
Copyright

by

Michael Linder

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211336257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Michael Linder
certifies that this is the approved version of the following report:

Honeycomb: Indoor location estimation based on Wi-Fi

signal strength

APPROVED BY

SUPERVISING COMMITTEE:

Christine Julien, Supervisor

William Bard

Honeycomb: Indoor location estimation based on Wi-Fi

signal strength

by

Michael Linder, B.A.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2015

Dedicated to my wife, Dana, whose support made this possible.

Honeycomb: Indoor location estimation based on Wi-Fi

signal strength

Michael Linder, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Christine Julien

This paper presents Honeycomb, an indoor location estimation product

based on Wi-Fi signal strength. Wireless Local Area Networks are ubiquitous

today, and most people carry Wi-Fi capable devices in their pocket. This ex-

isting infrastructure can thus be leveraged for purposes of location estimation.

Using Wi-Fi signal strength fingerprinting, Honeycomb harnesses existing Wi-

Fi infrastructures as a means to track the movements of individuals through

an indoor space. Fingerprinting is a method by which Wi-Fi signal strengths

are mapped at regular intervals in a bounded space. Once a space is finger-

printed, a given node must simply sample Wi-Fi signal strengths as it moves

through the same space and Honeycomb’s algorithm will determine the node’s

path in an offline manner. Because Honeycomb only requires nodes to pas-

sively measure Wi-Fi signal strengths rather than send out its own beacon, it

prevents malicious third parties from gaining access to any real time data, and

thus maintains the security and privacy of the user. By performing location

v

estimations on the data collected on an independent platform, and not on the

device itself, it saves the user from spending the computing power, and thus

the device’s battery. We believe Honeycomb to be a product unlike any other,

which is suitable for deployment in multiple real world scenarios.

vi

Table of Contents

Abstract v

List of Figures ix

Chapter 1. Introduction 1

1.1 Definitions . 2

1.2 Motivation . 4

1.3 Contribution . 6

1.4 User Stories . 6

1.4.1 The Grocery Store . 7

1.4.2 Security Guards . 8

1.5 Structure Of This Report . 9

Chapter 2. Background and Related Work 11

2.1 High Level Location Estimation Schemes 11

2.1.1 Triangulation . 11

2.1.2 Proximity . 12

2.1.3 Scene Analysis . 12

2.2 Scene Analysis Scheme Approaches 13

2.2.1 Probabilistic Matching 13

2.2.2 Bayesian Networks . 14

2.2.3 Nearest Neighbors . 14

2.3 Offline Location Estimation 15

2.4 The Honeycomb Approach . 15

vii

Chapter 3. BumbleBee 17

3.1 Infrastructure . 17

3.2 Implementation . 18

3.2.1 The Gatekeeper . 18

3.2.2 The Bumblebee . 19

3.2.3 Communication Mechanism 20

Chapter 4. Tech Overview 23

4.1 Web Application . 23

4.1.1 User Interface . 24

4.1.2 REST API . 24

4.1.3 Asynchronous Processing 27

4.2 Mobile Application . 28

4.3 BumbleBee plugin . 29

Chapter 5. Testing and Results 30

5.1 Testing Setup . 30

5.2 Test Variants . 31

5.3 Results . 33

Chapter 6. Conclusions and Future Work 37

Bibliography 39

viii

List of Figures

1.1 An example of a location with labeled measurement points . . 3

1.2 An example user track . 5

3.1 BumbleBee Infrastructure . 19

3.2 BumbleBee State Diagram . 22

5.1 Map of location, with fingerprint points and walking path . . . 32

5.2 Results with four access points and a ten second polling time . 34

5.3 Results with six access points and a ten second polling time . 34

5.4 Results with four access points and a twenty second polling time 34

5.5 Results with six access points and a twenty second polling time 34

5.6 Results with four access points and a thirty second polling time 35

5.7 Results with six access points and a thirty second polling time 35

ix

Chapter 1

Introduction

In recent years wireless LAN technology has become ubiquitous. Wi-

Fi access points have become virtually trivial to install, and nearly everyone

carries a Wi-Fi capable mobile device in their pocket. It is also the case that

much research has been done on various methods of location estimation. It

follows, then, that location estimation that leverages Wi-Fi would be a valuable

topic, and in fact much research has already been done in the space, including

[13], [16], [15], [11], and [17].

The benefits of using Wi-Fi for location estimation are manifold. For

instance, while the Global Positioning System is in many ways the premier

method for location estimation in the world [3], GPS signals are often unreli-

able indoors [27], making it a poor choice for any indoor location estimation.

Location systems that use other mechanisms such as RFID [24], ultrasound

[19], or geomagnetism [7] are difficult to setup, require specialized hardware,

and ultimately can only be used for a single purpose. Wi-Fi based location

estimation solves all of these problems. Wi-Fi signals are readily available in-

doors. Wi-Fi is relatively cheap and easy to setup, and in many cases existing

access points can be leveraged.

1

1.1 Definitions

There are a few terms that will be used throughout this paper that it

is important to define early. Understanding these definitions will help make

clear the purpose of this paper and its contributions.

