Disclaimer: This is a machine generated PDF of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace original
 "AS AVAILABLE" and are not retained in our systems. CENGAGE LEARNING AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES,
 FOR A PARTICULAR PURPOSE. Your use of the machine generated PDF is subject to all use restrictions contained in The Cengage Learning Subscription and License Agreement and/or the
 your use of the machine generated PDF functionality and any output derived therefrom.

Title: Rehabilitation in bilingual aphasia: evidence for within- and between-language generalization
Author(s): Swathi Kiran, Chaleece Sandberg, Teresa Gray, Elsa Ascenso and Ellen Kester
Source: American Journal of Speech-Language Pathology. 22.2 (May 2013): pS298.
Document Type: Clinical report
DOI: http://dx.doi.org/10.1044/1058-0360(2013/12-0085)
Copyright: COPYRIGHT 2013 American Speech-Language-Hearing Association
http://ajslp.asha.org/
Abstract:
 predictable and logical.

 design across participants was implemented. Treatment was conducted in 1 language, but generalization to within- and between-language untrained items was examined

 and between-language generalization to the translations of the untrained semantically related items was observed in 6 participants
 (generalization) and inhibition

Key Words: aphasia, bilingualism, language disorders, neurologic disorders, intervention
Full Text:

 2004; Laganaro, Di Pietro, \& Schnider, 2006; see recent chapters in Gitterman, Goral, \& Obler, 2012).

 observed that treatment provided in the second language (L2) resulted in improved treatment outcomes in that language. Further, between-language transfer occurred in more than half of the participants. Interestingly, the age of acquisition (AoA) and language differences across the 13 studies did not specifically influence the treatment outcomes. However, there was quite a bit of variability in treatment type and consequent treatment outcomes.

 language generalization for one Spanish-English bilingual individual with transcortical motor aphasia, as measured by the Naming subtest of the Bilingual Aphasia Test (BAT; Paradis, 1989)

 the phonological and semantic overlap for cognates in the two languages.

Recently, Miller Amberber (2012) examined one French-English individual who was French dominant who demonstrated greater impairment in English relative to French. This individual was trained in English and improved in the trained language but not in French, indicating a language-specific improvement as a function of treatment. In contrast, Miertsch, Meisel, and Isel (2009)

 trained language as well as some between-language generalization to the untrained languages. In another study, Goral, Levy, and Kastl (2010) found selective generalization from trained L2 (English) to L3 (French) but not to the first language, or L1 (Hebrew), in a trilingual individual with agrammatic deficits.

When treatment is targeted toward naming deficits, there is a relatively strong theoretical foundation from bilingual lexical semantic processing that allows specific predictions about between-
 both L1 and L2 and the semantic system (Kroll, Bobb, Misra, \& Guo, 2008; Kroll \& Stewart, 1994; Kroll, van Hell, Tokowicz, \& Green, 2010); these connections differ in their strengths as a
 dominant language. Also, lexical associations from L2 to L1 are assumed to be stronger than those from L1 to L2. Conversely, the links between the semantic system and L1 are assumed to be stronger than between the semantic system and L2.

With regard to activation of phonological representations from the semantic system, the prevailing theory suggests that activation flows from the semantic system to the phonological system of both languages simultaneously, indicating that lexical access is target language nonspecific (Costa, La Heij, \& Navarrete, 2006; Finkbeiner, Gollan \& Caramazza, 2006). An alternate, but not

 translation in normal bilingual individuals, where translation from the stronger language to the weaker language occurs in both early bilinguals (e.g., Gollan, Forster, \& Frost, 1997) and late bilinguals (e.g., Jiang, 1999; Williams, 1994). More recent studies have shown an asymmetric cost of translating from the stronger language to the weaker language (Costa, Santesteban, \&
 asymmetry decreases (Costa et al., 2006).

Previous work in our lab examining a semantic-based treatment to improve naming in bilingual individuals with aphasia was based on these mutually overlapping theories, with the specific prediction that training semantic attributes for targets in one language would improve naming in that language and facilitate generalization to untrained semantically related items in the trained language and translations of the trained and untrained items in the untrained language (Edmonds \& Kiran, 2006). In that study, three English-Spanish bilingual individuals with aphasia demonstrated a within- and between-language effect on generalization related to prestroke language proficiencies.

