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Prairie Vole, Microtus ochrogaster 
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Supervisor:  Steven M. Phelps 

Understanding variation in form and behavior within and among species requires 

mapping genotypes to phenotypes. Much of this variation depends on differences in 

regulatory DNA scattered throughout the genome; in the context of behavior, these 

regulatory sequences govern gene expression in regions of the brain that shape behavior. 

Surprisingly few studies have characterized the regulatory changes that underlie the 

adaptive evolution of brain and behavior.  In my PhD dissertation project, I investigated 

the adaptive role of gene regulation in the evolution of pair-bonding and sexual fidelity in 

the prairie voles, Microtus ochrogaster. Expression of Avpr1a in the ventral pallidum 

plays a critical role in the origin and evolution of pair-bonding in these monogamous 

voles. In Chapter 1, I have applied phylogenetic and population genetic methods to find 

signatures of selection in functional elements in the prairie vole genome. I identified a 

regulatory element of the Avpr1a locus that is under positive selection, this sequence 

coincides with the origins of expression of this gene in a reward region, the ventral 

pallidum. Then, I tested its causality using transgenic mouse enhancer assays. I found that 

transgenic mice expressing a reporter under the control of this prairie vole enhancer were 

able to drive expression in the ventral pallidum, but expression was sensitive to insertion 

site. Interestingly, this gene also shows profound differences between individuals. In 

Chapter 2, I applied population genomic tools to demonstrate that this locus shows 

signatures of balancing selection in a polymorphic enhancer that predicts expression in a 

spatial memory circuit. I found that alleles that predict aspects of space use and sexual 

fidelity are strongly linked to each other. Moreover, I show evidence that the evolution of 

this regulatory element seems to be mediated by a mix of balancing, epistatic and 

density-dependent selection. In Chapter 3, I performed RNA-sequencing experiments to 

analyze monogamy-related genomic changes in the brain. I found massive changes in 

gene expression of prairie voles in contrast to promiscuous meadow voles, despite their 

gene expression modules are very well preserved. Moreover, neuroplasticity –a neural 

process involved with learning— was strongly activated in prairie but not it meadow vole 

brains. Overall, the results of these experiments reveal the potential for gene regulation to 

drive the adaptive evolution of complex behaviors. 
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INTRODUCTION 

Gene Regulatory Evolution 

Evolution by natural selection occurs in both coding and non-coding sequences 

that govern the development and function of morphological, physiological and behavioral 

traits. Identifying the regulatory factors that influence the development and evolution of 

adaptive traits is becoming increasingly crucial as new genomic methods are becoming 

available to molecular ecologists. Moreover, empiric and theoretic work suggests that cis-

regulatory variation contributes largely to morphology, physiology and behavior (Wray 

2007). It is remarkably fascinating to think that within all the mammalian gene regulatory 

sequences, there are many of the instructions by which a small group of sinapsids with 

nocturnal habits evolved and radiated forms and behaviors that allowed them to colonize 

all kinds of diurnal, arid, aquatic, and aerial environments.  The evolution and ecological 

social interactions of most animals can be influenced by behavioral traits that are 

determined by neuronal and genomic processes affecting cognition, for example: 

perception, learning, memory and decision making (Dukas, 2004; Rittschkof and 

Robinson, 2014). However, research addressing the genetic mechanisms of behavior and 

cognition is uncommon; perhaps, this has been a consequence of the popular idea of the 

“phenotypic gambit”. The phenotypic gambit is the assumption by which researchers 

disregarded the intrinsic genetic mechanisms in the course of the understanding the 

evolutionary trajectories of behavior (Grafen, 1984). In this dissertation, I integrate the 

use of various methods from molecular genetics, functional genomics and computational 
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biology to gain better insights into the adaptive and evolutionary origin of monogamy in 

prairie voles. 

The first studies that brought concise explanations on the importance of gene 

regulation were initially made by François Jacob and Jacques Monod who revealed the 

model of Lac operon. This lac element regulates the expression of the b-galactosidase 

enzyme in enteric bacteria as a function of the presence of lactose (Jacob & Monod 

1961). This model unified many ideas of how genes are expressed and helped to 

understand how bacterial DNA sequences coordinate the synthesis of RNA and 

ultimately proteins. This prokaryotic model of gene regulation advanced the field but 

fails to explain how eukaryotic cells maintain a precise system of cell differentiation 

despite having enormous genomes. The regulatory organization of eukaryotic genomes is 

far more complex than in prokaryotes. This complexity led to the development of a 

model of eukaryotic gene regulation as proposed by Britten and Davidson (1969). They 

proposed that eukaryotic cells contained a complex and coordinated program of gene 

expression where different components at a locus interacted together in order to express a 

specific gene, this model included an integrator gene, a producer gene, a receptor site, 

and a sensor site (Britten & Davidson 1969). This model of gene regulation also 

explained why eukaryotic genomes contain large amounts of non-coding DNA sequences 

that have usually being considered as ‘Junk’ DNA (Ohno 1972). Then, King and Wilson 

observed that coding sequences between humans and chimpanzees were extremely 

similar despite the big morphological differences. They also observed that highly 

repetitive DNA from these two apes hybridized at a lower dissociation temperature than 
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from human DNA alone, suggesting that most of the phenotypic differences between 

humans and chimpanzees were caused by changes in regulatory sequences rather of 

changes in coding sequences (King & Wilson 1975). 

Recent advances in functional analysis of the genome have revolutionized the 

understanding of the relative importance of gene regulation in evolution. Researchers 

from the Encode project argued that nearly 80% of the DNA contribute to gene regulation 

and that most of the ‘junk’ DNA was actually regulatory (Bernstein et al. 2012). While 

some scientists have criticized this as a large overestimate (Graur et al. 2013), it is clear 

that non-coding DNA plays a critical role in gene regulation. Since the encode program 

was opened to the public, massive amounts of functional data associated with all animal 

genomes have been released. In addition to the technical and empiric advances, new 

statistical developments have also allowed the discovery of regions that are evolving 

slower or faster than the phylogenetic expectation (Pollard et al. 2006; Hubisz et al. 

2011). In Encode, each genome can be compared with the human and mouse genomes, 

which contain extensive and detailed maps or tracks of epigenetic information and 

measurements of DNA conservation and acceleration that allow researchers to identify 

the regions were selection may be acting. Indeed, these tools have allowed several studies 

to look for evidence of selection among regions of the genome that are associated with 

open and regulatory chromatin. Some of these fast evolving regions in the human lineage 

have been coined the Human Accelerated Regions (HARs). These elements are 

associated with many of the morphological traits that differentiate humans from our close 

relatives, such as: precision grip, brain size expansion, and  lactose intolerance (Tishkoff 
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et al. 2007; Prabhakar et al. 2008; Boyd et al. 2015). Many other studies have been able 

to identify gene regulatory elements that explain adaptive evolution among natural 

populations. Regulatory changes are predominant in scans of selection among divergent 

populations of marine and lake three spine sticklebacks (Gasterosteus acueatus) (Jones et 

al. 2012). In fact, a recurrent deletion of an enhancer in the Pitx1 gene explains the 

adaptive loss of pelvic spines in the stickleback fish (Chan et al. 2010). Despite all the 

morphological and physiological evidence claiming the relative importance of gene 

regulation in adaptive evolution, few studies have addressed the involvement of gene 

regulation in the adaptive evolution of animal behavior. Some gene modules that are 

known to regulate the development of the egg in insects have been linked to the 

regulation of labor division and foraging behavior in honeybees (Toth & Robinson, 

2007). The gene for, which is known for controlling feeding behavior in the fruit-fly, has 

been found to regulate the transition from nurses to foraging honey bees. As long as 

honeybees age, the expression of for increases and the transition to forager occurs 

(Whitfield et al. 2003).  

Animals rely on their perception of the environment, experience and social 

interactions to make adaptive decisions in order to increase their reproductive fitness 

(Dukas & Ratcliffe 2009). Prairie voles and its allies in the Old and New World have 

become an excellent model to understand the evolution of the social brain (McGraw & 

Young 2010). Prairie voles exhibit extraordinary variation in social behavior at both the 

interspecific and intraspecific level (Getz, McGuire, & Pizzuto, 1993). Prairie voles are 

socially monogamous rodents that form life-long pair-bonds but not necessarily mutually 
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exclusive, exhibit bi-parental care, and extremely aggressive toward intruding 

conspecifics (Phelps & Ophir 2009). Interestingly, most of the neurobiological and 

physiological bases of these complex behaviors are becoming well understood. In fact, 

the regulation of the arginine-vasopressin receptor in neural circuits has been linked to 

the differences in behavior within and between species (Young and Hammock 2007). 

However, little is known about the adaptive value gene regulation at driving behavioral 

variation in both the genome-wide level and even at the Avpr1a locus. In my dissertation, 

I addressed my interests in making progress in the understanding of the role of gene 

regulation in adaptive evolution of complex behaviors. In chapter I, I studied the 

regulatory evolution of pair-bonding by identifying functional elements at the Avpr1a 

locus using ChIP-seq, and then tested for signatures of rapid evolution driven by positive 

selection at the phylogenetic level. In chapter II, I tested for diversifying or balancing 

selection maintaining high levels of genetic variation associated with social variation in 

sexual fidelity. Finally, in chapter III, I evaluated gene expression at the genome-wide 

level to gain insights on additional candidate genes and their regulatory elements.  
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 CHAPTER 1 

Becoming Monogamous: Rapid evolution of a cis-regulatory element  

in the Avpr1a locus 

ABSTRACT 

The evolution of regulatory DNA is thought to play a critical role in the adaptive 

diversification of complex phenotypes. Although a variety of morphological innovations 

have been tied to changes in regulatory sequences, we know little about how such 

changes influence behavior. We explored the evolution of the vasopressin 1a receptor 

(V1aR, encoded by Avpr1a) to ask whether there was evidence of regulatory adaptation 

among monogamous vole species. Our phylogenetic analysis suggest that the two 

monogamous species in our analysis are sister taxa compared to other voles within our 

sample, indicating that they share patterns of Avpr1a expression and pairbond formation 

by common descent. ChIP-seq targeting H3K27ac from the ventral pallidum revealed a 

pair of putative enhancers. One of these enhancers exhibited significant evidence of 

adaptation coinciding with the origins of monogamy. A second enhancer showed 

evidence of purifying selection across voles, and across mammals more generally. Lastly, 

transgenic mice expressing a reporter under the control of these prairie vole enhancers 

were able to drive expression in the ventral pallidum, but expression was sensitive to 

insertion site. The results highlight the tractability of combining functional genomics, 

evolutionary genetics and behavioral neuroscience to understand the evolution of 

complex behaviors.  
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INTRODUCTION 

Few questions are more fundamental to the biological sciences than the relationship 

between genomic and phenotypic diversity. Among the many phenotypes biologists hope 

to understand, social behavior is among the most compelling and complex, including 

mating decisions, cultural learning, and parental care to name just a few (Lea & Ryan 

2015; Aplin et al. 2014; Dulac et al. 2014). Such behaviors vary not only within and 

among species, they are also dynamic, changing over time and across contexts. One way 

to manage this complexity is to focus on the more stable phenotypes that govern 

behavioral decisions (Phelps 2010; Hamer 2002). For example, in the socially 

monogamous prairie vole (Microtus ochrogaster) neural expression of the vasopressin 1a 

receptor V1aR, encoded by Avpr1a , is a critical regulator of pairbond formation 

(Winslow et al. 1993). In the current manuscript, we examine the relationship between 

nucleotide variation and Avpr1a expression in the ventral pallidum, a region critical for 

reward in general (Smith et al. 2009) and for prairie-vole bonding in particular (Pitkow et 

al. 2001; Lim & Young 2004). By doing so, we explore how selection has shaped DNA 

sequences that contribute to species differences in gene expression and complex social 

behavior.   

Gene expression is an interesting phenotype not only because it is so intimately 

tied to genome sequence, but also because changes in gene regulation are increasingly 

considered central to evolutionary innovation (King & Wilson 1975; Stern 2000; Wray 

2007). Mutations that arise within regulatory regions can alter a gene’s function in 

specific tissues, leaving function in other tissues unchanged; this reduces the negative 



 8 

pleiotropic consequences of mutations and presumably increases their capacity to 

contribute to adaptation (Stern 2000; Wray 2007). Indeed, many studies have 

demonstrated the importance of gene regulation in the evolution of form, including insect 

wing patterns (Gompel et al. 2005; Warren et al. 1994; Jeong et al. 2008), stickleback 

pelvic spines (Shapiro et al. 2004), and the human neocortex (Boyd et al. 2015). Despite 

this recent progress, few studies have examined how adaptive sequence evolution 

contributes to behavior.  

The capacity for pair-bond formation is a complex phenotype governed by many 

neuromodulators, including dopamine (Young & Wang 2004), opioids (Resendez et al. 

2016), estrogen receptors (Cushing 2016) and corticosteroids (DeVries et al. 1996; 

Blondel et al. 2016; Lim et al. 2006; Lim et al. 2007). But among these regulators, the 

vasopressin 1a receptor (V1aR) is particularly well studied. Prairie voles have unusually 

high levels of V1aR in the ventral pallidum, a region critical to reward and addiction 

(Insel et al. 1994; Young & Wang 2004). Site-specific injections of V1aR antagonists or 

Avpr1a shRNA vectors reveal that pallidal V1aR is necessary for pair-bond formation but 

not for normal mating (Lim et al. 2004; Barrett et al. 2013). Species comparisons reveal 

that another monogamous species, the pine vole (M. pinetorum) has a similar elevation in 

pallidal V1aR abundance, while promiscuous congeners and many other promiscuous 

rodents lack this expression (Insel et al. 1994). Indeed, over-expressing the receptor in the 

pallidum of the promiscuous meadow vole produces key aspects of pair-bonding (Lim et 

al. 2004). Understanding how Avpr1a expression came to be elevated in the ventral 
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pallidum of prairie and pine voles offers insights into the origins of a complex social 

behavior. 

There are three receptors for the neuropeptide vasopressin, and V1aR is the 

predominant form in the brain (Caldwell et al. 2008). V1aR is a G-protein coupled 

receptor encoded by Avpr1a, a gene with two exons separated by a ~2.5kb intron. Initial 

work on individual and species differences in Avpr1a regulation focused on length 

differences in a complex microsatellite flanking the gene’s transcription start site 

(Hammock et al. 2005; Ophir, Wolff, et al. 2008). The two monogamous species studied 

both share a long microsatellite, while two promiscuous species, meadow and montane 

voles, have very short microsatellite lengths. However, phylogenetic data indicate that the 

two promiscuous species examined are sister taxa, and that the microsatellite has been 

lost in their lineage but not in other promiscuous voles (Fink et al. 2006). Indeed, 

transgenic studies demonstrate that the microsatellite sequence is not responsible for 

pallidal V1aR expression (Donaldson & Young 2013). These findings highlight the need 

for a more systematic examination of Avpr1a regulatory evolution. 

In the current study, we ask whether there has been adaptive regulatory evolution 

at the Avpr1a locus associated with origins of monogamy in voles. We begin by selecting 

6 microtine species and a non-microtine outgroup species, each with a well characterized 

mating system. We use the sequences of putatively neutral nuclear genes to generate a 

well resolved phylogeny of this group. Next we sequence ~8 kb of the Avpr1a locus, and 

use ChIP-seq targeting a marker of active enhancers, acetylation of lysine 27 in histone 3 

(H3K27ac), to identify regulatory regions at the locus. We test whether identified 
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enhancers exhibit evidence of adaptation by looking for accelerated sequence evolution 

associated with the origins of monogamy, and by examining patterns of nucleotide 

diversity within prairie voles. Together these data offer novel insights into the adaptive 

regulation of gene expression critical to a complex behavior. 

 

MATERIALS AND METHODS 

Animal sampling and DNA extractions 

We sampled livers from 6 species of Microtus voles (Microtus arvalis, M. 

richardsoni, M. montanus, M. pennsylvanicus, M. pinetorum and M. ochrogaster) and 

one outgroup, Myodes gapperi. With the exception of M. ochrogaster, all samples were 

kindly provided by The Washington Burke Museum in alcohol preparations. To assess 

intraspecific variation in prairie voles, 32 individuals collected in the vicinity of Urbana, 

IL (Champaign County) were also included in these analyses (Okhovat et al. 2015). All 

genomic DNA extractions were prepared using the QIAGEN DNEasy kit for tissue and 

blood following the manufacturer’s protocol.  