Signal Strength vs. RSSI Much of the research involving location esti-

mation with Wi-Fi signal strength refers to the measured power present in the

radio signal as the Received Signal Strength Indicator (RSSI). While in general

terms this moniker is good enough, in truth, the IEEE 802.11 specifications

[12] do not indicate a specific relationship between RSSI and the actual power

level as measured in either milliwatts (mW) or Decibel-milliwatts (dBm). As

such, manufactures are free to provide their own arbitrary units, and RSSI

measurements are generally found to be integer values greater than 0. Be-

cause of this inconsistency, Honeycomb does not use RSSI, favoring instead

what we refer to as simply ”signal strength”. For our purposes, signal strength

is a measure of the power present in the Wi-Fi signal as measured in dBm.

dBm is a measurement relative to 1 mW of power, where 0 dBm is equal to 1

mW. Because dBm measurements are made on a logarithmic scale, we find our

measurements to be negative integers between 0 and -100, where the measured

value is the exponent in the logarithm. So, where 0 dBm is equal to 1 mW, -10

dBm is equal to .1 mW, -20 dBm is equal to .01 mW, and so on. Measuring

signal strength in this way allows Honeycomb to maintain consistent tracking

across signal strength measurement platforms, and thus makes Honeycomb a

2

more diverse and viable product.

Fingerprint Throughout this paper will we refer to fingerprints. In this

context, a fingerprint is a set of Wi-Fi signal strength measurements taken

from a set of Wi-Fi access points at a specific point in a given space.

Figure 1.1: An example of a location with labeled measurement points

Fingerprint Session While the concept of the Wi-Fi fingerprint is rela-

tively common, here we introduce a new concept that will enable a Honey-

comb installation to maintain its value over time: the fingerprint session. A

fingerprint session is the complete set of fingerprints from all measurement

points in a space at measurement time. Because the internal layout of any

given space can change over time, causing issues with blocking and reflection

3

of Wi-Fi signals, Honeycomb has built in the ability to re-fingerprint the entire

location at any time so that the measurements can be as precise as possible.

Figure 1.1 shows an example location with aisles like that of a grocery store.

It includes four Wi-Fi access points and numbered labels for points that may

be considered relevant for location estimation. A single fingerprint session in

this space would be the complete set of Wi-Fi signal strength measurements

from all four access points at every numbered location.

User Track A user track differs from a fingerprint in that it represents a

single user’s movement through the space. Thus, a user track is composed of

a set of timestamps, each of which is associated with a set of signal strength

measurements for each of the access points in the space. Figure 1.2 shows an

example of a user track. In this example, the small dots represent the user’s

actual path through the space, while each large dot represents a timestamped

set of signal strength measurements. Thus it can be seen that in this example

the user walked at a relatively constant pace through the space, slowing down

four times near locations 5, 7, 14, and 17. For location estimation purposes,

Honeycomb will compare a given user track to the most recent fingerprint

session for the given space.

1.2 Motivation

Wi-Fi based location estimation is a well researched topic [16]. The

goal of Honeycomb is to leverage that research and build an indoor location

4

Figure 1.2: An example user track

tracking system which is suitable for deployment in a real world scenario. As

such, Honeycomb includes an Android application capable of fingerprinting a

space, and an API which is deployed to the web for uploading both fingerprints

and user track data. The web application also executes the location estimation

algorithm, and provides a user interface for browsing the user track data.

Honeycomb itself remains agnostic of the mechanism used to gather the user’s

Wi-Fi signal strength data. By decoupling Honeycomb in this way, we allow

Honeycomb to be used in multiple scenarios in which a specialized user track

gathering mechanism is desired.

User privacy is also a major motivating factor in our work. By only

performing location estimation based on signal strength and timestamp data

5

passively gathered on the Wi-Fi capable device, we have avoided the pitfalls

of systems that require the mobile device to send out a beacon [13] [27] which

can be intercepted by malicious third parties. Additionally, the offline nature

of the location estimation algorithm greatly simplifies the entire process, as

real time location estimation is still a highly volatile field [25]. It also helps

provide an additional layer of privacy protection for the user, as the data can

easily be decoupled from any identifying information before processing. There

are, of course, motivations for real time trackers as well, which Honeycomb

does not address.

1.3 Contribution

While there has been much research done in the space (see chapter 2),

to the author’s knowledge, there does not yet exist a product on the market

that achieves true location estimation via Wi-Fi signal strength measurements.

Honeycomb is such a product. Honeycomb provides tools on the web for

site administrators to manage their locations and view individual user tracks.

It also includes an API through which fingerprints and user tracks can be

uploaded, and an Android application capable of doing the fingerprinting and

uploading the results to Honeycomb through the API.

1.4 User Stories

We envision Honeycomb being deployed in multiple different scenarios.

Essentially, wherever there is a desire to track a person’s movements through

6

a bounded space, we believe Honeycomb to be part of a viable solution. In

this section, we describe two such scenarios.

1.4.1 The Grocery Store

The canonical example, and the one to which we will refer throughout

this paper, is the retail establishment that wishes to track customer movements

through their space. In this case, we use the example of the grocery store. The

grocery store lends itself well to this scenario due to the fact that stores are

generally rather large in size and that there is a general expectation that its

customers will spend most of their time moving around the space. In this

scenario, we see two major benefits of customer location tracking. Although

we’ve chosen the grocery store for this scenario, these same benefits could be

applied to similar scenarios, such as large conferences with multiple rooms and

displays. In this scenario, we see two major benefits to the grocery store:

Visibility High visibility of products is a valuable commodity in any retail

environment. Each store can use aggregate data about its customers’ move-

ments through the space to identify key, high traffic areas, and sell shelf space

or ad space accordingly. Additionally, [23] shows that customers respond to

engaging store layouts, which can be facilitated by customer movement data.

Similarly, a conference can identify high traffic areas and place sponsor ads,

or other information valuable to attendees, at the site.

7

Flow Control Data about how people move through a space can be used to

identify bottlenecks or other poorly designed traffic areas and improve them

in order to provide a better user experience for patrons. In the context of a

grocery store, this could result in a generally happier clientele, which means

more repeat business [23]. At a conference, this data could be used to identify

popular booths, and rearrange them in such a way that will cause traffic to

flow in desired patterns, either to eliminate bottlenecks or to direct traffic flow

past more sponsors.

