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Abstract 

 

Verification of Successive Convexification Algorithm 

 

Andrew Walter Berning Jr., M.S.E. 

The University of Texas at Austin, 2016 

 

Supervisor:  Maruthi R. Akella 

 

In this report, I describe a technique which allows a non-convex optimal control 

problem to be expressed and solved in a convex manner. I then verify the resulting solution 

to ensure its physical feasibility and its optimality. The original, non-convex problem is 

the fuel-optimal powered landing problem with aerodynamic drag. The non-convexities 

present in this problem include mass depletion dynamics, aerodynamic drag, and free final 

time. Through the use of lossless convexification and successive convexification, this 

problem can be formulated as a series of iteratively solved convex problems that requires 

only a guess of a final time of flight. The solution’s physical feasibility is verified through 

a nonlinear simulation built in Simulink, while its optimality is verified through the general 

nonlinear optimal control software GPOPS-II.   
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1 Introduction 
1.1 Motivation 

The appeal of a reusable launch vehicle is obvious to anyone who has ever watched a rocket launch. 

The vast majority of structural mass—and thus cost—of the vehicle plunges back to earth after 

expending all of its fuel, to smash unceremoniously into the ground or ocean, ending its usefulness. 

The next logical step towards the goal of affordable, reliable space access involves a launch vehicle 

that is reusable and requires little in the way of refurbishment between missions.   

The closest historical example to a reusable launch vehicle is the Space Shuttle. This design relied on 

the orbiting vehicle to re-enter and land horizontally, while the solid rocket boosters (SRBs) 

parachuted into the ocean to be recovered, refurbished, and reused. The large external fuel tank was 

jettisoned, broke up upon re-entry, and was not reusable. The disadvantages of this horizontal 

landing strategy include: the SRB descent utilized a heavy and complex system of chutes; the SRB 

recovery necessitated the use of specialized sea vehicles; the SRB refurbishment process was very 

time and resource intensive; and the external fuel tank was completely disposable.  

An alternative solution that has seen a recent surge in interest and popularity is the vertical takeoff 

vertical landing (VTVL) solution [1-3]. A VTVL mission involves a staged launch vehicle operating 

traditionally up until the main engine cutoff and first stage separation. At this point, the first stage of 

an expendable launch system would follow a ballistic path and crash once it reached the earth’s 

surface. A VTVL first stage follows a ballistic trajectory immediately following separation, but then 

the main engines re-ignite and the vehicle maneuvers itself to land softly at a predetermined landing 

site.  

VTVL alleviates most of the concerns of the horizontal landing solution, but comes with a set of 

challenges of its own. The mass, propulsion, aerodynamic, and structural challenges are not trivial, 

but this report deals exclusively with the guidance challenges. Specifically, creating a guidance 

algorithm that can dictate the trajectory of the launch vehicle from the time when the engine is 

reignited to when the vehicle lands. There are two main guidance-related challenges that the 

algorithm proposed in this report seeks to address.  
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First is the importance of temporal proximity. The vehicle begins implementing the computed 

trajectory immediately after the engine is relit. Because the computation is not instantaneous, the 

initial conditions of the trajectory are estimated based on the vehicle’s state when the computation is 

initialized. The potential error between this estimated state and the actual state at the time of engine 

relight increases with the amount of time required for the trajectory’s computation. Rapid 

computation is desirable, then, to minimize this state error and maximize the optimality of the 

resultant, actual trajectory.   

Second is the importance of the vehicle’s divert capabilities. Space launch missions are extremely 

mass sensitive, and the VTVL involves reserving a fraction of the total fuel to power the vehicle 

during its final, landing maneuver. It is desirable, then, that this trajectory creation algorithm is 

posed as an optimization problem with final mass having a significant role in the cost function. 

Other alternatives, such as pre-computed lookup tables, will necessarily be sub-optimal and require 

the allocation of a greater fuel mass for this missions segment, detracting from the overall mission 

goals.  

1.2 Project Objectives 

The objective of this project was to create an algorithm that would compute an optimal, physically 

feasible trajectory in a predictable, reliable, and computationally swift manner.  

The algorithm described in this report solves these previously-stated problems through the use of 

lossless [4-11] and successive [12, 13] convexification, allowing us to pose the problem in a convex 

manner. The final result is an algorithm that can handle non-convexities such as mass depletion 

dynamics, free final time, and aerodynamic drag, and can be solved using Interior Point Method 

solvers [16-18] with a computational speed suitable for onboard applications [19-20].  

Once the algorithm had been developed, it underwent a verification process. This process involved 

comparing our algorithm’s solutions to the solutions of a nonlinear optimizer, as well as the 

propagated trajectory of nonlinear simulation. In this way, we verified that our algorithm was 

returning an optimal and physically feasible trajectory.  
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1.3 Report Outline 

The rest of this report is organized as follows: Section 2 outlines the formal problem formulation 

and the necessary convex optimization theory that was used to solve it. Section 3 briefly covers two 

numerical solutions to this problem. Section 4 details the nonlinear simulation that was created to 

verify the algorithm. Section 5 describes how our algorithm’s solution compared to the solution 

from a nonlinear optimizer. Lastly, Section 6 draws some final conclusions.  
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2 Background 
This section details the problem formulation and convex optimization theory necessary to construct 

the trajectory optimization algorithm [23].  

