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RNA, previously recognized merely as a messenger of genetic information, has 

been recently rediscovered as a versatile molecule with a central role in cellular 

regulation. These regulatory functions are enabled by its specific chemical makeup that 

allows it to fold into intricate and flexible structures. In stark contrast with DNA, RNA 

forms a variety of structural motifs that serve as efficient points of contact in molecular 

recognition. It is therefore clear, that dynamic RNA structures dictate the binding 

availability of interfaces that play important roles in molecular regulation inside living 

cells. As such, the need for tools that can accurately capture and predict RNA structure in 

vivo continues to be essential to understand RNA function. To this end, my dissertation 

focuses on the development of molecular tools to predict and 

characterize accessible RNA interfaces in their native environment. First, I established 

the usefulness of a fluorescence-based in vivo oligonucleotide hybridization approach to 

identify accessible interfaces by characterizing numerous RNA regions in 

several biologically relevant molecules in E. coli. I then described these RNA interactions 

using a biophysical model based on thermodynamic principles and incorporating large 

sets of data collected using this fluorescence-based system. This approach displayed 

improved prediction capabilities of RNA accessibility compared to un-optimized versions 

without incorporation of in vivo data. Finally, I detailed the development and application 
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of a high throughput tool for the large-scale characterization of accessible interfaces 

within native RNAs in a single experiment. In this approach, in vivo oligonucleotide 

hybridization was coupled to transcriptional elongation control to allow analysis via next 

generation sequencing. This tool was used to obtain complete landscapes of functional 

structure for 72 regulatory molecules in a single experiment (>1000 regions). Altogether 

the results of this high throughput approach revealed a pattern indicating that RNA-RNA 

interaction sites are either highly accessible or highly protected, suggesting their binding 

status (e.g. actively bound or unbound). In addition, within bacterial small RNAs, our 

approached revealed the role of the global regulator Hfq as universal structural relaxer. 

The compendium of these tools provides a unique and fundamental perspective in the 

study of functional RNA structure, namely, the identification of dynamic 

structures. Furthermore, the information provided by these approaches significantly 

aids in the design of synthetic RNAs for a variety of purposes, including gene expression 

control. In my time at the University of Texas at Austin, I participated in a total of seven 

scientific articles: as a leading author in four works (two published and listed below and, 

two more near publication) and as a collaborating author in three others (one published, 

one in review and one more in preparation).  
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Chapter One 

Introduction and background 

1.1 INTRODUCTION 

Ever since RNA functions (other than the transmission of genetic information) 

were discovered in the 1980’s (Cech, Zaug et al. 1981), RNA has been at the center of 

novel research aimed at understanding and exploiting its versatility to interact with other 

molecules. Its capacity to exert regulation through molecular interactions has contributed 

to most of the interest seen in RNA in the last three decades (Vazquez-Anderson and 

Contreras 2013). RNA’s unique chemical makeup enables its intrinsic ability to fold into 

intricate structures and adopt shapes suitable for intermolecular interactions. Therefore, 

characterizing, understanding and predicting RNA structure remains at the heart of RNA 

research. 

From the experimental point of view, RNA structure has been extensively studied 

in vitro using a variety of techniques that include X-ray crystallography, NMR and, 

chemical and enzymatic probing (Tijerina, Mohr et al. 2007, Scott and Hennig 2008, 

Edwards, Garst et al. 2009). As a consequence of the realization that RNA folding is 

influenced by several factors present in the cellular environment (Schroeder, Grossberger 

et al. 2002, Leamy, Assmann et al. 2016), researchers developed approaches to study 

RNA structure inside living cells such as in vivo DMS footprinting (Tijerina, Mohr et al. 

2007) and in vivo SHAPE (Spitale, Crisalli et al. 2013). The field reached its most recent 

development stage upon achieving in vivo high throughput characterization of RNA 

structure (Lorenz, Wolfinger et al. 2016, Silverman, Berkowitz et al. 2016). Despite the 

value that these approaches have in understanding RNA function, they represent only a 

piece of the puzzle in comprehending RNA intermolecular interactions. For this reason, 
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several experimental approaches, both low and high-throughput, have been developed to 

characterize binding sites and interacting partners, shedding light into the mechanisms of 

RNA regulation (Li, Song et al. 2014, Holmqvist, Wright et al. 2016, Nguyen, Cao et al. 

2016). Nevertheless, a common feature of all the approaches mentioned above is the 

complexity that comes along when planning and executing experiments. 

Consequently, many research groups have endeavored to create in silico 

predictive approaches aimed at both predicting RNA structure and RNA intermolecular 

interactions (Gorodkin and Ruzzo 2014). Secondary structure prediction approaches can 

be classified into two main groups: thermodynamics-based and stochastic-based. For 

predictive approaches aimed at predicting intermolecular interactions, two classes are 

also considered: concatenation and accessibility-based approaches (Backofen 2014). For 

simplicity, thermodynamic and accessibility-based approaches are often applied to 

forecast RNA function from RNA structure predictions, particularly regulation of gene 

expression. However, computational tools only have a limited scope and accuracy 

(Mathews, Sabina et al. 1999).  

The information provided by the approaches above has just started to be 

instrumental in understanding and manipulating natural RNA systems often by designing 

and engineering synthetic RNA molecules. These synthetic approaches have been applied 

mainly to gene expression control to degrees that include multiplex fine-tuning of gene 

expression for metabolic engineering purposes (Vazquez-Anderson and Contreras 2013). 

Specifically, bacterial small RNAs (sRNAs) have seen an enhanced interest since they 

bear this multiplex capacity (Vazquez-Anderson and Contreras 2013). sRNAs are 

versatile regulators with potential to harness full regulatory networks for the production 

of phenotypes of interest with a conceivable impact that spans from production of 

biotechnological compounds to bacterial virulence control.  
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In order to increase the success rate of these applications, it is necessary to 

understand, characterize and predict the ability of RNA to interact with other molecules, 

namely, its functional structure. There is currently no approach aimed at understanding 

the capacity of RNA to interact with another molecule. We have termed this ability 

structural accessibility: a direct measure of the availability of a given RNA region within 

a target molecule to interact and establish binding with another molecule (also known as 

hybridization efficacy). Throughout my PhD, I have engaged in pursuit for the 

development of tools to characterize and predict structural accessibility as a measure of 

RNA functional structure. 

The subsequent section introduces the state of the research in three key areas of 

my work: (1) current techniques to characterize RNA structure, (2) current approaches to 

predict hybridization efficacy and (3) current progress in understanding functional 

structure in regulatory RNAs. Each section also introduces each molecular tool in more 

detail.  

1.2 CURRENT TECHNIQUES TO CHARACTERIZE RNA STRUCTURE AND THE IRS3 

Biotechnological applications of RNA have exploded in recent years, amplifying 

the need to develop tools to better understand RNA folding dynamics and structural 

changes. RNA structures have been extensively studied using a variety of in vitro 

techniques (Tijerina, Mohr et al. 2007, Scott and Hennig 2008, Edwards, Garst et al. 

2009). Prominent among these techniques is the use of chemical or enzymatic 

modifications (e.g.  DMS, hydroxyl radicals, metal ions, RNase, S1 nuclease mapping) to 

map RNA structures (Wurst, Vournakis et al. 1978, Shcherbakova and Brenowitz 2008, 

Wan, Suh et al. 2010). While these methods have provided valuable structural data, most 

do not provide information on RNA folding dynamics or structural changes in vivo.  
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RNA folding is influenced by a complex cellular milieu that is difficult to 

replicate in vitro (Emerick and Woodson 1993, Zemora and Waldsich 2010). Cellular 

factors such as the speed and directionality of transcription, metabolite levels, RNA 

localization and other bimolecular interactions can all have a significant impact on the 

acquisition of native RNA structures (Emerick and Woodson 1993, Zhang, Ramsay et al. 

1995, Schroeder, Grossberger et al. 2002, Zemora and Waldsich 2010). With these 

considerations in mind, a few groups have developed protocols based on chemical 

modification for characterizing RNA structures in vivo (Wells, Hughes et al. 2000, 

Lindell, Romby et al. 2002, Kertesz, Wan et al. 2010, Spitale, Crisalli et al. 2013). One of 

the most recent examples of in vivo RNA structural probing is Selective 2’-Hydroxyl 

acylation Analyzed by Primer Extension (SHAPE) in living cells (Spitale, Crisalli et al. 

2013). This technique adapts traditional chemical probing to an in vivo setting. 

A common feature of chemical probing techniques is that they rely on non-

targeted modification of RNA molecules. Since the chemical probe does not modify a 

unique sequence within the molecule, chemical footprinting methods are less likely to 

detect transient differences within specific regions that hallmark rare folding 

intermediates (Wan, Kertesz et al. 2011). These rare folding intermediates can have 

alternative functions when compared to the final structure and can be important to 

understand RNA folding pathways (Lai, Proctor et al. 2013, Grohman, Gorelick et al. 

2014). In order to detect these intermediates in vivo, a more targeted approach would be 

required.  

In this work, we demonstrate the novel in vivo RNA Structural Sensing System 

(iRS3) for probing RNA structures in vivo. Our design exploits the ability of a previously-

designed, well-studied riboregulator to control green fluorescent protein (GFP) 

expression post-transcriptionally (Isaacs, Dwyer et al. 2004, Vazquez-Anderson and 
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Contreras 2013). The fundamental premise of this approach is that highly structured areas 

are physically blocked from binding the designed structural reporter. In contrast, “open” 

regions that do not participate in any intra- or inter-molecular contacts or that are simply 

not hindered by the topology of the molecule will be more readily available to bind to the 

reporter. Hereby, we present the iRS3 as a useful tool, not based on chemical 

modifications, capable of probing RNA structure in living cells.  

To demonstrate the value of this system, we use the iRS3 to explore the structural 

organization of the Tetrahymena group I intron (gI intron). This gI intron is a well-

studied (~400 nt) catalytic RNA (Kruger, Grabowski et al. 1982, Koduvayur and 

Woodson 2004, Wan, Suh et al. 2010) that has been structurally characterized by a 

variety of different in vitro techniques (Cech, Damberger et al. 1994, Kieft and Tinoco 

1997, Golden, Gooding et al. 1998, Russell, Zhuang et al. 2002). The gI intron has also 

been confirmed to be catalytically active when expressed heterologously in E. coli 

(Waring, Ray et al. 1985, Zhang, Ramsay et al. 1995). We establish the ability of our 

system to distinguish between the wild type and two mutant introns and to identify some 

of the most accessible regions of each intron. When compared to all available DMS and 

hydroxyl radical footprinting data (including our own in vivo DMS data), results from our 

iRS3 probing revealed a higher potential to detect low abundance folding intermediates.  

As such, the iRS3 methodology complements other in vivo and in vitro probing methods 

based on small molecule accessibility.  

 

1.3 CURRENT APPROACHES TO PREDICT HYBRIDIZATION EFFICACY AND THE 
INTHERACC APPROACH 

In vivo RNA targeting via antisense base pairing provides an efficient mechanism 

to characterize RNA interactions as well as to post-transcriptionally regulate gene 
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expression. In the native cellular environment, sequence-specific antisense RNAs 

(asRNAs) are ubiquitous in natural gene regulatory mechanisms, ranging from bacterial 

small RNAs (sRNAs) (both cis- and trans-encoded) (Georg and Hess 2011, Vazquez-

Anderson and Contreras 2013, Cho, Haning et al. 2015) and circular RNAs (Memczak, 

Jens et al. 2013) to more complex eukaryotic systems such as the RNA interference 

(RNAi) pathway.  Likewise, the common use of affinity-based purification assays to 

characterize in vivo RNA interactions (i.e. pulldown of a target RNA and its interacting 

partners from cellular extracts) relies on targeting the RNA of interest with an 

immobilized bait molecule, often an antisense RNA (Srisawat and Engelke 2002, Faoro 

and Ataide 2014).  Furthermore, the simplicity and universality of nucleic acid Watson-

Crick complementarity makes antisense nucleic acids highly attractive for controlling 

gene expression (Coleman, Green et al. 1984, Chan, Lim et al. 2006, Bennett and Swayze 

2010, Vazquez-Anderson and Contreras 2013, Haning, Cho et al. 2014) in 

biotechnological applications such as bacterial cellular engineering (Nakashima and 

Tamura 2009, Yoo, Na et al. 2013, Nakashima and Miyazaki 2014, Chae, Kim et al. 

2015). Given the broad utility of RNA targeting via antisense binding, recent efforts to 

design effective synthetic antisense RNAs (asRNAs) in bacteria have become more 

systematic, mimicking mechanisms of natural non-coding RNAs that downregulate their 

cognate messenger RNAs (mRNAs) by base-pairing, reviewed in (Vazquez-Anderson 

and Contreras 2013, Chaudhary, Na et al. 2015, Cho, Haning et al. 2015). A more recent 

study in bacteria provided general guidelines for the design of asRNAs using large sets of 

gene-repression data (Hoynes-O’Connor and Moon 2016).  However, there remains a 

significant challenge in the asRNA applications described above: the design of effective 

antisense oligonucleotides for sequence-specific targeting of RNA in situ (Faoro and 

Ataide 2014, Cho, Haning et al. 2015). This is particularly true in bacterial systems, since 
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most design models for asRNAs have been developed in the context of more complex 

organisms. 

Rational efforts to design asRNA have traditionally been aided by algorithms that 

predict RNA-RNA interactions (reviewed exhaustively in (Backofen 2014, Lorenz, 

Wolfinger et al. 2016)). These approaches are numerous and span from simple and fast 

surveying methods such as GUUGLe (Gerlach and Giegerich 2006)and Blast (Altschul, 

Gish et al. 1990) that score potential target regions within an RNA of interest using the 

sole criterion of complementarity, to more sophisticated approaches that use energy-

based algorithms to predict joint secondary structures (Lorenz, Wolfinger et al. 2016). 

Complementarity-based approaches have been followed by several methods that display 

varying degrees of accuracy and sophistication: from (i) those neglecting intramolecular 

structure (e.g. RNAduplex(Gruber, Lorenz et al. 2008), RNAhybrid(Rehmsmeier, Steffen 

et al. 2004), TargetRNA(Tjaden, Goodwin et al. 2006) and RNAplex(Tafer and Hofacker 

2008)) to (ii) those considering only one interaction site and intramolecular structure (e.g. 

Nupack(Dirks, Bois et al. 2007), RNAup(Muckstein, Tafer et al. 2006), 

AccessFold(DiChiacchio, Sloma et al. 2016) and IntaRNA(Busch, Richter et al. 2008)), 

or even to (iii) those highly computationally complex tools that predict several 

interactions sites (e.g. IRIS(Pervouchine 2004)) and the joint secondary structure using 

the energy partition function (e.g. PiRNA(Chitsaz, Salari et al. 2009) and RIP(Huang, 

Qin et al. 2009)).  In contrast, accessibility-based approaches (e.g. RNAup(Muckstein, 

Tafer et al. 2006) and IntaRNA(Busch, Richter et al. 2008)) have been developed as 

comparatively simpler tools for prediction of RNA-RNA interactions, as they assume 

both interacting partners must be unfolded (i.e. accessible) prior to binding (Backofen 

2014). In this context, accessibility is defined as the property of a given potential 

interaction site to be free of intramolecular base-pairs. Target accessibility has been 
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generally introduced in predictive algorithms as an energy penalty estimated from the 

ensemble of possible target structures with the corresponding target region unpaired. The 

specific role of target accessibility in the asRNA hybridization has been extensively 

studied with a particular focus on miRNAs and siRNAs (Ding and Lawrence 2001, Ding, 

Chan et al. 2004, Muckstein, Tafer et al. 2006, Lu and Mathews 2008, Tafer and 

Hofacker 2008, Bernhart, Muckstein et al. 2011, Tafer 2014). However, to our 

knowledge very few works have shed light on how accessibility plays a role in antisense 

hybridization within living bacteria (Vickers, Wyatt et al. 2000). Furthermore, there is 

limited accuracy of the aforementioned structure prediction approaches (e.g. high false 

positive rate (Backofen 2014) and limited accuracy (70% for molecules up to 500 nt and 

as low as 40% for longer RNAs) (Mathews, Burkard et al. 1999)) due to simplifications 

in the energy model that overlook intracellular factors that affect hybridization.  This 

underscores the need for more realistic approaches that account for the in vivo 

environment, incorporating the influence of differences across domains of life, binding 

factors, ionic strength and molecular crowding (Leamy, Assmann et al. 2016).   

Hereby, we propose a novel approach to predict and evaluate hybridization 

efficacy in bacteria that features the inclusion of large sets of experimental data collected 

in vivo. This model uniquely considers a regional availability factor. Regional 

characteristics of the target RNA have long been implicated in asRNA efficacy. For 

instance, Zhao and Lemke proposed a criterion that at least 4 highly accessible 

nucleotides are necessary for the initiation of asRNA- target RNA binding based on 

investigating correlations between predicted structure and asRNA efficacy (Zhao and 

Lemke 1998). In addition, established mechanisms of RNA molecular recognition, such 

as the existence of an intermediate step in which a few nucleotides interact to initiate the 

binding, termed seeding interaction, or even the existence of recognition sequences that 



 9 

act as first “points of contact” such as the YUNR motif (Lucks, Qi et al. 2011) further 

supports this notion of “regionality” (Rodrigo, Landrain et al. 2012) . To derive the 

corresponding model, we start from a common thermodynamic framework used in 

accessibility-based approaches (Backofen 2014) that considers the overall change of free 

energy of Gibbs (∆𝐺!"#$%&&) in the reaction system, a predictor of asRNA binding (19). 

Lastly, we introduce a novel consideration of target accessibility as a combination of the 

local unfolding of the target region based on the minimum free energy structure and a 

measure of the availability of a region (cohesive stretch of nucleotides) to be a “point of 

contact” in an intermolecular interaction based on the ensemble of suboptimal structures. 

The latter measure, the availability factor, is estimated from the average of base-pairing 

probabilities over the length of the target region. Hereafter, we refer to this predictive 

approach as the in vivo optimized Thermodynamic Accessibility-adjusted model, 

inTherAcc. 

The inTherAcc model was developed using large data sets describing in vivo 

hybridization efficacy of asRNAs targeting approximately 80 regions (i.e. a continuous 

stretch of 8-27 nucleotides) within 3 well-studied RNA molecules: the autocatalytic 

group I (gI) intron from Tetrahymena, the global small RNA regulator CsrB, and the 

glutamate tRNA in E. coli. Statistical interactions among the predictive parameters, 

discovered via regression analysis, were investigated and a subset of experimental data 

collected (29 asRNAs) was utilized for model optimization. Experimental 

characterization of asRNA hybridization efficacy for model optimization purposes was 

performed using a previously published in vivo RNA probing assay that measures 

asRNA-target RNA hybridization via fluorescence:  in vivo RNA Structural Sensing 

System-(IRS3) (Sowa, Vazquez-Anderson et al. 2015).  
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Following model optimization with experimentally collected data, the model was 

used to predict asRNA hybridization efficacy of numerous regions in the RNA 2-MS2 

phage coat protein transcript (2-MS2), glgC 5’ UTR (glgC), group II intron (gII), and the 

Spinach II (SpII) RNAs.  Collection of experimental data on hybridization efficacy in 

these regions allowed evaluation of the optimized model. The performance of our model 

was benchmarked against its in vivo-optimized thermodynamic-only version (which lacks 

the availability term) and the computational tool IntaRNA (Busch, Richter et al. 2008), an 

accessibility-based approach that also considers a regional adjustment by incorporating 

the existence of a user-definable seed that has been proven useful in predicting RNA-

RNA interactions in bacteria.  

Lastly, since bridging the gap between the discovery of sRNAs, and the 

identification of their corresponding target mRNAs remains a significant challenge, we 

proposed using inTherAcc to predict sRNA-mRNA binding regions. To this end, we 

compared the ability of the optimized biophysical model coupled to BLAST (Altschul, 

Gish et al. 1990) to predict mRNA targets of recently discovered Z. mobilis sRNAs, 

Zms4 and Zms6 (Cho, Lei et al. 2014). Experimental confirmation using RIP-seq data 

validated the ability of inTherAcc to identify regions within these sRNAs that likely 

interact with mRNAs via base-pairing complementation and, thereby, the identity of 

these potential targets. Furthermore, comparison of our results to IntaRNA forecasts, 

suggests beneficial complementarity between the prediction approaches. Finally, the 

demonstration of inTherAcc utility in another bacterial species underscores its broad 

applicability.  

Our results demonstrate that inclusion of the cellular milieu significantly 

improves the prediction of regional hybridization efficacy. The in vivo optimization also 

demonstrated that interplay between the availability factor and energetics of binding 
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exerts a strong influence on asRNA hybridization efficacy. Altogether, our results show 

the competence of the proposed biophysical model to assist in determining effective 

accessible regions to aid asRNA design and sRNA target prediction within a broad range 

of target RNAs in bacterial systems. 

1.4 CURRENT PROGRESS IN UNDERSTANDING FUNCTIONAL STRUCTURE IN REGULATORY 
RNAS AND THE INTERFACE APPROACH 

 Recent discoveries have revealed that RNA plays a central role in gene regulation 

through RNA-RNA (and RNA-protein) interactions(Cruz and Westhof , Sharp , Buratti, 

Muro et al. 2004, Kozak 2005, Vazquez-Anderson and Contreras 2013, Gu, Xu et al. 

2014). Bacterial small RNAs (sRNAs) constitute a distinctive class of RNAs that do not 

encode proteins but possess intrinsic roles in cellular regulation. When faced with 

environmental stress (e.g. pH, temperature, osmolarity, nutrient availability), organisms 

take advantage of the regulatory mechanisms of sRNAs to switch on and off several 

metabolic pathways, often simultaneously(Wassarman 2002). Most well characterized 

sRNAs to date control gene expression by binding messenger RNAs (mRNAs). However, 

several aspects have challenged sRNA characterization studies, rendering the number of 

sRNAs that are mechanistically understood relatively small (<20 srnaTarBase) relative to 

the number of sRNAs that continue to be discovered (e.g. >100 in E. coli (Li, Huang et 

al. 2013, Wang, Liu et al. 2015),  >500 in V. cholera (Liu, Livny et al. 2009)). To name a 

few, some of these challenges include: (i) relative small sizes (10-25 nt (Peer and 

Margalit 2011) with 8-9(Gottesman 2004) complementary nt cognate regions(Vazquez-

Anderson and Contreras 2013), (ii) ability to bind multiple targets, (iii) in trans 

expression of their targets, and (iv) differential and complex dependency on the Hfq 

chaperone for target binding. Indeed, the generality of the role of the Hfq chaperone 

amongst bacteria remains obscure.  Thus far, it has been hypothesized that the Hfq 
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chaperone acts upon sRNAs via two mechanisms: (1) Hfq binds to both sRNA and target 

mRNA to facilitate their interaction by unwinding their structural restrictions or (2) Hfq 

increases local concentrations of sRNA and respective target mRNA to enhance 

binding(Ishikawa, Otaka et al. 2012). However, these hypotheses have emerged from 

limited number of sRNAs (~20) that have been extensively analyzed in E.coli in the 

context of Hfq and their target mRNAs (Table C.1).  

At the molecular level, RNAs (i.e. sRNAs) regulate gene expression through 

“accessible” interfaces (hereby defined as regions within an RNA that are able to 

establish intermolecular interactions with target molecules). Analysis of 107 well-

characterized sRNA-mRNA pairs (for 21 sRNAs) shows that many sRNAs bear binding 

domains that harbor interactions with multiple mRNAs linked to specific regulation 

during recovery from a particular stress response. These binding domains are expected to 

be more accessible for intermolecular interactions than random regions per structural 

prediction analyses(Peer and Margalit 2011). However, given the small set of sRNA-

mRNA pairs that have been studied in detail in the context of the intracellular 

environment (relative to thousands recently proposed(Melamed, Peer et al. 2016)), 

questions regarding the universality of the observed patterns with regards to regions that 

are accessible for interactions arise.  Likewise, questions regarding the universal nature of 

the role of Hfq in mediating sRNA-mRNA interactions arise. The enigma concerning the 

complex role and mechanisms of Hfq in sRNA biology is further sustained by the 

inability to identify functional Hfq homologues in several gram-positive bacterial 

species(Romby and Charpentier 2010, Haning, Cho et al. 2014). 

 To date, many in vivo chemical and enzymatic probing methods gauge the 

accessibility of a region by evaluating the level of “protection” of individual nucleotides 

within that region and have recently been expanded to genome-wide approaches via 
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RNA-seq coupling(Silverman, Berkowitz et al. 2016, Strobel, Watters et al. 2016). While 

this measure of local accessibility reveals important information on secondary structure, 

it often does not correlate strongly with the more regional-level accessibility that provides 

additional information about the dynamics of potential functional regions in cells. In 

recognition of the importance of regional-level accessibility, recent efforts have aimed to 

understand the ability of RNA to interact with other RNAs and proteins by unveiling the 

“interactome”(Li, Song et al. 2014, Holmqvist, Wright et al. 2016, Nguyen, Cao et al. 

2016), albeit limited to the study of only one class of interaction since these studies 

require targeting towards  one protein as the binding partner. As such, these methods lack 

the capability to answer global fundamental questions about RNAs such as: (1) What are 

regions likely to be interacting sites i.e. contributors to the “accessosome”? (2) How do 

binding partners and cellular conditions affect accessible regions within the structure? 

and (3) How might the functional structures change in response to stress?  

Motivated by the interest in surveying the regional accessibility of a large 

collection of sRNAs in cells to capture global trends and differences that could add to our 

understanding of their regulatory mechanisms in vivo, in this work we developed 

INTERFACE, in vivo Transcriptional Elongation analyzed by RNA-seq for Functional 

Accessosome Characterization in a single Experiment. This method is capable of 

profiling (in one step) regional accessibilities for a large collection of RNAs.  

Specifically, we employ a combined machine learning and synthetic biology approach to 

design a large number of oligonucleotides for in vivo antisense hybridization that can 

interrogate all local regions within an RNA landscape. It is worth noting that the notion 

of correlating in vivo hybridization to structural accessibility has been previously 

demonstrated(Sowa, Vazquez-Anderson et al. 2015), albeit using low-throughput 

fluorescence-based assays. Importantly, as formerly established, in vivo antisense 



 14 

hybridization bears an ability to detect sites involved in intermolecular interactions and to 

identify short-lived transient states, often relevant in regulation(Sowa, Vazquez-Anderson 

et al. 2015)(Vazquez-Anderson J, Mihailovic M, in Review, 2016). As part of this work, 

we analyzed a collection of 72 trans-encoded experimentally verified sRNAs in E. coli, 

using ~1000 antisense oligonucleotide probes to achieve 100% coverage of all sRNA 

regions. , A major finding of our studies is the global presence of patterns of extreme 

accessibility (i.e. low or high) in regions harboring known mRNA-binding sites in a way 

correlates with the level of “usage” of the region depending on cellular conditions. In 

addition to extreme accessibility, we unveiled a characteristic strong sequence motif 

(similar to the YUNR ubiquitous RNA-RNA recognition motif (Franch, Petersen et al. 

1999)) and a significant enrichment of the most 5’ two thirds of the sRNA molecule as 

potential predictors of sRNA-mRNA binding sites. We also showed important sensitivity 

of INTERFACE to capture Hfq influence on accessibility patterns of sRNA as indicated 

by the strong correlation of our proposed Hfq-dependency per sRNA with quantitative 

data previously reported in the literature. Finally, we revealed Hfq as a strong universal 

structural relaxer for the specific subset of sRNAs that depend on the chaperone for 

regulatory activity, known as Hfq-dependent sRNAs. 

1.5 SUMMARY OF RESEARCH OBJECTIVES AND ACCOMPLISHMENTS  

The following chapters embody a compendium of the research that I performed at 

the University of Texas at Austin, collected into three main works that have been 

published or are near publication.  

Chapter 2 is a description of the development of our flagship approach to 

characterize structural accessibility: the in vivo RNA Structural Sensing System (iRS3). 

In this work I closely collaborated with Steven Sowa to prove the concept of the in vivo 



 15 

oligonucleotide hybridization tool. This tool exploits post-transcriptional regulation to 

probe RNA structure in vivo. Briefly it consists of a variable sequence termed probe that 

is complementary to a region within a target RNA that we wish to characterize that in 

turn controls the translation of green fluorescent protein, functioning as a reporter. We 

showed that the fluorescence signal results specifically from the interaction between the 

probe and the target region. Next we studied several regions within the Tetrahymena 

group I intron (gI intron) as well as two other gI intron mutants using the iRS3. 

Collectively our results suggest that the iRS3 is a direct measure of structural accessibility 

and that it differs from other chemical probing methods in that it can capture dynamic 

regions.  

In chapter 3 I recount the construction of a biophysical approach to predict 

hybridization efficacy, performed in collaboration especially with Mia Mihailovic and 

Kevin Baldridge. The novelty of this work partially lies in incorporating target 

accessibility as a linear combination of: (1) regional energy cost for disruption of the 

binding site and (2) considering the base-pairing probabilities of the global structure as a 

regional availability factor (as a measure of the ability of a region to establish binding 

with other molecules), termed pseudo collision probability factor, in the equilibrium 

derivation that in turn accounts for potentially neglected in vivo interactions. Arguably 

the most important contribution however, was model optimization using extensive in vivo 

data collected for the gI intron, CsrB and glutamate tRNA. The resulting model allows 

incorporation of binding factors, which were not previously accounted for, in the regional 

pseudo collision probability factor. Next, the model was exhaustively tested using 

standard cross-validation schemes and a set of four new RNA molecules whose results 

were compared to an appropriate benchmark. Altogether our results suggest that the 

performance of our biophysical approach, the in vivo-optimized Thermodynamic 
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Accessibility-adjusted model (inTherAcc), is at least comparable to benchmark IntaRNA. 

Lastly we observed an advantage over the benchmark as per linear fits of our predictions 

versus the experimental results in the cases of complex large RNA molecules such as 

group II intron.  

In Chapter 4, I present the high throughput tool INTERFACE: in vivo 

Transcriptional Elongation analyzed by RNA-seq for Functional Accessosome 

Characterization in a single Experiment. In this work, with help from Mia Mihailovic, I 

coupled in vivo oligonucleotide hybridization to transcriptional elongation for the high-

throughput characterization of accessible interfaces via RNA-seq. First, I demonstrate 

that transcriptional elongation control correlates to structural accessibility. Next, I 

showcase the scope of the approach by characterizing about 1000 regions within 73 

regulatory RNAs. To this end, I first coupled a version of the inTherAcc model to a 

machine-learning algorithm developed by a collaborator in Princeton, with the purpose of 

selecting likely accessible regions. I show that using this selection scheme represents an 

advantage over random selection (pure exploration) and only using the model (pure 

exploitation). With these suggestions I used INTERFACE to fully characterize the 

sequence universe of the small RNA regulatory network in E. coli and in an Hfq-deficient 

strain of E. coli. The results showed that many functional regions are identified as highly 

or lowly accessible. Finally this work is the first to show global patterns of accessibility 

for functional sites and the global effect of Hfq on sRNAs as a structural relaxer. We plan 

to file a patent application for this work.  
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Chapter Two 

*Exploiting post-transcription regulation to probe RNA structures in 
vivo via fluorescence 

*This work was published in (Sowa, Vazquez-Anderson et al. 2015) 

2. 1 INTRODUCTION 

While RNA structures have been extensively characterized in vitro, very few 

techniques exist to probe RNA structures inside cells. Here, we have exploited 

mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes 

that assay RNA structures in vivo. Our probing system involves the co-expression of two 

constructs: (1) a target RNA and (2) a reporter containing a probe complementary to a 

region in the target RNA attached to an RBS-sequestering hairpin and fused to a 

sequence encoding the green fluorescent protein (GFP). When a region of the target RNA 

is accessible, the area can interact with its complementary probe, resulting in 

fluorescence. By using this system, we observed varied patterns of structural accessibility 

along the length of the Tetrahymena group I intron. We performed in vivo DMS 

footprinting which, along with previous footprinting studies, helped to explain our 

probing results. Additionally, this novel approach represents a valuable tool to 

differentiate between RNA variants and to detect structural changes caused by subtle 

mutations. Our results capture some differences from traditional footprinting assays that 

could suggest that probing in vivo via oligonucleotide hybridization facilitates the 

detection of folding intermediates. Importantly, our data indicates that intracellular 

oligonucleotide probing can be a powerful complement to existing RNA structural 

probing methods.  
                                                
* In this work I am a leading author contributing to 50% of all research done in collaboration with Steve 
Sowa. 
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2.2 RESULTS 

2.2.1 Molecular design and optimization of iRS3  

Our design is an alteration of a previously published, highly-controllable 

riboregulator that inhibits the synthesis of GFP in the presence of a regulatory hairpin and 

promotes the synthesis of GFP in the absence of the same hairpin (Isaacs, Dwyer et al. 

2004). As illustrated in Figure 2.1, this new structural reporter is comprised of 5 

segments at the RNA level: (1) a specific 15-18 nucleotide sequence (probe) that is 

complementary to a specific region of the target RNA sequence, (2) a cis-blocking (CB) 

region complementary to the Ribosome Binding Site (RBS), (3) a linker region (LR) in 

between the RBS and its complement, (4) a region containing an RBS, and (5) a region 

encoding GFP. The probe, which is the only variable feature of this system, acts as a 

sensor for a specific region within the target RNA. The RBS, LR, and the CB form a 

stable hairpin. The stability of this hairpin is controlled by the expression of a separate 

molecule (e.g. the Tetrahymena gI intron) in trans that can base-pair to the probe and 

destabilize the hairpin, most likely by steric hindrance and/or by subsequent structural 

reconfigurations upon probe binding. In addition, once the hairpin is opened, the iRS3 

transcript could be further stabilized by interactions with the ribosome;  similar protection 

effects have been reported (Contreras, Huang et al. 2013). Thus, the hairpin acts as an 

adaptor converting the extent of the RNA-probe interaction into fluorescence readout. 
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Figure 2.1. Fundamentals of the in vivo RNA Structural Sensing System (iRS3).  

