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In order to support rampant cell growth, tumor cells must reprogram metabolism 

to simultaneously drive macromolecular biosynthesis and energy production. 

Mitochondrial uncoupling proteins (UCPs) oppose this phenotype by inducing futile 

mitochondrial respiration that is disengaged from ATP synthesis.  We found that 

uncoupling protein 3 (UCP3) was normally expressed in follicular and epidermal 

keratinocytes and that its levels were augmented by calcium-induced differentiation in 

vitro.  Over-expression of a UCP3 transgene targeted to the basal epidermis by the 

keratin-5 promoter (K5-UCP3) led to increased differentiation of both epidermal and 

bulge stem cells, the progenitors of most squamous carcinomas.  Consistent with this 

phenotype, K5-UCP3 mice were completely protected from chemically induced skin 

carcinogenesis.  

To define the mechanisms by which UCP3 conferred such strong tumor 

resistance, we interbred K5-UCP3 mice with a “pre-initiated” mouse model, and found 

that UCP3 over-expression blocked tumor promotion. Uncoupled epidermis displayed 
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reduced proliferation after treatment with tumor promoter, along with diminished 

activation of Akt signaling.  This effect corresponded to decreased Akt activation by 

epidermal growth factor (EGF) in K5-UCP3 cells, along with UCP3 overexpressing 

primary human keratinocytes. Mechanistic studies revealed that uncoupling drove global 

lipid catabolism, along with impaired recruitment of Akt to the plasma membrane.  Over-

expression of wild type Akt rescued tumor promoter-induced proliferation and two-stage 

chemical carcinogenesis in bi-transgenic mice.  Collectively, these findings demonstrate 

that mitochondrial uncoupling is an effective strategy to limit cell proliferation and 

tumorigenesis through inhibition of Akt, and suggest a novel mechanism of crosstalk 

between mitochondrial metabolism and growth signaling. 
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Chapter 1:  Introduction 

 
1.1 Background: Hallmarks of cancer 

Cancer is the general term for a group of over 100 diverse diseases that all stem 

from the uncontrolled growth of abnormal cells in the body.  This uncontrolled growth 

leads to the formation of tumors, and eventually, the ability to invade other tissues, or 

metastasize.  If left untreated, cancer cells continue to proliferate out of control, crowding 

out normal cells and causing serious illness and ultimately, death.  40.8% of men and 

women in the US will be diagnosed with some form of cancer in their lifetime, with 

13,397,159 people living with cancer in the US as of 2011, the most recent year for 

which incidence data is available (NCI, 2014).   

The National Cancer Institute estimates that 585,720 patients in the US will die in 

2014 from all types of cancer combined.  However, with the advent of new therapies and 

better screening procedures that allow for earlier detection and treatment, mortality rates 

have been falling on average 1.5% per year from 2001-2010 (NCI, 2014).  Even so, many 

approaches to treat cancers still involve invasive surgeries, and/or therapies that non-

selectively target all rapidly growing cells in the body for destruction, and therefore have 

devastating side effects for patients.  Moreover, current therapies are often still not as 

efficacious as one would hope: only 66.1% of cancer patients survive 5 years after 

diagnosis, with the survival rates for certain sub-types being much worse (NCI, 2014).  
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Thus, new strategies to effectively combat cancer with lower patient toxicity are sorely 

needed. 

In 2000, Hanahan and Weinberg released a list detailing the hallmarks of cancer, 

regardless of the specific disease or tissue of origin, in an effort to describe widespread 

traits or processes that are functionally central to tumorigenesis, and are therefore 

attractive therapeutic targets.  Their list included six qualities exhibited by most, if not all 

cancers: sustained proliferative signaling, evasion of growth suppressors, resistance to 

cell death, replicative immortality, induction of angiogenesis, and the ability to invade 

and metastasize to distant tissues (Hanahan and Weinberg, 2000).  Hanahan and 

Weinberg postulated that although the order of acquisition may differ in specific cancers, 

a tumor cell must develop these six abilities in order to become tumorigenic, and 

ultimately, malignant. 

Ten years later, the authors revisited their original list, and added two new 

processes as additional emerging hallmarks:  the ability to evade detection and 

destruction by the immune system, and the reprogramming of energy metabolism to 

support the energetic and biosynthetic needs of rampant growth (Hanahan and Weinberg, 

2011).  Metabolic reprogramming, in particular, has gained attention over the past 

decade, in part because of the mounting evidence supporting a complex interplay 

between pervasive oncogenic growth signaling pathways and metabolic control.  Herein, 

we describe a novel strategy to antagonize tumorigenesis by opposing the metabolic 

phenotype of tumor cells, and uncover a novel mechanism of metabolic regulation of 

growth signaling. 
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1.2 Cellular bioenergetics in non-proliferating, differentiated cells 

Most cells rely on systemic metabolism to break down food into two major fuel 

sources: sugars, such as glucose, and fats, which circulate mainly in the form of non-

esterified free fatty acids (FFA) bound to albumin.  These fuel sources are taken up and 

further broken down through the pathways of glycolysis (breakdown of sugars) and β-

oxidation (breakdown of fatty acids, also called fatty acid oxidation).  Ultimately, these 

pathways feed metabolites into mitochondria, where they are completely oxidized 

through highly efficient metabolic pathways that maximize energy production in a 

process known as oxidative phosphorylation, leaving only carbon dioxide (CO2) and 

water as byproducts. 

1.2.1 Glycolysis 

Sugars, such as glucose, are a primary fuel source for cells.  Glucose enters the 

cell through a member of the GLUT family of transporter proteins, and is phosphorylated 

by the enzyme hexokinase (HK), producing glucose-6-phosphate (G6P).  This reaction is 

the first and rate-limiting step in the pathway of glycolysis, and, because G6P is not 

transported by GLUTs, this modification functionally “traps” the glucose inside the cell 

(Berg et al., 2002).  G6P can be stored as glycogen in some cell types (mainly muscle and 

liver), or else is broken down in a series of subsequent glycolytic reactions, resulting in 

the production of two molecules of pyruvate for each molecule of glucose metabolized 

(Illustration 1.1).  In the process, glycolysis also yields a net of two molecules of 
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Illustration 1.1 Normal cellular bioenergetics 

In non-proliferating, differentiated cells, glycolysis and fatty acid oxidation contribute to 
the production of acetyl-CoA in the mitochondria.  Acetyl Co-A feeds the TCA cycle, 
which produces the reduced co-factors NADH and FADH2.  These serve as substrates for 
the electron transport chain (ETC), which together with the F1/F0-ATPase generates ATP 
to be used for cellular work.  Non-proliferating cells use metabolic pathways that 
maximize ATP production.  
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adenosine triphosphate (ATP), the coenzyme used by cells as the molecular energy 

currency (Berg et al., 2002). 

In the absence of oxygen (O2), pyruvate can be further metabolized to lactate by 

the enzyme lactate dehydrogenase (LDH) in a process known as lactic acid fermentation. 

However, in most differentiated cells, lactic acid fermentation is inhibited in the presence 

of oxygen, a phenomenon commonly referred to as the Pasteur Effect (Warburg, 1926). 

Very high extracellular glucose concentrations can drive fermentation in the presence of 

oxygen via the Crabtree Effect, in which the elevated levels of glycolytic intermediates 

suppress mitochondrial respiration. However, ordinarily, when oxygen is present (and 

glucose concentrations are not elevated), normal cells further metabolize pyruvate in the 

mitochondria.  Pyruvate is imported into the mitochondria by the mitochondrial pyruvate 

carrier (MPC) (Bricker et al., 2012), where it is subsequently converted to acetyl-CoA by 

pyruvate dehydrogenase (PDH)  (Illustration 1.1).  

1.2.2 Fatty Acid Oxidation 

In an analogous process, FFA are imported into cells, often by the fatty acid 

translocase (FAT/CD36) (Coburn et al., 2000; Febbraio et al., 1999).  Although certain 

FFA are oxidized by peroxisomes, most β-oxidation takes place in mitochondria (Eaton, 

2002).  Once inside the cell, the fatty acids are modified by one of a number of fatty acyl-

Coenzyme A synthetases (FACS), which vary in tissue expression and substrate 

preference.  FACS conjugates the acyl chain to a CoA molecule, and the CoA is then 

exchanged for a carnitine moiety by carnitine palmitoyl transferase 1 (CPT1), in the rate-
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limiting step in β-oxidation (Kopec and Fritz, 1971). Then, the acylcarnitine species is 

transported into the mitochondria by carnitine acylcarnitine translocase (CACT), and the 

carnitine is exchanged for CoA again by carnitine palimtoyl transferase 2 (CPT2) (Kopec 

and Fritz, 1973).  The mitochondrial acyl-CoA molecule is then oxidized in a series of 

subsequent oxidation reactions, resulting in the systematic cleavage of the fatty acid into 

two-carbon acetyl-CoA units (Illustration 1.1). 

1.2.3 Oxidative Phosphorylation 

Regardless whether it is formed from glycolysis and pyruvate dehydrogenase, or 

via β-oxidation of lipids, the acetyl-CoA produced from the breakdown of sugars or 

lipids becomes a substrate for the Tricarboxylic Acid (TCA) cycle, also referred to as the 

Citric acid cycle, or Krebs cycle.  In the TCA cycle, acetyl-CoA and oxaloacetate are 

combined to form citrate, which is then further metabolized, ultimately producing two 

molecules of CO2, one molecule of guanosine triphosphate (GTP), and regenerating 

oxaloacetate for the next turn of the cycle (Illustration 1.1) (Berg et al., 2002).  The 

oxidizing reactions of the TCA cycle also produce the reduced cofactors nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) (Illustration 1.1). 

Electrons (e-) are passed from these reduced co-factors through a series of several 

large protein complexes, known as the electron transport chain (ETC).  NADH and 

FADH2 feed electrons to complex I (NADH dehydrogenase or NADH-Q oxidoreductase) 

and complex II (succinate dehydrogenase, SDH or succinate-Q reductase) of the ETC, 

respectively.  The electrons are shuttled from complexes I and II to complex III (Q-



 7 

cytochrome c oxidoreductase) by coenzyme Q, and then cytochrome c carries the 

electrons to complex IV (cytochrome c oxidase), where they are used to ultimately reduce 

molecular oxygen to water (Illustration 1.2).  In the process, the flow of electrons through 

complexes I, III, and IV causes these complexes to pump protons (H+) from the 

mitochondrial matrix into the intermembrane space (Saraste, 1999).  This establishes an 

electrochemical proton gradient across the mitochondrial inner membrane that is referred 

to as the mitochondrial membrane potential (Ψ).  The gradient provides the proton 

motive force that drives the F1/F0 ATPase (complex V of the ETC), which allows protons 

to flow back down their gradient into the matrix, and uses this energy to produce ATP in 

a process termed oxidative phosphorylation (Boyer, 1993) (Illustration 1.2). 

Oxidative phosphorylation produces 17 molecules of ATP from each acetyl-CoA 

molecule that enters the cycle, or 36 ATP per original glucose molecule, including the 2 

ATP formed in glycolysis (Berg et al., 2002).  Depending on tissue type, cells maintain a 

relatively narrow ATP concentration range of about 1-10 mM (Beis and Newsholme, 

1975).  Cells manage this optimal concentration through a process of “respiratory 

control,” in which high ATP concentrations inhibit the F1/F0-ATPase, causing respiration 

and electron transport to slow.  Sometimes, this slowing of respiration can cause e- to slip 

from the chain, resulting in the incomplete reduction of oxygen, and the production of 

reactive oxygen species (ROS), most commonly in the form of superoxide free radical 

(O2
-!) (Turrens et al., 1982), which is readily converted to hydrogen peroxide by 

superoxide dismutases (SOD).  ROS can play diverse roles in cellular physiology 

depending upon the context, concentration, and spatial microenvironment in which they  
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Illustration 1.2 The mitochondrial electron transport chain (ETC) and oxidative 
phosphorylation 

Reactions within the TCA cycle produce the reduced cofactors NADH and FADH2, 
which feed their electrons (e-) to complexes I and II of the ETC, respectively.  Within the 
complexes, the electrons are passed to Coenzyme Q, which shuttles them to complex III.  
Complex III then passes the e- to Cytochrome c, which passes them to complex IV, where 
they are ultimately used to reduce molecular oxygen to water.  In the process, the 
movement of e- through complexes I, III, and IV induces conformational changes in the 
complexes that cause protons (H+) to be pumped from the mitochondrial matrix into the 
intermembrane space.  This generates an electrochemical proton gradient that generates 
the mitochondrial membrane potential (Ψ). The Ψ provides a proton motive force that is 
used to drive the F1/F0-ATPase (also known as complex V).  As H+ flow back down their 
gradient, they drive the F1/F0-ATPase in a rotary motion, and catalyze the 
phosphorylation of ADP, generating the major source of cellular ATP.  This process is 
known as mitochondrial oxidative phosphorylation.   
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are produced; ROS have been shown to act as pro-growth second messengers (Rhee et 

al., 2000), but can form deleterious protein and DNA adducts and eventually cause cell 

death.  Thus, mitochondria have evolved antioxidant defense systems to effectively 

mitigate ROS production while maintaining ideal ATP concentrations (Turrens, 2003). 

 

1.3  Cancer and Metabolism 

Most of what we know about cellular bioenergetics comes from early studies 

performed on whole, intact tissues.  As a result, these studies detail the metabolic 

pathways utilized by normal, differentiated cells.  However, the metabolic phenotype 

exhibited by rapidly dividing cells is actually drastically different from that of post-

mitotic, differentiated cells.  In the last decade, researchers have renewed efforts to 

understand Otto Warburg’s nearly century-old observation that tumor cells undergo a 

metabolic switch, implementing aerobic glycolysis (Warburg, 1956b).  In addition to up-

regulating glycolysis, changes in mitochondrial function appear to suppress 

mitochondrial oxidative phosphorylation, and re-direct nutrient utilization towards 

biosynthesis (DeBerardinis et al., 2007; Portais et al., 1996). 

This sets up an interesting metabolic dichotomy wherein differentiated cells 

completely metabolize substrates in favor of maximally efficient energy production, 

whereas dividing cells favor metabolic pathways that may be less efficient in terms of 

energy production, but also allow the cells to amass metabolic intermediates (Illustration 

1.3).  This crucial restructuring of tumor cell metabolism allows cells to balance energy  
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Illustration 1.3 Malignant cells display an altered metabolic phenotype 

Differentiated cells utilize metabolic pathways that completely metabolize substrates in 
favor of maximal energy production.  To that end, they rely heavily on mitochondrial 
oxidative phosphorylation for the production of ATP.  In contrast, proliferating cells use 
metabolic pathways that may be less efficient in terms of energy production, but also 
provide precursors for macromolecular biosynthesis.  Hence, they up-regulate aerobic 
glycolysis and glutamine anaplerosis.  
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and biomass production, and is controlled by classical oncoproteins and tumor 

suppressors, such as c-Myc, hypoxia inducible factors (HIFs), p53, mammalian target of 

rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and Akt (protein kinase B) 

(Dang and Semenza, 1999; Matoba et al., 2006; Ward and Thompson, 2012). 

1.3.1 The Warburg Effect 

In the 1920s, Otto Warburg made the seminal observation that, compared to 

normal cells, cancer cells consume highly elevated quantities of glucose, and metabolize 

it predominantly through glycolysis and lactic acid fermentation, even in oxygen-replete 

conditions (Warburg, 1925, 1956a). This process, termed aerobic glycolysis, coincided 

with drastically lower rates of mitochondrial glucose oxidation in tumor cells (relative to 

their normal counterparts), an observation that led Warburg to propose that mitochondrial 

respiratory depression was actually the cause of cancer (Warburg, 1956a, b).  He 

suggested that cancer cells arise from a defect in mitochondrial respiration that forces 

them to rely on aerobic glycolysis in order to compensate for the mitochondrial 

dysfunction (Warburg, 1956b).  Although we now know that Warburg’s hypothesis was 

incorrect, and mitochondrial dysfunction is clearly not the major underlying cause of 

cancer, a number of studies (detailed below) have identified genetic alterations that do 

impair mitochondrial respiration in various cancer types.  Nonetheless, it appears that in a 

majority of cancers, the mitochondria are respiration competent, but cells down-regulate 

mitochondrial oxidative metabolism in favor of aerobic glycolysis (Fantin et al., 2006; 

Lunt and Vander Heiden, 2011; Moreno-Sanchez et al., 2007). 
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This phenomenon, now known as “the Warburg effect,” seems paradoxical on the 

surface: Why would cancer cells use aerobic glycolysis, a less efficient means of energy 

production, rather than oxidative phosphorylation?  The phenomenon of aerobic 

glycolysis is not exclusive to cancer cells – in fact, many normal cell types employ 

aerobic glycolysis during rapid proliferation.  For example, primary lymphocytes up-

regulate glucose uptake and lactate production upon proliferative stimulation (Hedeskov, 

1968; Wang et al., 1976).  Furthermore, chick embryos exhibit the same rate of lactate 

production whether normal or transformed (Steck et al., 1968).  Therefore, it appears that 

rapidly dividing cells systematically employ aerobic glycolysis, regardless of malignant 

transformation, likely because it provides some advantage during proliferation. 

1.3.2 Balancing energy production & macromolecular biosynthesis 

We now appreciate that tumor cells’ seemingly paradoxical reliance on the less 

efficient process of glycolysis for generation of ATP likely confers a growth advantage 

by permitting cells to balance the need to produce energy with the need to produce 

biomass.  Put simply, dividing cells must adapt their metabolic program to 

simultaneously generate the biosynthetic precursors necessary for building the lipids, 

proteins and nucleic acids that will comprise the new daughter cell, along with the energy 

needed to grow and divide.  To accomplish this goal, cancer cells up-regulate pathways 

that allow them to accumulate metabolic intermediates that can be shunted away from 

oxidative pathways and into anabolic reactions. 
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1.3.2.1 Aerobic glycolysis 

The glycolytic arm of metabolic reprogramming has become an area of intense 

research in cancer, in part because it is such a pervasive phenotype.  Relative to non-

tumorigenic tissue, cancer cells up-regulate GLUTs (Macheda et al., 2005; Medina and 

Owen, 2002), glycolytic enzymes (Vander Heiden et al., 2009), and LDH (Shim et al., 

1997).  Malignancies so reliably exhibit increased glucose uptake that this property 

provides the basis for clinical [F18] fluoro-deoxyglucose positron emission tomography 

(FDG-PET) imaging.  Several studies have shown that glucose is a critical nutrient for 

dividing cells (Holley and Kiernan, 1974; Pardee, 1974), and glucose deprivation induces 

apoptosis that is functionally indistinguishable from that seen in response to growth 

factor withdrawal (Vander Heiden et al., 2001).  Extensive work has shown that aerobic 

glycolysis supports the growth and survival of malignant cells and may be a promising 

therapeutic target (Dang et al., 1997; Semenza, 2000). However, although the initial 

phenomenological observations are decades old, and the underlying process is now well 

described, specifically what benefit the utilization of aerobic glycolysis provides tumor 

cells was not immediately obvious to researchers. 

One possibility to explain why proliferating cells might up-regulate this process is 

that glycolytic production of ATP can occur more rapidly than oxidative ATP production 

(Pfeiffer et al., 2001).  Be that as it may, the percentage of cellular ATP derived from 

glycolysis varies dramatically depending on tumor type and experimental context 

(0.31%-64%), and normal tissues exhibit an overlapping range of glycolytic contribution 

to total cellular ATP (0.94%-58%) (Zu and Guppy, 2004).  Furthermore, it has been 
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suggested that ATP is likely not limiting in proliferative cells (Lunt and Vander Heiden, 

2011).  Thus, it appears that aerobic glycolysis likely provides some adaptive value other 

than enhanced rate of ATP production. 

This benefit seems to come in the form of the provision of substrates for 

biosynthetic pathways that branch off at various steps in glycolysis.  As a result, 

glycolysis provides carbons that are subsequently used for nucleotide, lipid, and amino 

acid biosynthesis.  More specifically, glycolysis contributes to nucleotide biosynthesis 

through the production of G6P, which can be metabolized by G6P dehydrogenase 

(G6PD) and subsequent enzymes to produce ribose-5-phosphate and subsequently 

phosphoribosylpyrophosphate (PRPP), the major precursor for the synthesis of 

nucleotides (Illustration 1.4) (Berg et al., 2002).  This pathway, often termed the pentose 

phosphate pathway (PPP), also produces the reduced form of the co-factor nicotinamide 

adenine dinucleotide phosphate (NADPH), which is used to provide reducing equivalents 

in several anabolic reactions, including fatty acid chain elongation. 