 

Polymerase chain reactions 

We amplified three putatively neutral loci (Lcat, 920 bp; Acp5, 375 bp; and Fgb, 725 bp) 

and 8 kb of the Avpr1a locus using the primers listed in Table 1.1. All polymerase 

reactions (20 μL) were prepared with 1X GoTaq® Hot Start Polymerase buffer 

(Promega), 1.0 mM of MgCl2, 0.2 mm of each dNTP, 0.5 μm of each primer, 1.25 U 

HotStart Taq Polymerase and 1.0 μL of diluted DNA. Amplifications were carried out on 
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a Veriti Thermal Cycler (Applied Biosystems) using the following profiles: Lcat – initial 

denaturation at 95 °C for 2 min, 35 cycles of 95 °C for 40 s, annealing at 57 °C for 40 s, 

extension at 72 °C for 90 s, and a final extension at 72 °C for 7 min. Acp5 – initial 

denaturation at 95 °C for 2 min, 35 cycles of 95 °C for 30 s, annealing at 58 °C for 30 s, 

extension at 72 °C for 60 s, and a final extension at 72 °C for 7 min. Fgb – initial 

denaturation at 95 °C for 2 min, 35 cycles of 94 °C for 40 s, annealing at 53.5 °C for 40 s, 

extension at 72 °C for 60 s, and a final extension at 72 °C for 7 min. Avpr1a – to avoid 

amplification of a pseudogene present in the prairie voles, and to improve our ability to 

amplify non-coding sequences across species, we used a semi-nested PCR to target the 

Avpr1a locus. The first amplification consisted of an initial denaturation at 95 °C for 2 

min, 35 cycles of 95 °C for 40 s, annealing at 58 °C for 30 s and extension at 72 °C for 

240 s, and a final extension at 72 °C for 7 min; 1ul of the resulting reaction was taken as 

template and amplified using the same forward primer but a second reverse primer, with 

PCRs conditions including initial denaturation at 95 °C for 2 min; 35 cycles of 95 °C for 

40 s, annealing at 58 °C for 30 s, extension at 72 °C for 210 s, and a final extension at 72 

°C for 7 min. Each amplicon was first visualized on 1% agarose gels in order to check its 

band size and specificity, and then cleaned with Qiaquick PCR purification kits (Qiagen) 

according to the manufacturer's protocol. Sanger sequencing was conducted at the 

University of Texas at Austin Institute for Cellular and Molecular Biology (ICMB). The 

resulting ABI Chromatograms were processed and analyzed using ‘Map to Reference’ 

parameters in Geneious v6.1 (Biomatters).  

 



 12 

Phylogenetic reconstruction 

We first assembled a concatenated “neutral sequence” by combining the putatively 

neutral loci from each species. To align the sequences, we used MAFFT implemented in 

the Pairwise/Multiple Align tool of Geneious V6.1 using default settings, followed by 

manual curation to resolve indels or mismatched substitutions. After removing conserved 

coding sequences, the neutral alignment contained 1279 bp for each species. 

MrModeltest v2.3 identified  “K80”, “GTR + Γ”, “JC69”, and “HKY85 + I” as the best-

fit models of nucleotide substitution among 16 model tests (Nylander 2004). All these 

models provided the same tree topologies and similar branch lengths, suggesting the 

resulting phylogeny was not sensitive to a specific model. We selected the GTR using a 

gamma-distribution to infer a tree of three putatively neutral non-coding sequences. 

MrBayes was run for 2000000 generations with subsampling every 100
th

 generation, 

discarding 30% of the first generated burn-in trees, and chain temperature was set to 0.2. 

 

Chromatin immunoprecipitation 

To identify putative enhancer sites active in the ventral pallidum of prairie voles, we 

performed ChIP-seq targeting a marker for active enhancers, H3K27ac. Nine lab-reared 

males from our breeding colony at the University of Texas at Austin were euthanized and 

their brains were immediately harvested, blocked using a brain slicer matrix, and a 1 mm 

coronal section was extracted and placed in 1.4% paraformaldehyde. While the section 

was fixing, we collected four punches from the ventral pallidum of each brain and placed 

them in a microfuge tube with 1.4% paraformaldehyde at room temperature (RT). The 
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cross-linking reaction was quenched after 15min total by adding glycine (2M). Samples 

were then washed three times with phosphate-borate solution (PBS) containing proteinase 

inhibitors (PI and PMSF). The tissue punches were homogenized using disposable 

grinder pestles and rewashed with PBS supplemented with PI and PMSF. Cell 

membranes were lysed in buffer (5mM PIPES pH8.0, 85mM KCl, 0.5% NP40) 

supplemented with proteinase inhibitors (PI). Nuclear membranes were further lysed  in 

buffer (50 mM Tris-HCl pH8.0, 10 mM EDTA, 1% SDS,  PI) on ice for 10 min. 

Chromatin was sonicated on ice with 6 pulses of 10s at 80% of power to generate 

fragments of a size range of 150-400bp. To pull down chromatin, 150 L of sonicated 

solutions were precleared with Dynabeads and a 250L of dilution buffer (0.01 %SDS, 

1% Triton X-100, 2mM EDTA, 20mM Tris-Cl pH=8, 150mM NaCl) for 2 hours at 4°C. 

15uL were aliquoted to use as control input DNA. The remaining chromatin was 

incubated with H3K27ac antibody (Abcam, ab4729) with overnight rotation at 4°C. After 

antibody binding, the magnetic beads were passed thorough sequential washes with fresh 

RIPA buffer, high-salt buffer, LiCl buffer and two final washes on 1X TE buffer. 

Chromatin was isolated from beads in fresh elution buffer with a 15 min incubation at 

65°C. The chromatin precipitate was incubated with RNAse-A for 4h at 65C to degrade 

traces of RNA, and then incubated with Proteinase K to degrade protein. Lastly, DNA 

was purified with a standard phenol-chloroform extraction. 

Library preparation and sequencing 

DNA from H3K27ac-ChIP and INPUT were combined in pools of 3 individuals with 

similar concentrations, with 3 pools corresponding to 9 individuals. Libraries were 
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prepared using the KAPA Library Prep Kit following the manufacturer’s instructions but 

excluding size-selection. Briefly, DNA was end-repaired, tailed with adenines and ligated 

to different NEXTflex DNA barcodes (Bio Scientific). Barcoded libraries were PCR-

amplified for 10 cycles. The quality control and fragment distribution was examined 

before sequencing using the Agilent Bioanalyzer by University of Texas at Austin 

Genome Sequencing and Analysis Facility (GSAF). All samples were sequenced in the 

Illumina NextSeq platform at the GSAF facility (>30 million reads (PE75) per pooled 

sample). The quality of the reads was examined by visualizing the FastQC output for 

each sample. Experimental and input reads were aligned to the prairie vole draft genome 

assembly using bwa with settings for 75bp paired-end reads. We used SAMtools to 

estimate mapping efficiency (Li et al. 2009). A local duplication kept the extended region 

around the Avpr1a locus from assembly into the prairie vole genome 

(http://www.broadinstitute.org/software/allpaths-lg/blog/?p=618). Therefore, BAC 

contigs containing the locus and its pseudogene were manually added to the assembly 

(NCBI accessions: DP001225, HQ156469). To call for significant peaks of H3K27ac, we 

used Model-based Analysis of ChIP-Seq, MACS2 (Zhang et al. 2008), software that 

identified peaks of H3K27ac-DNA interactions with a Qvalue-cutoff of 0.05. Fold 

enrichments were plotted using ggPlot in R. Additional details of the pipeline used can be 

found at the author’s GitHub repositories site (https://github.com/wodanaz/ChIPseq). 

Phylogenetic tests of selection 

Our phylogenetic data suggest that monogamy evolved once at the common ancestor of 

prairie and pine voles. We noted that there were only six synapomorphies at this short 
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node: five within a single enhancer, and the sixth at an adjacent H3K27ac peak. To test 

for the probability of observing this clustering of substitutions by chance, we estimated 

the probability of six substitutions occurring within a window of 563 bp or less. To do 

this, we ran 10,000 simulations in which we randomly assigned six substitutions to a 

sequence of length 5874bp (the length of our non-coding sequence) and calculated the 

distance between the most distant substitutions.  

To test for signatures of selection more explicitly, we used a likelihood ratio test 

to examine whether ventral pallidum enhancers identified by H3K27ac ChIP-seq were 

evolving more quickly at the onset of monogamy than in the rest of the phylogeny. Based 

on our phylogeny, we defined the “foreground” as the branch that corresponds to the 

origin of monogamy in the common ancestor of pine and prairie voles (dark red in figure 

1.3); branches after the split of prairie and pine vole lineages were excluded; all other 

branches were designated “background” Using a Poisson distribution, we calculated the 

likelihood of observing a given number of substitutions in the foreground given the 

maximum likelihood estimate of the rate in the background. We compared this to the 

likelihood of observing the same number of mutations in the foreground given a model in 

which the foreground branch was evolving at a different rate. We compared these two 

models using a likelihood ratio test, where the ratio was assumed to follow a chi-squared 

distribution with one degree of freedom.  

We compared rates of foreground evolution between the putative pallidal 

enhancers and other non-coding sequences using a similar strategy. Specifically, we 

asked whether changes in the foreground were significantly faster within an enhancer 
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than in other non-coding sequences. These models were also compared using a chi-

squared test with one degree of freedom. 

To assess whether putative enhancers had evolved recently or were likely to be 

ancient, we examined the extent of conservation at the locus across various taxonomic 

scales using PHylogenetic Analyses with Space/Time, PHAST v1.3 (Hubisz et al. 2011) 

First, we downloaded mammalian and glire homologues of the sequences for Lcat, Acp5, 

Fgb and Avpr1a (Table 1.2) using the genome Blast/Blat tools implemented in Ensembl 

(Yates et al. 2016). Next, these sequences were aligned using the MAFFT algorithm. 

Sequences were aligned respect to a prairie vole reference, and sequences not present in 

the prairie vole reference were deleted.  PhyloFit generated neutral models of evolution 

for the mammalian, glire and vole clades by fitting the neutral topologies to their 

respective sequence alignments. To estimate conservation scores and identify conserved 

elements we used PhastCons, fitting each of the neutral models to their respective Avpr1a 

alignments using the General Time-Reversible (GTR) substitution model. We plotted the 

posterior probability scores for each clade using the library Gviz implemented in R 

(Hahne & Ivanek 2016). 

Population tests of selection 

To assess whether positive selection leaves signatures of more recent selection, we used a 

modification of the McDonald-Kreitman (MK) test that has been adapted to non-coding 

DNA (Bustamante et al. 2002). It compares the ratio of polymorphism to divergence 

between two species at two types of genetic regions, one of which is putatively neutral. 

This method assumes that, for neutrally evolving sequences, polymorphism and 
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divergence are proportional and dependent on mutation rate. We estimated polymorphism 

of 32 individuals from a population of prairie voles from Champaign County, IL, and 

divergence was estimated by comparing Avpr1a sequences from prairie voles and water 

voles, M. richardsoni (Okhovat et al. 2015). First, we used a Fisher’s exact test to 

compare the ratio of fixed differences to polymorphisms in the vicinity of the pallidal 

peak 1 or pallidal peak 2 to the ratio observed in our putatively neutral loci.  

To further characterize localized patterns of selection, we performed a sliding 

window analysis in which we calculated levels of polymorphism and divergence along 

the Avpr1a sequence in 300 bp windows, comparing the observations in each window to 

our null expectation based on our three neutral markers. Because these tests are 

descriptive, we did not correct for multiple testing. Scores for Divergence (K), nucleotide 

diversity (π) and MK p-values were plotted respect to the first base of each window using 

the library Gviz implemented in R (Hahne & Ivanek 2016), excluding microsatellite 

sequences. 

To further characterize the null expectations for diversity and divergence based on 

our neutral data,  we used the within and between species alignments in our neutral 

markers to generate a neutral model of sequence evolution, and simulated a neutral 

alignment of 100 kb using the program base_evolve implemented in PHAST. For each 

300 bp window in this simulated sequence, we used DNAsp to calculate the nucleotide 

diversity (π) and divergence (K). We used these measures to generate a bivariate kernel 

density estimate of the probability of observing particularly combinations of π and K in 

our neutral data using the function kde2d implemented in the R package MASS 
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(Venables & Ripley 2002). We plotted our observed levels of π and K from each 300 bp 

window in our Avpr1a data over the kernel density estimate, color coding each window 

based on functional features of the gene.  

Transgenic mouse reporter assay 

To determine whether enhancer sequences that showed evidence of selection were 

capable of driving expression in the ventral pallidum, we synthesized the region spanning 

the H3K27ac ChIPseq peaks (875bps, IDT DNA technologies, Coralville, IA). We first 

cloned this putative enhancer into a Gateway entry vector (pENTR/D-TOPO; Invitrogen, 

Carlsbad, CA). We then subcloned the putative enhancer into an hsp68-lacZ Gateway 

vector (Addgene plasmid# 37843, kindly delivered by Pennacchio lab) via RS Clonase 

(Invitrogen, Carlsbad, CA). An individual colony was isolated and cultured, and the final 

plasmid was isolated using the ZymoPURE™ Plasmid Maxiprep Kit (Zymo, Irvine, CA).  

We confirmed the identity and sequence of the construct by Sanger sequencing. Next, we 

digested the vector with Sal1 (NEB, Ipswich, MA) and submitted ~20ug of the transgene 

to the Mouse Genetic Engineering Facility of The University of Texas at Austin for 

pronuclear injection.   

The transgene fragment was isolated from a 0.8% agarose gel using a silica matrix 

method (QIAEX II kit). The DNA was resuspended in 10 mM Tris-HCl (pH 7.5) and 0.1 

mM EDTA (Injection buffer) at 100 ng/ul. A DNA aliquot was diluted to 1 ng/ul in 

injection buffer for microinjection (Behringer et al. 2014). To generate embryos for 

pronuclear injection, we crossed C57BL/6J (JAX) males and B6D2F1/J (JAX) females. 

Injected embryos were surgically transferred to CD-1 (Charles River) recipient female 
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mice. Seventy two independent lines were generated, of which fourteen were positive for 

the lacZ transgene. These 14 brains were fresh frozen on dry ice and stored at -80C. We 

sliced twelve lacZ positive brains in sections of 20m thick using a cryostat Microm 

HM550 cryostat (ThermoFisher Scientific, Walldorf, Germany) and stained for lacZ 

using Xgal and counterstained with neutral red. All animal work was approved by the 

University of Texas Animal care and use Committee. 

 

RESULTS 

Phylogenetic history of New World voles 

Despite our limited taxonomic sample, we found that our phylogenetic tree was better 

resolved than many published trees, and had high levels of support overall. The tree 

recovered a novel sister-group relationship (Bayesian Posterior Probability, BPP=1.00) 

between monogamous pine and prairie voles (Fig 1.1A). Similarly, the data strongly 

indicate that M. pennsylvanicus and M. montanus are sister taxa (BPP=1.00). These two 

groups also share a common ancestor (BPP= 0.89) that diverged from M. richardsoni 

(BPP=0.83). We also found strong support for the hypothesis that our New World voles 

form a monophyletic group respect to the European M. arvalis (BPP= 1.00). Lastly, the 

monophyly of Microtus with respect to Myodes was strongly supported (BPP=1.00). 

Bayesian trees generated with other nucleotide substitution models had similar topologies 

and branch lengths. 

Functional characterization of the Avpr1a locus 

To identify putative regulatory elements we performed ChIP-seq targeting H3K27ac from 

ventral pallidum punches. We sequenced 31,292,819,850 bp from a total of 9 individuals 
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from three pooled batches with high quality scores (Phred>33) across all bases, obtaining 

a total of 404749832 uniquely mapped reads (75%-91%) for both input and H3K27ac 

libraries, however, only one ChIP-seq library showed low mapping efficiency (32%). We 

identified 73121 peaks across the genome (Q-value<0.05), including the promoters of 

genes known to exhibit high expression in the ventral pallidum, such as  Slc34a3 and 

Syde2. We observed 28 peaks within 1Mb of Avpr1a, and 2 peaks within 100kb of 

Avpr1a (GEO accession #). We found that these two peaks of H3K27ac were significant 

in the 5’ region (peak 1: P= 1x10
-12

, and peak 2: P= 1x10
-9

), located around 2000bp from 

the translation start site of the Avpr1a locus and flanking an Avpr1a microsatellite (Fig 

1.2). The summit of 5’ peak occurs at 2022 bp 5’ of the reported transcription start site 

(Young et al. 1999), and 2255 bp 5’ of the translation start site. This first pallidal peak is 

novel and spans 340bp of sequence. The second peak is 437bp in length, and its summit 

is located at 1333 bp 5’ of the reported transcription start site and 1566 bp 5’ of the 

translation start site. This peak coincides with a mouse brain DNase I Hypersensitivity 

Site from ENCODE and a highly conserved DNA element across mammals. The closest 

peak outside the Avpr1a locus was found 62kb downstream the translation start site. 

Moreover, we found no significant peaks in the vicinity of the duplicated Avpr1a 

pseudogene, actually, the closest peak was located 25Kb downstream the pseudogene. 

We used these two peaks as a priori boundaries for subsequent tests of selection.  

