
Copyright 

by

Puneet Bansal

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211336686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Report Committee for Puneet Bansal 

Certifies that this is the approved version of the report:

Analysis and Classification of Drift Susceptible 

Chemosensory Responses

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor: __________________________________

         Joydeep Ghosh

        

                             _____________________________________

         Christine Julien



Analysis and Classification of Drift Susceptible 

Chemosensory Responses

by

Puneet Bansal, B.E.

Report

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment 

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2014



Acknowledgements

I would like to thank my supervisor, Joydeep Ghosh, for introducing me to the 

field of machine learning and supervising this project. I would also like to thank 

my reader, Christine Julien, for reviewing this report.

iv



Abstract

Analysis and Classification of Drift Susceptible Chemosensory Responses

by

Puneet Bansal, M.S.E.

The University of Texas at Austin, 2014

SUPERVISOR: Joydeep Ghosh

This report presents machine learning models that can accurately classify 

gases by analyzing data from an array of 16 sensors. More specifically, the report

presents basic decision tree models and advanced ensemble versions. The 

contribution of this report is to show that basic decision trees perform reasonably

well on the gas sensor data, however their accuracy can be drastically improved 

by employing ensemble decision tree classifiers. The report presents bagged 

trees, Adaboost trees and Random Forest models in addition to basic entropy and 

Gini based trees. It is shown that ensemble classifiers achieve a very high degree 

of accuracy of 99% in classifying gases even when the sensor data is drift ridden.

Finally, the report compares the accuracy of all the models developed.

v



Table of Contents

List of Tables.............................................................................................................viii

List of Figures..............................................................................................................ix

Chapter 1: Introduction.................................................................................................1

1.1 Data Source and Collection................................................................................2

1.2 Data Features......................................................................................................2

1.3 Literature Survey................................................................................................5

Chapter 2: Data Preprocessing and Exploration.........................................................14

2.1 Data Format......................................................................................................14

2.2 Data Preprocessing...........................................................................................15

2.3 Data Exploration..............................................................................................17

Chapter 3: Analysis and Classification of Sensor Response.......................................20

3.1 Decision Trees..................................................................................................20

3.2 Bagging............................................................................................................33

3.3 Boosting...........................................................................................................37

3.4 Random Forest.................................................................................................41

Chapter 4: Results.......................................................................................................44

4.1 Misclassification / Test Error Comparison.......................................................44

4.2 Receiver Operator Characteristic (ROC) Curves.............................................44

vi



Chapter 5: Conclusion................................................................................................46

References...................................................................................................................47

vii



List of Tables

Table 1.1 – Data Features.......................................................................................3

Table 2.1 – Gases and Concentration...................................................................14

Table 4.1 – Test Error for Different Classifiers....................................................44

Table 4.2 – Area Under ROC Curves...................................................................45

viii



List of Figures
Figure 2.1 – Raw Data Sample.......................................................................................15

Figure 2.2 – Preprocessed Data Sample...............................................................16

Figure 2.3 – Relation of Sensor 1 reading and Ethanol Concentration................17

Figure 2.4 – Relation of Sensor 1 reading and Acetone Concentration...............18

Figure 2.5 – Relation of Sensor 1 reading and Toluene Concentration................18

Figure 3.1 – Classification Tree using Entropy Split............................................23

Figure 3.2 – Complexity Parameter for Entropy Split..........................................24

Figure 3.3 – Complexity Parameter vs Relative Error for Entropy Split.............24

Figure 3.4 – Variable Importance for Entropy Split.............................................26

Figure 3.5 – Confusion Matrix for Entropy Split............................................................26

Figure 3.6 – Classification tree using Gini Split.............................................................28

Figure 3.7 – Complexity Parameter for Gini Split..........................................................29

Figure 3.8 – Cost Complexity Parameter vs Relative Error for Gini Split...........30

Figure 3.9 – Variable importance for Gini Split...................................................31

Figure 3.10 – Confusion Matrix for Gini Split.....................................................32

Figure 3.11 – Confusion Matrix for Bagged Tree................................................33

Figure 3.12 – Error As a Function of Number of Trees........................................35

Figure 3.13 – Variable Importance for Bagged Tree............................................36

ix



Figure 3.14 – Confusion Matrix for Adaboost Using Brieman Coefficient...................38

Figure 3.15 – Error Evolution of Brieman Coefficient Based Adaboost........................39

Figure 3.16 – Confusion matrix for Zhu Coefficient Boosted Model..................40

Figure 3.17 – Error Evolution for Boosted Model Using Zhu Coefficient..........41

Figure 3.18 – Random Forest Confusion Matrix.................................................42

Figure 3.19 – Error vs Number of Trees for Random Forest...............................43

Figure 4.1 – ROC Curves.....................................................................................45

x



Chapter 1: Introduction

Gas sensors play an important role in countless industrial applications. 

They are used to monitor gas concentration levels, detect toxic fumes, identify 

gases present in the environment and keep industrial processes running smoothly.

A typical gas sensor works by measuring change in electrical resistance across its

surface when exposed to a gas. Over time, the sensor surface undergoes 

irreversible chemical changes due to which its accuracy decreases. This is called 

'sensor drift'. After just one year of operation, this drift can become so large that 

the sensor starts to misidentify the gases. This is a vexing problem in 

chemosensory applications and there is a need to address this drift so that sensors

can correctly identify the gases and do not have to replaced frequently. This 

report presents several machine learning models that can be used to analyze gas 

sensor data and correctly classify gases based on sensor readings that are prone 

to drift. The models demonstrate how weak classifiers can be combined to build 

strong ensemble classifiers capable of accurately classifying gases even in 

presence of sensor drift.

