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Abstract 

 

Segmentation of Highway Networks for Maintenance Operations 

 

Moo Yeon Kim, M.S.Stat. 

The University of Texas at Austin, 2016 

 

Supervisor:  Sinead Williamson 

 

Pavement maintenance and rehabilitation (M&R) is important for transportation 

agencies to have a sustainable transportation infrastructure. In maintenance operations, 

obtaining limits of homogeneous sections is a key problem because appropriate 

segmentation can help yield a more cost effective M&R plan. The purpose of this study is 

to present the result of investigation on various research works and to suggest the 

direction of developing an enhanced methodological framework. Existing approaches for 

pavement segmentation was explored through a literature review and data analysis. 

Autocorrelation tests, change-point approaches, a Bayesian method, and a hidden Markov 

model were performed using pavement condition data. Future work directions were 

suggested to develop a segmentation method capable of handling the issues found in the 

study. 
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Chapter 1:  Introduction 

Pavement maintenance and rehabilitation (M&R) is important for transportation 

agencies to have a sustainable transportation infrastructure. Pavement maintenance 

consists of routine and preventive activities such as filling cracks, patching, chip seal, and 

so on. Pavement rehabilitation includes actions such as overlay and partial to complete 

reconstruction that increase the structural capacity of pavement. Due to the size of road 

networks, M&R is one of the major investments in a transportation system. Accordingly, 

planning M&R is a problem that challenges decision makers because they need to 

determine which pavement road section has to be treated, when and how that treatment 

should be conducted. In addition, the decision making process must take into account 

budget limitations, meet specific goals for maintaining pavement performance, and 

allocating budgets to maximize cost effectiveness (Hass et. al., 1994) 

In the Texas Department of Transportation (TxDOT), the Pavement Management 

Information System (PMIS) has been operated since the early 1990s to support pavement 

related decision making processes by storing, retrieving, analyzing and reporting 

information (TxDOT, 2003). Currently, the information managed in 0.5 mile data 

collection section, thus, it can be used in analysis such as condition estimation and 

maintenance needs estimation for administrative level. However, for district level project 

selection, the half mile section data are restrictive because typically projects are of any 

length that combines multiple half mile sections. Therefore, instead of using the half mile 

data collection section, using the management section consisting of homogeneous 

sections is necessary. For that reason, obtaining the limits of homogeneous sections 

becomes a key problem in pavement management.  
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Scullion and Smith (1997) presented three options for selecting the limits. Firstly, 

use the control sections which were designed and constructed under identical conditions. 

Second is to use the limits proposed by pavement engineers. Lastly, the cumulative 

difference approach (CDA) using pavement performance indices such as ride and 

condition scores could be used to delineate sections (Scullion and Smith, 1997). Each 

approach has its limitations. For example, the control sections are not guaranteed to be 

homogeneous after maintenance and rehabilitation works are done because typically 

M&R projects cover partial sections within the control sections. Also, defining limits 

using engineering judgement seems too demanding to cover large road networks in the 

case of the second option. Moreover, researchers have agreed that CDA has limitations 

which will be examined in later chapter in this report. On top of that, there has been no 

official method for obtaining a homogenous management section. Therefore, it would 

seem that further investigation is needed in the area of finding homogeneous sections, 

namely, segmentation. 

Segmentation methods can be split into three categories: fixed length 

segmentation, dynamic segmentation, and static segmentation. In case of the fixed length 

segmentation, the segment limits originate from fixed features and are kept constant over 

time. For instance, the aforementioned approach to determine the limits using control 

sections is an example of fixed length segmentation. In the case of dynamic 

segmentation, a decision for segment’s boundaries is based on the homogeneity of 

pavement sections’ attributes including ride quality and conditions. In this setting, the 

boundaries vary as the attributes changes over time. Static segmentation is similar to 

dynamic segmentation, except the limits of segments are kept for a certain time to make 

management easier (Bennett, 2004). 
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Appropriate segmentation can help yield a more cost effective M&R plan. Figure 

1 illustrates the advantage of having proper segmentation. If one defines a whole section 

as a single segment without taking account into a change in pavement attribute, treatment 

must be applied on pavement sections with good condition as shown in the middle of 

Figure 1. Conversely, if one properly identifies two segments as in the bottom of Figure 

1, the segment requiring maintenance will be treated, which leads to cost effective M&R 

plans (Cafiso and Graziano, 2012). 

 

Figure 1: Consequences of segmentation, adapted from Cafiso and Graziano, 2012 

(after Acurio, 2014) 

Another example is demonstrated in Figure 2. The historical project limits shown 

in (a) in the figure might not yield homogeneous pavement conditions because the 

pavement sections might experience different traffic and maintenance history. Thus, if 

one keeps the historical project limits as (b) in the figure, the resulting segmentation does 

not take into account the changes in pavement conditions. Under a better segmentation 
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scheme, two segments are able to become three segments whose conditions are more 

homogeneous within each segment as shown in (c). As a result, more cost effective M&R 

plan can be established (Yang et. al., 2009). 

 

Figure 2: Reasoning of segmentation (After Yang et. al., 2009). 

The purpose of this study is to present the result of investigation on various 

research works and to suggest the direction of developing an enhanced methodological 

framework. The remainder of this report is organized as follows. Chapter 2 presents the 
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result of literature review regarding research studies on the segmentation methods of 

pavement sections. In Chapter 3, tests of autocorrelation on pavement condition indices 

were conducted. In addition to that, I explored off-the-shelf tools available for detecting a 

change point in R and MATLAB, and also implemented a Bayesian approach. I conclude 

this report with suggesting future work direction in Chapter 4. 
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Chapter 2:  Literature Review: Existing Approaches for Pavement 

Segmentation 

Throughout the literature review on segmentation methods of highway 

application, it was found that there have been various research works to develop an 

approach to identify homogeneous segments. 

2.1 CUMULATIVE DIFFERENCE APPROACH 

The Cumulative Difference Approach (CDA) is by far the most popular method 

for segmentation in the pavement management sector. One of the reasons for the 

popularity is that the method is included in the AASHTO pavement design guide 

(AASHTO, 1993) used in worldwide as a pavement design guideline. Another reason is 

that the method is straightforward and powerful as stated in the AASHTO guide 

(AASHTO, 1993). 

Figure 3 shows the overall concept of CDA. As shown in Figure 3 (a), there are 

three unique constant values r1, r2 and r3 with three intervals 0 to x1, x1 to x2, and x2 to x3, 

respectively. The cumulative area at x can be calculated as the following integral: 

 

𝐴 = ∫ 𝑟1𝑑𝑥
𝑥1

0

+ ∫ 𝑟2𝑑𝑥
𝑥

𝑥1

 

The cumulative area of the average project response can be calculated by 

following equations: 

 

𝐴𝑥 = ∫ 𝑟𝑑𝑥
𝑥

0

 

with 

r̅ =
∫ 𝑟1𝑑𝑥

𝑥1

0
+ ∫ 𝑟2𝑑𝑥

𝑥2

𝑥1
+ ∫ 𝑟3𝑑𝑥

𝑥3

𝑥2

𝐿𝑃
=

𝐴𝑇

𝐿𝑃
 

and therefore 
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𝐴𝑥
̅̅̅̅ = 𝐿𝑃 × 𝐴𝑇 

 The cumulative difference variable 𝑍𝑥 is determined as the following 

relationship. In Figure 3 (b), 𝑍𝑥 is illustrated as the difference between cumulative areas 

at x. 