Phylogenetic signals of selection 

We observed six shared-derived substitutions clustered within 563 bp of the avp1a locus. 

Five of these substitutions are located inside a 340 bp element characterized by H3K27ac 
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enrichment in the ventral pallidum (a putative pallidal enhancer). The sixth substitution is 

placed within the second pallidal H3K27ac peak (437 bp).  A Fisher’s exact test revealed 

that probability of observing five synapomorphies in the first 340bp pallidal peak  a 

significantly higher rate of substitution than observed in the remainder of the noncoding 

sequence (5:52, vs 1:625, Fisher’s exact P<0.0001). The rate of change within the second 

peak was not significantly different than in the remainder of the non-coding sequence 

(1:65, vs 0:565, Fisher’s exact P=0.1054). Simulation results demonstrate that these 6 

substitutions cluster over a significantly shorter span than expected by chance (P= 

0.0001).  

We next compared rates of evolution at each putative pallidal enhancer to those in 

the background. A likelihood ratio test reveals that the first peak of H3K27ac exhibits 

evidence of acceleration during the evolution of monogamy, at the common ancestor of 

prairie and pine voles (λBackground=0.74, λForeground 4.90, LR= 187.84,  P= 9.4x10
-43

). In 

contrast, we found no significant evidence of acceleration at the second peak of ChIP-seq 

(λBackground=0.84, λForeground 0, LR= 1.02, P= 0.31) (Fig 1.3B). This last region coincides 

with a DNase I Hypersensitivity Site from the mouse brain (ENCODE) and a highly 

conserved DNA element in mammals (Fig 1.2A). 

Population signals of selection 

We explored whether positive selection can be detected in the Avpr1a locus within a 

population of prairie voles that were sequenced from Champaign County, IL (Okhovat et 

al. 2015). Our McDonald-Kreitman test revealed that pallidal peak 1 exhibited a 

significant increment of divergence vs diversity in contrast to putatively neutral loci (22:6 
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vs 30:30, P=0.019, Fig 1.4A-B, orange dots), a signal of positive selection. We did not 

obtain an equivalent pattern from pallidal peak 2 (13:12 vs 30:30, P=1.0, depicted in 

yellow dots). The sliding window analysis revealed two additional peak in which 

divergence was high but diversity was low. One within the transcription and translation 

start sites (5’UTR) were polymorphism may be expected to be low and divergence high 

(Andolfatto 2005; Haddrill et al. 2008). The next peak does not correspond to an 

enhancer observed in the ventral pallidum, or previous reported in the retrosplenial cortex 

(Okhovat et al. 2015). This element contains no fixed foreground substitutions (Fig 1.4A, 

violet dots). Lastly, our sliding window analysis suggests a region of the Avpr1a locus 

with high levels of diversity (4B dark green dots). 

Causal transgenic manipulations 

A total of 189 injected mice embryos were transferred to foster mothers, of which 72 

independent lines were born. We sampled tail tissue to verify presence of the transgene 

using the method reported by Kobayashi and collaborators (2004) at weaning. We 

examined 12 transgenic mice that resulted positive for the transgene. X-gal blue staining 

was used to determine the number of individuals that showed positive expression in the 

ventral pallidum. Of 12 examined lines, 10 independent lines showed expression of lacZ 

in the brain, and 5 showed positive expression in the ventral pallidum (Fig 1.5).  

DISCUSSION 

Comparisons of monogamous and non-monogamous vole species have been a central 

model in the investigation of species differences in genes, brains and behavior. The 

simple two-species comparisons have come under criticism by evolutionary biologists for 
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failing to account for phylogeny (Fink et al. 2006). These concerns are reinforced by our 

current findings, which provide strong support for a rapid origin of monogamy at the 

common ancestor of pine and prairie voles. This topology was initially surprising, but a 

closer examination of published phylogenies revealed that the placement of these 

monogamous voles were generally poorly resolved (Fink et al. 2006), including a recent 

study using multiple nuclear markers and a larger taxonomic sampling (Martínková and 

Moravec 2012). Thus our results are not in conflict with prior phylogenetic studies. Our 

result is also consistent with classical taxonomic nomenclature that put pine and prairie 

voles together in the genus Pitymys on the basis of a shared tri-cuspid morphology of the 

first molar (Tamarin 1985).   

These results have significant implications for our understanding of monogamy 

and its evolution in this model clade. For example, recent molecular phylogenetics work 

suggests that there are many species excluded from our analysis that are more closely 

related to pine voles than are prairie voles (Robovský et al. 2008; Martínková & Moravec 

2012). Taken together, these data imply that monogamy is significantly more common in 

Microtus than has been previously appreciated. The Pitymys group has been in North 

America since the Pleistocene, and today many of its habitats include sandy soil 

grasslands with cool temperatures and low productivity, including Midwest prairies, and 

highland pine habitats in Mexico (Tamarin 1985; Harris 1988; Escalante et al. 2004); the 

natural history of this group suggests that monogamy may have arisen as a response to 

scarce resources and low densities (Emlen & Oring 1977) – a finding that would be 

consistent with ecological correlates of mammalian monogamy (Lukas & Clutton-Brock 
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2013). With respect to the evolution of Avpr1a expression more specifically, our results 

indicate that the many similarities between pine and prairie voles in the neural 

distributions of neuropeptide receptors  (Insel et al. 1994; Young & Hammock 2007) 

reflect shared descent rather than adaptive convergence.  

 Functional genomic approaches paired with bioinformatics and sequence analysis 

are powerful methods to characterize gene regulation in the brain (Visel et al. 2009; 

Konopka & Geschwind 2010; Landt et al. 2012; Harris & Hofmann 2014; Maze et al. 

2014; Okhovat et al. 2015). We used ChIP-seq targeting a well characterized marker of 

active enhancers, H3K27ac (Creyghton et al. 2010), to identify pallidal regulatory regions 

in the vicinity of the Avpr1a locus. We found two distinct peaks that flanked a 5’ 

microsatellite sequence.  Remarkably, we found that all of the substitutions that coincide 

with the origin of monogamy occur within the two regulatory sequences defined by our 

ventral pallidum ChIP-seq data. Indeed, a simple Fisher’s exact test revealed that this 

clustering was much stronger than expected by chance (P<0.0001), a result confirmed by 

a more rigorous simulation that takes into account the many ways a cluster could occur 

across the locus (P=0.0001).  

To our surprise, we found that the foreground substitutions were almost entirely 

clustered in the novel 5’ enhancer element we refer to “pallidal peak 1,” suggesting this 

sequence may have played a unique role in the derived expression patterns that 

characterize prairie and pine voles, including enhanced ventral pallidum expression. A 

likelihood ratio test revealed that this putative pallidal enhancer evolved significantly 

more rapidly at the origin of monogamy than it did in the rest of the phylogeny (P= 



 25 

9.4x10
-43

). Similarly, pallidal peak 1 showed a reduced ratio of polymorphism to 

divergence compared to the rest of the locus (P<0.0001) or compared to neutral markers 

(P=0.019). Together these data suggest that sequence changes in this putative enhancer 

contribute to the adaptive evolution of V1aR expression patterns and the origins of 

monogamy.  

In contrast to the accelerated and novel evolution of apparent enhancer function in 

pallidal peak 1, the putative enhancer element we refer to as “pallidal peak 2” does not 

differ between foreground and background (LRT, P=0.31). Moreover, this element shows 

low rates of evolution compared to the rest of the non-coding sequence, suggesting that 

the element has been subject to purifying selection across mammals. Similarly, this 

conserved peak contains a DNAse hypersensitive site evident in Mus brain, and a highly 

conserved binding site for the tethering insulator protein known as CTCF (Ong & Corces 

2014). Interestingly, this generally conserved region also contained an insertion unique to 

Cricetidae, which is highly conserved across the vole species we examined. One possible 

explanation is that open chromatin at this region has enabled the insertion of a 

transposable element (Gangadharan et al. 2010). Given that this sequence element is 

highly conserved across voles and seems to be present in other cricetids such as the deer 

mice, we think that this insertion may play a role in tuning the regulation of the Avpr1a in 

the rodent brain — a finding that would be consistent with a role for transposable 

elements in regulatory innovations in other contexts  (Morgan et al. 1999; Sun et al. 

2004; Iida et al. 2004).  
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 Because the two putative enhancers flanked one another and contained all the 

substitutions coincident with the increases in pallidal V1aR, we decided to test whether 

this sequence was able to drive expression of a lacZ reporter in the ventral pallidum of a 

lab mouse. We examined lacZ expression in 12 lines positive for the lacZ transgene. We 

found that in 10 lines, the prairie vole sequence was able to drive neural expression in the 

brain, and in 5 lines, the prairie vole sequence was able to drive lacZ expression in the 

ventral pallidum. These data demonstrate that the putative enhancers are indeed capable 

of driving expression in the ventral pallidum. However, they also demonstrate that this 

sequence is not sufficient to reliably drive pallidal V1aR expression on its own. This is 

consistent with the existence of other H3K27ac peaks outside the focal 8 kb of our study. 

It is also worth noting that our transgenic construct included a highly conserved CTCF 

binding site. A variety of recent studies implicate CTCF in the formation of chromatin 

loops, with the orientation of loops resulting from the orientation of pairs of CTCF 

binding sites (Splinter 2006; Holwerda & de Laat 2013; Oti et al. 2016). Our transgenic 

approach does not control either for the insertion site or its orientation; such variation in 

the chromatin context seems important to the function of the targeted sequence. Recent 

advances in the use of conformation capture methods (4C, Hi-C, ChIA-PET; Rusk 2009; 

de Wit and de Laat 2012; Vietri Rudan et al. 2015; Mifsud et al. 2015) and genome 

editing (Esvelt & Wang 2013; Makarova et al. 2015; Graham & Root 2015) suggest it 

should be possible to tease apart the specific roles of additional enhancers and the more 

general contributions of chromatin context, though this is beyond the scope of the current 

study. 
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Our results highlight the power of integrating neuroscience, functional genomics 

and evolutionary analysis to explore the adaptive evolution of gene expression and 

complex behavior. Our phylogenetic analyses suggest a common origin of monogamy in 

prairie and pine voles, a result that provides new insights into the distribution and origins 

of pair-bonding in this clade. In contrast to work on the Avpr1a coding sequence (Fink et 

al. 2007; Turner et al. 2010), or on repetitive microsatellite sequences (Fink et al. 2006; 

Turner & Hoekstra 2008), multiple lines of evidence indicate selection has shaped the 

function of a pallidal enhancer associated with both the origin of monogamy and with the 

emergence of the pallidal avpr1a expression critical to bond formation. Our transgenic 

data reveal that this enhancer sequence is indeed able to drive expression in the ventral 

pallidum, but that it is not sufficient. Although our work focuses on a single gene, we 

believe this integrative approach generalizes readily across the genome, and provides a 

model for how to approach adaptive diversity in DNA sequence, neuronal function, and 

complex behaviors. 
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TABLES 

 

 

 

Table 1.1. PCR and sequencing primers (5’ to 3’) for characterizing Avpr1a , Lcat, Fgb 

and acp5 sequence variation across species. 

 

 

 ENSEMBL Genomic Range 

Species (Assembly) Avpr1a Lcat Acp5 Fgb 

Homo sapiens (GRCh38) chr12:63538078-63546832 chr16:67939347-67944491 chr19:11576366-11577280 chr4:154569738-154570400 

Pan troglodytes (CHIMP2.1.4) chr12:26138709-26148033 chr16:67228023-67230496 chr19:11806099-11807062 chr4:157647751-157648413 

Macaca mulatta (MMUL_1) chr11:60382040-60390796 chr20:66278551-66279616 chr19:11410159-11411141 chr5:146770867-146771529 

Canis familiaris (CanFam3.1) chr10:9250685-9259553 chr5:81555683-81558333 chr20:49814430-49815939 chr15:52227070-52227361 

Felis catus (Felis_catus_6.2) chrB4:103421857-103430787 chrE2:45568720-45570933 chrA2:8521753-8523087 chrB1:73945557-73946034 

Loxodonta Africana (loxAfr3) scaffold_2:52877434-52886163 scaffold_48:9349290-9351588 scaffold_26:32239254-32240395 scaffold_51:1110285-1110878 

Mus musculus(GRCm38) chr10:121883859-121892319 chr8:105941286-105943677 chr9:22129385-22130147 chr3:83042653-83043291 

Rattus norvegicus (Rnor_6.0) chr7:67525681-67534134 chr19:37912929-37917224 chr8:23145633-23146123 chr2:182028487-182028589 

Cavia porcellus (cavPor3) scaffold_9: 35040551-35050845 scaffold_22:8726283-8730168 scaffold_226:685226-687548 scaffold_7:31718963-31718852 

Ictidomys tridecemlineatus (spetri2) JH393355.1: 1786023-1800018 JH393285.1:18293836-18297463 JH393469.1:1598276-1600836 JH393386.1:1312376-1313272 

Oryctolagus cuniculus (OryCun2.0) chr4: 42141848-42152606 chr5:23503048-23506887 AAGW02082541:501-750 chr15:10901796-10903300 

 

Table 1.2. Genome locations of sequences downloaded from Ensembl for Mammals and 

Glires. 

Amplicon 
Size 
(kb) 

Primer sequences 
Outer primer sequences 

(if nested) 

5’ non-coding seq. 3.4 
F:TGTGGCACCCAGGTAAATGC 
R:GTAGCAGATGAAGCCATAGCAG 

F:GCATGTGATTCTGGAATTTGTAAC 
R:ATAGTCTTCACGCTGCTGACA 

Promoter + 
5’ UTR 

1.7 
F:AATAGACCAACGTTCTTAAG 
R:GCTCCTCGTTGCGTACATC 

Not nested 

First exon 1.2 
F:CGGAAGCGGGAAGGAAGCAGCC 
R:CTCCCTCAGCCCATGATGCAG 

F:GYGGTAGCCTAAACGCAGA 
R:GTTGGGATGRTTGAGAACCACA 

Intron 2.5 
F:CTACATCCTCTGCTGGGCTCC 
R:CATGTATATCCAGGGGTTGC 

F:GCCTTGTGTCAGCAGCGTG 
R:TGTCTGTAGGCACCTTCTGTTCTG 

Second exon 1.0 
F:GCTGCTCTAACAGTGGTTGGTTTG 
R:CACATCACATGACTTAAACCAATC 

F:GCCTTGTGTCAGCAGCGTG 
R:TGTCTGTAGGCACCTTCTGTTCTG 

3’ UTR 0.6 
F:CTACATCCTCTGCTGGGCTCC 
R:CATGTATATCCAGGGGTTGC 

F:GCCTTGTGTCAGCAGCGTG 
R:TGTCTGTAGGCACCTTCTGTTCTG 

3’ flanking 0.6 
F:CGGACCATATAGAGATCATAAGAG 
R: GGGATAGAGGCAGAGACCCA 

F: GTCCATTGTCTAAATCCGGACC 
R: GAACATGAGCAAAGAAGTCGG 

Lcat 0.7 
F: AGAGGACTTCTTCACCATCTGGCT 
R:TGTGCCCAATAAGGAAGACAGGCT 

Not nested 

Fgb 0.7 
F: GGCAATGATAAGATTAGCCAGCCAGCTCAC 
R: AACGGCCACCCCAGTAGTATCTG 

Not nested 

acp5 0.5 
F: AATGCCCCATTCCACACAGC 
R: GCAGAGACGTTGCCAAGGTG 

Not nested 
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FIGURES 

 

Figure 1.1. Monogamy evolved once in New World Voles. A) Bayesian tree was 

obtained from three neutral genes: Acp5, LCAT, and FGB (nodes include the posterior 

probability). Voles from the historic Pitymys group are highlighted in dark red and voles 

from the Microtus group are highlighted in grey. B) Pine and prairie voles (M. pinetorum, 

M. ochrogaster) in the historic group Pitymys share derived traits of elevated pallidal 

V1aR abundance and molar morphology. 
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Figure 1.2: Functional characterization of Avpr1a. First track (grey) reveals DNAse 

hypersensitivity (DHS) for mouse whole brain from ENCODE; the x-axis depicts 

position along the Avpr1a locus (bottom panel), the y-axis depicts DNAse I sensitivity as 

a continuous function using sequencing tag density The next 3 tracks (black) show 

conservation for mammals including voles, the group glires (rodents and lagomorphs), 

and new world voles alone. The y-axis corresponds to phastCons conservation score 
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across the selected species, this score depicts the posterior probability a phastCons’s 

phylogenetic hidden Markov model (HMM) is in its most-conserved state at that 

nucleotide position (Siepel et al. 2005). Sequences of the species used are provided in 

Table 1.2; mammal tree included: elephant, cat, dog, rhesus, human, chimp, rat, mouse, 

and common, water, meadow, pine and prairie voles; glire tree included: rabbit, squirrel, 

guinea pig, rat, mouse, and common, water, meadow, pine and prairie voles; and the 