In a follow-up study, Kiran and Roberts (2010) administered the same semantic-based treatment to improve picture naming in two English-Spanish bilingual individuals with aphasia and two

 naming performance of the trained items and/or language. Further, it is not clear if generalization occurs, when it occurs, and under what circumstances it does not occur.
 and logical. In this study, we examined a large group of participants $(\mathrm{N}=17)$ who had received treatment to improve naming in one language. We asked the following three questions:

* What are the effects of treatment on the acquisition of trained items independent of the language in which training was given? Based on the meta-analytical review by Faroqi-Shah and et al. (2010) and other work since, we hypothesized that irrespective of the language trained, treatment provided in one language should improve naming of items in that language.
* What are the effects of treatment on generalization to translation items and untrained items independent of what language is trained? Given the extensive work in monolingual aphasia

 generalization would vary across participants and would depend on individual participants' language use and impairment profiles.
 languages and the nature of premorbid language use and proficiency, we expected to observe a systematic positive relationship between the level of premorbid proficiency in a language and generalization to that language as well as a negative relationship between the level of language impairment and improvements in each language.

[FIGURE 1 OMITTED]

Method

Participants

 Roberts, 2010). All participants were at least 5 months post onset from a left perisylvian area cerebrovascular accident (except one who had a gunshot wound) and ranged in age from 33 to 87
 speakers, and English was their L2. Participant education ranged from elementary school to college ($\mathrm{M}=10.78$ years, $\mathrm{SD}=4.34$).

Assessment of language impairment. Participants were administered the Pyramids and Palm Trees Test (PPT)--Picture Version (Howard \& Patterson, 1992) to measure language-independent
 Spanish and English to determine the degree of overall impairment in both languages. For the purpose of this paper, BAT-Comp-E and BAT-Comp-S are averages from the Pointing,

 subtests in each language. Performance on these measures for each of the 17 participants is listed in Table 1.
 his or her family members. The Language Use Questionnaire (LUQ; Kiran, Pena, Bedore, \& Sheng, 2010) covers the following information specific to each language: (a) AoA, (b) amount of

 each language. Likewise, a weighted average of the exposure in each language calculated hour by hour during a typical weekday and typical weekend reflected the proportion of poststroke language exposure in each language. Finally, an average proportion score in terms of the participant's ability to speak and understand the language in formal and informal situations in each
 factors in order to determine a composite picture of dominance in either of the languages. Details regarding the participants' language background are provided in Table 2 .

Stimuli

 target items for each participant based on a confrontation naming pretest; hence, the number of stimuli and the specific stimuli trained during treatment differed for each participant. Six
 (e.g., cow), and Spanish control Set 3 (e.g., vaca). Thus, Set 1 and Set 2 consisted of semantically related items, whereas Set 3 consisted of an unrelated control set. Table 3 lists the number of trained items for each participant.

 each associated/nonassociated pair belonged to one of six categories: category (e.g., is a vegetable), location (e.g., is found in a grocery store), physical (e.g., is green), function (e.g., is eaten), characteristic (e.g., is juicy), and association (here the participant makes his or her own association, such as crunchy for the example of celery).

Treatment Procedure

 Kiran, 2006; Kiran \& Roberts, 2010). All participants received treatment two times per week, for 2 hr each session. For each target item, participants performed five treatment steps that

 characteristic (e.g., has/is), (d) physical attribute (e.g., is made of/appears), and (e) location (e.g., is found). After these five features were chosen, the participant was asked to generate an association and a nonassociation (e.g., reminds me of/doesn't remind me of). Following this, the participant was asked yes/no questions about the relationship of the semantic features with the target item and was required to accept or reject these and other features as being applicable to the target item. Finally, the participant was asked to name the picture again.

The average length of treatment was 10.5 weeks (range of $7-13$ weeks). Treatment was discontinued when naming accuracy met 80% for the trained items on two consecutive weekly picture-
 the same stimuli as those presented during baseline, and always preceded every other treatment session.

Data Analysis

Before treatment, three, four, or five naming probes were given to the participants in order to establish a baseline; the specific number of baseline probes varied across participants. Following treatment, two or three post-treatment probes were administered to $11 / 17$ participants. Four participants (UT11, UT01, UT09, UT17) received treatment in the L2 after completion of the first

 10.0 (large ES) (Beeson \& Robey, 2006).

[FIGURE 2 OMITTED]

Results

 results in terms of English/Spanish, the results are discussed in terms of Trained Language Set 1, Set 2, and Set 3 and Untrained Language Set 1, Set 2, and Set 3 .

