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The classical optimal investment models are cast in a finite or infinite

horizon setting, assuming an a priori choice of a market model (or a family

of models) as well as a priori choice of a utility function of terminal wealth

and/or intermediate consumption. Once these choices are made, namely, the

horizon, the model and the risk preferences, stochastic optimization technique

yield the maximal expected utility (value function) and the optimal policies

wither through the Hamilton-Jacobi-Bellman equation in Makovian models

or, more generally, via duality in semi-martingale models. A fundamental

property of the solution is time-consistency, which follows from the Dynamic

Programming Principle (DPP). This principle provides the intuitively pleasing

interpretation of the value function as the intermediate (indirect) utility. It

also states that the value function is a martingale along the optimal wealth

trajectory and a super-martingale along every admissible one. These prop-

erties provide a time-consistent framework of the solutions, which “pastes”
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naturally one investment period to the next.

Despite its mathematical sophistication, the classical expected utility frame-

work cannot accommodate model revision, nor horizon flexibility nor adapta-

tion of risk preferences, if one desires to retain time-consistency. Indeed, the

classical formulation is by nature “backwards” in time and, thus, it does not

allow any “forward in time” changes. For example, on-line learning, which

typically occurs in a non-anticipated way, cannot be implemented in the clas-

sical setting, simply because the latter evolves backwards while the former

progresses forward in time.

To alleviate some of these limitations while, at the same time, preserving the

time-consistency property, Musiela and Zariphopoulou proposed an alterna-

tive criterion, the so-called forward performance process. This process satisfies

the DPP forward in time, and generalizes the classical expected utility. For

a large family of cases, forward performance processes have been explicitly

constructed for general Ito-diffusion markets. While there has already been

substantial mathematical work on this criterion, concrete applications to ap-

plied portfolio management are lacking.

In this thesis, the aim is to focus on applied aspects of the forward performance

approach and build meaningful connections with practical portfolio manage-

ment. The following topics are being studied.

Chapter 2 starts with providing an intuitive characterization of the underlying

performance measure and the associated risk tolerance process, which are the

most fundamental ingredients of the forward approach. It also provides a novel
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decomposition of the initial condition and, in turn, its inter-temporal preser-

vation as the market evolves. The main steps involve a system of stochastic

differential equations modeling various stochastic sensitivities and risk metrics.

Chapter 3 focuses on the applications of the above results to lifecycle portfolio

management. Investors are firstly classified by their individual risk preference

generating measures and, in turn, mapped to different groups that are consis-

tent with the popular practice of age-based de-leveraging. The inverse problem

is also studied, namely, how to infer the individual investor-type measure from

observed investment behavior.

Chapter 4 provides applications of the forward performance to the classical

problem of mean-variance analysis. It examines how sequential investment

periods can be “pasted together” in a time-consistent manner from one eval-

uation period to the next. This is done by mapping the mean-variance to

a family of forward quadratic performances with appropriate stochastic and

path-dependent coefficients. Quantitative comparisons with the classical ap-

proach are provided for a class of market settings, which demonstrate the

superiority and flexibility of the forward approach.
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Chapter 1

Introduction

Since the seminal work of Samuelson (1969) and Merton (1971), the

theory of stochastic control has been extensively applied to solve problems in

dynamic portfolio management in both discrete and continuous-time settings.

The fundamental ingredients of these problems are the trading horizon (finite

or infinite), the market model (or a family of models) and a utility functional

(from terminal wealth and/or intermediate consumption). The market mod-

els can be quite complex allowing, for example, for multi-correlated stochastic

factors, filtering, “hidden” processes, jumps, and other features (see, for ex-

ample, Kim and Omberg (1996); Liu (2007); Watcher (2002); Brandt et al.

(2005); Ait-Sahalia et al. (2009)). Such models have been also extended to

accommodate Knightian uncertainty (see, for example, Maenhout (2005)).

The associated stochastic optimization problems are solved either via the

Hamilton-Jacobi-Bellman equation or the duality approach for general semi-

martingale markets. A fundamental property of the optimal solution (the so-

called value function) is that it satisfies the Dynamic Programming Principle

(DPP). This universal result yields that the value function has the semi-group

property across arbitrary trading times and, furthermore, that it can be in-

terpreted as the intermediate utility function. The DPP also implies that the
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value function is a martingale when complied with the optimal wealth process

and a super-martingale along all admissible wealth processes.

Despite the considerable abstract mathematical advances, the expected utility

approach has very little, if any, application to practical portfolio management.

There are various reasons for it. From the one hand, it is very difficult to

estimate the asset returns, a notoriously difficult problem that is independent

of the utility framework.

From the other hand, it is difficult to provide a quantitative assessment of the

utility function itself (see, for example, the old note of Black (1988)). Indeed,

as argued in the latter paper, the concept of utility is to a certain extent elusive

and investors prefer to express their desires and concerns in different metrics.

Additional difficulties for the applicability of expected utility stem from the

fact that the classical framework is, in terms of horizon, model and utility

choice, static. Indeed, once the model, the horizon and the risk preferences are

chosen at the initial time, no further revisions can be made if time-consistency

has to be maintained. This is directly manifested in the DPP, which yields, by

its nature, a backward in time construction. As a result, desirable practical

features, like for example on-line learning, (non-anticipated) rolling horizons,

revision of preferences and adaptation of the market model cannot be made

unless they are incorporated from the beginning within a richer modeling uni-

verse. But even this modeling universe may turn out to be inaccurate, espe-

cially when long-term horizons are considered.

To remedy some of the above difficulties, an alternative criterion, the so-called
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forward performance process was introduced by Musiela and Zariphopoulou

(see, Musiela and Zariphopoulou (2008, 2009, 2010a)). This performance pro-

cess adapts to the incoming market information and provides substantial flex-

ibility in terms of model revision, horizon choice and evolution of risk pref-

erences, while preserving time-consistency at all times. As a matter of fact,

time consistency is its fundamental property, for the forward criterion is being

defined via a “rolling-type” DPP.

This thesis contributes to two distinct directions, theoretical and applied.

Firstly, it provides a novel characterization and interpretation of the “for-

ward performance measure”, which is one of the main modeling ingredients in

the forward approach. This measure models the initial utility datum that the

investor chooses, which can be, for example, the initial value function of the

classical backward problem before model revisions occur, or an estimate of the

overall expected upcoming utility, and others. As it is discussed in Chapter 2,

viable forward solutions are directly related to a bilateral Laplace transform

that involves a specific measure. For example, for risk preferences of power

type, this measure turns out to be a Dirac mass at a point related to the risk

aversion coefficient. Interpreting this measure has been an open question for

the forward approach.

In Chapter 2, a complete characterization of the performance measure is pro-

vided. It is shown that it corresponds to an intuitively pleasing separation of

the initial wealth to distinct fractions and that to each of these components

the investor assigns an “individual” risk tolerance. We argue that this sepa-
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ration is in accordance with the “mental account” framework postulated by

behavioral economists. Once this allocation of risk and deployment of wealth

are specified, the forward problem reduces to a family of smaller problems of

“individual” wealth and risk tolerance. This separation also provides a novel

description of the structure of the risk tolerance process itself. It is shown how

it can be entirely specified component-by-component, as the market moves

and new information becomes available. The mathematical problem amounts

in solving a system of stochastic differential equations related to moments of

underlying quantities.

In Chapter 3, these new results are, in turn, applied to fund management and,

in particular, to target date funds. We use the forward approach to provide

a normative framework for practical investment practices for such financial

instruments. Among others, we show that, only when an investor is strictly

more risk-seeking than a log-utility investor, should he agree with the “glide

path” practice currently adopted by target date funds. Moreover, we look at

the problem in the reversed direction as well. For an observed “glide path”

strategy, we find the forward utility that generates the closest behavior. To

demonstrate the application, we carry out this calibration exercise on the Van-

guard target retirement 2045 fund.

In Chapter 4, the focus is on the application of the forward theory to the

classical mean-variance optimization problem. While this problem has been

extensively solved for the one-period and the dynamic setting, still the latter

is cast within a single pre-specified investment target. Naturally, within the

4



investment horizon, one may view this problem as a dynamic one with a family

of changing targets. However, even in this setting, new information cannot be

incorporated unless it is a priori incorporated in a richer model, which however

may turn out very soon to be inaccurate. Furthermore, the manager may wish

to paste forward (and not backwards) in time sequential investment periods,

when trading horizons are dynamically adjusted. These problems have been

open for quite some time.

It is not hard to see that the fundamental difficulty is to build a time-consistent

model for the forward in time evolution of the process that models the risk-

return trade-off coefficients. We accomplish this by first mapping each mean-

variance optimization problem to a problem of maximizing a path-dependent

quadratic utility. We then build a family of forward criteria that “match”

these quadratic utilities and, in turn, we map this family back to a sequence

of mean-variance problems. We then establish that this construction yields

a sequence of risk-return trade-off coefficients, which takes into account both

the new incoming information as well as the past performance of the optimal

strategies. Finally, we extend these results to the case of model uncertainty

by building the robust analogue of forward mean-variance optimization.

Once the theoretical results are established, we perform a quantitative compar-

ative analysis between the classical and the forward cases. Specifically, we com-

pare the classical scenario, where the new information is being treated by just

“restarting” the mean-variance model, to the forward mean-variance setting

in which the trade-off coefficients are being updated in a time-consistent man-

5



ner, as described above. For the one period case, we demonstrate through a

market model with serially correlated returns, that the forward mean-variance

approach strictly dominates the classical one in terms of long-term Sharpe ra-

tio. Similar results are also obtained for the dynamic case. Furthermore, we

demonstrate that in a setting where the true model cannot be observed, the

optimal strategy of the classical single-target multi-period setting is outper-

formed by the multi-period forward approach. Finally, we provide numerical

examples for the case of forward mean-variance optimization in the presence

of model ambiguity.
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Chapter 2

The forward performance criterion

2.1 Introduction

Assume the market we trade consists of K risky assets S1, S2 . . . , SK ,

with dynamics governed by the SDE system,

dSk(t) = Sk(t)
(
µk(t)dt+

K∑
j=1

σkj(t)dWj(t)
)
, k = 1, 2, . . . , K, (2.1)

and one risk-free asset S0, with short rate r(t), i.e.,

dS0(t) = r(t)S0(t)dt. (2.2)

The parameters µk(t), σkj(t), r(t) are stochastic processes adapted to the fil-

tration generated by the Brownian motion W (t).

Let πk(t) denote the amount of wealth invested in Sk at time t, and X
π
(t) =

e−
∫ t
0 r(s)dsXπ(t) the (risk-free rate) discounted wealth process under the strat-

egy π. Assume that πk(t), k = 1, . . . , K satisfies the standard assumption of

being square-integrable and self-financing. Then Xπ(t) evolves according to

the controlled process

dX
π
(t) =

( K∑
k=1

µk(t)πk(t)
)
dt+

K∑
k=1

(
πk(t)

K∑
j=1

σkj(t)dWj(t)
)

7



In the classical optimal portfolio problem, we prespecify an investment horizon

[0, T ], and assume a utility function U(x) which evaluates Xπ(T ). Then one

solves the following optimal control problem by applying backward in time the

dynamic programming principle

sup
π∈A

E[U(Xπ(T ))],

where A denotes the set of all admissible policies

A = {π : self-financing with π(t) ∈ Ft and E(

∫ t

0

|σ(s)π(s)|2ds) <∞, t > 0}.