Arvicolini tree included southern red-backed, common, water, meadow, montane, pine 

and prairie voles. The bottom track (dark red) depicts Avpr1a sequences obtained by 

performing ChIP-seq targeting H3K27ac, a marker of active enhancers, from the ventral 

pallidum of prairie voles. The y-axis depicts fold-enrichment (FE) of ChIP-seq results 

compared to input DNA. 
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Figure 1.3: Phylogenetic tests of selection. A) Phylogenetic representation of the origin 

of monogamy. Background branches include all branches of the phylogeny within the 

shaded gray box (black or colored lines).  The branches leading to montane and meadow 

voles are shown in (green), branch leading to water voles (blue), and branch leading to 

the European common vole (yellow). The foreground branch, shown in red, corresponds 

to the common ancestor of the monogamous prairie and pine voles. B) Representative 

tracks of Avpr1a substitutions used in the likelihood ratio test. Changes that occur in 

specific lineages colored in panel A are shown in panel B. For visual clarity, background 

changes along uncolored (black) branches are not shown. C) Maximum likelihood 

estimates of the rates of evolution of putative pallidal enhancers in peak 1 and peak 2, in 

the foreground and background. Rate heterogeneity identified using the likelihood ratio 

test. 
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Figure 1.4: Sliding window analyses of selection based on the McDonald-Kreitman 

test. A) Top panel depicts nucleotide diversity (π) along Avpr1a locus. Y-axis 
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corresponds to the average number of nucleotide differences per site between two 

sequences. Middle panel depicts divergence (K) between prairie voles (M. ochrogaster) 

and water voles (M. richardsoni). Y-axis depicts average proportion of nucleotide 

differences between populations or species. Bottom panel reports p-values for sliding 

window comparisons of polymorphism:divergence compared to equivalent data from 

neutral markers using a Fisher exact test Avpr1a. B. Values of polymorphism (π) and 

divergence (K) for each 300bp window in the avpr1a locus. Data are superimposed on a 

kernel density estimated from 300bp windows obtained from 100,000bp simulated 

neutral sequence data. The color legend depicts the number of simulated windows within 

each grid point after kernel density transformation. Windows overlapping with H3K27ac 

pallidal peak 1 region (orange) shows low diversity and high divergence; H3K27ac 

pallidal peak 2 (yellow) shows no evidence of positive selection; coding sequences (blue) 

display lower polymorphism and divergence; green dots represent a putative enhancer 

region with more polymorphism than divergence corresponding to an enhancer associated 

with avpr1a expression in the retrosplenial cortex, an area previously shown to be under 

balancing selection (Okhovat et al. 2015). 
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Figure 1.5: Functional characterization of putative enhancer adaptations. Pronuclear 

injection of a construct spanning H3K27ac pallidal peaks 1 and 2, a mouse minimal 

promoter (hsp68) and the reporter gene LacZ reveals that these elements are capable of 

driving pallidal expression of LacZ in the mouse brain. Top left, diagram showing 

coronal section of rodent brain, with ventral pallidum shown in black. Lower left, detail 

of transgenic mouse showing pallidal expression of LacZ. Right, number of 12 transgenic 

lines expressing LacZ in the brain generally (gray) or the ventral pallidum specifically 

(black). 
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CHAPTER 2* 

Balancing selection on Avpr1a : Evidence for epistatic selection and local adaptation 

ABSTRACT 

Evolutionarily adaptive changes in social behavior are determined by genomic variation, 

but we know little about how the two are related. In one example, SNPs at the Avpr1a 

locus predict expression of the vasopressin 1a receptor in the retrosplenial cortex (RSC), 

a brain region that mediates spatial memory; cortical V1aR abundance in turn predicts 

diversity in space-use and sexual fidelity in the field. To examine the potential 

contributions of selective and neutral forces to variation at the Avpr1a locus, we explore 

sequence diversity at Avpr1a and across the genome in two populations of wild prairie 

voles. Here, we found strong evidence of balancing selection on the Avpr1a locus. 

Moreover, we also found that the four SNPs that predict high V1aR expression in the 

RSC are in stronger linkage disequilibrium than expected by chance. Analysis of 

population structure at two sites revealed that this was unlikely to be due to admixture. 

Similarly, a haplotype network suggested common origins of major allele classes across 

populations. Interestingly, we found that the two populations had extremely low levels of 

genetic differentiation. Despite their similarity, the two populations did seem to differ in 

the frequency of alternative Avpr1a alleles, with measures of differentiation concentrated 

at the same regions of the locus shown to be under balancing selection. Together, our 

                                                 
* Population data and analyses of Avpr1a locus in this chapter has previously been published as Okhovat, 

M; Berrio, A; Wallace, G; Ophir, A; Phelps, S. 2015. Sexual fidelity trade-offs promote regulatory 

variation in the prairie vole brain. Science, 350(6266),  pp.1371–1374. Berrio performed experimental 

design, sequencing experiments, evolutionary analyses, and writing. 
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data suggest that the balanced polymorphism in Avpr1a results from strong local 

selection at this locus, resulting in allelic frequencies that are associated with unique 

patterns of spatial cognition and sexual fidelity across populations.  

INTRODUCTION 

Individual differences in social behavior are common, ranging from the continuous 

variation that characterizes “personality” (Bell & Sih 2007) to the dramatic variation that 

defines alternative life-history strategies. Among spadefoot toads, for example, 

individuals adopt a cannibalistic morphology and behavior that is shaped by both genetic 

variation and environmental cues (Pfennig 1992; Bazazi et al. 2012). Moreover, the 

territorial behavior of male side-blotched lizards consists of three discrete phenotypes 

that vary in aggressiveness, allowing each to predominate for brief periods before being 

displaced by an alternative, with population dynamics that have been compared to a game 

of rock-paper-scissors (Sinervo & Lively 1996). Indeed, classic game theoretic 

approaches (Smith & Price 1973), and more recent models (Slatkin 1979; Sokolowski et 

al. 1997) suggest frequency- and density-dependent selection should be major 

contributors to variation in social behavior. Despite these advances, we know little about 

how selection maintains variation in the nervous system. Here we examine the population 

genetics of the Avpr1a locus, a gene extensively implicated in male social behavior, in 

the socially monogamous prairie vole, Microtus ochrogaster (Phelps & Young 2003; 

Hammock et al. 2005; Caldwell et al. 2008; Ophir et al. 2008; Barrett et al. 2013). 

 Prairie voles are well known for forming enduring pair-bonds characterized by 

shared territory defense, bi-parental care of young, and selective attachment between 
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mates (Getz, Carter, & Gavish, 1981). Although monogamy is clearly the modal mating 

system, a significant number of individuals mate outside the pair-bond. Multiply sired 

litters have been detected by multiple labs (Solomon et al. 2004; Ophir et al. 2008), and 

~25% of young are sired outside the pair bond (Ophir et al. 2008). Moreover, populations 

undergo drastic changes in population density annually, ranging from densities that are 

near zero to as many as 625 animals per hectare (Getz et al. 2001). These changes are 

accompanied by changes in extra-pair encounter rates and extra-pair fertilizations 

(Blondel et al. 2016; Solomon et al. 2004; McGuire et al. 1990). This natural history 

suggests a number of opportunities for frequency- or density-dependent selection to 

shape the mechanisms of fidelity. 

 The gene Avpr1a encodes for the vasopressin 1a receptor (V1aR), the 

predominant vasopressin receptor in the central nervous system, a protein critical to male 

social behavior in many taxa (Donaldson & Young 2008; van Kesteren et al. 1996; 

Goodson & Bass 2000; Goodson et al. 2009; Bachner-Melman et al. 2005). Among 

prairie voles, expression of V1aR in regions of the brain that coordinate reward 

contributes to the ability of male prairie voles to form pairbonds (Lim & Young 2004). 

Expression of Avpr1a in reward centers is uniformly high among prairie voles (Phelps & 

Young 2003), a finding consistent with the fact that selection seems to favor the capacity 

to form pairbonds (Ophir et al. 2008; Phelps & Ophir 2009). Interestingly, other brain 

regions, including the retrosplenial cortex (RSC), vary tremendously among individuals 

(Insel et al. 1994; Phelps & Young 2003). The RSC is a critical node in a circuit that 

coordinates spatial memory and navigation (Troy & Whishaw 2004; Todd & Bucci 
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2015). Moreover, the abundance of V1aR in the RSC is predictive of differences in 

territorial intrusion rates and extra-pair paternity among males (Ophir et al. 2008, 

Okhovat et al. 2015).  

 We recently demonstrated that individual differences in the RSC are well 

predicted by a set of four highly linked single nucleotide polymorphisms (SNPs) in the 

Avpr1a locus that co-localize with markers of regulatory DNA, including a SNP in a 

DNAse I hypersensitive site 5’ of the Avpr1a locus, and two additional SNPs within a 

putative intron enhancer identified by ChIP-seq (Okhovat et al. 2015). Field experiments 

suggest that the two alternative allele classes, which we refer to as HI and LO RSC 

alleles, are under opposing selection when environments favor intra-pair or extra-pair 

fertilization (Okhovat et al. 2015). Here we use genome-wide polymorphism data to more 

rigorously test whether the Avpr1a locus has indeed been under balancing selection. Next 

we ask whether the linkage observed between the SNPs of HI and LO Avpr1a alleles is 

greater than expected by chance. We find an excess of linkage between SNPs that 

suggests selection may have favored specific combinations of alleles to be in phase with 

one another; we use genome-wide patterns of polymorphism in two different populations 

to test the alternative hypothesis that this excess of linkage is a by-product of admixture-

induced population structure. Next we use haplotype networks to visualize the relatedness 

of HI and LO RSC alleles, and ask whether HI or LO allele classes have a common 

origin. Lastly, we use our Avpr1a haplotypes and genome-wide sequencing data to ask 

whether there is evidence of local adaptation of Avpr1a allele frequencies between two 

populations of prairie voles. Our results provide the first detailed examination of 
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population variation in a locus directly linked to differences in brain function and social 

behavior. 

 

MATERIALS AND METHODS 

Population sampling and DNA extractions 

To assess intraspecific variation in prairie voles, 32 individuals were collected in 

Champaign County, IL, and 29 individuals were collected from Jackson County, IL. All 

genomic DNA extractions were prepared from liver samples using the QIAGEN DNEasy 

kit for tissue and blood following the manufacturer’s protocol.  

Polymerase chain reactions 

Approximately 7.7kb of the Avpr1a locus was amplified and sequenced from 

individuals of Champaign County, and details of this amplification have been previously 

published (Okhovat et al. 2015). Here we sequenced a subset of this locus (5.5 Kb) in the 

population of Jackson County, using the primers listed in Table 1. All polymerase chain 

reactions (20 μL) were prepared with 1X GoTaq® Hot Start Polymerase buffer 

(Promega), 1.0 mM of MgCl2, 0.2 mm of each dNTP, 0.5 μl of each primer, 1.25 U 

HotStart Taq Polymerase and 1.0 μL of diluted DNA. Amplifications were carried out on 

a Veriti Thermal Cycler (Applied Biosystems) using the following temperatures: initial 

denaturation at 95 °C for 2 min; 35 cycles of 95 °C for 40 s, annealing at 58 °C for 30 s 

and extension at 72 °C for 240 s; and a final extension at 72 °C for 7 min. Semi-nested 

PCRs were necessary to amplify this locus in some individuals; for these we used an 

initial denaturation at 95 °C for 2 min; 35 cycles of 95 °C for 40 s, annealing at 58 °C for 
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30 s and extension at 72 °C for 210 s; and a final extension at 72 °C for 7 min. Each 

amplicon was first visualized on 1% agarose gels in order to check its band size and 

specificity, and then cleaned with Qiaquick PCR purification kits (Qiagen) according to 

the manufacturer's protocol. Sanger sequencing was conducted at the University of Texas 

at Austin Institute for Cellular and Molecular Biology (ICMB). The resulting ABI 

Chromatograms were processed and analyzed using ‘Map to Reference’ parameters in 

Geneious v6.1 (Biomatters). The Avpr1a locus contains three highly polymorphic 

microsatellite sequences (see figure 2.2). Given that microsatellite sequences are difficult 

to sequence accurately, they were excluded from all analyses. 

Cloning 

Thirteen individuals were selected for cloning and direct determination of the 

haplotype phase. Of these, five were heterozygous animals from Champaign County and 

three from Jackson County. A ~5.5 Kb sequence amplicon was diluted in water and then 

ligated and cloned using the StrataClone PCR Cloning kit and the recommended protocol 

from the manufacturer (Agilent Technologies). Briefly, ligation reactions were 

transformed into chemically competent StrataClone SoloPack cells and plated onto LB 

agar plates supplemented with kanamycin and spread with X-gal at 2% (FisherScientific). 

At least three transformed white colonies were transferred to a tube with 5 mL of LB 

broth to grow overnight at 37C. Plasmid DNA was isolated using the QIAprep spin 

miniprep kit (Qiagen). The insert size was confirmed by restriction digestion with EcoRI 

and visualization in a 1% agarose gel. Sanger sequencing was conducted at the University 

of Texas at Austin Institute for Cellular and Molecular Biology (ICMB).  
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Haplotype reconstruction of the Avpr1a locus 

Haplotypes of 151 polymorphic sites along a 7.7 Kb segment of the Avpr1a locus 

were reconstructed in 32 individuals of the Champaign County population; for the 

Jackson County population, consensus sequences spanning 5.5Kb with 109 polymorphic 

sites were used to reconstruct haplotypes using default settings in the statistical package 

PHASE v2.1 (Stephens et al. 2001). Based on data from cloned PCR amplicons, the 

phase was known for at least 22% of all polymorphic sites. These known phases were 

also included in the PHASE algorithm. 

To illustrate the relationships among haplotypes and examine the origin of the HI 

alleles, a haplotype network of the Avpr1a locus was constructed using the Median 

Joining network algorithm (Bandelt et al, 1999) implemented in PopART v1.7 (Leigh and 

Bryant, 2016, http://popart.otago.ac.nz); the resulting network was edited in Inkscape 

v0.48. 

Linkage disequilibrium 

To estimate linkage among SNPs across the Avpr1a locus, we computed D and its 

confidence statistic values (R
2
) using HAPLOVIEW v4.2, excluding all microsatellite 

loci. Consequently, these values were used to evaluate a sliding window track of LD 

across the Avpr1a locus by evaluating at least three SNPs within a window of 300bp. 

Windows with fewer than three SNPs were treated as missing data. To test whether the 

set of polymorphisms defining HI and LO alleles exhibited higher linkage disequilibrium 

than expected by chance, we first regressed pairwise LD values (R
2
) against distances 

between sites, and then calculated the average residual R
2
 for each of 6 pairwise 
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comparisons of the 4 strongly linked sites. To estimate the null distribution of this 

statistic, we randomly sampled 4 SNPs (excluding the 4 that define HI/LO alleles) and 

calculated the average residual R
2
 based on their nucleotide distance). For an alternative 

analysis, we randomly selected a focal SNP and noted the position of other SNPs with an 

LD as great as that observed in the HI/LO SNPs, we then calculated the distance along 

the Avpr1a locus that this randomly selected linkage group spanned. We compared the 

observed span to the distribution of spans expected from a linkage group chosen at 

random. 

Calculation of population genetic summary statistics 

For our initial samples from Champaign County, we used the package DnaSP 

v5.1 (Librado & Rozas 2009) to compute nucleotide diversity (π) in 300bp sliding 

windows. The recombination rate rho was computed with the program RECSLIDER 

(http://genapps.uchicago.edu/labweb/index.html) within a window size of 10 variable 

sites. A preliminary estimate of rho=0.0044 was based on the average recombination rate 

between sites, obtained from DnaSP. 

RAD library construction and sequencing 

Genome-wide 2bRAD-seq is based on the use of type IIB restriction enzymes that 

target a small fraction of the genome. Type IIB enzymes excise 36bp-fragments 

alongside the recognition site to allow detection of genetic variants. Vole DNA was 

treated with the enzyme BcgI (NEB) to produce sufficient genome fragmentation; 

fragments were ligated to Illumina adaptors, amplified for 10 cycles, and then purified 

according to the protocol designed by Wang and collaborators (2012). Final library 

http://genapps.uchicago.edu/labweb/index.html
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preparations were pooled and sequenced by University of Texas at Austin Genome 

Sequencing and Analysis Facility (GSAF). Quality control and fragment distribution was 

examined before sequencing using the Agilent Bioanalyzer. The pooled sample was 

sequenced using a 50bp single-read strategy on the Illumina HiSeq4000 platform at the 

GSAF facility, which generated a total of 277,180,409 reads. The quality of the reads was 

examined and approved by visualizing the FastQC output for each sample, followed by 

processing with pipelines for genome-guided genotyping developed by Mikhail Matz 

(https://github.com/z0on/2bRAD_GATK). Reads that lacked the overhanging restriction 

site were discarded. Individual samples were identified using the barcodes incorporated 

during ligation and PCR amplification stages. Average read count for seventy samples 

that passed the trimming and other filters was 373,289 reads. After this initial quality 

check, one sample was dropped due to low sequencing depth. 