2.1 Problem Formulation 

As mentioned in the previous section, one of the goals of this project was to create an algorithm that 

would produce an optimal and physically feasible trajectory. In order to meet the “computationally 

swift” part of the goal, however, certain simplifying assumptions had to be made. This section 

details the problem formulation, including these assumptions, and section 4 attempts to quantify the 

impact of the assumptions on the resultant trajectories.  

The vehicle is modelled as a point mass subject to 3DOF translational dynamics: 

�̇�(𝑡) = 𝒗(𝑡) 

�̇�(𝑡) = 𝒂(𝑡) 

𝒂(𝑡) =
1

𝑚(𝑡)
[𝑻(𝑡) + 𝑫(𝑡)] + 𝒈 

Where 𝒓, 𝒗, and 𝒂 are position, velocity, and acceleration, respectively. Gravity, 𝒈, is assumed 

constant. The drag model used is for that of a sphere, where the force 𝑫 acts in a direction opposite 

to 𝒗 according to the expression: 

𝑫(𝑡) = −
1

2
𝜌𝑆𝐷𝐶𝐷||𝒗(𝑡)||𝒗(𝑡) 

Where the coefficient of drag, 𝐶𝐷, drag reference area, 𝑆𝐷, and air pressure, 𝜌, are assumed to be 

constant. The mass depletion dynamics are assumed to vary linearly with thrust magnitude, with a 

correction for back-pressure losses: 

�̇�(𝑡) = −
1

𝐼𝑠𝑝𝑔0
||𝑻(𝑡)|| −

𝑃𝑎𝑚𝑏𝐴𝑛𝑜𝑧𝑧𝑙𝑒

𝐼𝑠𝑝𝑔0
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Where 𝐴𝑛𝑜𝑧𝑧𝑙𝑒 is the area of the rocket nozzle at the exit and 𝐼𝑠𝑝𝑔0 is the specific impulse of the 

rocket motor multiplied by standard gravity. 𝑃𝑎𝑚𝑏 is the ambient air pressure, and is also assumed to 

be constant.  

The primary term in the objective function is minimizing fuel usage, but there are also a few 

auxiliary terms added as a result of the successive convexification and will be explained in section 

2.3.  

Prescribed boundary conditions include initial and final position, initial and final velocity, and initial 

mass. The initial and final thrust magnitudes are left unconstrained, but they must be pointing along 

a prescribed unit vector. State constraints include a lower bound on mass to ensure that the 

trajectory does not utilize more fuel than is available. There is also a minimum and maximum thrust 

magnitude, a maximum thrust tilt angle, and a maximum time rate of change of thrust magnitude. 

These constraints will be stated more specifically in section 2.4. 

Finally, in order to make the trajectory suitable for computation, it must be discretized into N 

segments of equal time length. Here we follow the multiple impulse transcription model, wherein 

each segment consists of a ballistic trajectory with an impulsive change in velocity at each time node. 

For the rest of this report, we will use the subscript 𝑘 to refer to individual nodes.  

In this formulation, there are three distinct sources of non-convexity: the minimum thrust 

constraint, the acceleration dynamics, and the free final time. The first is addressed in section 2.2 

while the latter two are addressed in section 2.3.  

2.2 Lossless Convexification 

The control constraints on the minimum thrust magnitude and maximum tilt angle are non-convex 

constraints. In the case of the latter, it is only convex in the case where 𝜃𝑚𝑎𝑥 > 90°. We address 

this by restricting 𝜃𝑚𝑎𝑥 ≤ 90°. The former is addressed by introducing a new solution variable Γ [4-

11] as follows:  

||𝑻[𝑘]|| ≤ Γ[𝑘] 

0 ≤ 𝑇𝑚𝑖𝑛 ≤ Γ[𝑘] ≤ 𝑇𝑚𝑎𝑥 
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𝚪[𝑘] cos(𝜃𝑚𝑎𝑥) ≤ �̂�𝑢
𝑇𝑻[𝑘] 

In can be shown for the continuous time problem that these substitutions elicit the same solution as 

the original problem. It has not been proven, but has been shown through numerical simulations 

[23] that this relaxation remains lossless for the discrete time problem.  

2.3 Successive Convexification 

This section details the solution strategy used to account for the non-convexities not addressed in 

section 2.2. The approach consists of linearizing about the trajectory from the previous iteration, 

and then solving the newly-convex problem. The first iteration is initialized by making some 

additional assumptions about the nature of the trajectory. This linearization and iteration strategy 

necessitates a few algorithm additions that will be discussed in this section. Namely, quadratic trust 

regions to ensure the trajectory doesn’t change too much between iterations, and a relaxation to 

prevent the linearizations from producing infeasible problems.  