While it seems a reasonable formulation at short horizons (i.e. for T small),

it becomes unrealistic and impossible to implement for large T . Indeed, note

that due to frequently arising model decay, the model given by (4.60) is pre-

determined at t = 0, and thus, it is not subject to change according to the

theory. What if, however, at a later time t > 0, new information suggests

that the model no longer accurately approximates the observed dynamics of

the market and needs to be updated? If the fund manager ignores this new

information and keeps using the same model, his portfolio strategy is no longer

optimal because of model mis-specification. On the other hand, if he updates

his model based on new information, then his actions at s < t and s > t are

actually derived from two different distributional assumptions. The so call

“inconsistency” issue would arise and erode his performance.

Furthermore, the assumption that the horizon T is known at t = 0 is also

problematic. Consider, for example, the following statements: “I will keep

investing until my total wealth exceeds $1 million”,. “As long as my fund

8



keeps outperforming the market, I will stay in this business”, or “I plan to get

out of the market before getting hit by the next financial crisis”. In all the

above situations, the investors do not have a clear idea of T when investment

starts.

The above issues motivate us to consider an alternative framework, that would

allow for more flexibility with regards to both model and horizon revisions. For

example, one could subdivide the entire horizon [0, T ] into small intervals, say

0 < t1 < . . . < tn = T , and solve a sequence of “shorter horizon” problems

sup
πt, t∈[ti,ti+1]

EPi
ti [Ui(X

π(ti+1))].

The investor then has the flexibility and ability to re-estimate model at each

ti, i < n, and solve the raw expected utility problem in (ti, ti+1]. The fun-

damental question is then how to properly define a sequence of appropriate

utility functions Ui(·), such that the aforementioned “contradictory behavior”

would not arise.

Musiela and Zariphopoulou (2008, 2009, 2010a) proposed such a dynamic

utility theory, the so called “forward performance”. In the limiting case, as

∆t = ti+1 − ti → 0. We provide the definition next.

Definition 2.1.1. An Ft-adapted process Ut(x) is a forward performance pro-

cess if, for t ≥ 0 and x ∈ R:

i) the mapping x→ Ut(x) is strictly concave and strictly increasing,

ii) for each admissible portfolio strategy π, E[U(Xπ
t )+] <∞, and

E[Us(X
π
s )|Ft] ≤ Ut(X

π
t ), s ≥ t,

9



iii) there exists an admissible strategy π∗, for which,

E[Us(X
π∗

s )|Ft] = Ut(X
π∗

t ), s ≥ t.

Conditions ii) and iii) resemble the dynamic programming principle

(DPP), in that, for any s ≥ t > 0,

Ut(x) = max
π∈A

E[Us(X
π
s )|Xt = x]. (2.3)

This condition, so called “self-generating”, was used in Zitkovic (2009) to pro-

vide an alternative characterization of forward preferences. Here Us(x) plays

the role of a utility function at horizon s, while Ut(x) plays the role of “value

function”, derived from maximizing the terminal utility.

The main difference between the above construction and the classical frame-

work is that, the latter is solved backward in time. This requires the specifi-

cation of a terminal utility function and a stochastic model that describes the

asset return distributions for the entire investment horizon. Here, however,

the situation is reversed. The investor specifies an “initial utility” U0(x), after

which the utility process as well as the optimal strategy are solved forward

in time. More specifically, we are facing now the inverse problem posed by

equation (2.3). Where Ut(x) is given, and we look for Us(x) such that (2.3) is

satisfied.

Musiela and Zariphopoulou (2010b) provided a concrete mathematical charac-

terization of forward performance processes defined above. Let σ(t) = {σij(t)}

denote the volatility matrix process, and define the market price of risk

λ(t) = (σ(t)T )+
(
µ(t)− r(t)1

)
.

10



Here the matrix (σ(t)T )+ is the Moore-Penrose pseudo-inverse of the matrix

σ(t)T .

Assume that the utility process U(x, t) admits the Ito-decomposition

dU(x, t) = b(x, t)dt+ a(x, t) · dW (t),

where both b(x, t) and a(x, t) are Ft-progressively measurable, d-dimensional

and continuously differentiable in the spatial argument processes. Then, it was

shown that U(x, t) is a forward performance process if it satisfies the stochastic

partial differential equation (SPDE),

dU(x, t) =
1

2

|Ux(x, t)λ(t) + σ(t)σ(t)+ax(x, t)|2

Uxx(x, t)
dt+ a(x, t)dW (t). (2.4)

In this thesis, we throughout assume that a(x, t) ≡ 0. We will call this the

“zero-volatility” case. General solutions for a(x, t) 6= 0 are currently being

investigated by several authors; see existing works Nadtochiy and Tehranchi

(2015), Nadtochiy and Zariphopoulou (2014). The above equation simplifies

to the following random PDE

Ut(x, t) =
1

2
|λ(t)|2Ux(x, t)

2

Uxx(x, t)
. (2.5)

and was studied in detail by Musiela and Zariphopoulou (2010a). It turns out

that the performance process U(x, t) can be represented as the compilation of

a stochastic market related input

A(t) =

∫ t

0

|λ(s)|2ds, (2.6)
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which summarizes the cumulative investment opportunity up to time t, and a

investor-specific differential input u(x, t), which is a deterministic function of

space and time, solving the PDE,

ut =
1

2

u2
x

uxx
.

Then U(x, t) is obtained as

U(x, t) = u(x,A(t)).

The complete construction of the function u(x, t) can be found in Proposi-

tions 14, 15, 19 of Musiela and Zariphopoulou (2010a). Below, we provide for

the reader’s convenience the main steps of the analysis. To solve for u(x, t),

let I(x, t) = u(−1)(x, t), where u
(−1)
x denote the space inverse of ux(x, t), and

let h(x, t) = I(e−x, t). It can be verified that h solves the (backward) heat

equation,

ht +
1

2
hxx = 0. (2.7)

So far, the problem of constructing zero-volatility forward performance process

has been reduced to solving the backward heat equation (2.7). After the

function h is obtained, u(x, t) can be obtained as

u(x, t) = −1

2

∫ t

0

e−h
(−1)(x,s)+ s

2hx(h
(−1)(x, s), s)ds+

∫ x

0

e−h
(−1)(z,0)dz (2.8)

Next, we define the risk tolerance function,

r(x, t) := − ux(x, t)

uxx(x, t)
, (2.9)
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and the corresponding risk tolerance process

R(t) = r(X(t), A(t)),

with A(t) as in (2.6). We are now ready for the following main result.

Proposition 2.1.2. Let the performance process U(x, t) = u(x,At), with

At =
∫ t

0
|λ(s)|2ds and u(x, t) given by (2.8), and assume that h(x, t) solves

the backward heat equation (2.7). Then U(x, t) is a forward performance pro-

cess (in terms of definition 2.1.1), and the optimal portfolio strategy π∗(t) and

optimal wealth process X∗(t) under U(x, t) are given by,

X∗(t) = h(h(−1)(x, 0) + A(t) +M(t), A(t)), (2.10)

R∗(t) = hx(h
(−1)(X∗(t), A(t)), A(t)),

= hx(h
(−1)(x, 0) + A(t) +M(t), A(t))

(2.11)

and
π∗(t) = R∗(t)σ(t)+λ(t)

= hx(h
(−1)(x, 0) + A(t) +M(t), A(t))σ(t)+λ(t),

(2.12)

where Mt =
∫ t

0
λ(s)dW (s).

From the above results, one can see that all quantities may be con-

structed once the function h that solves (2.7) is specified. The classical results

of Widder (1975) show that positive solutions of (2.7) can be represented as a

bilateral transform of a positive finite Borel measure. Let us define,

B+(R) =
{
ν ∈ B(R) : ∀B ∈ B, ν(B) ≥ 0 and

∫
R
eyxν(dy) <∞, x ∈ R.

}
We reproduce Proposition 9 of Musiela and Zariphopoulou (2010a) as below
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Proposition 2.1.3. Let ν ∈ B+(R). Then the function h(x, t) defined by

h(x, t) =

∫
R

eyx−
1
2
y2t − 1

y
ν(dy) + C (2.13)

is a strictly increasing solution to (2.7).

To demonstrate the use of results obtained so far, we provide two ex-

amples in which we show how to construct u(x, t) based on specific choices of

the measure ν.

Example 1. Assume that the measure ν is given by

ν = γδ{0}.

Here γ is a positive constant and δ{0} is a Dirac function with point mass at

0. Then,

h(x, t) = γx, h(−1)(x, t) =
1

γ
x.

By equation (2.8), we obtain the forward exponential solution

u(x, t) = −1

2

1

γ

∫ t

0

e−
1
γ
x+ s

2 +

∫ x

0

e−
1
γ
zdz = γ(1− e−

1
γ
x+ t

2 ).

By (2.12), the optimal strategy is given by

π∗(t) = γσ+(t)λ(t).

Then the forward process is given by

U(x, t) = u(x,A(t)) = γ(1− e−
1
γ
x+ 1

2

∫ t
0 |λ(s)|2ds).
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While the above criterion and strategy resemble the analogous classical expo-

nential quantities, there are fundamental differences between the classical and

the forward cases. Indeed, the investment horizon is not prespecified. The

model dynamics, σ(t) and λ(t), are not prechosen either, as they are taken to

be arbitrary Ft-adapted processes.

Example 2. The measure ν is given by

ν = αδ{α} with α 6= 0, 1, δ is the Dirac function .

By (2.17) and (2.8), we obtain

h(x, t) = eαx−
1
2
α2t.

u(x, t) = −1

2

∫ t

0

e−
1
2
αs− 1

α
lnx+ s

2ds+

∫ x

0

e−
1
2
αt− 1

α
ln zdz

=
α

α− 1
(e

1−α
2
t − 1)x1− 1

α ,

and

π∗(t) = αX∗(t)σ+(t)λ(t).

The forward process is given by

U(x, t) =
α

α− 1
(e

1−α
2

∫ t
0 |λ(s)|2ds − 1)x1− 1

α .

Again, U(x, t) and π∗(t) resemble the classical quantities of the power case.

One can similar show that the case ν = δ{1} corresponds to forward log util-

ity. For more example, see Musiela and Zariphopoulou (2010a). Several au-

thors have expanded the scope to study forward utility beyond CRRA or

CARA types. Geng and Zariphopoulou (2017) showed that for a general time-

monotone forward utility, the spatial and temporal limit of the relative risk
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tolerance function are related to the right and left boundaries of the support of

ν. Also, Zariphopoulou and Zhou (2009) studied a particular class of forward

utility functions, with time-dependent but asymptotically linear risk tolerance.

While in the existing works, there are concrete mathematical results, the in-

tuition backing the underlying measure ν, which is the defining element in the

entire construction, has not been developed. We contribute to this next. We

first provide a new interpretation of the nature of forward performance pro-

cess. The optimal behavior is subsequently studied in detail in section 2.3. In

section 2.4, we describe computational methods to calculate various quantities

of interest for the fund manager, and we conclude in section 2.5.

2.2 Interpreting the performance generating measure

In this section we start our analysis by providing an intuitive explana-

tion of the exact nature of forward investing, which is not immediately clear

from the closed form solution given in Proposition 2.1.2 alone. We will show

that a forward performance process can be thought of as a “static” combina-

tion of simpler performance processes. This representation is similar to the

mental account framework postulated by behavioral portfolio theorists.