Genome-guided RAD-genotyping and variant discovery 

Trimmed reads were aligned to the prairie vole draft genome assembly using 

bowtie2 (Langmead & Salzberg 2012); mapping efficiency was >95% for all the samples 

according to the flagstat report implemented in SAMtools software (Li et al. 2009). The 

program GATK (McKenna et al. 2010) was used to identify genetic variants; 

UnifiedGenotyper tool was run twice followed by base quality score recalibration using 

the script GetHighQualVcfs.py to score SNPs with a quality percentile of 75 or higher 

(Kyle Hernandez, https://github.com/kmhernan/tacc-launcher-

bio/blob/master/utils/GetHighQualVcfs.py). The last recalibration step was done using 

vcftools (Danecek et al. 2011), producing a total output of 132,573 SNPs, of which 4955 

https://github.com/z0on/2bRAD_GATK
https://github.com/kmhernan/tacc-launcher-bio/blob/master/utils/GetHighQualVcfs.py
https://github.com/kmhernan/tacc-launcher-bio/blob/master/utils/GetHighQualVcfs.py
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passed a reproducibility test that was run in four sets of replicate samples. The false 

discovery rate (FDR) was estimated from each portion of SNPs (i.e. tranche) based on the 

difference between the estimated and expected transition(Ti)/transversion(Tv) ratio of 

2.41. This ratio was estimated from 4955 polymorphic sites that were fully consistent and 

highly reproducible among replicate samples. This model only considers tranches with a 

Ti/Tv ratio that is higher than expected due to a deficiency of false positives. The 31,965 

SNPs that passed this final filter were recorded in a VCF file.  

Population structure 

For our two populations of prairie voles, we conducted a principal component 

analysis (PCA) using the ‘snpgdsPCA’ tool implemented in the SNPRelate library 

(Patterson et al. 2006) to examine differences between populations. Next we estimated 

genetic clusters using ADMIXTURE v1.3 (Alexander et al. 2009), which estimates the 

ancestry in a model-based manner from SNP datasets. Finally, To estimate global FST, we 

used BayeScan to identify FST outliers among the 31,965 SNPs that passed our quality 

controls (Foll & Gaggiotti 2008), and measured global FST using the Weir and 

Cockerham method implemented in Vcftools (Danecek et al. 2011). We used 4P 

(Benazzo et al. 2015) to calculate genome-wide diversity per population from the VCF 

file, and custom scripts in R (Team 2015) to calculate the global genome average of Dxy 

between populations. 

Population differentiation at Avpr1a  

To examine population differences at the Avpr1a locus, we used the Gene Flow 

and Genetic Differentiation tool in DnaSP to compute FST and Dxy. Gene tracks of FST 
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were generated using the program SLIDER 

(http://genapps.uchicago.edu/labweb/index.html). 

 

RESULTS 

Evidence of balancing selection in the Avpr1a locus 

Genetic variation at the Avpr1a locus predicts expression of V1aR in prairie vole 

RSC (Fig 2.1A). We examined the frequency spectrum of genome-wide SNPs and at the 

Avpr1a locus among wild-caught samples from Champaign County, IL. We found that 

the Avpr1a locus was strongly skewed toward an excess of intermediate-frequency alleles 

compared with the rest of the genome (Fig. 2.1B), a typical signature of balancing 

selection. Consistent with our prior analysis, the Avpr1a frequency spectrum is strongly 

skewed towards intermediate frequencies (KST, D = 0.40, P < 2.2e-16). The Avpr1a 

region also had a significantly positive Tajima’s D (P<0.05; see also Okhovat et al. 

2015), which is consistent with balancing selection at this locus. In contrast, we found 

that the genome-wide average of Tajima’s D is not different from 0 (TD= -0.0040).  

Patterns of polymorphism and linkage disequilibrium at the Avpr1a locus 

To characterize local patterns of polymorphism at Avpr1a, we used reconstructed 

haplotypes from the Champaign population of wild-caught voles. From these, we 

estimated nucleotide diversity (π), linkage disequilibrium (LD, R
2
) and recombination 

(rho). A sliding window analysis shows local peaks of nucleotide diversity and LD within 

a known putative intron enhancer (Fig 2.2a) (Okhovat et al. 2015). We found that average 

nucleotide diversity for the Avpr1a locus (πAvpr1a = 0.0045) was significantly higher than 

across the rest of the genome (πgenome= 3.1x10
-6

, Mann-Whitney U-Test, P < 2.2x10
-16

). 

http://genapps.uchicago.edu/labweb/index.html
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Diversity values ranged from 0 to 0.015, with two local peaks (π > 0.01) spanning 

roughly 200 bp (between positions 4520 and 4730) and 500bp (between 7060 and 7596).  

On average, linkage disequilibrium is low—even between adjacent sites—and 

decays with distance (0.00003*bp + 0.19). There is, however, considerable variation in 

LD across the region. This heterogeneity in LD patterns is apparent in our recombination 

estimates, which suggest the presence of two hotspots near the boundaries of the intron 

enhancer and its RSC-predictive SNPs (Fig 2.2a). Additionally, a set of linked SNPs 

predictive of RSC variation are more highly linked than 4 SNPs chosen at random, even 

after correcting for the decay of LD with distance (Fig 2.2b; P=0.0001, Fig 2.3). The 

unusually high levels of association suggest selection favored specific combinations of 

SNPs that shape the functions of HI and LO RSC alleles.  

Genome-wide population structure  

We found very weak genome-wide structure between two populations of prairie 

voles separated by ~200 miles (Fig 2.4A). A principal components analysis suggested 

that, while it represents the largest source of variance, population structure accounts for 

only 3.5% of genetic variation in our sample (PC1, vertical axis in Fig 2.4B). Moreover, 

our admixture model confirms very low population structure, which favors a model with 

a single population. Cluster one (K1) exhibited less cross-validation error than clusters 

K2 and K3 (CV error (K=1): 0.52 vs CV error (K=2): 0.55 vs CV error (K=3): 0.60) (Fig 

2.4B). In addition, genome-wide values of absolute (Dxy) and relative nucleotide 

divergence (FST) indicate that these two populations are extremely similar (BayeScan 
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FST=0.06, Weir and Cockerham mean FST estimate: 0.02, Global Dxy = 0.0069, assuming 

1/3 of the restrictions cut sites were sequenced).  

 

Haplotype Network of the Avpr1a locus 

We sampled 110 haplotypes from a total of 61 wild-caught prairie voles collected 

in Champaign and Jackson County. As in our genome-wide data, the general pattern of 

our median-joining network analysis shows extensive mixing of Avpr1a haplotypes 

across populations (Fig 2.5). However, LO alleles were extremely diverse in both 

populations, we observed 103 distinct LO haplotypes (average π = 0.005 across all LO 

alleles). The HI alleles, in contrast, were far less diverse (average π = 0.001) in only 7 

haplotypes.  All but one HI allele clustered together on the haplotype network. 

Examination of the sequence of the one HI allele that clustered with LO alleles suggests 

it was a recombinant containing the intronic HI allele SNPs, but a set of 5' sequences 

more closely resembling the LO alleles. For both HI and LO alleles, there was no clear 

segregation by population, suggesting that variants in both populations have a common 

origin. Lastly, we validated the specificity of our PCR primers given that none of the 

Avpr1a haplotypes clustered near a pseudogene haplotype sequence.  

Patterns of population differentiation at the Avpr1a locus 

The average FST between pop X and Y at the Avpr1a locus was considerably 

elevated compared to the rest of the genome ~0.25 (Fig 2.6A, Mann-Whitney U-test, p < 

2.2e-16). This result is consistent with our sliding-window analysis of wild-caught 

samples from Champaign County (see Fig 2.4B), which found peaks of nucleotide 
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diversity (π), recombination rate (rho) and linkage disequilibrium (LD, R
2
) in a putative 

regulatory element of this locus (Fig 2.2A). We found similar patterns of nucleotide 

diversity when we included wild-caught samples from Jackson County in this analysis 

(Fig 2.6B, top). Moreover, we also found abnormally high values of relative (FST) (Fig 

2.6B, middle) and absolute divergence (Dxy) (Fig 2.6B, bottom) at these same sites. 

Overall, the values of relative and absolute differentiation at the Avpr1a locus depart 

significantly from the whole genome, our sliding windows analysis revealed a maximum 

FST value of 0.49 in the intronic region. Interestingly, this pattern of relative 

differentiation is similar to the pattern of absolute nucleotide divergence across the locus, 

which reached a local average of DxyAvpr1a =0.006 and a maximum value in the putative 

enhancer of Dxy= 0.02. Comparing this peak with genome-wide average 

Dxyglobal=0.0069, these values are statistically significant differences (Mann-Whitney U-

test, P < 2.2e-16).  

 

DISCUSSION  

Prairie voles are socially monogamous rodents that exhibit bi-parental care and 

territory defense, but also display considerable individual differences in territorial 

behavior, space use and sexual fidelity (Getz, McGuire, and Pizzuto 1993; Carter, Getz, 

and Cohen-Parsons 1986; Solomon et al. 2004; Phelps and Ophir 2009). Four highly 

linked SNPs reside in cis-regulatory elements at Avpr1a and predict expression of V1aR 

in the retrosplenial cortex (RSC); RSC expression in turn predicts aspects of space use 

and sexual fidelity (Fig 2.1A). Moreover, balancing selection is thought to maintain 
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nucleotide diversity at this locus (Ophir et al. 2008; Okhovat et al. 2015). Here, we 

examine population patterns of variation at the Avpr1a locus to understand the origin and 

evolution of this interesting variation in brain and behavior.  

We recently compared the frequency spectrum at the Avpr1a locus to three 

putatively neutral loci and found that the Avpr1a locus had a significant excess of 

intermediate frequency polymorphisms (Okhovat et al. 2015). While this was strongly 

suggestive of balancing selection, the limited sampling of neutral loci leaves open 

alternative possibilities, such as population admixture, that could lead to heterogeneity in 

frequency spectra across regions of the genome. We used 2bRADseq to construct a 

reduced-representation map of genome-wide frequency spectra from wild-caught prairie 

voles collected in Champaign County, IL. As expected from neutral distribution of allele 

frequencies near mutation-drift equilibrium (Nei, Chakraborty, and Fuerst 1976; Luikart 

et al. 1998), we observed a high density peak of alleles at low frequency (<0.1) and a 

smaller peak that corresponds to fixed differences respect to the reference genome. 

Moreover, the analysis of population summary statistics at the genome-wide level was 

consistent with our previous results; both the frequency spectrum and Tajima’s D 

deviated from the genome expectation (Fig 2.1). Genome-wide Tajima’s D agreed with 

the neutral expectation, while the Avpr1a locus had a significantly positive Tajima’s D 

(P<0.05; see also Okovhat et al. 2015). The absence of a secondary mode of RADseq 

sites corresponding to intermediate allele frequencies similar to the Avpr1a suggests that 

simple admixture is unlikely to account for the skewed frequency distribution we observe 

at the Avpr1a locus. Our results strongly support the hypothesis that balancing selection 
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is actively maintaining high levels of variation in a regulatory element associated with 

Avpr1a expression in a spatial memory circuit.  

To characterize the evolution of this locus more closely, we used a combination of 

cloning and phase-estimation to reconstruct the haplotypes from this wild-caught 

population. From these haplotypes, we estimated nucleotide diversity (π), recombination 

(rho) and linkage disequilibrium (LD, R
2
). We found local peaks of both nucleotide 

diversity and linkage disequilibrium, a classic signature of balancing selection, co-

localized with regulatory elements implicated in RSC Avpr1a expression (Fig 2.2A). The 

largest LD block, for example, coincides with a 5’ peak in π and overlaps with a DNAse I 

hypersensitive site that contains a SNP contributing to HI and LO RSC alleles. The 

second largest linkage block occurs in the intron, where it overlaps another local peak of 

nucleotide diversity; this block overlaps an enhancer identified in the RSC by H3K4me1 

ChIP-seq, and two additional SNPs associated with HI and LO RSC alleles (Okhovat et 

al. 2015). Interestingly, the pattern of LD within and between these two blocks is 

somewhat unusual. Although the two blocks are not linked to one another, the SNPs that 

define HI and LO alleles are strongly linked, defining points of significant LD that are 

very distinct from the broader pattern of recombination between these blocks (Fig 2.2B). 

Moreover, a detailed examination of LD patterns reveals these SNPs are poorly linked to 

other polymorphisms within each of these blocks. Our estimates of the recombination 

rate rho, moreover, suggest a local elevation in recombination within the putative RSC 

intron enhancer. We speculate that this pattern may reflect not only balancing selection 
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on the locus, but epistatic selection favoring specific combinations of regulatory variants 

that influence RSC V1aR and male mating strategies.  

To test whether patterns of LD observed between SNPs that define HI and LO 

RSC-expressing alleles are higher than we would expect by chance, we first calculated 

the LD between possible pairs of polymorphic sites and plotted LD against distance in 

base pairs (Fig 2.3). Pairwise comparisons for SNPs that define HI and LO alleles are 

shown in red, all other comparisons are shown in blue. We observed that the background 

levels of LD are surprisingly low along the Avpr1a locus, suggesting that the standing 

diversity at the locus is extremely old. We found that the residual LD after correcting for 

distance was indeed significantly higher than expected for four randomly selected SNPs. 

More conservatively, we also tested for excess LD by choosing 4 SNPs with LD equal to 

or greater than observed for the HI and LO SNPs and calculated the span of the sites 

across the locus. We found that the probability of 4 linked SNPs spanning 4897 bp or 

more was P<10
-4

. These data all suggest that the extent of LD among HI and LO SNPs is 

substantially greater than expected by chance, findings which suggest selection has 

actively maintained specific combinations of SNPs at the locus. 

One alternative explanation for unusual patterns of LD among HI/LO SNPs is that 

an adaptive allele arose in another population and spread into our population by 

admixture. To explore the structure of prairie vole populations more thoroughly, we 

conducted 2bRADseq on a second population of prairie voles located ~200 miles from 

our original source, and we examined genome-wide polymorphisms from both 

populations for evidence of admixture (Fig 2.4A). Interestingly, although a principal 
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components analysis revealed limited differentiation between the two populations (3.5%, 

Fig 2.4A), an ADMIXTURE analysis suggested that a model with a single population 

was slightly better than a model with two populations. Similarly, the estimated genome-

wide FST of the two populations was just 0.06, confirming the very low differentiation of 

the two populations. While an ADMIXTURE model with k=1 was better than a model in 

which k=2 (corresponding to the two sampled populations), both of these models were 

better than a model that included three or more clusters. Overall, we found no evidence 

that admixture shapes the distribution of genetic variation in our two sampled 

populations. While migration from other (unsampled) populations could still be the 

source of high LD, admixture seems an unlikely explanation for the origin of the unusual 

patterns of association we observe at the Avpr1a locus. 

To evaluate the origin of the HI/LO RSC alleles, we sequenced and cloned 

additional Avpr1a loci from our more southern Jackson County population, limiting our 

efforts to ~5.5kb that spanned the intron and 5’ HI/LO SNPs. We evaluated the haplotype 

structure of the Avpr1a locus by reconstructing a neighbor-joining haplotype network 

(Fig 2.5). Our haplotype network shows an abundance of haplotypes that can be clustered 

in at least four haplogroups, each of which is present in both populations. Additionally, 

we identify only a handful of mutations separating the origin of HI haplotypes present in 

Champaign and Jackson Counties. A single HI allele seems more closely related to other 

LO alleles; a closer examination of the sequence, however, reveals that it is a 

recombinant form, the only one that decouples the 5’ HI SNP from the intronic HI SNPs. 
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Together these data suggest that the HI allele is the derived form, and shares a common 

origin across these populations. 

Together our data suggest selection has maintained specific combinations of SNPs 

that contribute to HI and LO alleles, which in turn shape RSC expression, social 

cognition and mating fidelity (Okhovat et al. 2015). It remains possible, however, that the 

HI allele arose in another population and rose to intermediate frequencies through 

selection. Such a scenario would require selection to be old enough that the resulting 

signatures of admixture were not visible to our 2bRAD-seq analysis. This is a difficult 

hypothesis to refute. An alternative approach would be to test for evidence of epistatic 

selection more directly. For example, it may be possible to examine rare but naturally 

occurring recombinants among the SNPs that define HI and LO alleles to ask whether 

recombinants occur significantly less often than predicted by chance. Similarly, one 

could ask whether such recombinants or artificially induced mutations alter RSC 

expression of the Avpr1a locus. 