When examining the effects of treatment on the trained language, independent of what language was trained, 14 of the 17 participants (82%) showed an ES >4.0 and nine (52%) showed an ES

 resulted in higher ESs than training in English, $F(1,15)=5.18, p=.03$, indicating that overall, participants showed greater gains in Spanish than in English.

Generalization to Untrained Items Within and Between Language

Using the same criterion for ES (>4.0) for generalization, Table 3 shows that six participants met that criterion for semantically related items within the trained language (Set 1 to Set 2), three
 language generalization from trained Language Set 1 to Untrained Language Set 2, and two participants met that criterion for control items in the untrained language. To corroborate these relatively subjective criteria for generalization, we performed crosscorrelation function analyses using the autoregressive integrated moving average procedure in SPSS. For each time series, a regression line is fit to the actual data and the residuals are calculated for that data. Then, crosscorrelations are calculated on the residuals and are averaged over time (Box, Jenkins, \& Reinsel, 1994).
 10 lag points (-5 to 5). Correlations that exceeded .50 and exceeded two standard errors were deemed statistically significant and are represented in Figure 3 . Three participants (UT20, UT21,

 language. Note that these sets of words were semantically related to each other (e.g., celery in English Set 1, cabbage in English Set 2).

Next, we examined crosscorrelation coefficients for items in the Trained Language Set 1 versus Untrained Language Set 1 (i.e., between-language generalization). Five of the 14 participants exhibited a significant relationship. Note that these sets of words are translations of each other (e.g., celery in English Set 1, apio in Spanish Set 1). Finally, we examined crosscorrelation coefficients for the items in the Trained Language Set 1 versus Untrained Language Set 2 (i.e., between-language generalization), which revealed a significant relationship for six of the 14 participants. Note that these sets of words were semantically related words in different languages (e.g., celery in English Set 1, repollo in Spanish Set 2).

 and between-language generalization only to semantically related untrained items in the untrained language (Figure 1: 1,3). Importantly, every participant who showed between-language generalization to the semantically related items also showed within-language generalization to those items.

Impairment and Language Use Factors Influence Treatment Outcomes

Given the limited number of participants ($\mathrm{N}=17$)in our study, we chose to compute a nonparametric Spearman correlation for language impairment factors such as PPT (language independent

 PPT and BAT-Sem-S scores. Likewise, a moderate correlation was observed between Untrained Language Set 1 ESs and BNT-Spanish and BAT-Comp-S.

[FIGURE 3 OMITTED]

Discussion

 scores in Spanish were significantly associated with higher treatment outcomes, indicating that participants who showed the most improvements also had higher semantic processing abilities.

With regard to generalization, data from the 17 participants were segregated into five subgroups. Three participants (UT07, UT23, BU07) showed both within- and between-language generalization, suggesting that strengthening semantic features improves access to (a) trained items (e.g., ballena) within the trained language, (b) semantically related neighbors (e.g., tiburon) within the trained language, and (c) translations of these items in the untrained language. In the second subgroup, five participants (UT19, UT16, UT01, UT11, UT09) showed only within-
 the semantically related untrained items within the trained language indicated that treatment targeted at emphasizing semantic features improved access to trained items as well as semantically

 showed within- and between-language generalization showed relatively minor differences between English and Spanish BNT and BAT scores.
 trained items, and UT20 and UT21 did not show any improvements in the treatment. For the former two participants, there is nothing apparent from the test results that can be construed as a
 participants were very severely impaired in their output, as evidenced by their very low scores on the various tasks reported in Table 1.

 has been reported extensively in studies of monolingual lexical-semantic processing (Belke, Meyer, \& Damian, 2005; Bloem, van den Boogaard, \& La Heij, 2004; Damian \& Martin, 1999;
 Green's $(1986,1998)$ model to address the issue of language control during language production.

Returning to our data, the ideal case scenario for positive within- and between-language generalization is when increased activation due to the general effects of treatment outweighs the inhibition/interference of specific items during lexical selection. The first subgroup of three participants who showed both within- and between-language generalization appeared to show this

 post stroke may have some influence on the extent of generalization.

 and also only showed within-language generalization. What may be the precise mechanisms driving the interaction between facilitation and inhibition for these participants remains unclear;
 inhibition and control with nonlinguistic control tasks as was conducted by Green et al. (2010) in a case study in the context of rehabilitation.

