

Copyright Page

Copyright

by

Hua Zhong

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211337281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Hua Zhong

Certifies that this is the approved version of the following report:

Signature Page

Pairwise-Korat: Automated Testing Using Korat

in an Industrial Setting

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid

Lingming Zhang

Supervisor:

Pairwise-Korat: Automated Testing Using Korat

in an Industrial Setting

Title Page

by

Hua Zhong, B.E.; M.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2015

Dedication

To my parents, Haiyan Li and Minghe Zhong, my wife, Lei Zhou, and my

grandmother, Xiaocai Wang.

v

Acknowledgements

It is a great honor to have Dr. Sarfraz Khurshid as my graduate advisor. The

inspiration of this work comes from the lectures which Dr. Khurshid gave in his Software

Verification and Validation class, back to 2013. After completing the class, I started to

apply tools I learned from the class to the projects in my work. Whenever I need

consultations and suggestions from Dr. Khurshid, he always made time for me and gave

me excellent technical advice. Dr. Khurshid inspired me to start this project and guided

me throughout the entire process. The work could not be finished without his help. The

reader of my report is Dr. Lingming Zhang. Lingming and I worked briefly together at

eBay in 2013. He tirelessly provided me guidance on the project during that time.

Discussions with Lingming greatly improved the quality of the work.

My former manager at eBay, Russell Lager, gave me great support during my

work. He provided lots of helpful technical comments and helped me to balance my work

and study.

Besides, I also want to thank my family for their love, understanding and support

which have led me through. Without support of my wife, Lei, and my parents, I would

not be able to complete the degree.

vi

Abstract

Pairwise-Korat: Automated Testing Using Korat

in an Industrial Setting

 Hua Zhong, MSE

The University of Texas at Austin, 2015

Supervisor: Sarfraz Khurshid

In this report, we present an algorithm for testing applications which takes

structurally complex test inputs. The algorithm, Pairwise-Korat, adopts Korat ━ an

algorithm for constraint-based generation of structurally complex test inputs. Korat takes

(1) an imperative predicate which specifies the desired structural integrity constraints and

(2) a finitization which bounds the desired test inputs size. Korat performs a systematic

search to generate all test inputs (within the bounds) for which the predicate returns true.

We present how to generate test inputs in Korat and how to execute test inputs in parallel.

The inputs that Korat generates enable bounded-exhaustive testing that checks the code

under test exhaustively for all inputs within the given bounds. We also describe a novel

methodology for reducing the number of equivalent inputs that Korat generates. Our

development of test input generation and the methodology for reducing equivalent inputs

are motivated by testing applications developed at eBay. The experimental results show

that the Pairwise-Korat achieves great performance in finding defects and increasing test

coverage and the algorithm outperforms current manual solutions adopted at the

company.

vii

Table of Contents

List of Tables ... ix

List of Figures ... x

INTRODUCTION... 1

1.1 Background and Proposed Solution .. 1

1.1.1 Test Generation is Burdensome .. 1

1.1.2 Generating Tests from Constraints ... 2

1.1.3 Korat ... 3

1.1.4 Pairwise Testing .. 4

1.1.5 Complete Proposed Solution .. 5

1.2 Examples ... 6

1.2.1 Binary Tree ... 6

1.2.2 Test Generation using Korat ... 8

1.2.3 Pairwise-Korat .. 9

PROPOSED METHODOLOGY ... 11

2.1 Korat Generation ... 11

2.2 Filter Constraints ... 14

2.3 Pairwise Filter ... 16

2.4 Input Format Conversion .. 18

EXPERIMENTAL RESULTS ... 20

viii

DEFECT ANALYSIS ... 23

CONCLUSIONS AND FUTURE WORK .. 25

REFERENCES .. 27

VITA... 29

ix

List of Tables

Table 3.1 Performance of Pairwise-Korat .. 20

Table 3.2 Performance comparison between existing manual solution and Pairwise-Korat

