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Abstract 

 

Application of Statistical Learning Models to Predict and Optimize 

Rate of Penetration of Drilling 

Chiranth Manjunath Hegde, M.S.E 

The University of Texas at Austin, 2016 

 

Supervisor:  Kenneth E. Gray 

 

Modeling the rate of penetration of the drill bit has been essential to optimizing 

drilling operations. Optimization of drilling – a cost intensive operation in the oil and gas 

industry– is essential, especially during downturns in the oil and gas industry. This thesis 

evaluates the use of statistical learning models to predict and optimize ROP in drilling 

operations.  

Statistical Learning Models can range from simple models (linear regression) to 

complex models (random forests). A range of statistical learning models have been 

evaluated in this thesis in order to determine an optimum method for prediction of rate of 

penetration (ROP) in drilling. 

Linear techniques such as regression have been used to predict ROP. Special linear 

regression models such as lasso and ridge regression have been evaluated. Dimension 

reduction techniques like principal components regression are evaluated for ROP 

prediction. Non-linear algorithms like trees have been introduced to address the low 
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accuracy of linear models. Trees suffer from low accuracy and high variance. Trees are 

bootstrapped and averaged to create the random forests algorithm. Random forests 

algorithm is a powerful algorithm which predicts ROP with high accuracy. 

A parametric study was used to determine the ideal training sets for ROP prediction. 

It was conclude that data within a formation forms the best training set for ROP prediction. 

Parametric analysis of the length of the training set revealed that 20% of the formation 

interval depth was enough to train an accurate predictor for ROP.     

The ROP model built using statistical learning models were then used as an 

equation to optimize ROP. An optimization algorithm was used to compute ideal values of 

input feature to improve ROP in the test set. Surface controllable input features were varied 

in an effort to improve ROP. ROP was improved to save a predicted total of 22 hours of 

active drilling time using this method.  

This thesis introduces statistical learning techniques for predicting and optimizing 

ROP during drilling. These methods use input data to model ROP. Input features (surface 

parameters which are controllable on the rig) are then changed to optimize ROP. This 

methodology can be utilized for reducing nonproductive time (NPT) in drilling, and applied 

to optimize drilling procedures. 

 



viii 

 

Table of Contents 

List of Tables ...........................................................................................................x 

List of Figures ........................................................................................................ xi 

Chapter 1  Introduction ............................................................................................1 

1.1: Motivation ................................................................................................1 

1.2: Thesis Organization .................................................................................2 

Chapter 2  Literature Review and Background........................................................3 

Traditional ROP Models .................................................................................3 

Statistical Learning Models ............................................................................5 

 

 

Chapter 3  Data and Validation ................................................................................7 

Data Exploration .............................................................................................7 

Data Management .........................................................................................13 

Model Assessment ........................................................................................14 

Cross Validation............................................................................................15 

The Bootstrap ................................................................................................16 

 

Chapter 4  Linear Prediction Methods ...................................................................17 

Least Squares Regression .............................................................................17 

Regularized Regression ................................................................................27 

Principal Components Regression ................................................................34 

Regression Algorithm Selection ...................................................................42 

 

Chapter 5  Nonlinear Prediction Methods .............................................................44 

Trees  .............................................................................................................45 

Trees Versus Linear Models .........................................................................51 



ix 

 

Bagging .........................................................................................................51 

Random Forests ............................................................................................54 

Evaluation of Nonlinear Method ..................................................................56 

Chapter 6  Parametric Analysis of ROP Models ...................................................60 

Type of Training Data  ..................................................................................60 

Study of Training-Test Set Ratio in ROP Prediction ....................................63 

Optimizing Training Sets ..............................................................................65 

Chapter 7  ROP Analysis and Optimization ..........................................................67 

Variables and Spread of Data  ......................................................................67 

One Dimensional Optimization ....................................................................68 

Two Dimensional Optimization ....................................................................72 

Three Dimensional Optimization ..................................................................73 

ROP Optimization and Rate of Drilling........................................................76 

Chapter 8 Future Research and Continuing Work .................................................79 

Chapter 9 Conclusions ...........................................................................................80 

List of Acronyms ...................................................................................................82 

References ..............................................................................................................84



x 

 

List of Tables 

Table 1: Linerar Model Feature Analysis .......................................................19 

Table 2: Percentage variance captured using PCA for different rock formations

...........................................................................................................36 

Table 3: Summary of ROP prediction using different regression techniques  43 

Table 4: ANOVA Test on Input data ..............................................................44 

Table 5: ROP Optimization using optimizing different number of features in the 

Tyler Sandstone Formation ...............................................................75 

 



xi 

 

List of Figures 

Figure 1: ROP versus Depth of Drilling for the Vertical Well Dataset..............8 

Figure 2: ROP vs Depth for sand rock in vertical well (left) and histogram of the 

ROP color coded by formation (right) for Sandstone  ......................10 

Figure 3: ROP vs Depth for sand rock in vertical well (left) and histogram of the 

ROP color coded by formation (right) for Limestone  .....................10 

Figure 4: ROP vs Depth for sand rock in vertical well (left) and histogram of the 

ROP color coded by formation (right) for Shale  .............................11 

Figure 5: Pairs plot for a subset of the sandstone rock data .............................12 

Figure 6: Linear Regression Model used to Predict ROP while drilling in Tyler 

Sandstone ..........................................................................................18 

Figure 7: Improved Regression Model to Predict ROP in Tyler Sandstone ....20 

Figure 8: BIC vs Feature Selection for ROP Prediction in Tyler Sandstone ...22 

Figure 9: Prediction of ROP in Riderdon Limestone using OLS Regression ..23 

Figure 10: Prediction of ROP in Newcastle Limestone using OLS Regression 24 

Figure 11: Prediction of ROP in Pine Sandstone using OLS Regression ..........25 

Figure 12: Prediction of ROP in Swift Shale using OLS Regression ................26 

Figure 13: ROP prediction using ridge regression in Tyler Sandstone ..............29 

Figure 14: ROP prediction using ridge regression in Rierdon Limestone .........30 

Figure 15: ROP prediction using ridge regression in Newcastle Sandstone ......31 

Figure 16: ROP prediction using ridge regression in Pine Sandstone................32 

Figure 17: ROP prediction using ridge regression in Swift Shale .....................33 

Figure 18: ROP prediction in Tyler Sandstone using Lasso ..............................34 

Figure 19: ROP prediction using PCR for Tyler Sandstone...............................37 



xii 

 

Figure 20: ROP prediction using PCR for Pine Sandstone ................................38 

Figure 21: ROP prediction using PCR for Newcastle Sandstone.......................39 

Figure 22: ROP prediction using PCR for Rierdon Limestone ..........................40 

Figure 23: ROP prediction using PCR for Swift Shale ......................................41 

Figure 24: Error Comparison for ROP Prediction using different Regression 

Methods.............................................................................................42 

Figure 25: Data partition for a simple tree involving prediction of ROP using RPM 

as a predictor (Hegde et al., 2015a) ..................................................46 

Figure 26: Simple tree diagram for Tyler sandstone formation using surface 

measurements as input parameters (Hegde et al., 2017) ...................47 

Figure 27: Tree on Tyler Sandstone Data for ROP Prediction ...........................48 

Figure 28: ROP prediction using trees in Tyler Sandstone ................................49 

Figure 29: Deviance versus Size of Tree for ROP using Trees in Tyler Sandstone

...........................................................................................................50 

Figure 30: Number of Trees versus Error for different methods (James et al., 2014)

...........................................................................................................53 

Figure 31: Selection of m in random forests so as to achieve least error (James et 

al., 2014) ...........................................................................................55 

Figure 32: Comparison of Boosting to Random Forests (James et al. , 2014) ...56 

Figure 33: Comparison of Random Forests to Bagged Trees for ROP Prediction in 

Tyler Sandstone ................................................................................57 

Figure 34: Box plot of RMSE using different methods for ROP prediction in 

sandstone formations (Hegde et al., 2015) ........................................58 

 



xiii 

 

Figure 35: Illustration of test and training sets for parametric evaluation of nature of 

training set .........................................................................................61 

 

Figure 36: Box plot of Normalized errors in different formations for changing 

training set attributes .........................................................................62 

 

Figure 37: Line plot of Normalized error in different formations for changing 

training set attributes .........................................................................63 

 

Figure 38: Parametric study of training-test set ratio in ROP prediction ...........64 

 

Figure 39: Box plot to visualize parametric study of training-test set ratio in ROP 

prediction ..........................................................................................65 

 

Figure 40: RPM of Bit Optimized to improve ROP in Tyler Formation ...........69 

 

Figure 41: Optimization of weight on bit to improve ROP during drilling in Tyler 

Formation ..........................................................................................70 

 

Figure 42: Bottom hole pressure optimized to stabilize ROP during drilling in the 

Tyler Formation ................................................................................71 

Figure 43: Weight on bit and bit rotation speed optimized to improve ROP during 

drilling in the Tyler Formation .........................................................72 



xiv 

 

Figure 44: Three dimensional optimization of ROP in the Tyler Formation where 

WOB, RPM and Mud Flow Rate are varied .....................................74 

Figure 45: ROP prediction for entire well using random forest ROP model  ....77 

Figure 46: Time saved with ROP Optimization (22 hours) ...............................78 

 



 

1 

 

 

Chapter 1: Introduction 

1.1: MOTIVATION 

 

Drilling costs occupy a huge portion of the oil and gas budget (Kitchel et al., 1997). 