In the next subgroup of participants who showed generalization only to the between-language translations, it appears that the within-language interference precluded increased activation to
 also the stronger language pre stroke (i.e., higher average composite scores in Spanish relative to English). Patterns of generalization for these two participants are at odds with the patterns for

 proficiency relative to Spanish. When these two individuals were trained in English, perhaps the lack of continuous exposure to Spanish (e.g., attrition) and the language of the environment (English) may have resulted in within-language generalization to untrained targets in English. On the other hand, UT18 and UT22 learned English later in life and reported stronger Spanish
 facilitated easier access to untrained targets in English (hence, the between-language generalization).

 language use and backgrounds and how they may have influenced treatment outcomes. Table 2, Table 3, and Figure 3 show that of the 17 patients, seven (UT07, BU07, UT19, UT09, BU01, BU04, BU12) were trained in their weaker language, and of these, four showed some form of within- and between-language generalization.

A final note about the factors influencing treatment outcomes that emerged from the correlational analysis: Not surprisingly, several significant correlations were observed between naming, comprehension, and semantic processing in English and naming and semantic processing in Spanish. These findings underscore the relationship between receptive and expressive language

 results, it is possible that creating a composite/average number to capture an individual's level of language proficiency may not be ideal or meaningful (Kiran \& Roberts, 2012) in terms of interpreting behavioral impairment or treatment outcomes.
$==$ Given that there were 17 participants in this study, we can begin to address the potential, albeit complicated, influence of several facets of language proficiency, language impairment, and
 of the abovementioned variables on the treatment outcome.

Conclusion

 aphasia.

Acknowledgments

 authors would also like to thank all of the participants for their time and cooperation.

References

Beeson, P. M., \& Robey, R. R. (2006). Evaluating single-subject treatment research: Lessons learned from the aphasia literature. Neuropsychological Review, 16(4), 161-169.
Belke, E., Meyer, A. S., \& Damian, M. F. (2005). Refractory effects in picture naming as assessed in a semantic blocking paradigm. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 58, 667-692.

Bloem, I., van den Boogaard, S., \& La Heij, W. (2004). Semantic facilitation and semantic interference in language production: Further evidence for the conceptual selection model of lexical access. Journal of Memory and Language, 51, 307-323.

Box, G., Jenkins, G. M., \& Reinsel, G. (1994). Time series analysis: Forecasting \& control. Upper Saddle River, NJ: Prentice Hall.
Costa, A., La Heij, W., \& Navarrete, E. (2006). The dynamics of bilingual lexical access. Bilingualism: Language and Cognition, 9(2), 137-151.

Costa, A., Santesteban, M., \& Ivanova, I. (2006). How do highly proficient bilinguals control their lexicalization process? Inhibitory and language-specific selection mechanisms are both functional. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 1057-1074.

 319-341.

Finkbeiner, M., Gollan, T. H., \& Caramazza, A. (2006). Lexical access in bilingual speakers: What's the (hard) problem? Bilingualism: Language and Cognition, 9(2), $153-166$.
Frances, N., \& Kucera, H. (1982). Frequency analysis of English usage. Boston, MA: Houghton Mifflin.
Galvez, A., \& Hinckley, J. J. (2003). Transfer patterns of naming treatment in a case of bilingual aphasia. Brain and Language, 87, 173-174.
Gitterman, M., Goral, M., \& Obler, L. K. (2012). Aspects of multilingual aphasia (Vol. 1). Clevedon, UK: Multilingual Matters.
 Psychology: Learning, Memory, and Cognition, 23(5), 1122-1139.

Goral, M., Levy, E., \& Kastl, R. (2010). Cross-language treatment generalization: A case of trilingual aphasia Aphasiology, 24(2), 170-187.
Goral, M., Rosas, J., Conner, P. S., Maul, K. K., \& Obler, L. K. (2012). Effects of language proficiency and language of the environment on aphasia therapy in a multilingual. Journal of Neurolinguistics, 25(6), 538-551.