(A) Accessible region on target RNA.  Our system is expressed on a plasmid using two promoters, pBAD 

and PLtetO. The RNA reporter construct (Probe X iRS3 construct) incorporates a GFP transcript (green) 

whose translation is inhibited due to ribosome binding site (RBS, blue) sequestration by a cis-blocking 

region (CB, orange) that is connected to the RBS through a flexible linker region (LR, black). If the probe 

(purple) targets an accessible region on the target RNA, an interaction will occur causing the hairpin loop 

to open, exposing the RBS, and lead to GFP expression. (B) Inaccessible region on target RNA. If the 

probe (red) targets an inaccessible region on the target RNA, there will be reduced interaction between the 

intron and the probe, the hairpin loop will not open and a negligible increase in fluorescence will be 

observed compared to non-induced levels.  

 

 

We initially tested two designs for the riboregulator. The first design contained a 

NotI restriction site between the probe and the CB-RBS hairpin, which was intended to 

simplify cloning. However, we did not observe a significant shift in fluorescence upon 
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induction of the intron (data not shown). As a result, we created a second design which 

contained the probe immediately adjacent to the CB-RBS hairpin. This probe design 

allowed us to detect a shift in fluorescence upon induction of the target and was therefore 

used for the remainder of our analyses.  

To determine an appropriate length for the complementary probes, we carried out 

binding predictions (see Methods: Computational Analysis of Probes) and discovered that 

15-18mers gave a more stable bound complex than 8-12mers (data not shown). 

Therefore, we chose to continue our studies with 15-18mers given their higher 

specificity, stronger binding, and their ability to provide more intron coverage for our 

initial studies. Although we proceeded with 15-18mers, our computational predictions 

suggested that 8-12mers could provide sufficient, albeit weaker, binding to be used in 

these studies to increase the structural resolution of the system. From these preliminary 

studies, we developed a general methodology for designing the iRS3 system to target 

different RNAs (Figure A.1). 
 

2.2.2 iRS3 fluorescence is specific to the interaction between probe and target RNA  

After determining an appropriate design for the iRS3 (Figure 2.1), we then built 

several controls to verify that the fluorescence observed was specific to the recognition 

and binding of the probe to the target gI intron. All controls were built in the context of 

Probe 1(Table A.1 in (Sowa, Vazquez-Anderson et al. 2015)). We hypothesized that a 

shift in fluorescence would result from the 5’ target region binding to its complementary 

probe-iRS3 reporter. The binding location of Probe 1 on the intron (and all other probes 

used) is shown in Figure 2.2. 
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Figure 2.2. GI intron Tetrahymena Ribozyme Model System.  

This figure depicts the sequence and secondary structure of the Tetrahymena wild-type gI intron. Probe 

numbers are circled and indicated next to black dashed lines, which show the regions of the molecule being 

targeted by these complementary probes.  Structural domains are indicated by the letter “P” followed by a 

number. The dashes between the nucleotides on opposing sides of each stem loop indicate complementary 

base pairing, with the dots signifying G-U wobble base pairing. The quintuple mutant contains a total of 

five mutated regions (black boxes) and the letters outside of the boxes represent the new mutant sequences. 

These mutations abolish five key tertiary contacts within the group I intron molecule shown as thick gray 

arrows. The A-rich bulge mutant has the same A-rich bulge mutation as the quintuple mutant, but contains 

no other mutations.  
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Using Probe 1, we tested if a fluorescence shift was specific to the intracellular 

presence of both the target gI intron (expressed by the pBAD promoter) and the iRS3 

transcript (expressed by the pLtetO promoter). For these experiments, we inoculated cells 

harboring the plasmid construct containing the target gI intron RNA and the iRS3 

construct. We conducted flow cytometry assays under inducing (presence of intron) and 

non-inducing (absence of intron) conditions and ran each experiment in at least 

quadruplicates. For all experiments, we defined a fluorescence shift as the difference in 

fluorescence between means of induced and the non-induced replicates, five hours after 

inducing the appropriate samples. As illustrated in Figure 2.3, significantly more 

fluorescence is observed only when the reporter transcript is expressed in the presence of 

the target gI intron. When the Probe 1-iRS3 reporter and the wild-type intron constructs 

were co-expressed in a ΔaraC knockout strain (where the pBAD promoter cannot be 

activated) no appreciable shift was detected (Figure 2.3B). This experiment 

demonstrated that induction of intron expression is required to achieve a significant 

fluorescence shift.  
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Figure 2.3. Fluorescence shifts result from specific interactions between the reporter 
and the trans target RNA.   

Each sample contains the Probe 1 IRS3 construct co-expressed with a different target RNA.  (A) The wild 

type sample shows the interaction between wild-type intron and the IRS3 -Probe 1 construct. (B) The wild-

type intron and the IRS3 -Probe 1 transformed into a ΔaraC knockout strain to impair expression of the 

group I intron. (C) The IRS3 -Probe 1 construct with an intron where 9/16 nucleotides in the target region 

are mutated, such that Probe 1 is no longer as specific to its target region. (D) The IRS3 -Probe 1 construct 

co-expressed with a shorter target RNA that contains a complementary sequence to Probe 1. The box plots 

represent the 75% quartile (upper red line), the median (middle red line), and the 25% quartile (lower red 

line) of the median fluorescence of at least quadruplicate samples. Whiskers above and below the box plot 

indicate the furthest data point that is within 1.5x the interquartile range from the box. 
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We then tested if fluorescence was specific to the binding of the Probe 1-iRS3 

reporter to the targeted 5’ end region of the intron. For this experiment, we designed a 

mutant gI intron where the local binding region to Probe 1 was altered by mutating a 9 

base pair stretch in the center of the 16-mer target area (GGGAAAAGT25-33 

àCCCTTTTCG25-33) coupled with compensatory mutations (GCTA54-57à  TGAT54-57) 

to preserve the native secondary structure. As shown in Figure 2.3C, mutating the target 

region on the intron resulted in a smaller shift in fluorescence upon induction relative to 

the wild type gI intron-Probe 1 system. These results indicated that the interaction 

between the wild-type gI intron and the Probe 1 reporter occurs specifically within the 

targeted region and, that it was necessary for a significant shift in fluorescence. The 

residual shift shown by the mutant intron can be explained by the few remaining 

nucleotides of complementarity that are located at each end of the mutated sequence. 

Lastly, we tested the dependency of observing a fluorescence shift on the 

structural context of the targeted area.  For this experiment, we built a much smaller 

transcript (~100 nt compared to ~400 nt) that mimicked the gI intron by containing the 

complementary region to Probe 1. The strong interaction we observed suggests that even 

the smaller target RNA was sufficient to destabilize the hairpin (Figure 2.3D), as long as 

the binding sequence was specific and present. In this way, we demonstrated that the 

probe can still bind outside of the molecular context provided by the gI intron. 

Importantly, these results implied that the use of this system could be extended beyond 

large molecules such as the gI intron.  
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2.2.3 iRS3 can discriminate between accessible and protected regions along the group 
I intron 

After identifying a sensitive molecular design that led to fluorescence in the 

presence of specific binding between the Probe 1 reporter and an accessible region of the 

gI intron, we tested if the iRS3 could capture contrast in structural accessibility along the 

target gI intron. For these experiments, we designed nine additional constructs with 

different probing regions along the gI intron (Figure 2.2, Supplementary Tables 1, 3 in 

(Sowa, Vazquez-Anderson et al. 2015)), resulting in 33% sequence coverage of the gI 

intron. The probes were numbered sequentially according to their position in the primary 

sequence of the intron.  

We then tested the ability of the iRS3 system to report on different regions 

expected have a wider range of accessibility based on in vitro results (Zarrinkar and 

Williamson 1994, Tijerina, Mohr et al. 2007). We focused on the  3’ end (corresponding 

to Probe 10), a more structurally hindered region relevant to the folding of the gI intron 

catalytic core (Zarrinkar and Williamson 1996) (corresponding to Probe 9), and the P5a 

domain  important to the activation of the ribozyme (Ikawa, Yoshimura et al. 2002) 

(corresponding to Probe 6).  Once we confirmed that each of the four complementary 

probes could bind the intron in vitro (Figure 2.4A), we incorporated each probe into the 

in vivo iRS3 reporter. As shown in Figure 2.4B, using the iRS3 system, we observed a 

differentiated pattern where Probes 1 and 6 showed similar fluorescence shift, Probe 10 

showed the largest shift in fluorescence and Probe 9 the lowest shift in fluorescence upon 

intron induction. We also demonstrated using northern blotting analysis that the 

fluorescence observed from these probes does not correlate with detected levels of the 

probe-iRS3 mRNA transcript (Figure A.2). These results suggested that the iRS3 system 
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could detect differences in accessibility between target regions by differential shifts in 

fluorescence.  

 

Figure 2.4. Pilot test reveals that fluorescence assay can detect relative levels of 
accessibility.  

(A) In vitro binding assays show that the probes can bind to the gI intron. Total cellular RNA containing 

the gI intron was extracted from cells, denatured and then hybridized to the corresponding P32 labeled 

probe. The resulting hybridized mixture was loaded onto a native polyacrylamide gel, dried, and imaged. 

Black arrows point to the location of the gI intron band.  (B) Representative flow cytometry curves from 

cells harboring the gI intron and the IRS3 construct non-induced (blue) induced (red) samples after 5 hours.  
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It is important to note that prior to testing the different reporters, we performed a 

computational analysis using the NUPACK (Zadeh, Steenberg et al. 2011) software suite 

to test for self-dimerizations or hairpin formation (see Methods: Computational Analysis 

of Probes). We also used NUPACK to test for the strand-to-strand binding affinity 

between the iRS3 reporters and the target wild type intron. All probes designed and tested 

in this study were predicted to bind with the target region on the intron without many side 

interactions (data not shown), albeit with relatively different strength. As a result, we 

expected that each iRS3 reporter probe needed to be individually normalized. That is, as 

confirmed experimentally, each probe affected the intrinsic stability of the hairpin in the 

iRS3 construct differently and lead to varying baseline levels of fluorescence. Differential 

baseline levels of fluorescence observed between probes can also be explained by the 

presence of a low amount of gI intron (confirmed by northern blotting analysis, data not 

shown), even under non-inducing conditions. 
 

2.2.4 Assaying a probe library along the group I intron  

 

After confirming that the iRS3 could discriminate between different levels of 

accessibility along the target RNA by displaying differential levels of fluorescence, we 

tested if fluorescence shifts represented a good measure of accessibility across a wide 

range of probes. We confirmed the binding capabilities of all probes to the gI intron by 

conducting in vitro binding assays in which we hybridized 5’P32 labeled probes to 

denatured total RNA extracted from E. coli cells over-expressing the gI intron (Figure 

A.3). After we saw that the probes could bind to the denatured intron, we incorporated 

the remainder of our designed probes into the structure sensing system and co-expressed 

each construct with the gI intron in cells. According to previous in vitro studies: (i) 
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Probes 3, 4, 5, and 6 target important regions for the catalytic activity of the intron 

(Strobel and Shetty 1997, Naito, Shiraishi et al. 1998), (ii) Probes 2, 5 and  6  target key 

tertiary contacts (Das, Kwok et al. 2003), (iii) Probe 7 targets the P6a and P6b domains of 

the gI intron (Wan, Suh et al. 2010), and (iv) Probe 3 (domains P3 and P4) targets a 

heavily base-paired region likely in the interior of the molecule and thus relatively 

hindered (Zarrinkar and Williamson 1994).  By selecting these key areas, we anticipated 

a wide representation of accessible and inaccessible regions as well as biologically-

relevant areas within the intron. 

As shown in Figure 2.5A, we observed meaningful differences in the 

accessibility of the ten regions probed. We calculated statistical error using the standard 

error of the mean (SEM) for the fluorescence shift, as propagated from the SEM of 

multiple determinations (≥ 4) of fluorescence at non-inducing and inducing conditions. 

We determined that accessibility of regions was statistically different from each other 

when the means of our observations differed by at least two standard errors. Using this 

highly stringent metric, we concluded that Probes 3 and 7 were significantly more 

exposed than Probes 2, 4, 5, and 9. This observation supported that the iRS3 system can 

discriminate between exposed and protected regions. We then categorized each region as 

exposed, protected, or in between based on comparing each fluorescence shift to the 

median accessibility of all regions (Figure 2.5B). To determine if the inherent 

thermodynamic properties of each probe could cause the observed fluorescence patterns, 

we plotted the minimum free energy (MFE) of the bound complex between the probe 

sequence and the specific target region versus the normalized fluorescence shift. As can 

be seen from Figure A.4, there is no significant bias in the binding affinity of the probes 

(note that the slope of the trend line and the R2 value approximate to zero and, points are 

randomly distributed around the trend line).  
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Figure 2.5. iRS3 can capture difference in accessibility along the length of the wild-
type group I intron. 

 (A) Fluorescence shifts resulting from probing different regions along the length of the group I intron. (B) 

Map of the wild-type Tetrahymena gI intron marked with the relative accessibility for regions as 

determined by comparison of their fluorescence shifts. The data is separated into two general categories 

with regions showing protection (blue) or higher accessibility (red). Regions whose fluorescence shift mean 

falls within one standard deviation of the median in Panel A were considered in the in the middle and 

marked in gray. (C) Footprinting data for regions assayed by probes. In vivo DMS data, performed as part 

of this work, was discretized. The in vitro DMS and hydroxyl radical footprinting data was adapted from 

(Russell, Das et al. 2006) using an equivalent discretization scheme. All chemical reactivities were 

normalized by the global average reactivity.  
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 To explain the general accessibility of each target region, we conducted an in 

vivo DMS footprinting analysis covering approximately 92% of the entire intron (except 

about 35 nucleotides at the 3’ and 5’ ends of the intron). Additionally, we compared the 

iRS3 results to structural studies of the group I intron reported in the literature (Lehnert, 

Jaeger et al. 1996, Russell, Das et al. 2006, Tijerina, Mohr et al. 2007, Wan, Suh et al. 

2010). A particularly useful study was performed by Russell and colleagues when they 

explored the structure of the group I intron using DMS footprinting and hydroxyl radical 

footprinting in vitro (Russell, Das et al. 2006). We found reliable consistency between in 

vivo and in vitro DMS footprinting of the group I intron structure when looking at the 

overall protection level of each area targeted by our different probes (Figure 2.5C, 

Figure A.5 in (Sowa, Vazquez-Anderson et al. 2015)). In general, our iRS3 reporters 

show some agreement with the in vitro hydroxyl radical footprinting (Russell, Das et al. 

2006) and DMS footprinting data (Figure 2.5). Specifically, the region targeted by Probe 

5 appear to be protected, Probes 4 and 6 targeted regions appear to be moderately 

protected and exposed respectively and, Probes 7 and 8 regions appear to be more 

exposed when doing a qualitative assessment of all three footprinting patterns (Figure 

2.5C). Overall, we noted two major differences when comparing Figures 5B and 5C.  

First, in general the footprinting results generally estimate an overall higher 

exposure level (Figure 2.5C) for the region targeted by Probe 9 than iRS3 determinations 

(Figure 2.5A). This difference is likely due to the region being a stable and heavily based 

paired helix (31) potentially more difficult to be disrupted by oligonucleotide 

hybridization than modified by chemical probes. The discrepancy between hydroxyl 

radical footprinting and iRS3 is reasonably logical given that hydroxyl radical 

footprinting cleaves the RNA phosphodiester backbone and this cleavage is less 
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influenced by base pairing in the intron structure (1,39). While DMS footprinting 

identified a few exposed nucleotides in the probe 9 target region, this region has enough 

protected and undetermined nucleotides to preclude drawing conclusions about the global 

region’s accessibility from in vivo DMS. These findings strongly suggest that the iRS3 is 

a measure of global accessibility that may provide different information, specifically, 

how available an entire region is to form base pairing interactions.   

Second, iRS3 accessibility results for the region assayed by Probe 3 appear to 

contradict all footprinting studies in general (Figure 2.5 and Figure 2.6A). We reasoned 

that the greater accessibility of this region to the IRS3 reporter could reflect an ability of 

the probe to interact with folding intermediates in which the complementary segment of 

the intron is exposed. This hypothesis was supported by previous findings that transitions 

from some folding intermediates to the native form require transient disruption of the 

long-range P3 base pairs (Mitchell, Jarmoskaite et al. 2013, Mitchell III and Russell 

2014). Upon P3 disruption, the 5´ strand of P3 is expected to be accessible to probe 3, 

while the 3´ strand most likely forms the alternative base pairs alt P3 (Pan and Woodson 

1998, Russell, Das et al. 2006). To test whether the accessibility of probe 3 depends on 

exposure of the P3 region, we split up the targeted area into two shorter target sequences: 

P3 (nt 95-104 targeted by Probe 3a, 10 nucleotides) and P4 (nt 104-112 targeted by Probe 

3b, 9 nucleotides) (Figure 2.6B). After demonstrating that these shorter probes bound to 

the group I intron in vitro (Figure A.3), we incorporated the probes into the iRS3 

construct.  Interestingly, Probe 3a showed an even higher fluorescence shift than Probe 3 

while Probe 3b displayed no fluorescence shift (Figure 2.6C). We conclude that indeed, 

the high accessibility to probe 3 likely arises from interaction with the 5´ strand of P3, 

probably because the probe is able to interact with and trap partially-folded intermediate 
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(see Discussion).  These results also confirmed our ability to obtain higher structural 

resolution in our system when using shorter probes. 

 

 

Figure 2.6. iRS3 differs from in vivo DMS footprinting findings in the P3 domain of 
the gI intron.   

Panel (A) shows a relatively low DMS reactivity for the 5’ strands of domains P3 and P4 in the gI intron 

suggesting an overall protected area. The upper plot is a representative footprinting pattern where the 

dashed box represents the region of interest. The lower plot is a subtraction between “DMS” and “no 

DMS” band intensities averaged for two independent determinations. Panel (B) illustrates the Probe 3 

target area, where dash lines indicate the target segments of each probe and the letter “P” followed by a 

number indicates the different structural domains. Panel (C) shows the fluorescence shift for Probe 3 

(domains P3 and P4) and shorter versions Probe 3a (domain P3) and Probe 3b (domain P4). 
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2.2.5 iRS3 can discriminate between group I intron mutants  

We also examined if our system could be used to assay structural differences 

between RNA variants. For these experiments, we compared the wild type gI intron to 

two intron variants, the quintuple mutant and the A-rich bulge mutant (Naito, Shiraishi et 

al. 1998). The quintuple mutant contains mutations in five critical tertiary contacts 

(Figure 2.2) that are known to be highly disruptive to the tertiary structure and catalytic 

activity of the intron (Das, Kwok et al. 2003). Based on this, we hypothesized that the 

quintuple mutant would exhibit significant differences in accessibility using the IRS3 

relative to the wild-type intron (Das, Kwok et al. 2003). Given that most of the targeted 

regions of the intron remained unaltered (at the primary sequence level) in the quintuple 

mutant, we used the same library of probe reporters designed for the wild type gI intron. 

As for the A-rich bulge mutant, it is a milder variant than the quintuple mutant as it 

disrupts only one tertiary contact (P5a, Figure 2.2).  

As shown in Figure 2.7, expression of the quintuple mutant results in 

significantly different shifts in fluorescence (marked with asterisks) relative to the wild 

type intron for Probes 1, 2, and 7 (Table A.4 in (Sowa, Vazquez-Anderson et al. 2015)). 

From these results, we learned that a couple of areas of the intron become more 

accessible to oligonucleotides in vivo (e.g. domains P1 (Probe 1) and P6ab (Probe 7)), 

while others become more protected as a result of the quintuple mutations (e.g. domain 

P2.1, corresponding to Probe 2). Furthermore, the increase in fluorescence observed in 

the quintuple mutant relative to the wild type intron (~30%) indicates the potential of 

capturing increased molecular accessibility in the quintuple mutant that results from its 

lack of tertiary structure relative to the wild type intron (Benz-Moy and Herschlag 2011). 

On the other hand, the A-rich bulge mutant shows potential differences mostly around the 

area of mutations, domain P5ac (Probes 4 and 5). The P5abc domain is known to be 
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important to the stabilization and catalytic activity of the intron (Zarrinkar and 

Williamson 1994), and it is plausible that mutations affect tertiary contacts in this local 

area. It is important to note that the 9/10 probes were designed to target regions in the 

mutants that contain the same sequence as the wild type intron.  

 

 

Figure 2.7. iRS3 can detect different levels of structural disruption in intron 
variants.  

Structural differences between the wild type gI intron, quintuple mutant, and A-rich bulge mutants were 

measured by calculating the change of the fluorescence shift from the wild type (Fold Change  =  

Fluorescence shift for mutant using Probe X/ Fluorescence shift for wild type intron using Probe X). 

Standard error of the mean (SEM) for the fold change was calculated as propagated from the SEM for the 

fluorescence shifts.  Differences in accessibility (compared to the wild type) for a given region were 

considered statistically significant (marked with asterisks) if the mean differed by at least two standard 

errors from the wild type baseline (indicated as a dashed line). 
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The area targeted by Probe 3 displayed particular differences in accessibility 

between the wild type intron and quintuple mutant. Specifically, Probe 3 showed an 

increased fluorescence shift in the quintuple mutant relative to the wild type intron 

indicating higher accessibility in this region. This was expected given that Probe 3 targets 

domain P3-P4, which does not properly base-pair in the quintuple mutant due to the 

absence of required long range interactions (Zarrinkar and Williamson 1994, Pan and 

Woodson 1999, Rangan, Masquida et al. 2003, Woodson 2005).   Likewise, we captured 

differences between the wild type intron and the quintuple mutant via IRS3 fluorescence 

shifts in the P6b region (targeted by Probe 7). We expected that the P6ab area would be 

more accessible in the quintuple mutant because this domain normally contributes to a 

tertiary contact that has been mutated in the quintuple mutant (Wan, Suh et al. 2010).  

Interestingly, for Probe 7, the A-rich bulge mutant shows a milder difference with respect 

to the wild type than the one shown for the quintuple mutant. This finding supports the 

iRS3 sensitivity to discriminate more subtle structural differences.  

2.3 DISCUSSION 

In this work, we have combined the traditional idea of using nucleotide 

accessibility as a measure of RNA structure (Zarrinkar and Williamson 1994, Tijerina, 

Mohr et al. 2007) with a genetically encoded biosensor to sense that availability. The 

novelty of our approach lies in the creative implementation of oligo-hybridization 

probing directly in living cells. In this work, we demonstrated the potential of the iRS3 to 

be used as a powerful tool in the study of RNA structures in vivo. First, we showed the 

ability to capture differential structural accessibilities (as defined by base pairing 

interactions) with high specificity within various local regions throughout the 

Tetrahymena gI intron. We also established the ability of the iRS3 to capture structural 
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differences between two variants of the intron. Finally we have also showcased the ability 

of the iRS3 to sense milder mutations as it is the case of the A-rich bulge mutant with 

respect to the quintuple mutant.  

 Despite the fact that most of the regions of the gI intron exhibited similar 

structural behaviors in vivo and in vitro, for this stable model intron, we discovered some 

regions that behave differently when probed using oligonucleotides in living cells. The 

most unambiguous example of regions that behave differently when probed with the iRS3 

in vivo was the region P3 (assayed by Probe 3), which appeared significantly more 

accessible by oligonucleotide hybridization in vivo, relative to all three standard 

techniques: in vitro hydroxyl radical footprinting and, in vitro and in vivo DMS 

footprinting techniques. This difference could exist because the misfolded RNA is not at 

a high enough concentration to be detected by classical primer extension, but is 

detectable through oligonucleotide probing.  

Figure 2.8 illustrates the fundamental differences in using oligonucleotide probes 

vs. small molecules for in vivo RNA structural probing that can explain increased 

sensitivity to the detection of low abundance intermediates in our iRS3 approach. We 

illustrate the simplest case of a two state folding equilibrium system to represent the 

dynamics of folding in a region (Region X) presumed to be mostly protected (State 1). 

However, as expected given dynamic folding equilibrium, other structural conformations 

are also observed. These structures may be more exposed (e.g. State 2), but appear at a 

lower frequency (indicated by the larger equilibrium arrow pointing to State 1, Figure 

2.8A). Based on these dynamics, the potential of modifying Region X (during its less 

favorable but more accessible equilibrium states) by a small molecule like DMS is rather 

low (Figure 2.8B). This is due to the intrinsic single-hit kinetics of these chemical 

probing approaches that result in, at most, one modification per molecule. These 
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modifications can happen at any cytidine or adenosine of the molecule not specifically 

within the target region. In contrast, an oligonucleotide that has strong complementarity 

for a target region can bind with high specificity to its target. This oligonucleotide-target 

interaction can lock less-favorable structures in that state, shifting the equilibrium 

towards less abundant conformations and giving a signal for exposure that is larger than 

the exposure of the region in the absence of probe, when exposure is considered as a 

fraction of the RNA population (Figure 2.8C). We suggest that this process underlies the 

ability of iRS3 to capture the presence of low level folding intermediates that are 

accessible to probe 3, whereas these intermediates are not observed in the steady state by 

DMS or hydroxyl radical footprinting methods (Russell, Das et al. 2006, Wan, Suh et al. 

2010). The ability of the iRS3 to capture folding equilibrium intermediates of importance 

to the RNA folding pathway makes it a useful complement to current in vivo small-

molecule based structural probing approaches.  



 38 

 

Figure 2.8. Oligonucleotide vs. small-molecule in vivo structural probing.  

 (A) Equilibrium between two conformations of the target RNA. The conformation on the left (State 1) 

exhibiting relative protection for Region X is more favorable. The less favorable alternative conformation 

(State 2) on the left exhibits increased exposure of Region X. The equilibrium arrows indicate the relative 

abundance of each state. (B)  The addition of a small-molecule to react with the target RNA results in 

single-hit kinetics where, on average, at most one specific A or C nucleotide is modified per molecule (“X” 

representing site of modification); the figure illustrates the low likeliness of modifying nucleotides within 

Region X. Equilibrium shown is same as described above. (C) An oligonucleotide has an increased 

probability to hit and bind Region X as it bares full base-pairing complementarity to Region X. 

Additionally, the oligonucleotide can benefit from capturing the less-favorable State 2 by locking the target 

RNA at the more exposed conformation, shifting the equilibrium towards the less favorable alternative 

conformation (illustrated by the longer blue arrow, relative to panels A and B).  
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We believe that the structural information gained from the iRS3 can enrich in vivo 

RNA structural studies for a couple of reasons. First, the ability of the iRS3 to capture 

folding equilibrium intermediates of the RNA folding pathway makes it a useful 

complement to current structural probing approaches. Second, iRS3 probing provides a 

fundamentally different measure of structural accessibility than chemical methods, 

namely that accessibility of a region can be interpreted as the availability of a given 

region to participate in interactions with other macromolecules (i.e. DNA, RNA).  Given 

these capabilities, potential applications of the iRS3 include detecting alternative 

structural conformations, and observing the structural effects of tuning RNA-RNA 

interfaces using mutations. 

Another major appeal of this in vivo oligonucleotide-based structural probing 

approach is the ability to design the central riboregulator of the system to sense any target 

RNA in a rational way. Simple manipulation of the iRS3 plasmid (e.g. making plasmid 

compatible for golden gate cloning) should make the system highly amenable for rapid 

insertion of any probe of choice. Although this system could be incorporated in other 

organisms beyond E. coli, further studies are required to determine if the iRS3system can 

detect RNAs at native levels. Given these advantages, our method has the potential to 

provide a relatively easy-to-use platform to capture dynamic structural changes in a wide 

range of RNAs within living systems.   
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2.4 MATERIAL AND METHODS 

2.4.1 Plasmids and Strains 

To build our new in vivo reporter system, we modified the intron-harboring 

plasmids above to contain probes complementary to the gI intron. The pZER21αγ12aG 

plasmid incorporates two promoters to drive gene expression, the pBAD promoter which 

expressed the gI intron variants, and the pLtetO promoter which expressed the hairpin-

GFP reporter. We designed complementary probes to be inserted immediately upstream 

of the hairpin-GFP reporter, creating a probe-hairpin-GFP reporter. The cloning strategies 

for all plasmids in this study are described in Table A.3 in (Sowa, Vazquez-Anderson et 

al. 2015).  

The primary sequence of all constructs was confirmed by using primers E and F 

(Table A.2 in (Sowa, Vazquez-Anderson et al. 2015)) in sequencing reactions performed 

by the University of Texas core facility. We provide the sequence of the wild type intron 

Probe 1 reporter (WTI Probe 1 reporter) in Supplementary Text File 1 (Sowa, 

Vazquez-Anderson et al. 2015) and the plasmid is available upon request. The probes 

(15-18 and 9-10 nucleotides) were designed to be fully complementary to the gI intron 

(target RNA) and to give good coverage of regions representing the entire length of the 

intron (Table A.1 in (Sowa, Vazquez-Anderson et al. 2015)). All probes were also 

purchased as oligonucleotide primers (25 nmol, standard desalting) from Integrated DNA 

Technologies (Coralville, IA).  
 

2.4.2 Computational Analysis of Probes 

NUPACK (Zadeh, Steenberg et al. 2011) was used to estimate Minimum Free 

Energies (MFE) of the probe-reporter (EcoRI-Probe-CB-LP-RBS-+35 nucleotides) and 
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to test for the strand-to-strand binding affinity between the probe reporters and the gI 

intron.  The following user input settings were used: RNA nucleic acid type at 25oC, 1 

strand species and 1 strand max complex size for probe-reporters (structure for probe-

reporter was predicted to test for base pairing interactions of probes with downstream 

GFP coding sequence), and 2 strand species and 2 strand max complex size for probe-

reporters and introns. The concentration of the hairpin-GFP reporters and introns were 

assumed to be equimolar (2 μM) in order to test for the relative level of binding of the 

intron-hairpin complex. NUPACK was also used to calculate the binding energy (ΔMFE) 

using the same parameters above described.  

2.4.3 Flow cytometry  

For all experiments, the fluorescence output of each probe was measured using 

quadruplicate samples. Cells were grown overnight in Luria-Bertani medium (Benton-

Dickenson and Company, Sparks, MD) and 10 mg/mL kanamycin (Amersco, Solon, 

OH), seeded into 20 mL of LB plus 100 μL kanamycin (10 mg/mL stock), and cultured 

for 2 hours. The remainder of the experiment was carried out under two conditions: (i) 

samples induced with 800 μL of 20% arabinose (final concentration 0.8%) and 20 μL of  

anhydrotetracycline (aTc) (final concentration 100 ng/μL), (ii) non-induced samples, 

where neither of the inducers were added. Five hours after induction, we sampled 100 μL 

to measure the optical density and an additional 100 μL were pelleted and re-suspended 

in 1x PBS (Amersco) for flow cytometry. The flow cytometry data was collected with a 

Benton Dickinson FACSCalibur flow cytometer with a 488 nm argon laser and 530 nm 

FL1 logarithmic amplifier. Sample data was collected using CellQuest Pro (Benton-

Dickenson and Company) with a user define gate. Fluorescent measurements were 

collected from ~150,000 cells and analyzed using Microsoft Excel and JMP, a statistical 
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software package. The medians of the populations for non-inducing and inducing 

conditions were normalized by the average fluorescence for all probes of a given intron 

variant.  

To generate the graphs in Figure 2.5, we determined shifts by calculating 

differences in fluorescence between the average of median values for the induced and 

non-induced samples of the same probe five hours after induction of appropriate samples. 

To quantify the error associated with these shifts, we calculated the standard error of the 

mean (SEM) as propagated from the original data points. The dashed line represents the 

median of the fluorescence shift means for all probes.  

2.4.4 In vitro binding Assays 

An in vitro binding assay was performed to demonstrate the ability for probes to 

bind to intron expressed in cellular extracts. A 20 μM working solution of each 

oligonucleotide probe (Integrated DNA Technologies) was prepared and the probes were 

then radiolabeled with P32 ATPγ using a reaction mixture containing 1.5 μL of T4 

polynucleotide kinase (NEB), 2μL 10x polynucleotide kinase buffer (NEB), 1 μL of the 

20 μM working solution, 13.5 μL of double-distilled H2O, and lastly 1.5 μL P32 ATPγ 

(PerkinElmer Inc). The mixture was then incubated at 37°C for one hour.  

In vivo samples of the gI intron were harvested and purified using the techniques 

described in previously published methods (Cho, Lei et al. 2014). RNA from these 

sources was suspended in 7µl of buffered solution (50 mM KCl (Avantor Performance 

Materials Inc) and 80mM MOPS (pH 7.0 Amresco)) and denatured at 95˚C for 2 minutes. 

After denaturing, 10μL of the radioactive probes were immediately added to all samples, 

and hybridization occurred at 37˚C for 30 minutes. 2x RNA loading dye (NEB) was 
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added to all samples and to the ladder to get a final concentration of 10% per volume, and 

then nuclease free H2O (Ambion) was added to make the sample volume consistent. 

The samples were loaded onto a 6% native polyacrylamide gel that was run at two 

watts for 24 hours. The gel was then carefully placed on blotting paper (VWR), loosely 

covered with saran wrap, and left to dry for 3-4 hours at 70°C in a vacuum dryer 

(BioRad). Upon removal from the dryer, the gel was exposed to a phosphor screen (GE 

Healthcare) for 3-4 hours at 4°C. Following exposure, the phosphor screen was imaged 

using a Typhoon Phosphorimager. 