This emphasizes the need for drilling efficiently. The rate of penetration (ROP) of drilling, 

correlates well with drilling efficiency, although it is not the only factor (Hegde et al., 

2015). High ROP will save time which translates to operational costs savings. As a result 

the Wider Windows IAP on drilling performance and rate of penetration (ROP) modeling 

looked into traditional models (or physics-based modeling) of ROP, torque and MSE. The 

traditional models were problematic given their low accuracy. This was attributed to the 

presence of empirical constants. However a better method for prediction was required 

which would not rely on empirical constants. This problem was solved using data analytics 

and statistical learning. This thesis makes use of data analytics and statistical learning to 

build data-driven models for the accurate prediction of ROP during drilling. An 

introduction is given to statistical learning algorithms and model building. ROP models are 

then built using statistical learning algorithms. These models are compared with traditional 

models to evaluate their accuracy and goodness of fit. A parametric study has been 

conducted to evaluate the data requirements for these statistical learning models.  
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1.2: THESIS ORGANIZATION 

This thesis has been divided into nine chapters. The second chapter will provide a 

literature review on the topic of statistical learning and its application in drilling 

engineering. It will also include a literature review of the several traditional ROP models 

in drilling. The third chapter will introduce the data set used for validation of these models. 

It will also describe methods adapted ensure that there is no overfitting of the data. Cross 

validation and bootstrapping are covered which will be actively used in the algorithms in 

following chapters. The fourth chapter will introduce regression and its application in ROP 

prediction. The applications of regularized regression and principal components regression 

(PCR) have been discussed. The fifth chapter will cover nonlinear prediction techniques 

such as trees and random forests. The sixth conducts a parametric study of these models to 

determine the ideal size, volume and type of data required for accurate ROP predictions. 

The seventh chapter explores the use of these models to predict ROP and optimize ROP. 

The predicted ROP can be optimized based on changing input parameters on the surface of 

the rig based on model recommendations. The eighth chapter presents future work and 

continuation of this thesis. The ninth and the last chapter will provide a summary of the 

content of this thesis. 
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Chapter 2: Literature Review and Background 

Optimizing drilling operations is extremely important to the success of an oil and 

gas project. Nonproductive time (NPT) accounts for a significant portion of drilling budget, 

and reducing NPT is important to keep drilling costs low. ROP is directly proportional to 

the cost of drilling, since increase of ROP reduces operational costs. This section looks at 

a review of ROP models.  

 

2.1: TRADITIONAL ROP MODELS 

The speed of drilling generally has high correlation to the rate of penetration of a 

well as long as the bit is intact. As a result improving the ROP as well as predicting it has 

been a subject to a great deal of research in the past. These models have been improved 

over decades based on their requirement and technical advances in drilling. However, most 

of these models are still empirical in nature i.e. they contain empirical constants. These 

empirical contestants need to be determined and adjusted for each formation or lithology. 

These adjustments are made based on the data acquired during drilling the well (or pad 

wells). Some of these models have bounds on the empirical constants. But for the most 

case this range must be determined by engineering judgement or data.  

One of the earliest ROP models was developed by Maurer (1962) where the author 

applied a rock cratering approach to develop a ROP formula for roller-cone bits. The 

parameters included weight-on-bit (WOB), rotary speed (RPM), bit diameter and strength 

of rock. Despite theoretical backing for this model, an empirical coefficient was adopted.  

An important concept introduced by Maurer was rock floundering: beyond a certain WOB 

there was no improvement in ROP because of the reduction in hole cleaning ability. The 

cuttings would accumulate around the bit, making it harder to clean at the bit. This would 
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subsequently reduce the ROP. A model for prediction of ROP was introduced by Bingham 

(1965), using parameters of weight on bit (WOB), rotations per minute (RPM), and bit 

diameter. An empirical constant ‘k’ was used, which was formation dependent. This paper 

stressed on the importance of hole cleaning ability and its relation to ROP. A model 

introduced by Eckel (1967) incorporated the effects of drilling mud on ROP. A Reynolds 

number function was used to correlate ROP with mud properties. It was showed that an 

increase in the Reynolds number function correlated well with high ROP measurements. 

Based on this paper it was concluded that a mud with a low kinematic viscosity would be 

recommended for easier drilling or higher ROP yield.  

Bourgoyne and Young (1974) introduced a more sophisticated model with 

additional parameters in order to include more physical and geological aspects involved in 

drilling. This model is perhaps the most comprehensive model to date which describes 

ROP. The model contained eight parameters namely: formation strength, normal 

compaction trend, under compaction, differential pressure, bit diameter and bit weight, 

rotary speed, tooth wear, and bit hydraulics.  

Walker et al. (1986) introduced a model which utilized triaxial rock strength tests 

and the Mohr-Coulomb failure criterion to develop a roller cone ROP equation dependent 

on WOB, borehole pressure, rock porosity, average grain size, and in-situ formation 

compressive strength. Warren (1987) developed a model which separated the effects of 

drilling into physical breakage of the rock and hole cleaning. This model has been shown 

by Soares (2015) to work well in low differential pressure but fails in cases of higher 

differential pressures. Winters et al. (1987) added a fourth term to the Warren (1987) 

equation: rock ductility. 
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Hareland and Rampersad (1994) introduced a drag bit model which was later 

modified by Motahari et al. (2010). The original drag bit model contained three empirical 

parameters to model lithology and other eccentric factors. Optimization of drilling was 

reported with some success as authors began to use well logs along with drilling simulators. 

Reports by Gjelstad et al. (1998) and Nygaard et al. (2002) have shown good cost reduction 

in North Sea drilling operations using ROP models. Motahari et al. (2010) discussed a PDC 

(polycrystalline diamond compact) bit model where the effect of PDMs (positive 

displacement motors) were accounted for. This model is useful given the prolific use of 

PDC bits for drilling in the present day scenario. The paper emphasizes the importance of 

torque at the drill bit. 

All the models covered so far are not predictive in nature and cannot adapt to new 

lithology while drilling. Entering a new lithology, or change in wellbore trajectory or 

change in rock type, for example, would require re-determination of all the empirical 

constants.  

 

2.2: STATISTICAL LEARNING MODELS 

 

Bilgesu et al. (1997) used neural networks to predict ROP, however, this paper 

failed to adequately address the issue of data quality, data volume, algorithmic 

development, and ROP prediction between multiple formations. The authors also included 

some empirical variables in their ROP formulation - bit-wear, tooth-wear, and formation 

drill ability – which defeat the purpose of using these models as compared to traditional 

ROP models.  Jahanbakhshi and Keshavarzi (2012) explored technique using different 
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input parameters. The authors included empirical input feature in their paper which 

determined by the neural network algorithm. They employed a 75% training set, which 

would not be practically applicable in drilling. Dunlop et. al (2011) created a model with 

two input parameters to optimize ROP: RPM and WOB. The paper employed analytical 

methods to solve for the best ROP. Their paper failed to include other effects on the bit 

such as bit cleaning, bit wear, and pressure in the annulus which affect the ROP. ROP was 

optimized purely based on WOB and RPM. The work of Hegde et al. (2015a) has been 

insightful in introducing statistical learning methods to predict ROP without the inclusion 

of empirical parameters. The authors used machine learning and ensemble learning 

techniques to predict the ROP during drilling. The paper predicted ROP with a good 

accuracy using the random forests algorithm. Training and test-sets were labelled clearly 

which indicated their usability in drilling. Other work includes the use of statistical 

methods by Hegde et al. (2015b) to infer rather than predict which can be used to make 

decisions. Wallace et al. (2015) developed a method to determine incorporate this statistical 

model into real time drilling operations. This paper laid out the blueprint to use statistical 

learning techniques and incorporate these techniques in the drilling workflow so that they 

may be used on a rig for real-time drilling analysis. In contrast with the traditional models, 

statistical learning models utilize surface measured parameters such as weight on bit, 

rotations per minute, and flow rate to predict ROP. Machine learning can be used for 

accurate ROP prediction during drilling within a given facies or even for multiple facies in 

succession (with adequate training data). Machine Learning (ML) methods are 

advantageous since they do not contain any empirical constants or bit specifications and 

are not bound to a borehole assembly (BHA).  
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Chapter 3: Model Validation 