1.4.2 Security Guards

For security companies, a critical component of their service is often

regular patrolling of the space by a human being. For this reason, it is crucial

for the security company to make absolutely sure that the security guard ac-

tually goes on their patrols. This is often accomplished via RFID stations or

QR codes located throughout the space that the guard must scan in order to

prove that they were there. However, this scanning requires the security guard

to be both mentally and visually distracted for the length of time required to

make the scan, and therefore creates a weak point in their security that can

be exploited. Passive tracking of the security guard via Wi-Fi signal strength

polling eliminates this distraction, while still maintaining the necessary track-

ing.

Note that in the above examples, the method by which the polling data

is transferred from the individual’s Wi-Fi capable device into Honeycomb may

8

be dramatically different. In the case of the grocery store, there may be

some desire on the part of store management to evaluate the data before

transferring it to Honeycomb, for example to credit the customer’s account for

their incorporated rewards system, which may be necessary as a motivation for

the user to allow themselves to be tracked. A grocery store’s general patterns of

ingress and egress provide a natural place for the data to be collected, possibly

over Wi-Fi itself, so as to be as unobtrusive to the customer as possible.

Conversely, in the example of the security guard, there may not be a convenient

area in which to place a data collector, since you may be tracking multiple

security guards through multiple spaces, and it is not worth setting up a data

collector for one individual in a given space. Additionally, obtrusiveness is

not an issue, since reporting their position data is part of the security guard’s

job. It is for this reason that Honeycomb remains agnostic of the user data

gathering mechanism, in order to provide benefit in a wider variety of areas.

1.5 Structure Of This Report

The goal of this report is to provide context for the value of a Wi-

Fi signal strength based indoor location tracking system and to describe the

particular implementation of Honeycomb. In Chapter 2 we discuss the state

of Wi-Fi based location tracking and explain why we feel that the methods

we chose were the best choices for Honeycomb. In Chapter 3 we present

BumbleBee. Because Honeycomb remains agnostic of user track gathering

mechanisms, we needed to choose a product that is capable of gathering user

9

track data. BumbleBee is an independent, previously unpublished Wi-Fi signal

strength measurement tool used to collect user tracks, and was co-written

by the author of this paper. In Chapter 4 we discuss the architecture of

Honeycomb and the technologies on which it was built. In Chapter 5 we

present the testing procedures that were implemented and their results. In

Chapter 6 we discuss the results of our tests and the future of Honeycomb as

a product.

10

Chapter 2

Background and Related Work

Several key decisions were made in designing Honeycomb. Chief among

these were the basing of our location estimation system on Wi-Fi signal strength,

the fingerprinting of the space, and the subsequent offline location estimation

algorithm. Our choice to base our system on Wi-Fi signal strength was an easy

one. Systems based on RFID [24], ultrasound [19], or geomagnetism [7] require

single purpose hardware, and can be costly to install, and were thus rejected

outright. In this section, we review the state of Wi-Fi location estimation and

explain why we made the choices that we made.

2.1 High Level Location Estimation Schemes

Liu [16] categorizes three high level location estimation schemes: tri-

angulation, proximity, and scene analysis.

2.1.1 Triangulation

In triangulation schemes, like [28] and [27], nodes are tracked based

on the time of arrival (TOA), angle of arrival (AOA) or roundtrip time of

flight (RTOF) of Wi-Fi signals. These methods, while potentially extremely

11

precise, require knowledge of the locations of access points themselves, as well

as the distances between them. We consider the near plug-and-play ability of

Honeycomb to be a benefit to its adopters, and thus consider this requirement

to be a significant blocker to adoption. Additionally, in order to gather precise

TOA, AOA, and RTOF measurements, a line of sight must be maintained

between the access point and the mobile node, which is not possible in the

scenarios in which we expect Honeycomb to be deployed. Thus triangulation

schemes were rejected immediately.

2.1.2 Proximity

Proximity schemes, like [4], generally consist of a dense array of an-

tennas which are capable of detecting mobile nodes, and the location of the

mobile node is considered to be whichever antenna detects it. These schemes

thus require significant extra infrastructure, which we believe would be a bar-

rier to entry for Honeycomb’s expected customers. Additionally, these schemes

require the mobile node to send out a beacon for the antenna to detect, which

we consider to put the mobile node carrier’s security and privacy at risk.

2.1.3 Scene Analysis

Thus we are left with scene analysis schemes. Scene analysis schemes

generally consist of two phases: a training phase and an estimation phase. In

the training phase the location is mapped, usually via fingerprinting, and in

the estimation phase a mobile node gathers its own measurements which are

12

then compared to the fingerprints. There are many methods for doing this

comparison, which we will discuss in the next section. While scene analysis

schemes are not without their own overhead, they are far preferable to both

triangulation schemes and proximity schemes for Honeycomb’s intended uses.

For these reasons, we chose a scene analysis scheme, which we will describe

further here.

2.2 Scene Analysis Scheme Approaches

While all scene analysis schemes involve a training phase and an es-

timation phase, the particulars of these phases can vary. Most approaches,

including all of those cited in this section, employ fingerprinting in the train-

ing phase, but vary dramatically in the estimation phase. There are three

basic approaches to the estimation phase in this scheme, as described by [25]:

probabilistic matching, Bayesian networks, and nearest neighbor.

2.2.1 Probabilistic Matching

Probabilistic approaches take a user track measurement and calculate

the probability that the measurement was taken at each of the fingerprinted

points in the space. These approaches require complex calculations for deter-

mining probability, but do not generally perform better at location estimation

than other approaches[11].