2.4.5 Northern Blot Analysis of iRS3 transcript 

To determine the steady state levels of iRS3 transcript, RNA was extracted as per 

protocol described  in (Cho, Lei et al. 2014) from cells expressing the iRS3 reporter at 2.5 

and 5 hours after induction. The RNA was run down an agarose/formaldehyde gel and 

blotted using previously described methods (Contreras, Huang et al. 2013)(see Table A.1 

in (Sowa, Vazquez-Anderson et al. 2015) for 16S rRNA and iRS3 transcript probes).  

2.4.6 In vivo dimethyl sulfate footprinting 

2.4.6.1 Primers fluorescent labeling  

5’ amine modified primers (DMS primers K, L and M in Table A.2 in (Sowa, 

Vazquez-Anderson et al. 2015)) were fluorescently labeled according to previously 

published protocols (17). For the labeling reaction 1 mL of the purified amine primer (25 

mg/mL), 1.2 mL of distilled water, 15 mL of Borax buffer (0.1 M) and 3 mL of NHS-

Dye (IRDye® 650 Infrared Dye, Li-Cor) were mixed and incubated in the dark for 3-4 h. 

Finally, the primers were gel-purified and re-dissolved in 60 mL of nuclease-free water. 

Their concentrations were estimated using 260 nm absorbance and the extinction 

coefficients provided by IDT for each primer. 



 44 

2.4.6.2 In vivo dimethyl sulfate treatment 

Cells containing wild-type intron (WTI) plasmid (Table A.3 in (Sowa, Vazquez-

Anderson et al. 2015)) were grown overnight at 37°C in 5 mL of Luria-Bertani medium 

(LB). The main culture was induced with 4 mL of 20% arabinose (final concentration 

0.8%) at an OD600 between 0.15-0.3, and the culture was left to grow for 5 hours at 37°C. 

Samples were then treated DMS and prepared as described in (Waldsich, Grossberger et 

al. 2002) and total RNA was extracted from cells using previously described methods 

(Cho, Lei et al. 2014). After extraction, 4 µg of total RNA were reverse-transcribed using 

Superscript III RT (Invitrogen) as per manufacturer’s instructions. 

2.4.6.3 Capillary Electrophoresis 

A Capillary Electrophoresis (CE) system (Beckman Coulter A26572 

GenomeLab™ GeXP Genetic Analysis System) was used to separate the DMS treated 

fragments. Each cDNA sample obtained above was mixed with 1 µl of a DNA size 

standard 600 ladder (GenomeLab Beckman Coulter 608095) and nuclease-free water was 

added to a final volume of 30 µl in a conical 96-well plate. A drop of mineral oil 

(GenomeLab Beckman Coulter) was added to prevent evaporation. Another flat bottom 

96-well plate was prepared by adding 6-8 drops of separation buffer (GenomeLab 

Beckman Coulter 608012) to as many wells as cDNA samples are to be run. The samples 

were separated in the CE system using the following parameters: temperature pre-set to 

60°C, denaturation at 90°C for 150 s, injection at 2.0 kV for 30 s and separation at 3.0 kV 

for 90 min. Lastly the data obtained were analyzed using Capillary Automated 

Footprinting Analysis (CAFA) (Mitra, Shcherbakova et al. 2008). The CE traces obtained 

were aligned to the ladder peaks using CAFA. Then, using CAFA, the fit data were 

filtered and normalized using the “no-DMS” control. All samples were run by technical 

and biological duplicates.  
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Chapter Three 

Optimization of a biophysical model using large scale in vivo antisense 
RNA hybridization data in bacteria displays improved prediction 

capabilities  

*Article in review in Nucleic Acids Research 

3.1 INTRODUCTION  

Current approaches to design efficient asRNAs rely primarily on a 

thermodynamic understanding of RNA-RNA interactions. However, these approaches 

depend on structure predictions and have a limited accuracy, arguably due to overlooking 

factors present in the cellular environment. In this work, we incorporate in vivo factors 

that influence asRNA-RNA hybridization in a biophysical model using large-scale 

experimental hybridization data. These data are comprised of asRNA hybridization 

efficacy to 80 regions in three model RNAs: Tetrahymena gI intron, csrB, and glutamate 

tRNA. A novelty of this work has been the use of an in vivo experimental technique to 

readily assay “hybridizable” regions within a target RNA. Another unique element of our 

model is the differential consideration of the influence of the suboptimal structures, often 

regarded as relevant in RNA-RNA functional interactions, in the availability of the target 

region to interact with a given asRNA. We showcase the utility of this model by 

predicting and experimentally validating highly “accessible” regions in 4 additional 

RNAs: a group II intron, the Spinach II, the 2-MS2 binding domain and the glgC 5’UTR. 

Additionally, we show the value of our approach by predicting sRNA-mRNA binding 

regions in two newly discovered, though uncharacterized, regulatory RNAs in 

Zymomonas mobilis. 



 46 

3.2 RESULTS 

3.2.1 Description of asRNA hybridization efficacy by a thermodynamic model that 
includes a regional measure of interaction availability 

In the context of this work, hybridization efficacy is defined as the ability of a 

given oligonucleotide to establish base-pairing interactions as a cohesive unit with its 

corresponding target region within an RNA molecule. To quantitatively estimate asRNA 

hybridization efficacy, we assume that it is directly proportional to the ratio of the 

concentration of asRNA-target RNA in the bound state (B) over the concentration of the 

asRNA in the unbound state (U). By transition state theory, rate constants 𝒌𝑩  and 𝒌𝑼 

describe the rate at which the asRNA binds or unbinds to the region on the target RNA, 

respectively. These rates can be calculated from changes in the Gibbs free energy  (G) 

relative to the intermediate state (I) that denotes non-equilibrium (i.e. initial seeding 

interaction complex (Rodrigo, Landrain et al. 2012)). 

𝒌𝑩 = 𝜸𝑩𝒆
!𝑮 𝑰 !𝑮(𝑼)

𝑹𝑻   ( 1 ) 

The pre-exponential factor 𝛾! scales the rate and is assumed to be independent of 

temperature. Similarly, the rate for the reverse, unbinding process can be quantitated as 

follows:   

𝒌𝑼 = 𝜸𝑼𝒆
!𝑮 𝑰 !𝑮(𝑩)

𝑹𝑻  ( 2 )  

The coupled first order differential equations incorporating these rate constants 

represent the asRNA-target RNA system, where 𝑈 , 𝑇  and 𝐵  denote the 

concentration of the bound (asRNA-Target complex), target and unbound (asRNA) 

states, respectively.   
𝒅 𝑩
𝒅𝒕

= 𝒌𝑩 𝑼 [𝑻] − 𝒌𝑼 𝑩   ( 3 )  
𝒅 𝑼
𝒅𝒕

= 𝒌𝑼 𝑩 − 𝒌𝑩 𝑼 [𝑻] ( 4 ) 
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Assuming that intermediates are unstable, that degradation effects are negligible 

(as experimentally validated for our system (Sowa, Vazquez-Anderson et al. 2015)), and 

that 𝑈  and   𝐵  are at equilibrium: 
𝒅 𝑩
𝒅𝒕

= 𝒅 𝑼
𝒅𝒕

= 𝟎  ( 5 ) 
𝑩
𝑼
= 𝒌𝑩[𝑻]

𝒌𝑼
= 𝑻 𝜸𝑩

𝜸𝑼
𝒆 !∆𝑮𝑹𝑻 = [𝑻]𝜶𝒆 !𝜷∆𝑮   ( 6 ) 

In Equation (6), α is the pre-exponential factor, β is a constant and ∆𝐺 =   𝐺(𝐵)−

𝐺(𝑈) is the energy difference between the asRNA-Target RNA bound and unbound 

states. Considering that the concentration of the target ([𝑻]) is constant across 

experiments, we can incorporate it into the pre-exponential factor α. Rearranging 

equation (6) where ∆𝐺 is  ∆𝐺!"#$%&&, we obtain 
𝒗= 𝐥𝐨𝐠 𝑩

𝑼
= −𝜷∆𝑮𝒐𝒗𝒆𝒓𝒂𝒍𝒍 + 𝐥𝐨𝐠  𝜶  ( 7 ) 

Here  𝑣, termed hybridization efficacy, provides a measure of the asRNA-target 

RNA hybridization and can be estimated experimentally using the logarithm of the ratio 

of the fluorescence measurements representative of the asRNA-target interaction to the 

fluorescence measurements representative of background [(FLon- FLoff)/FLoff] obtained 

from the iRS3 (see Methods for more details). Briefly, the iRS3 reporter system is 

composed of an asRNA that targets a specific region within the target RNA and a cis-

blocking element (CB) that sequesters a ribosomal binding site (RBS) and controls the 

expression of a downstream green fluorescent protein (GFP). Therefore, fluorescence is 

observed upon asRNA-target RNA hybridization (FLon) as the CB-RBS interaction is 

disrupted and GFP is expressed due to interaction of the asRNA with the target RNA 

region (Figure 3.1). FLoff is the fluorescence measured in the absence of the target RNA. 
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Figure 3.1. Proposed accessibility-based mechanism of anti-sense hybridization in 
living cells.  

1) Example target region with color-coded local availability (estimated by base-pairing probabilities) is 

shown in canonical conformation, as would be expected in the native state. In asRNA targeting by the iRS3, 

the targeted region must unbind from P3 to become single stranded as shown in 2) with a free energy 

change of –ΔGTf. The iRS3 consists of 4 main elements: a cis-blocking strand (CB, orange), a ribosome 

binding site (RBS, blue), the sequence encoding green fluorescence protein (GFP, green) and the probe 

(pink and black) of 8-27 nucleotides targeting a specific region shown in 2). The expected native state of 

the iRS3 is shown in 3), and it must also unfold to bind the target region as shown in 4) with a free energy 

change of –ΔGasf. Finally, the two unfolded structures bind as in 5) with a free energy change of ΔGasT to 

stabilize the unfolded iRS3 and allow translation of GFP. Effective asRNA targeting results in a high 

fluorescent response. 
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A combination of equations (7) and (13) (see Methods section 3.4.5) yields the 

following linear model (upon taking the logarithm, and rearranging):  
𝒍𝒐𝒈 𝑭𝑳𝒐𝒏!𝑭𝑳𝒐𝒇𝒇

𝑭𝑳𝒐𝒇𝒇
= 𝑭𝑳𝒐𝒏

𝑭𝑳𝒐𝒇𝒇
− 𝟏 ~  𝒗 ≡ 𝒍𝒐𝒈 𝑩

𝑼
∝   − ∆𝑮𝒂𝒔𝑻 − ∆𝑮𝑻𝒇 − ∆𝑮𝒂𝒔𝒇    ( 8 ) 

This model, comprised of the changes in free energy due to asRNA-target binding 

(∆𝐺!"#), target region unfolding (∆𝐺!")  and folding of the asRNA ∆𝐺!"#   depicted in 

Figure 3.1 captures the thermodynamic driving force of intermolecular base pairing and 

the penalties for breaking the structures of the asRNA and target regions. Hereafter, 

equation (8) represents the baseline thermodynamic model from which we depart for 

further optimization.  It is worth noting that similar thermodynamic derivations have been 

previously used to describe accessibility-based antisense hybridization (Muckstein, Tafer 

et al. 2006, Busch, Richter et al. 2008). The novelty of this work lies in the treatment of 

target accessibility. We consider target accessibility a combination of two terms: (1) the 

energy penalty for the local disruption of the target region using only the minimum free 

energy structure and (2) the regional availability as estimated by the base-pairing 

probabilities of the ensemble of suboptimal structures. In part, the rationale behind the 

use of a regional availability factor is the hypothesis that suboptimal structures hallmark 

dynamic regions with a differential influence on hybridization efficacy. 

Importantly, this availability factor is consequential with the equilibrium 

derivation represented by Equations 5 and 6. The pre-exponential factor 𝛼, also known as 

the frequency factor in the Arrhenius equation, is a constant that represents the frequency 

of collisions between reactant molecules. This parameter is often understood to be an 

inherent characteristic of interaction between molecules at a given temperature, and in 

many numerical settings, is taken to be a reasonable constant as a simplifying 

approximation (Voter 2007). In reality, however, the pre-factor is determined by the 

curvature-dominated structure of the potential energy landscape (Zwanzig 2001), and 
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hence varies between regions (stretches of nucleotides interacting with each other as 

cohesive units).  To this end, when considering specific regional interactions between 

molecules, the frequency factor may vary.  We hypothesize that this frequency factor 𝛼 is 

a function of the structural availability of the hybridization region within the target RNA 

(Figure 3.1), in which a more available target region is more likely to be involved in a 

collision and vice versa (Figure 3.2). In this work, the “availability” of the target region is 

assessed at a regional level, termed regional availability factor (𝜃), in which a continuous 

target region of nucleotides is described by the summation of each nucleotide’s local 

availability over the length of the target region: 

𝜽 =    𝜽𝒌  
𝒋
𝒊   ( 9 ) 

 

Figure 3.2. Structural target availability.  

The influence of structural availability (as defined by the ensemble of suboptimal structures) on 

intermolecular interactions can be attributed to the frequency of collision.  For instance, if a region is highly 

unavailable due to the presence of a strong secondary structure, there is a lower probability of physical 

interaction with another molecule, therefore rendering it a region to which it would be difficult to 

hybridize.  On the contrary, a highly available region (that within relevant structural variations is single-

stranded) would be more likely to successfully bind with another molecule. 
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In Equation 9, i and j represent the start and end of each region correspondingly 

and θk is the local availability of nucleotide k. In the formulation of the model, local 

availabilities within a target region are considered collectively in order to represent the 

region as a single unit.  Therefore, our proposed biophysical model, considers the 

following four predictors: 

𝒗 ∝ ∆𝑮𝒂𝒔𝑻 + ∆𝑮𝑻𝒇 + ∆𝑮𝒂𝒔𝒇 + 𝜽  ( 10 ) 

The single term for 𝜃 could also be interpreted as an energy penalty due to 

availability, is slightly similar to the approach of DiChiacchio et al. in AccessFold 

(DiChiacchio, Sloma et al. 2016) and Tafer et al. in RNAplex (Tafer and Hofacker 2008), 

influencing the regional energy barrier (initiation energy) that the system is required to 

overcome in order to produce the bound complex.  The local availabilities, θk, can be 

estimated by base pairing probabilities based on the ensemble of suboptimal structures of 

the target RNA. It should be noted that this term, unlike the energy of target unfolding 

which is based only on the minimum free energy structure, represents equilibrium 

structural fluxes (that often facilitate intermolecular interactions ((Lai, Proctor et al. 2013, 

Grohman, Gorelick et al. 2014))). These Boltzmann-distributed structural variations were 

obtained from the Nupack webserver (Zadeh, Steenberg et al. 2011) (see Methods section 

for details).  

3.2.2 Model optimization using in vivo experimental profiling of asRNA 
hybridization efficacy  

While there is novelty in considering ensemble-based base pairing probabilities as 

a regional availability factor, the most notable aspect of this study lies in the in vivo 

optimization of the above models using experimental hybridization data for a diversity of 

RNA targets. Conceivably, one of the greatest challenges in prediction of hybridization 

efficacy is the ability to account for asRNA-target interactions in vivo, where interactions 
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with other molecules are prevalent due to molecular crowding and complex patterns of 

ionic strength that vary across different organisms (Leamy, Assmann et al. 2016). To this 

end, our baseline thermodynamic (Eq. 8) and biophysical (Eq. 10) models were 

optimized by taking into account in vivo hybridization patterns collected directly within 

cells.  

For this work, we have collected large sets of antisense hybridization data using a 

recently published fluorescence-based assay (iRS3) for in vivo RNA profiling (Sowa, 

Vazquez-Anderson et al. 2015).  Specifically, we interrogated 80 regions within three 

diverse target RNAs: the gI intron (393 nt, in which 35 regions were probed), the csrB 

regulator (369 nt, in which 27 regions were probed), and the glutamate tRNA (76 nt, in 

which 18 regions were probed). Figure 3.3 illustrates all the collected hybridization 

profiles for these three target molecules, where the heat maps depict differential levels of 

asRNA-target binding. A list of all 80 asRNAs designed for these molecules is included 

on Table B.2. These molecules make appropriate targets for this study given their 

complex structural features that challenge the ability to predict hybridization. For 

instance, in the gI intron, secondary structure domains that are essential for catalysis such 

as P4-P6 and P3-P9 (Figure 3.3A) (Beaudry and Joyce 1990, Jaeger, Michel et al. 1997) 

contain tertiary contacts (gray boxes in 3A) that are connected to each other via 

pseudoknots (covered by regions 8-10) (Ikawa, Yoshioka et al. 2001). Given that most 

current secondary structure prediction approaches fail to predict pseudoknots, predicting 

hybridization efficacy in these domains is extremely challenging. In addition, these 

interactions are capable of disrupting the folding pathway, e.g. from misfolded to the 

native state, generating low abundance intermediates in which certain regions are 

rendered single-stranded (Russell, Das et al. 2006, Mitchell, Jarmoskaite et al. 2013, Xue, 

Gracia et al. 2016). As discussed in a previous work (Sowa, Vazquez-Anderson et al. 
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2015), our experimental probing system bears the potential to sense transient states only 

present in vivo, which is consistent with the relatively high hybridization efficacy of 

regions 8-10.  In the case of CsrB, six of the regions with the lowest hybridization 

efficacies (regions 5, 7, 10, 11, 20 and 22 in Figure 3.3B) contain the binding recognition 

motif (GGA) for its major target, the CsrA protein sequence (Romeo, Vakulskas et al. 

2013) (Lapouge, Perozzo et al. 2013, Holmqvist, Wright et al. 2016); specifically the 

GGA motif in the stem loop of region 22, has been recently suggested as a strong binding 

site (Vakulskas, Leng et al. 2016).  Our ability to see these patterns reflected in the level 

of hybridization potential of these regions indicates that our dataset captures the effect of 

in vivo interactions with other cellular factors.  Lastly, our in vivo experimental data also 

captures expected high hybridization efficacy within the tRNA at the highly flexible 

anticodon arm (corresponding to region 8 in Figure 3.3C), consistent with molecular 

dynamic simulations and crystallographic B-factors for various tRNA models (Bahar and 

Jernigan 1998). Collectively, these observations validate the experimental data collected 

and used for model optimization. 
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Figure 3.3. asRNA hybridization map as measured by in vivo oligonucleotide 
hybridization.  

Heat maps of the asRNA hybridization efficacies for (A) The Tetrahymema group I intron (35 target 

regions). Numbers with a dash right next to a nucleotide indicate the standard indexing of the gI intron. 

Stems (domains) have been named by the convention in our previous work (42) using the letter “P” 

followed by a number for the gI intron. Tertiary contacts are indicated with a gray double-headed arrow. 

(B) The small RNA CsrB (27 target regions). (C) The glutamate tRNA (18 target regions), in which tertiary 

contacts are indicated with dashed lines. For all three heat maps, color-coded lines represent length and 

location of a region targeted by the iRS3 asRNA and color represents hybridization efficacies that can be 

decoded using the bar scale at the bottom. The target regions/asRNAs were numbered in ascending order 

from 5’ to 3’ and labels were colored in accordance with relative hybridization efficacies. 
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Optimization of the baseline thermodynamic (Eq. 8) and biophysical (Eq. 10) 

models was performed from collected experimental data by: (1) setting an interval 

constraint on ∆𝐺!"#  (-19.3 kCal/mol <  ∆𝐺!"# < -17.8 kCal/mol) wherein this factor is 

negligible, (2) scaling all parameters to adjust for their relative importance (e.g. 

determination of parameter coefficients), and (3) incorporating the interplay between 

prediction parameters suggested by strong statistical interactions (see Methods section). 

All parameters resulting from this optimization are included in Table B.3.  As shown in 

Figure 3.4, we observe that the regional availability factor (𝜽) by itself and in relation 

with the energy of target unfolding (∆𝐺!") is prominent in its influence as a predictor of 

hybridization efficacy. This observation underscores the importance of the differential 

relationship between the two target accessibility measures. Interestingly, this statistically-

derived mathematical form marginally resembles the scaling of the stacking energies by 

base-pairing probabilities used by Sfold in siRNA design (Ding, Chan et al. 2004). 

Importantly, the optimization of the baseline thermodynamic (Eq. 8) and biophysical (Eq. 

10) models led to the development of the inTher (in vivo optimized Thermodynamic), 

equation (11) and in vivo optimized Thermodynamic Accessibility-adjusted 

(inTherAcc), equation (12) models, respectively.  

𝒗 ∝ ∆𝑮𝑻𝒇(∆𝑮𝒂𝒔𝑻) + 𝚫𝑮𝒂𝒔𝑻 + ∆𝑮𝑻𝒇  ( 11 )  

𝒗   ∝   𝜽(∆𝑮𝑻𝒇) + ∆𝑮𝑻𝒇(∆𝑮𝒂𝒔𝑻) + 𝚫𝑮𝒂𝒔𝑻 + ∆𝑮𝑻𝒇 + 𝜽  ( 12 )  
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Figure 3.4. Relative significance of each term in the (A) inTherAcc and (B) inTher 
models.  

Optimization of baseline thermodynamic (Eq. 8) and biophysical models (Eq. 10) with in vivo data 

produces significant models. The addition of the availability term (θ) and its statistically significant 

interaction with the unfolding energy of the target region (ΔGtf) to the inTherAcc model increases the 

significance of common parameters seen in (B). 

Importantly, as presented in Figure 3.5, regression analyses of the ability of these 

models to capture in vivo hybridization data shows that the proposed optimized versions 

of both, thermodynamic and biophysical models in (Equation (11) and Equation (12), 

Figure 3.5A and Figure 3.5B respectively) exhibits improved performance relative to the 

non-optimized models (Equations 8 and 10, Figure 3.5C and Figure 3.5D). Furthermore, 

the use of the regional availability factor in the inTherAcc model (Equation 12, Figure 
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3.5B) shows an additional enhancement relative to its counterpart inTher in its ability to 

capture in vivo asRNA hybridization data, making it the best model developed in this 

work. These findings set the grounds for a final test case in which inTherAcc predictions 

of highly “hybridizable” regions in 4 molecularly diverse RNAs were experimentally 

validated. Collectively, these results suggest that consideration of physical intracellular 

interactions (as captured by the collected data) is vital to improve the accuracy of 

hybridization behavior predictions. 
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Figure 3.5. Improvement in performance for in vivo optimized models underscores 
the influence of intracellular factors.  

Comparing linear correlations of (A) the in vivo optimized Thermodynamic model (Eq. 12)  (B) the in vivo 

optimized Thermodynamic Accessibility-adjusted model (Eq. 13), (C) the un-optimized thermodynamics-

only method (Eq. 8), and (D) the un-optimized biophysical model (Eq. 11) shows the ability of the inTher 

model family to capture the in vivo collected data. This improved performance can be attributed to the 

incorporation of statistical interactions between prediction parameters, which likely well represent the 

cellular environment. 

3.2.3 The inTherAcc Model Proves Effective in Predicting High asRNA 
Hybridization Regions in Other RNA targets  

Initial evaluation of the predictive capabilities of the inTherAcc model was 

performed by a 3-fold cross validation analysis using the same in vivo data set used for 

optimization. Our evaluation shows that the cross-validated R2 is 0.37 and 0.09 for 
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inTherAcc and inTher models, respectively, confirming the increased predictive potential 

of the inTherAcc model. Given these results, we further tested the prediction capabilities 

of the inTherAcc model using 4 additional unique RNA targets: the 2-MS2 RNA tag (2-

MS2), the model RNA LtrB group II intron (gII), the Spinach II RNA (SpnII) in a tRNA 

scaffold (Ponchon and Dardel 2007) and the glgC messenger RNA 5’UTR (glgC).  

To interrogate highly “hybridizable” regions within these RNA molecules, 1300 

target regions across the entirety of these four molecules were randomly compiled. The 

regions were randomly varied in length between 9-17 nucleotides (see Methods section).   

The hybridization efficacies of these regions were calculated using the inTherAcc model.  

Following predictions with the inTherAcc model, 49 regions were selected for 

experimental validation; 6 regions for the 2-MS2, 13 regions for Spinach, 13 regions for 

glgC and 17 regions for the larger gII were experimentally tested. In general, regions 

representing a wide range of predicted hybridization efficacy were selected, with a 

particular interest in those with highest ranked predicted efficacy (Figure 3.6A). The heat 

maps illustrated in Figure 3.6A depict relative levels of asRNA hybridization efficacy 

that were detected for each target molecule using the iRS3 high throughput plasmid (iRS3-

GG) (see Figure B.1A) as described in the Methods section. It is worth noting that two of 

the top predicted regions (regions 2 and 17) for asRNA hybridization efficacy in the gII 

intron correspond to well-studied regions that contain one and two tertiary structure 

contacts, respectively (Cui, Matsuura et al. 2004). These contacts are known to be 

involved in long range interactions (generally weaker than secondary structure 

interactions)). In the case of the regions with the highest hybridization efficacy for 2-

MS2, regions 5 and 6 both overlap with a 2-MS2 coat protein binding site (Shtatland, Gill 

et al. 2000) located in a loop. Likewise, it is noteworthy that region 2 within the GlgC 

5’UTR, targeting its preferred CsrA interacting site (Baker, Morozov et al. 2002), appears 
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to be one of the regions with the lowest hybridization efficacies.  On the other hand, 

regions 6 and 7 in the GlgC 5’UTR overlap with the relatively more single-stranded 

(Kertesz, Wan et al. 2010, Wan, Qu et al. 2014) SD and start codon regions, respectively, 

and show one of the highest hybridization efficacies. Lastly, in the Spinach molecule, 

region 4, covers the binding site for DFHBI (Strack, Disney et al. 2013, Warner, Chen et 

al. 2014), the target molecule of this aptamer. Overall, these observations indicated that 

our predictions of extreme hybridization potential captured important structural-

functional features of these molecules.  
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Figure 3.6.  Experimental evaluation of hybridization efficacy in four RNAs shows 
inTherAcc model prediction accuracy comparable to that of benchmark 
IntaRNA.  

(A) Relative hybridization efficacy of each tested region is indicated on the predicted secondary structure 

(Zadeh, Steenberg et al. 2011) of respective molecules via color-coded lines, in which green and red 

represent highest and lowest hybridization efficacy, respectively, per scale bar (bottom). Each nucleotide is 

colored based on equilibrium probability (bar on the left) according to Nupack (Zadeh, Steenberg et al. 

2011) output. Regions which were correctly predicted by inTherAcc to be high or low are denoted by an 

asterisk.  (B) Comparison of positive Predictive Value-PPV (top) for high hybridization efficacies and 

False Negative Ratio-FNR (bottom) for low hybridization efficacies, for inTher (red), inTherAcc (blue) and 

IntaRNA (green). 

Importantly, when calculating the Positive Predictive Value (PPV) of regions with 

high hybridization efficacy and the False Negative Rate (FNR) of regions with low 

hybridization efficacy for all the data collected, inTherAcc (but not inTher) performed 
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overall comparably to IntaRNA predictions in terms of PPV and FNR. We chose to 

benchmark against IntaRNA since it is an accessibility-based approach, uses a seed 

interaction that resembles our regional interaction notion and has been tested for bacterial 

systems(Busch, Richter et al. 2008). However, inTherAcc displays improved prediction 

performance, relative to intaRNA, particularly for the gII intron (R2 = 0.13 vs. 0.08) and 

2-MS2 (R2 = 0.949 vs. 0.014) as shown in Figure 3.7. No difference in performance was 

observed when considering the linear correlations for glgC and spII target RNAs (R2<5% 

for all three models). In summary, these findings support the potential prospects of 

considering both, intaRNA and inTherAcc, complementary approaches in the prediction 

of hybridization efficacy (see Figure B.7 for a summary of all the prediction vs. 

experimental results). 

 

 

 
 



 63 

 

Figure 3.7. Regression analysis on experimental versus inTherAcc-(top), inTher-
(center) and IntaRNA-(bottom) predicted hybridization efficacy for (A) 
2-MS2 and (B) gII intron.  

inTherAcc exhibits superior performance in predicting hybridization potential in (A) 2-MS2 and (B) group 

II intron compared to both inTher and IntaRNA models when considering linear regression fits. (B) Higher 

performance accuracy of hybridization efficacy in gII intron is achieved by inTherAcc due to its capability 

to predict extreme lows and highs. Error bars indicate standard error of the mean. Both predicted and 

experimental hybridization efficacies were linearly scaled from 0 to 1. 
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3.2.4 inTherAcc Aids in Prediction of Target mRNAs 

As a final model validation, we evaluated the ability of inTherAcc to aid in 

prediction of target mRNAs of newly identified sRNAs in a different bacterium. We 

selected two sRNAs of relevance to ethanol tolerance, Zms4 (280 nt) and Zms6 (304 nt) 

of Z. mobilis (Cho, Lei et al. 2014). A RIP-seq experiment was performed by tagging 

each sRNA with 2-MS2 RNA. Following purification of the sRNAs and sequencing of 

the pulled-down (associating) RNAs , the most likely targets were identified as those that 

showed the greatest transcript enrichment compared to a control (2-MS2 with no sRNA 

attached).  Because of the role of Zms4 and Zms6 under ethanol stress, we expect their 

mRNA targets to include stress-related genes. Indeed, as expected, many potential targets 

enriched by MS2 pulldown for both Zms4 and Zms6 were related to stress responses, 

including global stress response regulators, heat shock proteins, protein folding 

chaperones, and DNA repair proteins  Because the inTherAcc model is well suited to 

help narrow the large pool of potential targets by predicting those with most favorable 

hybridization efficacies, potential regions of interest in both sRNAs were randomly 

compiled and ranked by hybridization efficacies using our inTherAcc model (Figure 

3.8A), as described in the Methods section. As observed in Figure 3.8A, interesting “hot 

spots,” defined as regions exhibiting predicted extreme (high or low) hybridization 

efficacies were identified and considered for further analysis. The rationale behind using 

regions with predicted high and low hybridization efficacies is based on the hypothesis 

that these regions are likely to be functional sites either highly available or unavailable 

based on active binding to in vivo factors.  The reverse complement sequences of the five 

highest and five lowest predicted hybridization efficacies were selected for BLAST 

analysis to identify potential “top” likely interacting mRNA targets (for a total of 52-54 

unique genes considered). Comparisons of these results with data obtained from RIP-seq 
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experiments supported the target prediction capability of the inTherAcc model. As shown 

in Figure 3.8B, inTherAcc predicted about 28 and 22 potential targets, respectively for 

Zms4 and Zms6, found in the set of RIP-seq-determined enriched transcripts. 

Importantly, about 8 and 7 potential targets respectively for Zms4 and Zms6 were found 

within the top 20% pulled-down targets (ranked by fold change enrichment relative to the 

2-MS2-only control). In all cases for each region predicted to be an mRNA binding site, 

multiple potential targets were found suggesting the ability of these sRNAs to exert 

multiplex regulation (Table B.4). As expected, a considerable portion of enriched 

transcript associations of Zms4 and Zms6 correctly predicted by inTherAcc code for 

proteins involved in ethanol tolerance mechanisms, specifically those that facilitate (1) 

protein folding and transport, (2) redox metabolism, and (3) stress response (Ingram 

1989, Cray, Stevenson et al. 2015), further validating our results.  In addition, inTherAcc 

showed a comparable performance to benchmark IntaRNA (Table B.4 and Figure 3.8B). 

The limited number of matches in target prediction (Figure 3.8B) between both 

approaches underscores the potential complementarity between them. Collectively, these 

results show the potential of the model to aid in gene target prediction and, more 

specifically, to identify potential functional regions that act via base-pairing. 
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Figure 3.8. inTherAcc aids in prediction of mRNA targets for Z. mobilis (A) Zms4 and 
(B) Zms6.  

Ten regions evenly distributed at the top (green) and bottom (red) hybridization efficacy scale were 

selected as potential mRNA-sRNA binding sites for further prediction of target mRNA candidates and 

comparison with RIP-seq data. The regions that matched with the 18% of top enriched candidates (log 2 of 

fold change sRNA/only MS2) are circled in blue.  (C) Overview of the prediction performance for 

IntaRNA (green) and inTherAcc (blue). Venn diagram showing the total enriched candidates (fold log2 

of sRNA/only MS2 > 0). A total of 52 and 54 candidates respectively for Zms-4 and Zms-6 were predicted 

using both approaches. Darker green and darker blue circles represent the top 18% enriched candidates that 

each approach predicted correctly. 

3.4 DISCUSSION AND CONCLUSIONS 

The inTherAcc model incorporates a series of thermodynamic terms to account 

for energetics of intramolecular folding, intermolecular binding, and the target region 
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availability using the Boltzmann distribution of possible structural configurations. The 

novelty of this work lies in that our approach integrates large scale in vivo data as well as 

the interplay between the components of target accessibility as understood by (1) an 

availability factor based on suboptimal structures and (2) thermodynamic consideration 

of RNA unfolding, identified during model optimization. Our results suggest that the 

family of inTher models that we have developed could assist current asRNA predictions 

to capture “hybridizability” in vivo. Our work also highlights the potential of using in 

vivo experimental datasets to increase prediction accuracy for effective selection of sites 

for asRNA targeting and provides a methodology to do so. The observed relationship 

between target RNA folding energy and regional target availability as estimated by a 

summation of local base-pairing probabilities was shown via statistical model 

optimization (Figure 3.4 and Table B.3) and suggests that scaling this free energy by its 

availability factor  plays a significant role in determining efficacy of RNA hybridization 

in vivo. Other research groups have used similar scaling approaches with significant 

improvements in the performance of siRNA design and predictions (Ding, Chan et al. 