The wider windows statistical learning model (WWSLM) uses input parameters 

(input features), such as weight on bit (WOB), rotary speed of the bit (RPM), and flow-

rate. Drilling data measured on the surface include other parameters such as block height, 

differential pressure, hook load, rock strength, and torque. These input parameters (WOB, 

RPM and flow-rate) are then utilized to ‘train’ an ROP predictor. Training a model is where 

the model is built (or formed) based on the training data. The input parameters are user-

selected; the accuracy of the resulting model will depend on input parameters, data quality 

and model algorithm. In the examples shown in this thesis, only surface measurements 

were used for ROP prediction. Other variables such as mud properties, drill string and 

bottom-hole assemblies were not included, but they could be. Basic requirements for 

WWSLM are minimal making it user-friendly and rig adaptable (Hegde et al., 2015a). 

3.1: DATA EXPLORATION 

Since this project is based on the use of data-driven models for ROP prediction, 

analyzing the data is important. This thesis utilizes drilling data (measured at the surface) 

from one vertical well drilled by Marathon Oil in the Williston Basin, North Dakota. The 

data includes measured ROP with depth. Other drilling parameters like weight on bit 

(WOB), rotations per minute (RPM), flow rate, differential pressure, strength of the rock, 

and torque were measured among several other entities. The well was drilled through 18 

formations consisting of three types of rocks: sandstone, shale and limestone. Figure 1 
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shows a plot of the ROP against depth for the data set used in this thesis. All the formations 

have been identified separately.  

 

Figure 1: ROP versus Depth of Drilling for the Vertical Well Dataset  
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Based on figure 1, some outlier data points can be omitted from the analysis. The 

ROP spikes at depths of 7200 ft, 8550 ft and 9150 ft can be attributed to errors in 

measurement.  

The data was provided in the form of .csv files which contain a data row for each 

0.5 ft of the well’s progress. There were over twenty different columns of data measured. 

The file contains Measured Depth, Bit Position, Bit Weight, Flow Weight, and recorded 

ROP, among others. Also included were data from several sensors. While the data from 

these extra sensors were interesting to look at, they were not used in this study as one of 

the main objectives of this work is to come up with a valid method to predict ROP using 

surface measured parameters that are always available (independent of the drilling or LWD 

contractor used). Figures 2, 3 and 4 below show plots of individual rock types drilled in 

the vertical section of the hole. 
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Figure 2: ROP vs Depth for sand rock in vertical well (left) and histogram of the ROP color 

coded by formation (right) for Sandstone 

 

Figure 3: ROP vs Depth for sand rock in vertical well (left) and histogram of the ROP 

color coded by formation (right) for Limestone 



 

11 

 

 

 

 

Figure 4: ROP vs Depth for sand rock in vertical well (left) and histogram of the ROP 

color coded by formation (right) for Shale 

Figures 2, 3 and 4 can be used to draw basic conclusions about the data. Figure 2 

shows data for sandstone; the ROP has no clear correlation to depth. This is also true for 

limestone and shale (Figures 3 and 4). The histograms in Figures 2, 3 and 4 can be used to 

infer the modal ROP in each rock. This is around 50-60 ft/hr for limestone and shale, a bit 

higher for sand which is about 80ft/hr. Sandstone formations have a clearer-cut 

demarcation of ROP by formation, as can be deduced by looking at the formation color-

coded histogram in Figure 2. 
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A pairs plots can be used to determine correlations between different parameters in 

the data. Figure 5 below shows a pairs plot for data collected in sandstones. The pairs plot 

allows the study of interaction of multiple features on one plot. 

 

 

Figure 5: Pairs plot for a subset of the sandstone rock data   

Figure 5 shows a generalized pairs plot for a subset of sandstone data. ROP has 

been compared with bit weight, depth, and RPM. The correlations between the variables 

are visible on the plot in Figure 5; this enables us to look at different variables and their 

pairwise correlation.  The correlation coefficient between different variables can be used 
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to select input parameters for the data-driven model. Variables with low correlation to the 

data may be discarded at this stage.  

 

 

 

3.2: DATA MANAGEMENT 

Data-driven models are prone to overfitting of the data. This can lead to errors in the 

prediction stage. To prevent such errors, techniques have to be adapted to avoid overfitting 

of models. The data are split into three partitions. The partitions include training set, test 

set and validation set. Training sets consisted of 60% of the data, which was used to train 

the data-driven models. The validation set was used to fine tune parameters in the 

algorithms used to build the ROP models. The test set was a blind set (held out set) which 

is used to assess model accuracy. The behavior of the model on the test set is considered 

to be an ideal representation of model performance on new data. 

3.2.1: Training Set 

This constitutes the largest portion of the data set. The training set is the portion of 

the data set that will be used to “train” or build the model. A large percentage is used for 

training since the accuracy of the model generally depends on the volume of data sued in 

the training set. However, this set cannot be used to assess the model since the model was 
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built using this data. This would drive the assessed error close to zero, making the result a 

false deduction of accuracy. This thesis has used about 60% of the data set for training. 

3.2.2: Test Set 

This is the blind set which is held out form the model during training. It used to test 

the asses the quality of the model. This thesis has used 20% of the data set towards testing 

of the model. 

 

3.2.3: Validation Set 

The validation set is used to fine tune the models. Algorithms have parameters 

which are determined based on the data. In these cases validations sets maybe used. The 

remainder 20% of the data set is used as the validation set in this thesis. 

 

3.3: MODEL ASSESSMENT 

 

The advantages of a model is evaluated based on error rate to determine the accuracy of 

the model. Assessment of model accuracy utilizes the root mean squared error (RMSE) of 

the model on the test data. The mathematical definition of RMSE is shown in Equation 1. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑂𝑃 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝑃)2𝑛

𝑗=1     (Equation 1) 

where ‘n’ is the total number of points being evaluated. The advantages of using 

RMSE to measure the error is the consistency of units. RMSE has the same units as the 

entity measured (ft/hr).  
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The goodness of fit of a model (R2) can also be used to assess a model, also called 

the coefficient of correlation. This can be important in forecasting trends of ROP. 

Sometimes the RMSE may be high due to inaccurate predictions of a few points. 

Evaluation of model fit (R2) are useful in these situations since it shows the trends of the 

models.  

 

3.4: CROSS VALIDATION 

Overfitting - a common phenomenon associated with statistical and machine 

learning models – is when the model performs well on training data but fails to replicate 

similar results on a test set. To avoid overfitting, common practice dictates the use of a 

separate test set (as mentioned in a previous section). Cross validation is often used to avoid 

overtraining. Cross validation splits the training set into K parts (called K-fold cross 

validation). Let us assume a case with K=N: the training set is in a 1:N split with the 

validation set. An ROP model is built based on the current training set. This process is 

repeated ‘N’ times, creating ‘N’ ROP models until all parts of the data are used effectively 

for training and validation. The ‘N’ models are averaged to yield one final ROP prediction 

model. This randomization (of validation and training sets) and averaging (of models) helps 

improve the accuracy of the model by reducing the variance associated with prediction.  

In summary the following procedure is followed for each of the K ‘folds’: 

 A model is trained using K-1 of the folds as training data; 

 The resulting model is validated on the remaining part of the data  

This process is computationally intensive, but it helps increase the model accuracy on test 

or blind data sets. Another cross-validation method employed is: leave one out cross 

validation (LOOCV), where all but 1 data points are used for training and it is validated on 
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the remaining single left out data point. This process is repeated until all points have been 

tested. The number of splits in this case will be equal to the number of data points. This 

will be more computationally intensive, however, the models tend to have lower variance 

since they’ve been averaged more times making it more accurate. 