1



1.1 Data Source and Collection

The models presented in this report use the gas sensor array data set 

available at the machine learning repository of University of California, Irvine 

[1]. The data was collected by conducting a tightly controlled experiment at 

BioCircuits Institute, University of California, San Diego. This data set is freely 

available on-line. The motivation for making this data set freely available is to 

provide an extensive dataset to the sensor and artificial intelligence research 

communities to develop and test strategies to solve the gas classification problem

in the presence of sensor drift. The dataset is meant to be used exclusively for 

research purposes. Commercial purposes are fully excluded. It is hoped that this 

data set will facilitate building robust machine learning models that can identify 

gases correctly in the same gas concentration range for other data sets as well.

1.2 Data Features

The data set comprises of 129 features and 13,910 observations giving a 

total of 1,794,390 data points. The first feature is a combination of gas identity 

and its concentration. The other 128 features correspond to the readings of 16 

sensors in the sensor array. Each sensor has eight features associated with it. 

These features are described in Table 1.1. The first feature is the direct resistance 

of the sensor which is defined as the maximal change in resistance with respect 

2



to baseline. The second feature is the normalized version of the direct resistance 

and is obtained by dividing the direct resistance by the acquired value. The other 

six features are exponential moving averages.

Feature Description

Steady State Feature (DR) Maximal change in resistance with respect to baseline

Normalized DR DR divided by the acquired value

EMA Increasing (α = 0.1) Exponential moving average for rising portion of the 
sensor response with smoothing parameter of  α = 0.1

EMA Increasing (α = 0.01) Exponential moving average for rising portion of the 
sensor response with smoothing parameter α = 0.01

EMA Increasing (α = 0.001) Exponential moving average for rising portion of the 
sensor response with smoothing parameter α = 0.001

EMA Decreasing (α = 0.1) Exponential moving average for decaying portion of 
the sensor response with smoothing parameter α = 0.1

EMA Decreasing (α = 0.01) Exponential moving average for decaying portion of 
the sensor response with smoothing parameter α = 
0.01

EMA Decreasing (α = 0.001) Exponential moving average for decaying portion of 
the sensor response with smoothing parameter α = 
0.001

Table 1.1  Data Features

Exponential Moving Average (EMA) is a transform that converts increasing / 

decaying and saturating time series r[.] collected from the sensor into a real scalar 

fα{r[.]} by estimating the maximum (or minimum for decaying portion of sensor 

response) of its exponential moving average transform calculated by the following 

3



formula

y[k] = (1-α)y[k - 1] + α(r[k] - r[k - 1])

where k=1,2,....T; y[0]=0 (the initial condition set to 0) and the scalar α being a 

smoothing parameter of the operator that defines both the quality of the feature 

fα{r[.]} and the time of its occurrence along the time series.

For each sensor measurement, the data set contains three EMAs with α=0.1, 

α=0.01, α=0.001 corresponding to the rising portion of the sensor response and 

three EMAs with α=0.1, α=0.01, α=0.001 corresponding to the decaying portion 

of the sensor response giving a total of six EMAs. This results in a 128 

dimensional feature vector - (DR, Normalized DR, 6 EMAs) times 16 sensors.

The data is divided into ten batches with some batches containing data for one 

month while some contain data for more than one month.

The cited approaches described in Literature Survey (section 1.3)  use this 

data set to train different types of classifiers. This is done by dividing the data 

into two parts – training data set and test data set. The purpose of training data set

is to learn how gas class is dependent on the sensor response and gas 

concentration. A model is built using the training data set. The model is then used

to predict the gas class on the test data set. Since the actual gas class is already 

4



known for the test data set, the model accuracy can be computed by comparing 

the predicted class and the actual class. Typically the training data set is larger 

than the test data set. This is primarily because more data generally results in 

better models with high prediction accuracy. If the model performs well on the 

test data, it is a good indicator that model will perform well on new data that 

model has not seen before.

1.3 Literature Survey

Since the gas sensor array data set was published in 2013, there has been 

interest from the machine learning community to accurately classify the gases in 

presence of sensor drift. Support Vector Machine (SVM) classifier has been the 

choice of most researchers since it is an effective classifier. Many researchers 

have chosen to employ an ensemble of classifiers to the sensor array dataset. 

What varies is the methodology used for ensemble construction. We now discuss 

the techniques employed and results obtained giving an overview of the existing 

state of research on gas sensor array drift dataset.

The earliest attempts to predict sensor drift were primarily limited to 

univariate and multivariate analyses where drift compensation is performed 

either on each sensor individually or on the entire sensor array [2], [3]. The most 

5



popular approach for multivariate analysis was based on unsupervised 

component correction techniques [4], [5], [6]. These techniques employ a linear 

transform that normalizes the sensor response across time so that the classifier 

can be directly applied to the resulting stationary data. These techniques found 

limited success because they assumed the drift direction to be linear in feature 

space and hence tried to apply only linear techniques (such as PCA).

Vergara et al. [7] took a novel approach (at the time) and applied 

supervised learning, more specifically, an ensemble of classifiers to cope with the

sensor drift. Their technique complemented prior attempts using component 

correction techniques since the latter are primarily data preprocessing steps and 

the ensemble developed in [7] could easily be applied after component correction

has been applied. The authors trained a new SVM classifier f(ti) on the batch of 

sensor data obtained at time ti (i=0,1,2,...). The final classifier for f(t+1) for time 

t+1 was the weighted combination of the classifiers f(t0) through f(t). The 

weights were estimated using majority voting scheme. The results showed that 

this ensemble of SVMs performed significantly better than unsupervised 

component correction techniques. The drift compensation proposed by this 

ensemble of SVMs remains valid for long periods of time. Also, this technique 

did not make any assumptions about the nature of drift.