13

2.2.2 Bayesian Networks

Bayesian network approaches [13] [22] are a special subset of proba-

bilistic approaches. They attempt to build a probability model in the training

phase, and estimate the evolving state of the system based on that model

and the previous state estimate. These approaches can be among the most

accurate, but require a trade off for computational overhead. While these ap-

proaches are quite promising, we fear that the computational overhead will

present problems when run at a large scale, and therefore have chosen not to

employ them at this time.

2.2.3 Nearest Neighbors

Nearest neighbor methods [20] [17] are the simplest approaches, and

provide an acceptable level of accuracy for Honeycomb. In nearest neighbor

approaches, the estimation phase implements a heuristic, often Euclidean dis-

tance, that is applied to the gathered signal strength measurements, and the

fingerprint which most closely matches the gathered measurement is consid-

ered to be the location of the mobile node. While nearest neighbor approaches

are subject to the Wi-Fi signal multipath problem, the fact that each estimate

does not rely on the state of the estimate before it means quick recovery in

cases of error. Additionally, accuracy of estimations can be greatly influenced

by density of fingerprints.

14

2.3 Offline Location Estimation

Some location estimation systems perform real time user tracking [2]

[1] [13]. These real time tracking algorithms generally fall into two categories:

those in which the location estimation is done on the mobile device itself,

and those in which it is not. Systems which perform the location estimation

somewhere other than the mobile device require direct communication with

the device in order to gather real time data. As stated previously, these ap-

proaches were rejected due to privacy and security concerns. While approaches

in which the estimation is done on the mobile device avoid these concerns, they

violate Honeycomb’s goal of staying decoupled from the user track data gath-

ering mechanism. Additionally, by performing calculations on a central server,

battery and computational power of mobile devices is conserved.

2.4 The Honeycomb Approach

Following the decisions made in this chapter, the Honeycomb approach

to indoor location estimation is a scene analysis scheme with a nearest neighbor

approach. For the training phase, Honeycomb includes an Android mobile

application capable of fingerprinting a space for signal strength measurements

from a given set of BSSIDs. It then uploads those measurements as raw data to

a web server. The number and density of fingerprints taken can be determined

by the site administrator based on desired accuracy of location estimates. For

the estimation phase, Honeycomb decouples itself from the actual user track

gathering tool, but exposes an API for timestamped user tracks to be uploaded.

15

It then runs a Euclidean distance algorithm to determine which fingerprint the

user track was nearest to for each timestamp, and thus achieves continuous

location estimation for the duration of the user track. For a fingerprint (FP)

and a user track (UT) with N signal strength measurements, the Euclidean

distance algorithm can be represented as follows:

√
(FP1 − UT1)2 + (FP2 − UT2)2 + ... + (FPn − UTn)2

16

Chapter 3

BumbleBee

Because one of Honeycomb’s goals is to decouple the user track gath-

ering mechanism from the location estimation mechanisms, we needed a tool

with which to gather user tracks in order to prove Honeycomb’s effectiveness.

Fortunately, in a previous, unpublished project, the author of this paper co-

wrote precisely that tool, called BumbleBee. BumbleBee’s only purpose is to

provide a viable user track gathering tool in order to feed user track data into

a location estimation system. Here, we describe BumbleBee in more detail.

3.1 Infrastructure

Bumblebee’s major contribution is its novel infrastructure (Figure 3.1),

in which there exists a Wi-Fi network host, the Gatekeeper, at an ingress

point, e.g., the store entrance in our example. As mobile devices, the bum-

blebees, enter the space, they connect to the Gatekeeper and request work.

The Gatekeeper provides the bumblebee the BSSIDs of N Wi-Fi access points

located throughout the space, where N is the number of different access points

from which the Gatekeeper wants signal strength measurements. When the

bumblebee leaves the space, and detects that it is once again in range of the

17

Gatekeeper, it makes another connection to the Gatekeeper and hands over its

data. Employing the Gatekeeper as data sink allows the bumblebee to drop

its collected data off and free its memory. The Gatekeeper can then aggregate

the data and deliver it to the site specific location estimator, allowing both

the bumblebees and the Gatekeeper to be agnostic of the location estimation

method.

We believe that the real novelty of BumbleBee lies in the introduction

of the Gatekeeper. Serving dual roles, both as distributor of work and as data

sink, the Gatekeeper is the driving force in the system. Because bumblebees are

mobile and the Gatekeeper is not, employing the Gatekeeper as the distributor

of work allows for site specific configurations, and allows the bumblebee to

easily move into and out of various deployments without any a priori knowledge

of the site specific deployment save for the identity of the Gatekeeper.

3.2 Implementation

3.2.1 The Gatekeeper

The gatekeeper is implemented in the Python programming language

so that it can remain relatively platform independent. It is comprised of three

main components: the gatekeeper network service, a GUI, and a plugin inter-

face to allow extending the system’s functionality. We have implemented plug-

ins for saving/restoring results to/from disk, graphing received signal strengths

from all BSSIDs across time, logging, and exporting results to a portable for-

mat for use outside BumbleBee. As part of the Honeycomb project, we also

18

Figure 3.1: BumbleBee Infrastructure

implemented a Gatekeeper plugin for uploading user tracks to the Honeycomb

API. The Gatekeeper server listens on a fixed TCP port (0xb33) for requests

from clients through remote procedure calls (via Python’s SimpleXMLRPC-

Server). Information exchange with the bumblebees is done in JSON [14] data

format. The gatekeeper administrator configures the BSSIDs and minimum

polling interval.