 There are many examples of gene interactions evolving by epistatic selection. 

Including, the classic epistatic effects in the major complex of histocompatibility 

(Gregersen et al. 2006; Trowsdale & Knight 2013), and the white color mutations in the 

MCR1A locus that contributes to coat color in domestic pigs only when specific 

mutations in the KIT locus that encodes the mast/stem cell growth factor (MGF) are 

inherited (Marklund et al. 1998). Epistasis has even been detected between coding and 

regulatory elements (Lappalainen et al. 2011), but few studies have revealed epistatic 
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selection on specific combinations of gene regulatory elements or transcription factor 

binding sites (Phillips 2008; Anderson et al. 2015).   

While balancing selection has maintained variation in the Avpr1a locus, 

frequency- and density-dependent selection may also vary across populations. If 

frequency- or density-dependent selection on the Avpr1a locus differs between our 

populations, for example, we would expect Avpr1a to show stronger differentiation 

between our populations than expected from our genome-wide RAD-seq data. To 

investigate this, we estimated relative and absolute values of differentiation (FST and Dxy). 

Indeed, we found that for both FST and Dxy, the intronic enhancer at the Avpr1a locus was 

much more differentiated between populations than predicted based on whole genome 

estimates (FST=0.02, Mann-Whitney U-test, P< 2.2x10
-16

, Fig 2.6A; Dxyglobal=0.0069, 

Mann-Whitney U-test, P< 2.2x10
-16

). These results are surprising, given that the Avpr1a 

locus behaves as a balanced polymorphism, which usually suggests reduced FST 

(Hohenlohe et al. 2010). A sliding window analysis revealed that elevated values for both 

relative differentiation (FST) and absolute divergence (Dxy) occur in the vicinity of the 

intron enhancer (Fig 2.6B). These data suggest that balancing selection operating on the 

RSC intron enhancer may favor different frequencies of HI and LO alleles in these two 

populations. It is not clear what the source of such local adaptation might be, but the 

populations differ in the severity of winter and the relative abundance of suitable 

grassland habitat, either of which might contribute to fluctuations in population density 

and resource availability.  Population density alters extra-pair encounter rates and 

observed sexual fidelity (McGuire et al. 1990; Streatfeild et al. 2011). Population-specific 
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fluctuations in the defensibility of females could thus influence the strength and direction 

of selection on HI and LO alleles. 

In conclusion, population genetic data indicate that prairie voles harbor an 

unusually high level of genetic diversity at the Avpr1a locus compared with the rest of 

the genome, and both nucleotide diversity and linkage patterns are elevated in the vicinity 

of SNPs that predict cortical V1aR abundance and patterns of space use and sexual 

fidelity. Moreover, the SNPs that define HI and LO RSC alleles are more highly linked 

that predicted by chance. This pattern is not accompanied by evidence of admixture in the 

genome, suggesting selection has actively maintained specific combinations of 

polymorphisms. Comparisons of populations reveal very low between population 

differentiation, but substantial differences in the frequencies of variants within the 

Avpr1a locus. This suggests that in addition to balancing selection within a population, 

there may also be local adaptation in Avpr1a allele frequencies. Together the data reveal 

how individual differences in brain and behavior can be maintained by selection that 

fluctuates in time and space.  
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Primers Sequence 5’ to 3’ 

Avpr1a PCR (For) GCCACAAATAGACCAACGTTCTTAAG 

Avpr1a Seq 1 ATTCCCATAGTAAAGATTGTTTG 

Avpr1a Seq 2 GCCTTGTGTCAGCAGCGTG 

Avpr1a Seq 3 GACTGGGAAAGGATTCAAGAAGTC 

Avpr1a Seq 4  GTCATCTGCGAGACCTAACAC 

Avpr1a Seq 5 TCTGTGGTGTGAATAGTTCC 

Avpr1a Seq 6  GTTGGGATTGTTGAGAACCACA 

Avpr1a Seq 7 CTGTATACTGTGCATAGAAGC 

Avpr1a Seq 8 GCTGCTCTAACAGTGGTTGGTTTG 

Avpr1a Seq 9 GTGCAGTGTGCAGGGTCTTGCTC 

Avpr1a Seq 10 CAGGTGGAAACAGGAATGAATCTG 

Avpr1a PCR (Rev) TGGCATCCCTTGTACAAACT 

 

Table 2.1. PCR and sequencing primers (5’ to 3’) for characterizing Avpr1a sequence 

variation 
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Figure 2.1: Evidence of balancing selection on the Avpr1a locus. A. Low and high 

V1aR expressing phenotypes in the retrosplenial cortex (RSC). Avpr1a locus contains 
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two exons and three microsatellite sequences. SNPs associated withRSC-V1aR 

expressionare represented as red vertical lines. B. Distribution of allele frequencies 

observed for randomly samples genome-wide loci (blue columns) and at the Avpr1a locus 

(gray columns). 
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Figure 2.2: Patterns of diversity, recombination and linkage at the Avpr1a locus. A) 

Top panel, structure of the Avpr1a locus. Red lines correspond to SNPs associated with 

high V1ar expression in RSC; location of the putative intron enhancer is highlighted in 

gray (Okhovat et al. 2015). Second panel, sliding-window analysis of nucleotide diversity 
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(π) in animals from Champaign County, IL; third panel, recombination rate (Rho); 

bottom track, linkage disequilibrium (LD, R
2
). B) Heatmap depicts significant evidence 

of linkage (black) and recombination (white) between pairs of SNPs. The four SNPs 

linked to RSC are strongly linked with each other, but poorly linked to surrounding 

sequences. Seven LD blocks are depicted in blue. 

 

 

Figure 2.3: Excess of linkage among SNPs defining HI and LO alleles. The four SNPs 

associated with RSC-V1aR are strongly linked. Left panel depicts LD decay with 

distance (in nucleotides, nt). Red dots correspond to LD between pairs of SNPs linked to 

RSC expression, blue dots to comparisons between SNPs not linked to RSC. Right panels 

demonstrate that the average residual LD for RSC-linked SNPs (red) is much larger than 

four randomly sampled SNPs at the locus, and that the span of four linked SNPs is 

significantly shorter than the span of the SNPs that define the HI allele. Box and whisker 

plot depicts median, quartiles and range of null distribution. 
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Figure 2.4: Population structure analysis of prairie voles in central and southern 

Illinois. A) Sampling locations of prairie vole populations, Champaign County, IL 

(black), Jackson County, IL (blue), shaded biomass is depicted to represent differences in 

forest vs prairie. B) Principal component analysis (PCA) generated on the basis of 

individual genotypes from 2bRAD data. PC1 and PC2 represent eigenvectors that 

accounted for 3.5% and 2.9% of the total genetic variation. C) Admixture cluster analysis 
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representing the inferred ancestry from K ancestral populations. Blue dashed box 

highlights the cluster (K) with the smallest error. 
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Figure 2.5: Avpr1a haplotype network. Median-joining network of the Avpr1a locus. 

Each cluster is color coded to display the original population of the inferred haplotype. 

Gray represents Champaign County and light blue represents Jackson County. Orange 

circles represent HI haplotypes and darker blue represents LO haplotypes. Black dots 

represent single mutations separating observed haplotypes. The pseudogene sequence 

was used as “outgroup”. 
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Figure 2.6: Patterns of population differentiation in the Avpr1a locus compared to 

genome-wide. A. Distribution of Fst between Champaign and Jackson County 

populations per site across the prairie vole genome. B. Sliding-window analysis of 

nucleotide diversity top; relative differentiation (Fst) middle; absolute differentiation 
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(Dxy) bottom, of the two populations. Location of the putative intron enhancer is 

highlighted in gray, and RSC-associated SNPs in red (Okhovat et al. 2015). 
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CHAPTER 3 

The transcriptome of male bonding 

ABSTRACT 

Prairie voles are relatively unique among mammals, in that males contribute to parental 

care and form enduring pairbonds with their mates. The vasopressin 1a receptor in the 

ventral pallidum has been the best known modulator of male attachment, but pairbonding 

requires a much broader set of molecular and cellular mechanisms that are not well 

understood. Here we employed next-generation sequencing in order to examine the 

patterns and dynamics of gene expression underlying the onset of male pairbonding in the 

prairie voles in contrast to meadow voles. We investigated three brain regions involved in 

the reward and limbic system in response to 30 minutes, 2 hours and 12 hours of mating. 

We identified massive changes in gene expression between these two species across all 

three brain regions. Time-sensitive differential gene expression was the highest for genes 

involved with neuroplasticity in the prairie voles but not in the meadow voles. 

Comparisons across gene networks in these species indicate high module conservation 

and preservation, suggesting that most of the cognitive differences between species may 

have a regulatory basis. This is the first study that provides a wide-ranging list of novel 

candidate genes for pair bonding. Results of this study may contribute to better 

understanding of social evolution in mammals but also will provide insights social 

attachment and its mechanisms in humans. 
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INTRODUCTION 

My dissertation thus far has focused on individual and species differences in the 

regulation of the vasopressin 1a receptor. However, both intraspecific and interspecific 

variation in social behavior is likely to rely on a much larger set of genes. Species 

differences in gene expression are often attributed to changes in gene regulation and 

transcription factor binding (Garfield & Wray 2010; Wittkopp 2010; Romero et al. 2012). 

Meanwhile, individual differences are likely to include both genetic differences and 

individual responses to environment and experience. Changes in social behavior have 

been linked to extensive shifts in brain gene expression (Robinson et al. 2008; 

Chandrasekaran et al. 2011). Investigating species differences in gene regulation can 

inform our understanding of behavioral diversity across species, populations, individuals, 

and ontogenies.  

Progress in genomics and sequencing has revolutionized studies in evolutionary 

ecology as thousands of genetic markers and genes can be examined thoroughly in non-

model organisms. Many recent studies have disentangled the life histories of animals in 

their natural environments. For example, Dixon et al (2015) identified that some corals 

trigger adaptive responses in gene regulation to changes in heat by combining RAD 

sequencing with gene expression profiles. Developmental wing patterns of butterflies can 

be predicted using gene expression profiles (Hines et al. 2012; Connahs et al. 2016). 

Wang and collaborators identified multiple gene regulatory networks that control limb 

development in bat wing formation  (Wang et al., 2014). In terms of behavior, many 

studies have explored the influence of gene expression in different behavioral states at the 
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species or individual level. Changes in gene regulation have been linked to behavioral 

shifts in honey bees (Whitfield et al. 2003), swordtails (Cummings et al. 2008), 

sticklebacks (Sanogo et al. 2012), and primates (Nowick et al. 2009; Runcie et al. 2013). 

Despite this progress, however, we know little about the transcriptome-level changes 

associated with pairbond formation. In the current study, we examine changes in gene 

expression that accompany pairbond formation in the socially monogamous male prairie 

vole, Microtus ochrogaster, and compare it to patterns of gene expression in the 

promiscuous male meadow vole, Microtus pennsylvanicus.  

Prairie voles are well known for their ability to form enduring pairbonds in 

response to mating. After sexually naïve prairie voles are paired with one another, an 

extended bout of mating ensures (Getz, Carter, and Gavish 1981). The onset of 

monogamous behaviors includes pair-bonding and selective aggression (Getz, McGuire, 

and Pizzuto 1993). The formation of a pairbond requires prolonged mating – 6 hours of 

mating, for example, is generally insufficient to elicit an enduring bond, but 24 hours 

elicits its reliably (Insel et al. 1995). This requirement is thought to enable a male to 

assess whether he can effectively monopolize a female, while it allows a female to assess 

whether a male is able to effectively displace potentially infanticidal intruders (Wolff et 

al. 2002; Phelps & Ophir 2009). Yet, we don’t know the neurogenetic mechanisms that 

occur during pairbond formation that could explain how prairie vole males identify their 

mating partners. Since mating rewards the rodent brain, it has been hypothesized that 

paibonding is a consequence of conditioned reward learning where olfactory and sexual 
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signatures form strong associations in the mesolimbic circuit (Insel & Young 2001; 

Young & Wang 2004). 

From a more reductionist perspective, the formation of a pairbond depends on the 

activity of multiple molecular and neurobiological mechanisms in response to specific 

social and environmental cues. The formation of pair-bonds in prairie voles seems to be 

mediated in part by specific reward circuits in the brain (Young & Wang 2004). 

Dopaminergic neurons projecting from the ventral tegmental area (VTA) are thought to 

contribute to pair-bond formation by altering reward in response to sexual stimulation 

(Liu, Curtis, and Wang 2001), and by linking behavioral reward to sensory inputs 

arriving from the amygdala (Keshavarzi et al. 2015). Furthermore, genital stimulation and 

the release of pheromonal and olfactory signals during mating initiate an active discharge 

of vasopressin and oxytocin from the hypothalamus (Gobrogge et al. 2009), two major 

modulators of social behavior that play a central role in pairbond formation. In addition 

to the neuropeptides oxytocin and vasopressin, other neuromodulatory systems such as 

opioids (Resendez et al. 2016), sex steroids (Cushing et al. 2001) and stress hormones 

(Bales, Kramer, Lewis-Reese, & Carter, 2006; Lim et al., 2007) have all been implicated 

in the regulation of bonding. These diverse molecular systems have all been shown to act 

in reward regions, the hypothalamus or the amygdala. Indeed, these brain regions have 

been implicated in a tremendous variety of reproductive and social behaviors (Newman 

1999; Goodson 2005; O’Connell & Hofmann 2012), and have been described as parts of 

a larger “social decision-making circuit” (O’Connell & Hofmann 2012). A thorough 
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understanding of the role of gene expression in pairbonding will require the investigation 

of transcriptome profiles across a variety of brain regions and species. 

To better understand the genomic mechanisms that govern responses to mating in 

prairie voles, we first generated a transcriptome reference assembly of prairie voles. Next 

we used this assembly to analyze gene expression profiles from males of two species 

(monogamous prairie voles and promiscuous meadow voles), across three groups of brain 

regions associated with mating and pair-bond formation. Targeted brain regions include 

three major groups of related nuclei: 1) adjacent reward regions known as the ventral 

pallidum and nucleus accumbens (VP/NAcc); 2) the various nuclei of the hypothalamus 

(HYP), including regions known to be involved in sexual behavior and parental care; and 

3) the assorted nuclei of the amygdala (AMYG), a suite of adjacent brain regions critical 

in emotional learning and a variety of social behaviors (Insel & Young 2001; Ferguson et 

al. 2002; Young & Wang 2004). We examined transcriptomes of prairie and meadow 

voles in each of these brain regions through a series of time samplings before and 

immediately following mating (virgins, or 30 minutes, 2 hours and 12 hours post-

mating). With these data we asked whether there are significant differences in gene 

expression between promiscuous and monogamous voles, whether there are coordinated 

transcriptional responses to mating, and whether there are specific sets of genes that 

coordinate responses to mating in one or both species.  
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MATERIALS AND METHODS 

Animals 

For the transcriptome assembly, adult tissues were dissected from single, virgin 

adult male prairie voles and transferred immediately to RNAlater. Animals were derived 

from the prairie vole colony at Yerkes National Primate Research Center and all the 

procedures were performed as per guidelines that were reviewed and approved by the 

Emory Institutional Animal Care and Use Committee and were conducted in accordance 

with the Guide for Care and Use of Laboratory Animals published by the National 

Research Council. 

For the time-series experiment, prairie voles (Microtus ochrogaster) and meadow 

voles (Microtus pennsylvanicus) were housed in same-sex groups with two or three voles 

per cage from postnatal day 21. Housing consisted of a ventilated 36 cm × 18 cm × 19 cm 

plexiglass cage filled with Bed-o’Cobs laboratory animal bedding (The Andersons Inc., 

Maumee, Ohio) under a 14/10 hour light/dark cycle (lights on 7:00 AM–9:00 PM) at 

22°C with access to food (rabbit diet; LabDiet, St. Louis, Missouri) and water ad libitum. 

These laboratory breeding colonies were originally derived from field captured voles in 

Illinois. All procedures were approved by the Emory University Institutional Animal 

Care and Use Committee.  

Tissue Collection 

All animals were 60-90 days old and sexually naive at the time of the experiment. 

Control tissue was collected from the brains of sexually naive males. For time course 

samples, a single male prairie vole or meadow voles was paired with an unrelated female 
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partner primed with estradiol benzoate (Sigma Aldrich, St. Louis, MO, USA, BP958) for 

two days prior to testing to ensure sexual receptivity. Pairs were observed and the time of 

first intromission was recorded. Males were euthanized using isofluorane at 30 min, 2 

hours and 12 hours following the first intromission. Whole brains from male voles at 30 

minutes, 2 hours, and 12 hours, post mating (virgin males were used as controls) were 

harvested and dissected on a block of dry ice to remove the ventral pallidum, the 

hypothalamus, and the amygdala, and were stored in RNAlater (Applied Biosystems 

AM7020). 