This new interpretation plays a fundamental role here as it will serve as the

basis for our study of the relative risk tolerance process in section 2.3, as well

as the time series property of the optimal allocation strategy that we propose

in chapter 3.
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2.2.1 Model dynamics

To simplify the notation and exposition, and present the main idea

more clearly, we work for now with the log-normal dynamics in (4.60) and

(2.2), with a single risky asset

dS(t) = µS(t)dt+ σS(t)dW (t).

We also assume that the interest rate is zero. As we will comment later on, the

assumptions are innocuous and generalizations to multiple assets, stochastic

parameters and non-zero risk-free rate are straightforward, albeit tedious.

We have seen from the last section that the utility process is determined by

the a positive Borel measure ν, normally,

h(x, t) =

∫
R

eyx−
1
2
y2t − 1

y
ν(dy) + C, (2.14)

where C is an immaterial constant. However, the forward utilities derived

from the above includes many subcategories (see Proposition 9 of Musiela

and Zariphopoulou (2010a) for a comprehensive classification), making it very

difficult to derive any general result. We therefore restrict the scope of our

analysis by assuming that the measure ν is not concentrated at or near zero

(this excludes for instance, the exponential utility). For this, we introduce the

following assumption. More general cases can be solved by similar arguments.

Assumption 2.2.1. The measure ν satisfies
∫∞

0+
1
y
ν(dy) <∞,

∫ 0−

−∞
1
y
ν(dy) <∞

and ν({0}) = 0.
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Under this assumption, the function h can be rewritten as

h(x, t) =

∫
R

eyx−
1
2
y2t

y
ν(dy) + (C −

∫
R

ν(dy)

y
)

∫
R
eyx−

1
2
y2tδ{0}(dy)

=

∫
R
eyx−

1
2
y2t
(ν(dy)

y
+ (C −

∫
R

ν(dy)

y
)δ{0}(dy)

)
,

(2.15)

where δ{0} is the Dirac delta function with point mass at 0. Next, we make

the re-parameterization,

ν̃(dy) =
ν(dy)

y
+ C̃δ{0}(dy), C̃ = C −

∫
R

ν(dy)

y
. (2.16)

This simplifies (2.15), yielding,

h(x, t) =

∫
R
eyx−

1
2
y2tν̃(dy).

Therefore, given that ν is a positive measure, we deduce that the new measure

ν̃ satisfies

ν̃(dy) ≥ 0 for y > 0 and ν̃(dy) ≤ 0 for y < 0.

Next, we distinguish two cases since, as we will see, they will imply qualita-

tively different optimal portfolios.

If ν̃((−∞, 0)) = 0, then it is easy to show that, for each t ≥ 0,

Range(h(x, t)) = (C̃,∞).

In other words, the corresponding utility function u(x, t) is only defined for

x > C̃. On the other hand, if ν̃((−∞, 0)) < 0 and ν((0,∞)) > 0, then h(x, t)

can be written as,

h(x, t) =

∫ ∞
0+

eyx−
1
2
y2tν̃+(dy)−

∫ ∞
0+

e−yx−
1
2
y2tν̃−(dy),
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where ν̃+(dy) = ν̃(dy) and ν̃−(dy) = −ν̃(−dy) both positive Borel measures

on the positive half axis. In this case we have,

Range(h(x, t)) = (−∞,+∞).

For this case, u(x, t) is defined for all x ∈ R.

With a slight abuse of notation, we still use ν and C to denote ν̃ and C̃ defined

above. The above discussions are summarized below.

Proposition 2.2.2. Under Assumption 2.2.1, and re-parameterizing ν (and

C), the function h(x, t) can be written as,

h(x, t) =

∫
R
eyx−

1
2
y2tν(dy), (2.17)

with ν satisfying ν(dy) ≥ 0 for y > 0 and ν(dy) ≤ 0 for y < 0.

Moreover if C = ν({0}), then,

(i) Range(h) = (C,∞), if ν((−∞, 0)) = 0 and ν((0,∞)) > 0,

(ii) Range(h) = (−∞, C), if ν((−∞, 0)) < 0 and ν((0,∞)) = 0,

(iii) Range(h) = (−∞,+∞), if ν((−∞, 0)) < 0 and ν((0,∞)) > 0.

For the rest of our analysis we only consider cases (i) and (iii), since

case (ii) does not correspond to a practically useful scenario.
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2.2.2 The measure ν satisfies ν((−∞, 0)) = 0.

We first consider the case where ν is only supported on the non-negative

half axis. To see what the measure represents, we recall example 2 where,

ν = δ{α} with α 6= 0, 1.

This results in a CRRA utility with relative risk tolerance α, under which the

investor allocates a constant proportion π̃∗ = µ
σ2α of his wealth to the stock.

Hence the optimal wealth solves,

dX∗(t) = αX∗(t)(λ2dt+ λdW (t)).

Next consider the slight generalization that ν is a linear combination of two

Dirac masses,

ν = a1δ{α1} + a1δ{α1}, (2.18)

and assume, for now, that ai > 0, αi ≥ 0. By representation (2.17), we have

h(x, t) = a1e
α1x− 1

2
α2
1t + a2e

α2x− 1
2
α2
2t. (2.19)

The optimal wealth process is readily obtained following (2.10),

X∗(t) = a1e
α1h(−1)(x,0)+(α1− 1

2
α2
1)A(t)+α1M(t) + a2e

α2h(−1)(x,0)+(α2− 1
2
α2
2)A(t)+α2M(t),

where A(t) =
∫ t

0
λ(s)2ds = λ2t, M(t) =

∫ t
0
λ(t)dW (t) = λW (t).

We then, see that X∗(t) can be written as

X∗(t) = X∗1 (t) +X∗2 (t),
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with

X∗i (t) = Xi(0)e(αi− 1
2
α2
i )A(t)+αiM(t) and Xi(0) = aie

αih
(−1)(x,0)

The processes X∗i (t), i = 1, 2, are then the optimal wealth process of a CRRA

investor, with relative risk tolerance αi, and initial wealth X∗i (0). Hence, we

obtain the following intuitive interpretation of the optimal behavior arising

from the two point measure (2.18). At t = 0, it is as if the investor splits his

initial wealth into X∗1 (0) and X∗2 (0) and puts them into two separate trading

accounts. He then acts as an individual CRRA agent in account i, with risk

tolerance αi, i = 1, 2.

The above analysis is easily generalized and applies to any discrete measure ν.

Simply put, the optimal strategy of a forward performance process is a static

combination of different CRRA strategies. The measure ν describes different

degrees of risk tolerances in the investor’s mind, as well as their respective

weights. Altogether, they determine the types of CRRA subportfolios and the

initial wealth allocated to each one of them. The logic holds in the reversed

direction as well, in that if there are two CRRA investors with relative risk

tolerances α1 and α2, then their optimal portfolios combined can be considered

as the optimal portfolio of a single investor whose preference is described by

(2.18).

The above are summarized in the following theorem.

Theorem 2.2.3 (Separation and Aggregation).

(i) Let X∗(t) denote the optimal wealth process of a forward investor with
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performance generating measure ν. Assume that ν can be written as a sum of

measures,

ν(dy) =
n∑
i=1

νi(dy),

with the support of each νi being a subset of [0,∞). Then X∗(t) =
∑n

i=1X
∗
i (t),

with X∗i (t) being the optimal wealth process of an investor with initial wealth,

Xi(0) =

∫ ∞
0

eyh
(−1)(X(0),0)νi(dy),

and whose performance process is generated by νi.

(ii) Conversely, let X∗i (t), i = 1, 2, . . . , n be the optimal wealth processes of

investors with individual performance generating measures νi. Then, the com-

bined wealth process,

X∗(t) =
n∑
i=1

X∗i (t)

is the optimal wealth process of an investor with initial wealth X(0) =
∑n

i=1 Xi(0),

and performance generating measure,

ν(dy) =
n∑
i=1

eyh
(−1)
i (Xi(0),0)νi(dy).

Proof. See Appendix A.1.

The view that the forward investor manages an individual account for

each risk tolerance included in the support of ν is in striking resemblance to

the behavioral portfolio theory of Shefrin and Statman (2000) and the mental

accounts framework of Das et al. (2010). Therein, the authors postulated

that investors often have many attitudes toward risk, and they consider their
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portfolios as collections of mental accounting subportfolios. The investor acts

as if he cared about the risk and return of each subportfolio individually.

The difference of our work lies in the choice of preference at the subportfolio

level. In Das et al. (2010), the risk of each mental account is perceived as the

probability of not reaching a predetermined target. In contrast, in the forward

approach, the subportfolio risk is evaluated by a single CRRA utility.

2.2.3 The measure ν satisfies ν((−∞, 0)) 6= 0.

Now we consider the case when the support of ν contains both positive

and negative values. In this case, the conclusions in theorem 2.2.3 still hold.

However, the interpretation needs to be modified due to the “negative part”

of ν. Consider the following two-point example,

ν = a1δ{α1} − a2δ{−α2}, (2.20)

here ai, αi ∈ R+. By Theorem 2.2.3 we know that the investor acts as a CRRA

agent for two subportfolios individually. Now, the investor actually borrows

X∗2 (0) dollars from the α2 account, and invest them along with X(0) into the

α1-account, which he then optimizes by maintaining µ
σ2α1 percent invested in

the stock. For the second account which he owes money, he purchases stock

by further borrowing, in the amount of µ
σ2α2 percent of the current debt. The

strategy poses greater downside risk, since the loss from the α2-account is po-

tentially unlimited.
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2.3 The relative risk tolerance process

We have provided a direct and intuitive interpretation of the optimal

investment strategy under forward performance processes for discrete additive

measures. The interpretation has yet another valuable implication. Indeed, if

the forward optimal portfolios is a static combination of CRRA subportfolios,

and because each subportfolio invests a different proportion in the stock, a

change in stock price leads to different changes in the subportfolio wealth,

which in turn changes the overall stock proportion in the combined portfolio.

Therefore, as long as the collection of risk tolerance parameters (along with

their weights) are known, it is possible to describe exactly how the optimal

portfolio strategy π̃∗(t) varies over time. To pursue this idea, next we derive

a system of stochastic differential equations which completely describes the

time-evolution of the relative risk tolerance process (which is essentially the

same as π̃∗ up to a constant multiplicative factor). Such an SDE system

is desirable for two reasons. Firstly, it is essential for a long term portfolio

manager to understand how his wealth is time-diversified. This notion will be

further explored in the next chapter. Secondly, the SDE system provides a

universal computational tool which, as we will show, applies beyond the log-

normal market assumption. For the subsequent analysis, we do not distinguish

the two types of measure ν as we did in the previous section, since the SDE

systems are the same for both cases.

From (2.12), we know that π̃∗(t) = µ
σ2 R̃

∗(t), where R̃∗(t) is the relative risk
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tolerance process at the optimum, defined by

R̃∗(t) =
r(X∗(t), A(t))

X∗(t)
.

Here r(x, t) is the absolute risk tolerance function as defined in (2.9). We can

verify from (2.8) that,

r(x, t) = hx(h
(−1)(x, t), t).