𝑍𝑥 = 𝐴𝑥 − 𝐴𝑥
̅̅̅̅  

When 𝑍𝑥 is plotted over the length of project as illustrated in Figure 3 (c), the 

boundary location can be determined by the location where the slope of 𝑍𝑥 function 

changes, for example from negative to positive or vice versa (AASHTO, 1993). 
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Figure 3:  Concept of cumulative difference approach to analysis unit delineation 

(after AASHTO, 1993) 

Various research works discussed limitations of the CDA and suggested modified 

procedures of CDA or new methods. Misra and Das (2003) discussed limitations of 

CDA. In the case of more than one homogeneous sections with different mean levels 

consecutively exist above or below the mean horizontal line, the CDA fails to delineate 



 9 

those section because the sign of 𝑍𝑥 does not change. Also, they mentioned CDA has no 

control over the number of homogenous section, and minimum section length is not 

chosen by user. They suggested a CART algorithm as an improved method. 

Divinsky et. al. (1997) recommended a modification of the CDA procedure by 

taking into account statistically homogeneous scatter characteristics such as standard 

deviation, range, etc. to overcome the limitation of significant sensitive to the existing 

change in the means of segments. 

Ping et. al. (1999) introduced a procedure for automated segmentation of 

pavement rut data using CDA. They developed a multipass SAS program that runs on the 

entire data set in the first set and then iterates process with resulting segments to obtain 

subsegments until the program produce the same segments as the previous pass. In the 

program, two user specified constraints such as a minimum segment length and a 

minimum difference in mean are incorporated. Those constraints were compared by the 

sum of squared errors (Ping et. al., 1999). Kennedy, Shalaby, and Cauwenberghe (2000) 

conducted the CDA on IRI data with a similar procedure as the study of Ping et. al. 

(1999). Cafiso, Di Graziano (2012) also used the same procedure to compare their 

method MINSSE and the CDA. 

Thomas (2005) argued that the CDA is mostly a graphical method to detect the 

homogeneous sections, and it is not suitable for narrowly spaced measurements. Also, the 

CDA always suggests at least two segments unless all measurements in a given series are 

identical. He introduced a Bayesian approach which will be discussed in the next section. 

2.2 BAYESIAN APPROACH 

Thomas (2003) presented a method to detect a change in the mean, in the variance 

and/or in the autocorrelation of a series using a Bayesian approach that allows 
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communicating the existence and possible location of a change point in terms of 

probabilities. The author emphasized that the method requires no prior knowledge and 

distributional assumption. Later, Thomas (2005) introduced Box-Cox transformations to 

meet the normality assumption of observations, and a heuristic algorithm to detect 

multiple change points to overcome the limitation of at most one change point algorithm. 

These two studies based on his dissertation thesis (Thomas, 2001). Detailed statistical 

proofs are presented in the thesis, so here I introduce the basic concept of a Bayesian 

approach. 

A general approach of a Bayesian change point is introduced in Thomas’ thesis as 

follows. A sequence of random variables,  𝑥1, … , 𝑥𝑛 , is divided into subsequences 

𝑥1, … , 𝑥𝑟;  𝑥𝑟+1, … , 𝑥𝑛 by a change point r, where 1 ≤ 𝑟 < 𝑛. 𝑀0 indicates the model 

with no change in underlying parameters and its joint density can be expressed as 

𝑝(𝑥1, … , 𝑥𝑛|𝑀0). Meanwhile, a model with change in one or more of the parameters at r 

is denoted as 𝑀𝑟 and its joint density is 𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟). Using Bayes theorem, the 

posterior probability of a model is, 

 

𝑝(𝑀𝑟|𝑥1, … , 𝑥𝑛) =
𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)𝑝( 𝑀𝑟)

∑ 𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟′)𝑝( 𝑀𝑟′)𝑎𝑙𝑙 𝑟′
 

                       ∝ 𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)𝑝( 𝑀𝑟) 

Then two model comparisons are interested. One is comparing the models 𝑀1, … , 𝑀𝑛−1 

to specify change in parameters occurs at r = 1, … , n − 1. Another is comparing some or 

all models have a change at r with 𝑀0 to test whether a change occurs at all. Comparing 

two models, where change point at r and s, respectively, can be conducted by following 

Bayes factor. In general, Bayes factors provide a way of quantifying the evidence based 

on data in favor of a null hypothesis. 
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𝑝(𝑀𝑟|𝑥1, … , 𝑥𝑛)
𝑝(𝑀𝑠|𝑥1, … , 𝑥𝑛)

𝑝( 𝑀𝑟)
𝑝( 𝑀𝑠)

=
𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)

𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑠)
= 𝐵𝑟𝑠 

Comparing the hypothesis of no change vs. a change in series can be done using, 

 

1 − 𝑝(𝑀0|𝑥1, … , 𝑥𝑛)

𝑝(𝑀0|𝑥1, … , 𝑥𝑛)
/

1 − 𝑝( 𝑀0)

𝑝( 𝑀0)
= ∑ 𝐵𝑟0

𝑝( 𝑀𝑟) 

1 − 𝑝( 𝑀0) 

𝑛−1

𝑟=1

 

A Bayes factor under the assumption that the numerator and the denominator are 

identical can be interpreted using the guideline given in Table 1. (Thomas, 2001) 

 

 

Table 1: Guidelines for interpreting Bayes factors (After Jeffreys, 1998) 

2.3 FUZZY C-MEAN CLUSTERING 

Yang, Tsai and Wang (2009) developed a spatial clustering algorithm using Fuzzy 

C-mean Clustering (FCM). The algorithm minimizes the pavement condition rating 

variation in each project while take into account minimum length, costs, barrier, and 

pavement surface type of a project. 

In order to accomplish the goal, the algorithm uses two objective functions. One 

is for minimizing rating variation, and another is for minimizing costs for projects. 

Together with constraints, the optimal result can be achieved. The optimization process is 
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repeated in the range of cluster numbers. Among the multiple results of optimal number 

of clusters, the best segmentation would be selected based on the cost objective function.  

 

 

Figure 4:  An example of optimal solutions for FCM algorithm (After Yang et. al., 

2009) 

The left hand side of Figure 4 shows partitions found when applying the FCM 

procedure to SR 10 in Georgia, with 5, 6, 7 and 8 clusters. The right hand side shows the 

associated cost for each segmentation; from this we see that the best segmentation case is 

when the number of cluster is equal to 6 based on the minimizing cost criteria with 

satisfying all constraints. 

This method offers a way to cluster sections with optimization scheme that 

includes costs. Thus, conceptually, it provides a better solution than a simple CDA; 

however, the method does not provide any statistical inference. 
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2.4 WAVELET TRANSFORM 

An algorithm based on wavelet transforms for automated segmentation was 

presented by Cuhadar et. al. (2002). The properties of wavelet transform such as de-

noising and singularity detection were used to delineate sections with respect to the 

pavement condition data. The original data is transformed to a smoother waveform by 

using de-noising, and then, singularity detection was applied on the smoothed data. The 

algorithm results in the pavement condition data into regions which have similar 

characteristics (Cuhadar et. al., 2002). 

Boroujerdian et. al. (2014) also used wavelet theorem for the dynamic 

segmentation. In the study, based on the wavelet theory, the length of high crash road 

segments is identified by converting accident data to the road response signal. 