... 21

x

List of Figures

Figure 1.1 An XML file to post an item on an online auction site 2

Figure 1.2 A Java definition of binary trees and its repOk method. This method

implements the two constraints: acyclicity along all paths and equality of size

field and number of reachable fields. .. 7

Figure 1.3 A Java definition of finitization method to bound binary trees 8

Figure 2.1 Java class containing test input fields .. 12

Figure 2.2 An implementation of the finitization method .. 14

Figure 2.3 Structural constraints defined in repOK method to reduce the number of

negative test cases ... 15

Figure 2.4 Algorithm for generating pairwise test case .. 17

Figure 2.5 Implementation of the pairwise filter .. 18

Figure 2.6 A test suite stored in .csv file... 19

1

INTRODUCTION

1.1 Background and Proposed Solution

Software testing plays an important role in software development lifecycle and it

is also the dominant method for finding software defects before releasing the software to

market [1]. Software testing usually consists of two main parts: (1) test generation, which

creates tests to be executed; and (2) test execution, which executes the tests to check the

code under test. When dealing with industrial projects, execution is often automated to

handle a large number of test requirements. However, test generation is typically manual

and thus laborious and often produces inputs that exercise only a small subset of the

functionality of the software. The quality of the test cases and coverage is solely based on

test case designer’s own experience.

1.1.1 Test Generation is Burdensome

So why do test generation need to be performed manually instead of automated?

Test generation would be straightforward if desired inputs were simple, e.g., if the input

domain is an integer value in the range of (0-100). However, for most programs, inputs

are in complex structures. For example, let’s consider a web service program which lists

an item on a web application. For correct behavior that program might require its input to

contain information like username, item description, item price, refund options and

2

shipping options. The program may require user to provide the information in an XML

file. A sample of such an input file is shown in Figure 1.1.

Figure 1.1 An XML file to post an item on an online auction site

1.1.2 Generating Tests from Constraints

The key idea in this work is to generate tests from logical constraints. Comparing

to manual input generation, it is often much simpler to describe the properties of desired

3

input data. A key advantage of using input constraints is that the constraints typically

cover an entire input domain rather than a small subset of that class. Therefore, a

constraint solver can be implemented to generate valid inputs for an entire class rather

than a set of concrete inputs. The use of constraints allows test designers to generate a

test suite with no bias and covers the entire input domain with a given bound on the input

size.

Before we can solve the input constraints, we need to understand the nature of

them. There are a number of studies [2,3,4,5] for generating tests from constraints have

considered constraints on primitive data, such as integers and booleans. However, in most

industrial applications, data with complex structure are pervasive. Such of data are

defined by their structural constraints, e.g., in a binary tree, each node has a unique parent

and no node has the same node as both left and right child.

1.1.3 Korat

The Korat [6] tool presents an embodiment of how we address these challenges for

automated testing of our programs.

Korat is a Java algorithm for constraint-based generation of structurally complex

test inputs. Korat performs specification-based testing: given a Java predicate that

describes properties of desired input data, Korat performs a backtracking search to

explore the input space of the predicate and enumerate all inputs for which the predicate

returns true. Korat returns each enumerated input as a desired test input. To test a

program, Korat requires the program precondition to generate tests and the postcondition

4

to verify correctness of the program. Korat enables bounded exhaustive testing: it tests

against all non-isomorphic inputs within a given bound on the input size. Bounded

exhaustive testing has been proved to be an effective methodology to find bugs in various

applications, including a fault-tree analyzer [7], a resource discovery architecture [8], and

an XPath compiler [9].

While bounded exhaustive testing is very effective in some software, it is not the

case in many industrial applications. The reason is very simple and straightforward: the

size of the input space to test an industrial application is usually too complicated and such

an exhaustive generation will produce an enormous large number of test inputs. It is

infeasible to run such a large number of test cases in one test execution. Besides, an

industrial test requirement often requires reasonable cost-benefit compromise between

test code coverage and the time/resources expenses. Due to this limitation, many of the

generated tests will be categorized as “corner” cases or “negative” test cases in a test plan

design and thus should be removed from the plan due to their low priorities.

1.1.4 Pairwise Testing

To solve the above issues, this report presents Pairwise-Korat, a pairwise test

generation framework based on Korat. Pairwise testing is a combinatorial method of

software testing that, for each pair of input parameters to a system, tests all possible

discrete combinations of those parameters.

The reasoning behind pairwise testing is as the followings. The simplest bugs in a

program are generally triggered by a single input parameter. The next simplest category

5

of bugs consists of those dependent on interactions between pairs of parameters, which

can be caught with pairwise testing [10]. Bugs involving interactions between three or

more parameters are progressively less common [11], while at the same time being

progressively more expensive to find by exhaustive testing, which has as its limits the

exhaustive testing of all possible inputs [12].