3.2.2 The Bumblebee

The bumblebee component is implemented as an Android application

written in the Java programming language. The application performs three

main tasks: automatic network detection of the Gatekeeper, negotiation with

19

the Gatekeeper, and data collection related activities. These operations require

no user interaction and thus we consider this application unobtrusive. As

part of the data collection process the bumblebee application will wake up

on the negotiated time interval, observe broadcasting wireless networks, and

collect and store signal strength values for all requested BSSIDs. It then

stamps the collected data with the offset from the time it collected the work

from the Gatekeeper and returns to sleep. The periodic waking process is

also used to rediscover the Gatekeeper. When the Gatekeeper is rediscovered

the application once again negotiates a connection, but this time instead of

accepting work it submits the collected data. The data is then discarded from

the mobile device.

3.2.3 Communication Mechanism

The bumblebee mobile device communication model is shown in Fig-

ure 3.2. The initial state of the bumblebee is Sleeping / Inactive (with respect

to BumbleBee activities). Upon discovery of the Gatekeeper the application

enters the Handshake state. In this state the application may choose to not ac-

cept the requested task, in which case it moves back to the Sleeping / Inactive

state. If work is accepted then the application moves into the Data Collection

state. The data collection process was described in the previous section. The

handshake process is described below. When the bumblebee once again dis-

covers the Gatekeeper it once again enters the Handshake state, but this time

it transmits the collected data to the Gatekeeper. Once this is completed, the

20

bumblebee moves back into the Sleeping / Inactive state.

The handshake between Gatekeeper and a bumblebee client happens

within the context of a single connection-oriented session and involves a simple

two-way handshake. The handshake happens after the bumblebee discovers

the Gatekeeper and involves either the requesting of a new data collection

information or the submission of collected data. In both cases the bumble-

bee initially transmits its unique ID to the Gatekeeper. This provides the

Gatekeeper an opportunity to perform validation of the ID (perhaps to refer-

ence a user database or possibly black/white list of IDs). Assuming the ID

is validated, and the client is making a request, a response is sent listing the

BSSIDs to monitor, the maximum acceptable interval between samples, and

the Gatekeepers current timestamp. The bumblebee is now in the Data Col-

lection state as described above. If the client is unable to support the request

it silently drops the request and transitions back to the Sleeping / Inactive

state. There is an assumption here there is a mechanism in place that will

prevent the bumblebee from being intermittently or persistently connected

to the Gatekeeper. This can be accomplished by locating the Gatekeeper a

sufficient distance from the rest of the space or by turning the Gatekeeper’s

signal strength down so as not to overlap with those of the other access points.

BumbleBee also includes a buffer that will allow sufficient time to leave the

Gatekeeper’s area before once again searching for the Gatekeeper to perform

the second handshake.

If the bumblebee successfully transitioned to the Data Collection state

21

and the Gatekeeper is once again discovered, the handshake process again

takes place. After validation the bumblebee then transmits an overall status,

the original request timestamp, and the series of collected timestamped signal

strength values for all BSSIDs. Regardless of the status of the request the

bumblebee moves to the Sleeping / Inactive state. The Gatekeeper will store

the request, regardless of status, for later analysis. In our case, this analysis

actually occurs on Honeycomb hardware.

Figure 3.2: BumbleBee State Diagram

22

Chapter 4

Tech Overview

In order to perform both the training phase and the estimation phase of

Honeycomb’s scene analysis approach to location estimation, as well as post-

estimation data analysis, we implemented a mobile application as well as a

web application. We employed a basic client-server architecture in which the

web application acts as the server, with both the mobile application and the

BumbleBee Gatekeeper as its clients. In this section, we describe the technical

details of these applications.

4.1 Web Application

The most critical part of Honeycomb’s implementation is the web ap-

plication. It acts as the server in Honeycomb’s client-server architecture, and

is the place where Honeycomb performs its location estimation calculations.

It also servers as the entry point into Honeycomb for site administrators to

administer their sites and view user tracks. It is implemented in the Python

programming language using the Django web framework [8], and is hosted on

23

WebFaction [26]. It is available at https://www.honeycomb.pw 1

4.1.1 User Interface

The user interface of the Honeycomb web application is intended to

support location administrators, and is designed using the Bootstrap CSS and

Javascript framework [5]. Once logged in to the application, location admin-

istrators can view the locations that they administer, as well as create new

locations within the app. By allowing a single person to administer multiple

locations in this manner, we support an administrator’s ability to own the

location estimation deployment at multiple sites. Locations created through

this interface will be exposed via the API (described in more detail later) for

use in the location estimation phases. Site administrators can also view the

currently active as well as past fingerprint sessions, including the raw signal

strength measurements for each fingerprint in the session. Additionally, in-

dividual user tracks can be viewed, including both the raw signal strength

measurements of the track as well as a table showing each timestamp offset

and the estimated location of the user at that time.

4.1.2 REST API

Honeycomb’s API is its programmatic interface with the clients in the

client-server architecture. It is built using Representational State Transfer

1This URL will immediately prompt you to login. Please contact the author for demo
credentials.

24

(REST) principles [10], and the JSON data format [14], both of which are

standard for programmatic interfaces today. It exposes four endpoints in order

to facilitate location estimate, which are described below.

Tokens The Honeycomb API authentication mechanism is token based. The

token endpoint accepts a set of credentials and returns a token, which can be

used to interact with the rest of the API. This is the only endpoint that accepts

credentials, all others use the provided token for authentication. The benefit of

this authentication mechanism is that the site administrator must only input

their credentials once, and the client application does not need to store those

credentials. This provides the administrator with a measure of security, as

their credentials cannot be stolen if they are not stored. Should the client

experience a breach of security of the given token, that token can be revoked

on the server without the administrator’s intervention, and does not require

them to change their password.