Wavelet transformation seems outperform the CDA because this approach 

overcomes the sensitivity to small variability in data by de-noising. However, the method 

of singularity detection seems able to identify only sudden changes in level of data. 

2.5 CART 

Misra et. al. (2003) proposed a method using classification and regression trees 

(CART) (Breiman et. al., 1984). The algorithm produces a binary tree through the 

exhaustive search to find the point that minimizes the sum of squared error. By recursive 

binary splitting, the original tree will be produced as shown in Figure 5 (a). Once the 

original tree is produced, based on constraints such as a minimum section length and a 

number of sections, the tree is reduced by merging dividend sections in the original tree. 

In Figure 5 (b), the resulting sub-tree is illustrated which indicates 8 delineated sections. 
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Figure 5: Example of the CART result: (a) original tree; (b) sub-tree (After Misra et. 

al., 2003) 

The proposed algorithm provides a simple and fast solution for segmentation 

without any assumption of the distribution of data. The limitations of CDA are overcome 

by constraining the minimum length of section and choosing the number of segments. 

Nonetheless, this approach does not produce the optimal solution because it uses 

recursive binary trees as approximations. 

2.6 MINSSE 

Cafiso et. al. (2012) introduced the minimum sum of squared error (MINSSE) 

method. The method is to find the minimal sum of squared error (SSE) of partitions as 

following: 

 

SSE𝑘 = ∑ ∑(𝑥𝑖 − �̅�𝑆𝑗
)2

𝑖∈𝑆𝑗

𝑘+1

𝑗

 

where, k is the number of segments. 𝑆𝑗 a set of element in j
th

 segment.  
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Once change points minimizing the SSE determined under a given minimum 

length of segment, t-tests are conducted to check if adjacent segments meet the criteria of 

a minimum difference and those segments are combined if the test fails. The authors 

compared MINSSE with the CDA and the Bayesian approach, and concluded that their 

method resulted in similar segmentation to the Bayesian approach although their method 

is less complex to conduct. Figure 6 is the comparison graph of three approaches such as 

CDA, Bayesian, and MINSSE using rut data.  

 

 

Figure 6: Comparison of different segmentation method: CDA, Bayesian, and 

MINSSE (After Cafiso et. al. 2012) 

2.7 DISCUSSION 

The majority of existing studies segment road data based on pavement 

performance data such as IRI, skid, rut, etc. There have been several safety related 

research works; however, only one work based on wavelet theorem was introduced 

because an analysis on crash count data has different characteristics-a segment 

determined by criteria that a fixed length with a certain crash counts. 
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There seems to be general agreement on the limitations of the CDA. Therefore, 

some studies modified the CDA to improve it and the other studies suggested new 

methods that showed better performance. The developed methods commonly adopted 

constraints, such as a minimum section length, a minimum difference, a number of 

segments, etc. to overcome the limitations of the original CDA.  

 Most studies have focused on delineating segment based on different mean 

levels of segments. Few studies have attempted to develop a method which takes into 

account variance and autocorrelation. In addition, no studies have explored on 

multivariate data. For example, no method can conduct segmentation based on rut and 

skid data simultaneously. Thus, it would be of interest to develop a method that can 

implement aforementioned gaps. 

  



 17 

Chapter 3:  Methodology and Data Analysis 

In this chapter, tests of autocorrelation on pavement condition indices were 

conducted. And then, off-the-shelf tools for detecting a change point in R and MATLAB 

were explored. Lastly, a Bayesian approach implemented using R.  

3.1 TEST DATA FOR ANALYSIS 

In Texas, the road network is huge and variety. Thus, it is not reasonable at all to 

select one road section for representing whole network. However, for testing various 

methods of change point problem, I picked a road section whose length is relatively short, 

but not too short section. Also, the picked section should have not too simple but 

complex enough profile of a performance measure. 

 

 

Figure 7: SH0046 on TxDOT’s Statewide Planning Map (Blue Line) 

Candidate sections were screened within TxDOT’s San Antonio district. After 

inspecting map and data, State Highway 46 (SH0046K) was selected as the test data. 
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Figure 7 shows the map of SH0046 in San Antonio district, Texas. It is state highway 

links northern outskirt of San Antonio from west to east by 2-4 through lanes. Some 

details about the section are described in Table 2, and the histogram of condition scores 

for the test data is given on the right hand side of Figure 8. When it comes to the average 

condition score, it is well maintained road section. However, as shown in Figure 8 on the 

left, whole section cannot be treated as a homogenous section because some sections 

show relatively lower condition scores. There were zero values in condition scores which 

indicate 3 missing data points. I left these missing data on purpose to see how the testing 

methods work on circumstance of having missing data in series, and study further 

regarding missing data treatment. 

 

Year of Data 2013 

Location TRM 468 + 0 – TRM 542 + 0.7 

Length 67.4 miles 

Number of Sections 139 

Pavement Type Asphalt Concrete 

Condition Score Average 89.63 

Condition Score Max. 100.00 

Condition Score Min. 0.00 

Condition Score Standard Deviation 19.14 

Table 2: Descriptive Information of Test Data 
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Figure 8: Test Data Plot (Left) and Histogram of Condition Score (Right) 

3.2 AUTOCORRELATION TEST OF ROAD PERFORMANCE DATA 

The road performance data are likely to have autocorrelation in nature because 

adjacent sections experience similar traffic and environmental conditions. Therefore, the 

assumption of independence might not be reasonable even though it derives simpler 

model. The test data including condition score and ride score were examined to find 

whether or not autocorrelation needs to be considered. 

3.2.1 Methods for Testing Autocorrelation 

There are various methods for testing whether data exhibits autocorrelation. In 

this study, visual inspections of the Autocorrelation Function (ACF) plot and Partial 

Autocorrelation Function (PACF) plot to identify the existence of autocorrelation and the 

Durbin-Watson test for test AR(1) process were used. 

3.2.1.1 ACF and PACF 

The Autocorrelation Function (ACF) is to describe the properties of a stationary 

stochastic process, and the theoretical ACF is defined as follows: 
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ρ(k) = corr(𝑥𝑡, 𝑥𝑡−𝑘) =
𝑐𝑜𝑣(𝑥𝑡, 𝑥𝑡−𝑘)

√𝑣𝑎𝑟(𝑥𝑡)√𝑣𝑎𝑟(𝑥𝑡−𝑘)
 

 The sample autocorrelation, the estimator for the ACF, can be derived from the 

sample autocovariance: 

 

ρ̂(k) =
∑ (𝑥𝑡 − �̅�)𝑛−𝑘

𝑡=1 (𝑥𝑡−𝑘 − �̅�)

∑ (𝑥𝑡 − �̅�)2𝑛
𝑡=1

 

 A plot of the sample autocorrelation is called a correlogram that provides a way to 

judge which stochastic process would be a suitable model for data (Durbin and Watson, 

1951). 