2005, Shao, Wu et al. 2006, Shao, Chan et al. 2007). The main difference of our scaling 

scheme relative to these previous efforts is its regional nature. While previous works 

scaled the stacking energies of interacting nucleotides one by one according to 

nucleotide-specific base-pairing probabilities, this approach assumes that any given 

asRNA behaves as an indivisible unit. In addition, this in vivo optimization has brought 

about coefficients for our model that are meaningful in capturing intracellular behavior. 

For instance, as expected, we observed a strong influence of the intramolecular structure 

of the target region on the hybridization efficacy (Figure 3.4). Moreover, the estimated 

coefficients could be indicators of the presence of binding factors, the effect of molecular 

crowding, or even the presence of ionic species in the cellular milieu. For example, 
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divalent ion influence on ribozyme active site structural arrangement (Woodson 2005) 

was likely accounted for to an extent by optimizing inTher models with gI intron data. It 

is therefore not surprising that the optimized inTherAcc model was an improved predictor 

of gII intron hybridization efficacy. To the best of our knowledge, no approach in the past 

has attempted to consider the in vivo environment by optimizing a current biophysical 

model using large sets of in vivo data collected in bacteria and applying it to predict other 

RNA molecules, while simultaneously studying the influence of target accessibility.  

Through in vivo optimization of model parameters, we achieved a highly reliable 

qualitative prediction of highly “hybridizable” regions in a wide array of RNA molecules. 

Overall, the inTherAcc model performs at levels above 63% and below 60% in PPV and 

FNR, correspondingly. It also is at least comparable to benchmark IntaRNA, bearing an 

advantage in specific cases likely due to the incorporation of in vivo factors during model 

optimization. Interestingly, some of the observed discrepancies between experimental 

and predicted hybridization efficacy in the glgC 5’UTR can be attributed to competitive 

binding between the asRNA and factors that naturally interact with this RNA that are not 

fully accounted for by the collected dataset. In many of these cases, we suspect that even 

our experimentally collected datasets fail to capture the full set of molecular interactions 

(e.g. with other intracellular factors) given that only limited environmental conditions 

were tested where the full range of these interactions does not occur. This is likely the 

case for regulatory RNA regions like the glgC UTR, in which different interactions are 

observed in vivo under nutritional stresses (not tested in this work).  As a result, we 

hypothesize that further prediction accuracy can be achieved for these models by 

expanding the collected datasets to include a variety of environmental conditions (e.g. 

cellular stresses) to capture a broader range of interactions.  
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Remarkably, the inTherAcc approach provides the following general strategies in 

asRNA design: (1) the suggestion of a free energy interval within which the 

thermodynamic stability of the asRNA does not seem to influence hybridization efficacy, 

(2) the realization that both low and high inTherAcc-predicted hybridization efficacies 

could indicate functional sites that may be interesting targets for asRNAs and (3) 

evidence of the potential influence of suboptimal structures in hybridization efficacy that 

aids in identification of target dynamic regions. Overall, we envision that the inTherAcc 

approach will assist in the characterization of newly-identified regulatory RNAs and the 

design of synthetic elements that require RNA binding through complementarity by 

improving reliability of RNA targeting performance in vivo, particularly in bacteria.  

3.4 METHODS  

3.4.1 Plasmids and strains  

As previously described in (Sowa, Vazquez-Anderson et al. 2015), the 

fluorescence-based iRS3 system provides a measurement of asRNA-RNA hybridization 

by using various 8-27 nt sequences (asRNAs) that are complementary to a target RNA. In 

this system, a fluorescence shift is observed when an asRNA successfully binds the 

region of interest in the target RNA. A total of eighty asRNAs targeting unique regions in 

three target molecules (gI intron, CsrB and tRNA) were analyzed in this work for model 

optimization purposes. Forty-nine asRNAs targeting unique regions in four different 

target molecules (gII intron, SpinachII, glgC 5’UTR and 2-MS2) were also used to assess 

model prediction capabilities. To construct these experimental asRNA systems, a 

modified Golden Gate cloning-based plasmid was introduced for high-throughput cloning 

that included the following changes to the previously published “Wild Type Intron Probe 

I reporter” (Sowa, Vazquez-Anderson et al. 2015): a p-chlorophenylalanine negative 
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selection cassette (PheS) in place of the asRNA sequence (between EcoRI and the CB 

element flanked by two BsmbI restriction sites)(Kast and Hennecke 1991, Kast 1994). 

We termed this plasmid iRS3 Golden Gate (IRS3-GG) and it is illustrated in Figure B.1A. 

All target molecules, with the exception of the natively targeted tRNA, were separately 

introduced in the iRS3-GG between the Xba1 and Sal1 restriction sites (see plasmid map 

in Figure B.1A). In the case of gII, SpII, glgC and 2-MS2, Gibson assembly (Gibson 

2011) (using Gibson Assembly mix from NEB) was performed. CsrB was introduced via 

traditional restriction cloning. All primers used for cloning of target molecule into iRS3-

GG are listed in Table 3.1 of Supplementary Data.  

All asRNA sequences within the plasmid (Table B.2), besides 11 asRNAs 

corresponding to regions within the gI intron that were previously synthesized and 

published (Sowa, Vazquez-Anderson et al. 2015), were either ordered from GenScript 

Inc., synthesized by a site-directed mutagenesis approach (QuikChange II Site-Directed 

Mutagenesis Kit, Agilent Technologies) by modifying a previously synthesized asRNA, 

synthesized via Gibson Assembly (Gibson 2011) or synthesized by using a high 

throughput Golden Gate approach as described in (Engler and Marillonnet 2014) on our 

iRS3-GG plasmid. For the Golden Gate approach, complementary primers (ordered from 

IDT) containing each asRNA sequence with the proper flanking overhangs were annealed 

and cloned after digestion with BsmbI (Thermo Scientific) to replace the PheS cassette. 

To increase cloning throughput, two to five asRNAs were combined into a single reaction 

and later transformed into DH5α chemically-competent cells or NEB Turbo electro-

competent cells and plated in Luria-Bertani (LB)/Agar media supplemented with p-

cholorophenylalanine (p-Cl-Phe) to select for the clones harboring the appropriate 

asRNA. Once the asRNA sequences were confirmed by DNA sequencing, the newly 

synthesized plasmids were transformed into K-12 MG1655, our experimental strain, or, 
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in the case of CsrB, into a CsrB-deficient K-12 MG1655 strain. An overview of the 

specifics of the asRNA synthesis strategy is included in Figure B.1B.  

For the evaluation of sRNA target prediction as aided by inTherAcc and 

IntaRNA, we utilized pBBR1MCS2-pgap vector for constitutive expression. Each 

sequence confirming the corresponding small RNA fragments between NheI and Sall 

which were synthesized by GenScript® and then cloned into pBBR1MCS2-pgap vector 

(Zou, Zhang et al. 2012), resulting in pBBR1MCS2-pgap-sRNA. For 2MS2BD-

Zms4/Zms6/control constructs, gBlock® (NEB) of 2MS2BD-Zms4/Zm6/control was 

used for cloning into pBBR1MCS2-pgap vector, resulting in plasmids abbreviated 2MS2-

Zms4/2MS2-Zms6/2MS2-control. 

3.4.2 Selection of target RNAs 

Rationale for target molecule selection was based on molecule complexity, size, 

and functional interactions. For instance, the gI intron is a relatively large (393 

nucleotides), well-studied RNA model (Russell, Das et al. 2006, Wan, Suh et al. 2010) 

whose many structurally significant regions have been previously probed with the iRS3 

system (Sowa, Vazquez-Anderson et al. 2015). These studies have shown that this 

autocatalytic molecule may well-represent the complexity of structural features present in 

most RNAs targeted for regulation (e.g. UTRs of mRNAs (Ding, Tang et al. 2014)). On 

the contrary, the 76 nucleotide long glutamate-tRNA has a wide assortment of 

interactions with intracellular factors, including mRNAs, rRNAs, various modification 

enzymes and other proteins despite exhibiting tight tertiary structure comparable to that 

of the gI intron (Brion and Westhof 1997). The third molecule chosen for model 

optimization, CsrB, is a non-coding RNA whose multiple protein binding motifs 

contribute to the translational regulation of a large number of mRNAs (Babitzke and 
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Romeo 2007). Compared to the previously described molecules, CsrB (369 nucleotides) 

is less structurally sophisticated than the gI intron and the tRNA. 

For assessing the prediction capabilities of our model, 4 alternative RNA 

molecules were used: the 2-MS2 coat protein binding domain (2-MS2), the model LtrB 

group II intron (gII), the Spinach II RNA (SpII) and the glgC messenger RNA 5’UTR 

(glgC). This set of RNAs cover a wide array of types, functions, structures and sizes. 

MS2 and Spinach II are commonly used to investigate RNA interactions, more 

specifically, to isolate RNAs to determine specific RNA interacting complexes (Faoro 

and Ataide 2014) and track RNA movement (Paige, Wu et al. 2011), respectively. 

Similarly, 5’ UTRs often use their structure to regulate the translation of their associated 

mRNA.  The gII intron was selected given the interest in targeting ribozymes for 

understanding the molecular mechanisms for catalytic activity, largely regulated by their 

complex folding (Frommer, Appel et al. 2015). 

3.4.3 Fluorescence Measurements and Calculations of asRNA hybridization using 
the in vivo RNA Structural Sensing System (iRS3) 

In general, flow cytometry experiments were carried out as previously reported 

(Sowa, Vazquez-Anderson et al. 2015). All target molecules (except for the glutamate 

tRNA) were evaluated under overexpression conditions in which the hybridization 

efficacy is evaluated as the ratio between the fluorescence in the presence of the target 

RNA with baseline fluorescence (in the absence of the target RNA) subtracted out (FLon-

FLoff) to the baseline fluorescence (FLoff).  For all hybridization calculations, FLoff was 

scaled by an adjustment factor of 0.65 to account for the excess abundance of the reporter 

probe relative to the target RNA, as approximated by recently obtained RNA-sequencing 

data (unpublished). In the case of the tRNA, the target was evaluated using native levels 

given its natural presence and abundance in E. coli cells using plasmid in Figure B.1C. In 
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this case, FLon and FLoff represent the fluorescence in the presence of the asRNA 

(iRS3+specific oligonucleotide) and the fluorescence in the absence of the asRNA, 

respectively. FLoff fluorescence was measured right before induction (at time “0”) and 

FLon was collected 45 min after induction (See Figure B.2A for a correlation between 

uninduced and time “0”). Seeding cultures originated from independent overnights and 

uninduced and induced samples proceeded from the same initial seeding culture. 

Specifically, seeding was done in LB (40 mL+50 µg/mL of kanamycin) and split up into 

two 20 mL cultures at the time of induction (1-2 h of growth upon seeding) for the 

collection of model optimization data. When testing model predictions, seeding was done 

in LB (200 μL+50 µg/mL of kanamycin) and split up into two 100 μL cultures in 96-well 

plates at the time of induction. 

3.4.4 In vivo DMS footprinting and calculation of regional availability (𝜽) 

The DMS reactivity of the gI intron was obtained using a previously published 

protocol (Sowa, Vazquez-Anderson et al. 2015). In this work, we published the in vivo 

DMS reactivity profile for the full gI intron (Figure B.3). Previously, the reactivity for 

only select regions had been published (Sowa, Vazquez-Anderson et al. 2015). The 

nucleotide indexing for the gI intron follows the established consensus for this well-

known molecule. These data were filtered and normalized using specialized software, the 

Capillary Automated Footprinting Analysis (CAFA) (Mitra, Shcherbakova et al. 2008). 

The reactivity values for the untreated sample were subtracted from the average reactivity 

value of two independent DMS treated samples. The DMS reactivity for Gs and Us was 

estimated by assuming the same reactivity as their pairing partners (if paired), and, when 

unpaired, an average reactivity value for “exposed” nucleotides was assigned. Special 

cases were those Gs and Us exposed in loops (G58, U59, G92, G112, G119, U120, G126, 
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U179, U185, G200, G201, U202, U225, G227, U247, G254, G279, U300, G303, U322, 

U323, G331, U340, G341, G357, G358, G368 and U372) that were assigned values more 

similar to their neighbors and other As and Cs present in loops.  The regional target 

availability factor was then calculated using the average of the individual reactivity 

values of each nucleotide in the given target region over the length of the target region. 

3.4.5 Derivation of the accessibility-based thermodynamic model 

The quantity ∆𝐺!"#$%&& is the overall free energy change related to the different 

mechanistic steps associated with asRNA binding to the target RNA region; the folding 

and binding processes considered are depicted in Figure 3.1. This quantity is represented 

as the combined contribution of the free energies of: (i) the Watson-Crick base-pairing of 

the asRNA to the target RNA region (∆𝐺!"#), (ii) the local unfolding of the target RNA 

region required for asRNA binding (∆𝐺!"), and (iii) the unfolding of the asRNA required 

for binding (∆𝐺!"#). The sum of these terms comprises the total energy of hybridization, 

∆𝐺!"#$%&&: 

  ∆𝑮𝒐𝒗𝒆𝒓𝒂𝒍𝒍 = 𝜟𝑮𝒊𝒊 = ∆𝑮𝒂𝒔𝑻 − ∆𝑮𝑻𝒇 − ∆𝑮𝒂𝒔𝒇   ( 13 ) 

In (13), subscripts asT, Tf and asf denote the asRNA-target RNA hybridization, 

the target RNA folding, and the asRNA folding respectively.   

   

3.4.6 Calculation of free energy of hybridization (∆𝑮𝒂𝒔𝑻) 

To calculate the Gibbs free energy of binding between the perfectly 

complementary stretch of nucleotides (asRNA) within the iRS3-asRNA system and the 

target region, the energy parameters for the nearest neighbor model published in (Xia, 

SantaLucia et al. 1998) were used. Only canonical base-pairing (Watson-Crick base-
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pairs), penalties for self-complementarity within the asRNA, and AU ending were 

considered for the calculation of the stacking energies.  

3.4.7 Calculation of free energy of the target region (∆𝑮𝑻𝒇) 

To calculate the Gibbs free energy of target region folding, the energy parameters 

for the nearest neighbor model previously published (Xia, SantaLucia et al. 1998) were 

used. The target region plus one extra nucleotide at each end was considered to account 

for stacking contributions of neighboring base-pairs. The folding of the target RNA was 

considered to be a local event due to the tight coupling of prokaryotic transcription and 

translation. Such assumptions of local folding have previously been used in a structural 

study of bacterial genes (Shao, Wu et al. 2006). To calculate the stacking energy 

contributions, the consensus secondary structure of the gI intron was considered 

(Tijerina, Mohr et al. 2007). For all the other target molecules, a secondary structure 

prediction from the RNAStructure webserver was used (Reuter and Mathews 2010). 

Since GU base-pairs are somewhat extensively found in the structure of our target RNAs, 

they were treated as nearest neighbor stacks, similar to Watson-Crick helices. In addition, 

the penalty for ending in a GU was the same as an AU ending. In our treatment of GU 

pairs we followed the parameters reported by Mathews et al.(Mathews, Sabina et al. 

1999). No energy parameters for other structural motifs such as loops, bulges, etc. were 

taken into account. 

3.4.8 Calculation of regional availability 

To support high-throughput estimations of regional availability (𝜃), without 

involving experimental structural studies, local availability (θk) was estimated by base 

pairing probabilities determined by Boltzmann-distributed structural variations provided 

by the Nupack webserver (Zadeh, Steenberg et al. 2011).  This structural accessibility 
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estimation was shown to capture of in vivo experimental DMS reactivity at the regional 

level, supporting the use of base pairing probabilities as a substitute for experimentally 

determined structures (Figure B.4).     

3.4.9 Calculation of free energy of folding for the asRNA (∆𝑮𝒂𝒔𝒇) 

The “allSub” subroutine of the RNAStructure webserver (Reuter and Mathews 

2010) was used to predict the secondary structure of the asRNA+iRS3 transcript (5’-6 nt 

+ asRNA + 56 nt-3’). The Gibbs free energy of the minimum free energy structure was 

used to represent the asRNA folding energy (∆𝐺!"#). For the purpose of this analysis, the 

transcript considered 62 nucleotides in addition to the 8-27 nucleotides of the asRNA (for 

a total of 70-89 nucleotides). Additionally, six nucleotides upstream of the asRNA were 

included as part of the transcript to account for imprecision of transcriptional start sites. 

In this way, any potential interactions between the asRNA and the segment downstream 

from the RBS site were accounted for. The specific sequence is as follows: 5’GAA UUC 

-asRNA- UAC CAU UCA CCU CUU GGA UUU GGG UAU UAA AGA GGA GAA 

AGG UAC CAU GAG UAA AG 3’.  

3.4.10 Model optimization via regression analysis using experimental hybridization 
data 

Regression analysis was used to statistically evaluate the contributions of the 

proposed biophysical factors in the derived models. Briefly, a linear model relating the 

experimental response variable υ (defined as the logarithm of the ratio of FLon to Floff 

measurements) to the previously described factors (𝜃, ∆𝐺!"# , ∆𝐺!",  ∆𝐺!"#) was 

composed and the coefficients for the various factors were fit by ordinary least squares 

regression. Coefficient fitting and statistical analysis of parameter contributions to the 

overall model were performed using MatLab Math, Statistics and Optimization package 
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(specifically “fitlm” function). A total of 383 independent fluorescence measurements 

(representing asRNA hybridization efficiency) across all three optimization molecules 

were used for regression analysis. ∆𝐺!"# was constrained to an interval between -19.3 

kCal/mol and -17.8 kCal/mol, where its influence became statistically insignificant (p-

value > 0.05), allowing the other more relevant factors (𝜃, ∆𝐺!"# , ∆𝐺!") to be studied in 

isolation (see Model optimization via regression analysis using experimental 

hybridization data, Figure B.5). In addition, the predictors in equation (10) were 

normalized by the length of the asRNA, to decrease linear dependency on this design 

parameter. A 3-fold validation was performed to test for prediction power for both 

optimized models (groups were determined based on regions and their replicates). Each 

cross-validated R2 was calculated as the adjusted coefficient of determination of the 

linear regression fit between the experimental data of each independent group and 

corresponding predicted values from a model derived from the remaining 2 independent 

groups. 

For all regression analyses conducted in this work, factors and their potential 

interactions were considered statistically meaningful if their p-value (t-test) was lower 

than 0.005. Additionally, the quality of the regression was qualitatively evaluated by 

visual inspection, ensuring that the residuals showed a strong normal distribution (see 

Figure B.6) 

3.4.11 Selection of target regions for evaluation of model prediction power  

About 1300 of potential target regions within each molecule (gII intron, 

SpinachII, glgC 5’UTR, 2-MS2) were randomly generated.  Starting from the first 

nucleotide of the molecule, regions of random length between 9 and 17 nucleotides were 

designed sequentially with one nucleotide overlap between each region.  This process 
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was iterated 7 additional times with respect to integer-increasing nucleotide overlap 

between regions, ultimately producing 8 sets of target regions with 1-8 nucleotide 

overlaps. To ensure that every nucleotide of each molecule was included within each set 

of target regions, the last region within each set was not of random length.  Instead, if the 

first nucleotide of a prospective region was within 9-17 nt of the last nucleotide, the final 

probe of the respective iteration was established as the region from the first nucleotide of 

the prospective region to the last nucleotide of the molecule. The full set of asRNAs 

targeting these regions was then filtered by their calculated folding free energies to select 

a subset of 366 asRNAs with ∆𝐺!"# ranging from -19.3 to -17.8 kcal/mol.  

Lastly, this filtered set of asRNA designs was used to predict hybridization 

efficacies via the optimized model. The total number and sequence of asRNAs for 

experimental validation for each RNA were chosen based on molecule length, 

biophysical model hybridization prediction, and targeting region.  Seven asRNAs were 

chosen for the smallest target molecule (2MS2), thirteen for the “mid-sized” molecules 

(glgC 5’UTR and Spinach II) and eighteen for the largest (gII intron).  Approximately 

40% of asRNAs for each molecule were selected for their low predicted hybridization 

values, defined as a predicted hybridization efficacy equal to or less than the median of 

the asRNA pool within a molecule.  The remaining asRNAs selected were within the 

predicted high hybridization efficacy pool, specifically, with predicted hybridization 

greater than the median.  Precautions were taken to avoid selection of asRNAs targeting 

highly similar regions (greater than 5 shared nucleotides); however, exceptions were 

made when two asRNAs targeting similar regions showed interesting differences in terms 

of predicted hybridization efficacy (differences greater than the standard error of the 

pool).  
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3.4.12 Statistical Evaluation of Model Prediction Power 

For each target region designed for experimental validation (above), hybridization 

efficacies as predicted by benchmark software IntaRNA were also estimated (28).  First, 

the hybridization energy of each region was calculated using the pre-set seed, folding, 

and output parameters with inputs of target RNA sequence and asRNA sequence.  The 

hybridization energy was then, normalized by the length of the asRNA oligonucleotide.  

The lowest (most negative) normalized energy values indicated a higher predicted 

hybridization potential.  Predicted (by both in vivo-optimized models and IntaRNA) and 

experimental hybridization efficacies for each of the 4 molecules were then linearly 

scaled to fall between 0 and 1. To statistically evaluate the prediction potential of our 

models, experimental and predicted “high” hybridization efficacy was defined as any 

hybridization efficacy greater than one standard deviation above the hybridization 

efficacy mean of points below the median within experimental and predicted subsets, 

respectively.  Any points below these thresholds were considered to have “low” 

hybridization efficacies within their categories. To evaluate the performance of our 

models, we also calculated the Positive Predictive Value (PPV) of regions with high 

hybridization potential and the False Negative Rate (FNR) of regions with low 

hybridization efficacy defined in this specific context as follows: 

𝑃𝑃𝑉 =   
#  𝑜𝑓  ℎ𝑖𝑔ℎ  𝑣!𝑠  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑡𝑜𝑡𝑎𝑙  #  𝑜𝑓  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ℎ𝑖𝑔ℎ  𝑣′𝑠  

𝐹𝑁𝑅 =   
#  𝑜𝑓  𝑙𝑜𝑤  𝑣!𝑠  𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙  #  𝑜𝑓  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑙𝑜𝑤  𝑣′𝑠  

 

3.4. 13 Evaluation of Prediction of sRNA-mRNA Binding Regions  

Approximately 150 potential binding regions within Zms4 and Zms6 (sRNAs 

recently discovered in Z. mobilis(Cho, Lei et al. 2014) but not fully characterized yet) 
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were randomly generated following the process described in “Selection of target regions 

for evaluation of model prediction ability”. Hybridization efficacy of each region was 

predicted using the inTherAcc model. Ten total regions were selected for further target 

prediction analysis for each sRNA: 5 regions that exhibited the highest and 5 regions that 

exhibited the lowest predicted hybridization efficacy. During the selection process, 

regions with any overlap to a prior selected region were not considered in an attempt to 

select for unique regions. The reverse complement of the selected regions was inputted to 

nucleotide BLAST(Altschul, Gish et al. 1990) to identify potential target mRNAs of 

these two sRNAs in Zymomonas mobilis subsp. mobilis ZM4 (taxid:264203). For 

selected regions encompassing less than or equal to 10 or 12 nucleotides, 2 or 1 

nucleotides of the neighboring sRNA sequence were added onto both ends, respectively, 

to increase sequence specificity of the hits obtained by BLAST. Five potential targeting 

arrangements were chosen for each region from BLAST results with the constraints of 1. 

Minimization of E-value, 2. Correct orientation of gene sequence, and 3. Location of 

sequence at most 400 nucleotides upstream of a TSS or 200 nucleotides downstream of a 

TTS.  For each target region designed for experimental target validation (above), 

hybridization efficacies as predicted by benchmark software IntaRNA were also 

estimated (28).  First, the hybridization energy of regions within each sRNA with target 

mRNAs was calculated using the pre-set seed, folding, and output parameters with inputs 

of sRNA sequence and Z. mobilis genome, target NCBI reference sequence NC_006526, 

within both -300 to +300 nucleotides around the start codon and stop codon, the 

maximum consideration window offered by the IntaRNA software.  Results from both 

start and stop codon were consolidated within each sRNA and ranked according to 

energy values. An equal number of target genes to those of inTherAcc, harboring the 
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lowest energy of interaction with the sRNA were ultimately chosen as IntaRNA 

predictions for Zms4 and Zms6.  

3.4.14 Strains and culture conditions for MS2 pull-downs  

Zymomonas mobilis 8b strain was used in this study (Zhang, Eddy et al. 1995). Z. 

mobilis 8b strain was cultured in RM media (Glucose, 20.0 g/L; Yeast Extract, 10.0 g/L; 

KH2PO4, 2.0 g/L; pH 6.0) at 33 °C. Escherichia coli DH5α was used for plasmid 

construction and manipulation. Plasmids containing pBBR1MCS2-pgap-sRNA and 

2MS2-Zms4/Zms6/control strains were cultured with 350 ug/ml of kanamycin for Z. 

mobilis 8b and with 50 ug/ml for E. coli.  For the preparation of the samples for RNA 

sequencing, each overexpression, empty plasmid, and wildtype strain was initially grown 

in 5ml culture overnight. Then, cells were transferred into 500ml to adjust starting 

OD600nm at 0.1. Cells were grown at 33 °C for 12 hrs. 50ml of cells were pelleted and 

stored at -80 °C for further processing. 

3.4.15 RNA Preparation for Evaluation of Zms4 and Zms6 mRNA Targets 

Total RNA of 2MS2-Zms4/2MS2-Zms6/2MS2-control strains was prepared 

according to a protocol previously published in (DiChiara, Contreras-Martinez et al. 

2010) for all the growth conditions tested. Briefly, cells were grown anaerobically and 

collected at each time points for RNA Sequencing. All centrifugation was performed at 

4°C. Cells were pelleted and resuspended in 1 ml TRIzol reagent (Invitrogen). Following 

pelleting, cells were transferred to screw cap tubes containing glass beads (Sigma) and 

incubated at 25°C for 5 min. Cells were lysed using a mini-beadbeater (BIOSPEC), with 

100-s pulses three times. Cells were kept on ice for 10 min between each 100-s treatment. 

The beads and cellular debris were centrifuged at 4 °C for 2 min. The supernatant was 

transferred to a clean siliconized 2 ml tube. After addition of 300 µl of chloroform: 
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isoamyl alcohol mix (v/v 24:1), the samples were inverted for 15 s, and then incubated at 

25 °C for 3 min. Then, tubes were centrifuged at 13,000 rpm for 10 min, and the aqueous 

top phase transferred to a clean siliconized 1.5 ml tube.  Following this step, 270 µl of 

isopropanol and 270 µl of a mixture of 0.8 M sodium citrate and 1.2 M sodium chloride 

was added. The samples were mixed well, and then incubated on ice for 10 min. The 

RNA was pelleted by centrifugation at 13,000 rpm for 15 min. The pellet was washed 

with 1 ml 95% cold ethanol and centrifuged for 5 min. The pelleted RNA was allowed to 

air-dry for 5 min, and was resuspended in 50 µl RNase-free water (Ambion). RNAs were 

digested with DNase I (RNase-free, ThermoScientific) for 1hr at 37 °C to prevent 

genomic DNA contamination. By adding 0.5mM EDTA to the reaction mixture, samples 

were heat inactivated at 75 °C for 10mins. Then, RNAs were incubated with isopropanol 

and GlycoBlue™ (ThermoScientific) at -20 °C overnight. After centrifugation, pelleted 

RNAs were washed with 95% cold ethanol and centrifuged. RNAs were resuspended in 

50 µl RNase-free water (Ambion) and stored at -80 °C for sequencing. 

3.4.16 Purification of MS2-MBP fusion proteins  

For use as an affinity tag, MS2 coat protein fused with maltose binding protein 

(MS2-MBP) (Said, Rieder et al. 2009) was expressed in E. coli. 100ml of cells were 

cultured and induced with 1mM IPTG at OD 0.5600nm for 4 hrs. Cells were pelleted and 

resuspended in 10ml column buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 10 

mM β–mercaptoethanol pH7.4). 2mM PMSF (phenyl methylsulfonyl fluioride) was 

added to resuspended cells for preventing protein degradation. After the sonication on 

ice, DNase I was treated for 1 hr at 4 °C. Cell lysates were centrifuged at 15000 rpm and 

supernatants (MS2-MBP lysates) were collected. After vortexing and thoroughly 

suspending amylose magnetic beads (NEB), 200 µl of aliquot was washed with 1ml 
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column buffer twice. Entire MS2-MBP lysates were incubated with washed amylose 

magnetic beads for 2~3 hrs at 4 °C. Then, magnet was applied and supernatants were 

decanted.  Beads were washed with 1ml wash buffer (column buffer + 0.1mM maltose) 

three times. 50 µl of elution buffer (column buffer + 10mM maltose) was added to beads 

for the elution of MS2-MBP and incubated for 15 minutes at 4°C. By applying magnet, 

eluted MS2-MBP fusion protein was collected. To increase the yield, elution step was 

repeated with 50 µL of elution buffer. Purified proteins were confirmed by SDS-PAGE 

gel and the concentration was measured using Bradford assay.  

3.4.17 Affinity purification of MS2-MBP fusion proteins  

2ug of purified MS2-MBP proteins were incubated with 100 µl of total RNAs 

(500ng/µl) extracted from the cells containing 2MS2BD-Zms4/Zms6/control for 1hr at 4 

°C. Washed amylose beads were incubated with 2MS2BD-Zms4/Zms6/control+MS2-

MBP complex for 2hrs at 4 °C. Supernatants were removed from the beads by applying 

the magnet. Beads were washed three times with wash buffer and incubated with 50 µl of 

elution buffer for 15 mins. Elution step was repeated so that total 100 µl of elutions were 

collected.  For the precipitation of RNA, equal volume of isopropanol and 10 µl of 

GlycoBlue™ was added to elution sample and then, incubated overnight at -20 °C. RNAs 

were pelleted at 15,000 rpm for 15 mins at 4 °C and washed with 1 ml ethanol. Air-dried 

RNA pellet was resuspended in 50 µl RNase-free water. RNAs for sequencing were 

stored at -80 °C.  

3.4.18 Transcriptomics data analysis 

Prepared RNA was quantified and qualified using Bioanalyzer before sequencing. 

NEBNext® Multiplex RNA Library Prep Set for Illumina® (New England Biolabs Inc.) 

was used for generating RNA libraries. Sequencing was performed using Illumina® 
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NextSeq technology with PE 2*150 run (Genomic Sequencing and Analysis Facility at 

the University of Texas at Austin). All sequenced libraries were mapped to the Z. mobilis 

8b complete genome (pending publish) using bwa (0.7.12-r1039) (Li and Durbin 

2009).We used three replicate for each sample. Generated sam files were further analyzed 

using Cuffdiff (v2.2.1 (4237)) (Trapnell, Roberts et al. 2012) to generate normalized 

count matrix. Analysis followed the procedures and steps described in the package 

documentation and unless stated otherwise default parameters were used. 
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Chapter Four 

High throughput in vivo sensing of accessible interfaces in a large 
ensemble of small RNAs reveals Hfq as a universal structural relaxer 

*Article in preparation 

4.1 INTRODUCTION  

Recent efforts have rendered useful high throughput approaches to understand 

structure and intermolecular interactions involving RNA in living cells. However, often 

times profiles of RNA structures only partially explain patterns of regional accessibility, 

where accessibility is understood as the ability of a given stretch of nucleotides to 

establish intermolecular interactions that could be important to RNA function. We have 

developed a novel high-throughput method based on synthetic biology and machine 

learning approaches to characterize functional RNA structures in living cells. 

Specifically, we have engineered a system in which accessibility is correlated to 

transcriptional elongation, as evaluated by RNA-seq. We demonstrate the use of this 

method in understanding binding interfaces in a variety of RNAs by simultaneously 

interrogating over 1000 regions in 72 identified bacterial sRNAs in vivo.  Among the72 

characterized sRNAs, only a few have been previously extensively characterized 

regarding their target mRNAs and their dependency on Hfq. This work reveals patterns of 

functional structure related to high and low accessibility that likely hallmark regulatory 

activity. Specifically, our results suggest that interacting regions display either extremely 

high or low accessibility, preferentially evolve within the most 5’ two thirds of the sRNA 

molecule and harbor a sequence motif reminiscent of the ubiquitous RNA recognition 

motif YUNR (Franch, Petersen et al. 1999). We also evaluate the contribution of the Hfq 



 86 

chaperone to natural patterns of accessibility for this sRNA collection and show that it 

serves as a universal structural relaxer of regulatory RNAs in E.coli. 