3.5: THE BOOTSTRAP 

The “bootstrap” is one of the most powerful computational statistical measures 

which can be used to assign accuracy to statistical estimates (Efron and Tibshirani, 1993). 

The concept behind the bootstrap is to draw multiple samples from a distribution with 

replacement, thereby creating multiple samples from the original sample. Each 

bootstrapped sample will contain the same number of samples as the original sample set. 

Since some draws are repeated, each sample set will be unique in its identity. Bootstrap 

has numerous applications as summarized by Davison and Hinkley (1997), and will be 

very pivotal in the development of the random forest algorithm. The bootstrap helps create 

multiple pseudo training sets for building ROP models. Simulated data can be resampled 

using many resampling procedures such as the Monte Carlo method. However, resampling 

of an unknown population is not possible. In this case, drilling data have been measured, 

which can be assumed to be a sample of a larger population. Re-creation of this population 

is possible to a certain extent by randomly drawing samples from the provided sample (i.e. 

drilling data). Resampling drilling data randomly with repetition will create a pseudo 

population of the drilling data. This will enable building multiple ROP models on this 

sample, and then averaging them to decrease the variance of prediction of these models. 

Therein lies the power of the bootstrap. This concept will be used in Chapter 5 where the 

random forests overcome the shortcomings of trees will be overcome by random forests by 

using the bootstrap. 
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Chapter 4: Linear Prediction Methods1 

Regression is the most widely used algorithm for prediction of linear data. It can be 

a very powerful (yet simple) technique for prediction of linearly related data. For non-

linear data regression methods can be used for inferential analysis as outlined by Hegde et 

al. (2015b). 

  

4.1: LEAST SQUARES REGRESSION 

Simple linear regression is the most widely adopted algorithm used to predict a 

response given input data. It assumes a linear relationship between the input and output 

variables. Mathematically it can be described as shown in equation 2: 

    ROP =  ∑ 𝑓𝑛𝑥𝑛
𝑁
𝑛=1 ,     (Equation 2) 

where xn are the input variables (or input features) of the model. ROP is the target 

variable predicted as the linear sum of input features. The coefficients fn are calculated by 

minimizing the sum of squares of the errors. Estimation of regression coefficients is 

described in more detail by Hastie et al. (2013). 

                                                 
1 Hegde,C.M., Wallace S.P. and Gray, K.E. (2015b). Use of regression and bootstrapping in drilling: inference and prediction. Presented 

at SPE Middle East Intelligent Oil & Gas Conference & Exhibition, Abu Dhabi, United Arab Emirates, 15-16 
September. SPE-176791. 

The author of this thesis was the primary author of the paper 
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Data from the Tyler sandstone formation were used to predict ROP using linear 

regression. The data were partitioned into training and test sets; the ROP model was built 

on the training set using a linear regression algorithm. ROP was predicted on the test set 

and the results have been plotted in Figure 6. 

 

Figure 6: Linear Regression Model used to predict ROP while drilling in Tyler 

Sandstone. Pink represents the model whereas the black points on the 

plot represent the actual data. 
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Overall the fit seems satisfactory where the predicted values seem to lie in the same 

neighborhood as the actual data. The RMSE for the model was 19.23 ft/hr (33.9 % of the 

mean ROP in the formation); this makes using linear regression as a prediction algorithm 

infeasible from a practical point of view. The model’s R2 was 0.45. The low R2 and high 

error rate of the model indicate the need to improve this method for ROP prediction. Table 

1 summarizes the input variables their importance (t-value). 

 

Input Variable fn t-value 

Depth -0.054 -3.47 

Hook Load 0.001634 5.96 

RPM -11.17 -5.127 

Standpipe Pressure -7.034 0.017695 

Block Height 3.08E-02 0.336812 

Bit weight -2.99E-04 -4.711 

Pump Pressure -0.534 -0.599 

Rock strength -9.15E-04 -2.828 

Intercept 19970 2.5 

Table 1: Linear Model Feature Analysis  

A t-test is used to determine the importance of features, higher the t-value of an 

input parameters, the higher is its importance. Each feature is associated with a physical 

meaning. The intercept should be the value of ROP when all other input features are set to 

zero. The intercept should be dropped since it does not makes sense from an engineering 

point of view (if RPM is zero as is the bit weight, it’s impossible to have a non-zero ROP).  

When the intercept is dropped and a new linear ROP model is built, the R2 term increases 

to 0.9052. Figure 7 shows the ROP predictions of the improved ROP model. 
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Figure 7: Improved regression model predictions in Tyler sandstone 

The success of the model largely depends on the input features used in the model. 

Adding more features or dropping features may increase or decrease the accuracy. Forward 

selection or backward selection can be used to select the optimum number of features in 

the model. The Bayesian information criterion (BIC) or the adjusted R2 (Hastie et al, 2013) 

can be used as tests to evaluate the quality of the resultant model.  

The forward model starts with a null model and adds features. Measuring the RMSE 

and R2 of each additional feature can help determine the best model. The backward model 
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removes one feature repeatedly from the model, until the best model has been determined. 

Figure 8 shows this modeling procedure where BIC was measured for a model built using 

a different number of input variables. A higher BIC indicates a better model. A feature is 

colored black in Figure 8 if it is included in the ROP model; a white block would indicate 

exclusion. The best model as determined by feature selection includes hook load, bit 

weight, strength of rock and RPM as input features. Features which can be directly 

controlled on the surface should be used as input variables for the model since they can be 

controlled in an effort to improve ROP. 

 Figures 9, 10, 11 and 12 show plots of ROP predictions using ordinary linear 

regression (OLS) algorithm for ROP prediction in different formations. For Rierdon 

Limestone in Figure 9 the prediction is fairly good until a depth of 6700 ft after which the 

predictions are skewed to the right. However, the R2 is really high. Figure 10 barely has 

enough data points to make concluding remarks, which is a possible realistic scenario, i.e. 

in cases of thin formations. Figure 10 has a lower error but the R2 is low as well. Several 

conclusions can be drawn from Figures 9 - 12. R2 needs to be high to ensure that the model 

will continue to follow the same trend as the actual data. Error percentage (error normalized 

to the mean) needs to be low to ensure useful predictions.   
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Figure 8: BIC vs feature selection for ROP prediction in Tyler Sandstone 
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Figure 9: Prediction of ROP in Rierdon Limestone using OLS Regression 
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Figure 10: Prediction of ROP in Newcastle Sandstone using OLS Regression 
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Figure 11: Prediction of ROP in Pine Sandstone using OLS Regression 
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Figure 12: Prediction of ROP in Swift Shale using OLS Regression 

Models tend to change with a change in formation, and will have to be adapted by 

changing some tuning parameters. However the model can be applied to any formation 

without changing the inputs, i.e. using the same input in all models. Wallace et al. (2015) 

have demonstrated application of similar models to horizontal wells while drilling in 

unconventional reservoirs.  
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In conclusion regression offers a simple model which can be used to predict ROP. 

The RMSE for the ROP models used in this section were high. Other nonlinear algorithms 

can be used instead to improve the accuracy of the ROP prediction as described later in 

this thesis. 

4.2: REGULARIZED REGRESSION 

Least square regression minimizes the sum of squares to find the coefficients of 

input features in regression. However, in certain situations this might not be the best course 

of action especially when the number of input features are large.  

Although not a specific form of regression, this form deviates from least squares by 

imposing a penalty on the size/value of the coefficients in the model. This makes the 

regression model coefficients impervious to collinearity. While ridge regression enforces 

penalties on the values of the coefficients, the lasso forces the coefficients to zero using the 

l2 norm (Hastie et al., 2007). Cross validation maybe used to determine the regularization 

parameters. The equations for ridge and lasso regression are described as Equation 3 and 

4:  

 

ROP =  ∑ 𝑓𝑛𝑥𝑛
𝑁
𝑛=1 +  𝜆 ∑ 𝑓𝑛

2𝑁
𝑛=1 , 

(Equation 3) 

ROP =  ∑ 𝑓𝑛𝑥𝑛
𝑁
𝑛=1 +  𝜆 ∑ |𝑓𝑛

 |𝑁
𝑛=1 . 
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(Equation 4) 

Equation 3 represents the ridge regression formulation, where penalties are induced 

on large coefficients. λ is the tuning parameter, which is determined using cross validation 

to reduce the error of the model. This is particularly effective when the number of features 

are large or in cases where features have a high degree of collinearity. Thus, when the value 

of λ is zero this model behaves like a least squares regression model. The main difference 

between ridge and lasso technique is the range of values of λ.  