The ACF incorporates the intermediate linear correlations between 𝑥𝑡 and 𝑥𝑡−𝑘, 

for example, corr(𝑥𝑡, 𝑥𝑡−2) takes into account for the correlations between 𝑥𝑡, 𝑥𝑡−1 

and 𝑥𝑡−1, 𝑥𝑡−2. The partial autocorrelation function (PACF) is another function that 

provides additional information about autocorrelation to represent the net correlation 

between 𝑥𝑡 and 𝑥𝑡−𝑘 by eliminating the intermediate linear relationship. The Durbin-

Levinson algorithm can be used to estimate PACF (Levinson, 1947; Durbin, 1960). In 

practice, by looking at the estimated PACF plot, it is possible to make a decision if an 

autoregression may be a suitable for data. For example, in case of the AR(p) model, 

estimated partial autocorrelation coefficients should be significant at the p-th lag. (Prado 

and West, 2010) 

3.2.1.2 Durbin-Watson Test 

The Durbin-Watson test (Durbin and Watson, 1951) is conducted to test whether 

the residuals from a linear regression are independent. A general assumption of a linear 

regression is the independence of each error term. If there is a relationship between 
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neighboring error terms, for example error at t-1 and error at t, it is called first order 

autocorrelation AR(1). The following relationship is the AR(1) process: 

𝜀𝑡 = ρ𝜀𝑡−1 + 𝜇𝑡 

where, ρ is autocorrelation parameter, −1 ≤ ρ ≤ 1. 

The hypotheses test is 

𝐻0: ρ = 0 

𝐻𝑎: 𝜌 > 0 

The test statistic is 

D =
∑(𝑒𝑡 − 𝑒𝑡−1)2

∑ 𝑒2
 

The test statistic D ranges from 0 to 4. When there is no first order 

autocorrelation, we expect D to be close to 2. When D is smaller than 2, positive 

autocorrelation is expected. D greater than 2 indicates negative autocorrelation. By using 

the provided table, one-sided test for positive autocorrelation can be decided as follows: 

𝐼𝑓 𝐷 < 𝐷𝐿 𝑡ℎ𝑒𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 

𝐼𝑓 𝐷 > 𝐷𝑈 𝑡ℎ𝑒𝑛 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 

𝐼𝑓 𝐷𝐿 < 𝐷 < 𝐷𝑈  𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑖𝑠 𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 

More detailed explanation and the table can be found in references (Kutner, 2005; 

Montgomery et. al., 2013) 

In this study, the Durbin-Watson test implemented in R package lmtest was used 

to analyze the road performance data. 

3.2.2 Data Analysis for testing autocorrelation 

3.2.2.1 Condition Score 

When full sections of sample data were used in analysis for testing 

autocorrelation, ACF showed exponential decay and PACF showed a significant lag at 1 
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(see Figure 9). Those are the evidences of AR(1) process. In addition, Durbin-Watson test 

result showed that the p-value is 1.678e-15, which means that the null hypothesis is 

rejected at 95% significant level. All in all, it can be concluded the full sections follows 

AR(1) process.  

 
(a)                                 (b) 

Figure 9: Plots of ACF (a) and PACF (b) with respect to condition score for whole 

segment 

However, it seems likely that the high autocorrelation is due to many sections of 

road having continuous stretches where the condition score takes the maximum value 100 

(see Figure 8). By using the segmentation result of R package ‘changepoint’ as can be 

seen Figure 10, two non-maximum parts X1 and X2 were taken out and tested separately 

to verify the effect of these continuous maximum values. 
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Figure 10: Segmentation result to subset X1 and X2 

I found that, both subset X1 and X2 did not show autocorrelation. As shown in 

Figure 11, the plots of ACF and PACF demonstrated no evidence of autocorrelation. 

They had rather properties of random walk. Also, the result of Durbin-Watson test 

verified this fact because the p-value for X1 and X2 were 0.4747 and 0.1971, 

respectively. That is, the null hypothesis cannot be rejected due to the large p-value, 

which means the autocorrelation parameter ρ is equal to zero. 

The resulting non-autocorrelation behavior of the subsets might be cause by the 

nature of the test data. As a different dataset may lead to a different result, I took another 

segment from Interstate Highway 35 (IH35) in San Antonio district, and then the same 

test procedure was conducted as previous. The results of test using IH35 data were 

similar to the previous test. In the case of test using full sections of data showed 

autocorrelation due to the continuous maximum values. Among three subsets tested for 

sections contain non-maximum values, 2 subsets gave no evidence of autocorrelation, but 

1 subset slightly showed evidence of autocorrelation. Figures and values for the results of 
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ACF, PACF, and Durbin-Watson test were omitted because they are very similar to the 

previous test results. 

 
(a)                                 (b) 

 
(c)                                 (d) 

Figure 11: Plots of ACF ((a), (c)) and PACF ((b), (d)) with respect to condition score 

for partial segments 

3.2.2.2 Ride Score 

Condition score data showed strong evidence of autocorrelation in the case of 

using whole segment of the sample data based on ACF, PACF and Durbin-Watson test. 
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However, the result might be caused by the fact that many sections in condition score 

data had the maximum value (100) in a row. When partial sections without the maximum 

condition score were used in the same analysis, the results indicated no autocorrelation. 

Therefore, it is not good idea to have condition score as a sample data to test 

autocorrelation. Ride score was considered as a substitute measure for the analysis. Ride 

score is another index in PMIS to indicate the roughness of pavement surface, ranged in 

values from 0 to 5. Figure 12 shows ride scores for the same segment of SH0046. As 

opposed to the condition score data, it does not show any consecutive trend of the 

maximum value. 

 

Figure 12: Ride score for the test sections of SH0046 

 The analysis was done by the same procedure. First, the whole segment was used 

for the test. As shown in Figure 13, ACF showed exponential decay and PACF showed a 

significant lag at 1. In addition, Durbin-Watson test result showed that the p-value is 

2.2e-16, which means that the null hypothesis is rejected at 95% significant level. All in 

all, it can be concluded the full sections follows AR(1) process. 
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                 (a)                                 (b) 

Figure 13: Plots of ACF (a) and PACF (b) with respect to ride score for whole segment 

 As a next step, by using the ‘changepoint’ results, two subsets of data X1 and X2 

were tested as previously. As for the subset X1, ACF showed no exponential decay, and 

PACF had no significant lag. In this end, while visually, the subset X1 seemed not to 

have significant autocorrelation as it is evident from Figure 14. The Durbin-Watson test 

result indicated that the series shows autocorrelation. The test statistic D was 1.1607 and 

the p-value was 0.00104. For the subset X2, ACF plot showed moderate exponential 

decay and PACF had significant lag at 1, which are the properties of AR(1). The Durbin-

Watson test also provided an evidence of AR(1) as the test statistic D was 1.2642 and the 

p-value was 0.01495. 
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                 (a)                                 (b) 

 
                 (c)                                 (d) 

Figure 14: Plots of ACF ((a), (c)) and PACF ((c), (d)) with respect to ride score for 

partial sections 

3.2.3 Discussion for Testing Autocorrelation 

 Condition score and ride score of the sample road segment were tested for 

autocorrelation. As for the condition score data, I found the evidence of autocorrelation 

existence only when the segment contains the consecutive maximum values. The results 

of another analysis on the subsets without those consecutive sections did not show 
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autocorrelation. A reason for not detecting autocorrelation might be the property of 

subset data. Therefore, another road segment was tested with the same procedure, and it 

resulted in a subset without the maximum condition scores can have autocorrelation. 

 Based on the fact that condition score data have autocorrelation however it is 

mainly because of data structure-the consecutive maximum values, ride score was 

determined to be used as a substitute. Ride score data evidently showed autocorrelation. 

Two subsets were tested to verify if the length of data affect the autocorrelation test. The 

results indicated shorter subsets also have autocorrelation but evidence was not as strong 

as the case of using whole segment data. 

