectra of the fluid mixtures of (A) NIR, (B) Infrared, and (C) Raman; Selected bands used for 

the quantitative analysis are marked with vertical black dash lines.
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Figure 4.10:  Three dimensional PCA scores based on the combined spectra of NIR, 

Infrared, and Raman. Open blue circles correspond to scores of fluid 

mixtures. Different fluid components can be discriminated except three 

normal alkanes. This is due to the similarity of molecular structures of 

n-Decane, n-Heptane, and n-Pentane. 
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Figure 4.11:  Estimated density values obtained using PLSR versus actual density values. Calibration uses seven 

different input data: (A) NIR, (B) Infrared, (C) Raman, (D) combined spectra of NIR, Infrared, and 

Raman, (E) combined spectra of NIR and Infrared, (F) combined spectra of NIR and Raman, and (G) 

combined spectra of Infrared and Raman. The training data are marked with red squares and the test data 

are marked as blue circles. The solid red line is the ideal fit line, and the magenta lines indicate an absolute 

deviation of ± 10% density. 
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Figure 4.12:  Estimated density values obtained using ANN versus actual density values. Training uses seven different 

input data: (A) NIR, (B) Infrared, (C) Raman, (D) combined spectra of NIR, Infrared, and Raman, (E) 

combined spectra of NIR and Infrared, (F) combined spectra of NIR and Raman, and (G) combined 

spectra of Infrared and Raman. The training data are marked with red squares and the test data are marked 

as blue circles. The solid red line is the ideal fit line, and the magenta lines indicate an absolute deviation 

of ± 10% density. 
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Figure 4.13:  Estimated viscosity values obtained using ANN versus actual viscosity values. Calibration uses seven 

different input data: (A) NIR, (B) Infrared, (C) Raman, (D) combined spectra of NIR, Infrared, and 

Raman, (E) combined spectra of NIR and Infrared, (F) combined spectra of NIR and Raman, and (G) 

combined spectra of Infrared and Raman. The training data are marked with red squares and the test data 

are marked as blue circles. The solid red line is the ideal fit line, and the magenta lines indicate an absolute 

deviation of ± 10% viscosity. 
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Figure 4.14:  Estimated viscosity values obtained using ANN versus actual viscosity values. Training uses seven 

different input data: (A) NIR, (B) Infrared, (C) Raman, (D) combined spectra of NIR, Infrared, and 

Raman, (E) combined spectra of NIR and Infrared, (F) combined spectra of NIR and Raman, and (G) 

combined spectra of Infrared and Raman. The training data are marked with red squares and the test data 

are marked as blue circles. The solid red line is the ideal fit line, and the magenta lines indicate an absolute 

deviation of ± 10% viscosity.
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Figure 4.15:  A comparison of density estimations with seven different input data. 

As the number of components used in the analysis increases, RMSE 

continuously increases for both PLSR and ANN methods. Ten 

components are subsequently added to the calibration and training 

process in the order of 2-propanol, Cyclohexane, Acetone, 

Tetrahydrofuran, Methanol, Toluene, n-Decane, DI water, n-Heptane, and 

n-Pentane. 
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Figure 4.16:  A comparison of viscosity estimations with seven different input data. 

As the number of components used in the analysis increases, RMSE 

continuously increases for both PLSR and ANN methods. Ten 

components are subsequently added to the calibration and training 

process in the order of 2-propanol, Cyclohexane, Acetone, 

Tetrahydrofuran, Methanol, Toluene, n-Decane, DI water, n-Heptane, and 

n-Pentane. 
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Chapter 5:  NMR Relaxation Time and Diffusion Coefficient of Liquid 

Mixtures Calculated with Molecular Dynamics Simulations 

In this chapter, the 1H NMR relaxation time and the mass diffusion coefficient of 

various liquid mixtures were studied over an extensive composition range at ambient 

conditions. A series of fluid samples including water, alcohol, alkane, cycloalkane, 

aromatic and their mixtures were tested using molecular dynamics (MD) simulations with 

an OPLS/AA (Optimized Potential for Liquid Simulations-All Atoms) force field. The 

simulated relaxation time and the mass diffusion coefficient for these mixtures agree with 

the experimental data. Also, the quantification of 1H-1H dipole-dipole relaxations for 

these fluid mixtures reveals the extents to which each component contributes to the total 

relaxation process and to which interactions occur between different fluids. These results 

suggest that MD simulation can serve as a bridge between theory and laboratory 

measurements for a better description of NMR relaxation process. 

 

5.1  INTRODUCTION  

The calculation of longitudinal relaxation time, T
1
 and transverse relaxation time, 

T
2
 can be defined by  

 

1

1 1

1 1
3


 
bulkT T r

,               (5.1)
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,                             (5.2) 

 

where ρ
1 

and ρ
2 

are surface relaxivity for T
1
 and T

2
 and, T

1bulk
 and T

2bulk
 are bulk 

longitudinal relaxation time and bulk transverse relaxation time, respectively. 
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Additionally, r represents the radius of spherical pores. D is a fluid diffusivity coefficient 

and γ is the gyromagnetic ratio of a hydrogen proton. G is a field-strength gradient and 

TE is inter-echo spacing used in the Carr-Purcell-Meiboom-Gill (CPMG) sequence (Carr 

and Purcell 1954; Meiboom and Gill 1958). Recently, researchers have published several 

studies on NMR relaxations specifically concerning pore-scale evaluation of organic-rich 

mudrocks (Tandon et al., 2017), surface relaxation of kerogen (Zhang et al., 2017), and 

fluid substitutions of hydrocarbon and water (Medellin et al., 2018). However, these 

studies do not offer quantitative description of the hydrogen spin pair interactions 

between different fluids or their contributions to the total relaxations. These bulk 

relaxations are important because most reservoir fluids are mixtures of multiple 

components and distinctive relaxations occur between various combinations of different 

hydrocarbon types.  

NMR relaxations can be measured in the laboratory, but they are the results of 

ensemble averages. As such, if the ensemble average of hydrogen relaxations calculated 

from MD simulation can cross-validate the experimental observations, then they can be 

explained in terms of the relaxation of each hydrogen atom. The relaxations between a 

pair of hydrogen atoms are generated from the interaction forces between bonded and 

non-bonded atoms including Lennard-Jones and Coulomb potentials. Because atomic and 

molecular interactions cause a dynamic evolution of the system, the MD simulation 

method is admissible for analyzing NMR properties. Thus, from XYZ trajectories of 

molecules, distance between hydrogen atoms and angle to the magnetic field (z-direction) 

of liquid mixtures can be calculated. This study presents the mixing effects on 



 106 

macroscopic NMR relaxation time and mass diffusion coefficient in terms of various 

properties computed from MD simulations. 

This chapter is organized as follows: First, it introduces theories and equations of 

NMR relaxations and mass diffusion coefficients. Following the NMR theories, several 

systems of liquid mixtures and MD simulation methods are presented. The results and 

discussion section describes the estimations of NMR properties based on MD simulations 

and compares them to the experimental results for various liquid mixtures. From these 

liquid mixtures, relaxation times and mass diffusion coefficients contributed from each 

component are analyzed. 

 

5.2  METHODS 

This section explains the formulations and procedures to calculate NMR 

relaxation time, density, and mass diffusion coefficient of liquid mixtures from MD 

simulations.  

 

5.2.1  NMR relaxation time 

The spin-lattice and spin-spin 1H NMR relaxations have been extensively studied 

both experimentally and theoretically. Mathematical derivation for quantum mechanical 

analysis from Hamiltonian is beyond the scope of this study. Instead, some important 

equations to calculate NMR relaxation time are here presented. According to the NMR 

relaxation theory (Abragam, 1961; McConnel, 1987; Cowan, 1997; and Ernst et al., 

2004), the NMR relaxation times T
1
 and T

2
 are given by 
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where m is the spin-flip index, G(t) is the autocorrelation function, and ω
0
 is the Larmor 

frequency, respectively. The dipolar spectral density function J(ω) is the Fourier 

transformation of an autocorrelation function as 
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and the NMR relaxation times become  
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Considering the fast motion regime where the correlation time is much smaller 

than the inverse of the Larmor frequency, the spectral density function J(ω) is 

approximated as J(0). Then, the spectral density functions J
0
, J

1
, and J

2
 are identical to 

J(0) which is twice the area under G(t). Thus, the Eq. (5.6) and (5.7) give 

 

0

1 2
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The autocorrelation function G(t) of dipole-dipole interactions is expressed as 
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where μ0 is the vacuum permeability, ћ is the reduced Planck constant, γ is the 

gyromagnetic ratio for 1H atom, N is the number of 1H-1H dipole-dipole interactions, r 

and θ are the separation distance and corresponding angle to the magnetic field between 

two Hydrogen atoms, and τ and t are the time and lag time, respectively. The r and θ can 

be calculated from the trajectory of a MD simulation and the autocorrelation function can 

be computed using the FFT (Fast Fourier Transform) function. The second-moment M of 

dipole-dipole interaction is related to the autocorrelation function with 0 lag time as 
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I assume that the variations of r and θ are uncorrelated and independent of each 

other. Thus, the angular term of Eq. (5.10) can be integrated separately as  
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and it can be expressed as 
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The correlation time τ
c
 is the time scale of the autocorrelation decay function and is 

expressed as 
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1
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G
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which can be explained as the width of the autocorrelation function or its area normalized 

by its height. Combining Eq. (5.6), (5.7), (5.8), (5.10), (5.12), and (5.13), it becomes  
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and Eq. (5.8) becomes 
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These relaxation times have two types of interactions: (1) intramolecular 1H-1H dipole-

dipole interactions; and (2) intermolecular 1H-1H dipole-dipole interactions. Then, Eq. 

(5.115) is expressed as 

 

intra ,intra inter ,inter

1 2

1 1 10 10

3 3
  c cM M

T T
 

.        (5.16) 

 

The computations of NMR relaxation times with MD simulations are based on the 

several assumptions: (1) Fluids used in the analysis have low viscosity that longitudinal 

and transverse relaxation times are equal; (2) The spectral density functions at low 

Larmor frequency and zero angular frequency are approximately same; and (3) The fluids 

are in the fast motion regime with low correlation time.  

 If the system has a binary mixture with two different molecules, the five different 

types of interactions can be categorized as 

 

(1) The partial ensemble of intramolecular dipole-dipole interactions between 

hydrogens in a molecule of component 1. 

(2) The partial ensemble of intermolecular dipole-dipole interactions between 

hydrogens in different molecules of component 1. 

(3) The partial ensemble of intramolecular dipole-dipole interactions between 

hydrogens in a molecule of component 2. 

(4) The partial ensemble of intermolecular dipole-dipole interactions between 

hydrogens in different molecules of component 2. 

(5) The partial ensemble of intermolecular dipole-dipole interactions between 

hydrogen in a molecule of component 1 and a molecule of component 2. 
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Finally, considering these interactions, following equation is obtained. 
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Thus, contributions of intramolecular and intermolecular interactions can be quantified 

for each component, and intermolecular interactions between molecules of two different 

components can be assessed. 

 

5.2.2  Density 

The effective densities of the binary mixtures are evaluated in the MD 

simulations. The density is computed by the mass of all atoms divided by the total 

volume of the system.  The results are in agreement with the experimental data and are 

plotted in Figure 5.1.  