2.3.1 Linearizations 

This linearization procedure is only used for SC iterations where 𝑖 ≥ 1 (𝑖 = 0 is the first iteration) 

and is used to address the following non-linearities: the Δ𝑡 term in the discretized dynamics 

equations, the expression for atmospheric drag, and the mass term in the expression for acceleration.  

2.3.2 Trust Regions 

These linearizations bring with them two major concerns, the first of which is the problem 

becoming unbounded or leaving the regime in which the linearization is valid. We address this by 

adding a weighting in the cost function that de-incentivizes the trajectory changing significantly 

between iterations. In an attempt to reduce the number of solution variables, we only applied this 

method to Δ𝑡 and 𝑻. The former restricts the change on the total time-of-flight does, while the latter 

restricts the change on the vehicle acceleration term, which subsequently trickles down into the 

vehicle velocity and position terms.  

The specific implementation is as follows: 
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(𝑥𝑖[𝑘] − 𝑥𝑖−1[𝑘])𝑇〖(𝑥〗𝑖[𝑘] − 𝑥𝑖−1[𝑘]) ≤ 𝜂𝑥 , 𝑖 ≥ 1 

Where 𝑥 is the solution variable being considered. 𝜂𝑥 is then added to the objective function. This 

trust region strategy only applied to iterations 𝑖 ≥ 1. 

2.3.3 Relaxation 

The second problem that arises from the previously mentioned linearizations is artificial infeasibility. 

It is possible for no solution to exist to the linearized problem, even if the original, nonlinear 

problem is feasible. This can cause the algorithm to fail at an early SC iteration, before the 

linearizations have a chance to converge to the true solution. An example scenario might include a 

linearization about a Δ𝑡 that is very small, creating an obviously infeasible problem.  

To avoid this potential scenario, we introduce a relaxation, 𝑎𝑅 in the acceleration dynamics term that 

allows the solver to utilize a very large acceleration in any direction in order to ensure that the 

boundary conditions of the problem can be met. Use of this artificial acceleration is then weighted 

heavily in the objective function. Thus, the solution algorithm utilizes this acceleration in early SC 

iterations where it is necessary to ensure feasibility, but usage quickly approaches zero as the SC 

algorithm converges. The exact implementation is as follows: 

∥ 𝑎𝑅[𝑘] ∥ ≤ 𝜅𝑎,𝑅[𝑘] 

The 𝜅 variables are added to the objective function in much the same way as the 𝜂 variables in 

section 2.3.2. 

2.4 Problem Summary 

This section summarizes everything that has been covered in section 2 and formalizes it into the 

problems 1 and 2. Problem 1 covers the SOCP problem for the first SC iteration, while problem 2 is 

the formulation used for the remaining SC iterations. For SC iterations 𝑖 > 0, the solution is 

obtained by linearizing about trajectory 𝑖 − 1.  

Problems 1 and 2 utilize the following notational conventions: 

𝑘𝑓 ≜ 𝑁 − 1 
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𝑡𝑓 = 𝑘𝑓Δ𝑡 

𝑘 ∈ [0, 𝑘𝑓] 

And, for any variable 𝑥: 

Ψ𝑥[𝑘] ≜ [xT[𝑘]    𝑥𝑇[𝑘 + 1]]
𝑇

,    𝑘 ∈ [0, 𝑘𝑓] 

𝛿𝑥𝑖[𝑘] ≜ 𝑥𝑖[𝑘] − 𝑥𝑖−1[𝑘]    𝑖 > 0 

Where the subscript 𝑖 refers to the SC iteration.  

Also, please note that the dynamics equations are discretized under the assumption that acceleration 

varies linearly from its value at node 𝑘 to its value at node 𝑘 + 1. This is done for the purpose of 

improved physical accuracy when compared to other strategies, such as zero-order-hold.  

Finally, we must account for the simplified problem structure that initializes the first SC iteration. 

Specifically, we must make guesses about the time of flight, the speed profile, and the mass profile. 

Thus, for the first SC iteration, we define a constant Δ𝜏 =
𝑡𝑓,𝑠

𝑘𝑓
 where 𝑡𝑓,𝑠 is a guess of the final flight 

time and is an input to the algorithm. The speed profile, 𝑠, is linearly interpolated between initial and 

final speeds. The mass profile, 𝜇, is linearly interpolated between 𝑚0 and 𝑚𝑑𝑟𝑦.  