Overall, it is not yet clear how prevalent autocorrelation is in pavement data. That 

is because of confounding results such as the effect of consecutive maximum in condition 

score data, and different results between ACF/PACF and Durbin-Watson test. However, 

intuitively, it is likely to have dependency in terms of pavement performance between 

neighboring sections. Also, the test using ride score data showed that the data definitely 

have AR(1) process.  

Therefore, for the future research, when developing dynamic segmentation 

models AR(1) should be taken into account. On top of that, when AR(1) is considered in 

a model, ride score or other performance measure that have no consecutive maximum or 

minimum values presented should be used. For example, models using a Bayesian 

approach without AR(1) and with AR(1) can be developed and compared to determine 

which model fits better in performance measure data. 

3.3 OFF-THE-SHELF CODES 

There are several existing off-the-shelve packages for implementing various 

change point detection methods in R. Also, Hidden Markov Model (HMM) toolkits exist 
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in MATLAB. I tested some of them to see how the different methods work on road 

performance data in PMIS. 

3.3.1 Change-point Detection Packages in R 

Various packages have been developed to implement the change-point detection 

methods in R. The packages such as changepoint, bcp, ecp, cpm, strucchange, etc. were 

found throughout the search in the study. In this report, only three packages, including 

changepoint, bcp, and ecp, were used in data analysis. 

3.3.1.1 R package: changepoint 

The changepoint package (Killick, Eckley, and Haynes, 2016) provides multiple 

change-point search methods such as binary segmentation, segment neighborhood, and 

PELT. These methods are available both for changes in mean and/or variance by using 

assumption of either independent normal distribution or nonparametric cumulative sum 

(Killick and Eckley, 2014). 

 

Figure 15: Resulting Plots of the changepoint Package in R. 
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In this package, multiple change points are able to be detected by minimizing sum 

of cost and penalty function. The penalty function prevents overfitting problem. For 

testing, function for detecting changes in mean was used with PELT algorithm. In Figure 

15, a blue line indicates the mean value of a segment so the length of the blue line means 

the length of a segment. A default penalty value log(n) was used for the right plot, and 

adjusted penalty value 50*log(n) was used for the left plot. On the right, almost all data 

points were detected as change points, which overfitting. By increasing the penalty, the 

number of change points decreased as shown on the left plot. However, the number of 

change points was sensitive to the penalty. Therefore, it seemed tricky to adjust the 

penalty value to obtain optimal number of change point by inspecting the plot. 

3.3.1.2 R package: bcp 

The bcp package is the implementation of Bayesian change point procedure by 

Barry and Hartigan (1993). A probability distribution is provided in the Bayesian 

procedure instead of specific locations of change points. This package provides both 

univariate and multivariate change point analysis by Markov chain Monte Carlo (C. 

Erdman and J. Emerson, 2007). 
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Figure 16: Resulting Plots of the bcp Package in R. 

Figure 16 is the resulting plots of the bcp package when applying the test section 

data. The result shows the posterior mean of each partition after identifying change 

points. Also, the posterior probability is calculated so that change points can be chosen. 

In the bcp package, user can input optional values p0 and w0. On the left, user input p0 

and w0 were adjusted as p0=0.01 and w0=0.01 to detect the changes in means. On the 

right, default user inputs, both p0 and w0 equal to 0.2, were used, as a result no change 

point was identified. It seemed critical to choose appropriate user inputs for the 

parameters to obtain better segmentation result; however, the way to determine p0 and 

w0 is somewhat arbitrary because the result should be inspected visually to verify how 

well the algorithm partitions the section after choosing the user inputs. 

3.3.1.3 R package: ecp 

The ecp is an R package for nonparametric multiple change point analysis of 

multivariate data. Energy statistic was used to detect distributional change in a time series 

(James and Matteson, 2014) 
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Figure 17: Resulting Plots of the ecp Package in R. 

I chose to try the divisive algorithm which is recommended by the developer of 

the package. The algorithm sequentially identifies change points via a bisection 

algorithm. User inputs such as alpha, number of minimum observation, and maximum 

number of permutation were needed to determine. I used alpha = 1, maximum number of 

permutation, R = 500, and varied number of minimum observation because other than 

this input are insensitive to the test data. Figure 17 shows the plots resulted from varying 

the number of minimum observation. The blue dashed line indicates the locations of 

change points for the sample data. On the left and right plots, the corresponding number 

of minimum observation was 20 and 30, respectively. According to a visual inspection, it 

seemed the ecp package reasonably detects the changes in distribution of each segment 

when user selects appropriate inputs (for instance min. observation = 20). 
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3.3.1.4 Discussion of Change-point Detection Packages in R 

Throughout the trials of three off-the-shelf packages in R, it is found that various 

methods for change point detection were already implemented and R platform provides 

convenient solution for the change point detection problem.  

However, each package has a few limitations. First, not all packages support 

multivariate data. That means segmentation is done by one variable if a univariate case. 

Ultimately, the goal of this study is developing a segmentation method to use multivariate 

data. For example, using both ride score and distress score simultaneously to detect 

change points. Therefore, these packages are not suitable to use as is. 

On top of that, pavement performance data might have autocorrelation in nature. 

That is, each observation is not independent but has correlation so that the performance 

measure of current section has something to do with that of the next section. All packages 

that I tested in this study cannot take into account autocorrelation. The study of existence 

of autocorrelation will be discussed later in this chapter. 

In addition to that, there was no feature for treating missing data. Because 

pavement management data usually have some portion of missing data due to undergoing 

construction or other reasons, it is important to take into account how to treat the missing 

data.  

Lastly, a lack of evaluating the outcome of segmentation is problematic. The only 

way to check whether or not the result is good is visual inspection. The results of all 

packages were significantly affected by user inputs such as penalty and parameters. 

Therefore, it is critical to evaluate the result by finding appropriating user inputs. A 

developing method would have a feature to select these user inputs automatically. I 

suggest a way to evaluate the segmentation result in general using cross-validation later 

in this chapter. 
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3.3.2 Hidden Markov Model in MATLAB 

3.3.2.1 Hidden Markov Model 

A Hidden Markov Model (HMM) is defined as a doubly stochastic process with 

an underlying stochastic process that is not observable, but can only be observed through 

another set of stochastic processes that produce the sequence of observed symbols 

(Rabiner and Juang, 1986). Figure 18 illustrates the structure of HMM, Ys are hidden 

states and Xs are observations. Two major assumptions are made by the model. First, the 

current state only depends on the previous state. Second, the observations are 

independent each other, it only depends on the current state. 

 

 

Figure 18: Graphical representation of HMM 

The HMM has three key problems such as classification, decoding and learning. 

The first problem is to compute the probability of the observed sequence produce by the 

model. The solution for this problem makes it possible to evaluate the model when there 

are several competing models. The forward and backward algorithm is the solution of the 

problem. The second problem is to find the most probable path given a set of 

observations. In other words, this solution attempts to reveal the hidden part of the model. 

One of the solutions for this problem is the Viterbi algorithm which results in the single 
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best state sequence based on an observation sequence. The third problem is how to 

optimize the model parameter for the given observed sequence. The expectation-

maximization (EM) for HMM application, Baum Welch algorithm is the one of 

approaches to solve this problem (Blunsom, 2004). For more details, see references 

(rabinar, 1989; rabinar and Juang, 1986) 

3.3.2.2 A toolkit for Hidden Markov Model in MATLAB 

A MATLAB toolbox written by Kevin Murphy under MIT license (Murphy, 

1998) was used to analyze the condition score data. Among provided features such as 

discrete HMM and mixed Gaussian, the mixed Gaussian HMM whose responses 

conditional on states are Gaussian was used because the condition score is not discrete 

but continuous. 