More explicitly, (2.11) and (2.17) imply that,

R̃∗(t) =

∫
R ye

yh(−1)(x,0)+(y− 1
2
y2)A(t)+yM(t)ν(dy)∫

R e
yh(−1)(x,0)+(y− 1

2
y2)A(t)+yM(t)ν(dy)

.

The above solution provides a stochastic description of R̃∗(t), but the depen-

dence of R̃∗ on time is difficult to analyze. For example, we do not know how

does R̃∗(t) changes in behavior if, for example, the dynamics of the volatil-

ity process changes. What is lacking here is an equation that describes the

stochastic evolution of R̃∗(t). We start the analysis by deriving the following

general SDE satisfied by R̃∗(t).

Proposition 2.3.1. The relative risk tolerance process R̃∗(t) satisfies the

stochastic differential equation,

dR̃∗(t) = λR∗(t)r̃x(X
∗(t), A(t))

(
λ(1− R̃∗(t))dt+ dW (t)

)
, (2.21)

with r̃(x, t) = r(x,t)
x

being the relative risk tolerance function.

Proof. See Appendix A.2.
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Still, equation (2.21) is not readily applicable for solving computational

problems as it involves the additional state variable r̃x(X
∗(t), A(t)). To de-

rive a full SDE system for R̃∗(t), we need to figure out all the state variables

involved. From the previous section, we have seen that X∗(t) is a static com-

bination of multiple CRRA subportfolios, and the initial ν specifies all the risk

tolerance parameters along with their relative weights at time 0. At t > 0,

as the wealth level in each subportfolio changes, the distribution of risk tol-

erances will be different from that at time 0. Hence, to fully characterize the

investor’s optimal strategy, it is necessary to describe the dynamics of the en-

tire risk tolerance distribution. We now make the important observation that

R̃∗(t) is exactly the “average risk tolerance” (or the first moment) at t.

Assume that ν is given by (2.18), the two point measure. Then, at each time

t, the investor allocates wealth to two CRRA subportfolios X∗1 (t) and X∗2 (t),

with {
dX∗1 (t) = α1X

∗
1 (t)(λ2dt+ λdW (t)),

dX∗2 (t) = α2X
∗
2 (t)(λ2dt+ λdW (t)).

(2.22)

The amount of wealth allocated to St is then given by

π∗(t) =
µ

σ2
(α1X

∗
1 (t) + α2X

∗
2 (t)).

Hence, the relative risk tolerance process is given by,

R̃∗(t) =
σ2

µ

π∗(t)

X∗(t)
= α1

X∗1 (t)

X∗(t)
+ α2

X∗2 (t)

X∗(t)
.

Then, R̃(t) can be interpreted as the “average α” at t, weighted by their

respective proportion in the entire portfolio. Since the weights sum up to
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one, we can, at least informally, think of them as probabilities, and consider

a hypothetical random variable, denoted by Y (t), such that Y (t) satisfies

Prob(Y (t) = αi) =
X∗i (t)

X∗(t)
, i = 1, 2. With this new notation, R̃∗(t) can be

simply considered as the mean of Y (t).

To rigorously define this random variable Y (t) under a general measure ν, we

work as follows. Define the process

D(t) := h(−1)(X∗(t), A(t)) = h(−1)(x, 0) +M(t) + A(t).

Then, R̃∗(t) can be written as,

R̃∗(t) =

∫
R ye

yD(t)− 1
2
y2A(t)ν(dy)∫

R e
yD(t)− 1

2
y2A(t)ν(dy)

. (2.23)

Let Ωy = supp(ν), and N the collection of all Borel subsets of Ωy. We define

the product measure Py,W,t on the space (Ω× Ωy,Ft ⊗N),

Py,W,t(F ×N) =

∫
F

( ∫
N

Py,ω,t(dy)
)
P(dω),

for each F ∈ Ft and N ∈ N, with the conditional density Py,ω,t = Py,Wt |Ft

given by,

Py,ω,t(dy) =
eyD(t)− 1

2
y2A(t)ν(dy)∫

R e
yD(t)− 1

2
y2A(t)ν(dy)

. (2.24)

Let Y (t) denote the random variable defined by the probability measure Py,W,t

on the product space Ω×Ωy. Then we see that R̃∗(t) is the conditional mean,

R̃∗(t) = E[Y (t)|Ft].

The previous SDE of R̃∗(t) can now be rewritten using the language of Y (t).

To this end, we first notice that,

r(x, t)r̃x(x, t) = r(x, t)
∂

∂x
(
r(x, t)

x
) =

1

x
hxx(h

(−1)(x, t), t)− (r̃(x, t))2.
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Therefore,

R∗(t)r̃x(X
∗(t), A(t)) =

∫
R y

2eyD(t)− 1
2
y2A(t)ν(dy)∫

R e
yD(t)− 1

2
y2A(t)ν(dy)

− (R̃∗(t))2. (2.25)

Note, however, that the right hand side can be written as,

E[(Y (t))2|Ft]− (E[Y (t)|Ft])2,

which is the conditional variance of Y (t).

We summarize the above observations below.

Proposition 2.3.2. Let Y (t) be the random variable defined by the probability

measure Py,W,t. Then,

R̃∗(t) = E[Y (t)|Ft].

Moreover, R̃∗(t) satisfies the SDE,

dR̃∗(t) = λVar(Y (t)|Ft)
(
λ(1− R̃∗(t))dt+ dW (t)

)
. (2.26)

Example 1. Consider again the case, ν = a1δ{α1} + a2δ{α2}. Then

Var(Y |Ft) = (α1 − E[Yt|Ft])(E[Yt|Ft]− α2).

Therefore by Proposition 2.3.2,

dR̃∗(t) = λ(α1 − R̃∗(t))(R̃∗(t)− α2)
(
λ(1− R̃∗(t))dt+ dW (t)

)
.

The above example is special in that R̃∗(t) is completely described by a

single SDE, since a two-outcome distribution is determined by its first moment.
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If, however, ν = a1δ{α1} + a2δ{α2} + a3δ{α3}, then Var(Y |Ft) can no longer be

determined by R̃∗(t) alone. In general, higher moments will be involved to

describe the conditional distribution Py,ω,t, hence a system of SDE’s will be

required to fully characterize the dynamics of R̃∗(t). We work on this in the

sequel.

To generalize Proposition 2.3.2, let h(n)(x, t) denote the n-th order derivative

of h w.r.t. the spatial variable, and define the stochastic process Rn(t),

Rn(t) = h(n)(h(−1)(X∗(t), A(t)), A(t)) =

∫
R
yneyD(t)− 1

2
y2A(t)ν(dy). (2.27)

The following result provides a surprising iterative connection among the pro-

cesses R1(t), R2(t), . . ..

Lemma 2.3.3. For ∀ n ≥ 0, Rn(t) solves the following SDE,

dRn(t) = Rn+1(t)(λ2dt+ λdW (t)). (2.28)

Proof. See Appendix A.2.

Similarly, define the relative counterpart of Rn(t),

R̃n(t) =
Rn(t)

X∗(t)
=
Rn(t)

R0(t)
=

∫
R y

neyD(t)− 1
2
y2A(t)ν(dy)∫

R e
yD(t)− 1

2
y2A(t)ν(dy)

. (2.29)

Using our previous notation of Y (t), we readily deduce that, R̃n(t) coincides

with the n-th moment Y (t), namely,

R̃n(t) = E[(Y (t))n|Ft].
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We have, trivially, the zero-th moment R̃0(t) = 1. Also, by our previous

discussion, the first moment is nothing other than the relative risk tolerance

process R̃∗(t), i.e. R̃1(t) = R̃∗(t). Therefore, the following system for R̃n(t),

n = 0, 1, 2, . . ., is a system that contains R̃∗(t).

Proposition 2.3.4. The process R̃n(t) defined in (2.29) satisfies, for n ≥ 0,

the SDE

dR̃n(t) = λ(R̃n+1(t)− R̃∗(t)R̃n(t))(λ(1− R̃∗(t))dt+ dW (t)). (2.30)

Proof. Assertion (2.30) follows from (2.28) and Ito’s lemma.

Equation (2.30) formulates an SDE system, for n = 0, 1, 2, . . . , satisfied

by the moment processes, required in general to fully characterize the behavior

of R̃∗(t). However, when the conditional distribution Py,ω,t can be character-

ized by finitely many moments, then (2.30) can be reduced into a finite system.

For tractability, we assume that the measure ν is given as a finite sum of Dirac

masses,

ν = a1δ{α1} + a2δ{α2} + . . .+ anδ{αn}. (2.31)

Then the measure Py,ω,t defined in (2.24) is a discrete probability mea-

sure which has the support {α1, α2, . . . , αn}. We now show how to obtain a

closed system including R̃∗(t) with only finitely many equations.

Proposition 2.3.5. Let Y be a discrete random variable with the set of out-

comes {α1, α2, . . . , αn}, and let pi = Prob (Y = αi). Denote by Zn =
∑n

i=1 piα
n
i
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the n-th moment of Y . The following moment equality holds,

Zn+l = q0Zl + q1Zl+1 + . . . qn−1Zl+n−1, for l = 0, 1, . . . (2.32)

where,

qn−k = (−1)k+1
∑

1≤i1<...<ik≤n

αi1αi2 . . . αik . (2.33)

Proof. See Appendix A.2.

Hence, for a discrete distribution with n outcomes, linear combinations

of moments up to order n − 1 can generate all higher order moments. Fur-

thermore, the involved linear relations do not depend on the probabilities pi.

Applying this result to the moment SDE system corresponding to the discrete

measure ν yields the system

dR̃∗(t) = λ(R̃2(t)− (R̃∗(t))2)(λ(1− R̃∗)dt+ dW (t))

dR̃2(t) = λ(R̃3(t)− R̃∗(t)R̃2(t))(λ(1− R̃∗)dt+ dW (t))
...

dR̃n−2(t) = λ(R̃n−1(t)− R̃∗(t)R̃n−2(t))(λ(1− R̃∗)dt+ dW (t))

dR̃n−1(t) = λ(
∑n−1

i=0 qiR̃i(t)− R̃∗(t)R̃n−1(t))(λ(1− R̃∗)dt+ dW (t)).

(2.34)

We summarize the above analysis below.

Proposition 2.3.6. Let R̃(t) = (R̃0(t), R̃1(t), . . . , R̃n−1(t))T denote the mo-

ment vector process corresponding to the measure

ν =
n∑
i=1

aiδ{αi}.
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Then, R̃(t) satisfies the SDE,

dR̃(t) = λ
(
Nα − R̃∗(t)I

)
R̃(t)(λ(1− R̃∗)dt+ dWt), (2.35)

where I is the n× n identity matrix, and Nα is defined by,

Nα =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
q0 q1 . . . qn−2 qn−1


with the qi’s given in (2.33).

Proof. Since Y (t) is a discrete random variable with support {α1, . . . , αn}, the

result follows directly from Proposition 2.3.4 and Lemma 2.3.5.

Example 2. Let n = 3 and ν = a1δ{α1}+a2δ{α2}+a3δ{α3}. Then, from (2.35)

we deduce that the processes R̃∗(t), R̃2(t) satisfy the system,

dR̃∗(t) =λ(R̃2(t)− (R̃∗(t))2)(λ(1− R̃∗)dt+ dW (t))

dR̃2(t) =λ
(
(α1 + α2 + α3 − R̃∗(t))R̃2(t) + α1α2α3

− (α1α2 + α2α3 + α1α3)R̃∗(t)
)
(λ(1− R̃∗)dt+ dW (t)).