Equation 4 represents the Lasso regression equation, where the penalty (λ) can 

shrink coefficients of the regression model to zero. These methods are useful in cases where 

the number of predictors outweigh the samples and there is a high correlation between 

input features.  

The penalty (λ) is varied the between1010 to 10-2, encompassing all of the regression 

models (a model with just the intercept to the model containing all of the parameters); the 

model with the lowest squared error is chosen as the best model and ROP prediction results 

have been plotted. Figures 13,14,15,16 and 17 show the results of using ridge regression 

for ROP predictions in varying formations.  
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Figure 13: ROP prediction using ridge regression in Tyler Sandstone 
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Figure 14: ROP prediction using ridge regression in Rierdon Limestone 
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Figure 15: ROP prediction using ridge regression in Newcastle Sandstone 
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Figure 16: ROP prediction using ridge regression in Pine Sandstone 
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Figure 17: ROP prediction using ridge regression in Swift Shale 

Ridge regression works well in reducing the prediction errors for certain 

formations: Rierdon Limestone and Swift Shale. The RMSE in some formations increases 

in compared to OLS regression. Figure 18 shows lasso regression for the Tyler sandstone.  
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Figure 18: ROP prediction in Tyler Sandstone using Lasso 

 

4.3: PRINCIPAL COMPONENTS REGRESSION 

 

The idea behind the principal component regression is to perform principal 

component analysis (PCA) on the data, then perform regression on the eigenvectors of 

principal components. PCA can be used to reduce the number of features while retaining 

as much variance explained by the data as possible. PCA transforms the axes of the data to 



 

35 

 

a different scale, one which requires fewer predictors. PCA can be used to project high 

dimension data to a lower dimension. Lower dimensional data are more advantageous and 

computationally efficient. For example, three dimensional data can be visualized with a 

plot, while data with eight dimensions cannot. 

 PCA is used to determine components of the data set which contribute maximum 

variance, and should be used when there is a requirement to reduce the number of features 

or reduce dimensions. PCA can be used to reduce noise in data sets (not unknown in drilling 

data). Principal components regression (PCR) involves performing PCA on the data set to 

retain a certain number of features, subsequently using these retained features for 

regression. This process relies on the premise that PCA retains as much variance as possible 

in the data, curbs noise in the data and ensures that the original data can be represented by 

the eigenvectors of PCA. PCR and partial least square (PLS) have been explored in depth 

by Mevik and Wehrends (2007). 

PCR is used to predict ROP. Cross validation is used to ensure that the optimum 

number of components maybe retained to ensure the lowest RMSE. It is seen that PCA 

beyond 3 components usually represents the variance of the data in case of this data set. 

Table 2 summarizes the variance explained for varying components for the dataset. Table 

2 confirms that 3-4 components are adequate for the data used in this thesis. 
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Number of 
components 

1 2 3 4 5 6 7 8 9 10 

Tyler           

Percentage Variance 
Retained (%) 

86 97 100 100 100 100 100 100 100 100 

Pine           

Percentage Variance 
Retained (%) 

59 86 99 100 100 100 100 100 100 100 

Rierdon           

Percentage Variance 
Retained (%) 

81 97 99 100 100 100 100 100 100 100 

Swift           

Percentage Variance 
Retained (%) 

89 96 99 100 100 100 100 100 100 100 

Table 2: Percentage variance captured using PCA for different rock formations  

 

ROP is predicted using PCR (3 components). Figures 19 - 23 show ROP predictions using 

PCR. The error in this cases is lower than that seen in OLS regression.  
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Figure 19: ROP prediction using PCR for Tyler Sandstone 
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Figure 20: ROP prediction using PCR for Pine Sandstone 
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Figure 21: ROP prediction using PCR for Newcastle Sandstone 
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Figure 22: ROP prediction using PCR for Rierdon Limestone 
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Figure 23: ROP prediction using PCR for Swift Shale 
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4.4: REGRESSION ALGORITHM SELECTION 

From Figures 9-18 it is apparent that no single method outperforms everything else. 

Figure 24 shows a bar plot and Table 3 provides a summary of the total RMSE for different 

regression techniques.  This confirms that no single regression method outperforms all 

others. However, computationally PCR is better than OLS which is faster than regularized 

regression.  

 

 

 

Figure 24: Error comparison for ROP prediction using different regression methods 
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Formation 
Regression 
Algorithm 

Average RMSE 
(ft/hr) 

Average Error Percentage 
(%) 

Tyler OLS 26.72 46.22 

  Ridge regression 16.93 29.28 

  PCR 23.49 40.63 

Pine OLS 75.99 105.79 

  Ridge regression 162.38 226.06 

  PCR 184.19 256.42 

Newcastle OLS 38.04 13.85 

  Ridge regression 41.43 15.09 

  PCR 82.07 29.89 

Rierdon OLS 219.86 116.04 

  Ridge regression 46.25 24.41 

  PCR 36.59 19.31 

Swift OLS 26.68 28.99 

  Ridge regression 5.02 5.45 

  PCR 4.94 5.37 
 

Table 3: Summary of ROP prediction using different regression techniques 
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2Chapter 5: Nonlinear Prediction Methods 

Only linear methods of prediction have been discussed so far. But in reality data 

are seldom linear, which requires the use of non-linear prediction algorithms. 

Determination of non-linearity of data is possible by comparing slopes of fit of linear and 

nonlinear regressor as suggested by Cheng et al. (2006). An ANOVA test carried out on 

the dataset has been summarized in Table 4 below. This is used to determine the linearity 

of the data (Cheng et al., 2006). If the significance column in table 4 is higher than 0.05, 

this would indicate a deviation from linearity. The data in Table 4 concludes that 

parameters such as RPM, bit weight and pump pressure - which are important input 

variables from an engineering standpoint - are not linearly related to the ROP. This chapter 

will introduce nonlinear methods such as trees. Random forests will be derived as a 

modification of trees, yielding an excellent algorithm for prediction. Pros and cons of each 

method will be examined as ROP in different formations are predicted and compared to 

the predictions in the previous chapters. 

 

 

 

                                                 
2 Hegde,C.M., Wallace S.P. and Gray, K.E. (2015b). Use of regression and bootstrapping in drilling: inference and prediction. Presented 

at SPE Middle East Intelligent Oil & Gas Conference & Exhibition, Abu Dhabi, United Arab Emirates, 15-16 
September. SPE-176791. 

The author of this thesis was the primary author of the paper 
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  Squared Error Significance(p-test) 

Depth 1977125 2.20E-16 

Hook Load 152451 2.20E-16 

RPM 423 0.23 

Bit Weight 11601 0.62 

Block Height 6.40E+03 0.374 

Pump Pressure 699 0.123 

Rock Strength 2280 0.054 

Table 4: ANOVA test on input data 

5.1: TREES 

Tree methods can be used either for classification or regression (prediction of 

response variable). In this chapter trees have been employed for regression or prediction of 

ROP. A tree includes a flowchart like structure, in which an input variable or feature is 

evaluated at each node as shown in Figure 25. To simplify such complex data relationships, 

the approach taken by trees is to partition the data into smaller (more manageable) sections, 

as illustrated in Figure 26. The sub divisions can be partitioned again, which constitutes 

recursive partitioning, until the sub divisions can be fit with simple linear models. Trees 

are fast (useful for real-time predictions) and easy to understand (Figure 25). A sample 

decision tree was built using the model input features and is shown in Figure 25. The 

decision tree is built by determining the best input features (in terms of entropy of the 

model (James et. al, 2014)). The topmost node (Flowrate <374) is the criterion being 

evaluated. A positive evaluation leads to the left branches and a negative evaluation leads 

to the right branches. Consecutive evaluations of input parameters lead to a prediction from 
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the tree. For example, on the left branch if flowrate is less than 374 gpm and RPM is less 

than 63, the tree will return a ROP prediction of 513 ft/hr. A random forest is built using 

multiple trees by bootstrapping (James et al. (2013) provide a good summary) the training 

set. At each tree node, the number of feature vectors available is randomized: by selecting 

a subset of the total number of features available for prediction. This helps increase the 

accuracy of the algorithm by de-correlating the feature vectors (prediction is based on all 

feature vectors as opposed to the ones with the highest correlation to the data). More details 

on the specifics of the random forest algorithm can be found in the paper written by 

Breiman (2001), and a simplified easy to read explanation is found in the book published 

by James et al. (2013). 