One of the main strengths of combinatorial technique is that it enables a

significant reduction of the number of test cases without compromising functional

coverage. Many testing methods regard all-pairs testing of a system or subsystem as a

reasonable cost-benefit compromise between often computationally infeasible higher-

order combinatorial testing methods, and less exhaustive methods which fail to exercise

all possible pairs of parameters. For example, consider the case of N=10 binary

parameters. An exhaustive set of tests involves 210 tests, whereas the all-pair setting

would involve just 6.

1.1.5 Complete Proposed Solution

The key insight in this report is that even though it is not feasible for Korat to

explore an entire input space, we can still apply Korat to search for a subdomain of the

space and then systematically select pairwise test cases from the generated candidates.

The proposed framework first adopts Korat to search for a set of candidate inputs based

on a series of filters defined in Korat’s Java predicate. These filters are designed in such a

way that only a selective number of negative test cases will be included in the candidate

domain. The candidate inputs will then be placed into a pairwise filter and a set of

6

pairwise test cases will be selected from the candidates. Those pairwise test cases serve

as the final tests. In chapter 3, we can see that the filtered tests achieve a high code

coverage and is very effective in finding defects from the program under tested.

1.2 Examples

To explain Korat and constraint based search, we take the example of a binary

tree. We first describe the working of Korat on this structure with three nodes. We then

explain how Pairwise-Korat is applied to reduce the number of generated tests.

1.2.1 Binary Tree

Consider a Java implementation of a binary tree given in Figure 1.2. The static

nested class Node models actual nodes in the binary tree. Each Node has a left and a right

field, pointing to its child nodes. The BinaryTree class has a root field pointing to the root

of the binary tree and an integer size, which stores the total number of reachable nodes.

There are two structural constraints. One is acyclicity along left and right fields. The

second is that the number of reachable nodes equals the size field. To verify these two

constraints, a Java predicate is created and the implementation is given in Figure 1.2.

Such an imperative predicate is conventionally called repOk [13]. In object oriented

language domain, these constraints are often called class invariants.

7

public class BinaryTree {
 public static class Node {
 Node left;
 Node right;
 }
 private Node root;
 private int size;

 public boolean repOK() {
 if (root == null)
 return size == 0;
 // checks that tree has no cycle
 Set visited = new HashSet();
 visited.add(root);
 LinkedList workList = new LinkedList();
 workList.add(root);
 while (!workList.isEmpty()) {
 Node current = (Node) workList.removeFirst();
 if (current.left != null) {
 if (!visited.add(current.left))
 return false;
 workList.add(current.left);
 }
 if (current.right != null) {
 if (!visited.add(current.right))
 return false;
 workList.add(current.right);
 }
 }
 // checks that size is consistent
 return (visited.size() == size);
 }
}

Figure 1.2 A Java definition of binary trees and its repOk method. This method

implements the two constraints: acyclicity along all paths and equality
of size field and number of reachable fields.

8

1.2.2 Test Generation using Korat

To generate test inputs, Korat requires two Java methods: (a) a repOk method that

checks the class invariants and (b) a set of bounds called finitization. Finitization method

tells Korat how to bound the input space. The statements in the finitization method

specify bounds on the number of objects to be used to construct instances of the data

structure, as well as possible values stored in the fields of those objects. For example, the

finitization in the binary tree example can take one object of class BinaryTree, three

objects of class Node, and a fixed value of 3 for size field. A detailed implementation can

be found at Figure 1.3.

public static IFinitization finBinaryTree() {
 IFinitization f = FinitizationFactory.create(BinaryTree.class);
 IObjSet nodes = f.createObjSet(Node.class, 3, false);
 f.set("root", nodes);
 f.set("Node.left", nodes);
 f.set("Node.right", nodes);
 IIntSet sizes = f.createIntSet(3, 3);
 f.set("size", sizes);

 return f;
}

Figure 1.3 A Java definition of finitization method to bound binary trees

The first line creates an "empty" finitization using FinitizationFactory.create

factory method by passing it class under test as an argument. This line specifies that there

is only one object of class BinaryTree.