6



One disadvantage of the approach employed in [7] is that it is a supervised

approach. This approach requires the classifier weights in the ensemble to be 

constantly updated if the ensemble is to be used to make accurate predictions in 

the future. This assumes that labels (gas classification) is available for the 

training data. In other words, in a purely supervised approach the labels have to 

be available on an ongoing basis to keep the weights accurate. A semi-supervised

approach was adopted by Liu et al. in [8]. In [8], domain adaption was applied to 

tackle the sensor drift problem. Domain adaption establishes a feature space 

between the source and the target domains [9]. The classifier is then trained on 

this feature space. This technique gets around the issue of assuming the target 

domain has the same distribution as the source domain which is not true for 

sensor drift. A weighted geodesic kernel flow was constructed [10]. Since the gas

sensor data is time series a combination weighted geodesic kernel flow was 

employed. A technique for selecting unlabeled data from the target domain is also

discussed [11]. Based on the combination kernel and selected unlabeled data, a 

semi supervised method called manifold regularization was presented and used to

train the classifier. Multi class SVM was trained using RBF kernel (rbf-svm), 

geodesic flow kernel (gfk-svm) and combination kernel (comgfk-svm). Manifold

regularization for RBF kernel (rbf-ml) and combination kernel (comgfk-ml) was 

7



used for semi-supervised methods. rbf-svm and rbf-ml were used as baselines for

evaluation. Results showed that geodesic kernel and combination kernel can 

effectively deal with sensor drift. Accuracy of comgfk-svm was generally higher 

than that of gfk-svm indicating that combination kernel was efficient. It was 

shown that domain adaption and semi-supervised methods can efficiently solve 

sensor drift problem. However, either technique alone cannot solve the problem. 

The performance of comgfk-ml and ensemble are comparable but the former has 

the advantage that it requires labeled data only in the source domain and not the 

target domain whereas the latter requires labeled data in the target domain as 

well.

One advantage of semi-supervised approach is that it reduces the cost of 

re-calibrating the sensors periodically by requiring less labeled data. Lujan et al. 

[12] have tried to reduce the cost of sensor calibration using a different approach.

Lujan et al. [12] attempted to answer the question - “When selecting a new 

training sample, what gas class and concentration must be selected that 

maximizes learning?”. To answer this question, an Inhibitory Support Vector 

Machine (ISVM) with RBF kernel was employed. This ISVM was used to 

classify ethanol, ethylene and acetaldehyde as a function of the multivariate 

response of the sensor array. The choice of ISVM was motivated by its 

8



consistency for three class classification problems and its robustness on small 

datasets. The algorithm presented takes the entire data set, rate of sampling 

distribution at current stage, the sequence of optimal values for the previous 

stages and the batch size as the input. The algorithm then uses ISVM to output 

100 sampling draws for the next stage though other classifiers can be used as 

well. The authors showed that the overall performance of the model significantly 

improved when more samples were made available. It was also shown that the 

sampling strategy greatly influences the performance of the classifier in the first 

stages but not much when enough samples have already been presented to the 

sensor array. Results showed that in this active sampling methodology it is 

especially important to include low concentrations of gases in the calibration 

process and that the calibration must be done over the entire range of 

concentrations that the sensor may be exposed to. Ignoring either of these results 

in more frequent calibration and hence higher cost. 

Liu and Tang [13] proposed yet another ensemble called Dynamic Weights

based on Fitting (DWF). Their goal was to solve the gas discrimination problem 

regardless of the gas concentration with high accuracy over extended periods of 

time. The DWF method uses a dynamic weighted combination of SVMs trained 

by datasets that are collected at different time periods. An attempt was made to 

9



find optimal weights using traversal search for each of the training batches. The 

row vectors in the resulting optimal weight matrix was the subset of the weight 

of the classifier at different time steps and the column vector represented the 

optimal weights assigned to all the classifiers at the corresponding time step. The

weight for a training batch and the corresponding mean measurement time of the 

batch form a two dimensional array. These arrays were used to fit a weight curve 

that is a function of time. This curve was then used to predict the weight of a 

classifier at a future time. The performance of DWF was compared with 

ensembles based on MLP, ANN and theoretical optimal weights of SVMs. It was 

shown that while all the ensembles degraded in performance over time, DWF 

degraded more slowly as compared to others. In DWF, the weights were 

predicted by fitting functions and the time span of the training dataset affected 

the fitting result. In general, it was found that performance of DWF method can 

be improved by increasing the time span of the training dataset. In other words, 

DWF can mitigate the effect of sensor drift for longer periods of time when the 

the time span of training data is increased.

Extreme learning machine (ELM) approach was applied by Daniel et al. in

[15]. The problem of data correction in the presence of simultaneous sources of 

drift, other than sensor drift, was investigated, since it is often the case in 

10



practical situations. ELM with different activation functions was implemented 

for gas sensor array drift dataset. Results showed that ELM with bipolar function 

classifies the drift dataset with 96% accuracy. Since this paper is not freely 

available, further details could not be gathered.

 So far our discussion has been restricted to the analyses done on data set 

in [1]. We now discuss approaches employed by researchers on other gas 

classification data. While discussing supervised approach in [7], we discussed the

shortcomings of assuming the linearity of sensor drift and why techniques such 

as PCA and ICA (independent component analysis)  have limited effectiveness in

capturing sensor drift behavior. Dang et al. proposed a novel classifier ensemble 

in [12]. The dataset used was e-nose data comprising of 260, 164, 66, 58, 48 and 

30 samples of  formaldehyde, benzene, toluene, carbon monoxide, ammonia and 

nitrogen dioxide respectively. They used a kernelized version of PCA (KPCA) by

integrating the kernel trick into PCA. KPCA was used for feature extraction. The 

key idea involved mapping the input feature space to higher dimensional feature 

space and then performing PCA on it.  SVM was used to train classifiers for 

classification of the gases. An improved support vector machine ensemble 

(ISVMEN) was proposed. ISVMEN used weighted voted fusion method to 

combine the base classifiers. Results showed that using ISVMEN improved 

11



average classification accuracy from 86% to 93%. As compared to majority 

voting scheme, ISVMEN gained a 2% increase in classification accuracy.