Locations The location endpoint provides a list of locations administered

by the owner of the provided authentication token. Honeycomb allows a single

administrator to administer multiple locations, and exposing those locations

in this endpoint allows clients to present the administrator with a selection of

locations that they administer when relevant. This means that a single admin-

istrator can use the same Honeycomb mobile application, and even the same

BumbleBee Gatekeeper application, at multiple sites, while still maintaining

the integrity of the data gathered at each site.

25

Fingerprint Sessions The fingerprint session endpoint provides clients with

an interface through which to upload a full fingerprint session, including mul-

tiple signal strength measurements for each fingerprint at the given location.

In order to successfully create a new fingerprint session, the provided authen-

tication token must represent the administrator of the provided site.

The fingerprint session endpoint does not support updating of a single

fingerprint’s signal strength measurements. Instead, fingerprints uploaded to

this endpoint are considered to be the full set of fingerprints for a session. This

decision was made because any change to a given fingerprint’s measurements

likely propagated to other fingerprints as well. For instance, if a new display

was set up somewhere in the store, it likely changed the distribution of signal

strengths throughout the space. Therefore, if the site administrator wants to

add a fingerprint at the new display, they must re-fingerprint the entire space.

Every session uploaded through this endpoint is considered to be the latest

fingerprint session for the given site, and is therefore marked as the active

session, and all other session are marked as inactive. Thus, all user tracks

uploaded are compared against the most recent fingerprint session uploaded.

User Tracks The user track endpoint provides clients with an interface

through which to upload user tracks, including timestamped signal strength

measurements and any identifying information about the user that the client

wishes to provide. In order to successfully create a user track, the provided

authentication token must represent the administrator of the provided site.

26

Although BumbleBee is used in this paper as the user track client, Honey-

comb will accept data from any source, provided that the client provides the

appropriate authentication token. Tracks uploaded in this way are stored in

the database and queued for asynchronous processing, as described below.

4.1.3 Asynchronous Processing

Honeycomb’s algorithms involve some measure of complex processing.

In order to prevent this complex processing from causing a bottleneck in the

HTTP request/response cycle during API requests, and thus to ensure scalabil-

ity of the application, Honeycomb employs a system of asynchronous processes.

These asynchronous processes use Celery [6] as an asynchronous task manager

and Redis [21] as a message queue. Thus, the Honeycomb API accepts raw

data through its endpoints, stores it in a PostgreSQL [18] database, adds a

message to Redis, and returns a response to the client immediately. At some

point after the response is returned (usually almost immediately, but poten-

tially some larger amount of time), Celery dequeues the message from Redis

and invokes the appropriate asynchronous task. The task processes the raw

data and stores the resulting data in the database. The two main asynchronous

tasks are described below.

Asynchronous Fingerprint Processing Honeycomb’s API supports the

uploading of fingerprints with multiple signal strength measurements for each

Wi-Fi access point. The purpose for this is to gather multiple signal strength

27

measurements over time in order to avoid abnormally large or small instan-

taneous values. This raw data is stored as-is, by the API endpoint. The

asynchronous process then calculates the mean of the measurements [25] and

stores those in the database as well. It is against these processed values that

the user tracks are compared.

Asynchronous User Track Processing When Honeycomb’s API receives

a user track, it stores the data as-is in the database. The asynchronous task

then performs the Euclidean distance algorithm (see section 2.4) against the

user track and the currently active fingerprint, and stores the result in the

database. When a site administrator views a user track, this calculation has

already been performed, and can thus be rendered efficiently.

4.2 Mobile Application

Honeycomb’s training phase is implemented as an Android application

in the Java programming language. Upon first opening the application, the site

administrator is prompted to log in with their Honeycomb credentials. The

mobile application then makes use of the Honeycomb token API endpoint, and

exchanges the supplied credentials for a token, which is cached locally. It then

immediately queries the location endpoint and presents the administrator with

a list of administered locations so that they can choose which location they

are about to fingerprint.

Once the administrator is logged in and a location is chosen, they are

28

presented with a form in which to input a list of BSSIDs of Wi-Fi access points

to poll for during each fingerprint and a length of time to poll. Then, the ad-

ministrator must physically locate themselves at each of the desired polling

points. For each point, the administrator is prompted to input a description

of the point for later identification. The mobile app then performs the re-

quested polling, and the administrator can move on to the next point. Once a

fingerprint session is complete, the application uploads the full session to the

fingerprint session API endpoint, along with the administrator authentication

token and the site identifier provided by the location endpoint. At this point,

the training phase is complete. At any point in the future, the administrator

can perform the entire process again in order to create an updated fingerprint

session.

4.3 BumbleBee plugin

As stated earlier, in order to prove Honeycomb’s viability as a location

estimation product, we employed BumbleBee as a user track gathering mecha-

nism. We leveraged BumbleBee’s plugin architecture, and wrote a Honeycomb

specific plugin for uploading user tracks. Like the Honeycomb mobile app,

this plugin prompts the administrator for their Honeycomb credentials and

exchanges these credentials for a token. It then uses this token to gather the

administrator’s locations and prompts them to select the location for which

they are gathering user tracks. It then uploads user tracks in bulk to the

Honeycomb API, where Honeycomb can then process the data.

29

Chapter 5

Testing and Results

In order to test the effectiveness of Honeycomb as an indoor location

estimation tool, we ran a series of test variants in a single location and mapped

out the results for comparison. In this section we present the testing setup

and the results.

5.1 Testing Setup

A map of our location can be seen in Figure 5.1. This space is roughly

24 feet wide by 42 feet long for a total of approximately 1000 square feet. The

dotted line in the figure represents our actual route through the space, which

we repeated for each test variant. The shaded areas and dark lines are walls

or other inaccessible areas in the actual location, although they could just as

easily represent shelving or other displays in the grocery store scenario. The

solid black dots are our fingerprint locations.