Extraction of total RNA and library preparations 

Total RNA was extracted from 50-80 mg of tissue using TRIzol (Sigma-Aldrich) 

following the manufacturer’s protocols. An additional DNAse (PureLink) treatment was 

included to eliminate any contaminating DNA. RNA quality and quantity were assessed 

on a BioAnalizer and quantified by spectrophotometry. cDNA was prepared using 

Superscript reverse transcriptase (Invitrogen) and purified with QIAquick PCR 

purification kit. After checking cDNA quantity and quality in the Bioanalyser (Agilent), 

libraries were prepared using Illumina’s TrueSeq Sample Prep Kit with a starting amount 

of 1.25ug of RNA. Then, libraries were normalized using the Evrogen Trimmer kit 

(Evrogen).  

Transcriptome assembly and gene annotation 

In order to assemble a prairie vole transcriptome, we used Illumina short read 

libraries derived from male gonads (kindly provided by Dr Lisa McGraw and Dr Larry 

Young from Emory University), whole brains, and multiple SRA files downloaded from 
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NCBI (SRA Accession codes in Table 3.1). After filtering and eliminating adapters using 

fastq and cutadapt tools, we mapped the processed reads into the Microtus ochrogaster 

genome (http://www.broadinstitute.org/software/allpaths-lg/blog/?p=618) using TopHat2 

(Kim et al. 2013). A pseudogenized duplication kept the extended region around the 

Avpr1a locus from assembly into the prairie vole genome). Therefore, BAC contigs 

containing the locus and its pseudogene were manually added to the assembly (NCBI 

accessions: DP001225, HQ156469).  The outputs from each library were merged and the 

resulting BAM file was sorted and indexed. The final transcriptome was assembled with 

the genome-guided program StringTie (Pertea et al. 2015). To annotate the transcriptome, 

we aligned the resulting fasta file to SwissProt database using blastx and extracted the 

uniprot annotation files using custom scripts written by Dr Mikhail Matz. KOG and 

KEGG annotations were retrieved from online databases by submitting the transcriptome 

in fasta format to the following websites with default settings: for KOG annotations, 

(http://weizhong-lab.ucsd.edu/metagenomic-analysis/server/kog/) and KEGG 

(http://www.genome.jp/kegg/kaas/).  

Differential expression sequencing 

To identify differences in gene expression of prairie vs meadow vole, RNA was 

collected following mating for three brain regions – hypothalamus, amygdala and ventral 

pallidum/nucleus accumbens. RNA was isolated, reverse transcribed with Superscript 

reverse transcriptase II (Invitrogen), and prepared for Illumina sequencing using 

Illumina’s TrueSeq Sample Prep Kit.  The samples were then delivered to the Emory 

University genomics core facility and sequenced using the Illumina HISEQ 50 bp single 
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ends. All sequence reads of this experiment were kindly provided by our collaborators, 

Drs Lisa McGraw and Larry Young.  

Sequence files were trimmed and cleaned fastq tools and mapped to our prairie 

vole reference-transcriptome using BWA (Li & Durbin 2009). First, the whole dataset 

was analyzed using the R library arrayQualityMetrics to identify outliers and sample 

quality. 6 outliers were removed, resulting in sample sizes of 44 prairie and 45 meadow 

vole samples. The counts file was then downloaded and analyzed using the library 

DESeq2 in R (Love et al. 2014). We used the full design [~ Species * Brain-Region * 

Time] in order to identify the effects of species, brain region, time and all the interactions 

to explain the variation in gene expression. Principal component analysis (PCA), 

principal coordinate analysis (PCOA) and permutational multivariate analysis of variance 

(permanova) tests using the Manhattan method and 10,000 permutations were executed to 

identify the main factors explaining the variation in gene expression of this experiment.  

To facilitate the analysis of time effects, we parsed our dataset into five subsets. 

More specifically, we split our reads by brain region to focus on species differences 

within a brain region, and split our reads by species sets to identify tissue differences 

within a species. Here, outlier analysis excluded two individuals, one for the ventral 

pallidum/NAcc data set and the other outlier from the hypothalamus data set. We used [~ 

Species + Time + Species:Time] as a full design for each brain region, and [~ Brain-

region + Time + Brain-region:Time] for each species. Comparisons were made between 

species and across brain regions, having meadow voles, hypothalamus and virgins (time 

0) as reference for each contrast. To retrieve differentially expressed genes and their gene 
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ontology (GO) enrichment, we filtered our RNA-seq data with a False Discovery Rate 

(FDR) q-value<0.1 for each contrast and constrained to include only differentially 

expressed genes (DEGs) with at least two-fold difference. 

Functional annotation analysis 

To identify gene ontology enrichment for molecular functions (MF), cellular 

components (CC) and biological processes (BP), we used the Gene Ontology Mann-

Whitney Test (GOMWU) script by Misha Matz.  

Gene co-expression network analysis 

To identify groups of co-regulated genes that were differentially expressed 

between prairie and meadow voles in response to mating, we used a weighted gene 

correlation network analysis (WGCNA) (Langfelder & Horvath 2008). This method 

permits detecting biologically meaningful groups of co-regulated genes. All the genes 

identified by the DESeq2 analysis were used in our WGCNA. Three unsupervised 

networks were constructed for species differences in the ventral pallidum/nucleus 

accumbens, amygdala and hypothalamus with no outlier samples identified (sample 

distance PCOA confirms this finding (Fig 3.2)). Soft-power thresholds for ventral 

pallidum/nucleus accumbens, amygdala and hypothalamus were 22, 20 and 18 

respectively. Genes inside a co-expression module tend to have high levels of 

connectivity; therefore, a mathematical construct of the principal component of gene 

expression of all the genes in that module can be summarized as an “eigengene” 

(Langfelder & Horvath 2008). The membership of each gene in the module can be 

correlated with its gene significance (GS) from a specific trait-category if available. GS 
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can be defined as the absolute value of the correlation between genes and the trait-

category of interest (Langfelder & Horvath 2008). Here we correlated groups of co-

expressed genes with our categories of interest defined as prairie or meadow voles, and 

these at specific times (i.e. premating (virgin state), 30 minutes, 2 hours, 12 hours, and 

post-mating). Groups of co-expressed genes that were strongly correlated with a specific 

species or with specific times (i.e. before and after mating) were further analyzed for GO 

enrichment. To confirm that the strongest module eigengene correlations corresponded to 

real biological effects, we shuffled the time-condition designations among samples to 

confirm the observed correlations disappeared.  

Preservation analysis 

We also used preservation analysis as an alternative and independent test to 

validate the preservation or conservation of specific network modules between species 

(Langfelder et al. 2011). To assess preservation of prairie vole modules in the meadow 

vole brain network, a gene co-expression network analysis was performed separately on 

both species subsets, designating the prairie vole network as reference. The functions 

overlapTable() and modulePreservation() implemented in the WGCNA package for R 

(Langfelder & Horvath 2008) were used to identify the number of genes that are shared 

between specific brain modules in both species; and the summary Z statistics reveal 

preservation as a function of module size, modules at specific Z thresholds indicate no 

preservation if Z-summary < 2, weak to moderate evidence of preservation if 2<Z-

summary<10), and strong evidence of preservation if Z-summary>10.  
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RESULTS 

Assembly and annotation of the prairie vole reference transcriptome 

A genome-guided reference transcriptome was produced for prairie voles (Table 

3.2). The transcriptome assembly generated a total of 79609 prairie vole individual 

contigs, of which ~28K were annotated using Uniprot, SwissProt, KEGG, GO and KOG 

categories. The average length of the contigs was 1536 bp with an N50 equal to 3083. 

The combined size of the transcriptome represents 122.3 Mb altogether. 100% of the 

transcripts are covered in KOG database. The transcriptome contiguity (Martin & Wang 

2011), a measure of the proportion of contigs covering the uniprot reference at 0.75-

threshold, is equal to 0.53. 

Differential gene expression analysis 

We generated expression data by mapping RNA-seq reads to our prairie vole 

reference transcriptome, and found that >85% of the reads from both species aligned to 

the reference transcriptome. After removing outlier samples, the average number of raw 

read counts per sample for prairie voles ranged from 21975910 and 41140809, and for 

meadow voles it ranged between 20934671 to 41851176; indicating little mapping bias. 

We identified 22002 annotated genes that were differentially expressed between species 

and across all three brain regions (Fig 3.1A). Of these, 16938 were differentially 

expressed between vole species within the ventral pallidum/nucleus accumbens, 15892 in 

the amygdala, and 16714 in the hypothalamus (Fig 3.1B). Of these genes, 8656 were 

significantly over-expressed genes in the prairie vole ventral pallidum, 8248 in the 
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amygdala, and 8503 in the hypothalamus with an adjusted p-value <0.1 in the species 

contrast result.  

A permutational multivariate analysis of variance (permanova) on normalized and 

variance stabilized read count data showed that the main factors were species (R
2
=0.34, P 

<10
-5

), followed by brain region (R
2
=0.21, P<10

-5
), time (R

2
=0.04, P =0.004), and 

species-by-time interaction (R
2
=0.03, P= 0.017).  The principal component analysis 

function implemented in the R package DESeq2 provided similar but overestimated 

patterns, 68% of the variation in normalized gene expression is explained by species, and 

14% is explained by brain region (Fig 3.1C). Principal coordinate analysis of the 

variance-stabilized data confirmed these observations and also revealed that a small 

fraction of expression differences seem to be explained by time effects, as virgins seemed 

to be more distant to post-mated samples in the prairie than in the meadow voles (Fig 

3.1D).  

Gene expression differences over time 

We identified a total of 2535 prairie vole genes, and 484 genes in the meadow 

vole genes, that differed in gene expression during the first 30 minutes of mating among 

brain regions (Fig. 3.2A). Particularly, the hypothalamus of prairie voles maintains a 

massive increase of differentially expressed genes after mating respect to only 12 genes 

that are differentially expressed in meadow voles for the same time contrasts (Fig 3.2A). 

Interestingly, some of the most significant differences correspond to early immediate 

genes such as FosB, which increase in expression after 30 minutes of mating in prairie 

and meadow voles (Fig. 3.2B). 
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Species differences in gene expression over time 

Heatmaps of clustered gene expression revealed several genes that exhibited 

species by time effects. The most significant (FDR <0.1) genes for the ventral pallidum 

were 12 (Fig 3.3B), for the amygdala were 25 (Fig 3.4B),  and for the hypothalamus were 

35 (Fig 3.5B). With a log2 fold change difference >2 and a p-adjusted <0.1, the most 

strongly up-regulated gene in the ventral pallidum of prairie vole samples that also 

showed significant difference after 12 hours of mating was SMARCAL1 which is known 

to stabilize DNA topology (Fig 3.3C). In the amygdala was Discs5 that may play roles in 

the maintenance of cell structure and the transmission of extracellular signals to the 

membrane and the cytoskeleton (Fig 3.4C). And, C2CD3 in the hypothalamus, this gene 

is a component of centriole elongation (Fig 3.5C). Interestingly, the hypothalamus was 

the only brain region that contained under-regulated genes; the most significant was 

plasminogen activator inhibitor-2 (PAI2), which is known to inhibit endocellular 

proteases. 

Species differences in gene ontology enrichment 

Among all genes that pass the false discovery rate of 0.1, an additional fraction 

showed more than a twofold difference in expression differences between species in the 

ventral pallidum (1463 genes, Fig. 3.6B), amygdala (1365 genes, Fig. 3.7B), and 

hypothalamus (1413 genes, Fig. 3.8B). Moreover, species differences among all brain 

regions revealed very similar gene ontology (GO) categories of overregulated molecular 

functions (MF), biological processes (BP), and cellular compartments (CC) across brain 

regions. Structural constituents of muscle, axoneme, chromatin modification, and cell 
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projection organization are upregulated functions in prairie voles in contrast to meadow 

voles among all brain regions. In contrast, mitochondrial and proteasome complex genes 

are the cellular components that are more downregulated in the prairie voles (Fig. 3.6C-

3.8C).Similarly, endopeptidases, endnucleases and microtubule motor GO terms are the 

molecular functions that are more expressed among brain regions in the prairie voles. In 

the other hand, poly(A)-RNA binding, endoplasmic reticulum,  oxidoreductase, and 

GTPase binding are some of the GO categories for molecular function that are 

downregulated among prairie vole brain regions.  

Network analysis of co-expression 

To determine the patterns of co-regulated genes that underlie species differences 

among three brain regions, the nearly 28K genes normalized genes were entered into 

WGCNA analysis for co-expression analysis. No additional outlier samples were 

identified after pre-adjacency analysis. Then, we identified the correlated modules with 

either prairie voles or post-mating specific modules on each brain network. WGCNA 

analysis revealed 14 modules in the ventral pallidum/nucleus accumbens. Of these, the 

brown module was strongly correlated with overexpression in the ventral pallidum of 

prairie voles (corr=0.97, P=2x10
-20

), the dark-magenta module was strongly correlated 

with downregulation in the prairie vole ventral pallidum (corr=-0.99, P=1x10
-26

), and the 

bisque4 module was highly correlated and overexpressed in mated individuals 

(corr=0.65, P=7x10
-5

). 15 modules were found in the amygdala, of which the salmon 

module was highly correlated with overexpression in prairie voles (corr=0.95, P=3x10
-

17
), the brown was correlated with downregulation in prairie voles (corr=-0.99, P=2x10

-
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25
), and antiquewhite4 was associated with postmated animals (corr=0.65, P=6x10

-5
). 

Finally, of 12 modules found in the hypothalamus, the turquoise module showed high 

correlation values with prairie voles (corr=0.83, P=2x10
-8

), the antiquewhite4 module 

was correlated with under-expressed genes in the prairie vole hypothalamus (corr=-0.89, 

P=3x10
-11

), and the darkolivegreen module was strongly correlated with postmated 

individuals (corr=0.81, P=4x10
-8

). Interestingly all this significantly correlated modules 

in the prairie voles showed completely opposite directions in the meadow voles (Fig 

3.9A-C). And additional GO analysis of these modules confirmed findings from 

differences in gene expression in DESeq2 (Fig 3.9D-F). 

Preservation analysis 

In this section, we compared module assignations for the prairie and meadow 

voles using overlap analysis. A subset of 8000 genes were filtered by time effects (p-

adjusted <0.1) from the prairie voles and meadow voles and imported to WGCNA 

analysis. We observed that almost all the modules in the prairie vole overlap with 

meadow vole modules, including the grey module – a module where all the unassigned 

genes are classified– which overlapped with 32% of unassigned genes in the meadow 

vole. This implicates that modules are preserved between species; despite they can be 

split in two or more interspecific modules. We found relatively small grey modules for 

both species networks, the largest prairie vole module (i.e. darkmagenta) also overlapped 

the major fraction of grey meadow vole eigengenes (7%). This module also contained 

89% of blue module genes, suggesting that these may play similar functions in both 

species and that there are not really unique modules for each of the species (Fig 3.10). 
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DISCUSSION 

The social brain relies on interactions between the hypothalamus, the amygdala 

and other brain reward regions. Pair-bond formation is a process that involves sexual 

stimulation, olfactory input and social interactions. Oxytocin and vasopressin are the best 

known drivers of these processes but we know little about the genome-wide and cellular 

level processes driving the formation of pairbonds. Transcriptome analyses of the prairie 

vole brain are necessary for illustrating the neurogenetic topology of molecular functions 

underlying social behaviors. This scenario can be achieved by finding candidate genes, 

molecular pathways and gene co-expression networks in the context of species, brain 

regions, and time during the onset of pair-bonding. Here, we report an updated and 

annotated reference transcriptome assembly of prairie voles (Table 3.2), and a functional 

analysis of the effect of mating in the brain of monogamous and promiscuous male voles.   

Our clustering analysis revealed that variation in gene expression among all 

samples in this experiment are explained mainly by species and then brain region (Fig 

3.1). Surprisingly, the differences in gene expression are massive between species, while 

time effects seem subtle. A plausible explanation of this result may be caused by lower 

number of premating samples in the experiment, therefore We think this finding suggests 

a different neurogenomic states in the prairie voles in contrast to meadow voles  during 

the formation of pair bonds and selective aggression (Cirelli et al. 2004; Toth & 

Robinson 2010; Chandrasekaran et al. 2011).  However, the effect of mating and time 

seems to be only slightly more important in prairie voles (Fig 3.1D).  
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Mating is an adaptive behavior; therefore the mechanisms of sexual reward must 

be conserved across taxa. But species differences in postmating behavior should be 

explained by differences in neural gene expression. Interestingly, we found evidence that 

mating causes the expression of early immediate gene (e.g. FosB) in both species during 

the first two hours of mating (Fig 3.2). Based on the fact that the species factor explained 

more that 50% of differences in gene expression, we think that these early immediate 

genes and transcription factors activate differential cascades of downstream genes in 

these two species.  