Kim et al. adopted a different approach in [14] that was not based on 

SVMs. They applied a neuro-genetic classification algorithm (NGCA) to classify

the following gases - ozone, LPG, NOx, alcohol, smoke, VOC, CO and 

ammonia. The pattern recognition approach proposed involved data signal 

acquisition from the sensor array and signal preprocessing with smoothed 

moving average (SMMA). SMMA was used to identify noise and obtain the 

mean value while eliminating the oldest data and adding new data over time. The

NGCA algorithm was then applied. NGCA applied was a combination of 

artificial neural network (ANN) and genetic algorithm (GA). First the GA 

function was applied to extract data with high fitness after noise filtering. Then 

the ANN function was implemented using the back propagation algorithm. It was

found that NGCA classification accuracy was 95% as compared to 82% with 

ANN alone and 91% with GA alone.

Most approaches discussed in this section have employed some variation 

of SVM. This is because SVMs are known to be effective classifiers. However, 

SVMs have their limitations. They tend to perform somewhat poorly on multi-

class classification problems where there are more than two classes to predict. 

12



SVMs also tend to be sensitive to noise in the data. The predictions made by 

SVMs can change dramatically by the introduction of just a few noisy 

observations. On the other hand, tree based models are known to be robust to 

noise in the data. They are also known to perform well in multi-class scenarios. 

In the remainder of the report, we tackle the gas classification problem using 

decision tree approach.

13



Chapter 2: Data Preprocessing and Exploration

2.1 Data Format

The data is made available as text files separated into ten batches with 

each batch representing one or more months. The ten batches span a 36 month 

period. The first feature comprises of gas identity and concentration separated by 

a semi-colon. The other 128 features are prefixed with the feature number 

separated by the data using a colon. The gas identity is designated using a class 

label instead of the name of the gas. There are six gases in the data set with the  

labels and concentration ranges as shown in Table 2.1.

Gas Label Concentration Range (ppmv)

Ethanol 1 10-600

Ethylene 2 10-300

Ammonia 3 50-1000

Acetaldehyde 4 5-500

Acetone 5 12-1000

Toluene 6 10-100

Table 2.1 – Gases and Concentration

14



Figure 2.1 shows a single record from the dataset.

1;10.000000 1:15596.162100 2:1.868245 3:2.371604 4:2.803678 5:7.512213 6:-2.739388 7:-
3.344671 8:-4.847512 9:15326.691400 10:1.768526 11:2.269085 12:2.713374 13:6.915721 
14:-2.488324 15:-3.082212 16:-5.056975 17:2789.383100 18:2.754759 19:0.430440 
20:0.649457 21:1.795029 22:-0.426662 23:-0.584313 24:-1.438976 25:2581.568600 
26:2.680623 27:0.399746 28:0.605065 29:1.786704 30:-0.400115 31:-0.550743 32:-1.728611 
33:685.399400 34:1.682904 35:0.122736 36:0.223703 37:0.584691 38:-0.138196 39:-
0.236907 40:-0.781959 41:797.773800 42:1.742488 43:0.152483 44:0.218904 45:0.841862 
46:-0.164646 47:-0.315720 48:-0.791447 49:3128.848900 50:3.605537 51:0.532422 
52:0.763062 53:2.118983 54:-0.557197 55:-0.809953 56:-2.344130 57:3136.877800 
58:3.555169 59:0.535883 60:0.761388 61:1.499244 62:-0.571480 63:-0.944425 64:-2.658358 
65:13540.673800 66:1.765738 67:2.006883 68:2.519022 69:6.261430 70:-2.172101 71:-
2.694967 72:-3.791499 73:13831.753900 74:1.746493 75:2.057165 76:2.391239 77:5.695234 
78:-2.350776 79:-2.888766 80:-8.129869 81:3020.919100 82:2.819354 83:0.474520 
84:0.723993 85:2.160130 86:-0.467900 87:-0.638167 88:-1.643650 89:2185.974100 
90:2.949381 91:0.342575 92:0.515090 93:1.340477 94:-0.361030 95:-0.493482 96:-1.200617 
97:862.747900 98:1.779291 99:0.165138 100:0.246473 101:1.358106 102:-0.187465 103:-
0.416382 104:-1.058061 105:1059.756200 106:1.896047 107:0.198946 108:0.334017 
109:0.815048 110:-0.204467 111:-0.345119 112:-0.969336 113:3357.112400 114:3.860647 
115:0.580818 116:0.806830 117:1.729739 118:-0.619214 119:-1.071137 120:-3.037772 
121:3037.039000 122:3.972203 123:0.527291 124:0.728443 125:1.445783 126:-0.545079 
127:-0.902241 128:-2.654529 

Figure 2.1 – Raw Data Sample

2.2 Data Preprocessing

The data, in its given format, has the first feature as a combination of two 

features - gas class and concentration. The other 128 features have the feature 

number prefixed to the the actual data. Data preprocessing is required to convert 

the data into a format on which analysis can be done. A Java program was written

to iterate through all the ten batches and split the first feature into two - GAS 

15



(class label) and CONC (concentration). For the other 128 features, the prefix 

was discarded. A new feature BATCH was created to allow combining all the ten 

batches into a single data set without losing the identity of batches. Though GAS 

and BATCH have numeric values (1-6 and 1-10) respectively, they are actually 

categorical variables. These features were therefore converted to 'factors' in R 

before doing any analysis. The other features were left as numeric. Features are 

separated by a single space. Figure 2.2 shows an example of the data after 

processing.