 

 

Figure 25: Simple tree diagram for Tyler sandstone formation using surface 

measurements as input parameters (Hegde et al., 2017) 
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Figure 26: Data partition for a simple tree involving prediction of ROP using RPM as a 

predictor (Hegde et al., 2015) 

Trees were used to predict ROP in specific formations (Tyler, Rierdon, Pine and 

Swift). Figure 27 shows a sample tree built on the Tyler formation data. ROP for Tyler 

formation has been visualized and compared to measured data in Figure 28. 
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Figure 27: Tree on Tyler Sandstone Data for ROP Prediction 

 

Figure 27 shows the tree built on Tyler sandstone (in the same manner as before). 

Splits between two variables are seen at each node. The bottom of the tree beyond which 

there aren’t any more splits is called a ‘leaf’. The vertical growth can (and should) be 

controlled - termed as pruning a tree. The ROP is predicted using the tree shown in Figure 

27 where input parameters are evaluated to make a prediction (as explained previously with 
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respect to Figure 25). These predictions have been shown in Figure 28. The RMSE and R2 

of these predictions are low.  

 

Figure 28: ROP prediction using trees in Tyler Sandstone  

 

Shortcomings of trees include their accuracy and variance of predictions, which can 

be improved by pruning a tree. Pruning involves controlling the vertical depth of a tree 

which can help decrease the error due to prediction. Pruning lengths are determined using 

cross validation. Figure 29 plots the deviance (sum of squared error) against the number of 
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features for each tree. From the figure it is easy to conclude that the best result is achieved 

with a 6 split tree. 

 

Figure 29: Deviance versus Size of Tree for ROP using Trees in Tyler Sandstone  

 

 

 

 

 



 

51 

 

5.2: TREES VERSUS LINEAR MODELS 

The predictor equation of linear regression has been compared to that of trees 

(Equation 2 vs Equation 5). They are fundamentally different: 

ROP =  ∑ 𝑓𝑛𝑥𝑛
𝑁
𝑛=1 , 

(Equation 2) 

ROP =  ∑ 𝑔𝑚. 1(𝑋∈𝑅𝑚)
𝑀
𝑚=1 , 

(Equation 5) 

where Rm is a partition of feature space (as shown in Figure26) and gm are constants 

determined by reducing the sum of squared error. The better model depends on the situation 

at hand. If ROP can be approximated well with a linear model, linear regression will 

outperform trees. However, if the data is non-linear and complex, trees may do a better job 

of predicting ROP.  

 

5.3: BAGGING 

The bootstrap is very powerful technique which can be used to improve the 

prediction capabilities of trees. Trees suffer from high variance in prediction. Reducing 

this variance would make a tree based algorithm a powerful predictor. If a dataset is split 

into two parts, and decision trees are grown on either half, they both would yield vastly 

different trees (high variance in prediction). A combined predictor would be the average of 

both these trees. In contrast, a procedure with low variance will yield similar results if 

applied repeatedly to partitioned data sets. The bootstrap can be used to sample ‘B’ number 
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of data sets from the sole data set (discussed in Chapter 3). A tree can be grown on each 

new dataset, and averaged to reduce the variance, overcoming the main disadvantage of 

trees. 

Given a set of n independent observations P1,...,Pn, each with variance σ2, the 

variance of the mean P of the observations is given by σ2/n. Hence, averaging a set of 

observations reduces variance. If n number of trees could be created and averaged, this 

would greatly reduce the variance of trees. One way to reduce the variance (and increase 

the prediction accuracy of trees) is to take average a number of trees. Since these trees have 

to pertain to the same population, bootstrapping can be used to sample multiple data sets 

from the population (or original dataset).  

In this approach, we generate ‘B’ different bootstrapped training data sets. These 

are unique training sets generated from the original training set. Trees are then trained on 

each training set and finally averaged to get a final model. This is called bagging. While 

bagging can improve predictions for many different statistical learning models it is very 

useful for decision trees. To apply bagging to regression trees, B regression trees are 

constructed using B bootstrapped training sets which are then averaged. These trees have 

to be grown deep (not pruned) so that they have high variance and low bias. Averaging 

these B trees reduces the variance. Bagging has been demonstrated to give high 

improvements in accuracy by combining together hundreds or even thousands of trees into 

a single procedure (James et al., 2014).  
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Figure 30: Number of trees versus error for different methods (James et al., 2014) 

An easy way to estimate the test error of a bagged model, without the need to 

perform cross-validation is by estimating the out-of-bag (OOB). It has been shown that 

each bagged tree makes use of around two-thirds of the observations (Breiman, 1996). The 

remaining third of the observations can be used to evaluate the model’s error. This is called 

the OOB error which is a valid estimate of the test error in the bagged tree model. 
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5.4: RANDOM FORESTS 

 

Random forest is an extension of bagging bearing additional advantages making it 

a powerful prediction algorithm. At each node a random sample of input features is 

considered to construct the decision tree (as opposed to all features). This has an effect of 

de-correlating the trees, which helps reduce variance and improve prediction accuracy. By 

using reduced number of predictors (each tree is forced to use a small number predictors), 

which forces all features (even those with a low correlation to ROP) to contribute to the 

prediction of ROP. Though counter intuitive input parameters with low correlation must 

contribute to prediction. Previously examined methods such as regression, trees, and 

bagging take “more” contributions from the input parameters that are correlated better with 

ROP, thereby masking the parameters with low correlation. This has actually been shown 

to affect the accuracy of the prediction (Figure 30) where random forest performs better 

than bagging for the same dataset. Since this algorithm stresses on importance of all input 

parameters (those with low and high correlation with ROP), it makes feature selection 

(selection of input parameters) even more important and integral to the success of the 

algorithm. De-correlating the input features helps in creating more randomized trees on the 

bootstrapped sample, which when averaged produce a better predictor for ROP. 
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Figure 31: Selection of m in random forests so as to achieve least error (James et al., 

2014) 

 

Figure 31 shows selection of the parameter m in random forests, denoting the 

number of input features considered (at each split) for growing a tree. Test classification 

error is the error in classification as defined by a confusion matrix, explained well for the 

classification of torque by Hegde et al. (2015c). A rule of thumb (in the machine learning 

circles) is to use an m equal to the square root of the number of input features p (Figure 

31). Cross validation can be used to select an m based on lowest error.   
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5.5: EVALUATION OF NON LINEAR METHODS 

Trees can be improved using bootstrapping (bagging or random forests). Another 

algorithm based on trees is boosting. In this case trees are sequentially grown based on the 

result from the previous step. A tree is grown, upon whose residuals another tree maybe 

grown to improve predictions. This process is repeated until there is no more benefit (no 

further improvement of RMSE). This algorithm is more complicated than bagging or 

random forests. It has to be validated carefully to avoid over-fitting.  Random forests is 

simpler and more robust. James et al. (2014) provide a great introduction to bagging. Figure 

32 shows a comparison of prediction error for boosting and random forests, where boosting 

helps achieve a lower error than random forest predictions.  

 

Figure 32: Comparison of boosting versus random forests (James et al., 2014) 
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ROP predictions of bagging and random forest algorithm in the Tyler sandstone formation 

have been compared in Figure 33. Both algorithms performed much better than trees as 

seen in Figure 34.  

 

 

Figure 33: Comparison of random forests to bagged trees for ROP prediction in Tyler 

sandstone 
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Figure 34: Box plot of RMSE using different methods for ROP prediction in sandstone 

formations (Hegde et al., 2015) 



 

59 

 

 Figure 34 shows a box plot comparing the RMSE for ROP prediction in all 

formations using boosting, trees and random forests. Random forests performs better than 

the other algorithms in predicting ROP.  
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3Chapter 6: Parametric Analysis of ROP Models 

The accuracy of statistical learning models predominantly relies on the quality, 

range, and volume of the training data. This section is dedicated to parametric analysis 

related to the training data: its range and volume for efficient ROP prediction. We evaluate 

the change in accuracy of ROP prediction based on changing the type and size of the 

training set relative to the test set. 

 

6.1: TYPE OF TRAINING DATA 

Since the accuracy of statistical learning models is largely dependent on the training 

data, this section aims to evaluate three different types of training data illustrated in Figure 

6. The first kind of training data (case 1) is the data obtained while drilling the formation 

in question– formation specific training data. The second kind of training data is data 

obtained from preceding formations and data from the current formation. The third kind of 

training set (case 3) is the data obtained while drilling preceding formations (or upper 

levels), which are used to predict ROP in a different formation: for example, using Broom 

Creek drilling data to predict ROP in Tyler formation (as shown in Figure 35 as case 3). 