Glycolysis also contributes to lipid synthesis through the glycolytic intermediate 

dihydroxyacetone phosphate, which can be metabolized to glycerol-3-phosphate, the 

backbone for the synthesis of phospholipids and triglycerides (Illustration 1.4).  

Furthermore, glucose-derived acetyl-CoA is the major precursor in the synthesis of fatty 

acids (Bauer et al., 2005).  Glycolysis is not a direct source of acetyl-CoA for fatty acid 

synthesis because pyruvate is imported into the mitochondria before it is converted to 

acetyl-CoA, and mitochondrial acetyl-CoA is a distinct pool that is not accessible to the 

cytoplasmic metabolic machinery.  However, mitochondrial acetyl-CoA can be used to  
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Illustration 1.4 Aerobic glycolysis provides precursors for biosynthetic pathways 

Aerobic glycolysis is advantageous for proliferating cells because several glycolytic 
intermediates are precursors for macromolecular biosynthesis.  Glucose-6-phosphate 
contributes to nucleotide biosynthesis via the pentose phosphate pathway.  DHAP can be 
metabolized to glycerol-3-phosphate, the backbone for phospholipids and triglycerides.  
3-phosphoglycerate contributes to both nucleotide and phospholipid head group 
biosynthesis via its ability to be metabolized to the amino acids serine and glycine.  
Finally, citrate formed downstream of glycolytically derived acetyl Co-A can be exported 
to the cytoplasm, where it is metabolized back to acetyl CoA by ATP citrate lyase (ACL).  
Cytoplasmic acetyl Co-A is the major precursor for the de novo synthesis of fatty acid 
chains.  
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generate citrate, which can be exported from the mitochondria and subsequently 

metabolized by ATP citrate lyase (ACL) to regenerate acetyl-CoA in the cytoplasm 

(Kaplan et al., 1993; Srere, 1972; Sullivan et al., 1974), where it can be used for fatty 

acid chain elongation (Illustration 1.4).  Glycolysis also plays a role in the synthesis of 

some non-essential amino acids; for example, pyruvate is a precursor for the synthesis of 

the amino acid alanine. 

Finally, the glycolytic intermediate 3-phosphoglycerate (3-PG) has multiple roles 

in the aforementioned biosynthetic pathways (Vander Heiden et al., 2011). Many of the 

actions of 3-phosphoglycerate stem from its ability to be metabolized to form the amino 

acids cysteine, serine, and glycine.  Serine and glycine derived from 3-PG are important 

intermediates in the biosynthesis of purine nucleotides, as well as the production of 

folates (de Koning et al., 1998; Yoshida et al., 2004), key one-carbon donors in anabolic 

metabolism.  Serine derived from 3-PG is also directly added to glycerol to form the head 

group of phosphatidylserines, and acts as a precursor for the synthesis of choline and 

ethanolamine (the other two major phospholipid head groups), along with sphingolipids, 

a significant class of structural and signaling lipids (Yoshida et al., 2004).  Thus, through 

3-PG alone, glycolysis plays a central role in all three processes of amino acid, 

nucleotide, and lipid production by providing carbon metabolites that act as precursors 

for macromolecular biosynthesis (Illustration 1.4). 
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1.3.2.2 Glutamine anaplerosis 

As well as up-regulating glycolysis, cancer cells use the efflux of TCA cycle 

intermediates from the mitochondria to supply even more metabolic precursors to the 

cytoplasm, in a process called cataplerosis.  Increased citrate cataplerosis, mentioned 

above, provides a source of cytoplasmic acetyl-CoA for de novo lipid biosynthesis (Bauer 

et al., 2005; Parlo and Coleman, 1984), and cataplerosis of oxaloacetate and α-

ketoglutarate supports the biosynthesis of the amino acids glutamate, aspartate, 

asparagine, and proline (Owen et al., 2002).  In order for this process to be sustainable for 

any length of time, the TCA cycle intermediates must be replenished through a 

complementary process, termed anaplerosis. 

Glutamine appears to be the major metabolite contributor to anaplerosis in 

proliferating cells (DeBerardinis et al., 2007; Portais et al., 1996).  Although most tissues 

can synthesize glutamine, and thus it is traditionally thought of as a non-essential amino 

acid, during periods of rapid growth, it appears that cellular demand for glutamine 

outpaces its supply. Therefore, glutamine is sometimes designated as a “conditionally 

essential amino acid” (DeBerardinis and Cheng, 2010).  Decades before it was shown to 

be the most abundant amino acid in plasma (Bergstrom et al., 1974), Harry Eagle first 

described the unique reliance of in vitro cell lines on glutamine in cell culture media 

(Eagle, 1955).  He found that HeLa cervical carcinoma cells required 2-10 times the 

concentration of glutamine in cell culture media compared with a mouse fibroblast cell 

line, and that this optimal glutamine concentration was also ten times more than the 

optimal amount of any other amino acid tested (Eagle, 1955).  Later studies revealed that 
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glutamine could be oxidatively metabolized in the mitochondria (Kovacevic and Morris, 

1972).  However, only within the last decade have researchers truly begun to appreciate 

the role of glutamine anaplerosis in cancer cell metabolism. 

In order to replenish TCA cycle intermediates, glutamine is converted to 

glutamate, which is subsequently converted to α-ketogluratate, and enters the TCA cycle.  

In cancer cells with functional mitochondria, α-ketoglutarate then fluxes through the 

TCA cycle oxidatively, replenishing pools of TCA cycle intermediates, and providing 

proliferating cells with another source of energy production, in a process termed 

glutaminolysis (DeBerardinis et al., 2008; Reitzer et al., 1979). In cases in which 

oxidative phosphorylation is impaired, tumor mitochondria actually perform reductive 

carboxylation, fluxing backwards to produce citrate, which is then exported to the 

cytoplasm where it can participate in fatty acid synthesis (Illustration 1.5) (Mullen et al., 

2012).   Thus, regardless of the oxidative state or capacity of the mitochondria in a 

particular tumor, glutamine remains an important nutrient in the support of cell growth 

and malignant transformation. 

Some authors have suggested that the contribution of glutaminolysis to cellular 

ATP production may be underappreciated (Lunt and Vander Heiden, 2011; Reitzer et al., 

1979).  In the complete oxidation of glutamine, malate derived from glutamine 

anaplerosis is exported to the cytoplasm, where malic enzyme converts it to pyruvate, 

which is then metabolized to lactate and CO2 by LDH. This process also generates 

NADPH.  In addition to its important role in anaplerosis, glutamine metabolism supports  
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Illustration 1.5 Anaplerosis and cataplerosis 

The cataplerosis, or mitochondrial export, of TCA cycle intermediates supports the 
biosynthesis of several amino acids, along with fatty acid acyl chains.  For cataplerosis to 
be sustainable, TCA cycle intermediates must be replenished through the import of 
mitochondrial substrates in the complimentary process of anaplerosis.  Glutamine is the 
primary contributor to anaplerosis in proliferating cells.  α-ketoglutarate derived from 
glutamine can either flux forward (oxidatively) through the TCA cycle, or backwards to 
produce citrate via reductive carboxylation.  
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other aspects of cellular metabolism and macromolecular biosynthesis as well.  

Glutamine is also a required nitrogen source for the synthesis of amino acids and both 

purine and pyrimidine nucleotides (Cory and Cory, 2006).  Labeling studies have 

confirmed that glutamine contributes carbons to CO2, lactate, amino acids, and fatty 

acids, showcasing just how many aspects of cellular metabolism depend on glutamine as 

a nutrient source.  

Highlighting the importance of glutamine metabolism in malignancy, a wide 

variety of cancer cell lines exhibit sensitivity to glutamine deprivation relative to their 

normal counterparts (Wu et al., 1978; Yuneva et al., 2007).  Additionally, decreased 

expression or pharmacological inhibition of glutaminase (the enzyme responsible for the 

conversion of glutamine to glutamate) inhibits the growth of cancer cell lines (Cheng et 

al., 2011; Gao et al., 2009; Wang et al., 2010).  However, despite these promising 

preclinical results, several therapeutic strategies aimed at targeting glutamine metabolism 

have failed, largely due to their massively toxic effects on normal tissues (Wise and 

Thompson, 2010).  

1.3.2.3 Other mitochondrial changes in cancer 

Although mitochondrial dysfunction may not cause the Warburg effect, there is 

significant evidence that cancer cells do in fact accumulate defective mitochondria.  In 

diverse human malignancies, the extent of mitochondrial respiratory dysfunction 

positively correlates with tumor growth rates and the aggressiveness of metastasis 

(Pedersen et al., 1970).  Malignant cells typically display several defects in mitochondrial 
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respiration: 1.) mitochondrial number and O2 consumption are reduced, 2.) Ψ is elevated, 

3.) mitochondria are less abundant, smaller, and have fewer cristae, and 4.) ROS 

production is increased (Pedersen, 1978; Wallace, 2005).  This dysfunction often arises 

from mutations in the mitochondrial genome (mtDNA).  mtDNA mutations appear to 

accumulate in primary tumors (Polyak et al., 1998), and lead to the generation of flawed 

ETC complexes and resultant elevated ROS production (Ishikawa et al., 2008; Petros et 

al., 2005).  However, more research is still needed to determine whether mtDNA 

mutations truly drive tumorigenesis and metastasis, or are merely a marker of 

dysfunctional tumor mitochondria (Boland et al., 2013).  

Mutations in nuclear-encoded mitochondrial genes also play a role in the 

mitochondrial dysfunction seen in several types of cancer.  Chief among these are 

mutations in TCA cycle enzymes.  Mutations in isocitrate dehydrogenase 1 (IDH1) and 2 

(IDH2) have been found to play an important role in glioblastoma and acute myeloid 

leukemia (AML) (Cohen et al., 2013; Mardis et al., 2009). Fumarate hydratase (FH) 

mutations give rise to hereditary leiomyomas and renal cell carcinomas (Launonen et al., 

2001; Tomlinson et al., 2002).  Germline mutations in genes encoding subunits B, C, and 

D of succinate dehydrogenase (SDH) lead to complex II dysfunction and increased 

susceptibility to hereditary paragangliomas and pheochromocytomas (Neumann et al., 

2004).  The consequences of TCA enzyme mutations in cancer are still an area of intense 

research interest.  Mutant IDH1/IDH2 convert isocitrate to the oncometabolite 2-

hyrdoxyglutarate (Ward et al., 2010), while FH and SDH mutations lead to a buildup of 

their respective substrates, fumarate and succinate.  Increased levels of fumarate, 
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succinate, or 2-hydroxyglutarate contribute, along with ROS, to the activation of 

oncogenes (e.g. hypoxia inducible factor -1α, HIF-1α) (Selak et al., 2005; Zhao et al., 

2009) and further metabolic changes (Zhang et al., 2007).   

 

1.4 Oncogenes & tumor suppressors in onco-metabolism 

Aerobic glycolsis and glutaminolysis are both driven by numerous oncogenic 

pathways (DeBerardinis and Cheng, 2010; Elstrom et al., 2004; Frauwirth et al., 2002; 

Rathmell et al., 2003).  Similarly, the oncoproteins HIF-1α, Ras, and c-Myc each inhibit 

mitochondrial oxidative metabolism in mice (Zhang et al., 2007), while the tumor 

suppressor p53 maintains mitochondrial function at several levels (Matoba et al., 2006).  

The interconnected nature of prominent cell growth signaling pathways and metabolic 

control lends further support to the notion that metabolic reprogramming is a necessary 

component of carcinogenesis.  This section details our current understanding of some of 

the most important relationships between oncoproteins and metabolic reprogramming, 

however, this list is by no means exhaustive. It is likely that new important connections 

between cell growth signaling and metabolic control will be elucidated as our 

understanding of these processes continues to improve. 

1.4.1 Oncogenes drive the Warburg effect 

One critical oncoprotein that exerts significant control of cellular metabolism is 

HIF-1α.  HIF-1α is a transcription factor that is stabilized and promotes anaerobic 

glycolysis only under low oxygen conditions in normal cells.  Through a variety of 
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mechanisms, cancer cells up-regulate HIF-1α, or increase its stabilization in the presence 

of normal oxygen levels.  Constitutive HIF-1α stabilization in normoxia can occur as the 

result of mutations in the tumor suppressor von hippel lindau (VHL).  As mentioned 

above, increased levels of fumarate, succinate, or 2-hydroxyglutarate due to mutations in 

TCA cycle enzymes contribute, along with ROS, to HIF-1α stabilization even under 

normoxic conditions (Selak et al., 2005; Zhao et al., 2009). HIF-1α activation further 

impairs mitochondrial function in a feed forward mechanism of respiratory failure 

(Zhang et al., 2007).  Among its many effects on cell growth and cellular metabolism, 

HIF-1α up-regulates LDH and lactate production, and decreases pyruvate flux into the 

TCA cycle by up-regulating pyruvate dehydrogenase kinase, which inhibits PDH.  HIF-

1α also has purported effects on expression of the M2 isoform of pyruvate kinase (Tong 

et al., 2009). 

Although it is not an oncogene per se, tumor cells preferentially express the M2 

isoform of the glycolytic enzyme pyruvate kinase (PKM2) (Mazurek, 2011; Reinacher 

and Eigenbrodt, 1981), which catalyzes the conversion of phosphoenolpyruvate (PEP) to 

pyruvate.  PKM2 is a less active isoform relative to the M1 isoform that is predominantly 

expressed in most normal tissues, and thereby switching to PKM2 down-regulates the 

amount of pyruvate generated by glycolysis (Christofk et al., 2008a; Christofk et al., 

2008b; Dombrauckas et al., 2005).  In doing so, PKM2 regulates the flux of carbon into 

the PPP, effectively functioning as a gatekeeper that directs the flow of carbon into 

biosynthetic pathways and away from complete catabolism (Christofk et al., 2008a).   
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Another prominent oncoprotein, c-Myc, is particularly important in the control of 

glutamine uptake and metabolism (DeBerardinis and Cheng, 2010).  c-Myc increases 

expression of glutamine transporter proteins, as well as expression of glutaminase (Gao et 

al., 2009; Wise et al., 2008).  Like other oncoproteins, c-Myc also up-regulates genes 

encoding glycolytic enzymes, along with LDH (Osthus et al., 2000; Shim et al., 1997).  

Furthermore, c-Myc also increases expression of several genes involved in nucleotide 

biosynthesis (Liu et al., 2008; Mannava et al., 2008).  Tumor cells transformed by the 

myc oncogene are also particularly sensitive to glutamine withdrawal (Yuneva et al., 

2007). 

In contrast, the tumor suppressor p53 promotes oxidative phosphorylation at 

several levels.  The p53 target gene TIGAR inhibits glycolysis and lowers cellular ROS 

(Bensaad et al., 2006).  p53 also induces Synthesis of Cytochrome c Oxidase 2 (SCO2), a 

positive regulator of complex IV of the ETC (Matoba et al., 2006), along with subunit I 

of complex IV itself (Okamura et al., 1999).  Finally, p53 also induces expression of 

p53R2, a ribonucleotide reductase responsible for the maintenance of mitochondrial 

DNA (Bourdon et al., 2007).  Hence, loss of p53 in cancers removes a significant positive 

regulator of mitochondrial oxidative metabolism, supporting the idea that mitochondrial 

oxidative phosphorylation is a tumor suppressive mechanism. 

In addition to the ability of many oncoproteins to exert simultaneous control over 

growth signaling and metabolic pathways, some proteins, like mTOR, also receive 

regulatory inputs from metabolic second messengers. mTOR is activated in response to 

growth factors, and plays an important role in the regulation of protein translation and 
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amino acid synthesis, consequently controlling the expression of genes involved in many 

facets of growth and metabolism. In the context of low cellular energy status (low 

ATP/high AMP), AMP-activated protein kinase (AMPK) inhibits mTOR complex 1 

(mTORC1) through multiple mechanisms (Corradetti et al., 2004; Gwinn et al., 2008).  

Conversely, high levels of available branched chain amino acids activate mTORC1 

through the Ragulator complex (Sancak et al., 2010; Sancak et al., 2008).  When active, 

mTORC1 promotes protein translation through its actions on S6 kinase and eukaryotic 

initiation factor 4 binding protein (4EBP).  Thus, mTORC1 sits at the interface between 

growth factor signaling and metabolism, integrating incoming signals from growth factor 

stimuli with the current metabolic state of the cell, and adjusting energy expenditure, 

metabolic pathway utilization, and cell growth in response.  Although relatively less well 

understood, mTOR complex 2 also regulates growth signaling and cell metabolism 

upstream of Akt, and may have important, under-appreciated effects on growth signaling 

outside of this role (Masui et al., 2014).  However, while all of the aforementioned 

proteins play important and substantial roles, arguably the most important regulator of 

growth promoting metabolism is the PI3K/Akt pathway. 

1.4.2 Akt as “the Warburg kinase” 

Akt is a serine/threonine kinase that is one of the most commonly up-regulated 

oncoproteins in a variety of cancers. Through a series of steps, Akt is activated in 

response to mitogens such as epidermal growth factor (EGF), insulin-like growth factor 1 

(IGF-1), and insulin (Illustration 1.6).  Upon activation, it phosphorylates a myriad of  
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Illustration 1.6 The PI3K/Akt signaling pathway 

Upon growth factor stimulation, receptor tyrosine kinases (RTKs) dimerize, and the 
monomers trans-phosphorylate one another, stimulating the recruitment of scaffolding 
proteins and ultimately recruiting and activating PI3K.  Active PI3K phosphorylates the 
membrane phospholipid PIP2, converting it to PIP3.  This recruits proteins with 
pleckstrin homology (PH) domains to the plasma membrane, including PDK1 and Akt.  
At the membrane, Akt is activated by PDK1 and mTORC2 by phosphorylation on T308 
and S473, respectively.  Once activated, Akt phosphorylates a myriad of substrates, 
including GSK-3, FOXO1, and TSC2.  Phosphorylation of GSK-3 and FOXO leads to 
the transcriptional up-regulation of cyclins, and the repression of cell cycle inhibitory 
proteins.  Phosphorylation of TSC2 dis-inhibits the mTORC1 complex, which in turn 
activates a variety of substrates, mainly involved in protein translation.  The phosphatases 
PTEN and PP2A negatively regulate Akt activity.  PTEN catalyzes the conversion of 
PIP3 back to PIP2, while PP2A dephosphorylates Akt directly.  
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proteins involved in protein translation, metabolism, cell survival/anti-apoptosis, and cell 

cycle progression, including among others Glycogen Synthase Kinase-3α/β (GSK-3α/β), 

Forkhead Box protein O (FOXO) transcription factors, tuberin/tuberous sclerosis 2 

(TSC2), p21 (Cip1/Waf1) and p27 (Kip1) (Brazil et al., 2004; Manning and Cantley, 

2007).  Simultaneously, Akt controls proliferation in part by driving metabolic 

reprogramming (Elstrom et al., 2004; Rathmell et al., 2003).  

Akt stimulates glycolysis directly and indirectly on several levels, by increasing 

glucose uptake (Rathmell et al., 2003), and activating glycolytic enzymes 

transcriptionally and post-translationally (Illustration 1.7) (Manning and Cantley, 2007).  