(2.36)

Although Proposition 2.35 provides a finite closed SDE system which includes

the process R̃∗(t) that we want to study, SDE’s such as (2.36) are still difficult

to analyze. An alternative approach is to describe the dynamics of R̃∗(t)

through a “factor model”. For the case of a discrete measure ν, we can then
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define the “probability process”,

pi(t) =
αie

αiD(t)− 1
2
α2
iA(t)∑n

i=1 e
αiD(t)− 1

2
α2
iA(t)

, (2.37)

i.e. pi(t) = Prob(Y (t) = αi|Ft). The real meaning of pi(t) is the proportion of

wealth the investor allocates to the CRRA subportfolio with risk tolerance αi.

By the definition of Y (t),

R̃∗(t) = E[Y (t)|Ft] =
n∑
i=1

αipi(t). (2.38)

Thus, if we can find a system of SDE’s satisfied by pi(t), then we have a

complete characterization of the optimal process R̃∗(t).

Corollary 2.3.7. Let p(t) = (p1(t), . . . , pn(t))T denote the vector of probability

processes defined in (2.37). Then, p(t) solves the SDE,

dp(t) = λ
(
Dα − R̃∗(t)I

)
p(t)(λ(1− R̃∗)dt+ dW (t)), (2.39)

with R̃∗(t) =
∑n

i=1 αipi(t), (cf. (2.38)).

Proof. See Appendix A.2.

Example 2 (Con’d) We have

R̃∗(t) = α1p1(t) + α2p2(t) + α3p3(t) = (α1 − α3)p1(t) + (α2 − α3)p2(t) + α3,

with {
dp1(t) = λp1(t)(α1 − R̃∗(t))(λ(1− R̃∗(t))dt+ dW (t))

dp2(t) = λp2(t)(α2 − R̃∗(t))(λ(1− R̃∗(t))dt+ dW (t)).
(2.40)
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2.4 Performance and risk measures

For investment managers who construct portfolios based on forward

performance criteria, it is essential that they are able to obtain estimates of

the risk and return of their portfolios at targeted horizons. We now apply

the tools developed in the previous sections to compute various quantities of

interest to measure performance as well as for risk management purposes.

We recall that the optimal wealth process is given by

X∗(t) =

∫
R
e(h(−1)(x,0)+M(t)+A(t))y−A(t) 1

2
y2ν(dy).

Based on the above, Musiela and Zariphopoulou (2010a) have derived the

cumulative distribution for X∗(t),

F (z) = P (X∗(t) ≤ z) = N

(
h(−1)(z, A(t))− h(−1)(x, 0)− A(t)√

A(t)

)
, (2.41)

where N(·) is the cdf for a standard normal distribution. Thus, various risk

measures can be evaluated by integrating the above distribution with an ob-

jective function G(z),

E[G(X∗(T )] =

∫
R
G(z)dF (z).

For example, to obtain the variance we set G(z) = z2. For conditional value

at risk (CVaR) at the d-th percentiles, we set G(z) = z1{F (z)≤d}.

However, there are several drawbacks that render the explicit approach less

useful. Firstly, evaluating the distribution function requires numerically in-

verting the function h(x, t), which can be expensive as h itself is given as an
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integral w.r.t. to the measure ν. More importantly, equation (2.41) is only

valid under the assumption that market parameters are constant. Further-

more, there is no immediate way to generalize (2.41) if the market price of

risk, λ, is a stochastic process driven by a Brownian motion correlated with

W (t). On the other hand, the SDE system derived in the last section does not

rely on any assumption made about λ, hence it provides a more flexible com-

putational tool. In addition to calculating X∗(t), our approach also enables

various calculations around the relative risk tolerance process R̃∗(t), which is

ignored by most, if not all previous literature in portfolio management.

2.4.1 Calculating performance measures under random parameters

Next we revert to a more general market environment with time varying

parameters. The price of the risky asset follows,

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t),

where µ(t) and σ(t) are stochastic processes, such that the market price of risk

λ(t) = µ(t)
σ(t)

(again the risk-free rate is set at 0) follows the SDE below

dλ(t) = b(λ(t))dt+ a(λ(t))dW λ(t).

Here, a, b are known Lipschtz functions of λ. The instantaneous correlation

between S and λ is given by,

dW (t)dW λ(t) = ρdt,

The optimal wealth then follows,

dX∗(t) = X∗(t)R̃∗(t)
(
(λ(t))2dt+ λ(t)dW (t)

)
.
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Notice that the SDE system (2.30) derived in the last section does not rely on

the assumption that market is log-normal. Hence we still have, for n = 1, 2, . . .,

dR̃n(t) = λ(t)(R̃n+1(t)− R̃∗(t)R̃n(t))(λ(t)(1− R̃∗(t))dt+ dW (t)), (2.42)

with R̃1(t) = R̃∗(t). We therefore have the joint dynamics for X∗(t) and R̃∗(t).

Theorem 2.4.1. The optimal wealth process X∗(t) and the relative risk tol-

erance process R̃∗(t) = R̃1(t) satisfy the SDE,
dX∗(t) = X∗(t)R̃1(t)

(
(λ(t))2dt+ λ(t)dW (t)

)
dR̃n(t) = λ(t)(R̃n+1(t)− R̃∗(t)R̃n(t))(λ(t)(1− R̃∗(t))dt+ dW (t)), n = 1, 2, . . .

dλ(t) = b(λ(t))dt+ a(λ(t))dW λ(t),

(2.43)

where R̃n(t) n ≥ 2, are higher moment processes of the (conditional) risk

tolerance distribution, defined in (2.29).

Note that if one is only interested in evaluating moments of the form

E[G(X∗(T )], then it is more convenient to write SDE system (2.43) in terms of

the absolute risk tolerance process R∗(t). Indeed, recall that equation (2.27)

defined the unnormalized moments Rn(t), which solve the recursive SDE sys-

tem,

dRn(t) = Rn+1(t)
(
(λ(t))2dt+ λ(t)dW (t)

)
.

By definition we have that, R0(t) = X∗(t), R1(t) = R∗(t). Hence, (2.43) can

be rewritten as,{
dRn(t) = Rn+1(t)

(
(λ(t))2dt+ λ(t)dW (t)

)
, n = 0, 2, . . .

dλ(t) = b(λ(t))dt+ a(λ(t))dW λ(t).
(2.44)
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In general, neither (2.43) or (2.44) is applicable for computational pur-

poses as the number of equations is infinite. However, for the case that ν is

a discrete measure (2.31), the moment relation of a discrete distribution can

reduce the infinite system (2.28) to one with finite size. We have shown that

the moment restriction holds for Rn(t),

Rn+l = q0Rl + q1Rl+1 + . . .+ qn−1Rl+n−1 l = 0, 1, . . . ,

where qi’s are given in lemma (2.3.5). Hence, the system (2.44) only contains

n equations. By Feynman Kac’s theorem, the problem of evaluating expecta-

tions of G(X∗(T )) amounts to solving a system of partial differential equations.

Proposition 2.4.2. Let R∗(t) denote the moment vector process

[R0(t), R1(t), . . . , Rn−1(t)]T , and g(r, λ, t) denote the conditional expectation,

g(r, λ, t) = E[G(X∗(T ))|R∗(t) = r, λ(t) = λ].

Assume that ν is a discrete measure given by (2.31). Then, g solves the partial

differential equation,

∂g

∂t
+ λ2

( n−2∑
i=0

ri+1
∂g

∂ri
+ (

n−1∑
i=0

qiri)
∂g

∂rn−1

)
+ b(λ)

∂g

∂λ

+
1

2
λ2

( n−2∑
i=0

n−2∑
j=0

ri+1rj+1
∂2g

∂ri∂rj
+

n−1∑
i=0

qiri

n−2∑
i=0

ri+1
∂2g

∂ri∂rn−1

+ (
n−1∑
i=0

qiri)
2 ∂2g

∂r2
n−1

)
+ ρλa(λ)

( n−2∑
i=0

ri+1
∂2g

∂ri∂λ
+ (

n−1∑
i=0

qiri)
∂2g

∂rn−1∂λ

)
+

1

2
a(λ)2 ∂

2g

∂λ2
= 0.

(2.45)
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with g(r, λ, T ) = G(r0).

Proof. If the measure ν is given by (2.31), then (2.44) reduces to

dR∗(t) = NαR
∗(t)
(
λ(t)2dt+ λ(t)dW (t)

)
,

where Nα is defined in Proposition 2.3.6. The rest follows from the Feynman

Kac’s formula.

Example Let ν = a1δ{α1} + a2δ{α2}, then q0 = −α1α2, q1 = α1 + α2 and

R∗ = [R0(t), R1(t)]T solves the SDE system,{
dR0(t) = R1(t)

(
(λ(t))2dt+ λ(t)dW (t)

)
dR1(t) =

(
(α1 + α2)R1(t)− α1α2R0(t)

)(
(λ(t))2dt+ λ(t)dW (t)

)
.

(2.46)

This generalizes Theorem 4.1 of Zariphopoulou and Zhou (2009), where the

authors obtained the same SDE for the special case that α1 = −α2, a1 = −a2.

Following (2.45), we can obtain the PDE for

g(r0, r1, λ, t) = E[G(X∗(T )|X(t) = r0, R1(t) = r1, λ(t) = λ].

Then, the second order parabolic PDE can be easily solved by numerical

schemes such as finite-difference or finite-element. Furthermore, observe that

the coefficients of (2.45) are polynomials up to second order, thus one can

derive analytic approximations of g(r, λ, t) following, for example, the commu-

tator method of Grischenko et al. (2014).

From a different perspective, asset managers also tend to use π̃∗(t), the pro-

portion of wealth invested in the stock, as a direct way to measure riskiness
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of an investment strategy. For example, the debate on the practice of target

date fund management is essential on how to choose π̃∗(t) as a (deterministic)

function of time. In our case where π̃∗ is stochastic, we can calculate E[π̃∗(t)]

by numerically solving the PDE derived from (2.43). A numerical example

along these lines is presented in Chapter 3.

2.5 Summary

Although the theory of forward performance process was developed over

a decade ago, the intuition for the structure of these stochastic risk preferences

and the economic implications of the optimal investment strategies are still not

well understood. Indeed, the “closed form” solution of π̃∗ derived from solving

a time-reversed heat equation hardly provides any economic insight. The re-

sults in this section contribute to a better understanding of the criteria and the

policies. Firstly, we show that in the absence of forward volatility, a general

forward performance process coincides with a static combination of multiple

(finite or infinite) CRRA preferences with different degrees of risk tolerance.

Specifically the investor splits his investment into multiple subportfolios, and

behaves as a CRRA optimizer within each such sub-investment problem. This

feature shares many similarities with the mental account approach that be-

havior portfolio researchers have proposed.

Secondly, our work is the first that derives a complete SDE system which de-

scribes the dynamics of the distribution of the entire risk tolerance process.