 

5.2.3  Mass Diffusion Coefficient 

The mass diffusion coefficients can be considered as the distance a molecule 

traveled in a given time. The dominant forces for these movements are the attractive and 

repulsive interactions between molecules. To quantify the mass diffusion coefficient of 

liquid mixtures, a well-known Einstein’s relation is applied as 
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where r(t) is the distance a molecule travels in time t. The mass diffusion coefficient D is 

proportional to the slope of Mean-Square Displacement (MSD) over time, which can be 

calculated by tracing the trajectory of all atoms. The MSD and calculated mass diffusion 

coefficient from MD simulations for five binary mixtures are given in Figure 5.2. I also 

calculated the molecular movements of Component 1 and Component 2 separately and 

the corresponding mass diffusion coefficients are plotted together in Figure 5.3 with the 

overall mass diffusion coefficients. It is clear that compared to the pure state, the 

movements of a molecule in the mixtures can be enlarged or restricted due to the 

intermolecular attractive and repulsive interactions between different molecules.  

 

5.3  MOLECULAR DYNAMICS SIMULATION   

The physical theory of MD simulations is a combination of quantum mechanics 

and statistical mechanics. The Schrödinger equation in quantum mechanics plays a role 

of Newton’s law and conservation of energy in classical mechanics. It predicts the future 

behavior of a dynamic system and the corresponding kinetic and potential energies are 

converted into the Hamiltonian to generate the evolution of the wave function in time and 

space domains. Also, the statistical mechanics have an effect on NMR properties because 

it can be calculated from a wide ensemble of all different states with their own 

probabilities. 

Force field is a function that describes the interactions between atoms and 

molecules as, 
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The potential energy function can be expressed as a sum of five contributions. The first 

two terms are the oscillations of the equilibrium bond length and bond angle. The next is 

called dihedral potential of torsions which are basically the rotations between two groups 

of bonds. The last two terms are related to non-bonded interactions; coulomb potential 

and Lennard-Jones potential, the latter of which calculates the Van der Waals interaction 

between the atoms. Thus, the force is exerted to the direction of the negative gradient of 

the potential energy, and corresponding atoms and molecules interact accordingly. The 

limitation of MD simulation is the reduction from a fully quantum description to a 

classical potential. This potential is an approximation in that quantum mechanical atoms 

are accelerated to the direction of the force by Newton’s second law which is classical 

mechanics. More details of MD simulations are described in Allen et al. (1987).  

I chose the software package GROMACS 5.1.4 (Abraham et al., 2017) to perform 

MD simulations because it provides high performance with a user-friendly interface. I 

tested the water, methanol, octane, pentane, cyclohexane, toluene, and their mixtures in a 

cubic box with the Periodic Boundary Condition (PBC). For the water molecule, I tested 

one of the popular models SPC/E (Berendsen et al., 1987) but it makes intramolecular 

interactions weaker. This weakness exist because it has longer distance and the wider 

angle between hydrogen atoms than the structure of the ideal water model. Another 

popular water model of TIP3P provides very high mass diffusion coefficient which is 
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unrealistic. Therefore, I prepared the water molecule manually, and the details of 

structure and topology for all molecules used in this study are presented in Appendix B. 

For MD simulations, selection of the proper force field is critical. Caleman et al. (2012) 

compared the force fields of the GAFF (Wang et al., 2004), OPLS/AA (Jorgensen et al., 

1996), and CHARMM (Vanommeslaeghe et al., 2010) and found that the OPLS/AA 

force field is suitably parametrized for most liquids. Thus, in this study, I applied the 

OPLS/AA force field for all MD simulations because it has been optimized to reproduce 

the thermodynamic and structural liquid properties at various temperatures.  

I tested five binary mixtures with four concentrations each in the system of a 

cubic box with a 3.0 nm length. The number of molecules and their corresponding molar 

and volumetric fractions are tabulated in Table 5.1. They are miscible but show nonlinear 

behaviors when mixed. The velocity-rescaling scheme (Bussi et al., 2007) was selected 

for the thermostat to control the constant temperature of 298.15 K. The Berendsen 

algorithm (Berendsen et al., 1984) was implemented for pressure control. The potential 

energy of the system was minimized and the box size was adjusted by applying canonical 

ensemble (NVT) and isothermal-isobaric ensemble (NPT) ensembles. The grid spacing 

was defined at 0.12 nm and the radius for Lennard-Jones interactions and Particle Mesh 

Ewald (PME) electrostatic interactions (Essmann et al., 1995) are limited to 1.4 nm for 

all molecules (Jorgensen et al., 1996). The LINCS algorithm was adapted to constrain 

bond distances between atoms (Hess et al., 1997). After the system was equilibrated, the 

production run was applied for 2 ns and the Verlet algorithm (Swope et al., 1982) was 

used for the equation of motion with a time step of 2.0 femtoseconds. A graphical 

description of MD simulation is presented in Figure 5.4. The output trajectory of all 

atoms are recorded every 0.1 ps for NMR analysis. A longer simulation time (up to 500 

ns) and a larger cubic box (4 nm length) were tested but the estimation results are similar. 

https://en.wikipedia.org/wiki/Particle_mesh_Ewald
https://en.wikipedia.org/wiki/Particle_mesh_Ewald
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Thus, the current simulation setup is considered a good compromise between 

computational load and desired accuracy. Density, NMR relaxation time, and mass 

diffusion coefficient of each system were calculated, and found that intramolecular 1H-1H 

dipole-dipole interaction plays a dominant role in the NMR relaxation process.  

 

5.4  RESULTS AND DISCUSSIONS 

The NMR longitudinal relaxation times and mass diffusion coefficient of liquid 

mixtures are computed from their molecular trajectories. I have considered water and 

alcohol mixtures (water and methanol), alcohol and alkane mixtures (octane and 

methanol), alkane and alkane mixtures (octane and pentane), alkane and cycloalkane 

mixtures (pentane and cyclohexane), and cycloalkane and aromatic mixtures 

(cyclohexane and toluene). All of these mixtures are stabilized and equilibrated at 298.15 

K and 1 bar before the trajectory acquisition. Since the molecular correlation times of 

liquid mixtures are smaller than the inverse Larmor angular frequency, the estimated 

longitudinal relaxation time is almost equal to the transverse relaxation time.  

Estimated autocorrelation functions, G(t) of intramolecular dipole-dipole 

interactions of the first component are presented in Figure 5.5. As time proceeds, the 

original arrangement of hydrogen spin at t = 0 in the sample becomes more distracted and 

the spins change their positions. Thus, autocorrelation function decays to zero at t = ∞. A 

molecule with a short correlation time decays faster because its hydrogen spin 

arrangement will be disturbed rapidly. A decay of autocorrelation function can be 

expressed as an exponential function as 
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and its Fourier transform is Lorentzian spectral density function J(ω) as 
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According to time-dependent perturbation theory, a probability of spin transitions 

between two states is evaluated by spectral density function at the frequency of inverse 

correlation time. Therefore, a shorter correlation time leads to a smaller rate of spin 

transitions; NMR relaxation time becomes longer respectively.  

Effective NMR relaxation times of liquid mixtures are presented in Figure 5.6. 

The estimated NMR relaxation time of water from MD simulations showed a slightly 

larger value than data from the experiment (Krynicki, 1966). A comparative study on 

NMR relaxation time of liquid water from MD simulations (Calero et al., 2015) showed 

that most water models are overestimating NMR relaxation time; 12.4 sec (TIP3P), 7.0 

sec (SPC/E), 5.0 sec (TIP4P), and 3.8 sec (TIP4P/2005). Relaxation times of methanol 

and cyclohexane showed excellent agreements to the experimental data. The estimated 

relaxation time of octane and pentane are slightly underestimated compared to the 

experimental results (Shikhov et al., 2016) but they are in the same order of magnitude. 

The difference between the relaxation times estimated from MD simulations and 

experimental data can be explained by (1) the length of autocorrelation functions, (2) 

number of hydrogen spin pairs considered for autocorrelation functions, (3) simulation 

time, (4) size of a cubic box, (5) molecular structures and distributions of partial charges, 

and (6) force field parameters.  
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Contributions of intramolecular and intermolecular dipole-dipole interactions are 

compared in Figure 5.7. Except for water and methanol mixtures, most fluid mixtures 

exhibit 60 to 70% of total relaxations arising from intramolecular interactions. Hydrogen 

bonds provide a possible explanation for lower intramolecular interactions between water 

and methanol mixtures. Because water molecules located between methanol molecules 

generate hydrogen bonds; average distance between intermolecular hydrogen spins 

decreases and corresponding NMR relaxation time decreased. Intermolecular dipole-

dipole interactions between different molecules are presented in Figure 5.8. The second 

moment can be explained by square of the local magnetic field induced by dipole-dipole 

interactions. As a molar fraction of the first component increases, intermolecular 

interactions between the first component increases, and those between the second 

component decreases, respectively. Molar fractions where the interactions between the 

first and second components become maximum depend on viscosity, chemical bonds, 

size, and partial charge of the molecules.  

 

5.5  CONCLUSIONS 

I have estimated NMR time relaxations and mass diffusion coefficients of water, 

methanol, octane, pentane, cyclohexane, toluene, and their mixtures of various 

concentrations at an ambient condition. These NMR properties computed from MD 

simulations successfully reproduced the main aspects of experimental results. The 

approach presented in this chapter is used to quantify contributions of each component of 

the ensemble average of overall NMR properties. NMR time relaxations are mainly 

governed by the intramolecular 1H-1H dipole-dipole interactions. Also, MD simulations 

indicate that intermolecular interactions are governed by not only the distance and angle 
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between hydrogen spins but also molar fractions of each component. This understanding 

shows that an increased number of spin pairs of a component leads to a higher probability 

that hydrogen spins interact each other, and those increased spin pairs also contribute to 

the total relaxation process. Mass diffusion coefficients computed from Einstein’s 

relation showed nonlinear behaviors as a function of molar fractions. Mass diffusion 

coefficients of each component do not proportionally contribute to the effective diffusion 

coefficients. The prediction accuracy of NMR properties can be improved with more 

molecule samples, refined modeling of molecular structure and partial charge, optimized 

parameterization of the force fields, and longer simulation time.  
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Table 5.1: Number of molecules for each component and their volumetric and molar 

concentrations of the five series of liquid mixtures at 298.15 K. The 

volumetric and molar concentrations given in the table are the fractions of 

the first component. 