Akt enhances glucose uptake by increasing expression and membrane localization of 

GLUT1, the major contributor to basal glucose uptake in most cell types, through an 

mTOR-dependent, post-transcriptional mechanism (Rathmell et al., 2003; Taha et al., 

1999).  It also boosts glycolytic flux by stimulating the activity of several glycolytic 

enzymes.  Akt phosphorylates hexokinase (Miyamoto et al., 2008), the rate-limiting 

enzyme in glycolysis, promoting its mitochondrial localization and activity (Gottlob et 

al., 2001). Phosphofructokinase 2 is another Akt target; its activation by Akt in turn 

stimulates activity of phosphofructokinase 1 (PFK) (Deprez et al., 1997).   Activated Akt 

also enhances translation of HIF-1α through its actions on mTOR (Hudson et al., 2002; 

Majumder et al., 2004; Zhong et al., 2000), which in turn activates glycolytic genes as 

described above (Semenza et al., 1994).  Combined, these changes substantially augment 

glycolytic rate and lactate production (Elstrom et al., 2004).   
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Illustration 1.7 Akt controls many facets of metabolism  

Akt activation up-regulates anabolic metabolism through several pathways.  Akt 
stimulates aerobic glycolysis by enhancing the activities of glycolytic enzymes like 
hexokinase (HK) and phosphofructokinase (PFK), which also increasing GLUT and other 
glycolytic gene expression through HIF-1α.  At the same time, Akt up-regulates de novo 
lipid biosynthesis via the activation of SREBP transcription factors and the activation of 
ATP citrate lyase (ACL).  Finally, Akt also suppresses macromolecular degradation 
through the inhibition of carnitine palmitoyltransferase and mitochondrial oxidative 
phosphorylation.  
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Akt also plays an important role in de novo lipid synthesis (Illustration 1.7) 

(Yecies et al., 2011).  One way in which Akt signaling affects lipid metabolism is through 

the inhibitory phosphorylation of GSK-3α/β.   GSK-3 has been shown to promote the 

degradation of sterol regulatory element binding proteins (SREBPs), a class of 

transcription factors well known for their ability to induce genes involved in fatty acid 

biosynthesis (Sundqvist et al., 2005).  Thus, Akt induces SREBPs by preventing GSK-3 

from marking them for degradation.  In addition, Akt indirectly induces SREBPs through 

its actions on mTOR (Yecies et al., 2011).  Akt also controls fatty acid biosynthesis 

through direct phosphorylation and activation of ACL (Berwick et al., 2002).  As 

mentioned earlier, ACL catabolizes the conversion of cytoplasmic citrate to acetyl Co-A, 

which is then used as a precursor for the synthesis of new fatty acids. Highlighting its 

importance in cancer development, knockdown or suppression of ACL opposes Akt-

mediated proliferation and tumorigenesis (Bauer et al., 2005; Hatzivassiliou et al., 2005). 

Finally, while promoting anabolic pathways, Akt also suppresses macromolecular 

degradation.  Studies have shown that Akt can inhibit fatty acid oxidation, at least in part 

through modulation of CPT1 expression (Buzzai et al., 2005; Deberardinis et al., 2006). 

Akt also negatively regulates mitochondrial oxidative phosphorylation through the direct 

phosphorylation and inhibition of PGC-1α, a transcriptional co-activator that positively 

regulates mitochondrial biogenesis and oxidative metabolism (Li et al., 2007).  Thus, Akt 

simultaneously controls lipid synthesis and breakdown, via multiple pathways of 

metabolic regulation.  
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1.4.3 Metabolic regulation of Akt 

In addition to the governance of cellular metabolism by growth signaling, 

metabolic changes are well known to exert reciprocal control of growth signaling 

pathways through specific proteins (e.g. AMPK and mTOR) (Ward and Thompson, 

2012). However, in contrast to the many well-established roles of Akt in the metabolic 

regulation of glycolysis, lipogenesis, and mitochondrial oxidative phosphorylation 

(discussed above), there is a paucity of information regarding whether and how metabolic 

state modulates Akt signaling. 

Some evidence suggests that lipids can exert reciprocal regulation of Akt.  The 

lipids sphingosine 1-phosphate, poly-unsaturated fatty acids, and arachidonic acid have 

each been implicated to play some role in Akt activation (Gu et al., 2013; Schuppel et al., 

2008; Villegas-Comonfort et al., 2014).  In one recent study, knockdown of ACL 

inhibited Akt activation (Hanai et al., 2012).  However, these reports are far from 

conclusive regarding the specific mechanisms underlying Akt regulation by these diverse 

lipid species.  Further studies are necessary to understand the relationships between 

cellular metabolic status and control of Akt signaling. 

 
 
1.5 Mitochondrial uncoupling proteins (UCPs) 

With the renewed focus on metabolic reprogramming as an essential component 

of transformation has come intense interest in the development of cancer therapies that 

target or oppose the metabolic phenotype of tumor cells.  One effective strategy to drive 
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nutrient oxidation and limit energy production is to decrease the efficiency of 

mitochondrial oxidative phosphorylation through proton leak.  Mitochondrial uncoupling 

proteins (UCPs) are evolutionarily conserved, nuclear-encoded members of the 

mitochondrial solute carrier (SLC) superfamily that increase proton leak across the inner 

mitochondrial membrane in a variety of tissues, including brown fat, heart, skeletal 

muscle, and most recently, skin (Brand et al., 1999; Cannon et al., 1982; Mori et al., 

2008a; Lago et al., 2012).  Five uncoupling protein homologs have now been described in 

mammals, with varying tissue distribution and diverse physiological roles. 

UCPs are so named because the proton leak that they generate disengages (i.e. 

“uncouples”) fuel oxidation and electron transport from ATP synthesis, and as a result, 

uncoupled cells increase substrate oxidation and electron transport in an effort to 

maintain mitochondrial membrane potential (Ψ) (Illustration 1.8) (Esteves and Brand, 

2005; Krauss et al., 2005). In effect, UCP expression decreases Ψ, increases ETC activity 

and O2 consumption, and decreases ROS generation (Esteves and Brand, 2005).  

Uncoupled respiration fails to generate ATP, and therefore mitochondrial uncoupling not 

only drives mitochondrial respiration, but also escapes the “respiratory control” caused 

by feedback inhibition normally seen at supraphysiological ATP concentrations.  Thus, 

the effects of uncoupling on mitochondrial bioenergetics are in direct opposition to the 

corresponding bioenergetic respiratory phenotypes observed in malignant cancer cells 

(Table 1.1).    
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Illustration 1.8 Mitochondrial uncoupling proteins disengage eletron transport from 
ATP production 

Mitochondrial uncoupling proteins (UCPs) are a family of nuclear-encoded solute 
carriers that are localized to the inner mitochondrial membrane.  UCPs allow proton (H+) 
leak back into the mitochondrial matrix, but without ATP production.  Since this reaction 
is favorable (because the H+ are moving back down the electrochemical gradient), the 
potential energy is released in the form of heat.  Because of the lowered Ψ, ETC activity 
increases, in an effort to replenish the H+ gradient that is depleted by the UCP.  This 
drives increased oxygen consumption, and lowers levels of reduced NADH, thus cells 
increase catabolic metabolism and TCA cycle flux to restore NADH levels.  
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Table 1.1 Mitochondrial uncoupling opposes the metabolic phenotypes of cancer 

Many of the effects of mitochondrial uncoupling are in direct juxtaposition to the 
mitochondrial phenotypes of malignant or rapidly proliferating cells.  While cancer cells 
typically display high mitochondrial membrane potential (Ψ) and ROS production, and 
decreased eletron transport and oxygen consumption, mitochondrial uncoupling lowers Ψ  
and ROS production, while increasing ETC activity and respiration.  In effect, these 
changes drive catabolic metabolism in uncoupled cells, in opposition to the immense 
anabolic needs of rapidly dividing tumor cells.  
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1.5.1 The uncoupling protein homologs 

UCP1, also called thermogenin, was the first uncoupling protein to be discovered, 

and later cloned, in a series of studies that took place in the late 1970’s and early 1980’s 

(Bouillaud et al., 1985; Cannon et al., 1982; Nicholls, 1976).  Its expression is restricted 

to brown adipose tissue (BAT), where it has been shown to be an important mediator of 

non-shivering (adaptive) thermogenesis, as the energy released by protons traveling down 

their gradient is discharged in the form of heat (Enerback et al., 1997; Thomas and 

Palmiter, 1997). 

Pursuant to its status as the prototype UCP, UCP1 is the best described of the five 

mammalian UCP homologs. Although to date there is still no complete, high-resolution 

crystal structure of any UCP, some evidence suggests that UCP1 may function as a 

homodimer; however, these findings are not conclusive (Klingenberg and Appel, 1989; 

Lin et al., 1980).  The mechanism of proton transport by UCP1 was recently elucidated in 

an elegant study by Fedorenko et al. (2012), which showed that a protonated fatty acid 

enters UCP1 through the central channel and releases a proton into the mitochondrial 

matrix, but does not enter the matrix itself.  UCP1 knockout mice fail to maintain body 

temperature when exposed to cold ambient temperatures (Enerback et al., 1997), and are 

prone to obesity if housed in conditions that do not require them to generate body heat 

(i.e. thermoneutrality) (Feldmann et al., 2009).  Along with complimentary studies, these 

results led researchers to conclude, perhaps prematurely, that UCP1 was the sole 

mediator of mammalian adaptive thermogenesis. 
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The first two novel UCP1 homologs, UCP2 and UCP3, were identified in 1997, 

and presumed to act as uncouplers based on sequence homology to UCP1 (Boss et al., 

1997; Fleury et al., 1997).  UCP2 and UCP3 share about 73% homology with one 

another, and roughly 59% and 57% homology with UCP1, respectively.  Although they 

were discovered nearly 20 years ago, the physiological function(s) of UCP2 and UCP3 in 

diverse contexts continue to be a matter of active investigation. 

UCP2 is expressed in a wide variety of diverse tissues, including (but not limited 

to) immune cells, lung, liver, stomach, and pancreas (Fleury et al., 1997; Pecqueur et al., 

2001). Perhaps the most well described function of UCP2 is its role in insulin secretion.  

Pancreatic β-cells sense glucose concentration and secrete insulin in response to high 

cellular ATP concentrations.  High cellular ATP causes the closure of ATP sensitive 

potassium channels, triggering plasma membrane depolarization and the subsequent 

opening of voltage sensitive calcium channels, calcium influx, and stimulation of insulin 

secretion via exocytosis (Ashcroft and Gribble, 1999).  By lowering mitochondrial ATP 

production, UCP2 inhibits insulin secretion, particularly in circumstances of elevated 

glucose and/or FFA, both of which induce UCP2 expression (Chan et al., 2004a; Zhang 

et al., 2001).   Accordingly, UCP2 knockout mice exhibit enhanced insulin secretion 

(Zhang et al., 2001).  Interestingly, UCP2 knockout mice have no known 

thermoregulatory defects, possibly due to the lack of UCP2 protein expression in major 

thermogenic tissues (Arsenijevic et al., 2000). 

UCP3 is expressed in BAT, heart, skeletal muscle, and most recently identified by 

our lab and others, skin (Boss et al., 1997; Mori et al., 2008a; Vidal-Puig et al., 1997, 
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Lago et al., 2012).  Similar to UCP2, early work with UCP3 seemed to indicate that 

unlike UCP1, UCP3 did not play a major role in the determination of basal metabolic rate 

or cold-induced thermogenesis, and therefore researchers concluded that UCP1 was the 

sole mediator of adaptive thermogenesis (Golozoubova et al., 2001; Gong et al., 2000; 

Vidal-Puig et al., 2000).  However, UCP3 also plays an important, if underappreciated 

role in non-shivering thermogenesis.  Although UCP3 knockout mice survive upon cold 

exposure, they lack the hyperthermic response that wild type mice exhibit in response to 

treatment with pharmacological amphetamines (Mills et al., 2003), norepinephrine 

(Sprague et al., 2007), and bacterial lipopolysaccharide (unpublished data). 

In addition to the role of UCP3 in thermogenesis, UCP3 and UCP2 have also both 

been implicated in the control of mitochondrial ROS production (Arsenijevic et al., 

2000).  Chemical uncouplers are well known for their ability to lower ROS production by 

the ETC, and a number of studies have shown that UCP3 expression mitigates 

mitochondrial ROS production (Anderson et al., 2007; MacLellan et al., 2005; Vidal-

Puig et al., 2000), and decreases ROS-induced protein damage in skeletal muscle 

(Barreiro et al., 2009).  Superoxide activates UCP2 and UCP3; thus, the model that has 

developed is that elevated levels of ROS activate the novel UCPs, causing mild 

uncoupling, which relieves respiratory inhibition and thereby decreases ROS production 

(Echtay et al., 2002a; Echtay et al., 2002b).   

Finally, UCP3 has been proposed to play an important part in fatty acid oxidation.  

Fasted UCP3 knockout mice have lower whole-body fat oxidation than wild type mice 

(Bezaire et al., 2001), and UCP3 overexpression in skeletal muscle increases fatty acid 
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oxidation (Bezaire et al., 2005; MacLellan et al., 2005).  In fact, overexpression of UCP3 

favors fatty acid oxidation over glucose oxidation (Garcia-Martinez et al., 2001), and a 

recent study showed that reduction of UCP3 not only decreased fatty acid oxidation, but 

also led to insulin resistance (Senese et al., 2011).  These studies have led to the proposal 

that at least one major physiological role for UCP3, and perhaps its molecular mechanism 

of uncoupling, may be through the export of fatty acid anions from the matrix, 

regenerating free coenzyme A and thus facilitating rapid β-oxidation and also providing 

protection from lipotoxicity (Himms-Hagen and Harper, 2001).  The role of UCP3 in 

fatty acid oxidation is of substantial importance given the current obesity epidemic and 

the rise of related metabolic syndrome spectrum disorders, and therefore is an area of 

ongoing research focus. 

Relative to the other novel uncoupling protein homologs, UCP4 and UCP5 share 

less sequence homology with UCP1 (~34%) (Sanchis et al., 1998). UCP4 is most closely 

related to the c. elegans uncoupling protein (ceUCP), and therefore may be the 

“ancestral” uncoupling protein (Sokolova and Sokolov, 2005). Expression of both UCP4 

and UCP5 is restricted to nervous tissues, and although they were only discovered a few 

years after UCP2 and UCP3, their functions are less well described.  Because they are so 

dissimilar from the other UCPs, it has been speculated that UCP4 and UCP5 may not 

function as classical uncouplers, but may instead play a role in mitochondrial transport of 

other molecules.  In fact, ceUCP and human UCP4 were recently shown to transport 

succinate across the mitochondrial inner membrane (Pfeiffer et al., 2011)(& unpublished 

data).   
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1.5.2 UCPs in cancer 

The role of uncoupling proteins in carcinogenesis is controversial: while some 

studies have reported that up-regulation of UCP2 confers tumors a survival advantage 

(Derdak et al., 2008; Horimoto et al., 2004), others have shown that UCP2 expression 

negatively impacts tumorigenesis (Derdak et al., 2006; Su et al., 2012).  We have 

previously shown that expression of UCP2 kills tumor cells but not a non-tumorigenic 

fibroblast cell line (Mills et al., 2002). Animals that express an epidermal UCP1 

transgene are resistant to two-stage chemical skin carcinogenesis (unpublished data), and 

mice expressing UCP1 specifically in skeletal muscle are protected from the development 

of lymphomas and other age related diseases (Gates et al., 2007).  A recent report 

correlated UCP3 expression with Akt down-regulation in a high throughput assay for 

FOXO1 nuclear localization (Senapedis et al., 2011), and analysis of UCP3 expression in 

the Oncomine database revealed seventeen studies in which UCP3 was among the top 

10% of down-regulated genes in cancer tissues compared to normal tissue controls (Table 

4.1).  These studies, together with the knowledge of how UCP3 opposes the metabolic 

phenotype of rapidly proliferating tumor cells, provided the basis for a mechanistic 

investigation of the relationships between mitochondrial uncoupling and carcinogenesis. 

 

1.6 Dissertation objectives: Utilizing UCPs to target carcinogenesis 

Given that mitochondrial uncoupling drives catabolic metabolism, contrary to the 

anabolic needs of cancer cells, we hypothesized that driving this process would oppose 
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tumorigenesis.  Part of the difficulty in targeting tumor cell metabolism lies in the 

flexibility of metabolic systems and the panoply of nutrients to which tumor cells have 

access.  Mitochondrial uncoupling provides the unique ability to increase substrate 

oxidation without increasing ATP production (and in fact, can actually lower cellular 

ATP).  Furthermore, mitochondrial uncoupling should in theory drive oxidation of a 

diverse array of substrates – including fatty acids, glucose, and amino acids – thus it 

simultaneously depletes biosynthetic precursors across a variety of pathways.  At the 

same time, enforced uncoupling should lower mitochondrial ROS production, another 

possible tumor suppressive mechanism.  Therefore, we set out to examine the 

relationships between mitochondrial uncoupling and tumorigenesis. 

In order to do so, we chose to develop a novel transgenic mouse model, the K5-

UCP3 mouse, as a tool to show proof-of-principle whether enforced mitochondrial 

uncoupling could affect cancer susceptibility and development.  K5-UCP3 mice express a 

murine UCP3 transgene targeted to the basal epidermis by the keratin 5 promoter (K5).  

Because UCP3 expression has recently been shown in skin (Mori et al., 2008a), and 

because the process of two-stage skin carcinogenesis (including tissue dynamics, tumor 

progenitor cell populations, and major mechanistic pathways) is so well described, this 

model provided an ideal setting in which to test our hypothesis.   

1.6.1 The two-stage chemical skin carcinogenesis model 

Murine skin consists of an outer layer called the epidermis, and an inner layer, the 

dermis, which is separated from the epidermis by a basement membrane.  The epidermis 
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includes the sebaceous (oil) glands, hair follicles, and interfollicular epidermis (IFE), 

which forms the surface of the skin (Alonso and Fuchs, 2006).  About 95% of cells 

within the epidermis are keratinocytes, so named because they express specific 

filamentous keratin proteins depending on their differentiation status and epidermal skin 

layer (Fuchs and Green, 1980).  Within the IFE, proliferating, undifferentiated 

keratinocytes form a basal cell layer that anchors the rest of the tissue to the basement 

membrane.  As they proliferate, some of these basal keratinocytes will detach from the 

basement membrane, migrating out toward the skin surface as they undergo terminal 

differentiation. 

This process is directed at least in part by an endogenous calcium gradient that 

exists in the epidermis, with calcium concentrations highest in the outermost layers of the 

skin (Cornelissen et al., 2007; Menon et al., 1985).  The mechanisms underlying calcium-

induced keratinocyte differentiation are complex, but involve extracellular calcium-

induced release of intracellular calcium stores, and the subsequent activation of calcium-

sensitive signaling proteins (e.g. protein kinase C)(Tu et al., 2004).  As cells migrate 

outward and undergo differentiation, they display expression of a number of different 

keratin and other filamentous protein markers that correlate well to the differentiation 

status of the cell (Illustration 1.9)(Fuchs and Green, 1980).   By the time the keratinocytes 

reach the outermost layer, called the cornified epithelium, they have terminally 

differentiated, losing their organelles and nucleus, and forming dead, protein filled sacs 

called squames (Alonso and Fuchs, 2006). 
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Illustration 1.9 Cell populations in murine epidermis 

The epidermis consists of the hair follicles, sebaceous glands, and interfollicular 
epidermis (IFE).  Within the hair follicle, the slow cycling, quiescent bulge stem cell 
(bSC) population is located below the sebaceous gland, and is responsible for 
maintenance or regeneration of all three epidermal structures.  bSC are marked by 
expression of keratin 15 and CD34, and the capacity to retain labels (because of their 
slow cycling nature).  Within the IFE, undifferentiated basal keratinocytes form the layer 
immediately above the basement membrane, and express keratin 5.  As the basal 
keratinocytes proliferate, they move outward and differentiate in response to an in vivo 
calcium gradient.  Differentiating keratinocytes express keratin 1 and 10, and ultimately 
loricrin and involucrin.  Terminally differentiated keratinocytes are called squames, and 
are basically dead protein filled “sacs” that form the cornified epithelium, the outer 
barrier between the skin and the environment.  