9

Then, a set of three nodes is created by calling createObjSet method. This method

takes several parameters:

• class of objects to be created,

• number of objects of the given class to be created,

• whether to include null or not,

which means that the second line creates a set of 3 Node objects which contain 3

instances of class Node.

The next thing to do is to associate certain fields with newly created object set.

Fields BinaryTree.root, Node.left and Node.right are all of type Node and it is ok to have

them all associated with this object set. That is what next three lines do.

Only field that is left to be bounded is BinaryTree.size so we simply create an

IntSet with a single value of 3 and assign it to the field size. The above program will

generate a total number of 5 valid nonisomorphic binary trees of 3 nodes.

1.2.3 Pairwise-Korat

The above example successfully explores all valid structures of binary trees with

3 nodes. But in an actual implementation, each node will also be assigned with a set of

individual values. If each node takes 100 discrete values, the valid input size will grow

from 5 to 5×106. The tests we present in this report have more complex structures and

significant larger number of individual values for each node.

To reduce the input size, we first identify a series of constraints which removes

those tests considered as “duplicate tests”. For example, let’s consider a binary tree with

10

3 nodes N0, N1 and N2, and each node takes a set of integer values from -2 to 2. If we

want to test a program which returns true if any of the node has a value of 0, we may

consider the following 2 test cases as duplicate test cases: [{N0=1, N1=-1, N2=1},

{N0=1, N1=1, N2=-1}]. Both of the two test cases might cover the same path in the

program and only one of them is needed in a test requirement. Pairwise filters can then be

applied on the generated tests to further shrink the input size.

11

PROPOSED METHODOLOGY

The purpose of implementing Pairwise-Korat is to generate test inputs for three

Java applications developed for eBay online auction site. The input structures of these

three tests are complex by nature and thus can’t be generated by common combinatory

test generators. For example, one of the projects requires inputs to provide several

shipping instances in its input structure. The number of the shipping instances is flexible

but the types of shipping methods are decided by the country and item price. One of these

example inputs can be found in Figure 1.1. Due to the complex structures of these inputs

files, the current test suite is generated manually by test engineers and only covers a small

portion of the program. Besides the low coverage, the manual generation process is also

very time-consuming and ineffective. As introduced in the above sections, Korat is a tool

for generating structurally complex test inputs for Java applications and is an ideal

candidate to be applied to replace current manually generated tests. However, since the

input spaces of the applications are too big to enumerate, it is infeasible to apply Korat

directly to those applications to generate test inputs. Thus, to enable automated test

generation for these three industrial applications, we introduced a series of structural

constraints and a pairwise test case filter to reduce the size of the generated tests.

2.1 Korat Generation

Korat requires a Java class declaration to generated instances of the class [14]. The

current test inputs for the above projects, on the other hand, are stored in XML and text

12

files (as shown in Figure 1.1 and 2.6). To bridge this gap, we define three Java classes to

be passed to Korat to generate input instances. One class implementation can be found in

Figure 2.1.

Figure 2.1 Java class containing test input fields

After the input class is implemented, the fields inside the class need to be

bounded in finitization method. Though it is quite straightforward to define the

boundaries in the finitization method, most of the fields have a very large valid input

range, and it is not applicable to bound the fields with these input ranges directly (billions

13

of tests will be generated and system will run out of memory quickly if we choose to use

the these input ranges). To resolve the difficulties, instead of using a continuous input

range, we identify and select a few important data points to bound those fields. To help

further understanding the approach, let’s consider a concrete example. For a field named

“ItemPrice”, the input domain of this field could range from 0 to an arbitrary large

number. If the item price is greater or equal to 500, then the item will be put into a special

category. Since only a selective number of values can alter the execution path of the

program, a single value can be chosen as a candidate to replace a certain input range. In

this example, we end up choosing five values of (0, 1, 499, 500, 10000) to represent the

input range of the ItemPrice field. We apply same process to all continuous fields in the

finitization methods. An implementation of the finitization method to bound the fields

can be found in Figure 2.2.

14

Figure 2.2 An implementation of the finitization method

2.2 Filter Constraints

Even though the modification we complete in finitization methods greatly reduced

the number of generated tests, the number of tests is still too large to run in the

automation framework. Besides, most of the generated tests are negative test cases [15, 16]

and thus have low priorities. Executing such a large number of negative tests is time

15

consuming and the tests often exercise same parts of the program. To reduce the number

of negative test cases, we add a series of constraints in the repOk methods to achieve this

goal. Figure 2.3 shows an implementation of repOk method.