 

Liquid 

mixtures 

XV  

[V/V] 

XM  

[mol/mol] 

Number of 

component 1 

molecule 

Number of 

component 2 

molecule 

Length of 

box [nm] 

Methanol and 

Water 

0.0000 

0.4470 

0.6160 

0.7683 

0.9122 

1.0000 

0.0000 

0.2647 

0.4167 

0.5962 

0.8222 

1.0000 

0 

180 

250 

310 

370 

402 

900 

500 

350 

210 

80 

0 

2.99668 

2.98043 

2.98719 

2.98690 

3.00510 

3.00784 

Octane and  

Methanol 

0.0000 

0.5010 

0.7009 

0.8505 

0.9502 

1.0000 

0.0000 

0.2000 

0.3684 

0.5862 

0.8261 

1.0000 

0 

50 

70 

85 

95 

100 

402 

200 

120 

60 

20 

0 

3.00784 

3.01981 

3.02177 

3.01979 

3.01428 

3.01675 

Octane and 

Pentane 

0.0000 

0.2513 

0.5018 

0.6868 

0.8570 

1.0000 

0.0000 

0.1923 

0.4167 

0.6087 

0.8095 

1.0000 

0 

25 

50 

70 

85 

100 

140 

105 

70 

45 

20 

0 

2.98139 

2.98569 

2.99527 

3.00965 

2.99691 

3.01675 

Cyclohexane 

and Pentane 

0.0000 

0.1965 

0.3982 

0.5704 

0.7895 

1.0000 

0.0000 

0.2069 

0.4138 

0.5862 

0.8000 

1.0000 

0 

30 

60 

85 

120 

150 

140 

115 

85 

60 

30 

0 

2.98139 

3.01220 

2.99567 

2.98720 

3.00468 

3.00307 

Toluene and  

Cyclohexane 

0.0000 

0.1974 

0.3961 

0.5881 

0.7815 

1.0000 

0.0000 

0.2000 

0.4000 

0.5921 

0.7843 

1.0000 

0 

30 

60 

90 

120 

153 

150 

120 

90 

62 

33 

0 

3.00307 

2.99839 

2.99090 

2.99964 

3.01627 

3.00811 

 

 

 

 



 120 

 
                                              (A)                                          (B)                                        (C)                                         (D)                                         (E)    

Figure 5.1: The density of (A) methanol and water, (B) octane and methanol, (C) octane and pentane, (D) cyclohexane and 

pentane, and (E) toluene and cyclohexane mixtures from MD simulation results with corresponding error bars. 
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                             (A)                                               (B)                                                (C)                                                (D)                                               (D)    

Figure 5.2: The mean square displacements (upper figures) and mass diffusion coefficients (lower figures) of (A) methanol 

and water, (B) octane and methanol, (C) octane and pentane, (D) cyclohexane and pentane, and (E) toluene and 

cyclohexane mixtures from MD simulation results. 
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Figure 5.3: Mass diffusion coefficients calculated from the Einstein relation as a function of the molar concentration 

of the first component at 298.15 K and 1 bar. The mass diffusion coefficients of all molecules (continuous 

blue line), the first component (dashed red line), and the second component (dashed magenta line) are 

marked with error bars on (A) methanol and water, (B) octane and methanol, (C) octane and pentane, (D) 

cyclohexane and pentane, and (E) toluene and cyclohexane mixtures. 
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Figure 5.4: A typical visualization of MD simulation. Red, white, and cyan colors represent oxygen, hydrogen, and carbon 

atoms, respectively. These molecules are moving inside the cubic box with PBC at given temperature and 

pressure. 



 124 

 

Figure 5.5: The estimated autocorrelation function of intramolecular dipole moment interactions of the first component of 

(A) pure components, (B) methanol and water, (C) octane and methanol, (D) octane and pentane, (E) 

cyclohexane and pentane, and (F) toluene and cyclohexane mixtures from MD simulation results.  
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Figure 5.6: The estimated NMR relaxation times and corresponding error bars of (A) methanol and water, (B) octane and 

methanol, (C) octane and pentane, (D) cyclohexane and pentane, and (E) toluene and cyclohexane mixtures 

from MD simulation results.  
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Figure 5.7: The estimated NMR relaxation times of intra (blue) and inter (yellow) molecular interactions of (A) methanol 

and water, (B) octane and methanol, (C) octane and pentane, (D) cyclohexane and pentane, and (E) toluene and 

cyclohexane mixtures from MD simulation results.  



 127 

 

Figure 5.8: The estimated square root of the second moment of intermolecular interactions between component 1 molecules 

(blue), component 1 and 2 molecules (green), and component 2 molecules (yellow) of (A) methanol and water, 

(B) octane and methanol, (C) octane and pentane, (D) cyclohexane and pentane, and (E) toluene and 

cyclohexane mixtures from MD simulation results.  
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Chapter 6: Summary, Conclusions, and Recommendations  

This final chapter summarizes the technical developments and contributions 

stemming from the dissertation. It also gives general conclusions from the results, and 

provides recommendations for future study. 

  

6.1  SUMMARY  

The primary objective of this dissertation is to develop new methods for the 

assessment of in-situ fluid properties using various borehole measurements. To achieve 

this goal, I considered nuclear, dielectric, optical, and magnetic resonance measurements 

in the analysis. Along with well logs and laboratory measurements, I took varied 

approaches for the detection and concentration quantification of individual components 

included in a complex fluid mixture. Approaches included linear and nonlinear 

inversions, molecular dynamics simulations, multivariate analysis, radial basis functions, 

and artificial neural networks. To assess fluid properties, the methods developed in this 

dissertation have several advantages compared to conventional techniques, namely: 

 The inversion algorithm using various nuclear properties enables a 

thermodynamically consistent assessment of three pseudo-hydrocarbon 

components in complex phases. A cooperative implementation of 

SNUPAR and PREOS flash calculation enables the robust estimations 

of in-situ fluid properties. 

 The forward and inverse modeling of dielectric relaxation spectra 

estimates accurate dielectric permittivity and relaxation time of polar 
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liquid mixtures. These properties were cross-validated with MD 

simulations and confirmed that macroscopic ensemble average of 

dielectric properties can be explained with microscopic features such as 

a number of hydrogen bonds per unit volume. 

 Interpretations of optical spectroscopy measurements associated with 

RBF and ANN models exhibited a substantial reduction of RMSE 

compared to traditional multivariate methods. Additionally, combining 

optical spectroscopy measurements with complementary physics 

reduce the uncertainty of liquid identification. 

 The MD simulations successfully described the main features of 

experimental NMR time relaxations. They were able to quantify 

individual intramolecular and intermolecular 1H-1H dipole-dipole 

interactions, which are arduous and challenging tasks in traditional 

experimental analysis. Also, mass diffusion coefficients of each 

component were assessed and successfully compared to the effective 

diffusion coefficient of binary liquid mixtures.  

 

In Chapter 2, I introduced a linear inversion algorithm to estimate in-situ fluid 

properties from borehole nuclear measurements. In conjunction with SNUPAR and 

PREOS, inversions enabled depth-continuous and stable estimations of hydrocarbon 

compositions. The application of the proposed method to one synthetic and two field 

examples yielded the thermodynamically consistent interpretation of nuclear 

measurements. Hydrocarbon viscosities calculated from nuclear measurements were in 

agreement with the viscosity independently computed from magnetic resonance data. 

This validation verified the robustness of the proposed interpretation method. 
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In Chapter 3, I introduced laboratory measurements of dielectric relaxation 

spectra of various polar liquid mixtures. A nonlinear inversion algorithm with the HN 

model was developed to estimate dielectric permittivity and relaxation time of fluid 

mixtures. Also, MD simulations were introduced to assess thermodynamic and dielectric 

properties of fluids. Dielectric properties estimated from MD simulations exhibited fair 

agreements with inversion-based calculations performed with laboratory measurements.  

Chapter 4 described three optical spectroscopy measurements. I measured NIR, 

Infrared, and Raman spectra of fluid mixture samples and identified their characteristic 

bands. Each spectrum was preprocessed for chemometric analysis.  Several techniques 

were applied to maximize the correlations between measured optical spectra and physical 

properties of fluid mixtures. Compared to the conventional PLSR approach, RBF and 

ANN methods yield better predictions of fluid mixture compositions. Also, the 

combination of multiple spectroscopic techniques was introduced to enhance the 

accuracy of the estimated physical properties.  

Finally, I described MD simulations to assess NMR time relaxations of liquid 

mixtures in Chapter 5. Water, methanol, octane, pentane, cyclohexane, toluene, and their 

binary mixtures were tested and compared to experimental data. The MD approach can 

calculate dipole-dipole interactions of each hydrogen spin pair. It also enables 

quantification of intramolecular and intermolecular interactions of each component. 

Therefore, NMR time relaxations arising from both intramolecular and intermolecular 

interactions contribute to total NMR time relaxation, and their changes in intermolecular 

interaction were assessed with different molar fractions of binary liquid mixtures. 
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6.2  CONCLUSIONS   

This section lists the pivotal conclusions deriving from the four technical chapters 

of the dissertation.  

 

6.2.1  Part One: Thermodynamically consistent estimation of hydrocarbon 

composition from nuclear and magnetic resonance measurements. 

i. The main contribution from this part is the development of inversion-based 

interpretation techniques in combination with thermodynamic phase behaviors. 

Complex variations in fluid phases (from oil to gas phase) could cause erroneous 

identification of reservoir fluids. The proposed inversion algorithms use borehole 

nuclear measurements to calculate hydrocarbon composition of reservoir fluids 

for oil, gas, and transitional saturated sandstones. 

ii. Reconciliation of SNUPAR and PVT flash calculations yielded density, Sigma, 

neutron porosity, inverse of migration length, and volumetric cross section from 

borehole nuclear measurements. For this approach, the appraisal of porosity and 

water saturation is critical because small errors on these petrophysical properties 

can propagate to large uncertainty in the estimation of hydrocarbon compositions.  

iii. When comparing nuclear properties, density is a key property for the estimation 

of hydrocarbon compositions. Also, Sigma, inverse of migration length, and 

neutron porosity are helpful to quantify hydrocarbon properties. Unlike the above 

properties, volumetric cross section or PEF will degrade the inversion results 

because it primarily depends on matrix properties instead of fluids. The inversion 

technique based on nuclear measurement introduced in this dissertation is reliable 

when oil and gas coexist in complex phases. 
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iv. The joint interpretation of hydrocarbon viscosity from nuclear measurements and 

NMR relaxation times was successfully applied to one synthetic case perturbed 

with 5% Gaussian noise and two field examples. Estimated hydrocarbon 

compositions and viscosities honored both well logs and core data.  

 

6.2.2  Part Two: Investigation of dielectric and thermodynamic properties of polar 

liquids by dielectric spectroscopy and molecular dynamics simulation. 

i. Mixtures of water, methanol, and 2-propanol exhibit nonlinear variations of 

dielectric permittivity and relaxation time as a function of molar fractions. The 

newly developed inversion algorithms successfully estimate dielectric permittivity 

and relaxation time from dielectric relaxation measurements. Forward modeling 

with CC, DC, and HN models reproduced the real and imaginary parts of the 

measured dielectric spectra.  

ii. MD simulations offer a reliable approach to emulate various thermodynamic and 

physical properties of liquids. The density and enthalpy of polar liquid mixtures 

agree with the experimental data. Also, dielectric properties estimated via 

inversion algorithms were successfully benchmarked with MD simulations. In 

comparison with experimental data, I found that average errors of dielectric 

properties calculated from MD simulations were lower than 4%.  

iii. Mass diffusion coefficients of liquid mixtures were evaluated using the MSD of 

each molecule and Einstein’s relation. Furthermore, the number of hydrogen 

bonds between molecules of equal and different components were calculated. 

Both mass diffusion coefficient and number of hydrogen bonds are in agreement 

with experimental data.  
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iv. A strong correlation exists between the number of hydrogen bonds per unit 

volume and the dielectric relaxation time of liquid mixtures. This behavior is due 

to the fact that dielectric relaxation times are associated with the rapid process of 

hydrogen bond generations and decompositions. The probability of interactions 

between water and other alcohol molecules is largely governed by the dynamics 

of hydrogen bonds and their structures. Therefore, larger numbers of hydrogen 

bonds per unit volume allow a molecule to find more available hydrogen bond 

acceptors nearby; thus, it takes less time for them to align in the direction of the 

external electric field.  

v. The selection of the force field and parameters for MD simulations has great 

effects on the estimation of physical properties. Specifically, partial charges in the 

structure of a molecule govern its dipole moment which is directly related to the 

interactions with the Coulomb potential and dielectric permittivity. Optimized 

parameterizations of molecular structures and force fields are necessary to 

accurately estimate dielectric properties with MD simulations.  