4.2 RESULTS 

4.2.1 Harnessing transcriptional regulation for high throughput characterization of 
RNA accessible interfaces  

To allow large-scale identification of accessible RNA interfaces, we constructed a 

system that couples in vivo hybridization to transcriptional elongation control. While 

assessment of hybridization potential has shown informative in mapping accessible RNA 

interfaces(Sowa, Vazquez-Anderson et al. 2015)(Vazquez-Anderson J, Mihailovic M, in 

Review, 2016), we hypothesized that transcriptional elongation control would support 

high throughput studies by allowing coupling to next generation sequencing. As shown in 

Figure 1, this system consists of the following main 5 elements:  (1) a variable probe 

region (Probe X), an oligonucleotide (9-26 nt) complementary to a region within a target 

RNA (taRNA), (2) the RSE, a ribosomal binding site sequestration element blocking (3) 

the RBS, a strong ribosomal binding site followed by (4) the elongation switch (ES) 

located directly upstream of (5) the RNA elongation reporter (RER). The ES consists of a 

small 24-amino acid peptide known as tnaC followed by the rho-dependent transcription 

terminator rho utilization site (rut). These two components function together to regulate 

transcriptional elongation by a mechanism known as nascent polypeptide-mediated 

ribosome stalling(Wilson, Arenz et al. 2016), previously applied to convert translational 

to transcriptional control(Liu, Qi et al. 2012). The plasmid design of this system is shown 

in Figure C.1A. Overall, this scheme is based on the premise that differential translation 

of tnaC, governed by exposure of the RBS, influences transcriptional elongation and this 

ultimately correlates to the accessibility of the target region. Accessibility is herein 
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defined as the ability of a given stretch of nucleotides to establish intermolecular 

interactions. The exposure of the RBS is determined by the stability of the hairpin (RSE 

paired with RBS), which is controlled by the interaction of the probe region with the 

corresponding antisense target region, as previously reported(Sowa, Vazquez-Anderson 

et al. 2015). In this case, if accessible, the target region strongly binds to the probe, 

destabilizing the hairpin and allowing for the translation of tnaC.  Importantly, translation 

of tnaC leads to ribosome stalling (Figure 4.1 top), thereby blocking the rut site and 

preventing the Rho factor from binding; in this case, full transcriptional elongation occurs 

and a full-length transcript is synthesized. In contrast, if inaccessible, the target region 

does not base pair with the probe region, tnaC is not translated, and the rut site is 

available for the rho factor to bind and arrest transcription prematurely; this leads to a 

short partial-length transcript), as shown in Figure 4.1 (bottom). This design offers a 

measure of RNA accessibility per region suitable to be characterized by varying 

transcript lengths using RNA-seq. Remarkably, in this way INTERFACE allows for the 

simultaneous characterization of local accessibility profiles within large assortments of 

RNAs in the transcriptome. “Accessosome”: a thorough landscape of accessible 

interfaces throughout any assortment of RNAs in the transcriptome.  
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Figure 4.1. Modular engineering of a synthetic transcriptional control for high 
throughput characterization of RNA accessible interfaces 

1.Accessible region: the system considers 5 main components that function in concert to generate a full-

length transcript measurable via RNA-seq. In this case, the probe binds strongly, releasing RBS for the 

translation of tnaC that, in turn, stalls the ribosomes. The stalled ribosomes blocked the Rho factor from 

binding to the rut site and allow transcription elongation. 2. Inaccessible region: in this case tnaC is not 

translated due to lack of binding between the probe and the target RNA causing the rut site to become 

available. The Rho factor binds the rut site preventing transcriptional elongation and ultimately generating 

a partial-length transcript.  

As shown in Figure 4.2, implementation of INTERFACE to RNA characterization 

consists of 3 main steps: (1) cell collection, (2) RNA extraction, (3) DNA library 

generation and (4) RNA-seq. First, we transformed a library of variants of the 

INTERFACE plasmid into a relevant E. coli strain; each INTERFACE variant 

represented an oligonucleotide probe that targets a specific target RNA region (Figure 

4.2). We then collected total RNA from the sample and generated a DNA library as 

outlined in the Methods section (Figure 4.2). Importantly, no fragmentation was 
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performed to preserve the ability to correctly assign a 3’ end to the corresponding 5’ end 

of each transcript and reliably identify the extent of transcriptional elongation for each 

transcript (based on the target region to which the distinct probe hybridized). Following 

DNA purification, samples were sequenced using a standard paired-end Illumina-

platform protocol.  As part of this protocol, the RNA-sequencing data was analyzed for 

its overall quality and the adaptor sequences were trimmed followed by reads alignment 

to the differentially elongated sequence (ES in Figure 4.1) with varying probe sequences 

(Methods). Finally, data was independently filtered for reads containing each probe 

sequence of interest and corresponding R2 (3’ end) reads were paired to R1 (5’end) reads 

to determine probe-specific transcriptional elongation. In this way, transcriptional 

elongation was correlated to the accessibility of each target RNA region. 
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Figure 4.2. INTERFACE experimental workflow. 
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4.2.2 Validating molecular features governing the ability of INTERFACE to capture 
regional accessibility 

Two basic mechanistic premises enable the INTERFACE approach: (1) that RBS 

exposure governs transcriptional elongation and (2) that elongation patterns are 

dependent on the presence of the elongation switch and are reliable indicators of regional 

accessibility. First, to confirm that RBS exposure governs transcriptional elongation, we 

designed two control experiments in the presence of a random probe with low genome 

complementarity: a construct comprised of a permanently sequestered RBS (RSE 

effectively sequesters RBS due to complementarity) and a construct comprised of a 

permanently opened RBS (RSE is mutated to free the RBS). Consistent with 

expectations, the sequestered RBS and the open RBS controls exhibited partial and full 

transcript lengths, respectively (Figure 3.3A). From Figure 3.3A we observed major 

peaks present at different loci of the INTERFACE transcript: the first group of peaks 

(~75 nt) signals the presence of the ES (specifically tnaC), the second group of peaks 

(~140 nt) indicates the presence of the rut terminator and finally the last group of peaks 

(~200 nt) shows up at the RER and ultimately denotes the extent of transcriptional 

elongation. Second, to test the dependency of differential elongation on the elongation 

switch, we assayed the accessibility of well-characterized regions(Sowa, Vazquez-

Anderson et al. 2015) along the model Tetrahymena group I (gI) intron target RNA. Our 

initial choice of this non-native RNA as a control (expressed in trans, with plasmid 

shown in Figure C.1B) minimizes potential interference from native RNAs. Figure 4.3B 

shows representative sample regions within this model RNA, one highly accessible 

(nucleotides 400-409) (Figure 4.3B top) and one highly inaccessible (nucleotides 361-

380) (Figure 4.3B bottom), as previously reported(Sowa, Vazquez-Anderson et al. 2015). 

Importantly, we observed the expected shift towards longer transcripts for the most 
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accessible region, only in the presence of the elongation switch (Figure 4.3B). Moreover, 

this bias towards larger transcript sizes was absent from transcriptomic data when 

probing the highly inaccessible region. It is worth noting that these transcript size biases 

were only observed in the presence of a target RNA, indicating our ability to gather 

specific information about a target RNA of interest in vivo.  

To evaluate the expected high throughput potential of this approach, we fully 

characterized the gI intron in a single experiment by evaluating a library containing 

INTERFACE plasmids for 30 independent probes (in a combination of 9-mers and 16-

mers for 100% coverage) (Figure 4.3C, Figure C.2). These results are consistent with 

evidence from previous studies(Zarrinkar and Williamson 1994, Doherty and Doudna 

1997, Sowa, Vazquez-Anderson et al. 2015)(Vazquez-Anderson J, Mihailovic M, in 

Review, 2016). In particular, as shown in Figure 4.3C, we demonstrate the ability of the 

INTERFACE approach to similarly identify highly transient and dynamic regions in the 

unique way of in vivo hybridization methods (distinct from single-nucleotide probing 

methods as they bear the ability to capture low-abundance dynamic regions), as 

previously reported(Sowa, Vazquez-Anderson et al. 2015). 
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Figure 4.3. INTERFACE allows for high-throughput characterization of functional 
structure.  

A. RBS exposure controls transcriptional elongation. A sequestered RBS control shows differentially less 

transcriptional elongation than the free RBS control as per the weighted average of the length per read 

calculated from RNA-seq results. B. The inclusion of the Elongation Switch (ES) enables differential 

transcriptional elongation that correlates with accessibility. C. INTERFACE is capable of fully 

characterizing an RNA molecule in a single experiment. The model RNA gI intron was characterized 

showing similar results to previous studies.  

4.2.3 Large-scale characterization of accessible interfaces in native regulatory RNAs 
aided by machine learning reveals potential functional regions  

To understand universal molecular features of sRNAs features that contribute 

accessible local surfaces for in vivo interactions, we designed a single INTERFACE 

experiment to collectively characterize accessibility profiles in a large group of trans-
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encoded sRNAs.  To simultaneously minimize the number of experimentally probed 

target regions while optimizing the information collected regarding dynamic sRNA 

regulatory interfaces, a machine-learning algorithm was coupled to a biophysical model 

to select optimal experimental target regions (Figure 4.4A).  We considered optimal 

experimental target regions to be those more likely to show dynamic behavior in terms of 

their likelihood to form intermolecular interactions, indicated by the most and least 

accessible regions (as previously shown, (Sowa, Vazquez-Anderson et al. 2015) 

(Vazquez-Anderson J, Mihailovic M, in Review, 2016)). Approximately 70,000 potential 

targeting regions along 72 sRNAs (Table C.1) were initially generated with a length 

constraint of 9-16 nt. The predicted accessibility of each region was evaluated using an 

adapted version of a previously developed biophysical model that predicts regional 

hybridization potential (Vazquez-Anderson J, Mihailovic M, in Review, 2016). Predicted 

regional hybridization potentials were then provided to a machine-learning algorithm, 

known as sparse knowledge gradient (KG)(Li, Liu et al. 2015, Li, Liu et al. 2016), to 

provide experimental suggestions based on value-of-information analysis by combining 

Bayesian optimization problem with a regularized regression approach, Lasso(Tibshirani 

1996) (Methods). In this way, we collected an initial list of suggested regions for probing 

within each target sRNA, fulfilling the constraints of: (1) minimized target region 

overlap, (2) target region length specification (9 – 16 nt), and (3) full coverage of each 

sRNA molecule.  As shown by simulations that compared the selection of dynamic 

interfaces obtained by this machine learning algorithm relative to random design 

(exploration) or to the adapted biophysical model (exploitation) only (Figure 4.4B), the 

inclusion of this computational approach in our experiment reduced our probing efforts 

by enriching the number of interesting (dynamic) regions that were assayed. Ultimately, 

we selected the top KG-ranked (~971) regions from these predictions for a full coverage 
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of the target 72 sRNAs. These 72 sRNAs were selected using carefully curated 

databases(Li, Huang et al. 2013, Wang, Liu et al. 2015) for which experimental evidence 

of their existence has been reported (Table C.1). The INTERFACE accessibility maps are 

shown in Figure C.3. Among the 72 characterized sRNAs, no more than a couple dozen 

have been extensively characterized regarding their target mRNAs and their dependency 

on Hfq. 
 

 

Figure 4.4. Characterizing the acessosome for a large ensemble of sRNAs.  

A. Workflow for machine-learning algorithm to select for accessible interfaces. B. Our machine-learning 

algorithm based on knowledge value outperforms the exploration and exploitation strategies (p-

value<0.001, 2-tailed t-test). Using exploitation (only the biophysical model) requires less experimental 

effort than the exploration approach (p-value<0.001, 2-tailed t-test).  
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To assess how the collected accessibility data related to the sRNA functional interfaces, 

we analyzed the acquired profiles for 21 sRNAs (with a total of 66 local regions) that 

have been well characterized in terms of their experimentally confirmed binding sites. 

Using the sRNATarBase(Wang, Liu et al. 2015), we collected exhaustive information on 

experimentally confirmed mRNA binding sites this set of of 21 sRNAs (Table C.1). 

Importantly, we found up to twice as many regions harboring sRNA-mRNA binding sites 

within the low (<0.3) and high (>0.7) INTERFACE-assessed intervals, respectively, 

relative to the mid range (0.3≤mid≤0.7). Additionally, we observed a clear preference of 

these binding sites to fall within the first two thirds of the sRNA molecule (5’ to 3’ end) 

(Figure 4.5A).  

To further differentiate sRNA-mRNA binding sites, we performed a sequence 

motif search using the GAM2 tool from the MEME suite (Frith, Saunders et al. 2008) and 

discovered a highly prevalent sequence motif (ADUCA) shown in Figure 4.5B (see 

Methods for details). These results suggest that interacting regions tend towards extremes 

in regards to accessibility, preferentially evolve within the most 5’ two thirds of the 

sRNA molecule and harbor a sequence motif reminiscent of the ubiquitous RNA 

recognition motif YUNR (Franch, Petersen et al. 1999). Altogether these three 

observations could be a strong indicator of the presence of sRNA-mRNA binding sites.  

As shown in Figure 4.5A, INTERFACE-determined accessibility profiles capture 

well experimentally confirmed binding sites as either highly or lowly accessible. This 

reflects the possibility that highly active sites are either actively bound by a cellular 
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factor/target (and therefore lowly accessible) or are configured as regions that are highly 

available for binding (displaying high accessibility). Indeed, low accessibility, 

characteristic of active regulatory control, was observed in known binding sites of sRNAs 

known to be active under the experimental conditions of this study.  For instance, the 

exponential growth conditions of this study likely require replacement of select outer 

membrane proteins (OMP) to maintain structural integrity(Arunasri, Adil et al. 2014). 

Consistent with this physiological expectation, we captured low accessibility (0.14) of the 

region within the rseX sRNA that regulates ompA (region 5 of rseX, Figure 4.5C) 

indicating the inability of the INTERFACE to access the binding region due to active 

ompA upregulation. Similarly, the lrp repression region within the MicF sRNA (region 2 

of MicF, Figure 4.5C) appears to be active under these experimental conditions based on 

observed low accessibility (0.2), which is expected of the double negative Lrp-MicF 

feedback loop in a nutrient-rich environment(Holmqvist, Unoson et al. 2012). In contrast, 

active regulation by the DsrA and Spot 42 sRNAs of stress-responsive mRNAs(Lease, 

Smith et al. 2004) is not anticipated under the experimental conditions used in this study. 

This is consistent with the observed INTERFACE-determined high accessibility in DsrA 

and Spot 42 regions involved in regulation of rpoS (region 3 of DsrA, Figure 4.5C),  hns 

(region 7 of DsrA, Figure 4.5C), and sugar-responsive mRNAs(Beisel and Storz 2011), 

such as gltA (region 5 of Spot 42, Figure 4.5C) and sucC (region 9 of Spot-42, Figure 

4.5C), respectively. The sensitivity of INTERFACE to in vivo cellular conditions unveils 

the prospects of using this method to map dynamic functional accessibility changes of 

full regulatory networks.  
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After establishing the value of identifying lowly and highly accessible regions as 

a way to establish their functionality within the molecules for establishing regulatory 

interactions, we collected INTERFACE profiles for the remaining ~51 uncharacterized 

sRNAs. Importantly, we use the patterns learned from our profiling of well-characterized 

sRNAs to propose potential mRNA binding sites for these more obscure sRNAs. To this 

end, we first classify all regions based on the same criteria used in Figure 4.5A. Next, 

using GAM2scan form the MEME suite (Frith, Saunders et al. 2008) to search for highly 

similar sequences to the motif in Figure 4.5B (score>=5 according to GAM2scan results) 

in the regions contained within each grouping. We scored each bin in Figure 4.5D using 

the normalized (0 to 1) prevalence of these motifs in the pool of regions within each bin. 

Figure 4.5D shows a strong match in the pattern observed in Figure 4.5A suggesting high 

potential for INTERFACE accessibility to be used as a predictor of functional regions. 
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Figure 4.5. Large-scale characterization of accessible interfaces in native regulatory 
RNAs reveals functional regions 
 

A.  An analysis of sRNA-mRNA known binding sites in 18 sRNAs (Table C.1) shows an enrichment of 

binding sites in the 2/3 most 5’ end and in the extremes of accessibility (1/3 most inaccessible and 1/3 most 

accessible).	
  B. A sequence logo obtained using the webserver MEME (Frith, Saunders et al. 2008). 

Specifically the tool GAM2 was employed to find gapped sequence motifs, a significant motif was found in 

the regions harboring known sRNA-mRNA binding sites. In a parallel analysis no significant motifs were 

found in the regions not known to harbor binding sites. C. Accessibility maps for dsrA, Spot-42, rseX, and 

MicF are representative of the conclusions drawn from previous data. Specifically binding sites are shown 

to preferentially appear in regions either highly or lowly accessible. D. Analysis of the rest of sRNAs 

shows a strong correlation with the distribution of known binding sites in terms of position, accessibility 

and the sequence motif found previously, supporting the prospects of using INTERFACE accessibility as a 

predictor of functional regions.  
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4.2.4 Hfq facilitates sRNA-mRNA interaction by releasing target sRNA structure 
and increasing accessibility 

To understand the global impact of Hfq chaperoning within this large set of 

sRNAs, we also mapped the INTERFACE accessibility of the 971 regions within the 72 

sRNAs to both the wild type BW25113 strain (as described above) and an hfq-knockout 

strain (JW4130-1(Baba, Ara et al. 2006). Upon collecting information available for all 72 

sRNAs studied Table C.1), we found that approximately 34 sRNAs have a confirmed 

dependency on Hfq in E. coli; of these, exact binding sites have been experimentally 

confirmed for less than half and approximately 16 have been proposed  to be Hfq-

independent. Interestingly, although more than 20% of sRNAs in our experimental set are 

believed to be Hfq-independent, the distribution of INTERFACE accessibility changes 

upon the presence of Hfq (parent – ∆Hfq strain), where we observe a clear skewed 

towards positive values (Figure 4.6A). Importantly, this marked accessibility change in 

the absence of Hfq supports a previously-proposed hypothesis in which Hfq serves as a 

structural-releasing chaperone for its target sRNAs(Ishikawa, Otaka et al. 2012). 

Importantly, upon comparison of the number of regions affected across strains between 

Hfq-dependent and Hfq-independent sRNAs, we observed a stronger Hfq-dependent 

skew in INTERFACE determined accessibility for regions within known Hfq-dependent 

sRNAs relative to regions within Hfq-independent sRNAs (representative examples 

shown in Figure 4.6B). The effect of Hfq on these regions was assessed by tallying the 

number of regions where a skew in accessibility was observed, lower p-values < 0.05 and 

higher magnitude of accessibility change).   

 

 



 101 

 

Figure 4.6. INTERFACE analysis reveals structural changes upon protein binding 
in small RNAs 

A. INTERFACE reveals role of Hfq as a structural relaxer of sRNAs indicated by the skew in the positive 

difference in accessibility upon presence of Hfq relative to the absence of Hfq (parent – ΔHfq). 

Approximately 70% of the all regions analyzed (~970) fell within the positive interval of the difference in 

accessibilities across strains (parent – ΔHfq). B. INTERFACE is sensitive to different levels of Hfq 

dependency. Bar graphs represent the changes in accessibility upon the presence of Hfq, stars indicate 

statistical significance (* p-value< 0.05, ** p-value<0.01 and *** p-value<0.001 by the two-tailed t-test). 

Spot42 a strong Hfq-dependent sRNA shows global effects in its accessibility patterns versus RyeA, an 

Hfq-independent sRNA, with no significant changes in its structure.  
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Founded on our ability to capture Hfq-dependency, we propose an INTERFACE-

based level of Hfq-dependency in accordance to the following two characteristics per 

sRNA for all uncharacterized sRNAs: (1) the fraction of regions showing significant 

accessibility changes between wt and ∆Hfq strains and (2) the maximum absolute 

regional accessibility difference between wt and ∆Hfq strains (Table 4.1) (see Methods 

for details). Interestingly, the INTERFACE-based Hfq dependency classification is 

mostly consistent with dependencies characterized by quantitative metrics including 

competition assays, co-immunoprecipitation, and electrophoretic mobility shift assays 

(for ~ 20 sRNAs for which relative Hfq-binding strength information is available) (Table 

4.1). These observations altogether support strong prospects for the application of 

INTERFACE to the characterization of Hfq-like regulators and their effects on RNA 

binding partners. 
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Table 4.1. INTERFACE reveals differential dependency of Hfq for all sRNAs 
analyzed and correlates strongly with pull down data obtained from the 
literature. 

 

sRNA
Hfq 
dependent?

INTERFACE-
determined Hfq 
Interaction Strength

Literature-determined 
Hfq Interaction Strength Hfq dependency Reference Hfq-interaction Strength Reference comments

sroB (ChiX) Yes weak strong Moon and Gottesman (2011) Moon and Gottesman (2011)
strong in comparison to Spot42, ArcZ, 
CyaR, GcvB, MgrR, DsrA

RybB Yes mid strong Zhang, et al. (2003) Wassarman, et al. (2001)
RydC Yes weak strong Zhang, et al. (2003) Olejniczak (2011)
RprA Yes weak strong Tree, et al. (2014) Olejniczak (2011)
RyeB (sdsr) Yes strong strong Zhang, et al. (2003) Wassarman, et al. (2001)
SraD (MicA) Yes strong strong Tree, et al. (2014) Olejniczak (2011)

SraH (ArcZ) Yes strong strong Zhang, et al. (2003) Soper, et al. (2010)
Higher affinity than rprA which is 
considered to interact with Hfq strongly

GlmZ Yes weak strong Tree, et al. (2014) Göpel, et al. (2013) Binds to Hfq with high affinity 
Spot_42 Yes strong strong Kim, et al. (2015) Olejniczak (2011)
MicF Yes weak strong Zhang, et al. (2003) Olejniczak (2011)
GcvB Yes strong mid Tree, et al. (2014) Moon and Gottesman (2011) Lesser affinity for Hfq than ChiX

dsrA Yes strong mid Tree, et al. (2014) Olejniczak (2011); Soper, et al. (2010); Moon and Gottesman (2011)

Mid in competition assay; weak in 
comparison to rprA; weak in comparison to 
ChiX

ryhB Yes strong mid Tree, et al. (2014) Olejniczak (2011)
MgrR Yes strong mid Kim, et al. (2015) Moon and Gottesman (2011) Lesser affinity for Hfq than ChiX
CyaR Yes strong mid Tree, et al. (2014) Moon and Gottesman (2011) Lesser affinity for Hfq than ChiX
GlmY Yes mid weak Göpel, et al. (2015) Göpel, et al. (2013) Much weaker affinity than GlmZ
istR-1, istR-2 Yes strong weak Olejniczak (2011) Olejniczak (2011)

OxyS Yes weak weak Tree, et al. (2014) Olejniczak (2011); Henderson, et al. (2013) 
Weak in competition assay; weak 
interaction compared to rprA-Hfq

dicF Yes weak weak Zhang, et al. (2003) Olejniczak (2011)
RyeA (SraC) Yes N/A weak Pandey, et al. (2014) Wassarman, et al. (2001)
tpke11 Yes strong N/A Zhang, et al. (2003)
SgrS Yes mid N/A Ishikawa, et al. (2012)
McaS Yes weak N/A Jorgensen, et al. (2013)
FnrS Yes strong N/A Tree, et al. (2014)
MicC Yes strong N/A Tree, et al. (2014)
RyeF Yes mid N/A Zhang, et al. (2003)
rseX Yes strong N/A Kim, et al. (2015)
OmrA Yes weak N/A Tree, et al. (2014)
OmrB Yes weak N/A Tree, et al. (2014)
GadY Yes mid N/A Kim, et al. (2015)
ryjB Yes weak N/A Zhang, et al. (2003)
MicL Yes mid N/A Guo, et al. (2014)
IpeX Yes weak N/A Catillo-Keller, et al. (2006)
ryjA Yes weak no detectable binding Wassarman, et al. (2001) Wassarman, et al. (2001)
RygC No mid N/A Pandey, et al. (2014)
ffs (4.5S) No strong N/A Zhang, et al. (2003); Pandey, et al. (2014)
RybA (mntS) No weak no detectable binding Gerstle, et al. (2012) Wassarman, et al. (2001)
psrD No strong N/A Pandey, et al. (2014)
rdlA No weak N/A Pandey, et al. (2014)
rdlB No weak N/A Bak, et al. (2015)
rdlC No weak N/A Bak, et al. (2015)
rydB No weak N/A Pandey, et al. (2014)
isrB No mid N/A Pandey, et al. (2014)
isrC No mid N/A Pandey, et al. (2014)
ryfA No weak N/A Pandey, et al. (2014)
ryfB No weak N/A Bak, et al. (2015)
RygD (sibD) No mid N/A Pandey, et al. (2014)
symR No strong N/A Kawano, et al. (2007)
ryfD No mid N/A Pandey, et al. (2014)
rdlD No mid N/A Pandey, et al. (2014)
sroC N/A weak N/A Papenfort and Vanderpool (2015)
arrS N/A strong N/A
SraL N/A strong N/A
SroA N/A strong N/A
tp2 N/A mid N/A
tff N/A mid N/A
nc2 N/A strong N/A
sokB N/A mid N/A
sroD N/A N/A N/A
tpke70 N/A mid N/A
sroE N/A strong N/A
ryfC (ohsC) N/A strong N/A
InvR N/A weak N/A
sroG N/A mid N/A
psrN N/A weak N/A
sroH N/A mid N/A
nc5 N/A weak N/A
SibB N/A weak N/A
SibE N/A mid N/A
SibA N/A mid N/A



 104 

4.3 DISCUSSION 

A synthetic transcriptional control was coupled to a reporter system to allow for 

the evaluation of accessibility of 971 sRNA interfaces via RNA-sequencing, including 66 

previously identified mRNA binding regions.  Our results suggest that INTERFACE can 

aid in determination of functional regions in RNA, as well as sense structural changes 

that support intermolecular interactions e.g. Hfq-dependency. The ability of 

INTERFACE to capture dynamic behavior of interacting interfaces within sRNAs on this 

larger scale supports a hypothesis in which regions that are actively being occupied due 

to interaction with target mRNAs are rendered inaccessible to the INTERFACE probe, 

while interaction interfaces which are not active appear highly accessible to the 

INTERFACE probe (Figure 4.5A). This phenomenon, which could be explained by 

competitive binding between natural targets of the sRNA and the reporter probe, upholds 

the use of the INTERFACE to sense active or inactive RNA-RNA interactions and aid in 

determination of functional regions. 

As for the role of Hfq in sRNA chaperoning, our results strongly suggest a 

universal role of Hfq as a structural relaxer. Moreover, since no regional effects where 

observed (no reduced accessibility in Hfq binding sites), INTERFACE results highly 

supports a hypothesis for the Hfq chaperoning in which Hfq only binds utilizing only 2-3 

nt(Dimastrogiovanni, Frohlich et al. 2014) and unfolds the sRNA to facilitate binding to 

its target mRNA. Paradoxically, Hfq-independent sRNAs still showed significant 

changes, although weakened, supporting at least an indirect effect by Hfq on these 

regulatory RNAs. These striking findings, to the best of our knowledge, are the first to 

confirm in a global perspective of the functional RNA structure the roles of Hfq.  

It is clear that, by exploiting the ability of this system to sense RNA-RNA and 

RNA-protein interactions, further understanding of regulatory RNA networks can be 
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attained. The accessosome provided by INTERFACE sits at the core of the RNA 

function-structure relationship (Figure 4.7).  Potential applications of information gained 

by such research include synthetic antisense RNA design, characterization of stress-

responsive sRNAs, and even metabolic engineering. Identification of regions that exhibit 

functional characteristics identified in this study (low/high accessibility), which have not 

previously been linked with regulatory function, could enable such discovery upon 

further targeting with synthetic antisense RNA (and monitoring gene expression 

changes).  Using INTERFACE under varying environmental conditions could grant 

identification of stress response of various regulatory RNAs. Combining knowledge of 

functional/regulatory regions, protein dependency, and activity within a multitude of 

RNAs concomitantly supports system modeling, informing subsequent genomic 

engineering for fine, multiplex tuning which would be invaluable to metabolic 

engineering. The breadth of applications contingent upon information obtained by RNA 

hybridization accessibility patterns constitutes the need for high-throughput methods such 

as INTERFACE. 



 106 

 

Figure 4.7. The accessosome sits at the “core” of the structure-function relationship 

4.4. METHODS 

4.4.1 Plasmids and strains 

Three different E. coli strains were used in this work: K-12 MG1655 for the 

experiments performed via overexpression of the gI intron to establish the technique, 

BW25113 (Keio collection parent strain(Baba, Ara et al. 2006)) and the Hfq-deficient 

strain (ΔHfq JW4130-1 from the Keio Collection(Baba, Ara et al. 2006)) for experiments 

performed to characterize accessible interfaces in native RNAs. The Hfq-deficient strain 

was “cured” following a FLP recombination protocol(Baba, Ara et al. 2006) and the 

knockout was confirmed via genomic PCR. Two main plasmids were constructed 
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departing from the original “Wild Type Intron Probe I reporter-(WTIPIR)” 

plasmid(Sowa, Vazquez-Anderson et al. 2015) for this work: INTERFACE (for native 

target RNAs)  and Overexpression INTERFACE (for overexpressed target RNAs) 

(Figure C.1A and 1B respectively). These constructs mainly differ from WTIPIR in that 

we introduced (1) a p-chlorophenylalanine negative selection (PheS)  cassette in place of 

the asRNA sequence (between EcoRI and the CB element flanked by two BsmbI 

restriction sites) for cloning optimization purposes (Kast and Hennecke 1991, Kast 1994), 

(2) an adaptor containing a tnaC sequence and a rho-dependent terminator rut (rho 

utilization site) and (3) a truncated version of GFP (reporter) where the start and end 

codons have been preserved to allow for transcript size characterizations.  

4.4.1.2 Synthesis of constructs 

All probes were introduced in the different plasmids by using a Golden Gate (GG) 

cloning scheme (Vazquez-Anderson J, Mihailovic M; in review). Thirty new probes 

targeting the gI intron were cloned into the HT-GG iRS3 plasmid using GG cloning. 

Using the same approach, five previously designed probes (original-4, 6, 7, 9 and 10) 

(Sowa, Vazquez-Anderson et al. 2015) were introduced into a version of the 

Overexpression INTERFACE plasmid lacking the elongation switch for the control 

experiments in Figure 4.3B. For the synthesis of the 1016 probe-library (sRtar) targeting 

72 experimentally confirmed small RNAs in E. coli and the glutamate tRNA (used as a 

control), we utilized a high throughput version of Golden Gate cloning in which we 

combined up to 10 probes per synthesis reaction into the INTERFACE. We synthesized 

the sequestered and free RBS controls by introducing a “no interaction” probe (a 

randomized 15-mer tested for minimum complementarity to genome in E. coli) into the 

INTERFACE. For the free RBS control, a randomized RSE was introduced via Gibson 



 108 

assembly(Gibson 2011) to prevent formation of the stem-loop that serves to block the 

RBS. All constructs were initially synthesized using E. coli electro-competent cells 

(Turbo, NEB) and subsequently transformed into the appropriate experimental strain. 

Each LB-agar plate containing the sRtar library (~100 plates) was thoroughly scraped 

using LB. The resulting combined “goop” was recovered for 1.5 h at 37 °C and stored at -

80 °C with 30% glycerol.  Sequencing of each individual clone was used to confirm each 

construct except for the sRtar library, for which diversity was confirmed at different steps 

of the library generation by sequencing randomly-selected subsets of colonies (>60). 

Clones for the sRtar library were further individually verified upon RNA-seq analysis, 

allowing confirmation of >95% and >98% of clones for parent and DHfq strains, 

respectively.  The inability to confirm a small percentage of clones was likely due to 

limited sequencing depth.   

4.4.2 INTERFACE experiments 

INTERFACE experiments were performed following the previously reported 

protocol(Sowa, Vazquez-Anderson et al. 2015). For the experiments used to establish the 

system with an overexpressed target RNA (Overexpression INTERFACE), we made 

individual overnights (biologically independent samples) for each construct, equal parts 

of each resulting culture were combined and 400 μL of this mixture were seeded into 40 

mL of LB. The cell cultures were run by triplicates and at four different induction 

conditions (N=12): (1) no anhydrotetracycline (aTc), no arabinose (ara); (2) 20 μL of aTc 

(final concentration: 100 ng/μL), no ara; (3) no aTc, 800 μL of 20% ara (final 

concentration: 0.8%) and (4) 20 μL aTc, 800 μL 20% ara.  

For the experiment intended to characterize native target RNAs (INTERFACE), 

100 mL of LB were seeded with 600 μL of the sRtar library directly from gradually-
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thawed freezer stocks.  400 μL of each of the following control constructs were 

distributed to the seeded library solution: (1) free RBS (overnight), (2) sequestered RBS 

(overnight), and (3) the libraries of probes targeting the following molecules (stored 

individually): CsrB, glu-tRNA, DsrA and RyhB (freezer stocks).  Samples were grown in 

triplicates, under two induction conditions (no ara and 2 mL of 20% ara), and in two 

separate strains (parent and DHfq) for a total of 12. Kanamycin was added to all cultures 

to obtain a final concentration of 50 μg/mL. In both experiments samples were induced 1-

1.5 h post-seeding, recovered 5 hours post-induction, and immediately processed for total 

RNA extraction.  

4.4.2.3 Total RNA extraction 

Following collection of samples 5-hours post-induction, total RNA was extracted 

from a sample of 1-5 mL of culture as per the protocol in (Hee Cho et al., 2014). Next, 

total RNA samples were treated with RNAse-free DNase I (PI-90083 Thermo Fisher 

Scientific Inc.). After DNase I treatment, 10 μL of GlycoBlue (AM9516 Life 

Technologies) were added to an equal volume solution of isopropanol (brand) and RNA 

samples (55 μL). Ethanol precipitation was then performed as described in (Cho, Lei et 

al. 2014). Finally, the quality of RNA was evaluated by using a bioanalyzer (Agilent) at 

the Genomic Sequencing and Analysis Facility (GSAF at UT Austin) to confirm no 

significant degradation had occurred.  

4.4.4 Computation selection of accessible interfaces 

4.4.4.1 Estimation of binding potential using a biophysical model 

We used an initial, un-optimized version of a model reported in (Vazquez-

Anderson J, Mihailovic, M; in Review) to explain hybridization efficacy, ν, obtained via 

regression analysis, as follows: 
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𝜐 =   𝜃 Δ𝐺!" − Δ𝐺!"# + Δ𝐺!"# 

In this model, the ΔG terms represent the free energies which must be considered 

for the interaction of the target region with the reporter probe, in which subscripts “tf,” 

“asT,” and “asF” represent target unfolding, binding between the reporter probe and 

target, and reporter probe unfolding, respectively.  The model also includes a pseudo 

frequency factor (θ) to account for the global ensemble of structures within the target 

region.  This term is evaluated at a regional level and thus calculated as the summation of 

each nucleotide’s local accessibility over the length of the target region, as estimated by 

base-pairing probabilities from the using the AllSub subroutine in the RNA-structure 

webserver (Wuchty, Fontana et al. 1999, Duan, Mathews et al. 2006, Reuter and 

Mathews 2010). 