Case 3 is a situation which is encountered when the bit enters a new formation, and no 

                                                 
3 Hegde,C.M., Wallace S.P. and Gray, K.E. (2015b). Use of regression and bootstrapping in drilling: inference and prediction. Presented 

at SPE Middle East Intelligent Oil & Gas Conference & Exhibition, Abu Dhabi, United Arab Emirates, 15-16 
September. SPE-176791. 

The author of this thesis was the primary author of the paper 
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prior data for that formation is available. Case 2 is a combination of case 1 and case 3. One 

training set is better than the other if more accurate ROP predictions are made when a 

model is built on it: training sets are evaluated using the normalized error of ROP 

prediction. Intuitively one can expect case 1 to be a better training set than case 2 – because 

case 1 has formation specific drilling data (or relevant data). However, case 2 contains data 

from other formations as well as the relevant data. This extra data (partially relevant) gets 

equal preference – by the algorithm – in building the data-driven model, which decreases 

the accuracy of models built on case 2. Case 2 is expected to be better than case 3 since it 

has some formation specific relevant data, whereas case 3 has data from other formations. 

 

Figure 35: Illustration of test and training sets for parametric evaluation of nature of 

training set  
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Three training sets were used to build a statistical learning model which was evaluated for 

ROP prediction errors on the same test set. The best training set can be determined by 

comparing these prediction errors. Figures 36 and 37 show the test set errors for the three 

different cases of training sets. As expected, case 1 outperforms cases 2 and 3 for ROP 

prediction. Case 2 performs better than case 3 since it contains some data from the 

formation in question.  

The Ratcliffe is the only formation where training data from case 2 and case 3 

outperform case 1. This may be hypothesized due to the thickness of the formation. This 

formation has 67 ft of data, which makes it a very thin formation. The sparsity of available 

data in the formation causes higher error rates in case 1 as compared to cases 2 & 3. Case 

2 performs better than case 3 since it includes some formation specific data, which has 

been shown to help achieve more accurate models. These indicate that for thin bedded 

formations it is better to include training data from previous formations.    
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Figure 36: Box plot of normalized errors in different formations for changing training set 

attributes  

 

 
Figure 37: Line plot of normalized error in different formations for changing 

training set attributes 
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6.2: STUDY OF TRAINING-TEST SET RATIO IN ROP PREDICTION 

The drilling data in each formation is partitioned into training and test sets for ROP 

prediction. Increasing the length of the training set should improve the accuracy of the 

statistical learning model since more data would be available for learning. The optimum 

size of the training set depends on the formation as well as the data dependent.  

The size of the training set relative to the test set have been changed for each 

formation; the ROP prediction error for each case was recorded. The training set was 

changed in size, varying its length from 10% to 90% of the size of the test set and the 

average prediction error is compared. Figure 38 shows the results obtained from this 

parametric study. A statistical learning model (random forest algorithm) has been used to 

predict ROP in each case. Figure 38 shows a decrease in error with an increase in the 

training-test set ratio, which indicates that an increase in the length of the training set 

produces an increase in accuracy (as expected). The accuracy desired (say a normalized 

error ratio of 0.2) can be easily computed from the plot in Figure 38. Figure 39 illustrates 

the decreasing error trend with an increase in training data in the form of a box plot.  



 

65 

 

 

Figure 38: Parametric study of training-test set ratio in ROP prediction 

 

Figure 39: Box plot to visualize parametric study of training-test set ratio in ROP 

prediction 
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6.3: OPTIMAL TRAINING SETS 

 

The plots in this section provide some insight into practical applications of statistical 

learning models in drilling. Training sets are more reliable and efficient for statistical 

leaning models when constrained to the formation of interest (case 1). Optimal training-

test set ratios vary depending on required accuracy and formation. If an error rate of 0.2 or 

20% is assumed to be required, then a ratio of 0.2 between training and test set length 

remains sufficient for most formations. A lower error rate requires a larger volume of 

training set data, pushing the training-test set ratio to 0.3-0.5 in a few cases as seen in Figure 

9. In some cases (Tyler and Ratcliffe) higher ratios like 0.7 maybe necessary for low error 

rates of 10%. In one case (Broom Creek) a low error rate <10% is not possible for any ratio 

of training-test set data. The results indicate that in most cases 20-30% of the formation 

depth is sufficient to obtain an accurate model. 
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Chapter 7: ROP Analysis and Optimization 

In the previous chapters different statistical learning models were introduced for 

prediction of ROP during drilling. Since drilling is a complex process, ROP prediction is 

not a simple task (Dashevskiy et al., 2013). Certain processes are controllable on the 

surface, whereas some of the input parameters cannot be controlled. Parameters such as 

weight-on-bit, RPM pf the bit and flow rate can be changed on the fly during drilling. 

Strength of the rock, pore pressure of the formation, and its thickness are examples of some 

uncontrollable input parameters. This chapter will explore techniques to change 

controllable parameters based on model recommendations to improve the ROP (or 

maximize it). This thesis will assume that the maximum attainable ROP will be the best 

ROP. The previous chapters have covered ROP prediction using surface measured input 

features. Some of the input features (ones that can be controlled on the surface: weight on 

bit, speed of bit rotation or RPM and pump pressure) can be used in conjunction with the 

ROP model to find the best settings to improve ROP. A random forests-based ROP model 

is used as the ROP model for optimization. 

7.1: VARIABLES AND SPREAD OF DATA 

 Tyler formation has been used for ROP evaluation in this section. Surface 

controllable input parameters -WOB, pump pressure, RPM - have been varied to maximize 

ROP. Wallace et al. (2015) provide a framework to incorporate such a workflow in drilling. 

The authors introduce an “optimization score” which computes the percent of drilling 
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efficiency based on an “optimum” scenario set by the user. In this case the optimum 

scenario would be one with the highest ROP (given a set of conditions like formation, 

strength of the rock etc.) as computed by the ROP prediction model. Theoretically all input 

parameters can be optimized to obtain the best set of parameters for ROP calculation, 

however, the percentage increase in ROP beyond two or three parameters are not worth the 

computational effort. 

7.2: ONE DIMENSIONAL OPTIMIZATION 

One dimensional optimization optimizes one input feature used in the ROP 

prediction model while keeping all other input features constant. It is important to note that 

values of the features varied have a limited threshold. The threshold is determined by field 

conditions since it is dangerous to extrapolate outside the range of data. In this thesis, the 

threshold does not exceed the range of the input feature in the training set. This way the 

predicted ROP is a realistic prediction which can be achieved while drilling the formation 

in question. A brute force algorithm (running all possible simulations and choosing the 

best) was used for optimization to compute the ideal value of the input feature. Since the 

model used is statistical in nature (and its shape unknown), the search for global maxima 

is not simple (it’s easy to mistake a local maximum for the global maximum). A simple 

loop can be used to find the ideal setting for ROP optimization. The feature in question is 

varied keeping all other input features constant. This is used to calculate the ideal settings 

of the input feature. These settings can be plugged into the ROP model which will give an 

estimate of the improved ROP. 

 Figures 40, 41 and 42 shows the improvement in ROP with a change of input 

features (RPM, WOB and pressure). Optimization of RPM yields a much higher predicted 
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ROP as opposed to conventional drilling (Figure 40). Figure 41 shows the improvement in 

ROP when weight on bit is optimized. Figure 42 shows the ROP change on optimizing 

mud flowrate. The predicted ROP in each of the Figures (40, 41 and 42) have some “spikes” 

(sudden increases / jumps) which can be ruled as outliers by looking at the values of RPM, 

weight-on-bit (WOB), and flowrate which do not indicate a stick slip or excessive torsional 

vibrations. Predicting stick-slip in drilling or excessive vibrations is out of scope for this 

thesis, and will be discussed by the author in future work. 

 

Figure 40: RPM of Bit Optimized to improve ROP in Tyler Formation 
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Figure 41: Optimization of weight on bit to improve ROP during drilling in Tyler 

Formation  
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Figure 42: Bottom hole pressure optimized to stabilize ROP during drilling in the Tyler 

Formation 

ROP is a complex function (determined using statistical learning algorithms) of its 

input features. These input features are coupled and do not act independently. Since more 

than one input feature is controllable on the surface, it is worthwhile to look at optimizing 

multiple features at once.  
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7.3: TWO DIMENSIONAL OPTIMIZATION 

Two dimensional optimization refers to optimizing two input features on the 

surface in an effort to improve ROP. For a given set of input data two given features are 

varied while others are set to be a constant so that ROP may be maximized. The algorithm 

used for evaluation will be a brute force algorithm as before. Figure 38 plots the results of 

two dimensional optimization. 