 

6.2.3  Part Three: Comparison of NIR, Infrared, and Raman spectroscopies for the 

estimation of liquid mixture compositions, density, and viscosity. 

i. I successfully developed calibration models to estimate component concentrations 

from nonlinear NIR absorption spectra. Unlike traditional multivariate 

approaches, the introduced RBF and ANN methods account for these nonlinear 

features. A series of spectral pre-treatments including baseline corrections, 

spectral truncations, and normalization generated a better relationship between 

measured optical spectra and component concentrations. The first seven PCA 
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scores, which contain 99.29% of the total spectral variance, were used for spectral 

analysis. 

ii. Comparisons between NIR, Infrared, and Raman spectral measurements were 

introduced for the analysis of fluid components. These optical spectroscopy 

measurements were processed with PLSR and ANN methods to calculate physical 

properties such as density and viscosity of liquid mixtures. Infrared and Raman 

spectra provided better prediction results in comparison with NIR spectra.  

iii. Finding the spectral bands that are most sensitive to variations of fluid component 

concentrations is important to construct robust training models. For NIR spectra, 

the first overtone was chosen over the combination region to avoid the 

superposition of multiple broad absorption peaks. For Infrared and Raman 

spectra, bending vibration modes were selected because they are rich in 

information concerning molecular structures.  

iv. I achieved improved predictions of physical properties by integrating three optical 

spectra together. Combining spectral measurements with the first overtones and 

bending vibrations provided detailed information about molecular structures and 

their chemical bonds. It was found that the complementary physics of optical 

spectra can reduce uncertainty in hydrocarbon identifications.  

v. I applied an ANN method to analyze optical spectra and compared estimation 

results to results obtained with traditional methods. The ANN model yielded a 

substantially reduced RMSE compared to the PLSR method for the estimation of 

density (1.5-2.1%) and viscosity (13-22.2%).  
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6.2.4  Part Four: NMR relaxation time and diffusion coefficient of liquid mixtures 

calculated with molecular dynamics simulations. 

i. I successfully developed fluid mixture models with MD simulations for atomic 

scale interpretations of NMR relaxation properties. Water, methanol, octane, 

pentane, cyclohexane, toluene, and their mixtures of various concentrations were 

simulated at 298.15 K and 1 bar. From the trajectory of these molecules, the 

distance and angle to the z-direction were calculated between hydrogen spin pairs. 

ii. The developed method can quantify NMR time relaxations of not only each 

hydrogen spin pair but also the ensemble average of all hydrogen atoms. This 

feature enables the appraisal of each component’s capacity to influence the 

overall NMR time relaxations. Similarly, the MSD of each component was 

separately computed to estimate the mass diffusion coefficient of the 

corresponding components.  

iii. NMR properties computed from MD simulations successfully reproduced the 

main features of experimental results. However, simulated NMR relaxation times 

were larger than the relaxation times measured at downhole conditions. Because 

no surface and gradient relaxations apply to MD simulations, the theoretical bulk 

relaxation times of hydrocarbons tend to have longer relaxation times in 

comparison with NMR logging measurements. Also, the absence of dissolved 

paramagnetic materials in the numerical simulations increases the NMR 

relaxation times. 

 

 Given the above experiments and numerical simulations, this study determines 

that the dielectric technique best distinguishes between polar and nonpolar liquids. 

Maximum property contrasts between alkanes and aromatics were observed with optical 
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spectra. Similarly, NMR measurements can be used to differentiate between oil and gas 

or heavy and light hydrocarbon mixtures. In the presence of mud filtrate contamination in 

hydrocarbons, none of these techniques reliably discriminates individual fluid 

components. Careful selection of the measurement technique is necessary, which depends 

on the property contrasts between hydrocarbons and mud filtrate. 

 

6.3  RECOMMENDATIONS   

Following is a list of recommendations that could advance the research topics 

documented in this dissertation:  

i. Nuclear properties are calculated with SNUPAR. However, SNUPAR is outdated 

and provides inaccurate results compared to simulations obtained with the Monte 

Carlo N-Particle code (MCNP, X-5 Monte Carlo Team, 2005). Instead of 

SNUPAR, UT-NuPro can be adapted with flash calculations to yield more reliable 

and accurate calculations of nuclear properties.   

ii. In this dissertation, PREOS was used to calculate the phase behavior of 

hydrocarbons. Other EOS models such as those advanced by Redlich-Kwong 

(Murdock, 1993), Soave-Redlich-Kwong (Soave, 1972), Elliott-Suresh-Donohue 

(Elliott et al., 1990), and Benedict-Webb-Rubin-Starling (Starling, 1973) can be 

applied for better predictions of vapor-liquid equilibria. 

iii. The effects of temperature, frequency of electric field, and sodium chlorite on 

dielectric properties need to be investigated further. As temperature increases, 

interactions between dipoles and the applied electric field will decrease due to 

thermal agitations. Also, electric fields in the THz range can provide valuable 

information about the ultrafast relaxation mode in femtosecond range. The 
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addition of salt ions causes hydration, and the corresponding polarization and 

permittivity will decrease. These effects can be quantified with both experiments 

and MD simulations. 

iv. A new dielectric mixing law can be formulated based on MD simulations. Those 

MD simulations facilitate the appraisal of both polarization orientation and 

electronic polarization of molecules. These total polarizations, estimated from 

MD simulations, can enable a better description of dielectric mixing laws. 

v. The ANN model used in this dissertation was designed with one or two hidden 

layers, and the number of neurons was determined by trial and error. However, 

the architecture of the neural network can be optimized by considering the 

complexity of the learning task. The Multi-Particle Collision Algorithm (MPCA) 

or Dynamically Expandable Networks (DEN) may be applied to achieve this goal.  

vi. Other supervised learning algorithms including decision trees, Support Vector 

Machine (SVM), and naive Bayesian algorithms can be used to analyze the 

measured optical spectra for the estimation of fluid properties. 

vii. The effects of WBM or OBM on optical spectroscopy measurements need to be 

further investigated. I acquired measurements of hydrocarbons mixed with WBM 

or OBM (not documented in this dissertation) and found that approximately 10% 

or more mud contamination makes the NIR interpretations unreliable. The 

robustness of the estimations in the presence of mud contamination can be 

analyzed and compared for the three optical spectroscopic techniques considered 

in this dissertation. 

viii. The nonlinear inversion problem with dielectric measurements introduced in this 

dissertation is unstable when applying a nonrealistic initial guess or very low 

regularization parameters. The remedy for this problem is the inclusion of a 
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reference vector in the cost function. Better initial guesses or reference vectors 

can be obtained from the total polarizations of dipole moment and polarizability 

of fluids measured in the laboratory.  

ix. Furthermore, the effects of temperature, pressure, and paramagnetic materials 

such as oxygens on NMR relaxation time and mass diffusion coefficient can be 

analyzed. 
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 Appendices:  Artificial Neural Network and Molecular Dynamics 

Simulations 

 

APPENDIX A: ARTIFICIAL NEURAL NETWORK   

This section will describe mathematical equations and calculation routines. A 

typical neural network with three layers used in this study is represented in Figure A1. 

The first layer is called the input layer that has n
i+1

 neurons, where n
i
 is the number of 

input units. Likewise, the second layer is a hidden layer with n
h+1

 neurons and the output 

layer has no neurons, respectively. A conventional feedforward propagation is 

implemented for neural networks. Feedforward neural network computes these 

parameters for every input data x as follows: 

 

A.1  Calculation of Activation Functions  

Calculate activations of unit j in the hidden layer as 
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,      (A.1) 

 

where sigmoid function g was adapted to the activation function (Cybenko, 1989) since it 

provides a smooth transition as input values vary. 
(1)

, j k  is a weight from a k-th unit of 

input layer to a j-th unit of the hidden layer. These weights are randomly initialized for 

symmetry breaking and are computed to the optimized values through the training 

process. Note that additional neuron 
(1)

0x  is called the bias unit, which always has a value 
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of one. This bias value is important for training because it allows the activation function 

to shift. 

A.2  Calculation of the Outputs 

Similarly, the estimated output can be calculated by the activation function 

applied to the sum of the hidden layer activation values, which have been multiplied by 

the corresponding weight as, 
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A.3  Regularized Cost Function 

Also, a bias neuron 
(2)

0a  was added to the hidden layer. There is only one hidden 

layer but it can be expanded to an arbitrary number of hidden layers by repeating the 

calculation of activation function. Adding these hidden layers in the networks captures 

more complex and nonlinear features of the relationship between input data and output 

data.  

 

The regularized cost function for the neural network is given by  
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, (A.3) 

 

where m is a number of input data, L is a total number of layers, ly  is the actual property 

of a l-th component,   is a regularization parameter. The regularization parameter is 

essential to avoid overfitting or memorizing problem, which is common in the training 
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process. This regularization parameter can be optimized by comparing the errors on the 

training set and the errors on the validation set.   

 

A.4  Calculation of the Backpropagation 

Once cost functions are calculated, backpropagation can be implemented to 

calculate gradients. The idea of backpropagation is that activations calculated from 

feedforward can be compared to the true output values and measure how much each 

neuron is subject to the difference. This is an iterative process of gradient descent to 

minimize the overall cost that simultaneously calculates weights for neurons and 

gradients. The difference between each estimated output and the actual output unit can be 

computed as  

 

(3) (i)(h (x )) y   .         (A.4) 

 

This error will be back propagated from the output layer to the hidden layer as 

 

(2) ( ) (3) (1) (1)( ) ( )l g a     ,        (A.5) 

 

where the sigmoid function gradient can be represented as 
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This gradient is accumulated for all output data as 
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Finally, regularized gradients of the cost function between the output layer and 

the hidden layer and those between the hidden layer and the input layer can be obtained 

by  
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Note that the regularization should be applied to all weights except the bias unit. 

The difference between gradients calculated from backpropagation and numerical 

gradients is very small, showing that the backpropagation provides a good approximation 

of gradients with much less computation time.  

By repeating these steps from 1 to 4 for each input data, minimum cost function 

and optimized weights can be computed with gradient descent in conjunction with 

feedforward and backpropagation. To avoid the local minima of the cost function, one 

can repeat this process with different initial weights several times and choose the 

parameters with the minimum overall costs. 
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APPENDIX B: MOLECULAR DYNAMICS SIMULATION 

 

B.1  Introduction   

The first MD simulation was performed (Alder et al., 1957) using the hard-sphere 

model. The simulation imitates physical motions of molecules and atoms in a real 

environment. Each atom is interacting with nearby atoms for a given time and moves 

toward the direction of exerting forces. The trajectory of all atoms in the system is the 

output of MD simulation, and various interpretations can be made based on their 

movements. There are dozens of MD simulation packages, and some popular ones are 

GROMACS (Abraham et al., 2017), NAMD (Phillips et al., 2005), DL POLY (Smith et 

al., 2010), LAMMPS (Plimpton et al., 1995), and AMBER (Case et al., 2005). 

Force fields contain information about the potential energy of a simulation 

system. As previously explained in Chapter 3 and Chapter 5, choosing a suitable force 

field is a critical factor for successful MD simulation. Each force field has its own 

parameters which are determined experimental and quantum mechanical studies of 

selected molecules. Brief formulation of the force field potential is described in Chapter 

5. Some popular force fields are OPLS-AA (Jorgensen et al., 1996), CHARMM27 

(Foloppe et al., 2000), AMBER94 (Cornell et al., 1995), and GROMOS 96 (Schuler et 

al., 2001).  