Figure 2.3 Structural constraints defined in repOK method to reduce
the number of negative test cases

We will also illustrate our approach through an example. In the AddItem API

project, a complete test input is required to provide two parameters: CountryCode and

CurrencyCode. If we pass “US” as the CountryCode and “USD” as the CurrencyCode to

the API, the API will send out an error message complaining that the country and

16

currency doesn’t match with each other. Thus only a selected combination of the two

parameters can trigger positive test flows, rest of the combinations exercise the same

negative test flow. If we have 10 CountryCode and 10 CurrencyCode, Korat will generate

10 positive tests and 90 identical negative tests from the two parameters. By adding a

constraint in the repOK method, Korat generates 11 tests, containing all 10 positive tests

and 1 negative test. As shown in Figure 2.3, for each project, we implemented a set of

such constraints to reduce the number of negative test cases.

2.3 Pairwise Filter

After two iterations of test reduction (filter constraint and finitization), Pairwise-

Korat successfully reduce the number of tests from billions to a few hundred thousand

without sacrificing much of the code coverage. However, the input size is still too big to

fit in the current automation framework. It will take the framework up to days to execute

all those tests. One might argue that this issue can be resolved by parallel testing.

However, while parallel testing may help reducing the execution time for API tests, it is

not the case when it comes to UI testing. There are two reasons: (1) UI automation is very

time consuming and a single test could take 10-20 minutes to run, (2) Since each

automated UI test case requires a web driver, a large number of UI tests can only be

executed on a testing grid. Even in a large corporation, a testing grid usually contains

only a few hundred machines (VMs). It could take an entire testing grid up to a week to

execute one hundred thousand UI tests. So we need to further reduce the number of tests.

17

We adopt pairwise testing strategy as our final test reduction step to reduce the

input size. The proposed algorithm first retrieve two random fields inside a Java input

class (shown in Figure 2.1), and then find all unique combinations of the two fields and

use the values as unique keys. The program will then iterate through all input instances

generated by Korat and removed those instances which have the same key values. The

list of instances will be stored as a merge candidate. The same iteration is repeated for all

pairs and each iteration will generate a merge candidate. After all iterations complete, all

candidates will be merged together and duplicated instances will be removed from the

final output. This is not an optimum solution to find pairwise tests but it guarantees 2-

pairwise coverage. The algorithm to implement the pairwise filter is illustrated in Figure

2.4, and the actual implementation is shown in Figure 2.5.

function pairwiseGen
 pairs ← GetAllPairs()
 for each pair in pairs
 for each instance
 key ← GenerateKeyValue(pair)
 if key is in keylist
 remove instance
 else
 addKeytoKeylist()
 addInstancetoInstancelist()
 end if
 end for
 end for
 mergeInstancelists()
end function

Figure 2.4 Algorithm for generating pairwise test case

18

Figure 2.5 Implementation of the pairwise filter

The pairwise filter reduces the number of tests to 568 (SDB), 624 (AddItem), and

356(eMBG). The size of tests is ideal for automated testing.

2.4 Input Format Conversion

After test size reduction, the system obtains a set of test suites stored as Java

instances. The final step is to convert those Java instances to appropriate formats to

integrate with the automation framework. AddItem is an API testing project and it

19

requires XML input files. SDB and EMBG are testNG [17] projects and they require csv

input files. It is straight forward to generate XML files from Java objects and Pairwise-

Korat adopts open source framework openCSV to write the Java instances to csv files. A

sample generated csv input file is shown in Figure 2.6.

Figure 2.6 A test suite stored in .csv file

20

EXPERIMENTAL RESULTS

This section presents the performance results of the Pairwise-Korat. The test

generation is performed on a Mac machine with a 2.5GHz Intel Core i7 processor and 16

GB RAM, using Java SDK 1.8.0 JVM. To evaluate the performance of Pairwise-Korat,

we implemented it in three projects developed in eBay. We first present Pairwise-Korat’s

performance for test case generation, then compare it with the existing tests that manually

generated by test engineers, and finally present Pairwise-Korat’s performance on code

coverage. We will also analyze some distinct bugs found by Pairwise-Korat.