Furthermore, we show how to reduce the infinite system to a finite one when
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the risk tolerances are discretely distributed. A direct implication is that, var-

ious calculations for the optimal wealth process X∗(t) and portfolio strategy

π̃∗(t), which as we show are essentially the zeroth and first moment of the

risk tolerance distribution, are now placed under the universal framework of

solving a particular second order parabolic equation. This approach applies

even when the market opportunity set is stochastic and driven by a correlated

source of randomness. As we will see in the next chapter, the SDE system also

provides answer to a long debated empirical question: in a person’s lifetime

investment, whether the proportion of wealth invested in risky assets should

increase of decrease according to the investor’s age. Once more, it is not pos-

sible to answer this question by merely considering the “closed form” solution

of π̃∗.
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Chapter 3

Applications in lifecycle portfolio management

3.1 Background and literature review

In Samuelson (1969), the economist famously argued that investors’

asset allocation should be time-independent, if the market return and volatil-

ity are constant over time. However, lifecycle funds, also called target date

funds (henceforth TDF), as a segment of mutual funds which manage people’s

retirement savings, hold the alternative belief that the riskiness of one’s port-

folio should be age-based. People at younger age should invest more in high

risk/high return assets. As people grow older, the need for capital preservation

out weighs the need for growth. Thus, the portfolio should weigh more on less

risky assets such as bonds and cash, and less on stocks.

In practice, a target date portfolio strategy is typically characterized by a

“glide path”, which is determined at portfolio inception and describes how the

transition from stocks to bonds is carried out during the investment lifetime.

Figure 3.1 illustrates a typical glide path adopted by the Vanguard target date

fund. Initial equity allocation is set at 90%. At age 40, it starts to decline and

eventually reaches 20% at the retirement age of 72.

We stress that the asset allocation plan prescribed by the glide path is static

in nature. Once determined, the fund manager faithfully adheres to the glide
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Figure 3.1: Vanguard target date fund glide paths

path without making adjustments based on the actual performance of the

portfolio, non-anticipated changes in market conditions, etc.

Following the introduction of Pension Protection Act in 2006, target

date retirement funds experienced exponential growth. By the end of 2015,

the total asset under management had reached $763 billion. However, their

practice did not live without controversy. In fact, the central idea of TDF

strategies, that asset allocation should be shifted away from equities over time

is heavily criticized by many. Economist Robert Shiller argued that age-based

risk reduction exactly prevents people from benefiting at the right time from

high returns of the stock market. In Shiller (2005), he wrote

The lifecycle portfolio would be heavily in the stock market (in the

early years) only for a relatively small amount of money, and would

pull most of the portfolio out of the stock market in the very years

when earnings are highest.

42



Shiller (2005) then showed through simulation that TDF strategies offer much

lower expected returns than a 100% stock portfolio. While the latter only loses

money 2% of the time, Basu and Drew (2009) argued that contrarian strategies,

which increase equity allocations over time, actually generate far better risk-

return profiles. Their simulation study showed that only when comparing the

bottom 10 percentile outcomes, TDF strategies perform slightly better. Em-

pirical evidence which support this argument was complied by Estrada (2015),

who considered a comprehensive sample of 19 countries and two regions over

110 years, and discovered that contrarian strategies generally outperform all

TDF strategies in terms of upside potentials, while at the same time, keep-

ing the downside risk more limited. All the above literature suggests that

the conventional wisdom seems to be misleading, in the sense that age-based

risk reduction forgoes too much growth potential but does not offer enough

downside protection in return. Therefore, the opposite approach, contrarian

strategies, should be adopted instead.

The second type of criticism TDF strategies receive focuses on the static na-

ture of glide paths. As argued by Basu et al. (2011), if it happens that the

stock market declines right before the risk reduction kicks in, the investor will

have no chance at all to recover. The authors advocated instead a dynamic

portfolio strategy, a feedback glide path which only “glides” if the investor

has achieved his capital growth target. From the risk budgeting perspective,

Yoon (2010) also emphasized the importance of adopting a dynamic strategy,

so that the term structure of risk can be properly taken into account.
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Herein we develop a rigorous alternative approach for lifecycle portfolio de-

sign based on the theory of time-monotone forward performance processes.

In section 2.1 we have seen that in the forward approach the notion of an

investment horizon is no longer relevant, making it a reasonable theory for

tackling problems in lifecycle portfolio management, which can generally be

considered as infinite/flexible horizon problems. Moreover, the optimal port-

folio strategies derived from the forward theory are genuinely dynamic, since

the stock proportion at time t depends both on the current level of wealth and

the market parameters estimated at t. Hence, the forward approach “reacts”

to both changing market conditions and to realized portfolio returns.

Naturally we are interested in the implications of forward theory on the heav-

ily debated issue. Should the proportion of wealth allocated to equities be

a decreasing function of time? The answer is, provided that the investor’s

behavior satisfies the time-consistency condition, TDF style risk reduction is

only justifiable if the investor is a high risk seeker.

As an example, assume that the stock market generates 6% return per year,

with 20% volatility. It is well known that investors with log-utility would allo-

cate µ
σ2 = 150% of his wealth to the stock market. The forward theory implies

that, only if the investor is at least as risky as the log-utility investor, should he

shift allocations away from the stock market over time. This is clearly not the

case for the glide path shown the in figure 3.1, as the stock proportion starts

out at 90%, far below the 150% threshold, and yet the stock proportion glides

downward over the years. On the other hand, the forward theory supports the
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argument in the literature that the contrarian strategy is the more reasonable

alternative. If the investor is at least as risk-averse as the log-utility investor,

his stock allocation should be a non-decreasing function of time.

The case of investors with mixed attitude toward risk is more complicated to

analyze. Suppose, for example, that an investor starts out with $10000 wealth

to invest, allocates $1000 to a high risk hedge fund with above 200% leverage

and invests the rest with a conservative asset manager with leverage below

1. Then, his overall (expected) stock proportion is no longer a monotonic

function of time. In fact, numerical tests suggest that it will increase in the

first couple years and then will decrease for the rest of the investment lifetime.

Therefore, investors of this type would not adopt either the glide path or the

contrarian approaches.

In the next section, we start by illustrating through a simple example that

asset allocation under a time-monotone forward performance criterion may

systematically shift over time. Hence the theory has implications for the prac-

tice of mutual funds, such as lifecycle funds, which manage investors’ savings

for very long horizons. The result is then rigorously proved using the argument

developed in the previous chapter. We also provide in section 3.3 two numer-

ical examples that show the diversity of behaviors the forward theory is able

to generate. Section 3.4 discusses the problem of preference calibration. The

method is then applied to finding the forward utility implied by the Vanguard

target retirement fund glide path. Section 3.5 concludes.
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3.2 Time-dependent asset allocations under the time-
monotone forward performance criterion

We treat the lifetime asset allocation problem as a dynamic portfo-

lio problem with undefined horizon. For tractability, we assume the market

consists of a log-normal stock market index S(t), with,

dS(t) = µS(t)dt+ σS(t)dW (t),

and a risk-free asset with zero interest rate. The investor starts with initial

wealth x, and trades continuously between the two accounts. We assume that

the investor optimizes the forward performance process U(x, t) = u(x,A(t)),

derived from his initial utility u(x, 0) (see section 2.1 for the exact definition).

As it was mentioned in the previous chapter, there are, in general, two types

of appropriate forward utilities. By Proposition 2.2.2, the types can be deter-

mined by the range of the function h(x, t) (which is defined by (2.17)).

Type 1: Range(h) = (C,∞), where C is the point mass the measure ν assigns

to the point 0.

Type 2: Range(h) = (−∞,∞).

The first type can be considered as forward investment with no-bankruptcy

constraint since the optimal wealth can never fall below the threshold level C.

In this section, we only consider investors of type 1. Equivalently, we make

the following assumption on ν,

Assumption 3.2.1.

supp(ν) ⊂ [0,∞)

46



As an example, if ν is a single Dirac mass,

ν = δ{α}, α ≥ 0, (3.1)

we have seen that the corresponding utility is CRRA and the optimal port-

folio weight in S, π̃∗(t) = µ
σ2α. The optimal asset allocation in this case is

time-independent. However, the assumption on ν amounts to saying that the

investor’s risk preferences can be described by a single risk tolerance parame-

ter. However, this is unlikely to be realistic, as empirical evidence from exper-

imental psychologists indicates that the same person often exhibits different

degrees of tolerance to risk in his financial decision making. For example, one

may be very risk averse regarding his retirement plan investment, but much

less so for the proportion of wealth allocated to get richer. For such reasons,

we do not make any specific assumptions on ν, other than assuming that its

support does not include any subset of the negative half-axis. To the best of

our knowledge, the problem of lifetime asset allocation under a general utility

has not been explored in existing literature.

The measure given by (3.1) is in fact, the only case that constant allocation

occurs. To see how π̃∗ changes over time under ν different from a single Dirac

mass, we consider the following simple generalization,

ν = a1δ{α1} + a2δ{α2},

which results in a mixture of two power utilities. As discussed in section 2.2,

π̃∗ coincides with a static combination of two CRRA portfolios. At t = 0,

the investor splits his initial wealth x into X1(0) and X2(0), with X1(0) +

47



X2(0) = x. Then, he manages the Xi(0), i = 1, 2 investments following the

CRRA strategy with risk tolerance parameters αi, i = 1, 2. Hence, we have

X∗(t) = X1(t) +X2(t), with

dXi(t) = αiXi(t)(λ
2dt+ λdW (t)).

The optimal stock proportion is then given by the allocation

π̃∗(t) =
µ

σ2

α1X1(t) + α2X2(t)

X1(t) +X2(t)
.

Obviously, π̃∗(t) is no longer constant but, rather a time-dependent weighted

average of α1, α2. To see how the weights change, we solve Xi(t) explicitly

obtaining,

Xi(t) = Xi(0)exp
(
(αi −

1

2
α2
i )A(t) + αiM(t)

)
,

where A(t) =
∫ t

0
|λ(s)|2ds and M(t) =

∫ t
0
λ(s)dW (s).

We see that the speed of growth of Xi(t) depends on the factor αi− 1
2
α2
i , which

is higher when αi is closer to 1. If we assume 1 ≥ α1 > α2, then X1(t) will

outgrow X2(t) and, over time, α1 will receive higher weight in π̃∗. In other

words, π̃∗(t) has a upward shifting trend. Similarly, if α1 > α2 ≥ 1, then X2(t)

outgrows X1(t) and π̃∗(t) shifts downwards.

As t→∞, σ2

µ
π̃∗ should converge to the αi that is closer to 1. Therefore, when

the initial utility falls outside of the CRRA class, asset allocation decision does

not stay constant, and exhibit systematic changes as time increases.

To put the above discussion on rigorous ground, first note that under the log-

normal market assumption, the change in π̃∗(t) = µ
σ2 R̃

∗(t) comes solely from
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the change in R̃∗(t), the relative risk tolerance process. Recall, from equation

(2.26) that the process R̃∗(t) satisfies the SDE,

dR̃∗(t) = λVar(Y (t)|Ft)
(
λ(1− R̃∗(t))dt+ dW (t)

)
, (3.2)

where the random variable Y (t), defined by the conditional probability mea-

sure Py,ω,t (2.24), describes the time t distribution of the risk tolerance process.

If ν is different from a single Dirac mass, Y (t) is a non-constant random vari-

able and the conditional variance must be positive. We have the following

results.

Theorem 3.2.2. Let supp(ν) denote the support of ν. Then the optimal risk

tolerance process R̃∗(t) is a submartingale if supp(ν) ⊂ (0, 1], while it is a

supermartingale if supp(ν) is bounded and supp(ν) ⊂ [1,∞).