 

B.2  Simulation methods 

A general flowchart describing MD simulation steps are shown in Figure B1. MD 

simulation starts with preparations of molecular information. The detail structures and 

topologies of molecules used in this dissertation are attached at the end of Appendix B. 
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After preparing input files, molecules are inserted into the system at random positions. To 

stabilize the system, these molecules need to be equilibrated to release strain. Using the 

gradient of potential energy, an iteration of the steepest descent method is applied to 

minimize the energy. This is an essential procedure because unequilibrated molecules can 

be crashed or even broken by the forces. The next step is coupling with temperature and 

pressure. As temperature changes gradually from 0 K to the designed temperature, 

velocity of atoms are moderately changed to the corresponding temperature at each time 

step. Depending on experimental environments or physical property of interest, canonical 

ensemble (NVT), isothermal-isobaric ensemble (NPT), isoenthalpic-isobaric ensemble 

(NPH), or microcanonical ensemble (NVE) can be considered. To conserve mass and 

number of atoms in the system, periodic boundary conditions (PBC) can be implemented. 

A graphical description of the PBC concept is presented in Figure B2. When an atom 

goes out of the system, an identical atom enters from the opposite side of the boundary.  

The last step of MD simulation is a production run. Every atom generates XYZ 

trajectory in every time step until the end of the simulation time. From this trajectory 

information, various physical and thermodynamic properties can be calculated. A system 

with several thousand atoms on several nanoseconds can be manageable in the 

workstation computing capability. However, if the size of simulation system is larger or 

the time scale is longer, it is recommended to use a supercomputer. Most computational 

tasks presented in Chapter 5 was performed by Texas Advanced Computing Center 

(TACC).  

MD simulation can be a bridge between theoretical and experimental 

petrophysicists. While experiments find some interesting observations, theorists can 

make a hypothesis and explanation of experimental data and provide an approximated 

prediction of next experiments. Then experimentalist can verify the proposed theory, and 
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these interactions continue until the results from both sides can be cross-validated. On top 

of dielectric and NMR relaxations, a variety of physical phenomena on X-ray scattering 

(Moore, 1980), neutron scattering (Hansen et al., 1990), and atomic force microscopy 

(AFM, Kobayashi et al., 2016) have been studied with MD simulations.  

 

B.3  Structure and topology inputs for MD simulations 

Below information is structures and topologies of the molecules used in the MD 

simulations. Detailed parameter settings and input commands are available upon request. 

 

<Structure of a water molecule> 
One water 

  3 

    1SOL     OW    1   0.000   0.000   0.000 -0.5236  0.3981  

0.1442 

    1SOL    HW1    2  -0.096   0.000   0.000  1.8112 -1.0518 -

0.9491 

    1SOL    HW2    3   0.024   0.093   0.000  1.3601  2.0733  

3.6058 

   0.00000   0.00000   0.00000 

<Structure of a methanol molecule> 
One methanol 

    6 

    0MET     H1    4  -0.111  -0.052   0.089 

    0MET     O1    2   0.071   0.006  -0.001 

    0MET     C1    3  -0.072  -0.001  -0.000 

    0MET     H2    5  -0.109   0.102   0.000 

    0MET     H3    6  -0.111  -0.052  -0.089 

    0MET     H4    1   0.104  -0.085   0.001 

   0.00000   0.00000   0.00000 

<Structure of an 2-propanol molecule> 
One IPA 

   12 

    0ISO     H1    3  -0.131  -0.176   0.028 

    0ISO     C1    2  -0.127  -0.073  -0.010 

    0ISO     H2    4  -0.216  -0.019   0.024 

    0ISO     H3    1  -0.131  -0.079  -0.120 
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    0ISO     C2    5   0.000  -0.002   0.036 

    0ISO     H4    6   0.000   0.003   0.146 

    0ISO     O1    7  -0.001   0.136  -0.005 

    0ISO     H5   10   0.131  -0.078  -0.120 

    0ISO     C3    9   0.128  -0.072  -0.010 

    0ISO     H6   11   0.216  -0.018   0.024 

    0ISO     H7   12   0.133  -0.175   0.029 

    0ISO     H8    8  -0.001   0.136  -0.103 

   0.00000   0.00000   0.00000 

<Structure of an octane molecule> 
One Octane 

   26 

    0OCT     H1    1   0.160   0.076  -0.826 

    0OCT     C1    2   0.214   0.140  -0.893 

    0OCT     H2    3   0.175   0.239  -0.888 

    0OCT     H3    4   0.204   0.102  -0.993 

    0OCT     C2    5   0.363   0.142  -0.854 

    0OCT     H4    6   0.417   0.205  -0.921 

    0OCT     H5    7   0.373   0.179  -0.754 

    0OCT     C3    8   0.420  -0.001  -0.861 

    0OCT     H6    9   0.366  -0.065  -0.794 

    0OCT     H7   10   0.410  -0.038  -0.961 

    0OCT     C4   11   0.569   0.001  -0.822 

    0OCT     H8   12   0.579   0.039  -0.720 

    0OCT     H9   13   0.624   0.066  -0.890 

    0OCT     C5   14   0.626  -0.142  -0.829 

    0OCT    H10   15   0.616  -0.180  -0.931 

    0OCT    H11   16   0.572  -0.206  -0.761 

    0OCT     C6   17   0.775  -0.140  -0.790 

    0OCT    H12   18   0.785  -0.102  -0.688 

    0OCT    H13   19   0.830  -0.075  -0.858 

    0OCT     C7   20   0.832  -0.282  -0.797 

    0OCT    H14   21   0.822  -0.320  -0.899 

    0OCT    H15   22   0.777  -0.347  -0.729 

    0OCT     C8   23   0.981  -0.280  -0.758 

    0OCT    H16   24   1.021  -0.381  -0.763 

    0OCT    H17   25   1.036  -0.216  -0.826 

    0OCT    H18   26   0.991  -0.242  -0.656 

   0.00000   0.00000   0.00000 

<Structure of a pentane molecule> 
One pentane 

   17 

    0PEN     H1    1   0.160   0.076  -0.826 

    0PEN     C1    2   0.214   0.140  -0.893 

    0PEN     H2    3   0.175   0.239  -0.888 

    0PEN     H3    4   0.204   0.102  -0.993 
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    0PEN     C2    5   0.363   0.142  -0.854 

    0PEN     H4    6   0.417   0.205  -0.921 

    0PEN     H5    7   0.373   0.179  -0.754 

    0PEN     C3    8   0.420  -0.001  -0.861 

    0PEN     H6    9   0.366  -0.065  -0.794 

    0PEN     H7   10   0.410  -0.038  -0.961 

    0PEN     C4   11   0.569   0.001  -0.822 

    0PEN     H8   12   0.579   0.039  -0.720 

    0PEN     H9   13   0.624   0.066  -0.890 

    0PEN     C5   14   0.626  -0.142  -0.829 

    0PEN    H10   15   0.616  -0.180  -0.931 

    0PEN    H11   16   0.572  -0.206  -0.761 

    0PEN    H12   17   0.732  -0.140  -0.801 

   0.00000   0.00000   0.00000 

<Structure of a cyclohexane molecule> 
One cyclohexane 

   18 

    0CYC     H1    1   0.208  -0.139  -0.014 

    0CYC     C1    2   0.122  -0.082   0.023 

    0CYC     H2    3   0.127  -0.085   0.133 

    0CYC     C2    4   0.132   0.065  -0.023 

    0CYC     H3    5   0.224   0.110   0.014 

    0CYC     H4    6   0.138   0.068  -0.133 

    0CYC     C3    7  -0.010  -0.146  -0.023 

    0CYC     H5    8  -0.010  -0.153  -0.133 

    0CYC     H6    9  -0.017  -0.249   0.014 

    0CYC     C4   10  -0.132  -0.065   0.023 

    0CYC     H7   11  -0.224  -0.110  -0.014 

    0CYC     H8   12  -0.138  -0.068   0.133 

    0CYC     C5   13  -0.122   0.082  -0.023 

    0CYC     H9   14  -0.127   0.085  -0.133 

    0CYC    H10   15  -0.208   0.139   0.014 

    0CYC     C6   16   0.010   0.146   0.023 

    0CYC    H11   17   0.017   0.249  -0.014 

    0CYC    H12   18   0.010   0.153   0.133 

   0.00000   0.00000   0.00000 

<Structure of a toluene molecule> 
One toluene 

   15 

    0TOL    H1    3  -0.287   0.000   0.102 

    0TOL    C1    2  -0.247  -0.000   0.000 

    0TOL    H2    4  -0.287   0.089  -0.050 

    0TOL    H3    1  -0.287  -0.089  -0.050 

    0TOL    C2    5  -0.095   0.000  -0.000 

    0TOL    C3    8  -0.023  -0.120  -0.000 

    0TOL    H4    9  -0.077  -0.215  -0.001 
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    0TOL    C4   10   0.116  -0.121   0.000 

    0TOL    H5   11   0.170  -0.215   0.000 

    0TOL    C5   12   0.187  -0.000  -0.000 

    0TOL    H6   13   0.296  -0.000  -0.000 

    0TOL    C6   14   0.116   0.121   0.000 

    0TOL    H7   15   0.170   0.215   0.000 

    0TOL    C7    6  -0.023   0.120  -0.000 

    0TOL    H8    7  -0.077   0.215  -0.001 

   0.00000   0.00000   0.00000 

<Topology of a water molecule> 
[ moleculetype ] 

; molname nrexcl 

SOL  2 

 

[ atoms ] 

;   nr   type  resnr residue  atom   cgnr     charge       mass 

     1  opls_116   1    SOL     OW      1      -0.8740    

     2  opls_117   1    SOL    HW1      1       0.4370 

     3  opls_117   1    SOL    HW2      1       0.4370 

 

#ifndef FLEXIBLE 

[ settles ] 

; OW funct doh dhh 

1 1 0.09584 0.15150 

 

[ exclusions ] 

1 2 3 

2 1 3 

3 1 2 

#else 

[ bonds ] 

; i j funct length force.c. 

1 2 1 0.09584 345000 0.09584 345000 

1 3 1 0.09584 345000 0.09584 345000 

  

[ angles ] 

; i j k funct angle force.c. 