Project Code Coverage # of Tests
generated

of Korat
generated tests Total time

SDB 95% 568 386695 80.43s

AddItem 100% 624 387175 109.31s

eMBG 83% 356 152615 31.23s

Table 3.1 Performance of Pairwise-Korat

From the Table 3.1, we can see that Pairwise-Korat achieves very high code

coverage on SDB and AddItem projects. The Pairwise filter successfully reduced the

number of tests from 105 to 102. Although it is not infeasible to run Korat generated tests

directly, the performance of Korat is robust. E.g., Korat generated 387175 tests in less

than 2 minutes. SDB and Additem are legacy projects and thus it is easier to identify

importance values for Finitization methods. eMBG is a new project and identifying data

21

points is more difficult due to the lack of implementation details. A smaller number of

tests are generated because less data points are selected in the Finitization method.

Project
Existing Tests Pairwise-Korat

Coverage Test Input # Coverage Test Input # # of Defects
found

SDB 85% 315 95% 568 5

AddItem 91% 277 100% 624 3

eMBG 78% 128 83% 356 28

Table 3.2 Performance comparison between existing manual solution and Pairwise-Korat

We create Table 3.2 to compare the performance of Pairwise-Korat with existing

manually generated tests. Pairwise-Korat outperforms current manually generated tests in

code coverage. Pairwise-Korat also reveals new defects from the programs. SDB and

AddItem are legacy projects and Pairwise-Korat successfully revealed defects from those

two live projects. When implement Pairwise-Korat, eMBG was still under development

and the tests generated by Pairwise-Korat uncovered 28 new defects from the project.

There are two reasons that could account for the differences between Pairwise-Korat and

the manual solution. Since existing tests are generated by test engineers, human bias

could affect the generated tests and some scenarios could be left out in the test plan.

Another reason is that often Pairwise-Korat generates a much greater number of instances

22

than human does, since manual generation takes a greater amount of time and efforts. The

only way for the existing tests to match up on the coverage is to add more tests.

After comparing the performance of Pairwise-Korat with existing manual solution,

it is safe to claim that automated test generation using Pairwise-Korat not only removes

the laborious human effort from test generation, but also reduces human bias and thus can

achieve higher test coverages.

23

DEFECT ANALYSIS

We select a few classic defects found by Pairwise-Korat to further study the

performance of the framework. The analysis also provides us a direction for future

enhancement.

Defect A: In SDB project, one User Interface component is not displayed (broken)

when the value of DSR field is less than 5. The root cause of this defect is that the

component flag is triggered by the value of DSR field instead of lowDSR field. In a

correct behavior, the flag should be controlled by lowDSR field and the component

should be displayed when the value of DSR field is less than 5.

Pairwise-Korat generated test instances with the value of lowDSR are greater than

5 but DSR value is less than 5. The existing tests doesn’t have such a test case since

lowDSR is expected to be less or equal to DRS. But such scenario could happen in real

life when Database inserted incorrect records into those fields, and we shouldn’t display a

broken page in such a scenario.

Defect B: In AddItem project, system puts an item in a lower priority category

when item meets a higher standard. The root cause of this defect is that the program

failed to convert the local currency to US dollars correctly. The program should convert

the local currency to US dollars and then evaluate the level if the item.

Pairwise-Korat created one input for this currency and it uncovered this defect.

Existing tests cover only a selected number of currencies and failed to uncover this defect.

24

Defect C: In eMBG project, system displays a notification message designated

for US on UK and Germany sites. The root cause of this defect is that the system failed to

add condition check when displaying this notification message on UK and Germany sites.

In a correct behavior, different messages should be shown on the pages.

Similar to the above case, Pairwise-Korat created inputs which invoke this

message on UK and Germany sites. Since the condition of showing such a message is

very complicated, existing tests don’t cover this message on all sites.