4.4.4.2 Machine learning algorithm 

To optimally select for accessible regions in 72 experimentally-confirmed 

bacterial small RNAs in E. coli, we adapted a machine-learning algorithm called sparse 

knowledge gradient (SpKG)(Li, Liu et al. 2015, Li, Liu et al. 2016) to a weighted set 

cover problem. The SpKG algorithm is developed to solve the sequential ranking and 

selection problem, in which, at each time period, one or several experimental suggestions 

are provided based on value-of-information analysis by taking into account the new 

observations. It can be used to adaptively select the targeted regions within a large 

molecule to identify which regions are more amenable to establish interactions with other 

molecules (Li, Reyes et al. 2015). However, in this setting in which many target regions 

need to be suggested before the experiments, we adapt the SpKG algorithm to a weighted 

set cover problem to maximize the value of information of all suggested probes that can 

provide a full coverage of each molecule and have minimum overlap.  
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In the following, we provide the mathematical formulation of the problem. For 

any RNA molecule with length 𝐿, suppose there are 𝑛  potential targeting regions with the 

length specification. Let [𝑖!, 𝑗!], [𝑖!, 𝑗!],… , [𝑖!, 𝑗!] be intervals on [1, 𝐿] that denote these 

𝑛  potential target regions. Let 𝑥!, 𝑥!,… , 𝑥!   ∈    {0,1} be binary variables that denote either 

the 𝑘th target region is selected or not. We use 𝑣! , 𝑘   =   1,… ,𝑛 to represent the 

knowledge gradient value of the 𝑘th target region. These values can be computed via the 

SpKG algorithm described in(Li, Liu et al. 2016). Our optimization problem can be 

written as 

𝑚𝑎𝑥   𝑣!𝑥! − 𝜆 𝑥!

!

!!!

!

!!!

 

 
𝑠. 𝑡. [𝑖! , 𝑗!]

{!:!!!!}

= [1, 𝐿] 

             𝑥!   ∈    0,1   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑘 = 1,… ,𝑛. 

Here 𝜆 is a tunable parameter that penalizes the number of target regions selected 

to minimize overlapping. This optimization problem is essentially a weighted set cover 

problem. It is one of the Karp’s 21 NP complete problems and cannot be solved in 

polynomial time. In order to solve it efficiently, we use a greedy algorithm, which was 

first analyzed in(Johnson 1974), to approximately solve it.  

Algorithm: 

1. C   ←   ∅, I   ←   ∅. (Here C is the set of nucleotides covered so far; I is the set of 

index for the selected targeting regions.)  

2. While C   ≠    [1, L] do 
for all k   ∉ I, let 𝛼! =   

!!!!
!!,!! !!

 

choose 𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛  𝛼! 

update C   ← C ∪ 𝑖! , 𝑗! , I ← I ∪ 𝑘∗ . 
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3. Output. 

4.4.4.3 Computational simulations to test for algorithm performance 

To quantify the performance of this algorithm in synthetic simulations, we 

compare it with a 2 comparatively naïve algorithms—exploration and exploitation.  The 

exploration algorithm generates the probes with length 12 uniformly for each RNA 

molecule.  In the exploitation algorithm, target regions are selected as those with highest 

predicted accessibility using the aforementioned biophysical model.  Additionally, 

identical coverage and overlap constraints to the SpKG algorithm were imposed. In these 

controlled synthetic simulations, we sample the true accessibility coefficients from a 

stochastic process. Taking into account the noise of each experiment, we then normally 

sample the observations from the three sets of target regions generated using the SpKG, 

the exploration (uniform), and the exploitation algorithms. We consider a metric called 

opportunity cost, which provides an estimation of “how far” we reach in terms of 

identifying the most accessible target region in a given number of sequential experiments.  

4.4.5 Synthesis of DNA libraries for next generation sequencing 

Following RNA extraction, and in preparation for RNA-seq, we directly 

proceeded to use the NEBNext Multiplex Small RNA Sample Prep set for Illumina (NEB 

E7330) to prepare the DNA libraries without fragmentation.  RNA Fragmentation was 

not performed to guarantee that each 5’ read and 3’ read from RNA-seq could be reliably 

assumed as the true starts and ends respectively of the corresponding transcripts. The 

protocol provided for preparation of DNA libraries by the supplier (NEB) was followed 

with a few adaptions. Briefly, a 1:2 dilution of the 3’ SR adaptor for Illumina was ligated 

overnight (18 h at 16°C) using between 0.5 μg to 1 μg of non-fragmented RNA as the 

starting material. Next, the SR RT Primer for Illumina was annealed to the 3’adaptor 
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ligated RNA samples and then the 5’ SR adaptor for Illumina was ligated (1 h at 25°C). 

Subsequently, a reverse transcription reaction was performed (60 min at 50°C) to obtain 

cDNA, which was immediately enriched via a standard PCR amplification as 

recommended by the supplier with a modified extension time of 1 min per cycle instead 

of 15 s for a total of 15 cycles. The resulting DNA was purified using the AMPure Bead 

XP system and a magnetic rack in at least two wash cycles with freshly-prepared 80% 

ethanol. 

4.4.6 Illumina sequencing of DNA libraries 

Once we obtained the DNA libraries above, DNA samples were submitted to the 

GSAF (UT Austin) for sequencing. First, the samples were analyzed for their size 

distribution using a bioanalyzer (Agilent). To enrich for the transcripts of interest 

(INTERFACE plasmid transcripts), in the case of the sRNA experiment, and enhance 

mapping depth of every single probe, the GSAF facilities performed a Pippin purification 

preferentially selecting for transcript sizes between 120 (exact length of tnaC sequence) 

and 310 nt (observed maximum size).  Finally, DNA libraries were prepared for RNA-

seq using standard Illumina kits and were run using a NextSeq equipment in a 75X2 

paired-end scheme. 

4.4.7 Computational processing pipeline of sequencing results 

The computational pipeline used to process the RNA-seq results includes the 

following steps: (1) performing a quality check on base sequencing quality using fastqc, a 

program offering analysis on attainment of passing quality scores 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc), (2) using Cutadapt 

(http://cutadapt.readthedocs.io/en/stable/guide.html) to trim adaptor sequences despite 

low adaptor contamination (<0.5%), (3) submitting the sequences for the INTERFACE 
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plasmid (pBAD/plTetO-probe-RSE-RBS-ES-RER) as the “reference genome”, (4) 

mapping the RNA-seq reads using BWA MEM for paired-end sequences, (4) converting 

the resulting sam-type file to a bam-type and subsequently to a more manageable 

bedtools file, (5) using awk to develop a script to filter for the R1 reads that contained at 

least 6 nucleotides of the probe sequence, and (6) obtaining R2 reads corresponding to 

the R1 reads from the previous step using their unique identifier and the Linux command 

“join.” In the process of filtering, we discarded concatenated reads (<2% of total filtered 

reads) due to over-ligation of 5’ adaptor from the library preparation step.  

4.4.8 Calculation of relative accessibility 

Finally, using awk, we developed a code to generate a file that contain a summary 

of the number of reads per probe ending at different positions within the INTERFACE 

sequence provided in the alignment. The transcript length with respect to each target 

region was calculated as the number of nucleotides between the observed transcription 

start site (TSS) for each promoter (consistent with the TSS reported in the literature: 

pBAD(Smith and Schleif 1978) and plTetO (Lutz and Bujard 1997)) and the transcription 

end site, both obtained from the RNA-seq results processed following the procedure 

described above. To calculate relative accessibility, MatLab was used to calculate the 

weighted averages of the read length per probe. Finally, a baseline (85 nt) was estimated 

from an thorough analysis of every single probe characterized in this study and subtracted 

from each transcript length. In the case of the experiments using the gI intron, the relative 

accessibility per probe was estimated as the ratio of the weighted average of the transcript 

length in the presence of the target RNA (adding both inducers: aTc and ara) to the 

weighted average of the transcript length in the absence of the target RNA (no induction). 

In contrast, for the sRNA experiment, the relative accessibility was calculated utilizing 



 115 

only the weighted average of the transcript length in the presence of the INTERFACE 

transcript because the target RNA is natively present, hence, we are unable to manipulate 

its expression.  Next, this weighted average of the transcript length was linearly 

normalized to fall between 0 and 1 for each molecule to reduce transcript abundance 

effects.  

4.4.9 Estimating Hfq-dependency class from accessibility changes between parent 
and Hfq-deficient strains 

To estimate the level of Hfq-dependency of sRNAs using INTERFACE, the 

differences in relative accessibility between parent and Hfq-deficient strains were 

calculated for every region targeted in this study. The average of two noteworthy 

characteristics was calculated per sRNA: (1) the fraction of regions which showed 

significant differences (p-value < 0.05) between strains as well as (2) the absolute value 

of the maximum difference. Hfq-dependency was estimated as “strong” for sRNAs which 

exhibited above average behavior in both selected fields, “mid” for sRNAs which 

exhibited above average behavior in one of two selected fields, and “weak” for sRNAs 

lacking above-average behavior in both categories.   
 

4.4.10 Sequence motif discovery and search 

Using “The MEME Suite”, specifically the motif discovery tool GAM2 we 

analyzed the sequences for all regions harboring a previously reported sRNA-mRNA 

binding site. GAM2 was independently applied utilizing all preset parameters (except for 

the number or iterations, n, that was set to 12,800) to both, the pool of regions harboring 

known sRNA-mRNA binding sites and the pool of regions not harboring any known 

sRNA-mRNA binding sites. By comparison, motifs were considered significant when 
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found in at lest 90% of the sequences fed into the algorithm and the motif was not listed 

in the databases available in GAM2scan of The MEME suite.  

To search for a known motif (in this case the motif discovered in the pool of 

regions harboring known sRNA-mRNA binding sites) we used GAM2scan from the The 

MEME suite. The algorithm was set to find at least a number of motifs equal to the 

number of sequences fed but only those motifs with as score greater or equal than 5 were 

considered. 
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Chapter Five 

Conclusions and perspectives 

In this dissertation, I recount a set of novel molecular tools that provides specific 

understanding, assists in the selection, and enables high throughput characterization of 

RNA accessible interfaces. These tools associate seamlessly to potentiate each other’s 

capabilities as demonstrated in the works described in Chapter 3 and 4. This toolkit offers 

a comprehensive picture of the ability of RNA to interact with other molecules and thus 

empowers its exploitation as a regulatory entity. Collectively, this research has, with a 

cumulus of evidence, supported the centrality of RNA structural accessibility in RNA 

structure-function research. Importantly, my work will be of value to enable the scientific 

community to continue shedding light onto the roles of RNA in various contexts.   

In the work described in Chapter 2, an in vivo oligonucleotide hybridization 

system was engineered and applied to the characterization of in vivo RNA structural 

accessibility. To achieve this goal, we exploited post-transcriptional regulation in a 

scheme that involved fluorescence as a measurable outcome. This study represents the 

proof of concept of what we termed the iRS3. Our results positioned this system as a tool 

that could be applied to study RNA structures in vivo in a variety of contexts. A highlight 

of this work is the contrast between this approach and chemical probing, specifically the 

capacity to capture dynamic regions that hallmark potential regulatory regions. This key 

ability led me to devise an application of potentially high impact and broad scope: 

characterization of functional regions in regulatory RNAs.  

In the third chapter, I present the development of a biophysical approach for the 

prediction of hybridization efficacy (i.e. structural accessibility) in RNAs. In summary, I 

showed improved prediction capabilities of a thermodynamic model upon optimization 
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with large sets of experimental data collected using the iRS3, relative to un-optimized 

approaches. Demonstration of this performance includes comparable prediction 

capabilities to benchmark IntaRNA and enhanced linear fits for complex large RNAs 

such as the group II intron. A total of 130 regions within 7 different RNAs were 

characterized and an important pattern was observed: the iRS3 possesses the capacity to 

identify functional regions i.e. binding sites for other molecules. This realization provided 

further evidence to the observed unique ability of the iRS3 to identify dynamic regions as 

seen in the previous chapter. This computational approach will be instrumental in 

manipulating and engineering synthetic RNA schemes for gene expression control. 

Importantly, the inTherAcc model would be used in selecting accessible regions in a high 

throughput characterization of regulatory RNAs.  

Finally in the last chapter, I introduced an innovative system called INTERFACE, 

for the high throughput characterization of RNA functional structure. INTERFACE 

exploits the in vivo oligonucleotide hybridization scheme described in chapter 2 coupled 

to transcriptional elongation control. Through RNA-seq we showed that the full 

accessibility landscape of an RNA molecule of any size can be readily characterized in a 

single experiment. More importantly I showcased the power of INTERFACE utilizing a 

version of the biophysical model in chapter 3 coupled to a machine-learning algorithm to 

select for accessible regions in the small RNA regulatory network. The regions selected, 

approximately 1000, were characterized using INTERFACE. The results obtained 

strongly suggest that highly and, to a lesser extent, lowly accessible regions are likely to 

be involved in interactions with other molecules. These findings underscore the prospects 

of using INTERFACE in the transcriptome-wide identification of potentially functional 

RNA regions. Another striking realization was the first strong evidence for the global role 

of Hfq as a structural relaxer of small RNAs. We foresee that INTERFACE will be used 
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to study dynamic behavior of regulatory RNAs and for the multiplex characterization of 

the molecular implications of environmental cues that trigger regulatory responses. We 

anticipate this information will be instrumental in the mapping of complex molecular 

networks, particularly those governed by molecular regulation.  

The pioneering work detailed in this dissertation sets the grounds for broad 

applications that span from the high throughput identification of RNA processing factors 

to the comprehensive characterization of complex networks that control bacterial 

virulence in pathogenic bacteria. In fact, I currently actively collaborate with Kevin 

Vasquez (group member) in a project that involves the former theme while I support Mia 

Mihailovic in pursuing the goal depicted in the latter. In addition, there are ongoing 

research efforts using the iRS3 to understand structural features of important small RNAs 

such as DsrA and CsrB. In the case of CsrB, Abigail Leistra (group member) has 

collected promising evidence of the possibility of modular engineering of this global 

regulator. Altogether, these works will bring about maturity to this early technology.  

An important perspective that remains a challenge in the near future is the transfer 

of these tools to other bacterial organisms and even to higher order organisms such as 

yeast and mammalian cells. At this point, I do not foresee extreme difficulties in 

transferring the iRS3 to other organisms because it is based on universal principles such 

as Watson-Crick base-pairing and translational regulation. In contrast, INTERFACE 

could face obstacles when transferred to higher-order organisms given that it is based on 

the fact that, in bacteria, translation and transcription are coupled. One potential strategy 

to overcome this issue is to exploit other types of transcriptional elongation control by 

introducing controllable transcriptional terminators. In the hypothetical scenario of 

successful transfer of these technologies to pathogenic bacteria and eukaryotes, better 

understanding of regulatory networks, such as those in charge of regulating virulence or 
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even tumor growth in the case of mammalian cells, could be attained. At this point in 

time, considering that E. coli is regarded as a “biotechnological factory”, the prospects of 

exerting multiplex fine-tuning of regulatory networks is within reach. In summary, I 

believe that altogether these technologies offer the possibility to develop important 

applications in the metabolic engineering and human health fields.  

In the RNA folding field, there are important applications that could be realized 

using this toolkit, such as monitoring of conformational changes during folding and 

formation of ribonucleoproteins. Specifically, by using oligonucleotide hybridization (in 

vitro or in vivo, for one or multiple molecules) at different time-scales and in the presence 

of various folding factors, a comprehensive snapshot of the conformational changes of 

the functional structural landscape could be obtained. The sole vision of possessing the 

ability to monitor folding pathways from a functional structure angle could excite the 

entire RNA-folding community into studying fundamental RNA folding dynamics using 

our approaches in conjunction with other methods.  

I expect that my PhD research becomes a cornerstone in work performed at the 

Contreras group aimed at discovering, understanding, characterizing and predicting the 

roles of regulatory RNAs in bacteria. I trust that the toolkit of molecular tools hereby 

presented and developed in collaboration with several of my lab mates, will be 

instrumental to the broader scientific community in furthering the command over RNA 

molecular functions.  
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Appendices 

APPENDIX A: SUPPLEMENTARY DATA FOR CHAPTER TWO 

Supplementary figures for Chapter two 

 

Figure A.1. General Methodology for iRS3 experimental design.  

The flow chart presents the general steps for designing an iRS3 experiment. The outline 

provides more detailed considerations for designing an experiment. 
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Figure A.2. Northern Analysis of iRS3 reporters show that reporter transcript levels 
do not correlate with fluorescence output.  

Total RNA was harvested from cells expressing Probe 1, 6, 9, and 10 reporter transcripts 5 hours after 

induction of iRS3 transcript only, ran down an agarose-formaldehyde gel and blotted with specific 

oligonucleotide probes. (A) Northern blot using primer J (Table A.2) which is specific to the middle of 

GFP. (B) Northern blot using primer I (Table A.2) which is specific to 16s rRNA as an endogenous 

loading control. All probe reporters were run down the same gel, but the lanes were reordered for 

simplicity. (C) Fluorescence of strains containing Probe reporters 1, 6, 9, and 10 at 5 hours after induction 

of iRS3 transcription only. The elements of the box plots are as defined in the Figure 2.3 caption. (D) The 

values of relative fluorescence were plotted against values of relative band intensity from northern blots to 

test for any significant correlation between the fluorescence produced by each construct and its transcript 

abundance. The slope and R2 value tend to zero as a good indicator of the lack of correlation.  
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Figure A.3. All probes bind in vitro to the denatured gI intron in the context of total 
RNA extract. 

Total RNA extract containing overexpressed gI intron was heated to 95°C (Methods: In vitro binding 

assays). After heating, the transcripts were removed from 95°C bath and immediately hybridized to P32 

labeled probe. The probes were allowed to hybridize with the gI intron for 30 minutes at 37°C. The 

resulting hybridized mixture was then loaded into a 6% native PAGE gel. After running, the gel was dried 

and exposed to a phosphor screen for at least 4 hours. The black arrow points to the wild type gI intron 

band. Each gel was run along with the PhiX174 DNA/HinfI ladder to confirm size, in vitro transcribed gI 

intron (three concentrations between 50-500 ng), and a no-probe control (controls not shown). 
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Figure A.4. Test for binding affinity bias.  

The correlation between iRS3 binding affinity to the gI intron and generated fluorescence was assessed 

thermodynamically and plotted. The plot contains data for various probe lengths ranging from 15-18 

nucleotides. Using NUPACK software, we determined the minimum free energy (MFE) for the bound 

complex formed by the free-standing probes and targeted region (plotted on the y-axis). On the x-axis, we 

plotted the fluorescence shifts (difference between the averaged normalized medians of fluorescence of the 

non-induced and induced samples). 
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APPENDIX B: SUPPLEMENTARY DATA FOR CHAPTER THREE 

Supplementary figures Chapter Three 

 

Figure B.1. Experimental plasmids and Golden Gate cloning procedure for 
synthesizing asRNAs of interest.  

(A) iRS3 experimental plasmid diagram, for use in experimentally targeting over-expressed molecules. (B) 

Modified iRS3 experimental plasmid for use when evaluating hybridization efficacy of asRNAs targeting 

native molecules. (C) Synthesis of asRNAs (probe) by the Golden Gate cloning procedure.  1. Primers with 

BsmbI overhangs were ordered (IDT) and annealed by heating up to 95 C and maintaining the temperature 

at 52 C for 10 min. 2. The annealed primers along with the iRS3GG plasmid, the BsmbI restriction enzyme 

(Thermo Scientific) and T4 DNA ligase (NEB Labs) are incubated at 37 C for 45 min. 3. Two uL of the 

reaction are transformed into E. coli electro-competent cells and plated onto negative selection LB-agar 

media with Kanamicyn and p-Cl-phenylalanine to select for the plasmids without the PheS cassette. The 

diagram of the iRS3GG plasmid is presented in the bottom of the figure. See Methods for details.  
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Figure B.2. Engineering the iRS3 for characterizing native transcripts.  

A. Evidence supporting the use of shorter time intervals in the collection of fluorescence data. Previous 

work in (43) used shifts in fluorescence (as opposed to ratios) collected 5 hours after induction. The linear 

fit shown supports shortening the time after induction to 2.5 h (p-value < 0.04). These data were collected 

by overexpressing the Arg-tRNACCU. B. Use of the pBAD promoter to control the iRS3 expression is 

supported by its strong correlation to the original system. In order to target native transcripts, the iRS3 must 

be under the tighter control of the pBAD promoter (since target cannot be turned on and off). The 

significant correlation (p-value < 0.04) supports the use of this engineered system, supports the use of ratios 

instead of differences, and allows for shortening the time of collection to 45 min after induction. These data 

were collected by overexpressing the Glu-tRNAUUC, the tRNA ultimately used in this work. C. The Native-

iRS3 senses native transcripts. In this case, no target (Glu-tRNAUUC) was overexpressed (y-axis) and signals 

were compared to the trends observed when the target was overexpressed (x-axis). In both cases the iRS3 is 

expressed from the pBAD promoter-controlled region in the plasmid depicted in Figure B.1C. The 

significant correlation (p-value < 0.04) supports the use of the plasmid in Figure B.1C for characterizing 

native tRNAs such as the Glu-tRNAUUC. Confidence curves shown in plots represent 95% confidence level.  
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Figure B.3. DMS reactivity data for group I intron.  

DMS reactivity data per nucleotide position for the Tetrahymena gI intron. DMS reactivity values for As 

and Cs were calculated by subtracting the no DMS control from the average of reactivity of two 

independent DMS treated samples (data partially published in (42), see Methods section for more details). 

Values of DMS reactivity for Gs and Us were estimated by their pairing counterparts when paired and, 

when unpaired, assigned an average of all accessibilities considered exposed across the molecule based on 

a calculated threshold (See Methods Section for details).  
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Figure B.4.  Local versus regional base pairing probability-DMS correlations show 
no observable correlation for the group I intron at the local level 

(A), but an obvious one at the regional level (B).  The notion of structural predictions being representative 

of experimental structure at the regional level, but not the local level, further supports the notion of regional 

characteristics as important influencers of target region behavior. 
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Figure B.5. Undesirable correlation between folding energy of asRNA and 
hybridization efficacy 

Linear regression shows an undesirable correlation between energetics of probe unfolding and 

hybridization efficacy, due to tool idiosyncrasies that artificially inflate the importance of asRNA.  This 

discovery led to the constraint on this predictor, resulting in an interval (red) considering only data in which 

the influence of asRNA structure on the measured response becomes insignificant levels  
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Figure B.6. Linear regression residuals for inTher (A) and inTherAcc  (B). 

 The normal probability plot of residuals for linear regressions of the (A) inTher model (Eq. 10) and (B) 

inTherAcc model (Eq. 11) were calculated. Both residuals show characteristics of a normal population 

supporting the validity of the models derived. See Methods for details. 
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Figure B.7. Detailed results on prediction performance benchmark study 

 Predictions of IntaRNA, inTher, and inTherAcc models are compared to respective experimental scaled 

hybridization efficacies in group II intron, 2-MS2, glgC leader, and SpinachII. All predicted and 

experimental values were linearly scaled to fall between 0 and 1. Error bars indicate standard error of the 

mean. 
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Supplementary tables Chapter Three 

Table B.1. List of asRNAs used in this study 

asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
gI intron-
1 

8 22 29 UUCCCUCC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
2 

16 22 37 GAUAACUUUUCC
CUCC 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
3 

12 22 33 ACUUUUCCCUCC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
4 

22 22 43 AUGCCUGAUAAC
UUUUCCCUCC 

gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
5 

27 22 48 GGUGCAUGCCUG
AUAACUUUUCCC
UCC 

gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
6 

10 64 73 AAACCAAUAG gI 
intron 

Golden 
Gate 

AATTCAAACCAA
TAGT 

TGGTACTATTGGT
TTG 

 

gI intron-
7 

16 67 82 CCGAUGCAAUCU
AUUG 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
8 

10 95 104 UUGACGGUCU gI 
intron 

Site 
Directed 

NA NA Publishe
d in (20) 
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
Mutagenesi
s 

gI intron-
9 

15 98 112 CCCGCAAUUUGA
CGG 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
10 

14 113 126 CUGUUGACCCCU
UU 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
11 

10 113 122 AAAGGGGUCA gI 
intron 

Golden 
Gate 

AATTCAAAGGGG
TCAT 

TGGTATGACCCCT
TTG 

 

gI intron-
12 

14 127 140 UUGGUACUGAAC
GG 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
13 

10 134 143 GUACCAAGUC gI 
intron 

Golden 
Gate 

AATTCGTACCAA
GTCT 

TGGTAGACTTGGT
ACG 

 

gI intron-
14 

15 141 155 AGUUUCCCCUGA
GAC 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
15 

15 156 170 GCAAGGCCAUCU
CAA 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
16 

10 169 178 UACCCUUUGC gI 
intron 

Golden 
Gate 

AATTCTACCCTTT
GCT 

TGGTAGCAAAGGG
TAG 

 

gI intron-
17 

9 171 179 AUACCCUUU gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
18 

15 179 194 CGUCAGCUUAUU
ACC 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
19 

10 180 189 GCUUAUUACC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
20 

20 195 214 UGCGUGGUUAGG
ACCAUGUC 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron- 10 204 213 GCGUGGUUAG gI Golden AATTCGCGTGGTT TGGTACTAACCAC  
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
21 intron Gate AGT GCG 
gI intron-
22 

19 215 233 UGUUGACUUAGG
ACUUGGC 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
23 

18 234 251 CCAUAUCAACAG
AAGAUC  

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
24 

10 260 269 UUAGUCUGUG gI 
intron 

Golden 
Gate 

AATTCTTAGTCTG
TGT 

TGGTACACAGACT
AAG 

 

gI intron-
25 

10 279 287 CAUCUUCCCC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
26 

17 280 296 GAAGAAUACAUC
UUCCC  

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
27 

18 295 312 CGACUAUAUCUU
AUGAGA 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
28 

15 315 329 CCCAUUAAGGAG
AGG 

gI 
intron 

GenScript 
Inc. 

NA NA  

gI intron-
29 

10 361 370 UUCCCAGCGG gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
30 

15 361 375 AUUAGUUCCCAG
CGG 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
31 

10 366 375 AUUAGUUCCC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
32 

27 388 414 CGAGUACUCCAA
AACUAAUCAAUA

gI 
intron 

Site 
Directed 

NA NA  
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
UAC Mutagenesi

s 
gI intron-
33 

22 393 414 CGAGUACUCCAA
AACUAAUCAA 

gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

gI intron-
34 

16 399 414 CGAGUACUCCAA
AACU 

gI 
intron 

GenScript 
Inc. 

NA NA Publishe
d in (20) 

gI intron-
35 

10 405 414 CGAGUACUCC gI 
intron 

Site 
Directed 
Mutagenesi
s 

NA NA  

2MS2-1 14 36 49 UGGAGUCGAC MS2 Golden 
Gate 

AATTCTGGAGTCG
ACCTGCT 

TGGTAGCAGGTCG
ACTCCAG 

 

2MS2-2 16 36 51 UCUGGAGUCGAC
CUGC 

MS2 Golden 
Gate 

AATTCTCTGGAGT
CGACCTGCT 

TGGTAGCAGGTCGACTCCA
GAG 

2MS2-3 13 44 56 UGUUUUCUGGAG
U 

MS2 Golden 
Gate 

AATTCTGTTTTCT
GGAGTT 

TGGTAACTCCAGA
AAACAG 

 

2MS2-4 11 45 55 GGGAAUACUGCA
GACA 

MS2 Golden 
Gate 

AATTCGGGAATA
CTGCAGACAT 

TGGTATGTCTGCAGTATTCC
CG 

2MS2-5 17 58 74 AGACAUGGGUGA
UCCUC 

MS2 Golden 
Gate 

AATTCAGACATG
GGTGATCCTCT 

TGGTAGAGGATCACCCATGT
CTG 

2MS2-6 16 59 74 AGACAUGGGUGA
UCCU 

MS2 Golden 
Gate 

AATTCAGACATG
GGTGATCCTT 

TGGTAAGGATCACCCATGTC
TG 

glgC-1 10 9 18 GUGCAGGUCC glgC Golden 
Gate 

AATTCGTGCAGGT
CCT 

TGGTAGGACCTGC
ACG 

 

glgC-2 14 15 28 CACAAUCCGUGU
GC 

glgC Golden 
Gate 

AATTCCACAATCC
GTGTGCT 

TGGTAGCACACGG
ATTGTGG 

 

glgC-3 11 27 37 UGGAACACACA glgC Golden AATTCTGGAACA TGGTATGTGTGTT  
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
Gate CACAT CCAG 

glgC-4 11 40 50 UUUUUAUCAUC glgC Golden 
Gate 

AATTCTTTTTATC
ATCT 

TGGTAGATGATAA
AAAG 

 

glgC-5 11 48 58 UAACUCCUUUU glgC Golden 
Gate 

AATTCTAACTCCT
TTTT 

TGGTAAAAAGGAG
TTAG 

 

glgC-6 11 53 63 AUGACUAACUC glgC Golden 
Gate 

AATTCATGACTAA
CTCT 

TGGTAGAGTTAGT
CATG 

 

glgC-7 14 59 72 AAACUAACCAUG
AC 

glgC Golden 
Gate 

AATTCAAACTAA
CCATGACT 

TGGTAGTCATGGTTAGTTTG 

glgC-8 10 72 81 UUCUUCUCUA glgC Golden 
Gate 

AATTCTTCTTCTC
TAT 

TGGTATAGAGAAG
AAG 

 

glgC-9 17 88 104 GGCGCGCCAACA
UUAAG 

glgC Golden 
Gate 

AATTCGGCGCGC
CAACATTAAGT 

TGGTACTTAATGTTGGCGCG
CCG 

glgC-10 14 102 115 CAAUGGCAGCUG
GC 

glgC Golden 
Gate 

AATTCCAATGGC
AGCTGGCT 

TGGTAGCCAGCTG
CCATTGG 

 

glgC-11 13 119 131 UCAGGGCAACAG
A 

glgC Golden 
Gate 

AATTCTCAGGGC
AACAGAT 

TGGTATCTGTTGC
CCTGAG 

 

glgC-12 17 134 150 CCACGUCCUCCC
GCCAG 

glgC Golden 
Gate 

AATTCCCACGTCC
TCCCGCCAGT 

TGGTACTGGCGGGAGGACG
TGGG 

glgC-13 12 150 161 UCAGGCGGGUAC glgC Golden 
Gate 

AATTCTCAGGCG
GGTACT 

TGGTAGTACCCGC
CTGAG 

 

SpinachI
I-1 

11 1 11 GCUAUCCGGGC Spinach 
II 

Golden 
Gate 

AATTCGCTATCCG
GGCT 

TGGTAGCCCGGAT
AGCG 

 

SpinachI
I-2 

12 13 24 CUCUACCGACUG Spinach 
II 

Golden 
Gate 

AATTCCTCTACCG
ACTGT 

TGGTACAGTCGGT
AGAGG 

 

SpinachI
I-3 

9 43 51 UUUCAUUCA Spinach 
II 

Golden 
Gate 

AATTCTTTCATTC
AT 

TGGTATGAATGAA
AG 

 

SpinachI
I-4 

16 61 76 AGCCUACUGGAC
CCGU 

Spinach 
II 

Golden 
Gate 

AATTCAGCCTACT
GGACCCGTT 

TGGTAACGGGTCCAGTAGG
CTG 
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
SpinachI
I-5 

9 65 73 CUACUGGAC Spinach 
II 

Golden 
Gate 

AATTCCTACTGGA
CT 

TGGTAGTCCAGTA
GG 

 

SpinachI
I-6 

17 65 81 GAAGCAGCCUAC
UGGAC 

Spinach 
II 

Golden 
Gate 

AATTCGAAGCAG
CCTACTGGACT 

TGGTAGTCCAGTAGGCTGCT
TCG 

SpinachI
I-7 

17 76 92 AGUAGGCUGCCG
AAGCA 

Spinach 
II 

Golden 
Gate 

AATTCAGTAGGCT
GCCGAAGCAT 

TGGTATGCTTCGGCAGCCTA
CTG 

SpinachI
I-8 

15 89 103 UCUACUCAACAA
GUA 

Spinach 
II 

Golden 
Gate 

AATTCTCTACTCA
ACAAGTAT 

TGGTATACTTGTTGAGTAGA
G 

SpinachI
I-9 

16 101 116 ACGGAGCUCACA
CUCU 

Spinach 
II 

Golden 
Gate 

AATTCACGGAGC
TCACACTCTT 

TGGTAAGAGTGTGAGCTCC
GTG 

SpinachI
I-10 

15 122 136 GCGGAUAGAUGU
AAC 

Spinach 
II 

Golden 
Gate 

AATTCGCGGATA
GATGTAACT 

TGGTAGTTACATCTATCCGC
G 

SpinachI
I-11 

14 134 147 ACCCUGGACCCG
CG 

Spinach 
II 

Golden 
Gate 

AATTCACCCTGGA
CCCGCGT 

TGGTACGCGGGTC
CAGGGTG 

 

SpinachI
I-12 

10 142 151 UUGAACCCUG Spinach 
II 

Golden 
Gate 

AATTCTTGAACCC
TGT 

TGGTACAGGGTTC
AAG 

 