Problem 4 

Objective Function: 

minimize (−𝑤𝑚,𝑓𝑚[𝑘𝑓] + 𝑤𝜅,𝒂,𝑅 ∥ 𝜅𝒂,𝑅 ∥)  over 𝑻, Γ  

subject to: 

Boundary Conditions: 

𝑚[0] = 𝑚0, 𝒓[0] = 𝒓0, 𝒗[0] = 𝒗0, 𝑻[0] = Γ[0]�̂�0, Γ[0] = Γ0 

𝒓[𝑘𝑓] = 0, 𝒗[𝑘𝑓] = 0, 𝑻[𝑘𝑓] = Γ[𝑘𝑓]�̂�𝑓 

Dynamics: 

𝑚[𝑘 + 1] = 𝑚[𝑘] − [
𝛼

2
(Γ[𝑘] + Γ[𝑘 + 1]) + �̇�𝑏𝑝] Δ𝜏   𝜅 ∈ [0, 𝑘𝑓) 

𝒓[𝑘 + 1] = 𝒓[𝑘] + 𝒗[𝑘]Δ𝜏 +
1

3
(𝒂[𝑘] +

1

2
𝒂[𝑘 + 1]) Δ𝜏2   𝜅 ∈ [0, 𝑘𝑓) 
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𝒗[𝑘 + 1] = 𝒗[𝑘] +
1

2
(𝒂[𝑘] + 𝒂[𝑘 + 1])Δ𝜏     𝜅 ∈ [0, 𝑘𝑓) 

𝒂[𝑘] =
1

𝜇[𝑘]
(𝑻[𝑘] −

1

2
𝜌𝑆𝐷𝐶𝐷𝑠[𝑘]𝒗[𝑘]) + 𝒂𝑅[𝑘] + 𝒈 

State Constraints: 

𝑚𝑑𝑟𝑦 ≤ 𝑚[𝑘] 

Control Constraints: 

∥ 𝑻[𝑘] ∥≤ Γ[𝑘] 

0 ≤ 𝑇𝑚𝑖𝑛 ≤ Γ[𝑘] ≤ 𝑇𝑚𝑎𝑥 

Γ[𝑘] cos(𝜃𝑚𝑎𝑥) ≤ �̂�𝑢
𝑇𝑻[𝑘] 

�̇�𝑚𝑖𝑛Δ𝜏 ≤ Γ[𝑘 + 1] − Γ[𝑘] ≤ �̇�𝑚𝑎𝑥Δ𝜏      𝜅 ∈ [0, 𝑘𝑓) 

SC Modifications: 

∥ 𝒂𝑅[𝑘] ∥≤ 𝜅𝒂,𝑅[𝑘] 

 

Problem 5 

Objective Function: 

minimize (−𝑤𝑚,𝑓𝑚[𝑘𝑓] + 𝑤𝜂,Δ𝑡𝜂Δ𝑡 + 𝑤𝜂,𝑻 ∥ 𝜂𝑻 ∥ + 𝑤𝜅,𝒂,𝑅 ∥ 𝜅𝒂,𝑅 ∥)  over 𝑻, Γ, Δ𝑡  

subject to: 

Boundary Conditions: 

𝑚[0] = 𝑚0, 𝒓[0] = 𝒓0, 𝒗[0] = 𝒗0, 𝑻[0] = Γ[0]�̂�0, Γ[0] = Γ0 

𝒓[𝑘𝑓] = 0, 𝒗[𝑘𝑓] = 0, 𝑻[𝑘𝑓] = Γ[𝑘𝑓]�̂�𝑓 

Dynamics: 

𝚿[𝑘] ≜ [Δ𝑡    𝚿𝒎
𝑻 [𝑘]    𝚿Γ

𝑇[𝑘]    𝚿𝒗
𝑇[𝑘]    𝚿𝑻

𝑇[𝑘]    𝚿𝒂,𝑅
𝑇 [𝑘]]

𝑇

   𝜅 ∈ [0, 𝑘𝑓) 

𝒇𝒎(𝚿[𝑘]) ≜ − [
𝜶

2
(Γ[𝑘] + Γ[𝑘 + 1]) + �̇�𝑏𝑝] Δ𝑡    𝜅 ∈ [0, 𝑘𝑓) 

𝒇𝒓(𝚿[𝑘]) ≜ 𝒗[𝑘]Δ𝑡 +
1

3
(𝒂[𝑘] +

1

2
𝒂[𝑘 + 1]) Δ𝑡2    𝜅 ∈ [0, 𝑘𝑓) 

𝒇𝒗(𝚿[𝑘]) ≜
1

2
(𝑎[𝑘] + 𝑎[𝑘 + 1])Δ𝑡      𝜅 ∈ [0, 𝑘𝑓) 
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𝑚[𝑘 + 1] = 𝑚[𝑘] + 𝑓𝑚(𝚿𝑖−1[𝑘]) +
𝜕𝑓𝑚

𝜕𝚿 Ψ𝑖−1[𝑘]
𝛿Ψ𝑖[𝑘]    𝜅 ∈ [0, 𝑘𝑓) 

𝒓[𝑘 + 1] = 𝒓[𝑘] + 𝑓𝒓(𝚿𝑖−1[𝑘]) +
𝜕𝑓𝒓

𝜕𝚿Ψ𝑖−1[𝑘]
𝛿Ψ𝑖[𝑘]     𝜅 ∈ [0, 𝑘𝑓) 