1 10.000000 15596.162100 1.868245 2.371604 2.803678 7.512213 -2.739388 -3.344671 

-4.847512 15326.691400 1.768526 2.269085 2.713374 6.915721 -2.488324 -3.082212 

-5.056975 2789.383100 2.754759 0.430440 0.649457 1.795029 -0.426662 -0.584313 

-1.438976 2581.568600 2.680623 0.399746 0.605065 1.786704 -0.400115 -0.550743 

-1.728611 685.399400 1.682904 0.122736 0.223703 0.584691 -0.138196 -0.236907 -0.781959 

797.773800 1.742488 0.152483 0.218904 0.841862 -0.164646 -0.315720 -0.791447 

3128.848900 3.605537 0.532422 0.763062 2.118983 -0.557197 -0.809953 -2.344130 

3136.877800 3.555169 0.535883 0.761388 1.499244 -0.571480 -0.944425 -2.658358 

13540.673800 1.765738 2.006883 2.519022 6.261430 -2.172101 -2.694967 -3.791499 

13831.753900 1.746493 2.057165 2.391239 5.695234 -2.350776 -2.888766 -8.129869 

3020.919100 2.819354 0.474520 0.723993 2.160130 -0.467900 -0.638167 -1.643650 

2185.974100 2.949381 0.342575 0.515090 1.340477 -0.361030 -0.493482 -1.200617 

862.747900 1.779291 0.165138 0.246473 1.358106 -0.187465 -0.416382 -1.058061 

1059.756200 1.896047 0.198946 0.334017 0.815048 -0.204467 -0.345119 -0.969336 

3357.112400 3.860647 0.580818 0.806830 1.729739 -0.619214 -1.071137 -3.037772 

3037.039000 3.972203 0.527291 0.728443 1.445783 -0.545079 -0.902241 -2.654529 1

Figure 2.2 – Preprocessed Data Sample

16



2.3 Data Exploration

Sensor response is likely to depend on the identity of the gas and its 

concentration. It is natural to explore the relation between sensor readings and 

these two features. There are 16 sensors in the array. Figures 2.3, 2.4 and 2.5 

show the plots for response from sensor 1 (its direct resistance) and concentration

for ethanol, acetone and toluene respectively.

Figure 2.3 – Relation of Sensor 1 reading and Ethanol Concentration

17



Figure 2.4 – Relation of Sensor 1 reading and Acetone Concentration

Figure 2.5 – Relation of Sensor 1 reading and Toluene Concentration

18



The plots show there is some relation between concentration and sensor 

response, but the relation is not linear. It can also be seen that the direct 

resistance of sensor 1 varies dramatically for the same gas concentration. This 

gives us a hint that there are factors other than sensor 1 and gas concentration 

influencing these plots. We know that sensor 1 does not operate in isolation – it is

part of an array of 16 sensors. Therefore, we must take into account the effect of 

other sensors as well. Trying to determine a relationship between sensor response

and gas and its concentration is futile without taking into consideration the entire 

sensor array.

A principal component analysis was performed as part of data exploration. Its 

results, however, were not interesting and therefore will not be discussed here 

further.

19



Chapter 3: Analysis and Classification of Sensor Response

3.1 Decision Trees

Given that the response variable (GAS) is qualitative and there is a non-

linear relationship between the response and features, it is worthwhile to explore 

decision tree modeling to classify the gases. Decision trees have been known to 

be effective in such scenarios. Moreover, the current research has been mostly 

based on classification techniques such as Support Vector Machines and variants 

and decision trees seem to have been largely ignored. We therefore analyze this 

data using decision tree modeling. Two types of basic decision trees are 

presented below based on the splitting strategy. First tree has been grown using 

entropy index. The second tree has been grown using Gini index. The basic 

strategy adopted to get to the final tree is same for both the cases but the splitting

criterion is different. The basic algorithm to build decision trees is presented 

below.

1. Use sampling to split data into test (20%) and training (80%) sets.

2. Use each feature to split the data into the response classes. 

3. Select the feature that best splits the training data based on the chosen 
splitting criterion (Gini or entropy) and discard other splits from Step 2.

4. Repeat steps 2 and 3 recursively until all nodes have fewer than a 
threshold number of observations.

20



5. Use cross-validation and cost complexity pruning to select the optimal 
tree  size.

Gini split criterion is given by

Gini(t )=1−∑
k=1

c−1

(p (it))
2

Entropy split criterion is given by

Entropy (t)=−∑
i=0

c−1

p(it ) log2 p (it)

where 

p(it) = the fraction of records belonging to class i at node t

c = number of classes

Figure  3.1 shows the  optimal tree built based on the entropy split 

criterion using 'rpart' package in R. The tree shows the splits used to classify the 

gases. The feature names on the tree have been abbreviated. For example -

S2DR - Direct Resistance of sensor 2.

S11NDR - Normalized Direct Resistance of sensor 11.

S9I_1 - Exponential Moving Average with a smoothing parameter of 0.1 when 

current is increasing for Sensor 9.

S9D_01 - Exponential Moving Average with a smoothing parameter of 0.01 

21



when current is decreasing for Sensor 9.

CONC - Concentration (ppmv).

The first split is based on the value of the increasing component of the current in 

sensor 9 when the smoothing parameter is 0.1. Other splits can be read from the 

tree in a similar manner. The cost complexity parameter and its relation to 

number of splits and error are shown in Figure 3.2. Also Figure 3.3 shows the 

relation between the cost complexity parameter, cross-validation error and the 

number of splits.

22



Figure 3.1 – The classification tree using entropy split

23



        

Figure 3.2 – Complexity parameter for entropy split

Figure 3.3 – Complexity parameter vs relative error for entropy split

24



It is seen that as the cost complexity parameter decreases, so does the cross-

validation error. Each value of cost complexity parameter corresponds to certain number

of splits in the tree. To pick the tree with optimal number of splits, we use 1-Standard 

Error rule. We pick the tree with lowest cross-validation error and add standard error to 

it. These are 'xerror' and 'xstd' values on line 13 in Figure 3.2. Then we pick the tree 

with least number of splits whose cross-validation is less than this value. 