Grainger, J., \& Frenck-Mestre, C. (1998). Masked priming by translation equivalents in proficient bilinguals. Language and Cognitive Processes, 13(6), 601-623.
Gray, T., \& Kiran. S. (in press). A theoretical account of lexical semantic deficits in bilingual aphasia. Journal of Speech, Language, and Hearing Research.
Green, D. W. (1986). Control, activation, and resource: A framework and a model for the control of speech in bilinguals. Brain and Language, 27(2), 210-223.
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language \& Cognition, 1, 67-81.
Green, D. W., Grogan, A., Crinion, J., Ali, N., Sutton, C., \& Price, C. J. (2010). Language control and parallel recovery of language in individuals with aphasia. Aphasiology, 24(2), 188-209. doi:10.1080/02687030902958316
 Cognition, 1, 213-229.

Hinckley, J. J. (2003). Picture naming treatment in aphasia yields greater improvement in L1. Brain and Language, 87, 171-172.
Howard, D., \& Patterson, K. (1992). Pyramids and Palm Trees. London, England: Harcourt Assessment.
Hsiao, E. Y., Schwartz, M. F., Schnur, T. T., \& Dell, G. S. (2009). Temporal characteristics of semantic perseverations induced by blocked-cyclic picture naming. Brain and Language, 108(3), 133-144. doi:10.1016/j.bandl.2008.11.003

Jiang, N. (1999). Testing processing explanations for the asymmetry in masked cross-language priming. Bilingualism: Language and Cognition, $2,59-75$.

Junque, C., Vendrell, P., Vendrell-Brucet, J. M., \& Tobena, A. (1989). Differential recovery in naming in bilingual aphasics. Brain and Language, 36(1), 16-22.
Kaplan, E., Goodglass, H., \& Weintraub, S. (1983). Boston Naming Test. Philadelphia, PA: Lea and Febiger.
Kaushanskaya, M., \& Marian, V. (2009). The bilingual advantage in novel word learning. Psychonomic Bulletin \& Review, 16(4), 705-710. doi:10.3758/PBR.16.4.705

 doi:10.1044/1092-4388(2008/07-0038)

Kiran, S., \& Bassetto, G. (2008). Evaluating the effectiveness of semantic-based treatment for naming deficits in aphasia: What works? Seminars in Speech and Language, 29(1), 71-82. doi:10.1055/s-2008-1061626
 389-400. doi:10.1044/1058-0360(2008/06-0085)

Kiran, S., Pena, E., Bedore, L., \& Sheng, L. (2010). Evaluating the relationship between category generation and language use and proficiency. Paper presented at the Donostia Workshop on Neurobilingualism, San Sebastian, Spain.

Kiran, S., \& Roberts, P. M. (2010). Semantic feature analysis treatment in Spanish-English and French-English bilingual aphasia. Aphasiology, 24(2), 231-261.
 35-51). Clevedon, UK: Multilingual Matters.

Kiran, S., \& Sandberg, C. (2011). Treating communication problems in individuals with disordered language. In R. Peach \& L. Shapiro (Eds.), Cognition and acquired language disorders: A process-oriented approach (pp. 298-326). London, England: Elselvier.

Kiran, S., Sandberg, C., \& Abbott, K. (2009). Treatment for lexical retrieval using abstract and concrete words in patients with aphasia: Effect of complexity. Aphasiology. 23(7-8), 835-853.
 Speech, Language, and Hearing Research, 46, 608-622.

Kohnert, K. (2004). Cognitive and cognate-based treatments for bilingual aphasia: A case study. Brain and Language, 91(3), 294-302.
Kroll, J. F., Bobb, S. C., Misra, M., \& Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica (Amsterdam), 128(3), 416-430. doi:S00016918(08)00022-X [pii] 10.1016/j.actpsy.2008.02.001
 Language, 33(2), 149-174.

Kroll, J. F., van Hell, J. G., Tokowicz, N., \& Green, D. W. (2010). The revised hierarchical model: A critical review and assessment. Bilingualism, Language and Cognition, 13(3), 373-381. doi:10.1017/S136672891000009X

Laganaro, M., Di Pietro, M., \& Schnider, A. (2006). What does recovery from anomia tell us about the underlying impairment: The case of similar anomic patterns and different recovery. Neuropsychologia, 44(4), 534-545.

Lorenzen, B., \& Murray, L. L. (2008). Bilingual aphasia: A theoretical and clinical review. American Journal of Speech-Language Pathology, 17, $299-317$.
 doi:DOI 10.1016/j.jneuroling.2008.07.003

Miller Amberber, A. (2012). Language intervention in French English bilingual aphasia: Evidence of limited therapy transfer. Journal of Neurolinguistics, 25(6), 588-614.
Paradis, M. (1989). Bilingual Aphasia Test. Hillsdale, NJ: Erlbaum. Shin, H. B., \& Kominski, R. A. (2010). Language use in the United States: 2007. Retrieved from http://www.census.gov/ prod/2010pubs/acs-12.pdf.