 

 

 

Figure 43: Weight on bit and bit rotation speed optimized to improve ROP during drilling 

in the Tyler Formation 
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 Figure 43 illustrates optimization of weight on bit and RPM of the bit, which yields 

a better result with higher ROP as compared to the case when each individual parameters 

was optimized. Since a brute force algorithm is being employed for optimization, 

computational efficiency of algorithms are of the order N3.  

 

7.4: THREE DIMENSIONAL OPTIMIZATION 

Three different features are optimized in in an effort to improve ROP. ROP was 

optimized by changing RPM of the bit, weight on bit and pump pressure (Figure 44). These 

variables were used since they had the highest individual covariance with ROP. Mean 

optimized ROP was 133 ft/hr which is much higher than the measured mean ROP of 57.52 

ft/hr. This is a 137.5% increase in ROP if ideal values of WOB, RPM and pump pressure 

are used during drilling. Table 5 provides of a summary of different input features and their 

optimization of ROP. 
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Figure 44: Three dimensional optimization of ROP in the Tyler Formation where 

WOB, RPM and mud flow rate are varied 
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Number of Features Features Optimized Average Optimized 

ROP (ft/hr) 

Percentage 

Increase of ROP 

(%) 

1 WOB 68 21% 

1 RPM 113 101.7% 

1 Pump Pressure 62 10.7% 

2 WOB & RPM 128 128.57% 

3 
WOB, RPM & Pump 

Pressure 
133 137.5% 

Table 5: ROP Optimization using optimizing different number of features in the Tyler 

Sandstone Formation 

 This chapter shows the applications of data analytics and statistical learning to 

improve drilling efficiency. Here the role of statistical learning is to create an accurate 

prediction method which can be levied to set ideal surface inputs for the best ROP. A brute 

force algorithm (running all possible simulations and choosing the best) was used in this 

chapter for optimizing input parameters, however a better optimization scheme can be 

adopted to reduce computational time. Better optimization techniques must be investigated 

for field applications of this technique; One example is the Boender et al. 1982) developed 

an algorithm which can be used to find the global minima in case of a black-box (or 

unknown) function.  
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7.5: ROP OPTIMIZATION AND RATE OF DRILLING 

ROP measures the rate of penetration which is essentially how fast or slow a well 

is being drilled. Given the nature of drilling, a post drill analysis will serve beneficial for 

drilling adjoint (or pad) wells. Time saved by drilling faster can be easily computed. 

Optimizing or increasing ROP by setting ideal surface parameters help reduce active 

drilling time of a well.  

The time saved for drilling the whole well has been plotted in Figure 40. The data 

set was divided into smaller sets of 100 ft for each formation. For example, if the bit is at 

a depth of 5000 ft the training set is composed of data collected from 5000 ft -5100 ft. This 

data is used to training and develop a ROP model. This model is used to compute the ideal 

inputs (by optimizing two input features – ROP and WOB) for the test length (5000 ft – 

5100 ft). Time to drill through a given section can be calculated in taking the inverse of 

ROP in that section. Figure 45 shows the ROP prediction for the entire data set. These ROP 

prediction models are used to compute and set idea parameters. Figure 46 shows the 

amount of time that can be saved by drilling with ideal parameters is 22 hours which comes 

out to 11.7% of total active drilling time.  
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Figure 45: ROP prediction for entire well using the Wider Windows Statistical Learning 

Model (WWSLM) ROP model 
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Figure 46: Time saved with ROP Optimization (22 hours) 
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Chapter 8: Future Research and Continuing Work 

There are continuing efforts underway within the Drilling Parametrics group of 

Wider Windows that are directly related to this project. This project will continue to expand 

the Wider Windows group’s understanding of the phenomena that affect drilling 

performance in the downhole environment.  

Based on the success of the Wider Windows Statistical Learning Model in 

predicting drilling performance based only on the surface-readable input parameters, 

additional work will expand the WWSLM to include torque, MSE, and effects of vibration. 

A thorough comparison with traditional ROP models used in the industry is of interest. 

Higher versions of WWSLM are being developed which will include newer algorithms to 

curb the shortcomings of methods outlined in this thesis. Ensemble methods to improve 

accuracy has been a subject of research which will be addressed in future work. Better 

optimization algorithms to reduce computational time will be a part of future research. 

MSE is the parameter commonly used in industry to optimize drilling. By including all of 

these parameters a more comprehensive model can be developed which can address drilling 

optimization in a more robust fashion.  
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Chapter 9:  Conclusions 

This thesis set out to investigate application of the statistical learning to predict 

drilling parameters. ROP is identified here as a key parameter to be predicted and 

optimized. Importance of data visualization was discussed. Data management and its 

importance has been discussed in building statistical learning models. Splitting of data sets, 

model assessment and over fitting were duly addressed. Procedures to avoid overfitting 

were discussed which is important to any data analytics and statistical learning project. 

Auxiliary tools such as cross validation and bootstrapping were introduced. ROP was 

predicted using simple linear methods. Improvements were made to linear methods in an 

effort to increase their accuracy. Nonlinear methods were introduced as a technique to 

model non-linear data. Regularized regression was introduced for data with highly 

correlated data features. Computationally faster methods were introduced using PCA 

regression. A comparison of the regression techniques included an analysis of each 

regression model on various formations. Conclusions indicated that no single regression 

outperformed all others. However, based on needs of speed and accuracy different methods 

can be used when required. 

Nonlinear methods were introduced to model and overcome the accuracy 

limitations of linear models. Trees, bagging and random forests were introduced as 

nonlinear algorithms used for ROP prediction. Trees have high variance and aren’t very 

accurate. Bootstrapping can be used on trees so as to create an ensemble of trees, which 

are accurate and low in variance (bagging). The available input parameters at each tree split 
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can be randomized to de-correlate the trees: random forests. Random forests predictions 

are extremely accurate and showed a high R2 value. They are the best prediction method in 

terms of RMSE and R2. Random forests were used to predict ROP resulting in a mean error 

of 13% of the measured data. A parametric study was conducted to evaluate the type and 

volume of data required to make accurate predictions using statistical learning models. It 

was concluded that data collected in the same formation as that of the test set is the best 

training set. The amount of data required is formation dependent. An error rate of sub 15% 

is generally acquired with a training set of lengths less than 30% of the total length of the 

formation.  

ROP predictions on the training set were used to optimize ROP on the test set. Ideal 

input features were determined in order to achieve the highest ROP while drilling a 

formation. ROP was optimized by varying or “setting” one, two, and three input features.  

Increasing the number of input features optimized increased the average ROP, however 

this came with a great increase in computational time. A balance approach optimized two 

parameters where optimization of WOB and RPM saved 22 hours of active drilling time 

for the entire well.  

In conclusion, statistical learning techniques and data analytics show promise in 

drilling optimization. They can be used for accurate prediction of ROP and simulation 

optimization of ROP. This is just the first step towards drilling optimization.  
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List of Acronyms 

ANOVA:  Analysis of Variance 

BHA: Bottom Hole Assembly 

BIC: Bayesian Inversion Criterion 

BW: Bit Weight 

CSV: Comma Separated Values 

FEM:  Finite Element Method 

UCS:  Unconfined Compressive Strength 

IAP:  Industrial Affiliate Program 

LOOCV:   Leave One Out Cross Validation 

LWD: Logging While Drilling 

MD:  Measured Depth (ft) 

MSE: Mechanical Specific Energy 

MWD: Measurement While Drilling 

NDB: Natural Diamond Bit 

NPT:  Non-Productive Time 

OLS: Ordinary Least Squares 

OOB: Out of Bag 

PCA:  Principal Component Analysis 

PCR: Principal Components Regression 

PDC:  Polycrystalline Diamond Compact 

PDM:  Positive Displacement Motor 

PLS: Partial Least Squares 

RMSE: Root-Mean-Square Error 
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ROP: Rate of Penetration 

RPM: Rotations per Minute 

SLM: Statistical Learning Model 

SPE: Society of Petroleum Engineers 

T&D: Torque and Drag 

TVD: Total Vertical Depth 

WOB: Weight on Bit 

WWSLM: Wider Windows Statistical Learning Model 
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