Bulge stem cells: 


Keratin 15 +


CD34 +


Label retaining cells


Sebaceous gland


Interfollicular Epidermis (IFE)


Dermal 
Papilla


H
ai

r


Bulge stem cells:


Keratin 15 +


CD34 +


Label retaining cells


Sebaceous gland


Interfollicular Epidermis (IFE) 


Dermal 
Papilla


H
ai

r


Cornified Epithelium: 
Loricrin + 
Involucrin + 
 
Suprabasal 
Epidermis: 
Keratin 1 + 
Keratin 10 + 
 
Basal Epidermis: 
Keratin 5 + 



 42 

Within the hair follicle lies the most well described adult stem cell population in 

murine skin, the bulge stem cells (bSC), so named for the shape of the region where they 

are localized, halfway down the hair follicle (Alonso and Fuchs, 2003; Cotsarelis et al., 

1990).  The bSC have been shown to play important roles in hair follicle and sebaceous 

gland development (Claudinot et al., 2005), and contribute to IFE regeneration after 

wound healing or proliferative stimuli (Ito et al., 2005b).  These cells are slow-cycling, 

and marked by expression of keratin 15, CD34, and high levels of α6-integrin (Liu et al., 

2003; Trempus et al., 2003)(Illustration 1.9).  As such, they have been shown to be the 

only cell population in the skin capable of producing carcinomas when targeted by 

carcinogens (Morris, 2000). 

The mouse skin model is one of the best-established models for the study of step-

wise tumorigenesis in vivo.  In a typical two-stage chemical carcinogenesis regimen, mice 

receive an initial, sub-carcinogenic dose of an initiating agent that makes an irreversible 

change (DNA mutation), however is not enough to drive tumor formation alone (Abel et 

al., 2009).  This is followed by repeated application of a tumor promoting agent, which is 

typically an inflammatory or other pro-growth stimulus, resulting in the formation of 

small, pre-malignant outgrowths of cells called papillomas.  With repeated promoter 

application, these papillomas progress to carcinoma in situ, and ultimately, invasive 

carcinomas (Abel et al., 2009).  The two-stage skin carcinogenesis model is advantageous 

over other rodent cancer models because it more closely approximates the “multi-hit” 

nature of the origin of most human cancers than complete carcinogenesis approaches 

(Lawley, 1994).  It also allows for the separation of effects on each stage (initiation vs. 
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promotion), and tumor development can be monitored visually throughout the 

experiment.  Furthermore, the age and the wide usage of various two-stage skin 

carcinogenesis protocols has resulted in a plethora of knowledge about the system, 

making it one of the most well-described tumor models available today (Abel et al., 

2009). 

1.6.2 The K5-UCP3 mouse 

The keratin 5 promoter has been extensively used to target transgenes to the basal 

epidermis and other stratified epithelia (DiGiovanni et al., 2000; Liang et al., 2009; 

Segrelles et al., 2007).  Thus, creation of the K5-UCP3 mouse provided the opportunity 

to drive UCP3 overexpression in the proliferative compartment of the epidermis, along 

with the putative tumor progenitor stem cell population.  This allowed us to perform 

experiments to test whether and how mitochondrial uncoupling affected keratinocyte 

proliferation and tumorigenesis.  The experiments herein describe the initial 

characterization of this novel mouse model, its strikingly tumor resistant phenotype, and 

the molecular mechanisms underlying UCP3-induced chemoresistance. 

In large part, we believe that mitochondrial uncoupling opposes malignancy by 

driving catabolic mitochondrial metabolism, forcing cells to degrade metabolites in order 

to sustain mitochondrial membrane potential rather than use them for macromolecular 

biosynthesis. Herein, we show that K5-UCP3 mice are strikingly protected from tumor 

promotion through blockade of PI3K/Akt signaling.  Blunted Akt activation 

corresponded to increased activity of protein phosphatase 2A (PP2A), along with reduced 
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membrane recruitment of Akt, and overexpression of wild type Akt rescued phorbol ester 

induced proliferation and two-stage chemical carcinogenesis.  Finally, blockade of Akt 

membrane recruitment was accompanied by markers of membrane phospholipid 

breakdown that suggest alterations in membrane composition and dynamics, as a result of 

UCP3-driven lipid catabolism.  In support of this idea, inhibition of mitochondrial β-

oxidation activated Akt.  These results establish a mechanism for UCP3-induced 

chemoresistance, and identify a novel relationship between mitochondrial metabolism 

and Akt signaling. 
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Chapter 2:  Materials and Methods 

 

2.1  Chemicals 

12-O-tetradecanoylphorbol-13-acetate (TPA) and okadaic acid (OA) were 

purchased from LC Laboratories (Woburn, MA).  Etomoxir ethyl ester (Eto) was 

purchased from US Biological (Salem, MA).  Acetone, 7,12-dimethylbenz[a]anthracene 

(DMBA), and all other reagents (unless otherwise noted) were purchased from Sigma (St. 

Louis, MO). 

2.2  Animals 

The mouse strains used in these studies were wild type FVB/N, K5-UCP3 

(FVB/N background), K5-UCP1 (FVB/N background), C57Bl6/j, UCP3-/- (C57Bl6/j 

background), UCP3-/- (FVB/N background), Tg.AC (FVB/N background), bitransgenic 

K5-UCP3/Tg.AC (FVB/N background), K5-Akt (FVB/N background), and bitransgenic 

K5-UCP3/K5-Akt (FVB/N background). K5-UCP3 and K5-UCP1 animals were 

generated using a bovine keratin-5 promoter (K5) targeting construct as previously 

described (DiGiovanni et al., 2000; Lago et al., 2012).   Multiple founders of K5-UCP3 

and K5-UCP1 mice were identified by PCR and Southern blot analysis and maintained as 

hemizygous breeder colonies.  K5-Akt FVB/N mice were previously generated using a 

bovine keratin 5 (K5) targeting construct as described (DiGiovanni et al., 2000; Segrelles 

et al., 2007), maintained as hemizygous breeder colonies, and crossed K5-UCP3 x K5-

Akt to produce bitransgenic K5-UCP3/K5-Akt mice and littermate controls. 
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FVB/N mice were purchased from Harlan (Indianapolis, IN) for the studies 

described in Chapter 3, and from Jackson Laboratories (Bar Harbor, ME) for the studies 

described in Chapter 4.  C57Bl6/j animals were purchased from Jackson Labs (Bar 

Harbor, ME).  Tg.AC mice were purchased from Taconic (Hudson, NY).  Unless 

otherwise indicated, all experiments were performed using adult, 6-8 week old mice.  All 

animal husbandry and experiments were carried out in strict accordance to guidelines 

defined by the Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) and approved by the institutional animal research committees at The 

University of Texas at Austin and UT-MD Anderson, Science Park Research Division. 

2.3  Immunoblotting 

Epidermal tissue or whole cell lysates were prepared by lysis in RIPA buffer (50 

mM Tris-HCl, 1% NP-40, 0.5% Na Deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM 

EDTA) supplemented with protease and phosphatase inhibitor cocktails (Roche, Nutley, 

NJ).  For analysis of mitochondrial protein expression, mitochondria were isolated using 

differential centrifugation and lysed in RIPA buffer as described in (Brand et al., 2005).  

For membrane localization experiment, tissue fractionation was performed using 

differential centrifugation and density gradients as described (Cox and Emili, 2006).  

Protein lysates were separated by SDS-PAGE and transferred to nitrocellulose. 

Blots were probed with the following primary antibodies: α-mUCP3, α-hUCP3, 

α-cytokeratin 10 (Abcam, Cambridge, MA), α-phospho Akt S473, α-phospho Akt T308, 

α-Akt, α-phospho FOXO1 S256, α-phospho FOXO1 S319, α-phospho GSK-3β S9, α-
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GSK-3β, α-phospho TSC2 S939, α-phospho mTOR S2448, α-phospho mTOR S2481, α-

mTOR, α-phospho 4EBP1 T36/47, α-4EBP1, α-phospho rs6 T240/244, α-rS6, α-

phospho eIF4G S1108, α-phospho EGFR Y1086, α-EGFR, α-phospho p38 MAPK 

T180/Y182, α-p38 MAPK, α-PTEN, α-PP2Ac, α-PP2Aa, α-phospho ERK T202/Y204, 

α-ERK, α-phospho p90 RSK T359/S363, α-p90 RSK, α-β-Actin, (Cell Signaling 

Technology, Danvers, MA), α-Cyclin D1, α-Cyclin A, α-p21, α-p27, α-α tubulin (Santa 

Cruz Biotechnology, Dallas, TX), α-α3 Integrin (Chemicon, Billerica, MA), α-

cytochrome C (BD Pharm, San Jose, CA), α-DNA polymerase γ (Neomarkers, Fremont, 

CA), and α-UCP3 (Washington Biotechnology, Simpsonville, MD). 

Following primary antibody, blots were incubated with α-rabbit-HRP or α-

mouse-HRP (GE Healthcare, Piscataway, NJ), and developed using chemiluminescent 

substrate (Thermo Scientific, Rockford, IL). Results are representative of three separate 

experiments. 

2.4  Cell cultures 

All cell lines were cultured under standard conditions of 5% CO2, 37°C.  The 

human keratinocyte cell line (HaCaT) was kindly provided by Dr. Van Wilson, College 

of Medicine, Texas A&M.  MCA3D and CH72 cell lines have been widely used by our 

lab and others for skin carcinogenesis studies (Navarro et al., 1991; Rundhaug et al., 

1997c). 
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2.4.1 Mouse primary keratinocyte isolation  

Primary mouse keratinocytes were harvested from the dorsal skin of adult mice 

and cultured as previously described (Morris et al., 1990). For a detailed isolation 

protocol, please refer to Appendix 1.  Briefly, mice were sacrificed by CO2 asphyxiation 

or isofluorane overdose, and a depilatory agent was applied to the skin.  Dorsal skins 

were excised and sub-cutis material was removed, then skins were floated on trypsin to 

separate the epidermis from the dermis.  The epidermis was then scraped into growth 

medium, minced with scissors, and further separated on a percoll gradient to exclude 

fibroblasts.  Isolated primary mouse keratinocytes were used directly for experiments or 

plated on collagen-coated dishes and grown in EMEM-2 with 1% FBS and 0.05 mM Ca2+ 

unless otherwise indicated.   

2.4.2  Human neonatal primary keratinocyte isolation 

Primary neonatal human keratinocytes (NHK) were isolated as previously 

described (Welter et al., 1995) and cultured in Keratinocyte Serum Free Media (KSFM, 

Life Technologies, Grand Island, NY) for no more than 5 passages. For a detailed 

isolation protocol, please see Appendix 2.  Briefly, foreskin tissue was trimmed to lay flat 

and floated on 10 mg/mL Dispase in Hank’s Balanced Salt Solution (HBSS) with sodium 

bicarbonate, HEPES, 5 µg/mL gentamycin, and 10 ng/mL fungizone, overnight at 4°C.  

The next day, epidermis was removed and incubated in 0.25% trypsin with 1 mM EDTA 

at 37°C for 5-7 minutes.  The reaction was quenched with DMEM + 10% FBS media, 

and cells were collected by centrifugation, resuspended, and plated in KSFM in normal 
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cell culture dishes (no feeder layer or special coating procedure is necessary with this 

protocol). 

2.5 UCP3 immunohistochemistry and mitochondrial localization   

2.5.1  UCP3 immunohistochemistry in cells 

 Primary mouse keratinocytes were fixed in 4% paraformaldehyde and 

immunostained using primary rabbit anti-hUCP3 (Chemicon, Billerica, MA), followed by 

secondary α-rabbit Alexa 568 (Invitrogen, Carlsbad, CA).  Nuclei were stained with 

Hoescht 33342 (Invitrogen, Carlsbad, CA).  All fluorescent images were acquired with a 

Nikon Eclipse Ti-S microscope, using a 60x Nikon Plan Apo VC Oil objective with 

NA=1.40.  Images were taken with a Photometrics Coolsnap EZ camera and processed 

using NIS Elements BR 3.0 software.  Results are representative of three separate 

experiments. 

2.5.2  UCP3 immunohistochemistry in tissues 

 Dorsal skin sections were fixed overnight in 10% formalin, moved to 70% 

ethanol, and embedded in paraffin.  Samples were rehydrated and antigens were retrieved 

by boiling in 0.01 M sodium citrate buffer.  Slides were blocked in 10% goat serum for 1 

hour at room temperature, then incubated with primary rabbit α-mUCP3 (Abcam, 

Cambridge, MA) for 1 hour at room temperature, followed by secondary α-rabbit Alexa 

568 (Invitrogen, Carlsbad, CA) for 1 hour at room temperature.  Nuclei were stained with 

Hoescht 33342 (Invitrogen, Carlsbad, CA).  Fluorescent images were acquired on the 
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DiGiovanni lab confocal microscope.  Results are representative of n=3 animals per 

genotype. 

2.5.3  UCP3-dependent oxygen consumption in mouse epidermis     

Isolated epidermis was placed into the respiration chamber in 900µl of 37°C 

Krebs Ringer supplemented with 10 mM glucose.  Oxygen consumption was measured 

using a polaragraphic Clark-type electrode (Instech, Plymouth Meeting, 

PA).   Respiratory rates were measured from n=3 animals per genotype at linear regions 

on the curve under conditions of no treatment, 1 µg/ml oligomycin, and 250µM 2,4-

dinitrophenol (DNP) to determine state 3, state 4, and maximal respiration, respectively. 

2.6  Flow cytometry 

2.6.1  MitoTracker Green 

Primary keratinocytes were stained with 200nM MitoTracker Green (Invitrogen, 

Carlsbad, CA) in growth medium for 45 minutes at 37°C.  Flow cytometric analysis was 

performed using a BD Biosciences FACS Calibur.  Analyses were performed in triplicate 

for n=2 animals per genotype. 

2.6.2  Bulge stem cell marker labeling 

Primary keratinocytes were isolated as described above and incubated with 

fluorescently conjugated α-CD34-FITC and α-α6-Integrin-PE primary antibodies in 

Dulbecco’s modified PBS (DPBS, lacking calcium and magnesium) + 3% FBS + 0.09% 

sodium azide for 30 minutes in the dark on ice.  Cells were washed to remove residual 
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antibody and resuspended in DPBS, then analyzed using a BD Biosciences FACS 

Calibur.  Staining with 7AAD was used to gate for cell viability.  For each experiment, 

cells from n=2-3 mice were pooled during the isolation to collect a sufficient number of 

cells for all samples, single stained, and unstained controls.  Results are representative of 

n=3 separate experiments. 

2.7  Electron microscopy   

Primary keratinocytes were grown on ACLAR® film in 0.05mM Ca2+ normal 

growth medium for 24hrs then switched to KGM-2 media supplemented with either 

0.03mM or 1.2mM Ca2+ as indicated and grown until confluent.  Cultures were fixed in 

2.5% glutaraldehyde / 2% paraformaldehyde in 0.1M cacodylate buffer, pH 7.4 for 1.5hrs 

at room temperature.  Cells were post-fixed in 2% osmium tetroxide / 2% potassium 

ferrocyanide in cacodylate buffer, then rinsed, dehydrated in graded ethanols, and 

transferred to acetone for infiltration with epoxy resin (1:1 mixture of Spurr and EMbed 

812, Electron Microscopy Sciences, Hatfield, PA).  Ultrathin sections (60-70nm) were 

collected on copper grids, counterstained with uranyl acetate and lead citrate, and 

visualized with a Philips EM208, FEI, Oregon operated at 80kV.  

2.8  RT-PCR and microarray analyses  

Total RNA was extracted using TRIzol® Reagent (Invitrogen, Carlsbad, CA) 

followed by the QIAGEN RNeasy mini kit (QIAGEN, Inc.) and was reverse transcribed 

using SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA).  For mUCP3 

expression in keratinocytes, primers were as follows: sense 5’-
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ACTATGGATGCCTACAGAACC and antisense 5’-GACCCGATACATGAACGCT.  

RNA integrity was assessed using expression of mouse β2 microglobulin with the 

following primers: sense 5’-GACTGGTCTTTCTATATCCTGG and antisense 5’-

CAATTTATGCACGCAGAAAG.  For global gene expression analysis, RNA was 

isolated from untreated dorsal skin from n=3 mice per genotype.  RNA was labeled with 

biotin-16-UTP (Perkin Elmer Life and Analytical Sciences, Boston, MA) and hybridized 

to the Illumina MouseRef-6 BeadChip (Illumina, Inc., San Diego, CA). Arrays were 

scanned with an Illumina Bead array Reader, and data processing and analysis was 

performed using Illumina BeadStudio software.   

2.9  Keratinocyte differentiation and stem cell markers   

Dorsal skin sections were fixed and embedded as described above.  Sections were 

stained with haematoxylin and eosin (H&E) for light microscopy.  Bulge stem cells were 

identified with primary α-CD34 (eBioscience, San Diego, CA) and α-K15 (Lab Vision, 

Freemont, CA).  K15 data represent N≥250 hair follicles / n=2 animals per genotype.  

Markers of early and late stage keratinocyte differentiation were assessed using primary 

α-K1 (Covance, Austin, TX), α-loricrin, and α-involucrin (BabCo, Austin, TX).  

2.10  5-bromo-2-deoxyuridine (BrdU) labeling & histology 

2.10.1 Label Retaining Cell Assay 

Slow-cycling bulge stem cells were identified by pulse/chase with 5-bromo-2-

deoxyuridine (BrdU) as described (Taylor et al., 2000).  Briefly, n=3 neonatal mice per 

genotype were injected subcutaneously with BrdU (Sigma, St. Louis, MO; 50µg/g body 
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weight) twice daily for 3 days.  Cells retaining the label after 8 weeks were identified as 

label-retaining cells (LRCs).   

2.10.2  Epidermal Turnover Assay 

The epidermal turnover assay was performed similarly to the LRC assay, with the 

following changes:  Mice received a single i.p. injection of 100µg/g body weight BrdU at 

6 weeks of age.  Following injection, mice were sacrificed and dorsal skin biopsies were 

collected at 2 hours, 5 days, 7 days, 9 days, and 18 days post injection.  Labeled cells in 

the basal interfollicular epidermis were quantified for >100 cells from 5 randomly 

selected skin sections (total >500 cells) from each of n = 3 mice per genotype at each 

time point.  Labeled cells that had detached from the basement membrane and migrated 

outward were not counted in either group. 

2.10.3  Epidermal proliferation in response to promoter treatment 

24 hours after acetone or single TPA treatment, mice were injected i.p. with 10 

mg/kg BrdU in sterile saline, then sacrificed 30 minutes after injection.  For 4x TPA 

treatment, mice received biweekly treatments for 2 weeks (total of 4 treatments), and 

were injected with BrdU and sacrificed 48 hours after the final TPA treatment.  Dorsal 

skin biopsies were collected and fixed overnight in 10% neutral buffered formalin, 

moved to 70% ethanol, and embedded in paraffin.  Sections were stained as previously 

described (Naito et al., 1987).  Labeling index was calculated as the percentage of basal 

epidermal cells positive for BrdU.  >100 cells from 5 randomly selected skin sections 
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(total >500 cells) were counted from each of n = 3 mice per genotype in each treatment 

group. 

2.11  Topical treatments 

For all experiments involving topical application of chemicals, mice were shaved 

on dorsal skin 48 hours prior to treatment.  Two to four animals per group were used for 

each experiment.  Mice were treated topically with 200µL acetone (vehicle control), 12.5 

µg/mL TPA (2.5 µg dose), 25 mM OA (5 nmol dose), or 5 mg/mL Eto (1 mg dose) and 

sacrificed at the indicated time points.  Nair depilatory cream was applied to remove 

remaining hair, and epidermal biopsies were collected and placed on ice.  Subcutaneous 

fat and muscle was removed from each sample by scraping the ventral side of each piece 

of tissue.  Samples were then flipped dorsal side up and epidermal tissue was collected by 

scraping with scalpel.  Following collection, samples were either lysed in Ripa buffer for 

immunoblotting as described above, flash frozen for storage, or used for other analyses as 

indicated. 

2.12  EGF signaling experiments 

2.12.1  Signaling in mouse primary keratinocytes 

For signaling experiments, isolated mouse primary keratinocytes were grown in 

EMEM-2 with 1% FBS for 48-72 hours following isolation, then starved overnight (~18 

hours) before treatment. Cells were treated with 40 ng/mL EGF (Gemini Bioproducts, 

West Sacramento, CA) or 0.0001% BSA (vehicle control, Fisher Scientific, Pittsburgh, 
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PA), incubated at 37°C, 5% CO2 until the indicated time point, then harvested and used 

for immunoblotting as described above. 