2 1 3 1 104.45 383 104.45 383 

#endif 

<Topology of an 2-propanol molecule> 
[ moleculetype ] 

; Name            nrexcl 

ISO             3 

 

[ atoms ] 
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;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_140   1   ISO      H1    1   0.09630     1.008    

        2  opls_135   1   ISO      C1    1   -0.4212     12.011    

        3  opls_140   1   ISO      H2    1   0.09400     1.008    

        4  opls_140   1   ISO      H3    1   0.08645     1.008    

        5  opls_158   1   ISO      C2    2   0.62020     12.011    

        6  opls_140   1   ISO      H4    2   -0.0069     1.008    

        7  opls_154   1   ISO      O1    2   -0.7156     15.9994    

        8  opls_155   1   ISO      H5    2   0.39120     1.008    

        9  opls_135   1   ISO      C3    3   -0.4212     12.011    

       10  opls_140   1   ISO      H6    3   0.09630     1.008    

       11  opls_140   1   ISO      H7    3   0.09400     1.008    

       12  opls_140   1   ISO      H8    3   0.08645     1.008    

 

[ bonds ] 

1 2 1   0.110  284512.0 

2 3 1   0.110  284512.0 

2 4 1   0.109  284512.0 

2 5 1   0.153  224262.4 

5 6 1   0.110  284512.0 

5 7 1   0.144  267776.0 

5 9 1   0.153  224262.4 

7 8 1   0.097  462750.4 

9 10 1   0.110  284512.0 

9 11 1   0.109  284512.0 

9 12 1   0.110  284512.0 

 

[ angles ] 

1 2 3 1  107.712  276.144 

1 2 4 1  108.238  276.144 

1 2 5 1  110.680  313.800 

2 5 6 1  108.934  313.800 

2 5 7 1  110.897  418.400 

2 5 9 1  112.779  488.273 

3 2 4 1  108.460  276.144 

3 2 5 1  111.160  313.800 

4 2 5 1  110.484  313.800 

5 7 8 1  106.931  460.240 

5 9 10 1  110.666  313.800 

5 9 11 1  110.510  313.800 

5 9 12 1  111.094  313.800 

6 5 7 1  103.979  292.880 

6 5 9 1  108.911  313.800 

7 5 9 1  110.934  418.400 

10 9 11 1  108.254  276.144 

10 9 12 1  107.726  276.144 

11 9 12 1  108.488  276.144 
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[ dihedrals ] 

1 2 5 6 3 

3 2 5 6 3 

4 2 5 6 3 

1 2 5 7 3 

3 2 5 7 3 

4 2 5 7 3 

1 2 5 9 3 

3 2 5 9 3 

4 2 5 9 3 

2 5 7 8 3 

6 5 7 8 3 

9 5 7 8 3 

2 5 9 10 3 

6 5 9 10 3 

7 5 9 10 3 

2 5 9 11 3 

6 5 9 11 3 

7 5 9 11 3 

2 5 9 12 3 

6 5 9 12 3 

7 5 9 12 3 

 

[ dihedrals ] 

 

[ pairs ] 

6 1 1 

6 3 1 

6 4 1 

7 1 1 

7 3 1 

7 4 1 

9 1 1 

9 3 1 

9 4 1 

8 2 1 

8 6 1 

8 9 1 

10 2 1 

10 6 1 

10 7 1 

11 2 1 

11 6 1 

11 7 1 

12 2 1 

12 6 1 

12 7 1 
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<Topology of a methanol molecule> 
[ moleculetype ] 

; Name            nrexcl 

MET             3 

 

[ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_155   1   MET      H1    1   0.41800     1.008    

        2  opls_154   1   MET      O1    1   -0.6830     15.9994    

        3  opls_157   1   MET      C1    1   0.14500     12.011    

        4  opls_156   1   MET      H2    1   0.04000     1.008    

        5  opls_156   1   MET      H3    1   0.04000     1.008    

        6  opls_156   1   MET      H4    1   0.04000     1.008    

 

[ bonds ] 

1 2 1   0.097  462750.4 

2 3 1   0.143  267776.0 

3 4 1   0.110  284512.0 

3 5 1   0.109  284512.0 

3 6 1   0.110  284512.0 

 

[ angles ] 

1 2 3 1  107.283  460.240 

2 3 4 1  112.419  292.880 

2 3 5 1  106.852  292.880 

2 3 6 1  112.256  292.880 

4 3 5 1  108.353  276.144 

4 3 6 1  108.539  276.144 

5 3 6 1  108.267  276.144 

 

[ dihedrals ] 

1 2 3 4 3 

1 2 3 5 3 

1 2 3 6 3 

 

[ dihedrals ] 

 

[ pairs ] 

4 1 1 

5 1 1 

6 1 1 

<Topology of an octane molecule> 
[ moleculetype ] 

; Name            nrexcl 

OCT             3 
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[ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_140   1   OCT      H1    1   0.18220     1.008    

        2  opls_135   1   OCT      C1    1   -0.5800     12.011    

        3  opls_140   1   OCT      H2    1   0.1884     1.008    

        4  opls_140   1   OCT      H3    1   0.1910     1.008    

        5  opls_136   1   OCT      C2    2   -0.3058     12.011    

        6  opls_140   1   OCT      H4    2   0.1594     1.008    

        7  opls_140   1   OCT      H5    2   0.1689     1.008    

        8  opls_136   1   OCT      C3    3   -0.3522     12.011    

        9  opls_140   1   OCT      H6    3   0.17540     1.008    

       10  opls_140   1   OCT      H7    3   0.16060     1.008    

       11  opls_136   1   OCT      C4    4   -0.3317     12.011    

       12  opls_140   1   OCT      H8    4   0.17220     1.008    

       13  opls_140   1   OCT      H9    4   0.17240     1.008    

       14  opls_136   1   OCT      C5    5   -0.3311     12.011    

       15  opls_140   1   OCT      H10    5   0.17190     1.008    

       16  opls_140   1   OCT      H11    5   0.17230     1.008    

       17  opls_136   1   OCT      C6    6   -0.3523     12.011    

       18  opls_140   1   OCT      H12    6   0.17530     1.008    

       19  opls_140   1   OCT      H13    6   0.16070     1.008    

       20  opls_136   1   OCT      C7    7   -0.3062     12.011    

       21  opls_140   1   OCT      H14    7   0.15970     1.008    

       22  opls_140   1   OCT      H15    7   0.16900     1.008    

       23  opls_135   1   OCT      C8    8   -0.58     12.011    

       24  opls_140   1   OCT      H16    8   0.18820     1.008    

       25  opls_140   1   OCT      H17    8   0.18240     1.008    

       26  opls_140   1   OCT      H18    8   0.19120     1.008    

 

[ bonds ] 

1 2 1   0.110  284512.0 

2 3 1   0.110  284512.0 

2 4 1   0.110  284512.0 

2 5 1   0.154  224262.4 

5 6 1   0.110  284512.0 

5 7 1   0.110  284512.0 

5 8 1   0.155  224262.4 

8 9 1   0.110  284512.0 

8 10 1   0.110  284512.0 

8 11 1   0.154  224262.4 

11 12 1   0.110  284512.0 

11 13 1   0.110  284512.0 

11 14 1   0.154  224262.4 

14 15 1   0.110  284512.0 

14 16 1   0.110  284512.0 

14 17 1   0.154  224262.4 
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17 18 1   0.110  284512.0 

17 19 1   0.110  284512.0 

17 20 1   0.155  224262.4 

20 21 1   0.110  284512.0 

20 22 1   0.110  284512.0 

20 23 1   0.154  224262.4 

23 24 1   0.110  284512.0 

23 25 1   0.110  284512.0 

23 26 1   0.110  284512.0 

 

[ angles ] 

1 2 3 1  107.597  276.144 

1 2 4 1  107.648  276.144 

1 2 5 1  111.003  313.800 

2 5 6 1  107.801  313.800 

2 5 7 1  109.736  313.800 

2 5 8 1  115.202  488.273 

3 2 4 1  107.421  276.144 

3 2 5 1  110.709  313.800 

4 2 5 1  112.259  313.800 

5 8 9 1  109.263  313.800 

5 8 10 1  108.565  313.800 

5 8 11 1  116.361  488.273 

6 5 7 1  105.671  276.144 

6 5 8 1  108.615  313.800 

7 5 8 1  109.371  313.800 

8 11 12 1  107.545  313.800 

8 11 13 1  108.912  313.800 

8 11 14 1  115.764  488.273 

9 8 10 1  105.694  276.144 

9 8 11 1  109.378  313.800 

10 8 11 1  107.036  313.800 

11 14 15 1  109.168  313.800 

11 14 16 1  108.977  313.800 

11 14 17 1  115.774  488.273 

12 11 13 1  106.121  276.144 

12 11 14 1  109.140  313.800 

13 11 14 1  108.929  313.800 

14 17 18 1  109.425  313.800 

14 17 19 1  107.127  313.800 

14 17 20 1  116.379  488.273 

15 14 16 1  106.107  276.144 

15 14 17 1  107.523  313.800 

16 14 17 1  108.861  313.800 

17 20 21 1  108.650  313.800 

17 20 22 1  109.357  313.800 

17 20 23 1  115.190  488.273 

18 17 19 1  105.616  276.144 
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18 17 20 1  109.181  313.800 

19 17 20 1  108.563  313.800 

20 23 24 1  110.701  313.800 

20 23 25 1  111.045  313.800 

20 23 26 1  112.256  313.800 

21 20 22 1  105.677  276.144 

21 20 23 1  107.834  313.800 

22 20 23 1  109.692  313.800 

24 23 25 1  107.618  276.144 

24 23 26 1  107.364  276.144 

25 23 26 1  107.650  276.144 

 

[ dihedrals ] 

1 2 5 6 3 

3 2 5 6 3 

4 2 5 6 3 

1 2 5 7 3 

3 2 5 7 3 

4 2 5 7 3 

1 2 5 8 3 

3 2 5 8 3 

4 2 5 8 3 

2 5 8 9 3 

6 5 8 9 3 

7 5 8 9 3 

2 5 8 10 3 

6 5 8 10 3 

7 5 8 10 3 

2 5 8 11 3 

6 5 8 11 3 

7 5 8 11 3 

5 8 11 12 3 

9 8 11 12 3 

10 8 11 12 3 

5 8 11 13 3 

9 8 11 13 3 

10 8 11 13 3 

5 8 11 14 3 

9 8 11 14 3 

10 8 11 14 3 

8 11 14 15 3 

12 11 14 15 3 

13 11 14 15 3 

8 11 14 16 3 

12 11 14 16 3 

13 11 14 16 3 

8 11 14 17 3 

12 11 14 17 3 
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13 11 14 17 3 

11 14 17 18 3 

15 14 17 18 3 

16 14 17 18 3 

11 14 17 19 3 

15 14 17 19 3 

16 14 17 19 3 

11 14 17 20 3 

15 14 17 20 3 

16 14 17 20 3 

14 17 20 21 3 

18 17 20 21 3 

19 17 20 21 3 

14 17 20 22 3 

18 17 20 22 3 

19 17 20 22 3 

14 17 20 23 3 

18 17 20 23 3 

19 17 20 23 3 

17 20 23 24 3 

21 20 23 24 3 

22 20 23 24 3 

17 20 23 25 3 

21 20 23 25 3 

22 20 23 25 3 

17 20 23 26 3 

21 20 23 26 3 

22 20 23 26 3 

 

[ dihedrals ] 

 

[ pairs ] 

6 1 1 

6 3 1 

6 4 1 

7 1 1 

7 3 1 

7 4 1 

8 1 1 

8 3 1 

8 4 1 

9 2 1 

9 6 1 

9 7 1 

10 2 1 

10 6 1 

10 7 1 

11 2 1 
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11 6 1 

11 7 1 

12 5 1 

12 9 1 

12 10 1 

13 5 1 

13 9 1 

13 10 1 

14 5 1 

14 9 1 

14 10 1 

15 8 1 

15 12 1 

15 13 1 

16 8 1 

16 12 1 

16 13 1 

17 8 1 

17 12 1 

17 13 1 

18 11 1 

18 15 1 

18 16 1 

19 11 1 

19 15 1 

19 16 1 

20 11 1 

20 15 1 

20 16 1 

21 14 1 

21 18 1 

21 19 1 

22 14 1 

22 18 1 

22 19 1 

23 14 1 

23 18 1 

23 19 1 

24 17 1 

24 21 1 

24 22 1 

25 17 1 

25 21 1 

25 22 1 

26 17 1 

26 21 1 

26 22 1 
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<Topology of a pentane molecule> 
[ moleculetype ] 