A procedure of the segmentation using HMM was conducted as follows. First, the 

number of states was defined. Then, parameters of HMM was estimated using the 

expectation-maximization (EM) algorithm-also known as Baum Welch algorithm (Baum 

et. al., 1970). The EM initialized parameters based on the number of states and Gaussian 

distribution and then computed the hidden state sequence based on the current 

parameters. Again, the parameters were re-estimated using the current hidden state 

sequence. This procedure iterated until convergence to a local maximum of the log-

likelihood. As a next step, the most probable sequence is calculated by Viterbi algorithm 

(Viterbi, 1967) which computes the globally optimal state sequence using the estimated 

parameters. 
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                (a)                                 (b) 

 

 

                (c)                                 (d) 

Figure 19: HMM results with varying the number of states equals to (a) 3; (b) 4; (c) 5; 

(d) 8 

Figure 19 shows the results of HMM algorithm using various number of states. 

The number of states varied from 3 to 10; however, here I presented results of the number 

of states equals to 3, 4, 5 and 8. The blue line depicts condition score and the red dots are 

the mean values of each state. As the number of states increases, the number of segments 

increases. Therefore, when the number of states was 8, there were too many segments 
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delineated. On the other hand, the number of states 3 was not adequate for representing 

each state due to its high variance. 

As this analysis was conducted to see the eligibility of HMM for segmentation, 

detailed adjustments, including a minimum section length, a minimum difference 

between states, etc., were not taken into account. Therefore, the results are not directly 

implemented to the segmentation application as is. 

3.3.2.3 Discussion of Hidden Markov Model in MATLAB 

As I mentioned previously, HMM was conducted to see if it can be used as a tool 

for the segmentation. The preliminary results showed that HMM is a promising mean for 

developing a sophisticating segmentation method due to its properties such as 

expandability and flexibility. 

In order to develop a segmentation method using HMM, a few things should be 

taken into account. Firstly, it is important to note that the initialization is critical because 

the EM algorithm only finds a local optimum. For this reason, it was observed that 

several runs of the EM procedures with the same input gave different results due to the 

randomized initial parameters. Thus, a more refined way to determining the initial values 

need to be implemented. As an alternative, a method using Markov chain Monte Carlo 

(MCMC) would be used instead of optimization-based methods. 

Also, some detailed adjustments, including a minimum section length, a minimum 

difference between states, etc., need to be set up. In the preliminary results, owing to the 

lack of those adjustments, the number of segments and the minimum section length were 

not able to be controlled. In addition, the number of states can be determined 

automatically using an optimization. 
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In this study, the most basic HMM with an assumption that observed variables are 

conditionally independent each other was used. For more realistic modeling to take into 

account spatial correlation of data, a HMM with the first order autoregressive, AR(1), 

whose observations are not independent anymore but have autocorrelations, would be a 

good alternative. Furthermore, not only univariate series data but also multivariate series 

can be analyzed using HMM so that multiple criteria simultaneously affect to the 

segmentation results. Additionally, a way to handle missing data is also a key issue to 

resolve. 

3.4 IMPLEMENT A BAYES APPROACH 

A Bayes approach (Thomas, 2001) was implemented to be used as a baseline 

method to compare the developing methods. Because there was no available off-the-shelf 

code for this approach, R was used to write a code. Among a series of methods suggested 

in Thomas’ thesis, the method introduced in Paper I was implemented in this study to 

understand the basic concept of how the Bayesian approach used in the change point 

detection and expanded further to incorporate problems of change in variance, 

autocorrelation and multivariate series.  

3.4.1 Data Used in Analysis 

Ride score data for the same test section SH0046 was used instead of condition 

score data of that as the previous off-the-shelf package trials. The use of ride score was 

decided after testing autocorrelations in data, which will be discussed in the next chapter. 

One of the reasons why the ride score was chosen was that it was more appropriate to 

conduct the Bayesian approach with taking into account autocorrelations. Missing data 

were eliminated from the original data because the algorithm has no feature to handle the 
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missing values. As a result, total 135 sections were used in the ride score data. Figure 20 

shows the plot of ride score and the histogram for the test section. 

 

                  (a)                                  (b) 

Figure 20: (a) Plot and (b) histogram of the ride score data 

3.4.2 Data Analysis 

3.4.2.1 Bayesian Approach with Unknown Common Variance 

The basic concept of a Bayesian approach to detect a change point is already 

introduced in Chapter 2. Steps for detecting multiple change points using the Bayes 

approach were as follows. First, Bayes factors 𝐵𝑟0 for r = 1, … ,134 were obtained by 

the equation for calculating the Bayes factor for  𝑀𝑟 against 𝑀0, 

 

𝐵𝑟0 = (
2

3
)

1
2

(
𝑛

𝑟(𝑛 − 𝑟)
)1/2[

𝑆<𝑛>

𝑆<𝑟> + 𝑆<𝑛−𝑟>
]𝑛/2 

where, 𝑆<𝑛> = ∑ (𝑥𝑖 − �̅�<𝑛>)2𝑛
𝑖=1 , 𝑆<𝑟> = ∑ (𝑥𝑖 − �̅�<𝑟>)2𝑛

𝑖=1 , and 𝑆<𝑛−𝑟> =

∑ (𝑥𝑖 − �̅�<𝑛−𝑟>)2𝑛
𝑖=1  

Then, calculate the Bayes factor for ‘change’ vs. ‘no change’ using, 

 



 40 

𝐵𝑐ℎ𝑎𝑛𝑔𝑒 = ∑ 𝐵𝑟0

𝑝( 𝑀𝑟) 

1 − 𝑝( 𝑀0) 

𝑛−1

𝑟=1

 

The resulting 𝐵𝑐ℎ𝑎𝑛𝑔𝑒 = 362.9, which is significant evidence of a change point, so the 

posterior probabilities for  𝑀𝑟 could be calculated by, 

 

𝑝(𝑀𝑟|𝑥1, … , 𝑥𝑛) = (𝑟(𝑛 − 𝑟))
1
2[𝑆<𝑟> + 𝑆<𝑛−𝑟>]−𝑛/2 × 𝑝 (𝑀𝑟)  

Figure 21 shows the result of the first run which bisects the whole segment. At r = 130, 

the posterior probability was the maximum, that is, the first change point.  

 

Figure 21: Result plot of the first run and posterior probabilities for a change point  

 In order to detect multiple change points, steps in the first run need to be repeated 

with dividend segments from the previous run. That is because the Bayesian algorithm is 

developed as at most one change-point (AMOC) which can detect only one change point 

at a time. For example, as the second run, two segments including sections at r =
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1, … ,130 and r = 131, … ,134 should be analyzed. On top of that, to run the algorithm, 

a few user-specified inputs were needed to control the termination of iterations. When a 

Bayes factor for ‘change’ vs. ‘no change’ was less than 3, a decision was made that there 

is ‘no change’ for the corresponding segment. Also, a minimum number of section in a 

segment was determined as 2. Thus, the iteration will terminate when there is no segment 

left longer than 2 sections and having Bayes factor less than 3. Figure 22 displays the 

result of multiple change point detection by iterating the AMOC algorithm. In the result, 

there were eight segments were partitioned. For each segment, a mean and a range of two 

standard deviations from the mean were drawn as a solid red line and dashed lines, 

respectively.  