0.22116 + 0.0045653 = 0.2257253

The tree which has the least number of splits and cross-validation error ('xerror') less 

than 0.2257253 is the tree with 14 splits on line 13. This is the optimal tree and is 

shown in Figure 3.1.

It is natural to wonder – of all the 130 features, which features influence the gas 

class the most? To find this out we enumerate the importance of the features used in 

building the tree. Figure 3.4 shows the variable importance for this tree in decreasing 

order of importance. Below each feature is its importance weight. It can be seen that the

six most important variables have 'I' in the feature name. As per our abbreviation 

convention, these features correspond to the increasing portion of the current in the 

sensor. Thus, increasing portion of the current seems to have higher importance as also 

the concentration of the gas (the seventh most important variable). The decreasing 

portion of the current appears to be less important as these features seem to carry lower 

weights.

25



Variable Importance

Figure 3.4 – Entropy Tree Variable Importance

Test Error

This entropy tree model is used to predict the gas class on the test data. The 

confusion matrix for this model is shown in Figure 3.5.

Figure 3.5 – Entropy Tree Confusion Matrix

26



Based on this confusion matrix, it is found that this model misclassifies 16.28% of the 

test records. The test error for this model is therefore 0.1628.

We now build a similar model but this time we use the Gini index. Again we use 

'rpart' package in R to build this model. The optimal tree obtained is shown in Figure 

3.6. The features on the tree have been abbreviated as explained earlier. Again, we find 

that the first split is based on the value of the increasing component of the current in 

sensor 9 when the smoothing parameter is 0.01. Subsequent splits can be read in a 

similar manner.

27



Figure 3.6 – The classification tree using Gini split

28



Figure 3.7 – Complexity Parameter for Gini split

29



Figure 3.8 – Cost Complexity Parameter vs Relative Error for Gini split

Figure 3.7 shows the relation between cost complexity parameter and the 

number of splits along with the respective errors. The graph in Figure 3.8 also shows the

relation between cross-validation error, cost complexity parameter and the number of 

splits. We find that the relation between cost complexity parameter, number of splits and

cross-validation error is similar to the one in previous model (entropy tree).

As before, to select the optimal tree we use 1-Standard Error rule. We pick the 

tree with lowest cross-validation error and add standard error to it. Then we pick the 

tree with least number of splits whose cross-validation is less than this value.  Put 

simply, we pick the simplest model whose error is within one standard error of the 

30



minimal error.

0.22240 + 0.0045910 = 0.226991

Thus the tree with 15 splits is the most stable tree. This tree is shown in Figure 3.6. It is 

worth observing that Gini tree has one more split than the entropy tree.

Variable Importance

Figure 3.9 shows the importance of various features in decreasing order of 

importance. Below each variable is its weight. Again we find that increasing portion of 

the current seems to be important as also the concentration.

Figure 3.9 – Variable importance for Gini Split

Test Error

The model built using Gini split decision is used to predict gas class on the test 

data. The confusion matrix is shown in Figure 3.10. 

31



Figure 3.10 – Gini Tree Confusion Matrix

This model misclassifies the training data 15.49% of the time. The test error is therefore

0.1549. Thus it performs slightly better than the entropy tree.

Both Gini and entropy split seem to perform reasonably well with their test 

errors being very close to each other. The trees constructed so far suffer from high 

variance. This means that we cannot rely on this model to accurately predict new 

observations. In order to reduce the variance, we need to employ a technique that will 

average out the variance of several trees and hence reduce it. Bootstrap aggregating or 

bagging is one such technique. We now build a 'bagged' tree and see if we can reduce 

the test error of our model. In bagging, we develop multiple tree models and make 

predictions using all the models and then average out the prediction. Since this is a 

classification case, the final prediction is made by taking a majority voting of all the 

models.

32



3.2 Bagging

The decision trees developed so far suffer from the disadvantage of a high 

variance model. In other words, if decision trees were built on a different data set from 

the same sensors, the results could be significantly different. It is known that averaging 

a set of observations reduces variance. Bootstrap aggregation or bagging  attempts to do

just that. Bagging involves repeatedly sampling the data and building different models 

on the data. The final prediction is made by averaging the prediction of all the models. 

The final predicted class for an observation is the one predicted by majority of the 

individual models. 

As before, the data was split into 80% training and 20% test data sets. 500 trees 

were built using the bagging technique and the final prediction was made by taking the 

majority vote. Figure 3.11 shows the confusion matrix of this model on the test data.

Figure 3.11 – Confusion matrix for bagged tree

Misclassification rate of this model is found to be only 1.1%. It is obvious that 

bagging has reduced the error drastically from 15-16% for the entropy and Gini trees.

33



Since averaging tends to reduce the test error, it is clearly of interest to see how the test 

error depends on number of trees built. Figure 3.12 shows a plot of test error vs the 

number of trees. Note that the test error (y axis) uses the log scale. The graph clearly 

shows that for all classes there is a marked drop in test error for the first 100 trees. For 

more than hundred trees, the rate of error drop is significantly reduced and by 500 trees,

the test error has become mostly stable. In addition to the six classes, an additional error

OOB is shown on the plot. This error is 'Out of Bag' error which is an acceptable 

representation of test error considering that bagging uses only 66% of the observations 

in building the model. The OOB error is then the prediction error on the other 34% of 

the observations. The OOB error, 0.012, is found to be very close to the computed test 

error (0.011) as expected.

34



Figure 3.12 – Error as a function of number of trees. 