; Name            nrexcl 

PEN             3 

 

[ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_140   1   PEN      H1    1   0.19030     1.008    

        2  opls_135   1   PEN      C1    1   -0.5779     12.011    

        3  opls_140   1   PEN      H2    1   0.18940     1.008    

        4  opls_140   1   PEN      H3    1   0.18250     1.008    

        5  opls_136   1   PEN      C2    2   -0.3137     12.011    

        6  opls_140   1   PEN      H4    2   0.16050     1.008    

        7  opls_140   1   PEN      H5    2   0.16580     1.008    

        8  opls_136   1   PEN      C3    3   -0.3468     12.011    

        9  opls_140   1   PEN      H6    3   0.16730     1.008    

       10  opls_140   1   PEN      H7    3   0.17510     1.008    

       11  opls_136   1   PEN      C4    4   -0.3026     12.011    

       12  opls_140   1   PEN      H8    4   0.16960     1.008    

       13  opls_140   1   PEN      H9    4   0.16610     1.008    

       14  opls_135   1   PEN      C5    5   -0.5871     12.011    

       15  opls_140   1   PEN      H10    5   0.18910     1.008    

       16  opls_140   1   PEN      H11    5   0.18390     1.008    

       17  opls_140   1   PEN      H12    5   0.18850     1.008    

 

[ bonds ] 

1 2 1   0.110  284512.0 

2 3 1   0.110  284512.0 

2 4 1   0.110  284512.0 

2 5 1   0.153  224262.4 

5 6 1   0.110  284512.0 

5 7 1   0.110  284512.0 

5 8 1   0.154  224262.4 

8 9 1   0.110  284512.0 

8 10 1   0.110  284512.0 

8 11 1   0.154  224262.4 

11 12 1   0.110  284512.0 

11 13 1   0.110  284512.0 

11 14 1   0.153  224262.4 

14 15 1   0.110  284512.0 

14 16 1   0.110  284512.0 

14 17 1   0.110  284512.0 

 

[ angles ] 

1 2 3 1  107.620  276.144 

1 2 4 1  107.430  276.144 
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1 2 5 1  111.959  313.800 

2 5 6 1  108.786  313.800 

2 5 7 1  109.519  313.800 

2 5 8 1  114.302  488.273 

3 2 4 1  107.660  276.144 

3 2 5 1  110.947  313.800 

4 2 5 1  111.028  313.800 

5 8 9 1  108.915  313.800 

5 8 10 1  109.029  313.800 

5 8 11 1  114.725  488.273 

6 5 7 1  106.042  276.144 

6 5 8 1  108.733  313.800 

7 5 8 1  109.131  313.800 

8 11 12 1  109.907  313.800 

8 11 13 1  108.965  313.800 

8 11 14 1  112.987  488.273 

9 8 10 1  106.004  276.144 

9 8 11 1  108.543  313.800 

10 8 11 1  109.267  313.800 

11 14 15 1  111.045  313.800 

11 14 16 1  111.503  313.800 

11 14 17 1  111.269  313.800 

12 11 13 1  106.073  276.144 

12 11 14 1  109.158  313.800 

13 11 14 1  109.516  313.800 

15 14 16 1  107.661  276.144 

15 14 17 1  107.479  276.144 

16 14 17 1  107.695  276.144 

 

[ dihedrals ] 

1 2 5 6 3 

3 2 5 6 3 

4 2 5 6 3 

1 2 5 7 3 

3 2 5 7 3 

4 2 5 7 3 

1 2 5 8 3 

3 2 5 8 3 

4 2 5 8 3 

2 5 8 9 3 

6 5 8 9 3 

7 5 8 9 3 

2 5 8 10 3 

6 5 8 10 3 

7 5 8 10 3 

2 5 8 11 3 

6 5 8 11 3 

7 5 8 11 3 
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5 8 11 12 3 

9 8 11 12 3 

10 8 11 12 3 

5 8 11 13 3 

9 8 11 13 3 

10 8 11 13 3 

5 8 11 14 3 

9 8 11 14 3 

10 8 11 14 3 

8 11 14 15 3 

12 11 14 15 3 

13 11 14 15 3 

8 11 14 16 3 

12 11 14 16 3 

13 11 14 16 3 

8 11 14 17 3 

12 11 14 17 3 

13 11 14 17 3 

 

[ dihedrals ] 

 

[ pairs ] 

6 1 1 

6 3 1 

6 4 1 

7 1 1 

7 3 1 

7 4 1 

8 1 1 

8 3 1 

8 4 1 

9 2 1 

9 6 1 

9 7 1 

10 2 1 

10 6 1 

10 7 1 

11 2 1 

11 6 1 

11 7 1 

12 5 1 

12 9 1 

12 10 1 

13 5 1 

13 9 1 

13 10 1 

14 5 1 

14 9 1 
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14 10 1 

15 8 1 

15 12 1 

15 13 1 

16 8 1 

16 12 1 

16 13 1 

17 8 1 

17 12 1 

17 13 1 

<Topology of a cyclohexane molecule> 
[ moleculetype ] 

; Name            nrexcl 

CYC             3 

 

[ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_140   1   CYC      H1    1   0.17500     1.008    

        2  opls_136   1   CYC      C1    1   -0.3600     12.011    

        3  opls_140   1   CYC      H2    1   0.18500     1.008    

        4  opls_136   1   CYC      C2    2   -0.3600     12.011    

        5  opls_140   1   CYC      H3    2   0.17500     1.008    

        6  opls_140   1   CYC      H4    2   0.18500     1.008    

        7  opls_136   1   CYC      C3    3   -0.3600     12.011    

        8  opls_140   1   CYC      H5    3   0.18500     1.008    

        9  opls_140   1   CYC      H6    3   0.17500     1.008    

       10  opls_136   1   CYC      C4    4   -0.3600     12.011    

       11  opls_140   1   CYC      H7    4   0.17500     1.008    

       12  opls_140   1   CYC      H8    4   0.18500     1.008    

       13  opls_136   1   CYC      C5    5   -0.3600     12.011    

       14  opls_140   1   CYC      H9    5   0.18500     1.008    

       15  opls_140   1   CYC      H10   5   0.17500     1.008    

       16  opls_136   1   CYC      C6    6   -0.3600     12.011    

       17  opls_140   1   CYC      H11   6   0.17500     1.008    

       18  opls_140   1   CYC      H12   6   0.18500     1.008    

 

[ bonds ] 

1 2 1   0.110  284512.0 

2 3 1   0.110  284512.0 

2 4 1   0.154  224262.4 

2 7 1   0.154  224262.4 

4 5 1   0.110  284512.0 

4 6 1   0.110  284512.0 

4 16 1   0.154  224262.4 

7 8 1   0.110  284512.0 

7 9 1   0.110  284512.0 
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7 10 1   0.154  224262.4 

10 11 1   0.110  284512.0 

10 12 1   0.110  284512.0 

10 13 1   0.154  224262.4 

13 14 1   0.110  284512.0 

13 15 1   0.110  284512.0 

13 16 1   0.154  224262.4 

16 17 1   0.110  284512.0 

16 18 1   0.110  284512.0 

 

[ angles ] 

1 2 3 1  106.518  276.144 

1 2 4 1  110.283  313.800 

1 2 7 1  110.240  313.800 

2 4 5 1  110.241  313.800 

2 4 6 1  109.093  313.800 

2 4 16 1  111.457  488.273 

2 7 8 1  109.083  313.800 

2 7 9 1  110.304  313.800 

2 7 10 1  111.461  488.273 

3 2 4 1  109.112  313.800 

3 2 7 1  109.101  313.800 

4 2 7 1  111.449  488.273 

4 16 13 1  111.461  488.273 

4 16 17 1  110.215  313.800 

4 16 18 1  109.120  313.800 

5 4 6 1  106.535  276.144 

5 4 16 1  110.286  313.800 

6 4 16 1  109.091  313.800 

7 10 11 1  110.286  313.800 

7 10 12 1  109.091  313.800 

7 10 13 1  111.457  488.273 

8 7 9 1  106.520  276.144 

8 7 10 1  109.120  313.800 

9 7 10 1  110.215  313.800 

10 13 14 1  109.112  313.800 

10 13 15 1  110.283  313.800 

10 13 16 1  111.449  488.273 

11 10 12 1  106.535  276.144 

11 10 13 1  110.241  313.800 

12 10 13 1  109.093  313.800 

13 16 17 1  110.304  313.800 

13 16 18 1  109.083  313.800 

14 13 15 1  106.518  276.144 

14 13 16 1  109.101  313.800 

15 13 16 1  110.240  313.800 

17 16 18 1  106.520  276.144 
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[ dihedrals ] 

1 2 4 5 3 

3 2 4 5 3 

7 2 4 5 3 

1 2 4 6 3 

3 2 4 6 3 

7 2 4 6 3 

1 2 4 16 3 

3 2 4 16 3 

7 2 4 16 3 

1 2 7 8 3 

3 2 7 8 3 

4 2 7 8 3 

1 2 7 9 3 

3 2 7 9 3 

4 2 7 9 3 

1 2 7 10 3 

3 2 7 10 3 

4 2 7 10 3 

2 4 16 13 3 

5 4 16 13 3 

6 4 16 13 3 

2 4 16 17 3 

5 4 16 17 3 

6 4 16 17 3 

2 4 16 18 3 

5 4 16 18 3 

6 4 16 18 3 

2 7 10 11 3 

8 7 10 11 3 

9 7 10 11 3 

2 7 10 12 3 

8 7 10 12 3 

9 7 10 12 3 

2 7 10 13 3 

8 7 10 13 3 

9 7 10 13 3 

7 10 13 14 3 

11 10 13 14 3 

12 10 13 14 3 

7 10 13 15 3 

11 10 13 15 3 

12 10 13 15 3 

7 10 13 16 3 

11 10 13 16 3 

12 10 13 16 3 

10 13 16 4 3 

14 13 16 4 3 
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15 13 16 4 3 

10 13 16 17 3 

14 13 16 17 3 

15 13 16 17 3 

10 13 16 18 3 

14 13 16 18 3 

15 13 16 18 3 

 

[ dihedrals ] 

 

[ pairs ] 

5 1 1 

5 3 1 

5 7 1 

6 1 1 

6 3 1 

6 7 1 

16 1 1 

16 3 1 

16 7 1 

8 1 1 

8 3 1 

8 4 1 

9 1 1 

9 3 1 

9 4 1 

10 1 1 

10 3 1 

10 4 1 

13 2 1 

13 5 1 

13 6 1 

17 2 1 

17 5 1 

17 6 1 

18 2 1 

18 5 1 

18 6 1 

11 2 1 

11 8 1 

11 9 1 

12 2 1 

12 8 1 

12 9 1 

13 2 1 

13 8 1 

13 9 1 

14 7 1 
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14 11 1 

14 12 1 

15 7 1 

15 11 1 

15 12 1 

16 7 1 

16 11 1 

16 12 1 

4 10 1 

4 14 1 

4 15 1 

17 10 1 

17 14 1 

17 15 1 

18 10 1 

18 14 1 

18 15 1 

<Topology of a toluene molecule> 
[ moleculetype ] 

; Name            nrexcl 

TOL             3 

 

[ atoms ] 