 

Figure 22: Result of detecting multiple change points using the Bayesian approach 

The algorithm detects the change point one at a time due to it is designed as AMOC. 

Therefore, the iteration method is used to obtain multiple change points, and this ad-hoc 
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approach has limitations. One of the limitations could be seen in the result when we take 

a look at the 7
th

 segment which has the longest length and the largest variance among all 

segments. Thus, it is a reasonable presumption that there could be more change points 

within the segment; however, the algorithm was not able to detect additional change 

points due to the limitation of AMOC.  

 

Figure 23: Result of the Bayesian algorithm illustrating a multi modal case using the 

7
th

 segment data 

Figure 23 shows the result of the algorithm using the 7
th

 segment data. Three 

peaks in the posterior probabilities can be seen in the graph. Although the posterior 

probabilities were not unimodal but multimodal, those modes were not able to be used to 

detect multiple change points because the posterior probabilities were calculated given a 

condition that there is at most one change point. The multimodal posterior case rather 
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hinders obtaining a significant Bayes factor. In this analysis, 𝐵𝑐ℎ𝑎𝑛𝑔𝑒 = 2.6, this was 

less than the criteria 3 thus no more iteration progressed within this segment. 

3.4.2.2 Bayesian Approach with First-order Autoregressive Process (AR(1)) 

With the same ride score data, a bit modified method was implemented. Instead of 

using the assumption that observations are independent, using AR(1) model to take into 

consideration the correlation between neighbored measures. Overall procedure was the 

same as non-AR(1) model; however, Bayes factors and the posterior probabilities were 

calculated by equations matrices involved in order to model the AR(1) form, 

(𝑧𝑡 − 𝜇𝑡) = 𝜑(𝑧𝑡−1 − 𝜇𝑡−1) + 𝜀𝑡 

where |𝜑| < 1, which means stationary process, and 𝜀𝑡~N(0, σ2). 

 In order to run the algorithm 𝜑 needs to be estimated and input. �̂� = 0.61 was 

estimated and used in the model, and the Bayes factor for ‘change’ vs. ‘no change’ 

resulted in 𝐵𝑐ℎ𝑎𝑛𝑔𝑒 = 2.9e-06. That is, there was no significant evidence for a change in 

mean level of data. The result indicates that any existing variation is due to 

autocorrelation. This seems to disagree with a visual inspection, which suggests a 

segmentation around the locations detected by the non-AR(1) model. One reason for not 

detecting any mean level change may be because 𝜑  can vary along the segment. 

Therefore, a model which can detect the change in AR(1) together with detecting mean 

level seems more reasonable. In order to check the effect of 𝜑 on 𝐵𝑐ℎ𝑎𝑛𝑔𝑒, a plot of 

𝐵𝑐ℎ𝑎𝑛𝑔𝑒 vs. different 𝜑 values was drawn as shown in Figure 24. Only for a certain 

range of 𝜑 values has relatively significant Bayes factors, and that range is far from the 

estimated value used in the analysis. 
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Figure 24: Bayes factor for ‘change’ vs. ‘no change’ vs. various values of 𝜑 

 From the result above, although it is not meaningful to use other 𝜑 values, 

𝜑 = 0.2 was tried in the model, which makes 𝐵𝑐ℎ𝑎𝑛𝑔𝑒 value greater than 2, to specify 

what location has the maximum posterior probability. As a result, the maximum posterior 

probability was located at r = 130 which is consistent with the result from the approach 

without AR(1). Multiple change points were not able to be detected because of 

insignificant 𝐵𝑐ℎ𝑎𝑛𝑔𝑒 value. 

3.4.3 Discussion 

A Bayesian approach to detect change points by Thomas (Thomas, 2001) were 

implemented using R. The ride score data were analyzed for both independent 

observation and autocorrelation algorithms. 
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It should be noted that this study examined only the first part of Thomas’ thesis. 

Therefore the algorithm used in this analysis only detects changes in mean levels even 

though Thomas further developed methods to detect changes in variances in other papers. 

When it comes to AR(1) model, 𝜑 needed to be determined to run the model, however, 

Thomas’ study presented a method to detect the change in 𝜑. 

Although the relatively crude model was used in the study, the problem of at most 

one change-point (AMOC) approach is still remarkable. The limitation of AMOC was 

verified through the analysis in the case of multimodal posterior probabilities. Thomas 

(2001) mentioned that the iterative method to find multiple change points is indefensible; 

however, a theoretically justified approach to detect multiple change points generates 

significant numbers of model, which is not feasible to compute (Thomas, 2001). As 

higher powered computers were appeared and more efficient algorithms were developed, 

it seems not impossible to develop a method to detect multiple change point at once. For 

instance, R package ‘bcp’ can detect multiple change points simultaneously using a 

Bayes approach even though the detailed algorithm was not investigated in the study.  

The Bayesian approach is developed based on rigorous statistical background and 

also focused on road performance measures, this approach will be very useful as a 

baseline algorithm to evaluating various method being developed in near future. 
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Chapter 4: Conclusion and Future Study 

This research is a preliminary study attempted to investigate the current 

techniques of segmentation for developing an improved method. Two main things have 

been studied for achieving the objective: (1) conducting the literature review, (2) testing 

the off-the-shelf tools and reproducing the Bayes approach. All things point to the 

conclusion that there are limitations for each approach and that there is good possibility 

that an improved method to overcome those limitations can be developed. 

Unfortunately, developing an enhanced method could not be accomplished in this 

study; however, I would like to suggest directions for the future study. The most 

important point is that a developing approach should be based on a rigorous statistical 

method. In this sense, a HMM and a Bayesian approach are appropriate candidates not 

only because they are based on strong theoretical statistics but also because they are very 

flexible to resolve different issues. Once a method developed, for bench marking 

purpose, it seems good idea to compare several existing models such as CDA, R 

packages, random walk, and AR(1). 

The main objective of future work is to develop a segmentation method capable 

of handling following issues have come across throughout this study.  

Detecting multiple change points simultaneously 

Majority of tested methods in this study delineate segment with identifying one 

change point at once and repeating algorithm to detect more changes using dividend 

segments in the previous run. Even though additional adjustments are suggested as a 

treatment, this approach does not result in optimal multiple change points. Either a HMM 

or a Bayesian approach has a capability to detect multiple change points simultaneously. 

Although that increases the difficulty of computational time, there would be solution 
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using the power of modern computer system and efficient optimizing algorithm. 

Therefore, the developing methods should have ability to identify the multiple 

homogeneous segments at once without losing optimality. 

Taking into account AR(1) 

The existence of autocorrelation in data is somewhat ambiguous even though it is 

examined by using testing methods such as Durbin-Watson, ACF and PACF. Thus, both 

models with and without AR(1) need to be developed and evaluated which model is more 

suitable to the application on a certain road performance measurement. 

Model selection by cross validation  

A method for comparing different approaches needs to be determined to evaluate 

segmentation methods. One of the ideas for comparing different models is to use a 

modified k-fold cross validation. As shown in Figure 25, observations in data are grouped 

in 5 fold. While holding the first group as a validation set, a model is estimated only 

using the rest 80% training set, then, repeat this procedure by shifting the validation set. 