2.12.2  Signaling in human neonatal primary keratinocytes 

For transfection, cells were split using 0.5% Trypsin-EDTA as usual, counted, 

plated, and transfected while still in suspension.  Transfections were performed using 

Lipofectamine 2000 reagent (Life Technologies, Grand Island, NY). DNA and 

Lipofectamine 2000 were complexed for 30 minutes at room temperature prior to 

addition to the cells, according to the manufacturer’s instructions.  For experiments in 6-

well plates, 2 µg total DNA per well was used, with a 1:3 ratio of DNA:Lipofectamine 

2000 (6 µL Lipofectamine 2000 per well).  Media was changed 6-8 hours after 

transfection.  To allow for future experiments with titrated expression of UCP3, the 

repressible pTetOff system was used with a pTRE2hyg-UCP3 construct cloned in our lab 

(Clontech, Mountain View, CA). Signaling experiments were performed 72 hours after 

transfection.  NHK were moved to KSFM without epidermal growth factor (EGF) and 

bovine pituitary extract (BPE) supplements 18 hours prior to treatment. Cells were 

treated with 40 ng/mL EGF (Gemini Bioproducts, West Sacramento, CA) or 0.0001% 

BSA (vehicle control, Fisher Scientific, Pittsburgh, PA), incubated at 37°C, 5% CO2 until 

the indicated time point, then harvested and used for immunoblotting as described above. 

2.13  Epidermal wounding   

Epidermal wound healing was measured on 5 week old WT FVB/N and K5-

UCP3 mice (n=10).  Epidermal wounds were generated with ~1 cm diameter felt wheel 
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and wound diameters were measured with calipers every other day until all wounds 

completely healed.  Experiments were performed in duplicate with n ≥4 animals per 

genotype.   

2.14  PP2A activity assay 

PP2A was immuno-precipitated using primary α-PP2Ac (Millipore, Billerica, 

MA), incubated with a target phospho-peptide, and free phosphate release was measured 

via Malachite Green assay per the manufacturer’s instructions (Millipore, Billerica, MA). 

n=2-3 animals per genotype were pooled for each experiment.  Results are representative 

of 5 separate experiments. 

2.15  ROS measurement 

ROS production by isolated mitochondria was measured using Amplex Red as 

previously described (Hirasaka et al., 2011). Mitochondria from wild type and K5-UCP3 

epidermis were suspended in a buffer containing 5 mM MOPS (pH 7.4), 70 mM sucrose 

and 220 mM mannitol, and mitochondrial protein concentration was determined using a 

BCA protein assay (Pierce Biotechnology, Rockford, IL). 5 mg mitochondrial 

protein/well were incubated in a reaction mixture containing 50 mM Amplex Red, 0.2 

U/ml horseradish peroxidase (HRP), and 30U/ml superoxide dismutase (SOD) at room 

temperature for 30 min, protected from light.  SOD was added to convert all superoxide 

into H2O2.  Fluorescence was recorded using a microplate reader (VICTOR™ 3V; Pelkin 

Elmer, Waltham, MA) with 531 nm excitation and 595 nm emission wavelengths. 
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2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA, Life Technologies, Grand 

Island, NY) and dihydroehidium (DHE, Life Technologies, Grand Island, NY) were used 

to detect cellular hydrogen peroxide and superoxide, respectively.  Isolated primary 

keratinocytes were incubated with HBSS containing 5 µM H2DCF-DA or DHE.  

Fluorescence was analyzed by flow cytometric analysis using a BD Biosciences FACS 

Calibur.  Treatment with 10 mM succinate,10 μM antimycin A, or their combination was 

used to stimulate ROS production. 

The redox state of Akt and PP2A was determined by analysis of cell extracts pre-

incubated with AMS (4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid) as 

previously described (Hirasaka et al., 2011).  Briefly, cells were precipitated with 10% 

ice-cold trichloroacetic acid for 30 min at 4°C and centrifuged at 12,000 g for 30 min to 

collect precipitated protein. Protein pellets were re-suspended in 100% acetone and 

incubated at 4°C for 30 min.  Following centrifugation at 12,000 g for 10 min, the 

acetone was removed and protein pellets were dissolved by sonicating in 20 mM 

Tris/HCl, pH 8.0, containing 15 mM AMS and incubated at room temperature (25°C) for 

3 hours.  Akt and PP2A redox forms were separated by SDS-PAGE in the presence of 

non-reducing loading buffer.  Treatments with dithiothreitol or hydrogen peroxide were 

used to demonstrate reduced vs oxidized state of each protein. 

2.16  Metabolomic Analysis 

For metabolic profiling, mice were fasted for 5 hours prior to sample collection to 

control for metabolic variation due to feeding, and then sacrificed via cervical 
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dislocation.  Dorsal skin biopsies were taken and epidermal tissue was harvested as 

described above.  Samples were flash frozen in liquid N2 and stored at -80°C until 

processed. 

Unbiased metabolomic profiling analysis was performed by Metabolon (Durham, 

NC) as described elsewhere (Theriot et al., 2014).  Briefly, samples were prepared with 

the automated MicroLab STAR system from Hamilton Company using an aqueous 

methanol extraction process to remove proteins while allowing maximum recovery of 

small molecules.  Aliquots of the resulting extract were analyzed by ultrahigh 

performance liquid chromatography/mass spectrometry (UPLC/MS/MS; positive mode), 

UPLC/MS/MS (negative mode), or GC/MS.  Raw data were extracted, peak identified, 

processed against quality control standards, and normalized to total protein content by 

Metabolon.  Compounds were identified by comparison with a library of >2,400 purified 

standards’ analytical characteristics on Metabolon’s LC and GC platforms.   Compounds 

with a p-value <0.05 in a Welch’s two-sample t-test were considered to be significantly 

different between genotypes. 

2.17  Tumor experiments 

For Tg.AC tumor experiment, 16 week-old mice (Tg.AC n=20, K5-UCP3/Tg.AC 

n=20) were shaved dorsally and treated with biweekly applications of TPA (2.5 µg) for 

two weeks for a total of 4 treatments, as described (Battalora et al., 2001).  For K5-

UCP3/K5-Akt rescue experiment, adult (6-8-week) WT FVB/N (n=28) and hemizygous 

K5-UCP3 (n=27), K5-Akt (n=29), and K5-UCP3/K5-Akt (n=18) littermates were 
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initiated topically on shaved dorsal skin with a single application of DMBA (100 µg) 

followed two weeks later with biweekly applications of TPA (2.5 µg) for 26 weeks, as 

described (Rundhaug et al., 1997b).  In both experiments, mice were scored weekly for 

tumor incidence (percentage of mice with skin tumors) and tumor multiplicity (number of 

skin tumors per mouse).  Mice were sacrificed if moribund, if any individual tumor 

reached a diameter of >1 cm, or at the termination of the experiment.   

 

2.18  Statistics 

Analysis of variance comparisons between genotypes were analyzed by student’s 

t-test or single factor ANOVA followed by Dunnett’s post hoc test, with a p < 0.05 set a 

priori as statistically significant. 
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Chapter 3:  Mitochondrial uncoupling protein 3 drives keratinocyte 
differentiation and blocks skin carcinogenesis.1 

 
3.1  Introduction 

As described in Chapter 1, in order to study relationships between mitochondrial 

metabolism and tumorigenesis, we developed a novel mouse model that overexpresses a 

UCP3 transgene targeted to the basal epidermis and other stratified epithelia by the 

keratin 5 promoter (K5, K5-UCP3 mice). The keratin 5 promoter has been extensively 

utilized to regulate gene expression in dividing basal keratinocytes, including the 

tumorigenic stem cell populations in both the interfollicular epidermis and follicular 

bulge region (Rundhaug et al., 2007).  UCP3 expression was recently reported in human 

skin and keratinocytes (Mori et al., 2008b).   Similarly, we observed that UCP3 is 

expressed in wild type murine skin and keratinocytes and is closely associated with the 

degree of cellular differentiation.  Thus, generation of the K5-UCP3 mouse model 

provided a strategy with which to test the notion that enforced mitochondrial uncoupling 

would oppose tumorigenesis in a well-developed assay for skin cancer. 
                                                
1 Portions of this chapter are adapted from: 
 
Cory U. Lago*, Sara M. Nowinski*, Joyce E. Rundhaug*, Matthew E. Pfeiffer, Kaoru Kiguchi, Katsuya 
Hirasaka, Xianmei Yang, Ellen M. Abramson, Shawn B. Bratton, Okkyung Rho, Renata Colavitti, M. 
Alexander Kenaston, Takeshi Nikawa, Carol Trempus, John DiGiovanni, Susan M. Fischer, and Edward 
M. Mills. Mitochondrial respiratory uncoupling promotes keratinocyte differentiation and blocks skin 
carcinogenesis.  Oncogene, (2012); 31(44): 4725-31.  * denotes equal contribution. 
 
Author Contributions: 
E.M.M., S.M.F., and C.U.L. conceived the project.  C.U.L., S.M.N., and J.E.R., designed and performed all 
experiments. M.E.P., K.K., X.Y., E.M.A. helped with development of animals or experiments. K.H., 
M.A.K., S.B.B., R.C., O.R., C.T., T.N., S.M.F. and J.D. aided with experimental design and interpretation 
of results.  C.U.L., S.M.N. and E.M.M. interpreted results and wrote the manuscript. 
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Both in vivo and in vitro, differentiation of keratinocytes is calcium (Ca2+)-

dependent and is typified by dramatically increased cell size and fusion (Watt, 1984).  At 

low [Ca2+] (≤0.05 mM), isolated cells typically remain small and proliferative, but when 

cultured in 0.1–1.2mM Ca2+, keratinocytes undergo terminal differentiation and are 

marked by the presence of large cytoplasmic keratin filaments.  Remarkably, K5-UCP3 

mice exhibited increased keratinocyte differentiation in vivo and in vitro, along with the 

loss of quiescent hair follicle bulge stem cell markers, and increased epidermal 

keratinocyte turnover.  Consequently, K5-UCP3 animals exhibit extraordinary resistance 

to chemically-mediated multistage skin carcinogenesis.  Together, the results herein 

indicate provide proof-of-principle evidence that targeting mitochondrial respiratory 

uncoupling is a powerful novel strategy in cancer prevention and treatment, and warrants 

further investigation.  

 

3.2  Results  

3.2.1  Endogenous UCP3 expression in mouse and human keratinocytes 

Consistent with a recent report showing UCP3 expression in human skin 

keratinocytes (Mori et al., 2008b), we found that UCP3 was expressed in isolated 

mitochondria from cultured HaCaT human keratinocytes and increased in response to 

Ca2+-induced differentiation in vitro (Figure 3.1 a).  Similarly, UCP3 mRNA expression 

was increased during the differentiation of wild type mouse primary keratinocytes 

(Figure 3.1b).  In contrast, UCP3 protein was absent in isolated mitochondria from 

malignant cervical epithelial cells (Figure 3.1 a, HeLa, lane 3), malignant squamous  



 62 

 

 

Figure 3.1 UCP3 expression positively correlates with differentiation. 

(a) Immunoblot for hUCP3 and cytochrome C expression in isolated mitochondria from 
HaCaT and HeLa cell lines in response to increased Ca2+-stimulated differentiation for 48 
hours at 1.2 mM Ca2+.  (b) Immunoblot for mUCP3 and DNA polymerase γ in isolated 
mitochondria from wild type C57Bl6/j and UCP3(-/-) whole skin and MCA3D and CH72 
keratinocyte cell-lines grown under high calcium conditions.  (c) RT-PCR for UCP3 and 
β2 microglobulin (β2M) mRNA expression in WT FVB/N primary keratinocytes in 
response to Ca2+-stimulated differentiation for 48 hours at 0.05 mM, 0.1 mM, and 1.2 
mM Ca2+. (d) RT-PCR for UCP3 and β2 microglobulin (β2M) mRNA expression in WT 
FVB/N primary bSC and daughter keratinocytes.   
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carcinoma cells (Figure 3.1 c, CH72, lane 4), and initiated, non-malignant immortal 

keratinocytes (Figure 3.1 c, MCA3D, lane 3).  None of these cell lines lacking UCP3 is 

differentiation competent, i.e. they fail to differentiate in response to extracellular Ca2+, 

regardless of their tumorigenic capacity. 

3.2.2  Characterization of the K5-UCP3 model 

To better understand relationships between changes in mitochondrial respiration 

and epidermal biology, we generated hemizygous FVB/N mice expressing a respiration-

inducing bovine keratin-5 promoter UCP3 transgene in epidermal and follicular 

keratinocytes (Figure 3.2 a, K5-UCP3). K5-UCP3 mice exhibited increased UCP3 

protein expression in mitochondria isolated from dorsal skin biopsies compared to wild 

type (FVB/N) skin and skeletal muscle (Figure 3.2 b).  Immunofluorescent staining 

indicated that UCP3 was properly localized in a punctate, perinuclear mitochondrial 

pattern in cultured K5-UCP3 primary keratinocytes (Figure 3.2 c).  Moreover, UCP3 

expression in K5-UCP3 skin was found in the basal and suprabasal epidermal skin layers 

and the hair follicle (Figure 3.2 d). 

To confirm functional UCP3 activity, we measured rates of maximal (state 3) and 

uncoupled (state 4) oxygen consumption in isolated epidermis ex vivo.  Both state 3 and 

uncoupled state 4 epidermal respiration rates were increased in K5-UCP3 compared to 

wild type mice by approximately 31% and 113%, respectively (Figure 3.2  e).  Based on 

Mitotracker green staining, we observed that mitochondrial mass was increased by 

approximately 28% in K5-UCP3 keratinocytes compared to wild type (Figure 3.2 f).   To  
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Figure 3.2 UCP3 overexpression increases cutaneous uncoupling. 

(a) The construct used to generate K5-UCP3 FVB/N mice. (b) UCP3 and cytochrome C 
expression in isolated mitochondria from whole skin & skeletal muscle (skm). (c) UCP3 
immunohistochemistry in primary keratinocytes. Scale bars = 10 µm. (d) 
Immunohistochemistry for UCP3 in whole skin.  (e) State 3 (no treatment) and state 4 
(with addition of 1µg/mL oligomycin) O2 consumption per gram of epidermis. (f) FACS 
analysis of MitoTracker Green staining in wild type (WT) and K5-UCP3 primary 
keratinocytes (* p < 0.001).  (g) % uncoupled respiration out of total respiration, 
determined by (state 4) / (state 3) x 100% (* p = 0.019).  Error bars = means +/- SEM.  
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correct for changes in mitochondrial number, we compared the percentage of uncoupled 

per total epidermal respiration (state 4 / state 3 X 100%).  K5-UCP3 epidermis exhibited 

an approximately two-fold increase in uncoupled per total respiration, consistent with 

functional expression of UCP3 (Figure 3.2 g).   

3.2.3  UCP3 induces keratinocyte differentiation 

During the initial characterizations of the transgenic mice, we observed that 

isolated K5-UCP3 keratinocytes were significantly larger than wild type cells, and 

displayed altered morphology, suggesting that enforced UCP3 expression may induce 

cellular differentiation. Light microscopy revealed that K5-UCP3 cells grown in low 

(0.05 mM) Ca2+ exhibited clear differentiation phenotypes that were absent in wild type 

keratinocytes (Figure 3.3 a). Similarly, transmission electron micrographs confirmed the 

UCP3-induced differentiation by revealing that the large filamentous keratin strands 

induced by high Ca2+ in wild type cells were similarly present in K5-UCP3 cells (but not 

wild type cells) cultured in low Ca2+ conditions (Figure 3.3 b).   

To better understand the impact of mitochondrial uncoupling on epidermal tissue 

homeostasis, we performed mRNA expression analysis in adult skin from wild type FVB 

and K5-UCP3 mice.  A large cohort of keratinocyte differentiation markers were 

significantly (p < 0.01) induced in response to UCP3 overexpression (Figure 3.3 c).     

Among these, increased expression of the early differentiation marker keratin 10 was 

confirmed by immunoblot in wild type and K5-UCP3 epidermal lysates (Figure 3.3 d), 

along with immunofluorescent staining of isolated primary keratinocytes (Figure 3.3 e).   
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Figure 3.3 UCP3 overexpression induces epidermal differentiation. 

(a) Wild type (WT) and K5-UCP3 primary keratinocyte morphology (light microscopy) 
and (b) transmission electron microscopy (TEM) in low (0.05 mM Ca2+) and high (1.2 
mM Ca2+) calcium medium. Arrows indicate cytoplasmic keratinization (b).  Scale bars = 
20 and 2 µm (a and b) (c) Microarray analysis of K5-UCP3 skin, expressed as fold 
change compared to wild type.  Genes shown significantly differ from wild type (p < 
0.01).  K# = keratin #, Lor = loricrin, Tgm1 = transglutaminase 1, Ivl = involucrin, Sprr# 
= small proline rich protein #.  Error bars are means +/- SEM.  (d) Immunoblot for 
keratin 10 and β-actin in epidermal lysates. (e) Immunohistochemistry for basal 
keratinocyte differentiation markers in adult (7 week old) mouse epidermis.  Scale bars = 
20 µm.    
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Also increased in K5-UCP3 epidermis were expression of the basal keratinocyte marker 

K5, along with the early and late keratinocyte differentiation markers K1, loricrin, and 

involucrin (Figure 3.3 f).  Notably, the epidermis in K5-UCP3 is thicker than wild type 

and has an expanded layer of cells that stain positive for both K5 and K1 above the basal 

epidermal layer, but had decreased intensity of K5 staining.  These changes appeared by 

three weeks of age (Figure 3.4 a).  

3.2.4  K5-UCP3 epidermis lacks bulge stem cell markers 

Although hotly debated, increasing evidence supports that the slowly cycling 

(quiescent), long-lived, multipotent follicular bulge stem cells (bSC) are candidate 

progenitors of squamous carcinomas (Faurschou et al., 2007; Morris et al., 2000). 

Quiescent bSC are marked biochemically by the presence of intracellular keratin 15, and 

the cell surface marker CD34, and by the capacity to retain labels (e.g. 

bromodeoxyuridine, BrdU) (Cotsarelis et al., 1990).   Interestingly, CD34 is both lost 

during differentiation and required for skin carcinogenesis (Trempus et al., 2007).  

Remarkably, hair follicle bulge regions in adult K5-UCP3 mice exhibited dramatically 

decreased (~85%) immunostaining for both K15 and CD34 (Figure 3.5 a-b).   Similarly, 

loss of these bSC markers was developmentally evident by three weeks of age (Figure 3.4 

b).  To quantify these changes, isolated primary keratinocytes were labeled for CD34 and 

α-6 integrin and analyzed by fluorescence activated cell sorting (FACS, Figure 3.5 c, Q2) 

to identify the bSC population (Wu and Morris, 2005). In strong concordance with the 

histological data, K5-UCP3 mice exhibited an 84% decrease (0.3% vs. 1.8% in wild type)  
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Figure 3.4 UCP3 increases expression of differentiation markers across 
developmental stages. 

Immunohistochemistry for bSC marker keratin 15 (K15), basal keratinocyte marker 
keratin 5 (K5), and early and late keratinocyte differentiation markers keratin 1 (K1), 
loricrin, and involucrin across developmental stages in newborn and 3 week old mouse 
epidermis. 
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Supplemental Figure 2 UCP3 increases expression of keratinocyte bulge stem cell and differentiation 
markers across developmental stages.  (a) Immunohistochemistry for bulge stem cell marker keratin 15 
(K15), basal keratinocyte marker keratin 5 (K5) and early and late keratinocyte differentiation markers 
keratin 1 (K1), loricrin, and involucrin across developmental stages in newborn and 3 week old mouse 
epidermis.  
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Figure 3.5 UCP3 overexpression decreases markers of quiescent stem cells. 

(a) Immunohistochemistry for keratin 15 (K15) and CD34 in wild type (WT) and K5-
UCP3 skin.  Scale bars = 50 microns (K15) and 20 microns (CD34).  (b) Quantification 
of K15 positive follicles (N>250 per genotype).   Error bars are means +/- SEM; (* p < 
0.001).  (c) FACS analysis of WT and K5-UCP3  primary keratinocytes labeled with 
fluorescent conjugated antibodies for CD34 and α-6 integrin.  Q2 shows the CD34 
positive, α-6 integrin high bulge stem cell population.  (d) Quantification of FACS 
analysis shown as average percentage of cells in Q2 from three separate experiments.  
Error bars are means +/- SEM; (* p = 0.0014). (e) BrdU label retention (8-week pulse 
chase) in WT and K5-UCP3 skin.  Bottom panels are magnified follicle bulge regions 
showing BrdU label retaining cells (arrowheads).  Scale bars = 50 microns.   