;   nr       type  resnr residue  atom   cgnr     charge       

mass  typeB    chargeB      massB 

        1  opls_140   1   TOL      H1    1   0.02100     1.008    

        2  opls_148   1   TOL      C1    1   -0.0770     12.011    

        3  opls_140   1   TOL      H2    1   0.02600     1.008    

        4  opls_140   1   TOL      H3    1   0.02600     1.008    

        5  opls_145   1   TOL      C2    2   0.20000     12.011    

        6  opls_145   1   TOL      C3    3   -0.2310     12.011    

        7  opls_146   1   TOL      H4    3   0.11800     1.008    

        8  opls_145   1   TOL      C4    4   -0.2310     12.011    

        9  opls_146   1   TOL      H5    4   0.11800     1.008    

       10  opls_145   1   TOL      C5    5   -0.0610     12.011    

       11  opls_146   1   TOL      H6    5   0.08900     1.008    

       12  opls_145   1   TOL      C6    6   -0.1090     12.011    

       13  opls_146   1   TOL      H7    6   0.08300     1.008    

       14  opls_145   1   TOL      C7    7   -0.0610     12.011    

       15  opls_146   1   TOL      H8    7   0.08900     1.008    

 

[ bonds ] 

1 2 1   0.110  284512.0 

2 3 1   0.110  284512.0 

2 4 1   0.109  284512.0 

2 5 1   0.151  265265.6 

5 6 1   0.140  392459.2 
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5 8 1   0.140  392459.2 

6 7 1   0.109  307105.6 

6 14 1   0.140  392459.2 

8 9 1   0.109  307105.6 

8 10 1   0.140  392459.2 

10 11 1   0.109  307105.6 

10 12 1   0.140  392459.2 

12 13 1   0.109  307105.6 

12 14 1   0.140  392459.2 

14 15 1   0.109  307105.6 

 

[ angles ] 

1 2 3 1  107.194  276.144 

1 2 4 1  108.087  276.144 

1 2 5 1  111.381  292.880 

2 5 6 1  120.936  585.760 

2 5 8 1  120.936  585.760 

3 2 4 1  107.162  276.144 

3 2 5 1  111.413  292.880 

4 2 5 1  111.389  292.880 

5 6 7 1  119.318  292.880 

5 6 14 1  121.059  527.184 

5 8 9 1  119.318  292.880 

5 8 10 1  121.059  527.184 

6 5 8 1  118.128  527.184 

6 14 12 1  120.186  527.184 

6 14 15 1  119.704  292.880 

7 6 14 1  119.622  292.880 

8 10 11 1  119.704  292.880 

8 10 12 1  120.186  527.184 

9 8 10 1  119.622  292.880 

10 12 13 1  120.310  292.880 

10 12 14 1  119.380  527.184 

11 10 12 1  120.108  292.880 

12 14 15 1  120.108  292.880 

13 12 14 1  120.310  292.880 

 

[ dihedrals ] 

1 2 5 6 3 

3 2 5 6 3 

4 2 5 6 3 

1 2 5 8 3 

3 2 5 8 3 

4 2 5 8 3 

2 5 6 7 3 

8 5 6 7 3 

2 5 6 14 3 

8 5 6 14 3 
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2 5 8 9 3 

6 5 8 9 3 

2 5 8 10 3 

6 5 8 10 3 

5 6 14 12 3 

7 6 14 12 3 

5 6 14 15 3 

7 6 14 15 3 

5 8 10 11 3 

9 8 10 11 3 

5 8 10 12 3 

9 8 10 12 3 

8 10 12 13 3 

11 10 12 13 3 

8 10 12 14 3 

11 10 12 14 3 

10 12 14 6 3 

13 12 14 6 3 

10 12 14 15 3 

13 12 14 15 3 

 

[ dihedrals ] 

2 6 5 8 1    

5 7 6 14 1    

5 9 8 10 1    

8 11 10 12 1    

10 13 12 14 1    

6 12 14 15 1    

 

[ pairs ] 

6 1 1 

6 3 1 

6 4 1 

8 1 1 

8 3 1 

8 4 1 

7 2 1 

7 8 1 

14 2 1 

14 8 1 

9 2 1 

9 6 1 

10 2 1 

10 6 1 

12 5 1 

12 7 1 

15 5 1 

15 7 1 
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11 5 1 

11 9 1 

12 5 1 

12 9 1 

13 8 1 

13 11 1 

14 8 1 

14 11 1 

6 10 1 

6 13 1 

15 10 1 

15 13 1 
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Figure B.1: A flowchart describing steps of MD simulations. Molecules are injected 

into the system and are equilibrated for the minimization of kinetic and 

potential energies. Using the desired ensembles, the system is coupled 

with the temperature and pressure and the atoms start to alter their 

velocities according to the temperature of each time step. Production run 

can produce trajectory of each atom after checking all molecules and 

atoms are properly synced with the environmental status and yield the 

correct physical properties. 
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Figure B.2: A graphical description of periodic boundary conditions in two 

dimensions. The MD simulation box located in the center is replicated in 

all directions surrounding it. All the features of atoms are identical in each 

of the boxes. Once an atom is moving outside of the box, it will replicate 

in all surrounding boxes and thus it enters to the opposite side. This 

maintains the same number of atoms in the system.   
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APPENDIX C: LIST OF ACRONYMS AND LIST OF SYMBOLS 

 

C.1  List of Acronyms   

ACF   Autocorrelation function 

ANN   Artificial neural network 

API  American Petroleum Institute 

ATR   Attenuated Total Reflectance 

BTEX  Benzene, Toluene, Ethylbenzene and Xylene 

CD   Cole-Davidson  

CC  Cole-Cole  

CHARMM  Chemistry at HARvard Macromolecular Mechanics 

CMG   Computer Modeling Group  

DFA   Downhole Fluid Analyzer 

DI   Deionized  

DOI   Depth of Investigation  

DRRS   Downhole Reservoir Raman System 

EMSC   Extended Multiplicative Signal Correction 

EVD   Eigenvalue Decomposition  

FFT  Fast Fourier Transform 

FTIR   Fourier Transform Infrared 

GAFF  General Amber Force Field 

GATR   Grazing angle Attenuated Total Reflectance 

GOR   Gas-Oil Ratio 

GR   Gamma-Ray 

GROMACS GROningen MAchine for Chemical Simulations 

HI   Hydrogen Index 

HN  Havriliak-Negami 

JST   Jossi-Stiel-Thodos  

MCT   Mercury Cadmium Telluride 
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MD   Molecular Dynamics  

MDT   Modular Formation Dynamics Tester  

MLP   MultiLayer Perceptron 

MSC   Multiplicative Scatter Correction  

MSD   Mean-square displacement 

NIR   Near-Infrared 

NIST   National Institutes of Standards and Technology 

NMR   Nuclear Magnetic Resonance  

NPT   Number-Pressure-Temperature 

NVE   Number-Volume-Energy 

NVT   Number-Volume-Temperature  

NWRE  Nadaraya-Watson regression estimator 

OBM   Oil-Based Mud  

OPLS/AA Optimized Potential for Liquid Simulations-All Atoms 

PBC   Periodic Boundary Condition  

PC   Principal Component  

PCA   Principal component analysis  

PEF  Photoelectric Factor  

PLSR   Partial least square regression  

PME   Particle Mesh Ewald  

PREOS Peng-Robinson’s equation-of-state  

PVT   Pressure, volume, and temperature  

RBF   Radial basis function  

RMSE   Root-Mean-Square Error  

RNA  Ribonucleic Acid 

R2  Correlation coefficient 

SARA  Saturated, Aromatics, Resins, and Asphaltenes 

SP  Spontaneous Potential 

SPC/E   Extended Simple Point Charge 

SNUPAR  Schlumberger Nuclear Parameters 
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SNV   Standard Normal Variate 

SVD   Singular Value Decomposition  

TIP3P   Transferable Intermolecular Potential with 3 Points 

UTAPWeLS The University of Texas at Austin Petrophysical and Well-Log Simulator 

WBM   Water-Based Mud  

WFT   Wireline Formation Testers  

 

C.2  List of Symbols   

a
j
 Activation of a jth neuron 

α Asymmetric exponent of the dielectric relaxation spectra [ ] 

β Broadness exponent of the dielectric relaxation spectra [ ] 

C
p
 Heat capacity [J/K] 

C
sh

 Volumetric shale concentration [ ] 

C(x) Cost function 

D Mass diffusion coefficient [µm2/sec] 

d
m
 Vector of measured data  

G Autocorrelation function [1/sec2] 

G  Magnetic gradient [Gauss/cm] 

g Sigmoid activation function 

J Dipolar spectral density function [1/sec] 

H Enthalpy [J] 

HI  Hydrogen index [ ] 

J Jacobian matrix 

k
B
 Boltzmann constant [J/K] 

L Total number of layers [ ] 

L
m
 Migration length [cm] 

M Dipole moment [Debye] 

m Total number of input data [ ] 

N  Number of 1H-1H dipole-dipole interactions [ ] 
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n
i
 Number of neurons in input layer [ ] 

n
h
 Number of neurons in hidden layer [ ] 

n
o
 Number of neurons in output layer [ ] 

r Separation distance between two hydrogen atoms [nm] 

r Radius of spherical pores [μm] 

r Distance a molecule travels in time t [nm] 

S Entropy [J/K] 

S
w
 Water saturation [v/v] 

T Absolute temperature [K] 

T
2bulk

 NMR T
2
 bulk transverse relaxation time [ms] 

T
1bulk

 NMR T
1
 bulk longitudinal relaxation time [ms] 

TE Inter-echo time in CPMG sequence [ms] 

T
1
 Longitudinal relaxation time [ms] 

T
2
 Transverse relaxation time [ms] 

T
2LM

 Logarithmic mean transverse relaxation time [ms] 

T
2cutoff

 Transverse relaxation time cutoff [ms] 

t Lag time of autocorrelation [ps] 

U Volumetric cross section [cross section/cm3] 

V Volume [m3] 

W
d
 Data weighting matrix 

ω Angular frequency [Hz] 

ω
0 Larmor frequency [Hz] 

x
0
 Bias unit [ ] 

x
1
 Volumetric concentration of methane [ ] 

x
2
 Volumetric concentration of light alkane [ ] 

x
3
 Volumetric concentration of medium alkane [ ] 

y
l
 Actual data of a lth component [ ] 

θ Angle between two hydrogen atoms to the magnetic field [degree] 
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Σ Macroscopic neutron capture cross-section [c.u.] 

ρ
1
 Surface relaxivity for T

1
 [μm/sec] 

ρ
2
 Surface relaxivity for T

2
 [μm/sec]  

ρ Density [g/cm3] or [kg/m3] 

ρ
b
  Bulk density [g/cm3] 

ρ
f
 Fluid density [g/cm3] 

ϕ Porosity [v/v] 


D
 Density porosity [v/v] 

ϕ
N
 Neutron porosity [v/v] 

ξ Inverse of migration length [1/cm] 

ε
0
 Dielectric permittivity at zero frequency [ ] 

ε
∞
 Dielectric permittivity at infinity frequency [ ] 

ћ Reduced Planck constant [J·sec] 

h
Θ
 Estimated output at the output layer [ ] 

Δ Accumulated sigmoid function gradient [ ] 

δ Difference between estimated output and the actual data [ ] 

γ  Gyromagnetic ratio of hydrogen atom [MHz/T] 

τ
D
  Dielectric relaxation time [ps] 

Θ
j,k

 Weight from a kth unit of previous layer to a jth unit of current layer [ ] 

τ Time [ps] 

µ Viscosity [cp] 

μ
0
 Vacuum magnetic permeability [T·m/A] 

λ Regularization parameter [ ] 
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