Proof. See Appendix B.1.

The intuition that R̃∗(t) has a upward/downward trend is more clearly

seen when ν is a discrete measure,

ν = a1δ{α1} + . . .+ anδ{αn}.

Under this assumption, the investor’s optimal portfolio consists of n CRRA

subportfolios. Let pi(t) denote the proportion of wealth at t allocated to the

subportfolio corresponding to risk tolerance αi. We have shown in (2.39) that

pi(t) solves the SDE,

dpi(t) = λpi(t)(αi − R̃∗(t))
(
λ(1− R̃∗(t)) + dW (t)

)
.
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Assume supp(ν) ⊂ [0, 1], i.e. αi ≤ 1 for all i. Therefore at any t > 0, pi(t) has

a positive drift if αi > R̃∗(t), and a negative drift if αi < R̃∗(t). In other words,

proportions of those subportfolio with large risk tolerance tend to grow, while

proportions of less risky subportfolios tend to decline. The net result is that,

the process R̃∗(t), which represents the mean of the risk tolerance distribution

at t, will always trend upward.

It is then interesting to ask about the behavior of R̃∗(t) as t → ∞. The

problem is difficult to solve in general. But in the case that ν is a discrete

measure, we have definitive answers.

Theorem 3.2.3. Let ν be a discrete measure,

ν = a1δ{α1} + . . .+ anδ{αn}, with α1 ≥ 0, . . . , αn ≥ 0

Assume that for ∀ i 6= j, αi 6= αj and |1− αi| 6= |1− αj|.

(i) Let αi ∈ {α1, . . . , αn} be such that |1−αi| > |1−αi|, for any i = 1, . . . , n.

Then,

R̃∗(t)
p→ αi, as t→∞,

where
p→ denotes convergence in probability.

(ii) Furthermore, if supp(ν) ⊂ [0, 1] or supp(ν) ⊂ [1,∞), then,

R̃∗(t)
a.s.→ αi, as t→∞,

Proof. See Appendix B.1.
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Remark 3.2.4. The same conclusion cannot be obtained for type 2 investors,

because in that case R̃∗(t) is no longer bounded by the support of ν and the

integrability condition does not hold.

To summarize, our study provides answers to some important questions

raised by economists and investment professionals. Should equity allocation,

as a proportion of total wealth, increase or decrease with the investor’s age?

Our findings are twofold. Firstly, deterministic (constant) allocation is only

optimal for CRRA investors. That is, investors whose risk attitude can be rep-

resented by a single relative risk tolerance parameter. For all other investors

however, the optimal allocations are feedback policies, which depend on the

realized returns.

Secondly, the dynamic allocation policies have a systematic trend to shift up-

ward or downward given that the investor’s risk tolerance parameters are all

larger or smaller than 1. Therefore, a dynamic “glide path” is only justifiable if

all the investor’s CRRA subportfolios are riskier than the log-utility portfolio.

Practically, this is unlikely the case given that the log-utility portfolio is widely

regarded as highly risky. It is more reasonable to assume that supp(ν) ⊂ [0, 1],

which then supports the argument that the “contrarian” strategy,i.e. π̃∗(t) is

increasing in t, is more suitable for the majority of the investors.

The only case left unexamined is when supp(ν) ∩ [0, 1) 6= ∅ and supp(ν) ∩

(1,∞] 6= ∅, i.e. the investor is partially more risk seeking while partially more

risk averse than the log-utility investor. In this case, there is no definitive

trend for π̃∗(t) as R̃∗(t) takes values both above and below 1. Moreover, nu-
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merical tests suggest that the average allocation will not always be monotone

in time. Therefore, this is the case which does not lend support to either the

glide path or the contrarian strategies.

3.3 Numerical examples

We provide in this section two concrete examples to demonstrate the

systematic shift in optimal stock proportion discussed earlier. The first ex-

ample revisits the simplest but non-trivial discrete case, that the measure ν

is supported on two points. The second example studies the case when ν is

a continuous measure. Specifically, we look at ν supported uniformly on an

interval. We will see that, although the two measures have very different an-

alytic structures, the directions of the trend in R̃∗(t) are determined only by

the location of the measures’ support.

3.3.1 Example 1: The measure ν is given by ν = a1δ{α1} + a2δ{α2}

We have shown in Example 1 of section 2.3 that R̃∗(t) follows the SDE,

dR̃∗(t) = λ(R̃∗(t)− α1)(α2 − R̃∗(t))
(
λ(1− R̃∗(t))dt+ dW (t)

)
. (3.3)

Assume α1 < α2. The results of Theorem 3.2.2 are then apparent. The scaling

factor (R̃∗(t)−α1)(α2− R̃∗(t)) is always positive as R̃∗(t) ∈ [α1, α2]. If α2 ≤ 1,

then 1− R̃∗(t) > 0, which implies that the drift of the above SDE is positive

as well. Similarly, the drift is negative if α1 ≥ 1.
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To see the temporal changes in R̃∗, we calculate numerically the average risk

tolerance,

R(T ) = E[R̃∗(T )].

To distinguish the two cases, α1 ≥ 1 and α2 ≤ 1, we call the former type of

investor “risk averse”, and call the latter “risk seeking”. The terms come from

the fact that a CRRA investor with risk tolerance larger than 1 is actually

willing to accept the same level of expected (log) returns with additional vari-

ance.

To calculate R(T ), we set f(r̃, t) = E[R̃∗(T )|R̃∗(t) = r̃]. Then, R(T ) = f(r̃, 0).

By the Feynman-Kac’s formula, the function f(r̃, t) solves the partial differ-

ential equation,{
∂f
∂t

+ λ2(r̃ − α1)(α2 − r̃)
(
(1− r̃)∂f

∂r̃
+ 1

2
(r̃ − α1)(α2 − r̃)∂

2f
∂r̃2

)
= 0.

f(r̃, T ) = r̃
(3.4)

We solve the above PDE using finite difference method. Figure 3.2 plots R(T )

for both risk averse (α1 = 0.1, α2 = 0.6) and risk seeking (α1 = 1.2, α2 = 3)

investors.

Assume retirement occurs 50 years after the portfolio inception. We can see

that the expected relative risk tolerance of a risk-averse investor is monoton-

ically increasing. Assuming the stock market generates an annual return of

6% with volatility 20%, the plot suggests that the investor’s stock allocation

starts at 67.5%, and gradually increases to (on average) 81% at the time of

retirement.

However, the uncertainty around R̃∗(t) does not increase monotonically in
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Figure 3.2: Expected relative risk tolerance as a function of time.

time. One standard deviation interval for π̃∗ at T = 50 is [69%, 90%]. In fact,

as demonstrated in theorem 3.2.3, R̃∗(t) would converge to α1 in probability.

On the other hand, the right panel shows that R(T ) is decreasing in T for the

risk seeking investor. Again with µ = 0.06, σ = 0.2, E[π̃∗(T )] starts at 225%

and decreases to slightly above 180% at T = 50. Obviously, this allocation

policy is impractical as few investors are willing to maintain such large po-

sitions in stocks throughout their investment lifetimes. Therefore, under the

assumption that the investor is reasonably risk averse (π̃∗ < 150%), the risk

reduction behavior displayed in the right panel should not occur, otherwise

the portfolio policy would violate the time-consistency condition (such as the

one shown in figure 3.1).

Next we consider the case that the investor is partially risk averse and

partially risk seeking, i.e. α1 < 1 < α2? In this case, the drift of R̃∗(t) no
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longer maintains a constant sign for all t, as it can take values both above and

below 1. Equation (3.3) yields that R̃∗(t) is a mean-reverting process, with

α1 and α2 serving as two unattainable boundaries. Therefore, unlike in the

previous cases when the entire support is on a single side of 1, we do not have

a definitive answer for the drift of R̃∗(t). Also, in this case, numerical tests

seem to suggest that the monotonicity of the average R(T ) holds if the initial

risk tolerance is consistent with the “average” risk tolerance. That is, if we

have both R̃∗(0) > 1 and 1
2
(α1 +α2) > 1 or both R̃∗(0) < 1 and 1

2
(α1 +α2) < 1,

then R(T ) is still monotone in T . See figure 3.3 for example. However, this

hypothesis will remain unjustified as a rigorous proof is quite difficult to ob-

tain. We leave exact characterizations of this “mixed” case to future work.

Another way to gauge how fast stock proportion changes over time is

through calculating the amount of time to achieve a certain level. For example,

an investor who allocates 50% to the stock initially may wish to know after how

many years the proportion will grow to, say, 80% for the first time. Moreover,

the hitting time distribution is also necessary to measure performances of

investment strategies based on “stopping rules”. For example, the dynamic

glide path of Basu et al. (2011) only start to decrease the stock proportion

after certain return targets have been achieved.

Let τd = inf {t; R̃∗(t) > d} denote the first time R̃∗(t) crosses d, where d ∈

(R̃∗(0), α2). We calculate E[τd] below.

Proposition 3.3.1. Let g(r̃) = E[τd | R̃∗(0) = r̃]. If 1
2
(α1 + α2) ≥ 1, then
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g(r̃) =∞. While if 1
2
(α1 + α2) < 1,

g(r̃) =
1

λ2(α1 − α2)(1− 1
2
(α1 + α2))

(
ln (

d− α2

α1 − d
)− ln (

r̃ − α2

α1 − r̃
)
)
.

Proof. See Appendix B.2.

Next, we compute the average hitting time for investors for different

combinations of (α1, α2). To make things comparable, we assume that all the

investors have the same relative risk tolerance at t = 0, such that they all

allocate π(0) = 50% of their wealth into the stock. Then, we calculate the

average amount of time for π∗(t) to reach 90%, as a function of α1, α2.
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Figure 3.4 shows that, although the investors’ initial risk tolerances are the

same, there is great diversity among their time diversification strategies. For

example, it only takes the investor, with α1 = 0, α2 = 1.2, 22 years to in-

crease his stock proportion to 90%. While it takes the investor, with α1 = 0.2,

α2 = 1.7, more than 180 years to do so. The variations in E[τ ] can be at-

tributed to the several reasons. Firstly, investors with the smaller differences

between the α1, α2 tend not to change their stock allocations too much over

time (the extreme case α1 = α2 implies constant π̃∗). Secondly, π∗(t) grows

faster if α2 is closer to 1, since the α2-induced subportfolio is closer to be-

ing “growth optimal”. Thirdly, somewhat counterintuitively, investors with

smaller α values tend to increase π∗(t) at a faster rate. The reason is that,

to have 50% invested at t = 0, such investors have to allocate more wealth to

the CRRA subportfolio corresponding to α2. For these reasons, investors with

polarized risk appetite - one component aims for high safety (α1 close to 0),

while the other for high growth (α2 close to 1) - would want to increase their

stock proportions more quickly as they age.

3.3.2 Example 2: ν ∼ Uniform(α1, α2)

In this section we present one example when ν is given by a continuous

distribution. Assume that the involved risk tolerances occupy an entire closed

interval [α1, α2], with equal weights,

ν = a1{[α1,α2]}, (3.5)
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where a > 0, α2 > α1 ≥ 0. The aim is to compare its optimal portfolio with

that induced from the discrete counterpart,

ν = a(δ{α1} + δ{α2}),

where equal weights are only assigned to the end points of the interval. It

would be interesting to see how, having a smoother risk tolerance structure

affects the investor’s portfolio choice.