We employed six Wi-Fi access points of various makes and models for

our testing 1. We chose these access points because they are popular brands

1Linksys WRT54GL, Linksys WRT600N, Linksys WRT54G2, Netgear WNR2000, and
two Netgear WGR614s

30

which can be found in wide use today, and thus represent a real world scenario.

Our mobile device, both for fingerprinting and user track collection was a

Samsung Galaxy S5.

Unlike much of the location estimation research in this area, we did

not make a regularly spaced grid of fingerprints, choosing instead to place

fingerprints only at notable locations in the space. This does decrease precision

slightly, but also makes the fingerprinting process less painful, which is an

important factor in adoption in a real world deployment. However, even with

fingerprints only at notable locations, a sufficient density of fingerprints will

still provide an adequate level of precision for our intended scenarios. In our

tests, we placed 10 fingerprints in a 1000 square foot space, which is roughly

one fingerprint for every 10 square feet. In the scenarios that we described in

chapter 1, we believe that would be adequate precision.

5.2 Test Variants

While there are many possible variables that could be tested, from Wi-

Fi access point signal reliability to individual mobile phone capabilities, the

two main variables that are most relevant to viability of Honeycomb are the

number of access points in the space and the length of the poll time for each

fingerprint.

The importance of the number of access points in the space is obvious.

We make an assumption in our tests that a single access point, or even two or

three access points, is simply not enough to get a reliable estimation. There-

31

Figure 5.1: Map of location, with fingerprint points and walking path

fore, we introduced two major test variants, one with four access points and

one with six.

The less obvious, but potentially more crucial variable is the length

of time spent polling each fingerprint location. As described in chapter 4,

Honeycomb is capable of taking multiple signal strength measurements for

each fingerprint location so as to avoid incorrect measurements due to abnor-

mally large or small instantaneous values. The question, then, is what amount

of time spent polling a single fingerprint is enough to get an accurate mea-

surement. Therefore, we introduced three test variants for polling time: 10

32

seconds, 20 seconds, and 30 seconds.

Thus, with these two variables and their variants, we have six indepen-

dent tests: four and six access points, each with polling times of 10, 20, and

30 seconds. For the four access point tests, we placed an access point at each

of the four corners of the space, and for the six access point tests, we placed

two additional access points at the mid point of the longer walls on either side.

For each test we independently fingerprinted the entire space, and then walked

the route mapped out in Figure 5.1.

5.3 Results

Figures 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 represent the results of each of our

test variants. In these maps, we have placed a large red dot at the fingerprint

which represents the first estimation of the user’s location. From there, we

have placed numbered red lines to each of the subsequent fingerprint locations

estimated to be the user’s location. It is important to note that these lines are

not intended to represent the user’s actual movement through the space, but

are simply handy references for showing general movement from one fingerprint

area to another. As such, these lines are free to move through walls, and can

be either straight or curved, depending on need. It is also important to note

that the number of lines in each map can vary significantly, due to the fact

that the same fingerprint location can be considered the user’s location at

multiple successive timestamps, and we have only represented instances of

location change in these result maps.

33

Figure 5.2: Results with four ac-
cess points and a ten second polling
time

Figure 5.3: Results with six ac-
cess points and a ten second polling
time

Figure 5.4: Results with four access
points and a twenty second polling
time

Figure 5.5: Results with six access
points and a twenty second polling
time

34

Figure 5.6: Results with four access
points and a thirty second polling
time

Figure 5.7: Results with six access
points and a thirty second polling
time

Figures 5.2 and 5.3 represent the two test variants with 10 second

polling times. These variants are clearly quite susceptible to getting lost,

particularly in the upper left quadrant of the map. Interestingly, both vari-

ants do seem to recover from their failure points, particularly in the upper

right quadrant of the map. However, regardless of their recovery ability, both

of these variants have significant issues with actual user locations and are not

particularly useful as location estimators.

Figures 5.4 and 5.5 represent the 20 second polling time variants. These

are quite clearly far more accurate than the 10 second polling time variants. In

Figure 5.4, Honeycomb had a bit of trouble toward the upper middle section

of the map at lines 6 and 7, but quickly recovered for the duration. Similarly,

35

Figure 5.5 has an extra stopover at a fingerprint, represented by line 9, but also

quickly recovered. It also has an aberration in which in line 13 goes straight

to the end point, skipping a fingerprint in the middle of the map.

Figure 5.6 and 5.7 represent the 30 second polling time variants. Like

the 20 second variants, both of these maps skip fingerprints a couple of times,

but quickly recover and generally follow the correct movement trend.

36

Chapter 6

Conclusions and Future Work

While our results do not show perfect location tracking of a user, we

believe that they do make it clear that Honeycomb is a viable product for

indoor location estimation, provided an adequate number of access points and

fingerprint polling time. However, in performing our tests we discovered that

fingerprinting itself can be a painful process, particularly with longer poll

times. One way to alleviate this pain is to decrease fingerprint density in such

a way that supports only the minimum viable precision necessary at a given

location. Thus, fingerprint density becomes a knob that one can turn to fine

tune an individual deployment of Honeycomb, and must be decided on a case

by case basis.

While this paper has proven Honeycomb’s effectiveness as a product,

there are still many things that must be done in order to make Honeycomb

market ready. Most importantly, the user interfaces need significant work,

particularly the web interface for viewing a user track, which is currently a

table of timestamps and fingerprints. The result maps in this paper were

created manually, but a programmatic rendering of these maps in the web

interface would be preferable.

37

Additionally, the web interface currently only has the ability to view

each user track individually. In order to make this information useful, an

aggregating and reporting function is needed which can provide information

about trends in user tracks rather than data about any specific track. With

this information, a site administrator could more effectively manage their space

in order to maximize visibility and flow.