(OOB = out of bag error, others are classification errors)

Unlike entropy and Gini trees, it is not easy to visualize bagged tree because there is no 

single tree that can be plotted. Each of the 500 trees can be quite different from each 

other. In fact this is the point of bagging – to build models that can be quite different 

from each other so as to capture the variance. To visualize which are the important 

features, a variable importance plot is provided in Figure 3.13. The left plot shows the 

35



variables in order of decreasing importance based on the entropy split. The right plot 

shows the same based on Gini split. There are some differences between the two plots, 

however it is clear that S9I_1, S2D_1, S13I_1 and CONC are important features since 

they show up in the top five most important features in both the plots.

Variable Importance

Figure 3.13 – Variable importance for bagged tree

36



3.3 Boosting

Though a bagged tree seems to perform remarkably well, we would like to

investigate if the model can be improved further. A natural choice to consider is 

boosting. Unlike bagging in which individual independent decision trees are 

fitted to bootstrapped data, in boosting, the trees are built sequentially based on 

the test error of the last iteration. Boosting results in slow learning. In each 

iteration the tree is built using the same data set except that the misclassified 

observations from the last iteration are given higher weights, so that the model 

being built in the current iteration concentrates on learning about hard to classify 

observations. The boosted tree was built using 'adabag' R library. First Adaboost 

model is presented which uses the Breiman coefficient to update the weights. 

Breiman coefficient is given by

where єt = test error. Breiman coefficient is based on the observation that population 

minimizer of exponential loss is one half the log odds.

Figure 3.14 shows the confusion matrix of the boosted tree built using Breiman 

coefficient.

37



Figure 3.14 – Confusion matrix for Adaboost using Brieman coefficient

The confusion matrix clearly shows that model predicts all six gas classes 

with high degree of accuracy. Test error can be computed from this confusion 

matrix as it clearly shows how many observations are misclassified. Test error 

thus computed using Breiman coefficient is 0.0050 or 0.5%.

38



Figure 3.15 – Error evolution of Brieman coefficient based Adaboost

Figure 3.15 shows the evolution of error as a function of number of boosting 

iterations. Training error always stays less than the test error for the obvious reason that 

the model was built using training data. The interesting bit of the graph is that up to 40 

iterations the error drops off rapidly as the boosting algorithm works on hard to classify 

observations. After 40 iterations, the gain is minimal as most of the hard to classify 

observations have been classified to the best of algorithm's ability.

Zhu et. al showed [16] that there can be cases where Adaboost can fail to 

39



perform well especially in multi-class scenarios. They proposed another weight 

updating mechanism. This mechanism uses Zhu coefficient given by -

Zhu coefficient has the additional term ln (K – 1) where K is the number of classes. This

term captures the fact that in a multi-class scenario, a classifier can be considered to 

perform better than random guessing if it correctly classifies the observations with an 

error not one-half but 1 / (K – 1). We build the boosted model using Zhu coefficient. 

The confusion matrix obtained from this model is shown in Figure 3.16.

Figure 3.16 – Confusion matrix for Zhu coefficient boosted model

The above confusion matrix corresponds to a test error of 0.0050 or 0.5%. 

We observe that this error is same as boosted model with Breiman coefficient and

in the case of gas sensor array data, which coefficient is used does not seem to 

make a difference. This is primarily because the number of classes is small. 

Figure 3.17 shows test error as a function of number of iterations using Zhu 

40



coefficient. This plot looks similar to the one obtained by using Breiman 

coefficient except that the plot is a little wiggly in the 10-15 iteration interval. 

Figure 3.17 – Error evolution for boosted model using Zhu coefficient

3.4 Random Forest

Our bagged and boosted tree models have demonstrated the power of 

reducing variance by building several trees and then averaging the prediction. 

Bagging, though very effective, tends to build correlated trees. This is because 

41



bagging considers all predictors at every step in deciding the split. If there is one 

very strong predictor, then it is likely to be a top level split in all the trees built by

bagging. This results in trees that are correlated and the reduction in variance is 

not as high as we would like it to be. To overcome this limitation we now build a 

Random Forest model. The idea of Random Forest is to consider only a small 

random subset of predictors at each step. This results in exclusion of very strong 

predictors in several models and thus allows the model to take into consideration 

other predictors and possibly capture more variance. As is typical of a Random 

Forest model we consider √p predictors (where p is the total number of 

predictors). For gas sensor array data, this number would be √130 ≈ 12. 

'randomForest' R package was used to build this random forest model. The 

confusion matrix for the this model is shown in Figure 3.18.

Figure 3.18 – Random Forest confusion matrix

The above confusion matrix corresponds to a test error of 0.0064 or 0.64%. As observed

with other ensemble methods, random forest model performs remarkably well.

42



Figure 3.19 – Error vs Number of Trees for Random Forest

Figure 3.19 shows the test error as a function of number of trees 

considered in building the random forest. There is a marked reduction in test 

error up to 100 trees. Beyond that test error more or less stabilizes. It must be 

noted that the y- axis uses log scale.

43



Chapter 4: Results

This report has presented five different decision tree models - entropy 

based tree, Gini based tree, bagged tree, Adaboost tree and Random Forest. We 

now compare these models to get an estimate of how the models perform in 

comparison to each other.

4.1 Misclassification / Test Error Comparison

Table 4.1 shows the test error for each of these models.

Classifier Ensemble Misclassification Rate (%)

Entropy Tree No 16.28

Gini Tree No 15.49

Bagged Tree Yes 1.1

Adaboost Tree Yes 0.50

Random Forest Yes 0.64

Table 4.1 – Test Error for different classifiers

It is clear that ensemble classifiers perform dramatically better than single base 

classifiers like entropy and Gini trees.