BrdU

BrdU

e

a

K5-UCP3 WT

K15

 %
 K

15
 p

os
iti

ve
 fo

lli
cl

es

*
WT K5-UCP3

0

20

40

60

80

100

2.5

2

1.5

1

0.5

0
WT K5-UCP3

*

�
�&
'
��
��
Į�
��
,Q
WH
JU
LQ
���
��F
HO
OV

KL
JK

102

103

104

105

10 10 10 102 3 4 5

WT

102

103

104

105

10 10 10 102 3 4 5

K5-UCP3

&
'
��
���
),
7&

Į���,QWHJULQ���3(

&
'
��
���
),
7&

Į���,QWHJULQ���3(

WT K5-UCP3 b

c d

CD34



 70 

in bSC ex vivo (Figure 3.5 d).  Additionally, almost no cells in the hair follicle bulge 

region of K5-UCP3 skin retained BrdU after an eight week pulse-chase labeling regimen 

(Figure 3.5 e), unlike wild type bulge regions. 

The decrease in three biochemical markers of the bSC pool in K5-UCP3 hair 

follicles can be interpreted as either a loss of the stem cells from death or alternatively, 

the results may indicate that the bSC have differentiated into a less quiescent, but still 

functional state.   Ruling out that these changes were due to bulge cell death, no evidence 

of increased apoptosis (Figure 3.6 a) was observed in skin sections from K5-UCP3 mice 

compared with those from wild type mice.  Furthermore, no lack of functionality 

typically ascribed to bulge stem cells was observed in K5-UCP3 skin.  Bulge stem cell 

depletion or ablation leads to hair follicle and sebaceous gland degeneration (Benitah et 

al., 2005) and decreased wound healing (Ito et al., 2005a).  K5-UCP3 mice not only had 

normal hair follicle number and overall morphology, they also exhibited enlarged 

sebaceous glands (Figure 3.6 b) and healed abrasion wounds at comparable rates to wild 

type mice (Figure 3.6 c). 

3.2.5  UCP3 overexpression drives accelerated epidermal turnover 

Taken together, the increase in expression of both basal and differentiated 

keratinocyte markers combined with the loss of bulge stem cell markers, but not bulge 

stem cell functionality, suggested the possibility that epidermal turnover was accelerated 

in K5-UCP3 mice.  To examine this possibility, we performed a washout experiment, by 

pulse-labeling basal inter-follicular epidermal (IFE) keratinocytes with BrdU and  
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Figure 3.6 bSC functions are maintained in K5-UCP3 epidermis. 

(a) TUNEL staining for apoptotic cells in skin sections from wild type (WT) and K5-
UCP3 epidermis 36 hours after application of TPA (2.5µg/200µL acetone – vehicle).  
Wild type FVB/N uterus was used as a positive assay control.  Scale bars = 50 µm. (b) 
Hematoxylin & eosin staining showing sebaceous gland morphology in wild type (WT) 
and K5-UCP3 epidermis.  Scale bars = 50 µm. (c) Rates of wound healing after 
epidermal abrasion (days).  Error bars are means +/- SEM. 
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quantifying the labeled cells that remaining in the basal layer of the IFE at successive 

time points.  This technique allowed us to essentially monitor the transit of labeled basal 

keratinocytes as they migrated outward from the basal epidermis.  While a slightly 

increased percentage of K5-UCP3 basal IFE cells stained positive for BrdU compared 

with wild type at the initial 2 hour time point (p = 0.052), there was no quantitative 

difference between the genotypes 5 days after labeling (Figure 3.7). By 9 days after BrdU 

treatment the trend had reversed, and at 18 days post-BrdU labeling, wild type basal 

epidermis retained approximately 1.8% labeled cells while almost no label remained in 

the K5-UCP3 basal IFE (~0.4%, Figure 3.7).  This data indicates an increased rate of 

epidermal turnover and loss of labeled cells in K5-UCP3 epidermis.     

3.2.6  UCP3 overexpression blocks skin carcinogenesis 

Given the profound effects of UCP3 expression on mitochondrial respiration, 

epidermal turnover, and the quiescent bulge stem cell niche, we reasoned that K5-UCP3 

mice may be resistant to cancer development.  Using a well-established two-stage 

chemically-induced skin carcinogenesis model (Rundhaug et al., 1997a), adult wild type 

and K5-UCP3 mice ( n > 17 per genotype) were topically administered a single dose of 

dimethylbenzanthracene (DMBA) (100 μg) followed two weeks later with biweekly 

applications of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (2.5 µg) 

for 26 weeks.  After 15 weeks of treatment, wild type mice developed an average of 9 

tumors per mouse, with 100% of the animals bearing tumors (Figure 3.8 a-b).  In stark 

contrast, none of the K5-UCP3 mice developed any tumors by 15 weeks (Figure 3.8 a).   
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Figure 3.7 K5-UCP3 epidermis displays accelerated epidermal turnover 

Epidermal turnover in wild type and K5-UCP3 skin, measured as retention of BrdU in 
basal interfollicular epidermal (IFE) cells 2 hours, 5 days, and 18 days following 
intraperitoneal BrdU injection.  500 basal IFE cells from each of three mice per genotype 
were counted at each time point.  Error bars are means +/- SEM.  * indicates significantly 
different from WT at the same time point (p < 0.05). 
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Figure 3.8 Mitochondrial uncoupling strongly inhibits two-stage chemically-induced 
skin carcinogenesis. 

(a) Tumor development in wild type FVB/N (WT) and K5-UCP3 mice indicating total 
papillomas / mouse, (b) % mice bearing papillomas and (c) % mice bearing carcinomas.  
(d) Representative tumors in K5-UCP3 and WT mice.  Arrow indicates a typical K5-
UCP3 papilloma.  
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At 26 weeks, approximately half of the K5-UCP3 mice remained tumor-free, and those 

that developed tumors typically bore only one small papilloma (Figure 3.8 b and d).  

Moreover, 70% of wild type animals developed at least one carcinoma by 26 weeks, but 

remarkably, none of the K5-UCP3 mice developed a malignancy (Figure 3.8 c). 

Confirming that the cancer resistant phenotype of K5-UCP3 mice was a result of 

mitochondrial uncoupling, animals expressing a keratin 5 UCP1 transgene (K5-UCP1) 

were similarly protected from carcinogenesis (data not shown). 

 

3.3  Discussion 

 
Our results provide evidence of a novel role for UCP3 in the regulation of 

keratinocyte biology and cancer prevention. These observations support Warburg’s 

original idea and a revival of scientific interest in cancer bioenergetics implicating 

mitochondrial metabolic reprogramming in the development and maintenance of 

malignancy.  As discussed in Chapter 1, to date, only a few studies in the literature deal 

with relationships between mitochondrial uncoupling proteins and carcinogenesis. The 

exact molecular mechanisms by which UCP3 expression affects cellular differentiation 

and thereby prevents skin carcinogenesis in the K5-UCP3 mouse model remain to be 

defined and are a matter of intense research interest. 

We demonstrate for the first time the capacity for any uncoupling protein to 

promote cellular differentiation, and show that UCP3 is induced physiologically during 

wild type keratinocyte differentiation.  This data is consistent with previous observations 
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showing that UCP3 expression increases during skeletal myocyte differentiation during 

metabolic induction in developing muscle (Guigal et al., 2002). Ca2+ is the major driver 

of keratinocyte differentiation in mammalian skin and keratinocyte cultures (Rice and 

Green, 1979).  The prevailing evidence indicates that extracellular Ca2+-induced release 

of endoplasmic reticulum Ca2+ is a pivotal event that leads to the expression of a vast 

array of differentiation regulatory genes (transglutaminases, involucrin, etc.).  

Surprisingly, we could find no literature dealing with relationships between 

mitochondrial bioenergetics and cellular Ca2+ levels in keratinocytes.  However, in a 

variety of other contexts including neuronal synapses and contracting muscle fibers, 

mitochondria sequester large amounts of Ca2+ and are pivotal for Ca2+-signaling (Biswas 

et al., 1999).   Additionally, the mitochondrial membrane potential drives mitochondrial 

Ca2+ sequestration, and mitochondrial uncoupling-induced membrane depolarization 

decreases sequestration (Rial and Nicholls, 1984).  Thus, mitochondrial regulation of 

intracellular Ca2+ leading to terminal differentiation of keratinocytes may be another 

important bioenergetic mechanism underlying UCP3-induced cancer resistance.  

Consistent with this idea, though Ca2+ per se was not examined, recent preliminary 

reports have implicated decreased mitochondrial membrane potential and mitochondrial 

dysfunction as mediators of keratinocyte differentiation (Tamiji et al., 2005). 

 The profound cancer resistance of K5-UCP3 mice corresponds with a sharp 

decrease in three biochemical markers of quiescent bulge stem cells (bSC), the putative 

progenitors of multistage skin carcinomas.  Loss of bulge stem cells leads not only to skin 

cancer resistance, but also to dramatically decreased folliculogenesis, sebaceous gland 
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development, and wound healing (Benitah et al., 2005).   However, the cancer resistance 

observed in K5-UCP3 mice did not correspond to any apparent defect in these bSC-

mediated functions.   Thus, it is likely that the bSC of K5-UCP3 mice are present, but 

exist in a more differentiated, less quiescent state.  This idea is supported by recent 

observations indicating that common adult stem cell niches, including the hair follicle, 

contain both quiescent and active cycling populations that cooperatively function (Li and 

Clevers).  It is tempting to speculate that mitochondrial metabolism may functionally 

participate in the specification of stem cell fate.   

Finally, we observed that UCP3 expression was lowest in undifferentiated 

compared to differentiated keratinocytes, and was absent from isolated mitochondria 

from malignant cells in vitro.   Thus, expression of uncoupling proteins may be 

incompatible with carcinogenesis by driving the initiated stem cells to differentiate, 

thereby blocking promotion. Future work is needed to understand the complex 

mechanistic relationships between mitochondrial function and carcinogenesis, especially 

in relation to the biology of cancer stem cells.  Nonetheless, this work supports a growing 

body of literature indicating that important functional links exist between mitochondrial 

bioenergetics and carcinogenesis. 
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Chapter 4:  Mechanisms of UCP3-induced cancer resistance: lipid 
catabolism and PI3K/Akt pathway inhibition.  

 
4.1  Introduction 

The discovery of the striking cancer protective phenotype of K5-UCP3 mice 

generated the immediate question of how UCP3 was able to confer such strong 

chemoresistance.  Because uncoupling proteins alter so many aspects of mitochondrial 

function and physiology, the possible mechanisms by which UCP3 might antagonize 

tumorigenesis were numerous.  For example, the effects of UCP3 expression on ROS, 

heat production, and substrate oxidation each could easily exert effects on various 

tumorigenic processes. 

Herein, we show that the mechanism of chemo-prevention in K5-UCP3 mice is 

via the inhibition of tumor promotion through blockade of PI3K/Akt signaling.  Blunted 

Akt activation resulted from a combination of increased activity of protein phosphatase 

2A (PP2A), along with reduced membrane recruitment of Akt.  We demonstrate that 

enforced mitochondrial uncoupling enhances lipid catabolism and membrane 

phospholipid breakdown, likely changing membrane composition and dynamics, and 

resulting in restriction of Akt membrane recruitment and activity.  Overexpression of 

wild type Akt rescued phorbol ester induced proliferation and two-stage chemical 

carcinogenesis.  These results establish a mechanism for UCP3-induced chemoresistance, 

and identify a novel pathway of metabolic regulation of Akt. 



 79 

4.2  Results 

4.2.1  UCP3 expression blocks tumor promotion. 

As discussed in Chapter 3, we previously generated K5-UCP3 mice that over-

express murine uncoupling protein 3, targeted to the basal epidermis by the bovine 

keratin 5 promoter (K5) (Lago et al., 2012). K5-UCP3 basal keratinocytes exhibit proper 

localization of UCP3 in the mitochondria, and K5-UCP3 epidermis exhibits an 

approximately two-fold increase in uncoupled per total respiration, indicating that the 

transgene is functional (Lago et al., 2012). Using a two-stage chemical carcinogenesis 

regimen, we showed that K5-UCP3 mice were extremely resistant to skin tumor 

formation (Lago et al., 2012). 

In order to determine whether UCP3 confers tumor resistance mainly through 

effects on tumor initiation or tumor promotion, and to test the efficacy of UCP3 over-

expression on cancer resistance in a genetic model, we crossed K5-UCP3 animals with 

Tg.AC mice, which express an oncogenic v-Ha-Ras transgene, thereby bypassing effects 

on tumor initiation (Leder et al., 1990). In response to topical application of the tumor 

promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), Tg.AC mice rapidly formed 

tumors; however, bi-transgenic K5-UCP3/Tg.AC mice maintained the potent 

chemoresistance observed in the K5-UCP3 background alone (Figure 4.1 a-d), indicating 

that UCP3 over-expression likely interferes with tumor promotion. Consistent with this 

phenotype, 5-bromo-2-deoxyuridine (BrdU) labeling revealed that UCP3 over-expression 

dramatically reduced the proliferative response to both single (1x) and multiple (4x) TPA 

treatments by approximately 80% (Figure 4.1 e).  Whereas both 1x and 4x TPA treatment  
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Figure 4.1 UCP3 overexpression impedes tumor promotion. 

(a) Tumor development in “pre-initiated” Tg.AC and bigenic K5-UCP3/Tg.AC mice 
indicating total papillomas/mouse, (b) % mice bearing papillomas, (c) total 
carcinomas/mouse, and (d) % mice bearing carcinomas. (e) Immunohistochemistry for 
BrdU labeled cells following topical treatment with Acetone, single (1x) or multiple (4x) 
treatments with 2.5 µg TPA.  Scale bars = 50 microns.  (f) Quantification of percent 
BrdU-positive labeled basal interfollicular cells. Error bars are means +/- SEM.  * = 
significantly differs from Acetone, same genotype (** p<0.01, *** p<0.0001), † = 
significantly differs from wild type FVB, same treatment (††† p<0.0001).  
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induced a 7.3-7.8 fold increase in labeling index in wild type FVB/N epidermis compared 

to acetone (vehicle control), labeling index in K5-UCP3 epidermis only increased by 1.37 

and 1.62-fold in response to 1x and 4x TPA treatment, respectively (Figure 4.1 f). 

4.2.2  UCP3 expression inhibits Akt activation 

The activation of Akt and subsequent induction of cyclins and suppression of cell 

cycle inhibitory proteins controls proliferation following TPA treatment (Brazil et al., 

2004; Rodriguez-Puebla et al., 1998).  Consistent with the observed lack of TPA-induced 

proliferation, 18 hours after TPA treatment, K5-UCP3 epidermis showed blunted cyclin 

D1 and cyclin A induction, and maintenance of p21 and p27 levels (Figure 4.2 a).  In 

wild type epidermis, Akt was activated 4 hours after TPA treatment, indicated by 

phosphorylation at both S473 (mTORC2 site) and T308 (PDK1 site).  However, K5-

UCP3 epidermis showed reduced basal Akt phosphorylation, along with very little 

activation of Akt after TPA treatment (Figure 4.2 a-b), which corresponded to decreased 

phosphorylation of direct Akt targets, including GSK-3β and FOXO1 (Figure 4.2 b), as 

well as TSC2 (Figure 4.2 c). 

Given the well-established relationships between metabolic state and mTOR 

activation, along with the observed lack of Akt activation, we predicted that UCP3 

overexpression should correspond to decreased activation of mTOR. Indeed, mTOR 

phosphorylation at S2448 was diminished, however, auto-phosphorylation at S2481 was 

unaffected. Furthermore, phosphorylation of targets downstream of mTORC1, including 

ribosomal protein S6 (rS6), eukaryotic translation initiation factor 4E-binding protein 1  
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Figure 4.2 UCP3 overexpression inhibits Akt activation. 

(a) Akt activation and cell cycle protein expression following treatment with Acetone 
(vehicle control) or 2.5 µg TPA (4 hours & 18 hours post-treatment) in wild type FVB 
and K5-UCP3 epidermal lysates. (b) Akt activation and phosphorylation of Akt targets 
FOXO1 and GSK3β.  (c) Phosphorylation of mTORC1 pathway members. (d) Activation 
of Akt in mouse primary keratinocytes 30 minutes after treatment with 40 ng/mL EGF or 
0.001% BSA (vehicle control).  (e) Phosphorylation of EGF receptor (EGFR) in mouse 
primary keratinocytes 15 minutes after treatment with EGF. (f) Akt activation in NHK 
transiently transfected with UCP3 or empty vector control (EV). Immunoblotting for β-
Actin was used to confirm equal loading (a-f).  
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(4EBP1), and eukaryotic initiation factor 4G (eIF4G) was not markedly decreased, 

implying that UCP3 induces complex metabolic regulation of mTOR (Figure 4.2 c). 

Although interesting, and perhaps somewhat paradoxical, these effects on mTOR 

signaling point toward an mTOR-independent mechanism of tumor resistance.   

TPA acts as a diacylglycerol mimetic, binding Protein Kinase C (PKC) isoforms 

and activating subsequent downstream signaling, which, among numerous other effects, 

increases epidermal growth factor (EGF) ligand expression and ectodomain cleavage, 

resulting in paracrine/autocrine signaling (Herrlich et al., 2008; Kiguchi et al., 1998).  

Studies using both chemical inhibitors and dominant negative mutants have shown that 

EGF receptor (EGFR) activation is necessary for TPA-induced activation of Akt and 

other pathways (Chan et al., 2004b; Chen et al., 2001; Xian et al., 1995).  To rule out the 

possibilities that UCP3 over-expression prevented TPA-induced Akt activation via 

inhibition of PKC and/or impaired EGF ligand shedding, we evaluated Akt activation in 

serum starved, isolated primary keratinocytes treated with EGF.  As expected, K5-UCP3 

cells showed blunted Akt activation after EGF treatment (Figure 4.2 d).  In contrast, 

EGFR activation was unaffected by UCP3, despite slightly lower total receptor 

expression (Figure 4.2 e). Importantly, UCP3 expression also blocked activation of Akt 

by EGF in primary neonatal human keratinocytes (Figure 4.2 f).  Together, these 

observations demonstrate that the UCP3-dependent regulation of Akt activity occurs 

downstream of EGFR activation in a cell autonomous, species-independent manner. 

Subsequent to EGFR activation, PI3K converts phosphatidylinositol 4,5-

bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), resulting in the 
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recruitment of Akt to the plasma membrane.  To define the mechanisms by which UCP3 

blunts Akt signaling downstream of EGFR activation, we initially focused on 

phosphatase and tensin homolog (PTEN), a tumor suppressor lipid phosphatase that 

converts PIP3 back to PIP2, thereby inhibiting Akt.  PTEN activity can be regulated by 

changes in expression, or in the stabilizing phosphorylation of its C-terminal tail, which 

increases its activity.  Levels of both phosphorylated and total PTEN protein were 

unchanged in K5-UCP3 compared to wild type epidermis, ruling out the likelihood that 

changes in PTEN function account for UCP3-induced blockade of Akt activation (data 

not shown). 

We then examined another negative regulator of Akt activation, protein 

phosphatase 2a (PP2A), a serine/threonine phosphatase that dephosphorylates Akt at both 

S473 and T308 (Li et al., 2003).  Although the expression of PP2A A (scaffolding) and C 

(catalytic) subunits was unchanged from wild type to K5-UCP3 epidermis (Figure 4.3 a), 

several additional prominent PP2A targets, including p38 mitogen activated protein 

kinase (p38 MAPK), showed a pattern of reduced phosphorylation in K5-UCP3 

epidermal lysates (Figure 4.3 b), implying that PP2A was hyper-active in K5-UCP3 

epidermis.  Indeed, using an in vitro activity assay, K5-UCP3 samples showed a 

significant but modest increase in PP2A catalytic activity (39%) compared to wild type 

controls (Figure 4.3 c). Topical treatment with the PP2A inhibitor okadaic acid (OA) was 

able to completely recover phosphorylation of p38 MAPK, however OA only partially 

rescued Akt phosphorylation in K5-UCP3 epidermis (Figure 4.3 d). Thus, PP2A 

hyperactivity likely contributes to, but is not solely responsible for the UCP3-induced  
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Figure 4.3 PP2A is hyperactive in K5-UCP3 epidermis. 