However, despite shortcomings in user interfaces, we believe that Hon-

eycomb’s current incarnation represents the backbone of a viable location

estimation product, and that with only relatively minor adjustments could

potentially be employed in real world scenarios.

38

Bibliography

[1] Paramvir Bahl and Venkata N Padmanabhan. RADAR: An in-building

RF-based user location and tracking system. In INFOCOM 2000. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communi-

cations Societies. Proceedings. IEEE, volume 2, pages 775–784. Ieee,

2000.

[2] Paramvir Bahl, Venkata N Padmanabhan, and Anand Balachandran. En-

hancements to the RADAR user location and tracking system. Technical

report, technical report, Microsoft Research, 2000.

[3] Rashmi Bajaj, Samantha Lalinda Ranaweera, and Dharma P Agrawal.

GPS: location-tracking technology. Computer, 35(4):92–94, 2002.

[4] Gaddi Blumrosen, Bracha Hod, Tal Anker, Danny Dolev, and Boris Ru-

binsky. Continuous close-proximity rssi-based tracking in wireless sensor

networks. In Body Sensor Networks (BSN), 2010 International Confer-

ence on, pages 234–239. IEEE, 2010.

[5] Bootstrap HTML, CSS, and JS framework. http://getbootstrap.

com/.

[6] Celery: Distributed Task Queue. http://www.celeryproject.org/.

39

[7] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram

Razavai, and Micaela Wiseman. Indoor location sensing using geo-

magnetism. In Proceedings of the 9th international conference on Mobile

systems, applications, and services, pages 141–154. ACM, 2011.

[8] Django: The web framework for perfectionists with deadlines. http:

//www.djangoproject.com/.

[9] Prabal K Dutta and David E Culler. System software techniques for low-

power operation in wireless sensor networks. In Proceedings of the 2005

IEEE/ACM International conference on Computer-aided design, pages

925–932. IEEE Computer Society, 2005.

[10] Roy T Fielding and Richard N Taylor. Principled design of the modern

web architecture. ACM Transactions on Internet Technology (TOIT),

2(2):115–150, 2002.

[11] S Hotta, Y Hada, and Y Yaginuma. A robust room-level localization

method based on transition probability for indoor environments. In In-

door Positioning and Indoor Navigation (IPIN), 2012 International Con-

ference on, pages 1–8. IEEE, 2012.

[12] IEEE 802.1: Wireless LANs. http://standards.ieee.org/about/get/

802/802.11.html.

[13] Seigo Ito and Nobuo Kawaguchi. Bayesian based location estimation sys-

tem using wireless LAN. In Pervasive Computing and Communications

40

Workshops, 2005. PerCom 2005 Workshops. Third IEEE International

Conference on, pages 273–278. IEEE, 2005.

[14] JSON. http://json.org/.

[15] Nobuo Kawaguchi. WiFi location information system for both indoors

and outdoors. In Distributed Computing, Artificial Intelligence, Bioin-

formatics, Soft Computing, and Ambient Assisted Living, pages 638–645.

Springer, 2009.

[16] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of

wireless indoor positioning techniques and systems. Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

37(6):1067–1080, 2007.

[17] Tomotaka Nagaosa and Hironori Iguchi. Performance evaluation of a

Wireless LAN positioning system using spot information. In ITS Telecom-

munications (ITST), 2012 12th International Conference on, pages 512–

516. IEEE, 2012.

[18] PostgreSQL: The world’s most advanced open source database. http:

//www.postgresql.org/.

[19] Nissanka Bodhi Priyantha. The cricket indoor location system. PhD

thesis, Massachusetts Institute of Technology, 2005.

[20] Michael Quan, Eduardo Navarro, and Benjamin Peuker. Wi-Fi Localiza-

tion Using RSSI Fingerprinting. 2010.

41

[21] Redis key-value cache. http://redis.io/.

[22] Vinay Seshadri, Gergely V Zaruba, and Manfred Huber. A bayesian sam-

pling approach to in-door localization of wireless devices using received

signal strength indication. In Pervasive Computing and Communica-

tions, 2005. PerCom 2005. Third IEEE International Conference on,

pages 75–84. IEEE, 2005.

[23] Paurav Shukla and Barry J Babin. Effects of consumer psychographics

and store characteristics in influencing shopping value and store switching.

Journal of Consumer Behaviour, 12(3):194–203, 2013.

[24] Edip Toplan and Cem Ersoy. RFID based indoor location determination

for elderly tracking. In Signal Processing and Communications Applica-

tions Conference (SIU), 2012 20th, pages 1–4. IEEE, 2012.

[25] Daniel Turner, Stefan Savage, and Alex C Snoeren. On the empirical

performance of self-calibrating wifi location systems. In Local Computer

Networks (LCN), 2011 IEEE 36th Conference on, pages 76–84. IEEE,

2011.

[26] Webfaction: Hosting for developers. http://www.webfaction.com/.

[27] Jie Xiong and Kyle Jamieson. Towards fine-grained radio-based indoor

location. In Proceedings of the Twelfth Workshop on Mobile Computing

Systems & Applications, page 13. ACM, 2012.

42

[28] Jie Xiong and Kyle Jamieson. ArrayTrack: A Fine-Grained Indoor Lo-

cation System. In NSDI, pages 71–84, 2013.

[29] Rong Xu, Zhiyuan Li, Cheng Wang, and Peifeng Ni. Impact of data com-

pression on energy consumption of wireless-networked handheld devices.

In Distributed Computing Systems, 2003. Proceedings. 23rd International

Conference on, pages 302–311. IEEE, 2003.

43