Starreveld, P. A., \& La Heij, W. (1995). Semantic interference, orthographic facilitation, and their interaction in naming tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 686-698.

Williams, J. N. (1994). The relationship between word meanings in the first and second language: Evidence for a common, but restricted, semantic code. European Journal of Cognitive Psychology, 6(2), 195-220.

Swathi Kiran, (a,b) Chaleece Sandberg, (a) Teresa Gray, (a) Elsa Ascenso, (a) and Ellen Kester (c)
(a) Boston University, MA
(c) Bilinguistics, Austin, TX

Correspondence to Swathi Kiran: kirans@bu.edu
Editor: Carol Scheffner Hammer
Associate Editor: Heather Wright
Received July 28, 2012
Revision received November 29, 2012
Accepted January 6, 2013

DOI: 10.1044/1058-0360(2013/12-0085)

Table 1. Demographic information and Spanish and English diagnostic scores for all study participants. Part. Gender MPO Age at PPT BNT-E BNT-S BAT-Comp E

 UT21 000 Note. Part. = participant; UT = University of Texas; BU = Boston University; MPO = months post onset; PPT = Pyramids and Palm Trees (Howard \&
 Comp = Comprehension; Sem = Semantics; Trans = Translation; BAT Comp E and BAT Comp S are averages from subtests: Pointing, Semi-Complex Commands, and

 BUO4 671008152 UTO2 DNT DNT 6085 UT17 751007570 BU12 651005083 UT20 0100477 UT21 1001009446 Note. AoA $=$ age of acquisition in years; LE $=$
 Ave: average. All participants were native Spanish speakers so AoA of Spanish is 0 for everyone. Table 3 . Treatment results for all study participants,

 trained Set 1 Set 2 UT07 10 Spanish 12.41 0.94 UT23 15 Spanish 13.8413 .47 BU07 15 English 2.892 .02 UT19 17 English 4.551 .73 UT16 15 English 6.826 .83 (a) 15 English 12.707 .51 UT09 (a) 10 Spanish 10.972 .64 UT18 15 Spanish $15.17-0.29$ UT22 15 Spanish 12.730 .24 BU01 15
(a) 10 English 14.905 .15 UT11 (a) (a) 10 English 14.905 .15 UT11 (a) 15 English 12.707 .51 UT09 (a) 10 Spanish 10.972 .64 UT18 15 Spanish $15.17-0.29$ UT22 15 Spanish 12.730 .24 BU01 15
English 4.923 .57 UT02 10 Spanish 11.086 .36 BUO4 10 Spanish 16.504 .33 UT17 (a) 15 English 5.320 .43 BU12 15 English 8.160 .00 UT20 15 Spanish 0.000 .00

 2.12 BU04 0.832 .522 .390 .61 UT17 (a) $-5.431 .19-0.63-0.56$ BU12 0.000 .000 .000 .00 UT20 0.000 .000 .000 .00 UT21 $0.000 .000 .000 .00(a)$ Indicates participants who underwent two phases of treatment (i.e., trained in both languages) and only effect size for the first phase is discussed in this paper. Table 4. Nonparametric Spearman correlation matrix for language impairment variables, averaged premorbid language use, AoA, and effect sizes for Trained

 Average Spanish Composite 1.00 Note. AoA $=$ age of acquisition in years. ** significant at $p<.05$.

Kiran, Swathi^Sandberg, Chaleece ${ }^{\wedge}$ Gray, Teresa^Ascenso, Elsa^Kester, Ellen
Source Citation (MLA $7^{\text {th }}$ Edition)
Kiran, Swathi, et al. "Rehabilitation in bilingual aphasia: evidence for within- and between-language generalization." American Journal of Speech-Language Pathology 22.2 (2013): S298+. Academic OneFile. Web. 18 June 2015.

URL
http://go.galegroup.com/ps/i.do?id=GALE\|A338601966\&v=2.1\&u=txshracd2598\&it=r\&p=AONE\&sw=w\&asid=31cf82d778db3e9ea7fac7fdb5e84e46
Gale Document Number: GALE|A338601966