(a) Immunoblot for expression of the A (scaffolding) and C (catalytic) subunits of PP2A. 
Immunoblotting for β-Actin was used to confirm equal loading.  (b) Immunoblot for 
phosphorylation of additional PP2A targets, including ERK, p90 RSK, p38 MAPK. (c) In 
vitro PP2A catalytic activity. Error bars are means +/- SEM. *** indicates significantly 
different from wild type (p<0.001). (d) Akt and p38 MAPK activation 1 hour after 
treatment with 5 nmol okadaic acid (OA).  Immunoblotting for β-Actin was used to 
confirm equal loading (a-b,d).  
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blockade of PI3K/Akt signaling. However, the striking effects on other PP2A targets, 

including p38 MAPK, may inform future studies detailing additional Akt-independent 

pleiotropic mechanisms of UCP3-induced tumor resistance 

4.2.3  UCP3 expression alters lipid homeostasis 

Because PP2A hyperactivity could not fully explain the UCP3-dependent 

inhibition of Akt, we focused on two main functions of UCP3: its ability to modulate 

reactive oxygen species (ROS) generation (Esteves and Brand, 2005), and lipid 

metabolism (Bezaire et al., 2005).  Some evidence suggests that ROS regulate both PP2A 

and Akt (Murata et al., 2003; Pelicano et al., 2006), therefore, we hypothesized that 

UCP3 over-expression may inhibit Akt through redox regulation.  However, we neither 

detected a significant difference in either cellular ROS or ROS released from isolated 

mitochondria, nor did we observe a change in the oxidation state of either PP2A or Akt 

thiols in response to uncoupling (Figure 4.4).   

Studies have indicated that changes in β-oxidation can reshape plasma membrane 

lipid composition (Kretschmer et al., 2012; Lockshon et al., 2007), and UCP3 is well 

known for its ability to increase β-oxidation of lipids (Bezaire et al., 2005).  Therefore, 

we reasoned that UCP3 over-expression might affect Akt activation by promoting the 

oxidation of fatty acids and modifying membrane composition.  To examine this 

possibility, we used an unbiased metabolomic approach and found that UCP3 

overexpression drove large scale lipid catabolism in K5-UCP3 epidermis, characterized 

by decreased steady-state levels of free fatty acids (FFA) (Figure 4.5 a), and long chain  
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Figure 4.4 Uncoupling has no significant effect on ROS in the K5-UCP3 model. 

(a) Amplex Red assay for rate of H2O2 production by mitochondria isolated from wild 
type FVB and K5-UCP3 epidermis. (b) Dihydroxydichlorofluorescein and (c) 
dihydroethidium staining for cellular hydrogen peroxide and superoxide levels 
(respectively) in isolated primary mouse keratinocytes unstimulated, or treated with 10 
mM succinate (Succ), 10 µM Antimycin A (Ant A), or their combination (Succ + Ant A).  
Data shown are fold change from mean wild type, unstimulated fluorescence.  Error bars 
are means +/- SEM. (d & e) Immunoblots for thiol oxidation status of Akt (d) and PP2A 
(e).  4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS) labels reduced 
cysteines, causing an increase in molecular weight and a resultant upward shift in 
mobility on the SDS-PAGE gel.  Oxidation blocks AMS labeling, thereby blocking this 
upward shift.  Treatment with dithiothreitol (DTT) and hydrogen peroxide (H2O2) were 
used as controls.  
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acyl-carnitine species (Figure 4.5 b).  Concurrently, K5-UCP3 epidermis displayed 

increased levels of lysophospholipids, which are formed by cleavage of one acyl chain 

during phospholipid breakdown, suggesting that uncoupled cells scavenge fatty acid tails 

from membrane lipids as substrates for β-oxidation (Figure 4.5 c).  Consistent with the 

idea that UCP3 induced global, unbiased lipid breakdown rather than oxidation of a 

specific lipid species or activation of a specific phospholipase, neither the decreases in 

FFA, nor the increases in lysophospholipid levels followed any discernible pattern in 

terms of chain length, saturation, or head group (Figure 4.6). 

To test whether these changes in lipid homeostasis corresponded to functional 

differences in membrane recruitment of Akt, we isolated epidermal membranes from 

acetone and TPA treated mice.  As predicted, less Akt was present in the membrane 

fraction from TPA treated K5-UCP3 epidermis compared with wild type (Figure 4.7 a).  

Of note, in the same assay we observed similar levels of PTEN membrane localization in 

wild type and K5-UCP3 epidermis, another indication that PTEN activity is unchanged 

(Figure 4.7 a).  Combined, these results led us to hypothesize that UCP3-induced lipid 

catabolism may be associated with changes in PIP3, the signal for Akt membrane 

recruitment.   

Membrane phospholipids, including phosphatidylinositides, were not identified in 

the metabolomic screen due to the extraction and detection methods utilized.  Therefore, 

we utilized a specialized technique that couples phosphate methylation to high-

performance liquid chromatography–mass spectrometry to accurately assess PIP levels  

(Clark et al., 2011).  To our surprise, we found that PIP3 levels in K5-UCP3 epidermis  
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Figure 4.5 Unbiased metabolomic analysis of K5-UCP3 epidermis reveals enhanced 
lipid catabolism. 

(a-c) Analysis of (a) fatty acid, (b) acylcarnitine, and (c) lysophospholipid metabolite 
levels in K5-UCP3 dorsal epidermis identified by gas chromatography mass spectrometry 
(GC-MS) or liquid chromatography mass spectrometry (LC-MS), and expressed as fold 
change compared to wild type FVB.  Metabolites shown significantly differ from wild 
type with a p-value <0.05.  Error bars are means +/- SEM.  All identified lipids are shown 
in Extended Data Figure 3. 
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Figure 4.6 All lipid species identified in unbiased metabolomic analysis of K5-UCP3 
epidermis.   

(a-c) Analysis of (a) fatty acid, (b) acylcarnitine, and (c) lysophospholipid metabolite 
levels in K5-UCP3 dorsal epidermis identified by gas chromatography mass spectrometry 
(GC-MS) or liquid chromatography mass spectrometry (LC-MS), and expressed as fold 
change compared to wild type FVB.  * indicates significantly different from wild type 
with a p-value <0.05.  Error bars are means +/- SEM.  
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were comparable to wild type epidermis (Figure 4.7 b).  Therefore, it appears that, at least 

under basal conditions, inhibition of Akt phosphorylation occurs despite normal levels of 

PIP3 in the membrane, perhaps as a result of changes in membrane dynamics.  However, 

further studies are necessary to detail the mechanisms underlying inhibition of Akt 

plasma membrane recruitment by mitochondrial uncoupling. 

In order to establish the capacity of mitochondrial β-oxidation to affect Akt 

signaling, we treated mice with the carnitine-palmitoyl transferase (CPT-1) inhibitor 

etomoxir (Eto) at a dose previously shown to inhibit mitochondrial fatty acid uptake by 

roughly 50% when applied topically (Caspary et al., 2005). Not only did Eto treatment 

augment basal Akt activation in K5-UCP3 epidermis, it also did so in wild type epidermis 

(Figure 4.7 c).  These results demonstrate that mitochondrial fatty acid oxidation is a 

novel regulator of Akt signaling in wild type epidermis, and warrant further investigation. 

4.2.4  Akt over-expression rescues tumorigenesis 

To establish the functional importance of UCP3-mediated changes in lipid 

homeostasis and Akt activation in UCP3-induced cancer resistance, we inter-bred K5-

UCP3 animals with mice that over-express an epidermally targeted, wild type Akt 

transgene (K5-Akt) (Segrelles et al., 2007). As previously published, K5-Akt mice 

exhibited heightened Akt expression and activation compared with wild type controls. Bi-

transgenic K5-UCP3/K5-Akt mice restored Akt activation in response to TPA treatment 

(Figure 4.8 a).  In every treatment group, Akt over-expression increased epidermal 

proliferation measured by BrdU incorporation, and rescued TPA-induced proliferation in  
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Figure 4.7 Mitochondrial β-oxidation alters plasma membrane lipids & signaling. 

(a) Immunoblot for sub-cellular localization of Akt and PTEN in membrane and 
cytoplasmic fractions from wild type FVB and K5-UCP3 epidermis topically treated with 
2.5 µg TPA or Acetone. Immunoblots α-6 Integrin and β-Actin were used as controls to 
verify membrane and cytoplasmic fractions, respectively.  (b) Relative quantification of 
phosphatidylinositide(3,4,5)trisphosphate (PIP3) in wild type and K5-UCP3 epidermal 
lipid extracts. (c) Immunoblot for Akt Ser 473 phosphorylation in wild type FVB and K5-
UCP3 epidermal lysates 6 hours following topical treatment with 1 mg etomoxir ethyl 
ester (Eto) or ethyl acetate (EA, vehicle control).  Immunoblotting for β-Actin was used 
to confirm equal loading. 
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K5-UCP3/K5-Akt animals (Figure 4.8 b-c).  When subjected to a two-stage chemical 

carcinogenesis regimen, Akt over-expression overcame metabolic regulation and rescued 

skin tumorigenesis in K5-UCP3/K5-Akt mice.  Bi-transgenic K5-UCP3/K5-Akt mice and 

K5-Akt single transgenics both formed more papillomas than wild type mice, and 

displayed nearly overlapping papilloma incidence curves (Figure 4.9 a).  Papilloma 

multiplicity revealed a slightly increased latency before papilloma development in K5-

UCP3/K5-Akt animals; however, bi-transgenic mice still formed papillomas more rapidly 

and abundantly than wild type littermates (Figure 4.9 b). K5-UCP3/K5-Akt mice also 

formed more carcinomas than wild type mice, however they still showed a significant 

reduction in carcinoma formation compared with K5-Akt mice (Figure 4.9 c-d), 

suggesting that UCP3 may also inhibit tumor progression, even in the context of Akt 

over-expression.  However, this difference may be explained by the fact that the 

transgene can still be regulated by the same changes that reduce endogenous Akt 

activation in K5-UCP3 mice.  Notably, no K5-UCP3 single transgenic animal developed 

a carcinoma (Figure 4.9 c-d), in accordance with our previous findings (Lago et al., 

2012).  Taken together, these findings establish a new mitochondrial pathway of 

metabolic Akt regulation that results in the profound blockade of tumorigenesis via 

changes in fatty acid metabolism and membrane homeostasis. 
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Figure 4.8 Overexpression of Akt rescues proliferation in K5-UCP3 epidermis. 

(a) Akt phosphorylation at Ser 473 in wild type FVB, K5-UCP3, K5-Akt, and 
bitransgenic K5-UCP3/K5-Akt epidermal lysates, 4 hours following topical treatment 
with 2.5 µg TPA or Acetone. (b) Immunohistochemistry for BrdU labeled cells following 
treatment with single (1x) or multiple (4x) treatments with 2.5 µg TPA or Acetone.  Scale 
bars = 50 microns.  (c) Quantification of BrdU labeled cells. >500 cells were counted 
from n = 3 mice per genotype in each treatment group. Error bars are means +/- SEM. 
* = significantly differs from Acetone, same genotype (** p<0.01, *** p<0.0001). 
† = significantly differs from wild type FVB/N, same treatment (††† p<0.0001).  
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Figure 4.9 Overexpression of Akt rescues tumorigenesis. 

(a) Tumor development in wild type FVB, K5-UCP3, K5-Akt, and bitransgenic K5-
UCP3/K5-Akt mice indicating total papillomas/mouse, (b) % mice bearing papillomas, 
(c) total carcinomas/mouse, and (d) % mice bearing carcinomas. 
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4.3  Discussion 

As discussed earlier, several lines of evidence suggest that mitochondrial 

oxidative metabolism is tumor suppressive.  Our observations strongly support a 

chemopreventive action of mitochondrial respiration using a novel mouse model that 

expresses a skin-targeted, mitochondrial respiration-inducing UCP3 transgene.  In 

contrast to the more well-described pathways through which mitochondria can regulate 

cellular proliferation through modulation of ATP, ROS, and amino acid metabolism, the 

lipid-dependent regulation of cell growth signaling is relatively less well understood.  

Here we show that mitochondrial uncoupling drove β-oxidation of lipids, which 

corresponded to failed Akt membrane recruitment and blockade of tumor promotion 

(Illustration 4.1).  Inhibition of mitochondrial β-oxidation resulted in Akt activation.  Our 

data imply that strategies that promote lipid oxidation over lipogenesis may be a novel 

and effective therapeutic approach that circumvents many of the toxic manifestations of 

traditional chemotherapeutics. 

As stated previously, the role of uncoupling proteins in carcinogenesis is 

controversial, with some studies outlining a pro-carcinogenic role for UCPs.  Our data 

clearly show that UCP expression has chemopreventative actions.  Analysis of UCP3 

expression in the Oncomine database revealed seventeen studies in which UCP3 was 

among the top 10% of down-regulated genes in cancer tissues compared to normal tissue 

controls (Table 4.1).  The present study is the first to establish a molecular mechanism for 

UCP3-induced cancer protection, and is also the first report to show that enforced UCP3 

expression can block Akt activation in mouse and human keratinocytes.  As interest in  
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Table 4.1 Cancers in which UCP3 is among the top 10% of down-regulated genes.  

Extended Data Table 1
Cancer type Fold change p-value Reference

Pancreatic adenocarcinoma -3.075 5.07E-07

Logsdon, C. D. et al.  Molecular profiling of 
pancreatic adenocarcinoma and chronic pancreatitis 
identifies multiple genes differentially regulated in 
pancreatic cancer. Cancer research  63, 2649-2657 
(2003).

Tounge squamous cell carcinoma -4.231 1.07E-05

Estilo, C. L. et al.  Oral tongue cancer gene 
expression profiling: Identification of novel potential 
prognosticators by oligonucleotide microarray 
analysis. BMC cancer  9, 11, doi:10.1186/1471-
2407-9-11 (2009).

Glioblastoma -1.441 5.67E-05
The Cancer Genome Atlas - Glioblastoma Multiforme 
Gene Expression Data (No associated paper, 
2013/06/03)

Astrocytoma -1.649 6.39E-04

Oligodendroglioma -1.679 1.54E-04

Pleomorphic liposarcoma -3.334 1.00E-03

Leiomyosarcoma -3.673 2.91E-04

Tounge carcinoma -1.188 4.38E-05

Oral cavity carcinoma -1.34 3.53E-04

Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma -1.428 2.69E-07
Diffuse Large B-cell Lymphoma -1.33 5.25E-11
Activated B-Cell-Like Diffuse Large B-Cell Lymphoma -1.3 3.04E-08

Familial Parathyroid Hyperplasia -1.288 3.00E-02

Parathyroid Gland Adenoma -1.354 7.00E-03

Dedifferentiated Liposarcoma -1.182 6.00E-03 The Cancer Genome Atlas - Sarcoma DNA Copy 
Number Data (No associated paper, 2013/05/23)

Angioimmunoblastic T-Cell Lymphoma -1.245 3.75E-05

Piccaluga, P. P. et al. Gene expression analysis of 
peripheral T cell lymphoma, unspecified, reveals 
distinct profiles and new potential therapeutic 
targets. The Journal of clinical investigation 117, 823-
834, doi:10.1172/jci26833 (2007).

Follicular Lymphoma -1.224 4.00E-03

Brune, V. et al. Origin and pathogenesis of nodular 
lymphocyte-predominant Hodgkin lymphoma as 
revealed by global gene expression analysis. The 
Journal of experimental medicine 205, 2251-2268, 
doi:10.1084/jem.20080809 (2008).

Detwiller, K. Y. et al. Analysis of hypoxia-related gene 
expression in sarcomas and effect of hypoxia on 
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tumor metabolism continues to intensify, it is likely that Akt will be found to have even 

more inputs into control of cellular metabolism, so it makes sense that it would also 

receive feedback control from metabolic state.  Our data imply that simultaneously 

targeting the PI3K/Akt pathway may sensitize tumors to metabolically targeted therapies, 

and future studies aimed at understanding the complex mechanistic relationships between 

mitochondrial function, Akt signaling, and tumorigenesis will be incredibly informative 

as we continue to develop metabolically targeted therapeutic approaches. 
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Illustration 4.1 UCP3 overexpression drives lipid catabolism and blockade of Akt 
signaling. 

Herein, we show that overexpression of UCP3 drives enhanced fatty acid oxidation, 
resulting in the depletion of free fatty acids (FFA).  The data suggest that the depletion of 
FFA causes cells to scavenge fatty acid tails from membrane phospholipids, resulting in 
increased markers of membrane phospholipid breakdown (lysophospholipids).  These 
data corresponded to failure to recruit Akt to the plasma membrane, along with decreased 
Akt activation, despite normal levels of PIP3.  We hypothesize that the failed membrane 
recruitment of Akt may result from changes in membrane composition and dynamics due 
to the increased levels of lysophospholipids. 

  

PIP3 

RTK 

Akt 

PI3K 

Lysophospholipids 

PIP2 

β-Oxidation 

UCP3 

FFA 

Proliferation 
& 

Tumorigenesis 

Membrane Breakdown 

EGF 



 100 

Chapter 5:  Concluding Remarks 

 
While Otto Warburg originally proposed that mitochondrial defects caused 

cancer, we now understand that metabolic reprogramming likely confers tumor cells a 

growth advantage by simultaneously supplying the energy and biomass necessary to 

rapidly build new daughter cells.  Here we show that enforced mitochondrial uncoupling 

leads to cancer resistance, likely as a result of pleiotropic changes in metabolism that 

converge at least in part on Akt signaling.  These results add to a growing number of 

reports that suggest that manipulation of mitochondrial metabolism and cellular energy 

balance has profound effects on growth signaling.  However, there are still many 

mechanistic details yet to be elucidated.  Future studies to further examine the molecular 

mechanisms by which UCP3 overexpression drives keratinocyte and bulge stem cell 

differentiation will provide useful knowledge with relevance not only to cancer, but also 

to other diseases such as psoriasis.  Furthermore, the work herein has identified a novel 

pathway of metabolic regulation of the PI3K/Akt pathway, one of the most commonly 

up-regulated oncogenic pathways in cancer.  A more detailed mechanistic understanding 

of exactly how mitochondrial β-oxidation controls Akt plasma membrane recruitment 

could provide a new therapeutic window for novel cancer therapies.  Although there are 

still many questions to be answered, these studies provide the foundation for future 

experiments to explore mechanisms of UCP3-induced cancer resistance in greater detail. 

One of the least studied aspects of stem cell biology deals with the relationships 

between stem cell phenotypes and mitochondrial function.  This is particularly true for 
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skin stem cell populations; we could find no study that addresses their mitochondrial 

bioenergetics in the literature.  Nonetheless, our data argue that mitochondrial uncoupling 

in bulge stem cells promotes their differentiation and thereby impacts tumor resistance.  

Related studies in human embryonic stem cells (hESC) support this view.  

Morphologically, undifferentiated hESC have few mitochondria each with few cristae (St 

John et al., 2005), which indicates that they have low oxidative respiratory capacity and 

increased requirements for glycolytic ATP production.  Interestingly, mitochondrial 

proliferation is thought to be required for hESC differentiation (Ezashi et al., 2005).  In 

colonies of undifferentiated hESC, the more differentiated cells on the periphery exhibit 

increased mitochondrial number (Cho et al., 2006).  Other studies show that glycolysis 

not only promotes hESC “stem” phenotypes, but it is repressed in favor of mitochondrial 

energy production during hESC differentiation (Chung et al., 2010).   Additionally, both 

low membrane potential (Schieke et al., 2008) and calcium (Spitkovsky et al., 2004) are 

reported to be associated with cellular differentiation.  