Consistent with the hypothesis that pairbonding formation is mediated by learning 

in the prairie vole brain (Insel & Young 2001; Young & Wang 2004),  we expected that 

prairie voles activate genes that are necessary for formation of memories related to a 

partner while prairie voles during the onset of pairbonding and selective aggression. 

Contrastingly, meadow voles would activate genes that are essential in the maintenance 

of homeostasis in brain after the consequences of sex. Indeed, we observed massive gene 

expression differences between prairie and meadow among all brain regions. 

Nevertheless, some few differentially expressed genes were indicative of postmating 

differences between both species The upregulation of Smarcal1 in the ventral pallidum of 

prairie voles may suggest higher activity of neuron-glial migration as mating progresses 

over time (Fig 3.3C). This gene encodes a protein that participates in chromatin 

remodeling. Smarcal1 has been identified in cerebrovascular disease; mutations in this 

gene have also been associated with microcephaly and social, language, motor, or 

cognitive abnormalities (Deguchi et al. 2008). The overexpression of this gene suggests 
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that structural changes in ventral pallidum and glial cell migration may contribute to pair-

bond formation by enhancing aspects of reward and motivation. Disc large homologue 5, 

(Dlg5) is the most upregulated gene in the prairie vole amygdala after 12 hours of 

mating; this gene encodes a protein that facilitates interactions between the plasma 

membrane and the cytoskeleton, facilitating cell migration, adhesion and proliferation 

(Liu et al. 2014). Moreover, other members of the discs-homolog family have been 

involved with post-synaptic stabilization and regulation in the adult rat brain (Cho et al. 

1992). Finally, the C2 calcium dependent domain containing 3 (C2cd3) is upregulated in 

the prairie vole hypothalamus, the protein encoded by this gene regulates centriole 

elongation and has been linked to microcephaly and facial deformities (Thauvin-Robinet 

et al. 2014). The upregulation of these genes associated with active regulation of cell 

shape, synaptic formation and maintenance across all brain regions of the prairie voles, 

suggests that mating activates reward-dependent neural plasticity. We think this process 

favors the formation of partner preference memory and pair bond formation in prairie 

voles but not in the meadow voles. 

Contrasts of gene expression differences between species across different regions 

revealed thousands of genes that exhibit differences in gene expression between prairie 

and meadow voles (Fig 3.6-3.8). Neuroplasticity at both synaptic and structural level is 

known to be the primary basis of learning and memory formation. Learning involves a 

variety of structural changes mediated in part by reorganizing the actin cytoskeleton 

(Kneussel & Wagner 2013). The myosin II complex is an important regulator of this 

mechanism (Rex et al. 2010), and these genes have also been involved in the onset of 
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human neuronal disorders such as autism and schizophrenia (Newell-Litwa et al. 2015). 

Interestingly, prairie voles upregulate genes related to axoneme elongation, cell 

migration, myosin-related processes, and microtubule dynamics, while the meadow vole 

brain is upregulating genes that maintain mitochondrial homeostasis. In addition, 

molegular function GO terms alsp revealed stronger endonuclease and endopeptidase 

activity in the prairie vole brain that may contribute to both RNA and protein 

metabolism. More specifically, the upregulation of aspartic-type endopeptidase causes 

the hydrolysis of internal alpha-peptide bonds. This is, however, a novel finding despite 

other endonucleases have been linked with learning, memory formation and 

neurodegenerative disorders (D’Agostino et al. 2013; Schneider et al. 2002; Walther et al. 

2009). The activation of these gene ontology categories further reinforces the idea that 

learning and neural plasticity are possible mechanisms shaping the formation of partner 

memories in the prairie vole, therefore, genes within these categories are new candidates 

mediating the onset of pairbonding and selective aggression. 

Furthermore, our WGNCA analysis provided an additional validation that our 

findings on species differences are driven by synaptic plasticity processes in the prairie 

vole brains rather than stochastic effects due to experimental design. Co-expression 

modules are thought to be blind to how the experiment of gene expression has been 

designed. Therefore, if condition-correlated modules are enriched by similar gene 

ontology categories, we can ascertain the biological meaning of our data. Indeed, the 

most highly correlated modules in the prairie vole ventral pallidum (brown module), 

amygdala (salmon module) and hypothalamus (darkolivegreen module) revealed that 
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myosin II complex and endopeptidase genes are enriched and co-regulated among all 

these brain regions respect to meadow voles (Fig 3.9D-F). Interestingly all these modules 

exhibited opposite trends between species, while co-regulated genes in the ventral 

pallidum/NAcc (brown module) are overregulated in the prairie voles they are down-

regulated in the meadow voles, for example. This observation suggests that the modules 

within the brain networks are highly conserved and preserved between these two species, 

but their regulation is completely different. To further investigate this observation, we 

analyzed differential gene expression by parsing our data set in two independent 

WGCNA analyses. Then we overlapped the resulting networks and found that indeed, 

each module eigengene identity is well conserved in both species despite some modules 

of the prairie vole are split in the meadow voles and vice-versa (Fig 3.10).  

Overall, these data suggest that species differences in gene expression are 

pervasive across all three of the brain regions we examined. Expression differences 

seemed to be particularly enriched for genes related to the structural demands of 

neuroplasticity; this seemed particularly true for the ventral pallidum and nucleus 

accumbens, a pair of reward-related regions known to be critical to learning, memory and 

pair-bond formation. Because our experimental design emphasized species differences 

over the course of pair-bond formation, it is perhaps not surprising that plasticity-related 

genes would be most over-represented among species differences. Our data suggest that a 

relatively small number of pre-mating species differences in gene expression may drive 

massive differences in gene expression in response to mating. This suggests how a 

relatively small number of loci may have effects that become magnified by their ability to 
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recruit major networks of genes needed to execute a behavior. This may have major 

consequences for our understanding of species and individual differences in brain and 

behavior. 
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Run Tissue # of Spots 
# of 

Bases 
Size Published 

SRR069873 Male Liver 21,138,392 1.6G 825.4Mb 2010-11-04 

SRR069874 Male Brain 19,923,308 1.5G 659.8Mb 2010-11-04 

SRR069877 Female Ovary 22,635,523 1.2G 506.9Mb 2010-11-04 

SRR069878 Female Brain 16,042,092 1.2G 682.9Mb 2010-11-04 

SRR071278 Liver 32,620,469 1.7G 995.1Mb 2010-11-04 

SRR071274 Hypothalamus 30,303,102 1.6G 870.5Mb 2010-11-04 

Table 3.1. SRA accessions for raw transcriptome libraries 
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Assembly details Summary statistics 

Total number of reads 443’528.283 reads 

Transcriptome total size 122.3 Mb altogether (122269988 bp) 

Maximum contig length 41682 bp 

Average contig length 1536 bp 

N50 3083 bp 

Total number of contigs>350bp 79609 

Number of ambiguities 0 

Number of Ns 0 

Contiguity at .75 threshold 0.53 

KOG completeness 100% 

Number of Uniprot hits 28462 

Number of GO annotated contigs 28869 

Number of KOG annotated contigs 16600 

Number of KEGG annotated contigs 18436 

Table 3.2: Summary of genome-guided transcriptome assembly 
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FIGURES 

 

Figure 3.1: Species and brain region differences in gene expression.  A. The vole 

brain representing components of the reward and limbic system: ventral pallidum/nucleus 

accumbens (red), amygdala (blue) and hypothalamus (yellow). B. Venn diagram 

representing the number of differentially expressed genes in the species contrast across 

brain regions. C. Principal component analysis shows clusters by species and brain 

region. D. PCOA distances between prairie and meadow vole samples.  
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Figure 3.2: Differentially expressed genes over time. A. Venn diagrams representing 

the number of differentially expressed genes after 30 minutes and 12 hours of mating in 

contrast to virgins in the prairie voles (left) and meadow voles (right). B. Gene expression 

changes of the most upregulated (Log2FoldChange>2) gene in the ventral pallidum, 

amygdala and hypothalamus of prairie voles (left) and meadow voles (right).  
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Figure 3.3: Species differences in gene expression over time in the ventral 

pallidum/nucleus accumbens. A. View of the vole brain illustrating the position of the 

ventral pallidum and nucleus accumbens in red. B. Heatmap of differentially expressed 

genes (passing a FDR-adjusted p<0.1,) between species during 12 hours of mating. The 

rows correspond to clustering between significant genes and the color scale represents the 

relative change to the mean across all samples. C. Gene expression changes of the most 

upregulated (Log2FoldChange>2) gene in the prairie vole ventral pallidum/nucleus 

accumbens of prairie vs meadow voles. 
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Figure 3.4: Species differences in gene expression over time in the amygdala. A. 

View of the vole brain illustrating the position of the amygdala in blue. B. Heatmap of 

differentially expressed genes (passing a FDR-adjusted p<0.1,) between species during 

12 hours of mating. The rows correspond to clustering between significant genes and the 

color scale represents the relative change to the mean across all samples. C. Gene 

expression changes of the most upregulated (Log2FoldChange>2) gene in the prairie vole 

amygdala of prairie vs meadow voles. 
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Figure 3.5: Species differences in gene expression over time in the hypothalamus. A. 

View of the vole brain illustrating the position of the hypothalamus in yellow. B. 

Heatmap of differentially expressed genes (passing a FDR-adjusted p<0.1,) between 

species during 12 hours of mating. The rows correspond to clustering between significant 

genes and the color scale represents the relative change to the mean across all samples. C. 

Gene expression changes of the most upregulated (Log2FoldChange>2) gene in the 

prairie vole hypothalamus of prairie vs meadow voles. 
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Figure 3.6: Differential gene ontology enrichment between species in the ventral 

pallidum/nucleus accumbens. A. View of the vole brain illustrating the position of the ventral 

pallidum and nucleus accumbens in red. B. Volcano plot of differential expression in the ventral 

pallidum and nucleus accumbens between prairie and meadow voles. The x axis shows 

normalized read counts log2 fold change between prairie voles and meadow voles. The y axis 

shows p-value (-log base 10) for differential expression. At a p-adjusted p<0.1, downregulated 

genes in prairie voles (blue) at a twofold difference lower than -2;  and upregulated genes (red) at 

a twofold difference higher 2. C. Gene ontology enrichment analysis (GOWUA) for cellular 

component categories, upregulated (red) and downregulated (blue) categories in prairie vole; font 

size reflects p-value. 
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Figure 3.7: Differential gene ontology enrichment between species in the amygdala. A. View 

of the vole brain illustrating the position of the amygdala (blue). B. Volcano plot of differential 

expression in the amygdala between prairie and meadow voles. The x axis shows normalized read 

counts log2 fold change between prairie voles and meadow voles. The y axis shows p-value (-log 

base 10) for differential expression. At a p-adjusted p<0.1, downregulated genes in prairie voles 

(blue) at a twofold difference lower than -2;  and upregulated genes (red) at a twofold difference 

higher 2. C. Gene ontology enrichment analysis (GOWUA) for cellular component categories, 

upregulated (red) and downregulated (blue) categories in prairie vole; font size reflects p-value. 
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Figure 3.8: Differential gene ontology enrichment between species in the hypothalamus. A. 

View of the vole brain illustrating the position of the hypothalamus (yellow). B. Volcano plot of 

differential expression in the hypothalamus between prairie and meadow voles. The x axis shows 

normalized read counts log2 fold change between prairie voles and meadow voles. The y axis 

shows p-value (-log base 10) for differential expression. At a p-adjusted p<0.1, downregulated 

genes in prairie voles (blue) at a twofold difference lower than -2;  and upregulated genes (red) at 

a twofold difference higher 2. C. Gene ontology enrichment analysis (GOWUA) for cellular 

component categories, upregulated (red) and downregulated (blue) categories in prairie vole; the 

font size of the categories represents the significance as indicated by the labels on top. 
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Figure 3.9: Relationships between eigengene co-expression modules and pre- and 

post-mating times in prairie voles and meadow voles.  A-C. Correlation heatmaps 

between brain region modules eigengenes (rows) and mating times in two species of 

voles (columns).  The numbers within cells are the Pearson’s correlation coefficient with 

a Pcorr.test <0.01, higher p-values are not listed. D-E. Gene ontology enrichment for the 

eigengene module with highest correlation with the ventral pallidum, amygdala and 

hypothalamus. 
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Figure 3.10: Preservation analysis of brain region and time eigengenes modules 

between species. Module-mating relationship heatmaps, eigengenes (rows) and mating 

times across brain regions (columns)  in prairie voles (A), and in meadow voles (B) . C. 

Overlap between prairie and meadow vole co-expression modules. D. Summary Z 

statistic plot as a function of module size, each dot represents a prairie vole module and 

its degree of preservation in meadow voles. The dashed lines represent thresholds, 

summary < 2 indicates no preservation, 2<Zsummary<10 weak to moderate evidence of 

preservation, and Zsummary>10 strong evidence of preservation. 
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CONCLUDING REMARKS 

 

The particular focus in my dissertation was to study the evolution of underlying cellular 

and molecular mechanisms involved with the formation of pairbonds and sexual fidelity 

in social monogamous prairie voles. The long term aim of my research interests is to seek 

novel explanations for proximate and ultimate questions in behavioral ecology on the 

subject of adaptive gene regulation. Through the use of traditional molecular biology 

methods such as PCR and Sanger sequencing, high throughput sequencing methods such 

as ChIP-seq, 2bRAD and RNAseq, and the use of bioinformatic and statistical tools, I 

analyzed molecular data from the vole brain, and I was able to validate the importance of 

gene regulation in the evolution of brain and behavior.  The most interesting results I 

found in my dissertation so far, are: i) Positive selection have driven the evolution of at 

least one enhancer that increase the expression of arginine vasopressin receptor (V1aR) in 

the ventral pallidum; ii) A mix of balancing selection, local adaptation and selection on 

epistasis on a regulatory element may explain the variation in expression of V1aR in the 

retrosplenial cortex, which regulates spatial memory and sexual fidelity; iii) massive 

changes in gene expression are necessary for the origin of neurogenetic states in the 

limbic system of prairie voles, which coincide with the formation of pairbonds and 

selective aggression. 

At least 5% of mammals are thought to be either socially or genetically 

monogamous; some examples include California mice, titi monkeys, humans, and prairie 

voles. But, how have prairie voles evolved to recognize their partners and maintain 

sexual fidelity? This has been a question that cognitive ecologists have tried to answer for 
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long time. Hence, in my dissertation, I built upon the legacy of many years of research on 

some of the hypotheses addressing aspects of the evolution of monogamy of prairie voles 

and its relatives. Interestingly, the results of my work suggest that adaptive changes in 

gene regulation are important for the formation and evolution of monogamous behaviors. 

More specifically, I found that adaptive evolution occurs at putative regulatory elements 

that are essential for the expression of vasopressin receptor, a gene product that is 

involved in the formation of pairbonds and the maintenance of sexual fidelity in prairie 

voles. Additionally, I sought to understand some genic mechanisms that would explain 

aspects of the onset of pairbonding in prairie voles. To do this, I compared the 

transcriptomes from the limbic system of male prairie voles during the first 12 hours of 

mating, and I contrasted them to promiscuous meadow voles. Interestingly, the results of 

this analysis showed that prairie voles and meadow voles differ in both gene expression 

and behavior, revealing the activation of different neurogenetic states between 

monogamous and promiscuous voles. Moreover, the most upregulated genes in 

monogamous voles are part of known pathways associated with learning and memory 

formation.  

From the perspective of a vole, or even a human being, attachment requires the 

linking the complex sensory cues associated with a specific partner to the rewards of sex 

and affiliation. Monogamy thus requires the formation of strong memories in the limbic 

system, drawing on the more general and ancient mechanisms of neural plasticity and 

conditioned reward. In the natural world, being more or less monogamous also requires 

different strategies for keeping track of other individuals, making demands on circuits 
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important to spatial or contextual cognition. Overall, the studies I presented in this 

dissertation highlight the importance of social cognition and the diverse mechanisms of 

learning and memory for the effective execution of a given behavioral strategy. Central to 

this complex phenotype, as to many others, is the role of gene regulation. Selection can 

alter the propensity to bond by changing the expression of a gene in a reward center like 

the ventral pallidum, or it can favor diversity in fidelity by preserving regulatory variation 

in a memory circuit like the retrosplenial cortex. Ultimately, species and individual 

differences in bonding and memory must draw on the transcriptional regulation of 

neuroplasticity.  One of the challenges of behavior is that it is inherently plastic, 

responsive to the environment. Perhaps it should not be a surprise that the evolution of 

behavior requires modifications of this plasticity. Finally, I would like to encourage the 

reader to take the advantage of many bioinformatics methods that are available to also 

investigate gene regulatory processes that may contribute to the evolution and 

maintenance of behavioral diversity. 
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