𝒗[𝑘 + 1] = 𝒗[𝑘] + 𝑓𝒗(𝚿𝑖−1[𝑘]) +
𝜕𝑓𝒗

𝜕𝚿Ψ𝑖−1[𝑘]
𝛿Ψ𝑖[𝑘]    𝜅 ∈ [0, 𝑘𝑓) 

𝒂[𝑘] =
1

𝑚[𝑘]
(𝑻[𝑘] + 𝑫[𝑘]) + 𝒂𝑅[𝑘] + 𝒈 

State Constraints: 

𝑚𝑑𝑟𝑦 ≤ 𝑚[𝑘] 

Control Constraints: 

∥ 𝑻[𝑘] ∥≤ Γ[𝑘] 

0 ≤ 𝑇𝑚𝑖𝑛 ≤ Γ[𝑘] ≤ 𝑇𝑚𝑎𝑥 

Γ[𝑘] cos(𝜃𝑚𝑎𝑥) ≤ �̂�𝑢
𝑇𝑻[𝑘] 

�̇�𝑚𝑖𝑛Δ𝜏 ≤ Γ[𝑘 + 1] − Γ[𝑘] ≤ �̇�𝑚𝑎𝑥Δ𝜏      𝜅 ∈ [0, 𝑘𝑓) 

SC Modifications: 

𝛿Δ𝑡𝑖
2 ≤ 𝜂Δ𝑡 

𝛿𝑻𝑖
𝑇[𝑘]𝛿𝑻𝑖[𝑘] ≤ 𝜂𝑻[𝑘] 

∥ 𝒂𝑅[𝑘] ∥≤ 𝜅𝒂,𝑅[𝑘] 
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3 Algorithm Solution 
In this section I present the two solution cases that will be used for the remainder of the report. The 

first is a planar case, where all of the vehicle’s motion occurs within the U-E plane, while the second 

is a full, three-dimensional case. The exact parameters and boundary conditions used for the two 

solution cases are summarized in tables 1 and 2.  

Both problems were solved in MATLAB using CVX [17] with the SDPT3 [15] solver.  

3.1 Solution 1 

The specific parameters for solution 1 are given in Table 1.  

Parameter Value Units 

𝜌 0.0023 slugs/ft3 

𝑃𝑎𝑚𝑏 2116 lbf/ft2 

𝑔0 32.17 ft/s2 

𝑔 [−𝑔0    0    0]𝑇 ft/s2 

𝑚0 33,000 lbm  

𝑚𝑑𝑟𝑦 22,000 lbm 

𝐴𝑛𝑜𝑧𝑧𝑙𝑒 5 ft2 

𝐼𝑠𝑝 300 s  

𝑇𝑚𝑖𝑛,𝑣𝑎𝑐 22,000 lbf 

𝑇𝑚𝑎𝑥,𝑣𝑎𝑐 56,000 lbf 

�̇�𝑚𝑖𝑛 22,000 lbf/s 

�̇�𝑚𝑎𝑥 22,000 lbf/s 

𝜃𝑚𝑎𝑥 15 degrees  

𝑆𝐷 108 ft2 

𝐶𝐷 1.0 - 

𝑡𝑓,𝑠 15 s  

𝒓0 [1500    1500    0]𝑇 ft  

𝒗0 [−150    0    0] ft/s 

�̂�0 [1    0    0]𝑇 - 

�̂�𝑓 [1    0    0]𝑇 - 

𝑁 50 - 

𝑛𝑆𝐶  10 - 

𝑤𝑚,𝑓 1.0 slugs-1 

𝑤𝜂,𝛥𝑡 1.0 s-1 

𝑤𝜂,𝑇 1.0 lbf-1 

𝑤𝜅,𝑎,𝑅 500 s2/ft  

Table 1: Solution 1 parameters  
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Figure 1: Plot of solution trajectory in the U-E plane. Each dot on the plot represents one of the 

discretized time points and are equally space temporally. The lines radiating out of the time points 

are the relatives thrust directions and magnitudes at that point.  

This particular set of parameters in Table 1 is representative of a situation in which the vehicle is 

1500 ft up and 1500 away, horizontally, from its intended landing spot. The vehicle is travelling 

straight down at a speed of 150 ft/s. The environmental conditions are similar to those that one 

might experience near sea level on Earth. Vehicle-specific parameters include a vehicle mass of 

22,000 lbm laden with 11,000 lbs of fuel. It can throttle up and down at a max rate of 22,000 lbf/s 

and has a maximum tilt angle of 15 degrees.  

The number of discretization points and SC iterations were chosen by observing that the nature of 

the solution did not change appreciably for numbers larger than 50 and 10, respectively.  
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Figure 2: Position and velocity time history, broken up by components.  

Figure 1 gives a nice overview of the vehicle’s path to the landing pad, and shows that the trajectory 

ends with the position and velocity vectors equal to zero, as the boundary conditions specify.  