Though to our knowledge no publications confront the topic of mitochondrial 

calcium in keratinocyte differentiation, in other systems mitochondrial calcium 

sequestration is a major determinant of cellular calcium signaling (Bowser et al., 1998; 

Cheranov and Jaggar, 2004; Zenisek and Matthews, 2000).  The mitochondrial membrane 

potential (Ψ) is a critical determinant of mitochondrial calcium sequestration, with high 

Ψ favoring calcium uptake, while low Ψ favors release into the cytoplasm (Nicholls and 

Ward, 2000).  Given its effects on Ψ, pharmacologic mitochondrial uncoupling has been 

implicated in the protection from mitochondrial calcium overloading (Stout et al., 1998) 
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and numerous reports indicate that uncoupling increases intracellular calcium levels 

(Bernardi et al., 1984; Biswas et al., 1999; Kessler et al., 1976; Luo et al., 1997; Pozzan 

et al., 1977; Sandoval, 1980).   Both UCP2 and UCP4 have been shown to restrict 

mitochondrial calcium influx through effects on Ψ (Chan et al., 2006; Teshima et al., 

2003).  In contrast, a controversial manuscript by Trenker et al. posited that in certain 

immortalized cells, UCP3 failed to regulate Ψ, but rather mediated calcium import into 

mitochondria (Trenker et al., 2007).   Our data agree with the conclusions drawn in a 

published critique of this paper which suggests that UCP3 may decrease mitochondrial 

calcium storage and increase cytoplasmic levels (Brookes et al., 2008).  Unlike Trenker et 

al., we have always observed an effect of UCP3 over-expression on Ψ, as has been 

extensively reported. Thus, we believe that UCP3 overexpression may cause 

mitochondrial calcium export, raising cytoplasmic calcium concentrations and thereby 

driving keratinocyte differentiation. 

Another possibility that has yet to be explored is the relationship between the 

differentiating effects of UCP3 expression and the UCP3-induced blockade of Akt 

signaling.  One likely link between these phenotypes may be protein kinase C (PKC) 

signaling, as PKC is the main target of TPA activation, and the classical PKC isoforms 

are calcium sensitive as well.  Furthermore, PKCs must also be recruited to the plasma 

membrane in order to signal efficiently (Pinton et al., 2002), thus modulation of 

mitochondrial β-oxidation and lipid catabolism may have similar effects on PKC 

activation as those observed with Akt.  Active PKC can drive proliferation or 

differentiation, depending on the active isoform(s) and cellular context (Bollag, 2009; 
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Jerome-Morais et al., 2009).  Nevertheless, the UCP3-induced suppression of Akt 

signaling in response to EGF treatment implies that at least some of the inhibitory actions 

of UCP3 overexpression occur downstream of PKC activation/inactivation. 

In contrast to the more well-described pathways through which mitochondria can 

regulate cellular proliferation through modulation of ATP, ROS, and amino acid 

metabolism, the lipid-dependent regulation of cell growth signaling is relatively less well 

understood.  Several indirect lines of evidence support our observation that changes in 

cellular lipid homeostasis can control proliferation.  For example, studies have shown that 

inhibiting mitochondrial citrate export can block the cell cycle (Rao and Coleman, 1989), 

and knockdown or inhibition of ACL results in inhibition of PI3K/Akt signaling and 

tumorigenesis (Buzzai et al., 2005; Hanai et al., 2012). As discussed in Chapter 1, a few 

other reports in the literature have suggested that lipids can affect Akt signaling through 

bioactive lipid signaling mediators, such as sphingosine-1-phosphate, or through changes 

in membrane composition and structure (Gu et al., 2013; Schuppel et al., 2008).  

Additionally, lysophospholipids have been shown to affect membrane recruitment and 

cellular signaling in an array of diverse contexts (Chowdhury et al., 2008; Grzelczyk and 

Gendaszewska-Darmach, 2013), however the exact mechanisms are not well understood.  

Future mechanistic studies are needed to further detail how UCP3-induced lipid 

catabolism affects signaling events and plasma membrane recruitment of Akt.  

Nonetheless, along with the few reports cited above, our observations lay the foundation, 

and support an urgent need for greater exploration of how lipid metabolism may control 

cell growth in general. 
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In the past decade, metabolic intermediates have emerged as novel players linking 

mitochondrial dysfunction to carcinogenesis (Ward et al., 2010; Zhao et al., 2009).  The 

suppression of mitochondrial substrate oxidation may lead to caterplerotic reactions that 

provide mitochondrial substrates to the cytoplasm necessary for the biosynthetic needs of 

rampant cell division.  Thus, UCP3-driven uncoupling could limit the flux of Kreb’s 

cycle intermediates to the cytoplasm and thereby limit the biosynthetic supplies necessary 

for tumor development.  Although not discussed in the current work, metabolomic 

analysis revealed that in addition to changes in lipid homeostasis, UCP3 overexpression 

likely drives elevated rates of glycolysis and enhanced catabolism of branched chain 

amino acids, along with possible changes in several other metabolic pathways 

(unpublished data).   In particular, the up-regulation of glycolysis in K5-UCP3 epidermis 

is exceptionally interesting, given their tumor resistant phenotype and the large body of 

literature suggesting that up-regulation of aerobic glycolysis is paramount to tumor 

formation.  More detailed, targeted metabolic studies to describe the flux of metabolites 

through specific pathways will add to our knowledge of how mitochondrial uncoupling 

affects nutrient utilization in this model, and may further inform not only our 

understanding of how UCP3-driven metabolic changes antagonize tumorigenesis, but 

also what exactly comprise the metabolic requirements for malignant transformation. 

The data herein support the argument that mitochondrial uncoupling may be a 

uniquely powerful metabolic intervention because it simultaneously targets a broad 

repertoire of interconnected metabolic and signaling changes essential for tumorigenesis.  

Moreover, tumor cells often exhibit profound metabolic flexibility, utilizing a variety of 
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nutrient sources for both energy production and biosynthetic reactions, and as a result, 

many cancers are refractory to singly targeted metabolic therapies.  Mitochondrial 

uncoupling likely restricts this flexibility by enforcing the constitutive oxidation of 

substrates, without concurrent ATP production.  As our data indicate, uncoupled cells 

scavenge non-traditional nutrient sources, simultaneously limiting both the intermediates 

available for biomass production, along with growth signaling.  Ultimately, the pleotropic 

effects of mitochondrial uncoupling provide a strategy to target both cancer cell 

metabolism and signaling, and may be a novel and effective therapeutic approach that 

circumvents many of the toxic manifestations of traditional chemotherapeutics.  
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Appendices 

 

Appendix 1: Mouse Epidermal Keratinocyte Primary Culture Protocol 

 
Mediums and Buffers: 
 
Collagen Coating:  no filtration, make up and store at 4°C, can be used repeatedly until 
gone. 
 MCDB 151-100mL:  Irvine Sci (cat# 9061 or M6645) 
 Fibronectin-1mg (1 ampule): Sigma (cat# F-4759) 
 PureCol– 1mL: Inamed Biomaterials (cat# 5409) 
 BSA-10mg: Sigma (cat# A-3156) 
 HEPES-1mL of 2M HEPES: Sigma (cat# H-9135) 
 
2.5% Trypsin (10X): Gibco (cat# 15090-046); 100mL/bottle, dilute 1:10 in sterile PBS 
for use. 
 
22.5% Percoll:   
100% Percoll: Pharmacia (cat# 17-0891-01, sterile); Invert the bottle to suspend particles 
before usage 
 For 400mL of 22.5% Percoll: 90mL Percoll + 10mL 1N NaCl (filtered) + 300mL 
PBS 
 *Store at 4°C.  Invert several times before usage 
 
Preparation:  do this set up the day before the cell culture 
 
1.  Medium and Buffers 

a.  Collagen Coating (4°C) 
b. 22.5% Percoll (4°C) 
c. 10X or 2.5% Trypsin (-20°C) 
d. Penn-Strep (-20°C) 
e. EMEM#2 medium (4°C) 
f. FBS (4°C) 
g. PBS (4°C) 

2. Autoclave the following: 
a.  Glassware: Numbers are for 2 genotype prep: 

a. 400 mL large beakers (2) 
b. 50 mL small beakers (4) 
c. 15 cm glass plate (1) 
d. 10 cm glass plates  (# mice/3 for each genotype + 2) 
e. Glass funnels (2) 
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f. 100 mL bottle or Erlenmeyer flask (for preparing dilute trypsin) 
3. Turn on UV light in the hood O/N 

 
Preparation:  do this set up on the day of the cell culture 
 
1.  Soak the following in a 400mL beaker filled with 70% EtOH & place in cell culture hood; 

Make sure to rinse tools in 1X PBS once they are taken out of this 70% EtOH beaker and 
before they are used on the animals 

a.  Scissors (1) 
b. Forceps (2) 
c. #22/23 Scalpel (1) 
d. Polypropylene monofilament mesh: Small Parts, Inc. (cat# CMP149-C) (1 per 

genotype) 
e. Small stir bars (1 per genotype) 

 
2. Fill the second 400 mL beaker with sterile PBS in cell culture hood. 

 
3. Wipe down hood with 70% EtOH 
4. Put out in the cell culture hood: 1 large glass petri dish (150mm); plastic petri dishes 

(100mm) for scraping (1dish/mouse); glass petri dishes for floating (1dish/3mice). 
 

5. Dilute Pen-Strep 1:50 in PBS in 50mL beakers (1 per each genotype). 
Dilute 2.5% (10X) Trypsin 1:10 in PBS – 5mL Trypsin/45mL PBS  (~15mL needed to cover 
bottom of each glass petri dish). 
 

6. Set out large plastic beaker near sink with betadine and 70% ethanol for sterilizing mice, set 
up a bench pad with clippers and Nair for hair removal. 
 

Procedure: 
 
7. Sacrifice mice using cervical dislocation or CO2. 

 
8. Shave mice (if not done 2 days prior) and apply Nair for ~1min.  Rinse off Nair with tap 

water & gentle massaging, then place mouse in betadine beaker so that it is completely 
covered. 

 
9. Once all mice are in betadine, rinse out container with tap water until solution is clear (some 

of the betadine will stick to the hair that is left on the mouse, but try and get rid of most of it). 
 
10. Rinse 2X with 70% EtOH (don’t rinse with water between these rinses).  Dry animals with 

absorbent bench pad & place in hood. 
 
11. Placing animals in 150mm dish one at a time (and dabbing off excess EtOH), remove dorsal 

skins with scissors and place in small beaker w/PBS + Pen-Strep. 
 *Rinse tools in 1xPBS after being soaked in 70% EtOH and before using on mice. 
 *Use long cutting strokes to prevent tearing during the scraping process 
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 *If you become unsure of sterilization of anything-put it back in EtOH!!! 
 

12. Spread skin out with hair side down in 100mm plastic petri dish.  Scrape fat and connective 
tissue away until skin is almost translucent.  BE CAREFUL, it is very easy to tear a hole in 
the skin. 

***IMPORTANT*** Epidermis will not separate if all fat is not removed.  
 

13. Transfer skin to the cover of the plastic petri dish (the lid of the dish that the skin was scraped 
in) with hair side up (this means that you have to flip the skins over), spread out 
completely, and let dry for less than 10min. Often 2-3 skins can be scaped and set to dry 
before the first one is ready to transfer to the 1X Trypsin. 
 

14. Transfer semi-dried skin (hair side still up) to the glass petri dish (3 skins/dish) filled with a 
thin layer of 0.25% (1X) Trypsin (anywhere from 15-25mL is fine as long as it covers the 
bottom of the dish).   

 *The skins need to be floating with no edges curled under. 
 *Try to remove all large air bubbles. 
 
15. Place the glass dishes in 37°C incubator for 45 min – 1 hour.  Then transfer dishes to cell 

culture hood and let stand at RT for 1 hour.   
 *Skins should not sit on trypsin for more than 3hrs total.  I have found that even going 

past 2 hours seems to decrease viability. 
 
16. If cells will be cultured after isolation, during this incubation coat dishes w/collegen mixture 

and allow to dry for 1hr in the hood; drying with the lids slightly open.  Use ~0.5mL/dish; 
add all to first dish and coat, then transfer to next dish and coat, and transfer to next dish, etc. 

 *Okay to leave for 2.25hrs; completely dry when you see crystals 
 
17. Make EMEM#2 + 10% FBS: 5mL FBS + 45mL EMEM-2 per genotype, store at 4˚C. 

 
18. Prop up one edge of a small glass petri dish and add 3 mL of cold EMEM#2 + 10% FBS.  

Place a piece of incubated skin (hair side up) on the dish above the medium, and hold it about 
the medium with forceps. 

 
19. Using a scalpel (perpendicular to the skin) and forceps, lightly scrape epidermis into the 

medium.  The epidermis should come off as a sheet of tissue.  You do not want to 
contaminate the media in the dish with fibroblasts, so do not let the piece of skin fall down 
into the media; keep at top of tilted dish.   

*Don’t force the scape if the epidermis won’t come off easily or the fibroblasts 
will be pushed out and they will destroy the culture 
*Be careful.  The epidermis will “roll up” at the end of the scrape 
*Use the same plate for all skins from the same genotype. 

 
20. Carefully transfer the epidermal scrapings to a 50mL beaker.  Don’t pipette because the tissue 

will all just get stuck in the pipette or tip, it is better to just pour from the petri dish directly 
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into the beaker.  Rinse the dish with 7 mL EMEM#2 + 10% FBS, and transfer that to beaker 
as well (total volume in beaker should be 10 mL media). 
 

21. Mince the epidermis slightly with dissecting scissors for 5 min.  Set a timer, you will want to 
stop early and the tissue will not be completely dissociated.  Add medium up to ~30mL total. 

 
22. Add the sterile stir bar and stir gently for 30 min.  Stir as slow as possible, but make sure that 

it doesn’t stop. 
 
23. When samples are done stirring, take the mesh out of the EtOH and shake, then (rinse in 

1XPBS beaker, shake) twice until mostly dry.  Place mesh in the glass funnel on top of a 
50mL conical tube and strain cells through nylon mesh. 

 
24. Spin cells at 1000rpm (~250g) for 10min at 4C.   While samples are spinning, prepare Percoll 

tubes: 20 mL of 22.5% Percoll/6 mice/50 mL conical tube. 
 
25. Suck off supernatant and re-suspend each pellet in 2 mL cold EMEM#2 + 10% FBS per 

Percoll gradient to be loaded from this cell pellet.  So, if you started with ~12 mice then re-
suspend in 4 mL total because you need to split it between 2 Percoll gradient tubes.  Make 
sure cells are very well re-suspended; you want a single cell suspension before the Percoll 
gradient. 

 
26. Slowly add 2 mL cell suspension per Percoll gradient tube.  Swirl Percoll well before using in 

order to distribute colloidal particles.  Tilt the tube at a 30˚ angle and break the surface 
tension with the pipetter tip.  Release the cell suspension about ½ inch above the Percoll and 
release slowly so that the solution runs down the side of the conical tube and layers on top of 
the Percoll.  Be careful since the cells have a tendency to clump.  Do not make bubbles. 

 
27. Spin up to 1000 rpm with slow acceleration & no brake for 15min total at 4˚C.  For this Mills 

lab centrifuge this is done by setting the accel and decel to 1 (the lowest setting). 
 
28. When samples are done spinning, quickly remove ALL the Percoll with a pipet from the top 

to the bottom.  Don’t let them sit in the Percoll. 
 
29. Re-suspend cell pellet(s) in 10 mL EMEM#2 +1% FBS and transfer all the cells to a new 15 

mL conical tube.  If you have split samples of the same genotype across multiple tubes for the 
Percoll gradient, you can recombine them at this step. 

 
30. Spin at 1000rpm for 10 min at 4˚C. 
 
31. Suck off supernatant with a pipet and resuspend cell pellet in 5-10 mL EMEM#2 + 1% FBS.  

I like to use the # of mL equal to the number of mice I started with for each genotype so it is 
easy to figure out how many cells I harvested per mouse. 

 
 
32. Count the cells using a hemacytometer or Coulter counter 
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33. For convenience you can adjust the cell suspension to 1 or 2 million cells/mL.  Normally 8-10 

million cells are plated per 10 cm dish, or 2-3 million per well of a 6-well plate. 
 
34. The cells can be transported back to Austin if the prep is done in Science Park.  Cory had 

written down that they were fine at RT during the drive but I remember her doing it with 
them on ice, so keeping them cold might be better. 

 
The Next Day: 
 
35. Remove the plating medium and wash the plates twice with sterile 1x PBS.  

 
36. Replace with fresh EMEM#2 + 1% FBS. 
 
The cells should be ~90% confluent at day 3 or 4 depending on if 8-10million cells were 
originally plated.  The EMEM-2 media allows the adult keratinocytes to sit down and 
grow properly.    
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Appendix 2: Neonatal Human Primary Keratinocyte Culture Protocol 

 
Mediums and Buffers: 
 
Keratinocyte Serum Free Media:   
 
Add Bovine Pituitary Extract and EGF Supplement that come with the media, mix well. 
Store at 4°C. 
 
HBSS + Na Bicarb + HEPES: 
 
Dilute 50 mL of 10x stock of HBSS (w/o Bicarb, Gibco #14060-057) to 1x with 450 mL 
autoclaved Millipore water. 
Add 5 mL of 7.5% Sodium Bicarbonate (tissue culture grade) 
Add 5 mL of 1 M HEPES 
Filter sterilize & store at 4°C. 
 
Dispase Solution:   
 
Place 50 mL of HBSS + Na Bicarb + HEPES in a conical tube and add 5 µL of 50 
mg/mL Gentamicin, 2 µL of 250 µg/mL Fungizone, and 500 mg Dispase (Final 
concentrations = 5 µg/mL Gentamicin, 10 mg/mL Dispase). 
Filter sterilize with a 0.2 µm syringe filter to exclude any bacterial remnants in Dispase. 
Store at 4°C. 
 
Stop Media: 
DMEM cell culture media 
10% FBS (100 mL for 1 L media) 
1% Pen-strep (10 mL for 1 L media) 
0.1% Gentamicin (1 mL for 1 L media) 
 
Preparation:   
 
1.) Fill several 15 mL conical tubes with EMEM#2 media + 1:10,000 dilution of 

Gentamicin.  For 20 tubes, I will make 100 mL media + 10 µL Gentamicin, and 
aliquot 5 mL per tube.  If you are short on media, 3 mL per tube is ok. 

2.) Take tubes to the hospital.  The charge nurse will call when there are several 
specimens ready to pick up. 
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Procedure: 
 
3.) Sterilize scissors and foreceps in beaker of 70% ethanol. 
4.) Place 2-3 mL of Dispase solution in each well of a 6-well plate, or alternatively use 

35 mm petri dishes. 
5.) Use a 10 cm petri dish as a sterile surface to work with the foreskin. 
6.) Flatten out foreskin by snipping open the ring of tissue.  Trim the tissue to ensure that 

it lays flat and to remove extraneous fat/muscle that may still be attached to the 
underside of the tissue.  If sample is big, it may help to cut it in half. 

7.) Place sample skin side up in the well/dish with dispase solution. 
8.) Cover and place at 4°C overnight (16-18 hours).  Don’t let them incubate too long or 

it will decrease cell viability. 
9.) Clean hood WELL with bleach and then 70% ethanol.  This is human tissue and is 

Biohazardous and potentially infectious.  The hospital is not supposed to give us 
anything that is HIV+ or HepC+ but you can never be too careful. 

 
The Next Day: 
 
10.) Sterilize forceps and scissors in 70% ethanol. 
11.) Place foreskin in culture dish and peel away epidermis.  Place the epidermis in a 

50 mL conical tube. 
12.) Add 5 mL of Trypsin-EDTA (0.25% Trypsin, 1 mM EDTA).  Swirl to immerse.  

Place in 37°C incubator for 5-7 minutes.  Gently swirl half way through incubation. 
13.) After incubation, add 30 mL Stop Media.  Swirl to mix. 
14.) Centrifuge at 3000 x g for 10 minutes. 
15.) Aspirate media.  At this point there may be particles floating in the media.  These 

are not live cells but part of the cornified layer and can be aspirated with the media. 
16.) Resuspend the cells in 10-30 mL of KSFM. 
17.) Plate cells in 1-3 10 cm cell culture dishes or 1 T75 flask, depending on the size 

of the cell pellet and how dense you want the cells to be. 
18.) Allow to grow 2-3 days at 37°C, or until cells are 80% confluent. 

Continue to culture as you would with a normal cell line until cells are expanded enough 
to use for experiments. 
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