SpinachI
I-13 

9 161 169 UGGCGCCCG Spinach 
II 

Golden 
Gate 

AATTCTGGCGCCC
GT 

TGGTACGGGCGCC
AG 

 

gII 
intron-1 

15 2 16 CGUUAUGGAUGU
GUU 

gII 
intron 

Golden 
Gate 

AATTCCGTTATGG
ATGTGTTT 

TGGTAAACACATCCATAAC
GG 

gII 
intron-2 

11 16 26 UCUGGGCGCAC gII 
intron 

Golden 
Gate 

AATTCTCTGGGCG
CACT 

TGGTAGTGCGCCC
AGAG 

 

gII 
intron-3 

12 89 100 CUUUUCGGUUAG gII 
intron 

Golden 
Gate 

AATTCCTTTTCGG
TTAGT 

TGGTACTAACCGA
AAAGG 

 

gII 
intron-4 

14 307 320 UGUGGUGAUAAC
AG 

gII 
intron 

Golden 
Gate 

AATTCTGTGGTGA
TAACAGT 

TGGTACTGTTATC
ACCACAG 

 

gII 
intron-5 

9 307 315 UGAUAACAG gII 
intron 

Golden 
Gate 

AATTCTGATAACA
GT 

TGGTACTGTTATC
AG 

 

gII 10 389 398 GUGUUAAGUC gII Golden AATTCGTGTTAAG TGGTAGACTTAAC  
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
intron-6 intron Gate TCT ACG 
gII 
intron-7 

14 430 443 UUCCUCCUUUCU
AU 

gII 
intron 

Golden 
Gate 

AATTCTTCCTCCT
TTCTATT 

TGGTAATAGAAAGGAGGAA
G 

gII 
intron-8 

14 478 491 GUACUCCGUACC
CU 

gII 
intron 

Golden 
Gate 

AATTCGTACTCCG
TACCCTT 

TGGTAAGGGTACG
GAGTACG 

 

gII 
intron-9 

9 596 604 CCAUUGUUG gII 
intron 

Golden 
Gate 

AATTCCCATTGTT
GT 

TGGTACAACAATG
GG 

 

gII 
intron-10 

10 620 629 UUUUUACUGA gII 
intron 

Golden 
Gate 

AATTCTTTTTACT
GAT 

TGGTATCAGTAAA
AAG 

 

gII 
intron-11 

12 634 645 UAUAUUUUCUUG gII 
intron 

Golden 
Gate 

AATTCTATATTTT
CTTGT 

TGGTACAAGAAAA
TATAG 

 

gII 
intron-12 

9 707 715 CCCAACGCG gII 
intron 

Golden 
Gate 

AATTCCCCAACGC
GT 

TGGTACGCGTTGG
GG 

 

gII 
intron-13 

11 742 752 ACAAGAGUUUU gII 
intron 

Golden 
Gate 

AATTCACAAGAG
TTTTT 

TGGTAAAAACTCT
TGTG 

 

gII 
intron-14 

12 781 792 GUGUUUAUGAAU gII 
intron 

Golden 
Gate 

AATTCGTGTTTAT
GAATT 

TGGTAATTCATAA
ACACG 

 

gII 
intron-15 

11 795 805 UAAAAAUUCAC gII 
intron 

Golden 
Gate 

AATTCTAAAAATT
CACT 

TGGTAGTGAATTT
TTAG 

 

gII 
intron-16 

15 807 821 UGUUAUUGUUCG
UUC 

gII 
intron 

Golden 
Gate 

AATTCTGTTATTG
TTCGTTCT 

TGGTAGAACGAACAATAAC
AG 

gII 
intron-17 

11 824 834 GAGUAUACGGC gII 
intron 

Golden 
Gate 

AATTCGAGTATAC
GGCT 

TGGTAGCCGTATA
CTCG 

 

csrB-1 10 4 13 ACUCCCUGUC csrB Gibson 
Assembly 

GAATTCACTCCCTGTC
TACCATTCACCTCTTG
GATTTG	
  

TGGTAGACAGGGAGTGAATTCGG
TCAGTGCGT	
  

csrB-2 13 15 27 CACUUCGUUGUC
U 

csrB Gibson 
Assembly 

GAATTCCACTTCGTTG
TCTTACCATTCACCTC

GAATTCCACTTCGTTGTCTTACCAT
TCACCTCTTGGATTT	
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
TTGGATTT	
  

csrB-3 14 32 45 UGUCAUCAUCCU
GA 

csrB Gibson 
Assembly 

CGAATTCTGTCATCAT
CCTGATACCATTCACC
TCTTGGATTT	
  

TCAGGATGATGACAGAATTCGGTC
AGTGCGTC	
  

csrB-4 12 46 57 GUCCUGCAGAAG csrB Gibson 
Assembly 

CGAATTCGTCCTGCA
GAAGTACCATTCACCT
CTTGGATTT	
  

CTTCTGCAGGACGAATTCGGTCAG
TGCGTC	
  

csrB-5 14 57 70 ACCAUCCUGGUG
UG 

csrB Gibson 
Assembly 

GAATTCACCATCCTGG
TGTGTACCATTCACCT
CTTGGATTT	
  

GGTACACACCAGGATGGTGAATTC
GGTCAGTGCGTC	
  

csrB-6 11 73 83 CUUUCCCUGAA csrB Gibson 
Assembly 

GAATTCCTTTCCCTGA
ATACCATTCACCTCTT
GGATTTG	
  

TGGTATTCAGGGAAAGGAATTCG
GTCAGTGCGT	
  

csrB-7 12 85 96 UUCAUCCAGAAG csrB Gibson 
Assembly 

GAATTCTTCATCCAGA
AGTACCATTCACCTCT
TGGATTTG	
  

TGGTACTTCTGGATGAAGAATTCG
GTCAGTGCGT	
  

csrB-8 13 99 111 CGUCAUCCUCUU
C 

csrB Gibson 
Assembly 

CGAATTC	
  
CGTCATCCTCTTC	
  
TACCATTCACCTCTTG
GATTT	
  

GAAGAGGATGACGGAATTCGGTC
AGTGCGTC	
  

csrB-9 11 109 119 GCGUCCUGCGU csrB Gibson 
Assembly 

CGAATTCGCGTCCTGC
GTTACCATTCACCTCT
TGGATTT	
  

ACGCAGGACGCGAATTCGGTCAGT
GCGTC	
  

csrB-10 11 122 132 GGUGUCCUUUA csrB Gibson 
Assembly 

CGAATTCGGTGTCCTT
TATACCATTCACCTCT
TGGATTT	
  

TAAAGGACACCGAATTCGGTCAGT
GCGTC	
  

csrB-11 12 135 146 UUCUCCAUCCUG csrB Gibson GAATTCTTCTCCATCC GGTACAGGATGGAGAAGAATTCG
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
Assembly TGTACCATTCACCTCT

TGGATTT	
  
GTCAGTGCGTC	
  

csrB-12 11 147 157 ACCGGUUCUCA csrB Gibson 
Assembly 

CGAATTCACCGGTTCT
CATACCATTCACCTCT
TGGATTT	
  

TGAGAACCGGTGAATTCGGTCAGT
GCGTC	
  

csrB-13 11 154 164 CAUCCUGACCG csrB Gibson 
Assembly 

CGAATTCCATCCTGAC
CGTACCATTCACCTCT
TGGATTT	
  

CGGTCAGGATGGAATTCGGTCAGT
GCGTC	
  

csrB-14 11 166 176 GACCCACCGAA csrB Gibson 
Assembly 

AATTCGACCCACCGA
ATACCATTCACCTCTT
GGATTTG	
  

GGTATTCGGTGGGTCGAATTCGGT
CAGTGCGTC	
  

csrB-15 11 176 186 UGGCCUUCCUG csrB Gibson 
Assembly 

CGAATTCTGGCCTTCC
TGTACCATTCACCTCT
TGGATTT	
  

CAGGAAGGCCAGAATTCGGTCAG
TGCGTC	
  

csrB-16 12 184 195 AAGUGUCCCUGG csrB Gibson 
Assembly 

GAATTCAAGTGTCCCT
GGTACCATTCACCTCT
TGGATTT	
  

GGTACCAGGGACACTTGAATTCGG
TCAGTGCGTC	
  

csrB-17 13 193 205 CUUCAUCCUGAA
G 

csrB Gibson 
Assembly 

GAATTCCTTCATCCTG
AAGTACCATTCACCTC
TTGGATTT	
  

GGTACTTCAGGATGAAGGAATTCG
GTCAGTGCGTC	
  

csrB-18 11 212 222 ACCACCCCGAU csrB Gibson 
Assembly 

CGAATTCACCACCCCG
ATTACCATTCACCTCT
TGGATTT	
  

ATCGGGGTGGTGAATTCGGTCAGT
GCGTC	
  

csrB-19 11 229 239 AUUGCUUCCUG csrB Gibson 
Assembly 

CGAATTCATTGCTTCC
TGTACCATTCACCTCT
TGGATTT	
  

CAGGAAGCAATGAATTCGGTCAGT
GCGTC	
  

csrB-20 12 244 255 UCGUUCAUCCUG csrB Gibson CGAATTCTCGTTCATC CAGGATGAACGAGAATTCGGTCA
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
Assembly CTGTACCATTCACCTC

TTGGATTT	
  
GTGCGTC	
  

csrB-21 12 255 266 CUUGCGGCCAAU csrB Gibson 
Assembly 

GAATTCCTTGCGGCC
AATTACCATTCACCTC
TTGGATTT	
  

GGTAATTGGCCGCAAGGAATTCG
GTCAGTGCGTC	
  

csrB-22 10 267 275 UUCCUCUGGC csrB Gibson 
Assembly 

GAATTCTTCCTCTGGC
TACCATTCACCTCTTG
GATTT	
  

GGTAGCCAGAGGAAGAATTCGGT
CAGTGCGTC	
  

csrB-23 11 270 280 AACUUUUCCUC csrB Gibson 
Assembly 

CGAATTCAACTTTTCC
TCTACCATTCACCTCT
TGGATTT	
  

GAGGAAAAGTTGAATTCGGTCAGT
GCGTC	
  

csrB-24 11 281 291 UCAUCCUUGAC csrB Gibson 
Assembly 

GAATTCTCATCCTTGA
CTACCATTCACCTCTT
GGATTT	
  

GGTAGTCAAGGATGAGAATTCGG
TCAGTGCGTC	
  

csrB-25 12 294 305 UUGUUGCUCCCU
G 

csrB Gibson 
Assembly 

GAATTCTTGTTGCTCC
TGTACCATTCACCTCT
TGGATTT	
  

GGTACAGGAGCAACAAGAATTCG
GTCAGTGCGTC	
  

csrB-26 12 310 321 AGCAUUCCAGCU csrB Gibson 
Assembly 

CGAATTCAGCATTCCA
GCTTACCATTCACCTC
TTGGATTT	
  

AGCTGGAATGCTGAATTCGGTCAG
TGCGTC	
  

csrB-27 12 324 335 CCGGUUCGUUUC csrB Gibson 
Assembly 

CGAATTCCCGGTTCGT
TTCTACCATTCACCTC
TTGGATTT	
  

GAAACGAACCGGGAATTCGGTCA
GTGCGTC	
  

tRNA-1 9 2 10 CGAAGGGGA tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCCGA
AGGGGATACCAT
TCACCTCTTGGAT
TTGGG 

GAATGGTATCCCCTTCGGAA
TTCTATGGAGAAACAGTAG
AGAGTTGC 
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
tRNA-2 9 8 16 UCUAGACGA tRNA-

GluUUC 
Gibson 
Assembly 

ATAGAATTCTCTA
GACGATACCATTC
ACCTCTTGGATTT
GGG 

GAATGGTATCGTCTAGAGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-3 9 13 21 GGGCCUCUA tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCGGG
CCTCTATACCATT
CACCTCTTGGATT
TGGG 

GAATGGTATAGAGGCCCGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-4 10 13 22 UGGGCCUCUA tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCTGG
GCCTCTATACCAT
TCACCTCTTGGAT
TTGGG 

GAATGGTATAGAGGCCCAG
AATTCTATGGAGAAACAGT
AGAGAGTTGC 

tRNA-5 9 14 22 UGGGCCUCU tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCTGG
GCCTCTTACCATT
CACCTCTTGGATT
TGGG 

GAATGGTAAGAGGCCCAGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-6 9 20 28 GUGUCCUGG tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCGTGT
CCTGGTACCATTC
ACCTCTTGGATTT
GGG 

GAATGGTACCAGGACACGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-7 9 23 31 GCGGUGUCC tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCGCG
GTGTCCTACCATT
CACCTCTTGGATT
TGGG 

GAATGGTAGGACACCGCGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-8 9 26 34 AGGGCGGUG tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCAGG
GCGGTGTACCATT
CACCTCTTGGATT
TGGG 

GAATGGTACACCGCCCTGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-9 9 29 37 UGAAAGGGC tRNA- Gibson ATAGAATTCTGA GAATGGTAGCCCTTTCAGAA
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
GluUUC Assembly AAGGGCTACCAT

TCACCTCTTGGAT
TTGGG 

TTCTATGGAGAAACAGTAG
AGAGTTGC 

tRNA-10 9 31 39 CGUGAAAGG tRNA-
GluUUC 

GenScript 
Inc./restrict
rion cloning 

NA NA  

tRNA-11 9 33 41 GCCGUGAAA tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCGCC
GTGAAATACCATT
CACCTCTTGGATT
TGGG 

GAATGGTATTTCACGGCGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-12 13 39 51 CCCUGUUACCGC
C 

tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCCCCT
GTTACCGCCTACC
ATTCACCTCTTGG
ATTTGGG 

GAATGGTAGGCGGTAACAG
GGGAATTCTATGGAGAAAC
AGTAGAGAGTTGC 

tRNA-13 9 41 49 CUGUUACCG tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCCTGT
TACCGTACCATTC
ACCTCTTGGATTT
GGG 

GAATGGTACGGTAACAGGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-14 9 49 57 UCGAACCCC tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCTCGA
ACCCCTACCATTC
ACCTCTTGGATTT
GGG 

GAATGGTAGGGGTTCGAGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-15 9 50 58 UUCGAACCC tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCTTCG
AACCCTACCATTC
ACCTCTTGGATTT
GGG 

GAATGGTAGGGTTCGAAGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-16 9 53 61 GAUUCGAAC tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCGATT
CGAACTACCATTC
ACCTCTTGGATTT

GAATGGTAGTTCGAATCGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 
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asRNA Len
gth 

Targe
t start 

Targe
t end 

Sequence Target 
RNA 

Synthesis 
method 

Golden Gate primers Remark
s 

Forward Reverse  
GGG 

tRNA-17 9 57 65 AGGGGAUUC tRNA-
GluUUC 

Gibson 
Assembly 

ATAGAATTCAGG
GGATTCTACCATT
CACCTCTTGGATT
TGGG 

GAATGGTAGAATCCCCTGA
ATTCTATGGAGAAACAGTA
GAGAGTTGC 

tRNA-18 9 63 71 TCCCCTAGG tRNA-
GluUUC 

GenScript 
Inc./restrict
rion cloning 

NA NA  
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Table B.2. List of target molecules and cloning strategy used in this study. 

Target 
Molecule 

Target Molecule Sequence Cloning 
Method 

Primers Vector Backbone Primers 
Forward Reverse Forward Reverse 

glgC TCTGGCAGGGACCTGCACACGGATTGTGT
GTGTTCCAGAGATGATAAAAAAGGAGTTA
GTCATGGTTAGTTTAGAGAAGAACGATCA
CTTAATGTTGGCGCGCCAGCTGCCATTGA
AATCTGTTGCCCTGATACTGGCGGGAGGA
CGTGGTACCCGCCTGA 

Gibson 
Assembly 

ACTGCCGCCAG
GCATCTAGATC
AGGCGGGTACC
ACGTC 

ACTGTTTCTCCAT
AGTCGACTCTGG
CAGGGACCTGCA
C 

GTCGACTA
TGGAGAAA
CAGTAGAG 

TCTAGAT
GCCTGGC
GGCA 

MS2 TAATTGCCTAGAAAACATGAGGATCACCC
ATGTCTGCAGGTCGACTCCAGAAAACATG
AGGATCACCCATGTCTGCAGTATTCCCGG
GTTCATT 

Gibson 
Assembly 

ACTGCCGCCAG
GCATCTAGAAA
TGAACCCGGGA
ATACTG 

ACTGTTTCTCCAT
AGTCGACTAATT
GCCTAGAAAACA
TGAGG 

" " 

SpinachII GCCCGGATAGCTCAGTCGGTAGAGCAGCG
GCCGAGATGTAACTGAATGAAATGGTGAA
GGACGGGTCCAGTAGGCTGCTTCGGCAGC
CTACTTGTTGAGTAGAGTGTGAGCTCCGT
AACTAGTTACATCTATCCGCGGGTCCAGG
GTTCAAGTCCCTGTTCGGGCGCCATCTTTC
TTTTT 

Gibson 
Assembly 

ACTGCCGCCAG
GCATCTAGAAA
AAAGAAAGATG
GCGCCC 

ACTGTTTCTCCAT
AGTCGACGCCCG
GATAGCTCAGTC
G 

" " 
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Target 
Molecule 

Target Molecule Sequence Cloning 
Method 

Primers Vector Backbone Primers 
Forward Reverse Forward Reverse 

gII intron GAACACATCCATAACGTGCGCCCAGATAG
GGTGTTAAGTCAAGTAGTTTAAGGTACTA
CTCTGTAAGATAACACAGAAAACAGCCAA
CCTAACCGAAAAGCGAAAGCTGATACGGG
AACAGAGCACGGTTGGAAAGCGATGAGTT
ACCTAAAGACAATCGGGTACGACTGAGTC
GCAATGTTAATCAGATATAAGGTATAAGT
TGTGTTTACTGAACGCAAGTTTCTAATTTC
GGTTATGTGTCGATAGAGGAAAGTGTCTG
AAACCTCTAGTACAAAGAAAGGTAAGTTA
TGGTTGTGGACTTATCTGTTATCACCACAT
TTGTACAATCTGTAGGAGAACCTATGGGA
ACGAAACGAAAGCGATGCCGAGAATCTG
AATTTACCAAGACTTAACACTAACTGGGG
ATACCCTAAACAAGAATGCCTAATAGAAA
GGAGGAAAAAGGCTATAGCACTAGAGCTT
GAAAATCTTGCAAGGGTACGGAGTACTCG
TAGTAGTCTGAGAAGGGTAACGCCCTTTA
CATGGCAAAGGGGTACAGTTATTGTGTAC
TAAAATTAAAAATTGATTAGGGAGGAAAA
CCTCAAAATGAAACCAACAATGGCAATTT
TAGAAAGAATCAGTAAAAATTCACAAGAA
AATATAGACGAAGTTTTTACAAGACTTTA
TCGTTATCTTTTACGTCCAGATATTTATTA
CGTGGCGACGCGTTGGGAAATGGCAATGA
TAGCGAAACAACGTAAAACTCTTGTTGTA
TGCTTTCATTGTCATCGTCACGTGATTCAT
AAACACAAGTGAATTTTTACGAACGAACA
ATAACAGAGCCGTATACTCCGAGAGGGGT
ACGTACGGTTCCCGAAGAGGGTGGTGCAA
ACCAGTCACAGTAATGTGAACAAGGCGGT
ACCTCCCTACTTCACCATATCA 

Gibson 
Assembly 

ACTGCCGCCAG
GCATCTAGATG
ATATGGTGAAG
TAGGGAG 

ACTGTTTCTCCAT
AGTCGACGAACA
CATCCATAACGT
G 

" " 
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Target 
Molecule 

Target Molecule Sequence Cloning 
Method 

Primers Vector Backbone Primers 
Forward Reverse Forward Reverse 

csrB GTCGACAGGGAGTCAGACAACGAAGTGA
ACATCAGGATGATGACACTTCTGCAGGAC
ACACCAGGATGGTGTTTCAGGGAAAGGCT
TCTGGATGAAGCGAAGAGGATGACGCAG
GACGCGTTAAAGGACACCTCCAGGATGGA
GAATGAGAACCGGTCAGGATGATTCGGTG
GGTCAGGAAGGCCAGGGACACTTCAGGAT
GAAGTATCACATCGGGGTGGTGTGAGCAG
GAAGCAATAGTTCAGGATGAACGATTGGC
CGCAAGGCCAGAGGAAAAGTTGTCAAGG
ATGAGCAGGGAGCAACAAAAGTAGCTGG
AATGCTGCGAAACGAACCGGGAGCGCTGT
GAATACAGTGCTCCCTTTTTTTATT 

Restriction 
Enzyme 
Cloning 
(SalI and 
XbaI) 

GAGCCATATGA
CCGTCGACAGG
GAGTCAGAC 

TCCGCTTCTAGAA
ATAAAAAAAGGG
AGCACTGT 

NA NA 

tRNA-
GluUUC 

GTCCCCTTCGTCTAGAGGCCCAGGACACC
GCCCTTTCACGGCGGTAACAGGGGTTCGA
ATCCCCTAGGGGACGCCA 

N/A, studied native transcripts 
only 
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Table B.3. Estimated coefficients and statistical measures of goodness of fit for the regressions of inTher and inTherAcc 
models, which were optimized using in vivo data. 

	
  
inTher	
  Model	
  

	
  
	
   	
   	
  	
  	
   Coeff.	
  Value	
   P-­‐value	
  
Intercept	
   1.83	
   2.02E-­‐04	
  

ΔGasT	
   0.96	
   1.13E-­‐03	
  

ΔGtF	
   1.92	
   2.99E-­‐04	
  
ΔGasT	
  :	
  
ΔGtF	
   1.27	
   8.85E-­‐05	
  

	
   	
   	
  
	
   	
   	
  
	
   	
   	
  

	
  

inTherAcc	
  
Model	
  

	
  
	
   	
   	
  	
  	
   Coeff.	
  Value	
   P-­‐value	
  
Intercept	
   2.101	
   1.02E-­‐05	
  

ΔGasT	
   1.838	
   4.56E-­‐09	
  

ΔGtF	
   2.013	
   2.53E-­‐05	
  
θ	
   2.395	
   7.06E-­‐08	
  

ΔGasT	
  :	
  
ΔGtF	
   2.090	
   3.55E-­‐10	
  

θ	
  :	
  ΔGtF	
   2.832	
   4.06E-­‐09	
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Table B.4. Summary of performance results for the prediction of mRNA targets for Z. mobilis. 

Zms-­‐4	
  
intaRNA	
   inTherAcc	
   	
   	
   	
   	
   	
  

Gene	
   Energy	
   IntaRNA	
  
Ranking	
  

log	
  2	
  fold	
  change	
  
(sRNA/MS2	
  only	
  
control)	
  

Experimental	
  
ranking	
  

Gene	
   log	
  2	
  fold	
  
change	
  
(sRNA/MS2	
  
only	
  control)	
  

Region	
   inTherAcc	
  
ranking	
  

Extreme	
   Region	
  
BLAST	
  
ranking	
  

Exper-­‐
imental	
  
ranking	
  

ZMO0205	
   -­‐17.49	
   25	
   0.923225612	
   3	
   ZMO0176	
   0.599478765	
   21	
   1	
   high	
   3	
   44	
  
ZMO1041	
   -­‐16.37	
   40	
   0.828108232	
   7	
   ZMO1961	
   0.57091544	
   55	
   4	
   low	
   5	
   52	
  
ZMO0089	
   -­‐18.92	
   19	
   0.617040784	
   37	
   ZMO1335	
   0.546674558	
   21	
   1	
   high	
   2	
   63	
  
ZMO0885	
   -­‐18	
   20	
   0.601829473	
   42	
   ZMO0570	
   0.47759167	
   71	
   2	
   high	
   5	
   92	
  
ZMO0395	
   -­‐20.3	
   7	
   0.579522929	
   50	
   ZMO1697	
   0.466774026	
   21	
   1	
   high	
   1	
   98	
  
ZMO1335	
   -­‐187.7	
   1	
   0.546674558	
   63	
   ZMO0662	
   0.408734183	
   23	
   5	
   low	
   4	
   138	
  
ZMO1837	
   -­‐18.97	
   18	
   0.454343608	
   111	
   ZMO0731	
   0.406662923	
   43	
   4	
   high	
   4	
   140	
  
ZMO1622	
   -­‐19.7	
   9	
   0.388983563	
   153	
   ZMO1993	
   0.369586541	
   30	
   1	
   low	
   1	
   170	
  
ZMO0471	
   -­‐19.64	
   13	
   0.365823892	
   175	
   ZMO1063	
   0.342934029	
   30	
   1	
   low	
   5	
   194	
  
ZMO1083	
   -­‐16.16	
   43	
   0.35677769	
   181	
   ZMO2014	
   0.311430483	
   26	
   3	
   low	
   4	
   222	
  
ZMO1042	
   -­‐16.37	
   39	
   0.301431468	
   245	
   ZMO0208	
   0.296899392	
   48	
   3	
   high	
   3	
   254	
  
ZMO0888	
   -­‐20.2	
   8	
   0.28376573	
   271	
   ZMO0716	
   0.293823265	
   43	
   4	
   high	
   3	
   259	
  
ZMO0392	
   -­‐20.9	
   5	
   0.268298177	
   293	
   ZMO1623	
   0.265157228	
   26	
   3	
   low	
   2	
   299	
  
ZMO1623	
   -­‐19.67	
   11	
   0.265157228	
   299	
   ZMO0060	
   0.216261044	
   70	
   5	
   high	
   2	
   376	
  
ZMO0050	
   -­‐16.05	
   48	
   0.217360146	
   373	
   ZMO0773	
   0.20480575	
   21	
   1	
   high	
   5	
   389	
  
ZMO1084	
   -­‐16.16	
   44	
   0.214714721	
   378	
   ZMO0047	
   0.189251415	
   55	
   4	
   low	
   1	
   421	
  
ZMO1822	
   -­‐17.202	
   29	
   0.186033458	
   426	
   ZMO1060	
   0.187421478	
   26	
   3	
   low	
   3	
   423	
  
ZMO0116	
   -­‐16.66	
   38	
   0.182849428	
   433	
   ZMO1001	
   0.179657399	
   48	
   3	
   high	
   5	
   441	
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Zms-­‐4	
  
intaRNA	
   inTherAcc	
   	
   	
   	
   	
   	
  

Gene	
   Energy	
   IntaRNA	
  
Ranking	
  

log	
  2	
  fold	
  change	
  
(sRNA/MS2	
  only	
  
control)	
  

Experimental	
  
ranking	
  

Gene	
   log	
  2	
  fold	
  
change	
  
(sRNA/MS2	
  
only	
  control)	
  

Region	
   inTherAcc	
  
ranking	
  

Extreme	
   Region	
  
BLAST	
  
ranking	
  

Exper-­‐
imental	
  
ranking	
  

ZMO0227	
   -­‐16.83	
   33	
   0.168988676	
   463	
   ZMO0182	
   0.176555199	
   71	
   2	
   high	
   3	
   450	
  
ZMO1918	
   -­‐16.88	
   32	
   0.160752163	
   475	
   ZMO0778	
   0.174391482	
   43	
   4	
   high	
   5	
   453	
  
ZMO0394	
   -­‐19.18	
   16	
   0.146717471	
   492	
   ZMO0480	
   0.143717518	
   11	
   2	
   low	
   4	
   498	
  
ZMO0335	
   -­‐16.04	
   49	
   0.117119149	
   543	
   ZMO0959	
   0.124752042	
   11	
   2	
   low	
   2	
   528	
  
ZMO1867	
   -­‐16.02	
   51	
   0.098170755	
   578	
   ZMO1064	
   0.081710433	
   30	
   1	
   low	
   5	
   620	
  
ZMO1404	
   -­‐16.12	
   47	
   0.097264669	
   581	
   ZMO0293	
   0.081145441	
   71	
   2	
   high	
   4	
   624	
  
ZMO1868	
   -­‐16.02	
   52	
   0.088809648	
   597	
   ZMO1231	
   0.078508193	
   55	
   4	
   low	
   2	
   631	
  
ZMO0293	
   -­‐16.16	
   42	
   0.081145441	
   624	
   ZMO0219	
   0.076093482	
   23	
   5	
   low	
   2	
   633	
  
ZMO1231	
   -­‐16.68	
   37	
   0.078508193	
   631	
   ZMO0500	
   0.043918869	
   48	
   3	
   high	
   4	
   701	
  
ZMO0242	
   -­‐19.37	
   14	
   0.070699766	
   647	
   ZMO1992	
   0.040909372	
   30	
   1	
   low	
   1	
   707	
  
ZMO0393	
   -­‐20.9	
   6	
   0.068510918	
   656	
   ZMO0628	
   0.016717232	
   21	
   1	
   high	
   4	
   767	
  
ZMO0964	
   -­‐16.27	
   41	
   0.01894543	
   762	
   	
   	
   	
   	
   	
   	
   	
  

	
   Top 18% of mRNAs experimentally enriched (sRNA purification 
vs MS2 only control 

	
   	
   	
   	
   	
  

Match	
   Matches between both computational approaches (inTherAcc, 
IntaRNA) 
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Zms-­‐6	
  
intaRNA	
   inTherAcc	
  

Gene	
   Energy	
   IntaRNA	
  
ranking	
  

log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Experi-­‐	
  
mental	
  
ranking	
  

Gene	
   log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Region	
   inTherAcc	
  
ranking	
  

Extreme	
   Region	
  
BLAST	
  
ranking	
  

Experi-­‐	
  
mental	
  
ranking	
  

ZMO0388	
   -­‐17.31	
   36	
   0.4616690
79	
  

15	
   ZMO1457	
   0.5308622
19	
  

47	
   3	
   high	
   2	
   8	
  

ZMO0387	
   -­‐17.31	
   35	
   0.4516740
8	
  

17	
   ZMO0912	
   0.3821865
25	
  

20	
   1	
   low	
   1	
   34	
  

ZMO1997	
   -­‐31.34	
   2	
   0.3325884
2	
  

60	
   ZMO1697	
   0.3546989
75	
  

10	
   1	
   high	
   2	
   45	
  

ZMO1288	
   -­‐17.75	
   25	
   0.3189581
68	
  

77	
   ZMO1544	
   0.2825919
12	
  

7	
   2	
   low	
   5	
   109	
  

ZMO1916	
   -­‐17.36	
   33	
   0.3037607
89	
  

89	
   ZMO0192	
   0.2708301
97	
  

28	
   5	
   high	
   2	
   124	
  

ZMO1781	
   -­‐17.16	
   41	
   0.2142814
76	
  

196	
   ZMO0225	
   0.2488419
92	
  

47	
   3	
   high	
   5	
   149	
  

ZMO0546	
   -­‐19.6	
   9	
   0.2063692
73	
  

208	
   ZMO0967	
   0.2465874
98	
  

62	
   2	
   high	
   3	
   151	
  

ZMO0307	
   -­‐17.01	
   46	
   0.1887797
34	
  

238	
   ZMO0307	
   0.1887797
34	
  

20	
   1	
   low	
   5	
   238	
  

ZMO0569	
   -­‐19.02	
   12	
   0.1650793
85	
  

289	
   ZMO0655	
   0.1818098
81	
  

68	
   3	
   low	
   3	
   252	
  

ZMO0419	
   -­‐19.1	
   11	
   0.1462597
02	
  

335	
   ZMO0372	
   0.1478171
73	
  

20	
   1	
   low	
   2	
   326	
  

ZMO1237	
   -­‐18.39	
   18	
   0.1442617 345	
   ZMO2008	
   0.1400246 16	
   4	
   low	
   5	
   361	
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Zms-­‐6	
  
intaRNA	
   inTherAcc	
  

Gene	
   Energy	
   IntaRNA	
  
ranking	
  

log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Experi-­‐	
  
mental	
  
ranking	
  

Gene	
   log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Region	
   inTherAcc	
  
ranking	
  

Extreme	
   Region	
  
BLAST	
  
ranking	
  

Experi-­‐	
  
mental	
  
ranking	
  

81	
   65	
  
ZMO0864	
   -­‐18.45	
   17	
   0.1320027

16	
  
384	
   ZMO0982	
   0.1381521

54	
  
16	
   4	
   low	
   5	
   371	
  

ZMO1796	
   -­‐17.55	
   30	
   0.1258821
58	
  

399	
   ZMO1461	
   0.1300977
82	
  

10	
   1	
   high	
   4	
   387	
  

ZMO0975	
   -­‐17.94	
   22	
   0.1209053
48	
  

420	
   ZMO1751	
   0.0927825
79	
  

68	
   3	
   low	
   5	
   485	
  

ZMO0992	
   -­‐18.55	
   16	
   0.1172645
57	
  

426	
   ZMO1173	
   0.0869763
38	
  

68	
   3	
   low	
   2	
   507	
  

ZMO1915	
   -­‐17.36	
   34	
   0.1154334
31	
  

431	
   ZMO1221	
   0.0801547
02	
  

7	
   2	
   low	
   3	
   534	
  

ZMO1442	
   -­‐23.52	
   5	
   0.1061341
64	
  

452	
   ZMO1923	
   0.0620635
24	
  

25	
   4	
   high	
   4	
   594	
  

ZMO0581	
   -­‐19.99	
   8	
   0.0807910
84	
  

531	
   ZMO1417	
   0.0308208
78	
  

28	
   5	
   high	
   1	
   714	
  

ZMO0695	
   -­‐20.52	
   7	
   0.0805428
92	
  

532	
   ZMO0072	
   0.0161968
99	
  

68	
   3	
   low	
   1	
   769	
  

ZMO1167	
   -­‐17.22	
   39	
   0.0748352
07	
  

552	
   ZMO1056	
   0.0074877
42	
  

47	
   3	
   high	
   1	
   806	
  

ZMO1223	
   -­‐17.29	
   37	
   0.0659371
72	
  

579	
   ZMO0672	
   0.0068121
57	
  

7	
   2	
   low	
   1	
   808	
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Zms-­‐6	
  
intaRNA	
   inTherAcc	
  

Gene	
   Energy	
   IntaRNA	
  
ranking	
  

log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Experi-­‐	
  
mental	
  
ranking	
  

Gene	
   log	
  2	
  fold	
  
change	
  
(sRNA/MS
2	
  only	
  
control)	
  