Figure 3 truly elucidates the control that is used to generate that trajectory. Here we can see that the 

thrust magnitude roughly approximates the canonical “bang-off-bang” form of a minimum fuel 

solution. Also note at 10 and 15 seconds, where the thrust magnitude rate saturated, preventing the 

thrust magnitude from changing any more rapidly. The thrust starts off at full throttle and 

immediately tilts as far as it can to the west. This makes sense since the ratio of starting altitude to 

horizontal distance is unity. Halfway through the trajectory, the thrust decreases until it hits the 

minimum thrust magnitude constraint and coasts there for a few seconds, before tilting back east 

and throttling up to kill the westward velocity it has built up.  
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Figure 3: Thrust time history.  

Every single control constraint that was imposed was utilized at some point on the trajectory. The 

thrust magnitude hit both the minimum and maximum, as did the thrust magnitude rate. The tilt 

angle was at its maximum for almost the entire time of the flight. Note in Figure 2 that the N 

components of position and velocity are very small because of the planar nature of the trajectory. 

The mass time history in Figure 4 shows the vehicle mass decreasing as propellant is burned, but the 

total mass is always above the vehicle’s dry mass.  
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Figure 4: Mass time history. The upper and lower dashed lines represent the vehicles initial and 

dry mass, respectively.  

3.2 Solution 2 

Solution 2 is very similar to solution 1, with the exception of an out-of-plane initial velocity. This 

throws the resultant trajectory into the third dimension and unveils behaviors not see in the planar 

case.  

The specific parameters for solution 2 are given in Table 2, below.  

Parameter Value Units 

𝜌 0.0023 slugs/ft3 

𝑃𝑎𝑚𝑏 2116 lbf/ft2 

𝑔0 32.17 ft/s2 

𝑔 [−𝑔0    0    0]𝑇 ft/s2 

𝑚0 33,000 lbm  

𝑚𝑑𝑟𝑦 22,000 lbm 

𝐴𝑛𝑜𝑧𝑧𝑙𝑒  5 ft2 

𝐼𝑠𝑝 300 s  

𝑇𝑚𝑖𝑛,𝑣𝑎𝑐 22,000 lbf 

𝑇𝑚𝑎𝑥,𝑣𝑎𝑐 56,000 lbf 

�̇�𝑚𝑖𝑛 22,000 lbf/s 

�̇�𝑚𝑎𝑥 22,000 lbf/s 

𝜃𝑚𝑎𝑥 15 degrees  

𝑆𝐷 108 ft2 

𝐶𝐷 1.0 - 
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Parameter Value Units 

𝑡𝑓,𝑠 15 s  

𝒓0 [1500    1500    0]𝑇 ft  

𝒗0 [−150    0    150] ft/s 

�̂�0 [1    0    0]𝑇 - 

�̂�𝑓 [1    0    0]𝑇 - 

𝑁 50 - 

𝑛𝑆𝐶  10 - 

𝑤𝑚,𝑓 1.0 slugs-1 

𝑤𝜂,𝛥𝑡 1.0 s-1 

𝑤𝜂,𝑇 1.0 lbf-1 

𝑤𝜅,𝑎,𝑅 500 s2/ft  

Table 2: Solution 2 parameters  

 

Figure 5: Plot of solution trajectory in the three dimensions.  
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Figure 6: Position and velocity time history, broken up by components.  

Solution 2 is similar to solution 1 with the exception of its out-of-plane maneuvers. It also utilizes a 

sort of hop during the coast phase of the bang-coast-bang thrust structure, as shown in Figure 6. 

This may be the fuel optimal solution, but it might not be suitable for actual flight conditions, due to 

excessive fuel sloshing. A simple series of altitude monotonicity constraints could eliminate this type 

of behavior if desired. 

The initial lateral velocity is clearly evident in Figure 5, causing the thrust vectors to point south to 

zero out the vehicle’s N position. The thrust magnitude plot in Figure 7 is not as simple as the 

previous, planar problem. Note that although the magnitude is initialized at full throttle setting, it 
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Figure 7: Thrust time history. 

 

Figure 8: Mass time history for solution 2. 

0 10 20 30 40
10

20

30

40

50

Time [s]

|
|
T

(t
)|

|
 a

n
d

 
(t

) 
[k

lb
f]

0 10 20 30 40
-40

-20

0

20

40

Time [s]

T
h
ru

st
 M

ag
. 
R

at
e 

[k
lb

f/
s]

0 10 20 30 40
0

5

10

15

Time [s]

T
h
ru

st
 T

ilt
 A

n
gl

e 
[d

eg
]

0 10 20 30 40
-200

-100

0

100

Time [s]

A
zi

m
u
th

 A
n

gl
e 

[d
eg

]

0 5 10 15 20 25
20

25

30

Time [s]

m
(t

) 
[k

lb
m

]



 19 

4 Nonlinear Simulation 
In this section, I compare the solutions obtained in section 3 to a nonlinear simulation of the same 

thrust profile, to satisfy two project objectives. First, this will serve to verify that the solutions 

obtained from the convexified problem are physically feasible. Second, the use of a nonlinear 

simulation introduces the possibility of adding in nonlinear elements such as variable air density, 

coefficient of drag, and atmospheric pressure. Running the simulation with these present will give us 

some idea of how good our simplifying approximations are.  