4.2 Receiver Operator Characteristic (ROC) Curves

Receiver Operator Characteristic (ROC) curves are plotted for each model

in Figure 4.1. Table 4.2 shows the area under the corresponding curves. It is clear

44



that the models fall into two categories. All ensemble models achieve very high 

true positive rate and a very low false positive rate. In fact, ROC curves for all 

the ensemble classifiers are very close to ideal and they all overlap enough that it 

is hard to distinguish them in the plot even though they have been plotted using 

curves of different colors. Non ensemble methods too perform fairly but clearly 

their ROC curves are not ideal like those of ensemble classifiers.

Figure 4.1 – ROC Curves

Classifier Ensemble Area Under ROC Curve

Entropy Tree No 0.9548684

Gini Tree No 0.9592732

Bagged Tree Yes 0.9995542

Adaboost Tree Yes 0.9995898

Random Forest Yes 0.9999243

Table 4.2 – Area Under ROC Curves

45



Chapter 5: Conclusion

The work presented in this report has shown that it is possible to 

accurately classify gases even when the sensor data is drift prone.  Decision tree 

modeling makes very accurate predictions on gas sensor array data. This is a 

reminder that decision trees are a powerful modeling tool and they must be 

present in the arsenal of any machine learning researcher. Their simplicity does 

not necessarily mean that the models built using them are sub par. By 

constructing ensembles, it is possible to eliminate the disadvantages of decision 

trees especially their sensitivity to high variance data.

This scope of this work has been limited to just six gases and few discrete 

levels of concentration under tightly controlled conditions. Future work may 

extend these models to more gases and concentrations and under more realistic 

conditions.

46



References

[1] UCI Machine Learning Repository, 

https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+

Concentrations

[2] A. Hierlemann, R. Gutierrez-Osuna, Higher-order chemical sensing, ACS Chemical 

Reviews 108 (2008) 563–613.

[3] J.-E. Haugen, O. Tomic, K. Kvaal, A calibration method for handling the temporal 

drift of solid state gas-sensors, Analytica Chimica Acta 407 (1–2) (2000) 23–39.

[4 ] T. Artusson, T. Eklöv, I. Lundström, P. Mårtensson, M. Sjöström, M. Holmberg,

Drift correction for gas sensors using multivariate methods, Journal of Chemo-

metrics 14 (5–6) (2000) 711–723.

[5] R. Gutierrez-Osuna, Drift reduction for metal-oxide sensor arrays using canon-

ical correlation regression and partial least squares, Proceedings of the 7th

International Symposium On Olfaction & Electronic Nose, 2000.

[6] A. Ziyatdinov, S. Marco, A. Chaudry, K. Persaud, P. Caminal, A. Perera, Drift com-

pensation of gas sensor array data by common principal component analysis,

Sensors and Actuators B: Chemical 146 (2) (2010) 460–465.

[7] Alexander Vergara , Shankar Vembu, Tuba Ayhan, Margaret A. Ryan, Margie L. 

Homer, Ramon Huerta - Chemical gas sensor drift compensation using classifier 

ensembles, Sensors and Actuators B: Chemical 166 (2012): 320-329

47



[8] Qihe Liu, Xue Li, Member, IEEE, Mao Ye, Member, IEEE, Shuzhi Sam Ge, Fellow, 

IEEE, and Xiaosong Du - Drift Compensation for Electronic Nose by Semi-Supervised 

Domain Adaption, IEEE Sensors Journal Vol 14, No. 3, March 2014.

[9] R. Gopalan, R. Li, and R. Chellappa, Domain adaptation for object recognition: An 

unsupervised approach, Proc. ICCV, 2011, pp. 999–1006.

[10] B. Gong, Y. Shi, F. Sha, and K. Grauman, Geodesic flow kernel for unsupervised 

domain adaptation, Proc. CVPR, 2012, pp. 2066–2073.

[11] A. Margolis, A literature review of domain adaptation with unlabeled data, Dept. 

Electr. Eng., Univ. Washington, Seattle, WA, USA, Tech. Rep., Mar. 2011.

[12] Irene Rodriguez-Lujan, Jordi Fonollosa, Alexander Vergara, Margie Homer, 

Ramon Huerta, On the calibration of sensor arrays for pattern recognition using the

minimal number of experiments, Chemometrics and Intelligent Laboratory Systems 130

(2014) 123–134.

[13] Hang Liu and Zhenan Tang, Metal Oxide Gas Sensor Drift Compensation Using a 

Dynamic Classifier Ensemble Based on Fitting, Sensors 2013, 13, 9160-9173; 

doi:10.3390/s130709160.

[14] Eungyeong Kim, Seok Lee, Jae Hun Kim, Chulki Kim, Young Tae Byun, Hyung 

Seok Kim and Taikjin Lee, Pattern Recognition for Selective Odor Detection with Gas 

Sensor Arrays, Sensors 2012, 12, 16262-16273; doi:10.3390/s121216262.

[15] Daniel, D. Arul Pon, et al., ELM-Based Ensemble Classifier for Gas Sensor Array 

Drift Dataset, Computational Intelligence, Cyber Security and Computational Models. 

48



Springer India, 2014. 89-96.

[16] Ji Zhu, Hui Zou, Saharon Rosset and Trevor Hastie, Multi-class AdaBoost, 

Statistics and Its Interface Volume 2 (2009) 349–360.

49


	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Data Source and Collection
	1.2 Data Features
	1.3 Literature Survey

	Chapter 2: Data Preprocessing and Exploration
	2.1 Data Format
	2.2 Data Preprocessing
	2.3 Data Exploration

	Chapter 3: Analysis and Classification of Sensor Response
	3.1 Decision Trees
	3.2 Bagging
	3.3 Boosting
	3.4 Random Forest

	Chapter 4: Results
	4.1 Misclassification / Test Error Comparison
	4.2 Receiver Operator Characteristic (ROC) Curves

	Chapter 5: Conclusion
	References