25

CONCLUSIONS AND FUTURE WORK

This report presents Pairwise-Korat, a test generation framework for automated

testing of industrial applications. Built on top of Korat, a tool for constraint-based

generation of structurally complex test inputs for Java programs, Pairwise-Korat

implements a series of test reduction methods to reduce the size of raw inputs generated

by Korat. The updated tests are then converted to different format to serve as test inputs

for 3 industrial projects developed at eBay. Given a list of generated test inputs, Pairwise-

Korat uses filter constraint and updated finitization method to remove redundant tests

from the list. Pairwise-Korat then adopts a pairwise filter to select 2-pairwise tests from

the updated list. Finally, Pairwise-Korat outputs the generated Java instances to different

files to be used as test inputs. This report illustrates the use of these test input files for

testing several industrial applications. The experimental results show that it is feasible to

generate test cases for industrial applications using automated method, even when the

search space for raw inputs is very large. This report also compares Korat with the

existing manual generated test inputs. The experiments also show that Korat generated

test inputs achieved higher code coverage than the manually generated test inputs.

A future enhancement of the work is to make Korat generating pairwise test cases

directly instead of applying a pairwise filter on the generated instances. This approach

could largely reduces the test generation time and allows user to specify a much larger

input space by defining less constraints and larger boundaries. Another future

enhancement could be to further reduce the number of test cases generated by Pairwise-

Korat. Since most of the defects we find can be revealed by multiple inputs in the

26

generated file, future changes can be made on the finitization methods to remove those

test cases to reduce the input size.

27

References

[1] B. Beizer. Software Testing Techniques. International Thomson Computer Press,

1990

[2] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE

Transactions on Software Engineering, September 1976.

[3] J. C. Huang. An approach to program testing. ACM Computing Surveys, 7(3), 1975.

[4] James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976.

[5] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen. On the automated generation of

program test data. IEEE Transactions on Software Engineering, 2(4), 1976.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java

predicates. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international

symposium on Software testing and analysis, pages 123–133, New York, NY, USA,

2002. ACM.

[7] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson. Software assurance by

bounded exhaustive testing. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, pages 133–142, New York,

NY, USA, 2004. ACM.

[8] S. Khurshid and D. Marinov. Testera: Specification-based testing of java programs

using sat. Automated Software Engg., 11(4):403–434, 2004.

[9] K. Stobie. Model based test generation and abstract state machine language, 2003.

http://www.sasqag.org/ pastmeetings/asml.ppt

28

[10] Black, Rex. Pragmatic Software Testing: Becoming an Effective and Efficient Test

Professional. New York: Wiley. p. 240. 2007

[11] D.R. Kuhn, D.R. Wallace, A.J. Gallo, Jr. . "Software Fault Interactions and

Implications for Software Testing" (PDF). IEEE Trans. on Software Engineering 30

(6). 2004

[12] Practical Combinatorial Testing. SP 800-142. Natl. Inst. of Standards and

Technology. 2010.

[13] B. Liskov and J. Guttag. Program Development in Java: Abstraction, Specification,

and Object-Oriented Design. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2000.

[14] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A Tool for

Generating Structurally Complex Test Inputs. 29th International Conference on

Software Engineering (ICSE 2007) Research Demo Paper. Minneapolis, MN. May

2007

[15] BCS SIGIST: Standard Glossary of Testing Terms (British Standard BS 7925-1)

[16] Beizer, Boris. Software Testing Techniques, van Nostrand Reinhold, 1990

[17] Beust, Cédric and Suleiman, Hani. Next Generation Java Testing, 2007

29

Vita

Hua Zhong was born in Hefei, Anhui, P.R.China. He received the degree of

Bachelor of Engineering from East China Normal University in August 2007 and the

degree of Master of Science in Computer Science from University of Alabama at

Birmingham in December, 2009. During the following years, he was employed as a

software engineer in Houston and Austin. In January 2013, he entered the Software

Engineering Program of the Graduate School at The University of Texas at Austin.

Permanent email address: hzhong1121@gmail.com

This report was typed by the author.

	Copyright Page
	Signature Page
	Title Page
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	INTRODUCTION
	1.1 Background and Proposed Solution
	1.1.1 Test Generation is Burdensome
	1.1.2 Generating Tests from Constraints
	1.1.3 Korat
	1.1.4 Pairwise Testing
	1.1.5 Complete Proposed Solution

	1.2 Examples
	1.2.1 Binary Tree
	1.2.2 Test Generation using Korat
	1.2.3 Pairwise-Korat

	Proposed Methodology
	2.1 Korat Generation
	2.2 Filter Constraints
	2.3 Pairwise Filter
	2.4 Input Format Conversion
	Experimental Results
	Defect Analysis
	Conclusions and Future Work
	References
	Vita