Each model can be evaluated using the corresponding validation set by calculating log-

likelihood. 

 

 

Figure 25: Representation of 5-fold cross validation 

Using R, the 5-fold cross validation method was implemented for the Bayesian 

approach. Figure 26 shows the result of segmentation using the first group as a validation 
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set and the rest group as a training set. Blue dots data in the validation set so that the log-

likelihood could be calculated by the assumption of normal distribution in each segment. 

 

Figure 26: 5-fold cross validation for the Bayesian approach 

Missing data treatment 

When it comes to the road performance data collection, there are inevitable 

reasons for generating missing data. For example, road sections under construction for 

maintenance and rehabilitation cannot be inspected to collect the data. Thus, there should 

be a remedy for taking account into these missing data in the developing model. HMMs 

and most Bayesian models can resolve the problem. Hence, incorporating a treatment for 

missing data would be a significant improvement in the segmentation study. 

  



 49 

References 

 

AASHTO. 1993. AASHTO Guide for Design of Pavement Structures. American 

Association of State Highway and Transportation Officials, Washington, DC. 

Acurio, J. R. M. 2014. Incorporating Risk and Uncertainty into Pavement Network 

Maintenance and Rehabilitation Budget Allocation Decisions. Ph.D. Dissertation. 

Texas A&M University. 

Barry, D., and Hartigan, J. A. 1993. A Bayesian Analysis for Change Point Problems. 

Journal of the American Statistical Association, 35(3), 309-319. 

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique 

occurring in the statistical analysis of probabilistic functions of Markov chains. 

Ann. Math. Statist., vol. 41, no. 1, pp. 164–171. 

Bennett, C. 2004. Sectioning of Road Data for Pavement Management. 6th International 

Conference on Managing Pavements, Brisbane, Australia, 1-11. 

Blunsom, P. 2004. Hidden Markov Models. Lecture Notes. Retrieved from 

http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf 

Boroujerdian, M. A., Saffarzadeh, M., Yousefi, H., and Ghassemian, H. 2014. A Model 

to Identify High Crash Road Segments with the Dynamic Segmentation Method. 

Accident Analysis & Prevention 73 (December): 274–87. 

Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J. 1984. Classification and 

Regression Tree Wadsworth & Brooks/Cole Advanced Books & Software, Pacific 

California. 

Cafiso, S., and Graziano, A. D. 2012. Definition of Homogenous Sections in Road 

Pavement Measurements. Procedia - Social and Behavioral Sciences, SIIV-5th 

International Congress - Sustainability of Road Infrastructures 2012, 53 

(October): 1069–79.  

Cuhadar, A., Shalaby, K., and Tasdoken. S. 2002. Automatic Segmentation of Pavement 

Condition Data Using Wavelet Transform. In Canadian Conference on Electrical 

and Computer Engineering, 2002. IEEE CCECE 2002, 2:1009–14 vol.2.  

Divinsky, M., Nesichi, S., and Livneh, M. 1997. Development of a Road Roughness 

Profile Delineation Procedure. Journal of Testing and Evaluation. 

Durbin, J. 1960. The fitting of time series models. Rev. Inst. Int. Stat., v. 28, pp. 233–

243. 

Durbin, J., and Watson, G. S. 1951. Testing for Serial Correlation in Least Squares 

Regression. II. Biometrika 38 (1/2): 159–77.  

http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf


 50 

Erdman, C., and Emerson, J. W. 2007. bcp: An R Package for Performing a Bayesian 

Analysis of Change Point Problems, Journal of Statistical Software, 23(3), 1-13. 

Haas, R. C. G., Hudson, W. R., and Zaniewski, J. P. 1994. Modern Pavement 

Management. Krieger Pub. Co, Malabar, FL. 

Jeffereys, H. 1998. Theory of Probability, 3
rd

 edition.  Clarendon Press, Oxford. 

Kennedy, J., Shalaby, A, and Cauwenberghe, R. V. 2000. Dynamic Segmentation of 

Pavement Surface Condition Data. 3
rd

 Transportation Specialty Conference of the 

Canadian Society for Civil Engineering, London, Ontario. 

Killick, R., and Eckley, I. A. 2014. changepoint: An R Package for Changepoint 

Analysis. Journal of Statistical Software, 58(3), pp. 1–19. 

Killick, R., Haynes, K., and Eckley. I. A. 2016. changepoint: An R package for 

changepoint analysis. R package version 2.2.1, http://CRAN.R-

project.org/package=changepoint. 

Kutner, M. H. 2005. Applied Linear Statistical Models. 5th ed. The McGraw-Hill/Irwin 

Series Operations and Decision Sciences. Boston: McGraw-Hill Irwin. 

Levinson, N. 1947. The Wiener RMS error criterion in filter design and prediction. J. 

Math. Phys., v. 25, pp. 261–278. 

Misra, R., and Das. A. 2003. Identification of Homogeneous Sections from Road Data. 

International Journal of Pavement Engineering, 4:4, 229–233. 

Montgomery, D. C., Peck, E. A., and Vining, G. G. 2013. Introduction to Linear 

Regression Analysis. 5th ed. Chicester: Wiley. 

Murphy, K. 1998. Hidden Markov Model Toolbox for Matlab. Retrieved from 

https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 

Nicholas, J. A., and Matteson, D. S. 2014. ecp: An R Package for Nonparametric 

Multiple Change Point Analysis of Multivariate Data. Journal of Statistical 

Software, 62(7), 1-25. 

Ping, V. W., Yang, Z., Gan, L. and Dietrich, B. 1999. Development of Procedure for 

Automated Segmentation of Pavement Rut Data. Transportation Research 

Record: Journal of the Transportation Research Board, 1655, 65-73. 

Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models and Selected Applications in 

Speech Recognition. Proceedings of the IEEE. 77, 257-286. 

Rabiner, L. R., and Juang, B. H. 1986. An Introduction to Hidden Markov Models. IEEE 

Acousfics, Speech & Signal Processing, Magazine, 3, 1-16. 

Raquel, P., and West, M. 2010. Time Series: Modeling, Computation, and Inference. 

Chapman & Hall/CRC Texts in Statistical Science Series. Boca Raton: CRC 

Press. 

http://cran.r-project.org/package=changepoint
http://cran.r-project.org/package=changepoint


 51 

Scullion, T., and Smith, R. 1997. TxDOT’s Pavement Management Information System: 

Current Status and Future Directions. Report No. FHWA/TX-98/1420-S. Texas 

Transportation Institute, College Station, TX. 

Thomas, F. 2001. A Bayesian approach to retrospective detection of change-points in 

road surface measurements. PhD thesis, Dept. of Statistics, Stockholm Univ., 

Stockholm, Sweden. 

Thomas, F. 2001. Automated Road Segmentation Using a Bayesian Algorithm. Journal 

of Transportation Engineering 131 (8): 591–98. 

Thomas, F. 2003. Statistical Approach to Road Segmentation. Journal of Transportation 

Engineering 129 (3): 300–308. 

TxDOT. 2003. Managing Texas Pavements. Texas Department of Transportation 

Construction Division, Materials and Pavement Section. 

Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum 

decoding algorithm. IEEE Transactions on Information Theory 13 (2): 260–269. 

Yang, C., Tsai, Y., and Wang, Z. 2009. Algorithm for Spatial Clustering of Pavement 

Segments. Computer-Aided Civil and Infrastructure Engineering 24 (2): 93–108.  

 

 

 