Section 4.1 introduces the simulation and briefly describes its formulation, and section 4.2 presents 

the results of the simulations.  

4.1 Simulation Formulation 

The nonlinear simulation that was used to verify the CVX solutions was built in Simulink. The basic 

outline of the model can be seen in Figure 9. 

This model takes the thrust profile from the solutions in section 3, and propagates the trajectory 

based on that alone, subject to the expected dynamics. The important differences between Simulink 

and CVX are the integration scheme and the number of discretization points. This model utilizes the 

Dormand-Prince Runge-Kutta integration method which, with the relative tolerance set to 1𝐸 − 6, 

results in a number of discretization points that is between two to ten times more than the number 

typically used with the CVX solutions.  

It its simplest form, the model’s dynamics recreates the problem formulation from section 2.1 

exactly. The translational dynamics follow a simple double integrator where the acceleration term is 

driven by gravity and a thrust control. The atmospheric pressure and density and the vehicle’s 

coefficient of drag are all constant. The mass depletion dynamics follow the same linear model 

described above.  

This is then built upon with simple Boolean switches to enable or disable certain nonlinear aspects 

of the simulation. In no particular order, these are: atmospheric thrust correction, variable 

coefficient of drag, atmospheric lift, and variable air density.   
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Figure 9: Simulink PDL simulation.  

The atmospheric thrust correction accounts for the fact that for a given throttle setting, thrust will 

decrease with decreasing altitude, as atmospheric pressure increases. The corrective term in the 

Simulink simulation computes the air pressure for the vehicle’s current altitude, multiplies it by the 

nozzle area, then adds or subtracts that value from the commanded thrust, depending on whether 

the air pressure is higher or lower than the assumed constant value, respectively.  

The variable coefficient of drag correction takes into account the fact that the vehicle’s coefficient of 

drag is dependent on the vehicle’s speed. This correction replaces the usual, constant 𝐶𝐷 with a 

coefficient that varies linearly according to Table 3, below. 
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Vehicle Speed [ft/s] 𝐶𝐷 
0 0.2 

500 1.2 

Table 3: Coefficient of drag vs vehicle speed. 

 
The third correction accounts for the lift being created by the vehicle during the trajectory. Here, lift 

is being defined as the aerodynamic force normal to the velocity direction, and is expressed as: 

𝑳 = −
1

2
𝜌𝑆𝐿𝐶𝐿 (

𝑻

Γ
∙

𝒗

∥ 𝒗 ∥
) [(

𝑻

Γ
× 𝒗) × 𝒗] 

For the purposes of this simulation, 𝐶𝐿 is assumed to be 1.0, and the lift reference area is assumed to 

be equal to the drag reference area.  

The final correction is variable air density, which is handled in a similar fashion to the thrust 

correction. The air density is calculated for the vehicle’s current altitude based on a standard 

atmospheric model, and that value is then used for the 𝜌 terms in lift and drag.  

Finally, for purposes of comparing the Simulink results to those produced by CVX, the Fréchet 

distance is used as a comparison metric. For this application of discrete position time histories, this 

metric can be expressed as:  

𝐹(𝐴, 𝐵) = max(∥ 𝒓𝐴(1) − 𝒓𝐵(1) ∥, ∥ 𝒓𝐴(2) − 𝒓𝐵(2) ∥, … , ∥ 𝒓𝐴(𝑁) − 𝒓𝐵(𝑁) ∥) 

 

4.2 Results 

This section will start by showing the detailed results from one particular simulation: the three 

dimensional solution 2 from section 3.2 with the variable 𝐶𝐷 flag set to true. Then I summarize the 

results from the remaining cases by using the Fréchet distance for each case in table 4, below.  
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Figure 10: Position and velocity plots for CVX solution and Simulink Simulation. Variable 𝐶𝐷 

is turned on. CVX solution is in blue and the Simulink propagated trajectory is shown in red. 

Note in Figures 10 and 11 that both the Up and East Simulink positions overshoot the zero position 

that the CVX solution successfully targeted. This makes intuitive sense as most of trajectory was 

spent well below 500 ft/s, so the coefficient of drag in the simulation was lower than the constant 

value of 1.0 used in CVX, and the vehicle was not slowed down as much, resulting in that 

overshoot.  

Because the thrust is an input to the Simulink simulation and the mass profile is explicitly dependent 

on the thrust profile, the CVX-Simulink comparison of those two plots are trivially zero. 
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Figure 11: Relative position and velocity time histories. Variable 𝐶𝐷 is turned on. The curves 

shown here are the CVX solution minus the Simulink propagation.   