Region	
   inTherAcc	
  
ranking	
  

Extreme	
   Region	
  
BLAST	
  
ranking	
  

Experi-­‐	
  
mental	
  
ranking	
  

ZMO0938	
   -­‐18.84	
   15	
   0.0598131	
   600	
   ZMO1545	
   0.0034671
85	
  

7	
   2	
   low	
   4	
   825	
  

ZMO0478	
   -­‐18.03	
   20	
   0.0547686
34	
  

618	
   	
   	
   	
   	
   	
   	
   	
  

ZMO0902	
   -­‐17	
   50	
   0.0496840
77	
  

643	
   	
   	
   	
   	
   	
   	
   	
  

ZMO0503	
   -­‐18.19	
   19	
   0.0464489
18	
  

650	
   	
   	
   	
   	
   	
   	
   	
  

ZMO1527	
   -­‐17.61	
   28	
   0.0380423
79	
  

686	
   	
   	
   	
   	
   	
   	
   	
  

ZMO1777	
   -­‐17.94	
   23	
   0.0239988
77	
  

743	
   	
   	
   	
   	
   	
   	
   	
  

ZMO0460	
   -­‐190.03	
   1	
   0.0043644
13	
  

821	
   	
   	
   	
   	
   	
   	
   	
  

	
   Top 18% of mRNAs experimentally enriched (sRNA 
purification vs MS2 only control 

	
   	
   	
   	
  

Match	
   Matches between both computational approaches (inTherAcc, 
IntaRNA) 
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APPENDIX C: SUPPLEMENTARY DATA FOR CHAPTER FOUR 

Supplementary figures for Chapter Four 

 

 

Figure C.1. INTERFACE plasmids (left) for heterologously expressed target RNAs 
and (right) for native target RNAs.  
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Figure C.2. INTERFACE traces for each region characterized in the group I intron. 
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Figure C.3. INTERFACE accessibility heat maps for each sRNA molecule analyzed. 
Red is accessible, gray is in the middle and blue is inaccessible. 
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Supplementary tables for Chapter Four 

Table C.1. List of sRNAs in this study and relevant information on sRNA-mRNA binding sites, stress-related responses 
and Hfq-dependence 

sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

tpke11 TCGCCCTATAAACGG
GTAATTATACTGACAC
GGGCGAAGGGGAATT
TCCTCTCCGCCCGTGC
ATTCATCTAGGGGCA
ATTTAAAAAAGA 

89 Yes Zhang, et al. 
(2003) 

No    

sokC GTTCAGCATATAGGA
GGCCTCGGGTTGATG
GTAAAATATCACTCG
GGGCTTTTCT 

55 Unknown  Unknown    

SroA GTTCTCAACGGGGTG
CCACGCGTACGCGTG
CGCTGAGAAAATACC
CGTCGAACCTGATCC
GGATAACGCCGGCGA
AGGGATTTGAGGCTC
CTT 

93 Unknown  Unknown    

SgrS GATGAAGCAAGGGGG
TGCCCCATGCGTCAGT
TTTATCAGCACTATTT
TACCGCGACAGCGAA
GTTGTGCTGGTTGCGT
TGGTTAAGCGTCCCAC
AACGATTAACCATGC
TTGAAGGACTGATGC

227 Yes Ishikawa, et 
al. (2012) 

Yes ptsG [157,187]: 
[157,172] 
[173,187] 

17,22 

manX [159,172] 18 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

AGTGGGATGACCGCA
ATTCTGAAAGTTGACT
TGCCTGCATCATGTGT
GACTGAGTATTGGTG
TAAAATCACCCGCCA
GCAGATTATACCTGC
TGGTTTTTTTT 

manY [168,179] 20 

yigL [168,187] 21 

tp2 ACTAATTCTTTCGTTG
CTCCAGACGACGCAG
AGAACGCTCACGGCG
GCTCTCTTCACGACTT
CTGTCGAGCAAAATTT
CTTCGATAAAGGCCA
GATGGCGATGCGATG
CTTCGCGCGCTTCTTC
CGGCTTACCGGCCAT
AATCGCTTCAAATATG
CGGGTG 

161 Unknown  Unknown    

tff CGGACTTCCGATCCAT
TTCGTATACACAGACT
GGACGGAAGCGACAA
TCTCACTTTGTGTAAC
AACACACACGTATCG
GCACATATTCCGGGG
TGCCCTTTGGGGTCGG
TAATATGGGATACGT
GGAGGCATAACC 

136 Unknown  Unknown    

sraA CATTCAACGCCGAGA
ATAGAGGAAAAATTA
AAGGGGAGATAAAAT
CCCCCCTTTTTG 

57 Unknown  Unknown    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

ffs 
(4.5S) 

GGGGGCTCTGTTGGTT
CTCCCGCAACGCTACT
CTGTTTACCAGGTCAG
GTCCGGAAGGAAGCA
GCCAAGGCAGATGAC
GCGTGTGCCGGGATG
TAGCTGGCAGGGCCC
CCACCC 

114 No Zhang, et al. 
(2003); 
Pandey, et al. 
(2014) 

No    

nc2 GGAAAAAATCCTCGG
CTAATTCGAAAGCGC
GCACGGACAGTCCCC
TCGCCCCCTCGGGGA
GAGGGTTAGGGTGAG
GGGAACAGGCCCGCA
CAAGCAAACTTATCA
GCAATCTCAGGCCGG
ATATTCATTCGGCCTT
TTACAAAAA 

145 Unknown  Unknown    

sroB 
(ChiX) 

ACACCGTCGCTTAAA
GTGACGGCATAATAA
TAAAAAAATGAAATT
CCTCTTTGACGGGCC
AATAGCGATATTGGC
CATTTTT 

82 Yes Moon and 
Gottesman 

(2011) 

Yes citA [46,57] 5 

chiP [81,92] N/A 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

sroC ACTAATTACAAGAACCA
GGGGCGGAAATTCCAGC
CCTCTCGATTGTTACGTA
GCACGGACAGACTATAC
GCCTGATGGTCGTTCCCC
ATCGGGCCTGAAAACCG
CAATACGCTGGGTAACA
ATCTTCGAGGGTAGCAG
TTAACGCTGCTACCCTC
TTTTTTCT 

163 Yes Papenfort and 
Vanderpool 
(2015) 

Yes    

RybA 
(mntS) 

TCATCCCTCAAGGATCG
ACGGGATTAGCAAGTCA
GGAGGTCTTATGAATGA
GTTCAAGAGGTGTATGC
GCGTGTTTAGTCATTCTC
CCT 

89 No Gerstle, et al. 
(2012) 

No    

RybB GCCACTGCTTTTCTTT
GATGTCCCCATTTTG
TGGAGCCCATCAACC
CCGCCATTTCGGTTCA
AGGTTGATGGGTTTTT
TGT 

81 Yes Zhang, et al. 
(2003) 

Yes ompC [4,33] … 
[49,60] 

7 - 9, 12 
(partially) 

tsx [1,16] 5 
ompW [1,34]: 

[1,16][17,34] 
5 - 9 

ompA [1,13] N/A 
ycfL [1,25] 5 and 6 
ygiM [1,22] 5 and 6 
fiu [1,14] 5 
ompF [1,22] 5 and 6 
fadL [1,19] 5 and 6 
nmpC [1,23] 5 and 6 
hinT [1,16] 5 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

rluD [1,16] 5 
rbsB [1,10] N/A 
yfeK [1,20] 5 
fimA [5,18] 6 
lamB [3,24] N/A 
rraB [1,23] 5 and 6 
ydeN [6,19] N/A 
fumC [5,19] N/A 
asr [1,25] 5 and 6 
rbsK [1,17] 5 
yhjJ [1,19] 5 and 6 
sdhC [3,15] 6 

psrD TAGGCATATTTTTTTC
CATCAGATATAGCGT
ATTGATGATAGCCATT
TTAAACTATGCGCTTC
GTTTTGCAGGTTGATG
TTTGTTATCAGCACTG
AACGAAAATAAAGCA
GTAACCCGCAATGTG
TGCGAATTATTGGCA
AAAGGCAACCACAGG
CTGCCTTTTTCTTT 

169 No Pandey, et al. 
(2014) 

No    

rdlA GTTCTGGTTCAAGATTA
GCCCCCGTTCTGTTGTCA
GGTTGTACCTCTCAACGT
GCGGGGGTTTTCTC 

67 No Pandey, et al. 
(2014) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

rdlB GTCTGGTTTCAAGATT
AGCCCCCGTTCTGTTG
TCAGGTTTTACCTCTC
AACGTGCGGGGGTTT
TCT 

66 No Bak, et al. 
(2015) 

No    

rdlC GTCTGGTTTCAAGATT
AGCCCCCGTTTTGTTG
TCAGGTTTTACCTCTC
AACGTGCGGGGGTTT
TCTCT 

68 No Bak, et al. 
(2015) 

No    

McaS TGAAATCTGTCACTGA
AGAAAATTGGCAACT
AAAGGTTAAAACCGT
TATAACACAGTCACC
GGCGCAGAGGAGACA
ATGCCGGATTTAAGA
CGCGGATGCACTGCT
GTGTGTACTGTAGAGT
CTGGCGGATGTCGAC
AGACTCTATTTTTTTA
TGCAG 

158 Yes Jorgensen, et 
al. (2013) 

No csgD [98,113] 16 

flhD [127,135] 20 

flhD [69,78] 13 

FnrS GCAGGTGAATGCAAC
GTCAAGCGATGGGCG
TTGCGCTCCATATTGT
CTTACTTCCTTTTTTG
AATTACTGCATAGCA
CAATTGATTCGTACGA
CGCCGACTTTGATGA
GTCGGCTTTTTTTT 

122 Yes Tree, et al. 
(2014) 

No metE [37,67] 5-6 (contained) 

sodB [40,74] 5-7 (contained) 

sodA [11,47] 3-4 (contained) 

gpmA [38,57] 5 (contained)  

folX [1,6] N/A 
folX [36,53] N/A 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

folE [1,12] 1 (contained) 

maeA [31,65] 5 (contained) 

iscR [44,54] N/A 
iscR [27,42] N/A 
iscR [2,26] 2 (contained) 

marA [1,62] 1-5 (contained) 

MicC GTTATATGCCTTTATT
GTCACAGATTTTATTT
TCTGTTGGGCCATTGC
ATTGCCACTGATTTTC
CAACATATAAAAAGA
CAAGCCCGAACAGT
CGTCCGGGCTTTTTT
T 

109 Yes Tree, et al. 
(2014) 

Yes ompC [1,30]  1-3 (contained) 

RydC CTTCCGATGTAGACCC
GTATTCTTCGCCTGT
ACCACGGGTCGGTT
TTAGTACAGGCGTTT
TCTT 

64 Yes Zhang, et al. 
(2003) 

Yes    

sokB GCTAGGTTCATTCGTT
GGCCTCGGTTGATAG
AAATATCGGTCGGGG
CCTTCGTCTT 

56 Unknown  Unknown    

rydB ATTATTCTTATCGCCC
CTTCAAGAGCTAAGC
CACTGAGAGTGCCGG
AGATAAGCGCCGGAT
GGGGTAG 

68 No Pandey, et al. 
(2014) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

RprA ACGGTTATAAATCAA
CATATTGATTTATAAG
CATGGAAATCCCCTG
AGTGAAACAACGAAT
TGCTGTGTGTAGTCTT
TGCCCATCTCCCACG
ATGGGCTTTTTTT 

105 Yes Tree, et al. 
(2014) 

Yes csgD [79,97] 11 
csgD [60,74] N/A 
csgD [28,45] 5 
rpoS [33,62] 7 (contained) 

ydaM [45,75] 8 (contained) 
sroD TTACGTGACGAAGCG

CGCGGCAAAGTGGAC
AATAAAGCCTGAGCG
TTAAGTCAGTCGTCAG
ACGCCGGTTAATCCG
GCGTTTTTTT 

86 Yes  No    

RyeA 
(SraC) 

AAAGTCAGCGAAGGA
AATGCTTCTGGCTTTT
AACAGATAAAAAGAG
ACCGAACACGATTCC
TGTATTCGGTCCAGGG
AAATGGCTCTTGGGA
GAGAGCCGTGCGCTA
AAAGTTGGCATTAAT
GCAGGCTTAGTTGCCT
TGCCCTTTAAGAATAG
ATGACGACGCCAGGT
TTTCCAGTTTGCGTGC
AAAATGGTCAATAAA
AAGCGTGGTGGTCAT
CAGCTGAAATGTTAA
AAACCGCCCGTTCTG
GTGA 

249 Yes Pandey, et al. 
(2014) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

RyeB 
(sdsr) 

GCTGATGACCACCAC
GCTTTTTATTGACCAT
TTTGCACGCAAACTG
GAAAACCTGGCGTCG
TCATCTATTCTTAAAG
GGCAAGGCAACTAAG
CCTGCATTAATGCCA
ACTTTTAGCGCACG 

121 Yes Zhang, et al. 
(2003) 

Yes    

RyeF TGATTTTTACCGTTGCAT
CATGTCGCCCAATATGA
TGCTTGCTCGTACCAG
GCCCCTGCAATTTCAAC
AGGGGCCTTTTTTTATCC
CTGAACAGTATAAAAAA
CGAACGATAACCGTGAT
CTGTTGAGCGGGTGACA
GTGCGCATAGCGTTGTG
CTAAAAATATTGTATAT
ATTCACATTAATTATGG
GATTTAAATTACTAAAA
CTGATAAATATATATTCT
AAATAGCAACTGGGTTA
TTCCTTAGCAATTAATGA
TTACATTGTAATAAATC
ATATTCTTTATCGATTGT
TTCAGGCAGTGTTGTGC
CTAATTATGCAAGCGGT
TAATTCGTTGTATATTTA
ATTATACAATGATTTCG
GTGTCCAGTAATTTAATT
AGAGGAATCT 

390 Yes Zhang, et al. 
(2003) 

Yes    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

isrB GACAATAACACCTGT
ATAACAAATGGTCGG
AGTGCCGCGATGAAA
CTGCGCAAAATCCTG
AAAAGTATGTTCAAT
AACTATTGCAAGACG
TTCAAAGACGTACCG
CCAGGCAATATGTTCC
GATAACAAAAAACCT
GCTCCGGCAGGTTTTT
TTGTGTCC 

160 No Pandey, et al. 
(2014) 

No    

rseX TTTTTATTATTCTGTG
TCATGATGCTTCCGTT
ATTAGCCTTTTATCGT
CTTGTTTATATTTTTT
GGGCCGGCATGATG
CCGGCTTTTTTTT 

91 Yes Kim, et al. 
(2015) 

Yes ompC [30,55] 5 (contained) 

ompA [37,50] 5 

isrC ACGATCAATATCTATT
TTATCGATCGTTTATA
TCGATCGATAAGCTA
ATAATAACCTTTGTCA
GTAACATGCACAGAT
ACGTACAGAAAGACA
TTCAGGGAACAACAG
AACCACAATTCAGAA
ACTCCCACAGCCGGA
CCTCCGGCACTGTAAC
CCTTTACCTGCCGGTA
TCCACGTTTGTGGGTA
CCGGCTTTTTTATTCA
CC 

204 No Pandey, et al. 
(2014) 

No    



 240 

sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

tpke70 AAAGCCATAAAAACCA
TGAGGTTATTATGGCC
GATTTGAGGAGGGAAA
GAGTAAGAGCAGTTTG
TTAAATGTACAACGAC
GATTCTCCCACCGGGC
GCGTTTTAAAGCGACG
GTGGATCCAGAGGTAC
TGCTCCGGTGCGCGCA
TGATCTCTTTCTCGATA
ATCTTGTTCATATAGGC
AGCGGCTTGATTTTCAT
CTGTCGGGTAGCCTTCC
ATCTCTGGGGTGATGA
ACAAACGATATCCGCT
GTAATCCGCTTTTCTTA
CCATCGTTACGGTCAA
CATGGCTGCGCCAGAG
AGACGGGAGAGAACAT
AGGTGCCATTGGTTGT
GGCGACATTTTCCACC
GCAAAGAACGGCGCGA
AGGAGCTGCCTTTACG
ACCATAATCCTGATCG
GGAGCAAACCATACCG
CTTCACCTTTCTTCAGT
GCACCGACAATGCC 

436 Unknown  Unknown    

sroE ATAACGTGATGGGAA
GCGCCTCGCTTCCCGT
GTATGATTGAACCCG
CATGGCTCCCGAAAC
ATTGAGGGAAGCGTT
GAGGGTTCATTTTTAT 

92 Unknown  Unknown    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

ryfA GCGGCCCTTTCCGCCG
TCTCGCAAACGGGCG
CTGGCTTTAGGAAAG
GATGTTCCGTGGCCGT
AAATGCAGGTGTTTC
ACAGCGCTTGCTATCG
CGGCAATATCGCCAG
TGGTGCTGTCGTGATG
CGGTCTTCGCATGGAC
CGCACAATGAAGATA
CGGTGCTTTTGTATCG
TACTTATTGTTTCTGG
TGCGCTGTTAACCGA
GGTAAATAATAACCG
GAGTCTCTCCGGCGA
CAATTTACTGGTGGTT
AACAACCTTCAGAGC
AGCAAGTAAGCCCGA
ATGCCGCCCTTTGGGC
GGCATATTTT 

304 No Pandey, et al. 
(2014) 

No    

GlmY AGTGGCTCATTCACCG
ACTTATGTCAGCCCCT
TCGGGACGTGCTACA
TAAAATACGAATGAC
GCACAACAAGGTGCC
TGCCGTCCAACTTCTG
ATATCAGCGTAGCTAT
ATCAACCATCGGGCG
AAACGTCGAGTTAGG
CACCGCCTTATTCCAT
AACAAAGCCGGGTAA
TTCCCGGCTTTGTT 

184 Yes Göpel, et al. 
(2015) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

ryfB CGTTATTGAAGATTTT
GCTGTGCTTTACACCA
TGCCACAGAATTCCCC
CATTGAAACGAGTGG
TGTCGTCAAAGCTCTG
GTGTGGAGTGCAGCA
TGCACCCTCAATAACT
CGCACGTTCAGTTTTG
GGGAGATGTAAGGGC
TAATCTGAATGGCTGC
ATTCCTTGTTTAAGGA
AAAACGAATGACTGA
TTGCCGATACCTGATT
AAACGGGTCATCAAA
ATCATCATTGCTGTTT
TACAGCTGATCCTTCT
GTTCTTATAACACAAG
GAAACGTACTTAAGG
TGCGTCCGGTGAACC
AGTCGGACGCACCTTT
AATAAC 

319 No Bak, et al. 
(2015) 

No    

ryfC 
(ohsC) 

GTTGAGGGTGCATGC
TGCACAAAATTAAAG
TTAAAAAGTAAAACC
CCCGTTCCTTACCAGT
TCGGGGGTTTTACTTT 

77 Unknown  Unknown    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

ryfD AATCAAGACGATCCG
GTACGCGTGATTTTCT
TTTCACATTAATCTGG
TCAATAACCTTGAAT
AATTGAGGGATGAC
CTCATTTAATCTCCAG
TAGCAACTTTGATCCG
TTATGGGAGGAGTTA
TGCGTCTGGATCGTCT
TACT 

143 Yes Pandey, et al. 
(2014) 

Yes    

SraD 
(MicA) 

GAAAGACGCGCATTT
GTTATCATCATCCCTG
AATTCAGAGATGAAA
TTTTGGCCACTCACG
AGTGGCCTTTT 

72 Yes Tree, et al. 
(2014) 

Yes phoP [6,31] 4(contained) 
lamB [8,30] 4 
ompA [8,25] 4-5(contained) 
ompW [2,30] 3-4(contained) 
tsx [1,23] 2 
ygiM [6,30] 4(contained) 

yfeK [11,28] 8 
ompX [1,23] 2 
fimB [4,14] 3 

GcvB ACTTCCTGAGCCGGA
ACGAAAAGTTTTATC
GGAATGCGTGTTCTG
GTGAACTTTTGGCTTA
CGGTTGTGATGTTGTG
TTGTTGTGTTTGCAAT
TGGTCTGCGATTCAGA
CCATGGTAGCAAAGC

205 Yes Tree, et al. 
(2014) 

Yes csgD [69,86]  8 (69, 87) 

dppA [60,94] 7-10 
(contained) 

phoP [148,174] 17-18 
(contained) 

cycA [124,161] 15-17 
(contained) 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

TACCTTTTTTCACTTC
CTGTACATTTACCCTG
TCTGTCCATAGTGATT
AATGTAGCACCGCCT
AATTGCGGTGCTTTT
TTT 

sstT [64,99] 8-11 
(contained) 

OmrA CCCAGAGGTATTGATT
GGTGAGATTATTCGGT
ACGCTCTTCGTACCCT
GTCTCTTGCACCAACC
TGCGCGGATGCGCA
GGTTTTTTTT 

88 Yes Tree, et al. 
(2014) 

Yes fepA [16,48] 4-5 (contained) 
ompR [1,19] 2 
ompT [1,33] 1-3 (contained) 
flhD [1,50] 1-5 (contained) 

OmrB CCCAGAGGTATTGAT
AGGTGAAGTCAACTT
CGGGTTGAGCACATG
AATTACACCAGCCTG
CGCAGATGCGCAGG
TT 

76 Yes Tree, et al. 
(2014) 

Yes ompT [1,32] 1-5 (contained) 
ompR [1,19] 1-2 

(contained),4 
(contained) 

cirA [2,15] 2 
csgD [2,20] 3 
flhD [1,49] 1-7 (contained) 

InvR TGCGGAATGCAGAAA
GTTTTATGTAGGTTAA
GGTGTGAAACGTCCG
CACCAATAAAGCCCG
GCGAGGTGATGCCAA
CCTGGGCGTTCATGTT
C 

93 Unknown  No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

RygC GTAAGGGTAAGGGAG
GATTGCTCCTCCCCTG
AGACTGACTGTTAAT
AAGCGCTGAAACTTA
TGAGTAACAGTACAA
TCAGTATGATGACAA
GTCGCATCATAACCCT
TCTCCTTCAAGCCCTC
GCTTCGGTGAGGGCTT
T 

140 Yes Pandey, et al. 
(2014) 

No    

sroG GCTTATTCTCAGGGCG
GGGCGAAATTCCCCA
CCGGCGGTAAATCAA
CTCAGTTGAAAGCCC
GCGAGCGCTTTGGGT
GCGAACTCAAAGGAC
AGCAGATCCGGTGTA
ATTCCGGGGCCGACG
GTTAGAGTCCGGATG
GGAGAGAGTAACG 

149 Unknown  No    

RygD 
(sibD) 

ACAAGGGTGAGGGAG
GATTTCTCCCCCCTCT
GATTGGCTGTTAATAA
GCTGCGAAACTTACG
AGTAACAACACAATC
AGTATGATGACGAGC
TTCATCATAACCCTTT
CCTTCTGTAAGGCCCC
CTTCTTCGGGAGGGG
CTTTCC 

145 No Pandey, et al. 
(2014) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

psrN GCAAAGGGGAGTAAC
TTCATTGCCGGTCGAT
CGTCATTACGATGTGT
GAAAAAACACATCCG
GTCACCGGGCAACCC
GAAAGGAATACGCAG
ACGTATTCCTTTTTTG
TTGTAAGTGAGACCTT
GCCGGAAGGCGAGGT
CTATGCATAAAAAGC
AGCGGCTGACGTCTTC
CGACGTTGGCCGTTTT
TT 

188 Unknown  Unknown    

SraH 
(ArcZ) 

GTGCGGCCTGAAAAA
CAGTGCTGTGCCCTTG
TAACTCATCATAATAA
TTTACGGCGCAGCCA

AGATTTCCCTGGTGTT
GGCGCAGTATTCGCG

CACCCCGGTCTAGCC 

108 Yes Zhang, et al. 
(2003) 

Yes rpoS [66,91] 9 

flhD [1,17] 2 

arrS GTAATCCGATTTAAAT
ATCGAGTCTCCTTGTT
TCGACTTAAGCTGGC
AATTGGATTGCCAGCT
TTCTTT 

69 Yes  No    

GadY ACTGAGAGCACAAAG
TTTCCCGTGCCAACAG
GGAGTGTTATAACGG
TTTATTAGTCTGGAGA
CGGCAGACTATCCTCT
TCCCGGTCCCCTATGC
CGGGTTTTTTT 

105 Yes Kim, et al. 
(2015) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

rdlD GTCTAGAGTCAAGAT
TAGCCCCCGTGGTGTT
GTCAGGTGCATACCT
GCAACGTGCGGGGG
TTTT 

64 No Pandey, et al. 
(2014) 

Yes    

istR-1, 
istR-2 

GTTGACATAATACAG
TGTGCTTTGCGGTTAC
CAGCCGCAGGCGACT
GACGAAACCTCGCTC
CGGCGGGGTTTTTT 

75 No Olejniczak 
(2011) 

No    

GlmZ GTAGATGCTCATTCCA
TCTCTTATGTTCGCCT
TAGTGCCTCATAAACT
CCGGAATGACGCAGA
GCCGTTTACGGTGCTT
ATCGTCCACTGACAG
ATGTCGCTTATGCCTC
ATCAGACACCATGGA
CACAACGTTGAGTGA
AGCACCCACTTGTTG
TCATACAGACCTGTT
TT 

172 Yes Tree, et al. 
(2014) 

Yes glmS [150,169] 16 

Spot_
42 

GTAGGGTACAGAGGT
AAGATGTTCTATCTTT
CAGACCTTTTACTTCA
CGTAATCGGATTTGG
CTGAATATTTTAGCC
GCCCCAGTCAGTAAT
GACTGGGGCGTTTTT
TA 

109 Yes Kim, et al. 
(2015) 

Yes gltA [4,13] 5 

caiA [23,38] N/A 
sucC [23,34] 9 

sthA [48,55] 13(48-56) 
srlA [20,34] 7 
fucI [4,57] 4-13 (contained) 

galK [1,62] 1-14 (contained) 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

nanC [1,17] 2 
paaK [1,9] 1 
ascF [1,8]...[52,6

0] 
1(1-9), 14 

sdhC [4,15] 4 
fucP [46,56] 12 
xylF [1,33] 1-6 (contained) 

atoD [4,11] N/A 
gdhA [40,56] 12-13 

(contained) 
puuE [29,57] 10 (contained), 

12-13 
(contained) 

OxyS GAAACGGAGCGGCAC
CTCTTTTAACCCTTGA
AGTCACTGCCCGTTTC
GAGAGTTTCTCAACTC
GAATAACTAAAGCCA
ACGTGAACTTTTGCGG
ATCTCCAGGATCCGCT 

110 Yes Tree, et al. 
(2014) 

Yes flhD [53,74] 6 (contained) 

sroH GAAAATAAGAACACATG
TTCTCATCTTCCAGGATG
CAGCAGACTGAAGAAAT
TCAGACATCCCGCAACC
TGCGATTATCGCAAGGT
CAAGGCAAAGTCCGGTA
ATGGCGTTCTGAATACC
AGAGATAATTCTCTGGC
GAAACCCACCTTAAGGT
GGGTTTT 

161 Unknown  N/A    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

SraL ATCAACACCAACCGG
AACCTCCACCACGTG
CTCGAATGAGGTGTG
TTGACGTCGGGGGAA
ACCCTCCTGTGTACCA
GCGGGATAGAGAGAA
AGACAAAGACCGGAA
AACAAACTAAAGCGC
CCTTGTGGCGCTTTAG
TTT 

140 No  No    

ryjA ATCAACACCAACCGG
AACCTCCACCACGTG
CTCGAATGAGGTGTG
TTGACGTCGGGGGAA
ACCCTCCTGTGTACCA
GCGGGATAGAGAGAA
AGACAAAGACCGGAA
AACAAACTAAAGCGC
CCTTGTGGCGCTTTAG
TTTT 

141 Yes Wassarman, 
et al. (2001) 

No    

nc5 ATCCGGCCTACGGAGGG
TGCGGGAATTTGTAGGC
CTGATAAGACGCGCAAG
CGTCGCATCAGGCAGTC
GGCACCATTGCCGGATG
CGGCGTAAACGCCTTAT
CC 

104 Unknown  N/A    

ryjB TCATCCGTCGTTGACT
CCATGCCGATTCGGGT
TAATCTGGTAGCGATC
CCCGTCGATACTTTTG
ACGAAGGCGGCAGGG
ATCGCAGAAGG 

90 Yes Zhang, et al. 
(2003) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

symR AGTCATAACTGCTATT
CTCCAGGAATAGTGA
TTGTGATTAGCGATGC
GGGTGTGTTGGCGCA
CATCCGCACCGCGCT 

77 No Kawano, et 
al. (2007) 

No    

dsrA AACACATCAGATTTCC
TGGTGTAACGAATTT
TTTAAGTGCTTCTTGC
TTAAGCAAGTTTCATC
CCGACCCCCTCAGGG
TCGGGATTT 

87 Yes Tree, et al. 
(2014) 

Yes mreB [24,41] 5 

rpoS [10,32] 3 

hns [31,43] 7 

ryhB GCGATCAGGAAGACC
CTCGCGGAGAACCTG
AAAGCACGACATTGC
TCACATTGCTTCCAGT
ATTACTTAGCCAGCC
GGGTGCTGGCTTTT 

90 Yes Tree, et al. 
(2014) 

Yes iscS [43,68] 15 
sdhD [9,50] 2-8 (contained) 

sodB [34,64] 8-14 
(contained) 

nirB [38,57] 11 
marA [38,57] 11 
erpA [36,60] 9 
sdhC [43,51] 17 
sdhCD
AB 

[9,50] 2-8 (contained) 

shiA [19,75] 6-19 
(contained) 

cirA [41,57] 13 
fur [38,76] 10-20 

(contained) 
msrB [1,12]...[26,

38] 
1 (contained), 6 
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

MicF GCTATCATCATTAACT
TTATTTATTACCGTCA
TTCATTTCTGAATGTC
TGTTTACCCCTATTTC
AACCGGATGCCTCG
CATTCGGTTTTTTTT 

93 Yes Zhang, et al. 
(2003) 

Yes OmpFs [1,33]:[1,13]
[14,33] 

2,4 

lrp [1,13] 2 

MgrR GATTCGTTATCAGTGC
AGGAAAATGCCTGTT
AGCGTAAAAGCAAAA
CACAAATCTATCCATG
CAAGCATTCACCGCC
GGTTTACTGGCGGTT
TTTTTT 

98 Yes Kim, et al. 
(2015) 

Yes    

CyaR GCTGAAAAACATAAC
CCATAAAATGCTAGC
TGTACCAGGAACCAC
CTCCTTAGCCTGTGT
AATCTCCCTTACACG
GGCTTATTTTTT 

87 Yes Tree, et al. 
(2014) 

Yes luxS [35,49] 9 
yqaE [31,50] 8 
nadE [35,48] 9(35-49) 
yobF [1,43] 1-5 (contained) 
OmpX [38,48] 10 

dicF TTTCTGGTGACGTTTG
GCGGTATCAGTTTTAC
TCCGTGACTGCTCTGC
CGCCC 

53 Yes Zhang, et al. 
(2003) 

No ftsZ [22,52] 4-6 (contained) 

SibB GTGAGGGTAGAGCGGGG
TTTCCCCCGCCCTGGTAG
TCTTAGTAAGCGGGGAA
GCTTATGACTAAGAGCA
CCACGATGATGAGTAGC
TTCATCATGACCCTTTCC
TTATTTATGGCCCCTTCC
TCGGGAGGGGCTTT 

136 Unknown  N/A    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

SibE ACAAGGGTAAGGGAG
GATTTCTCCCCCCTCT
GATGAGTTGTTAGTA
AGTCGGGAAACTTAA
CAGTAACAACACAAC
CAGTATGATGACGAG
CTTCATCATAACCCTT
TCCTTATACAAGGCCC
CTTCTTCGGGAGGGG
CTTT 

142 Unknown  N/A    

SibA GTGAGGGTTAGGGAG
AGGTTTCCCCCTCCCC
CTGGTGTTCTTAGTAA
GCCTGGAAGCTAATC
ACTAAGAGTATCACC
AGTATGATGACGTGC
TTCATCATAACCCTTT
CCTTATTAAAAGCCCT
CTTCTCCGGGAGAGG
CTTT 

143 Unknown  N/A    

MicL ATTTTTACCGTTGCAT
CATGTCGCCCAATATG
ATGCTTGCTCGTACCA
GGCCCCTGCAATTTCA
ACAGGGGCCTTTTTTT 

80 Yes Guo, et al. 
(2014) 

No    
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sRNA Sequence Length Hfq 
Dependent? 

Reference 
for Hfq 

Dependency 

Known Hfq 
Binding 

Site 

Target 
mRNA 

Interacting 
Nucleotides 

Probe within 
Interacting 

Region 

IpeX TAATCTGATTACGAA
AAAGATATGTTGCGG
GAGGCGTTGCCTCCCC
AACATATAAGTGGCT
CCCTCAAGCCACTTCC
TTTAGAAGCACAACC
TTGCTTCTAACTATAT
AAACCTTCTGTTATAT
ATTACCCTTTATTTTT
GGGGGCGTCTCAACG
CCCCATTTTTAA 

167 No Catillo-
Keller, et al. 

(2006) 

No    
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