Fréchet Distance [ft] 2-D Solution 1 3-D Solution 2 

None 0.5058 1.7850 
Thrust Correction 6.8609 16.9180 

Variable 𝐶𝐷 199.9261 337.9599 

Aerodynamic Lift 136.1769 340.6984 

Variable 𝜌 49.6554 99.5409 

Table 4: Fréchet distances for selected simulation cases. 

Note that the first row of Table 4, when all the nonlinearity flags are set to false, the Fréchet 

distances are not zero. This small difference in trajectories is due to the difference in integration 

schemes between the convex problem, which linearly interpolates the acceleration term between 

discrete time points, and the Simulink simulation, which utilizes a Runge-Kutta integration method. 
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The simulation was initially verified by setting both integration schemes to a simple zero-order-hold 

newton step, and the resulting Fréchet distances were on the order of 1𝐸 − 5 ft. The fact that these 

two different integration schemes only vary by a foot or two over the course of the entire trajectory 

reassures us that the integration strategy chosen for the original problem was a good one.  

All four nonlinearities had a greater effect on solution 2. Due to that solution’s 3-D nature, the time 

of flight is longer, so the differences in dynamics had a longer time to build up than for solution 1.  

The two largest differences occurred with the variable 𝐶𝐷 and aerodynamic lift flags. This might 

suggest that those two dynamic perturbations would be a good addition if one wanted to improve 

the fidelity of the original convex problem.  
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5 GPOPS-II Verification  
GPOPS-II [22] is an optimal control MATLAB software for solving general nonlinear optimal 

control problems. Section 4 used Simulink to verify the physical feasibility of the CVX solution, now 

I will use GPOPS-II to verify the optimality of it.  

5.1 GPOPS-II Formulation 

Because GPOPS-II allows for such extremely general dynamics, constraints, and boundary 

conditions, I was able to formulate the problem exactly how it is stated in Section 2. All of the 

vehicle and environmental parameters are the same as those stated in tables 1 and 2.  

5.2 Results 

 

Figure 12: Position and Velocity time histories for solution 1. The CVX solution is shown in 

blue and GPOPS-II solution is shown in green.  
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Figure 13: Relative position and velocity time histories. The curves shown here are the CVX 

solution minus the GPOPS-II. Notes that because final time is left unconstrained, the total time of 

flight for each solution is slightly different, and is scaled for comparison purposes.  

Figures 11-14 show the CVX-GPOPS comparison for the first solution case described in section 3. 

The Fréchet distance between the two is 45 ft, and the GPOPS-II solution uses approximately 180 

lbs, or 5% less fuel. The biggest difference is seen in the thrust profile, where the GPOPS-II 

solution exhibits a very clean bang-coast-bang structure and saturates at the max and min thrust, 

whereas the CVX solution does not. This discrepancy is most like due to the linearized SOCP 

problem not perfectly representing the general nonlinear problem.  
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Figure 14: Thrust profile for solution 1. The CVX solution is shown in blue and GPOPS-II 

solution is shown in green.  
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6 Conclusions 
In this report, I described a strategy for expressing a non-convex problem in a convex manner, then 

verified its physical feasibility and its optimality. The original problem included non-convex 

dynamics such as aerodynamic drag, as well as non-convex constraints. It physical feasibility was 

evaluated using a nonlinear Simulink simulation, and the two resulting trajectories were found to 

correspond closely. The algorithm’s optimality was verified by comparing it to a solution from 

GPOPS-II, and it was found to have a slightly larger objective function than the actual optimal 

solution. This is most likely due to issues arising from the linearization of the problem.  
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Nomenclature 
DOF   Degrees-of-Freedom 

SOCP  Second-Order Cone Programming 

VTVL   Vertical Takeoff, Vertical Landing 

PDL   Powered Decent and Landing 

SC   Successive Convexification 

𝑖  Index of SC iteration 

�̂�𝑈  Up-pointing unit vector 

𝑚  Vehicle mass 

𝒓  Vehicle position vector 

𝒗  Vehicle velocity vector 

𝒂  Vehicle acceleration vector 

𝑻  Vehicle thrust vector 

𝑫  Vehicle drag vector 

𝒈  Local gravity vector 

𝑔0  Standard gravity 

𝜌  Local air density 

𝑃𝑎𝑚𝑏  Local air pressure 

𝐴𝑛𝑜𝑧𝑧𝑙𝑒  Nozzle exit area of vehicle rocket motor 

𝐼𝑠𝑝   Specific impulse of vehicle rocket motor 

𝐶𝐷  Vehicle coefficient of drag 

𝐶𝐿  Vehicle coefficient of Lift 

𝑆𝐷  Vehicle drag reference area 

𝑆𝐿  Vehicle lift reference area 

𝜃  Vehicle tilt angle  

𝑁  Number of discretization points 

𝑛𝑆𝐶   Number of successive convexification iterations  
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