We start by studying the investor’s relative risk tolerance at time zero. Hence,

we need to calculate R̃∗(0) = r̃(x, 0). We have

r̃(x, 0) =
hx(h

(−1)(x, 0), 0)

x
,

where,

h(x, 0) = a

∫ α2

α1

eyxdy =
a

x
(eα1x − eα2x).

Figure 3.5 plots the initial risk tolerance as a function of initial wealth, for

both the uniform distribution and the two point distribution under the same

set of parameters. As expected, the investor with uniformly distributed risk

tolerance is less sensitive to changes in wealth, therefore is less likely to dra-

matically increase or decrease his stock holdings following a market rally or

crash.

Next, we calculate the average proportion of stocks E[π̃∗(t)] at t > 0, or equiva-

lently, R(t) = E[R̃∗(t)]. In the previous example, R(t) was calculated based on

the SDE of R̃∗. The problem was converted to solving a parabolic differential
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equation with polynomial coefficients. In the case of the uniform distribution

however, the coefficients of the PDE are complicated functions, and it is dif-

ficult to evaluate and interpret them. A better approach is to explore the

“closed form” solution of R̃∗(t). Recall that in previous chapter, we used the

random variable Y (t) to describe the distribution of risk tolerances at t. For

the reader’s convenience we recall from equation (2.24) that, under a general

measure ν, Y (t) is defined by the conditional distribution,

Py,ω,t(dy) =
eyD(t)− 1

2
y2A(t)ν(dy)∫

R e
yD(t)− 1

2
y2A(t)ν(dy)

,

where D(t) = h(−1)(x, 0) +M(t) +A(t). Then, R̃∗(t) is simply the conditional

mean E[Y (t)|Ft]. It is easy to see that under ν = a1{[α1,α2]}, Py,ω,t(dy) is

exactly the density of a normal distribution truncated at α1, α2. We then

have the following result.

Proposition 3.3.2. Let the measure be of the form ν = a1{[α1,α2]}. Then, the

random variable Y (t) admits a truncated normal distribution (conditioned on

Ft), with normal parameters µN = D(t)
A(t)

, σ2
N = 1

A(t)
, and boundary parameters

α1, α2. Let θi = αi−µN
σN

, i = 1, 2. Then,

R̃∗(t) = E[Y (t)|Ft] = µN −
φ(θ1)− φ(θ2)

Φ(θ1)− Φ(θ2)
σN ,

where φ(·) and Φ(·) are the density and cumulative distribution functions of

the standard normal distribution.

Since R̃∗(t) is obtained as an explicit function of the process D(t), which

is normally distributed for all t > 0, the average R(t) can be calculated using
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Figure 3.6: R for uniform ν.

numerical integration. Figure 3.6 plots R for both the uniform and the two

point measures at various horizons. The parameters α1 and α2 are chosen such

that the support of ν is on a single side of 1. As expected, when both α’s are

smaller than 1, R(T ) is increasing in T for both type of investors.

However, the changes in the uniform distribution case is less dramatic. For

market parameter µ = 0.06, σ = 0.2, E[π̃∗] only increases from 94% to 105%,

compared with the increase of 73.5% to 109% for the two-point case. Also,

one can notice from the graph on the right that, R for the two point measure

already converges to its theoretical limit of α1 by the end year 100. However,

the speed of convergence for the uniform distribution is much slower. It takes

over 10000 years for R(T ) to approach its asymptotic limit.

The above examples have demonstrated that when the CRRA assumption

on the initial utility is not any more valid, a wide variety of time dependent

asset allocation behaviors can be rationally justified. Moreover, the speed of

change in stock allocation over time is closely related to the investor’s initial
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distribution of risk tolerance. In particular, when advising a client with very

different aims of growth for different portions of his wealth, the investment

manager should more aggressively increase the equity proportion based on the

client’s age.

3.4 Preference calibration

To make the forward performance approach practical, one essential in-

put is the initial utility function, or equivalently, the measure ν which describes

the distribution of risk tolerance parameters. Classical methods for utility as-

sessment usually involves asking the agent to choose between, or to offer prices

for different lotteries. See for example, Farquhar (1984) for a comprehensive

review. From the optimal investment perspective, He and Huang (1994) and

Dybvig and Rogers (1997) discussed how to infer the utility function from

known optimal portfolio strategies. More related to our work is Monin (2014),

who studied utility inference under the forward investment framework, based

on the investor’s desired wealth distribution at a particular horizon.

In this section we propose a different approach. Instead of asking the investor

to specify the probability distribution of wealth at a single fixed horizon, we ask

about the desired expected returns at multiple horizons. We believe that, in

the context of lifecycle investment management, target wealth to be achieved

at each stage of life is best aligned with the very purpose of investment.

63



3.4.1 The algebraic moment problem

The problem can be described as follows. Let Ti, i = 0, 2, . . . N be

a series of horizons. An investor with initial wealth x specifies the series of

expected total returns Ri (R0 = 1) to be achieved at each individual Ti. We

then look for ν that describes the investor’s risk tolerance distribution, or

equivalently, the measure ν that produces optimal wealth satisfying

E[
X∗(Ti)

x
] = Ri, i = 0, 1, . . . , N.

The implicit assumption here is that {Ri}Ni=0 can indeed be generated through

the above equation for some ν. We call such sequence forward return sequence.

The treatment for {Ri}Ni=0 that is not a forward return sequence will be dis-

cussed in the next section.

For simplicity, we assume that the horizons are equidistant, or Ti = i∆T . Also

assume that N = 2K − 1 (the case when N is odd can be solved with slight

modification).

We recall that X∗(t) has the explicit representation

X∗(t) =

∫
R
ey(h(−1(x,0)+A(t)+M(t))− 1

2
y2A(t)ν(dy).

Musiela and Zariphopoulou (2010a) has shown that in calculating E[X∗(t)],

the expectation and integration can exchange order. Thus the total return at

horizon T can be explicitly calculated as

Ret(T ) =
1

x
E[X∗(T )] =

1

x

∫
R
ey(h(−1(x,0)+A(t))ν(dy).
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If we then define the measure,

νx(dy) :=
1

x
eyh

(−1(x,0)ν(dy),

then Ret(T ) simplifies into,

Ret(T ) =

∫
R
eλ

2ytνx(dy).

Obviously, to determine the investor’s initial utility, it is enough to determine

νx. Compared with ν, νx is easier to work with since it is already normalized

and can be considered as a probability measure. Indeed,∫
R
νx(dy) =

∫
R

1

x
eyh

(−1(x,0)ν(dy) =
1

x
h(h(−1)(x, 0), 0) = 1.

Recall in the previous chapter that we have defined the random variable Y (t),

which describes the distribution of risk tolerance at t. In fact, here νx coin-

cides with the probability distribution of Y (0), with Ret(T ) being its moment

generating function, i.e.

Ret(T ) = Eνx [eλ2Y (0)T ].

In order to match the target expected returns Ri at Ti = i∆T , we need then

to have

Ri = Eνx [eλ2Y (0)i∆T ] = Eνx [Zi], i = 1, 2, . . . , N, (3.6)

where Z = eλ
2Y (0)∆T .

Equation (3.6) reduces the preference calibration problem into the so called al-

gebraic moment problem, in which a finite sequence of positive numbers {Ri}Ni=0
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is given, and one is asked to find a positive random variable whose first N mo-

ments are exactly {Ri}Ni=1. However, we note that the statement is only correct

in the case range(h) = (0,+∞), since this is the case when νx is non-negative.

If range(h) = (−∞,+∞) or range(h) = (C,+∞), with C < 0, νx(dy) cannot

be considered as a probability measure. Fortunately, when {R}Ni=0 is indeed

a forward return sequence, the solution method described below still applies

for such cases. When {Ri}Ni=0 is not a forward return sequence, we need to

explicitly take into the account the fact that νx might be negative.

Brockett (1987) described procedures for finding the random variable Z that

satisfies (3.6), which we recall below for completeness. To this end, since (3.6)

gives N = 2K − 1 moment equations, we can only determine Z as a discrete

random variable with at most K outcomes. Let pi = Prob (Z = zi) > 0,

i = 1, 2, . . . , n0, with n0 ≤ K, and define the Hankel matrices

∆k(R) = (Ri+j)
k
i,j=0, ∆

(1)
k (R) = (Ri+j+1)ki,j=0, k = 0, 1, . . . , K − 1

Then we have the following theorem.

Theorem 3.4.1. Let Z be a positive random variable which takes n0 differ-

ent values {z1, z2, . . . , zn0} with positive probability, and let Ri denote the i-th

moment of Z. Then, det(∆k(R)) > 0 and det(∆
(1)
k (R)) > 0 for k ≤ n0 − 1,

det(∆k(R)) = det(∆
(1)
k (R)) = 0 for k ≥ n0, where zi, i = 1, . . . , n0 are the
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(distinct) roots of the polynomial,

q(z) =

∣∣∣∣∣∣∣∣∣∣∣

1 z z2 . . . zn0

R0 R1 R2 . . . Rn0

R1 R2 R3 . . . Rn0+1
...

...
...

...
Rn0−1 Rn0 Rn0+1 . . . R2n0−1

∣∣∣∣∣∣∣∣∣∣∣
. (3.7)

Remark 3.4.2. Although the theorem requires Z to be a random variable,

the fact that zi solve equation q(z) = 0 does not require νx to be a probability

measure. Therefore, for a general measure νx which assigns both positive

and negative measures, we can still obtain its support by solving q(z) = 0,

provided that {Ri}Ni=0 is indeed a forward return sequence. However, the

Hankel determinants will no longer be non-negative.

After we solve for zi, pi can be obtained by solving the linear system,
p1z1 + . . .+ pn0zn0 = R1

p1z
2
1 + . . .+ pn0z

2
n0

= R2

...

p1z
n0
1 + . . .+ pn0z

n0
n0

= Rn0

(3.8)

In turn, if yi := 1
λ2∆T

ln(zi), then νx is given by,

νx = p1δ{y1} + . . .+ pn0δ{yn0}. (3.9)

As an example, consider an investor whose expected total returns at various

horizons are given in table 3.1, We then have ∆T = 5, N = 7, K = 4, n0 ≤ 4.

The Hankel determinants are shown in table 3.2. Both determinants vanish
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Table 3.1: Expected Total Returns
Horizon (years) 5 10 15 20 25 30 35

Return (%) 160 250 383 580 873 1310 1962

Table 3.2: Hankel Determinants
det(∆k(R)) det(∆

(1)
k (R))

k = 0 1.00 1.61
k = 1 -0.08 -0.11
k = 2 0.00 0.00
k = 3 0.00 0.00

at k = 2 and, thus, n0 = 2. Solving the quadratic polynomial (3.7), we obtain

z1 = 1.49, z2 = 0.92. By (3.8) we have, p1 = 1.2, p2 = −0.2. Further, assume

the market parameters are µ = 0.06, σ = 0.2. Then yi = 1
λ2∆T

ln(zi) yields

y1 = 0.5 and y2 = −0.1. Therefore, we obtain νx, namely,

νx = 1.2δ{0.5} − 0.2δ{−0.1}.

This measure yields the function

h(x, t) = 1.2e0.5x−0.125t − 0.2e−0.1x−0.005t,

which is of full range.

3.4.2 Forward performance approximation

Consider another example, where the expected total returns at 5, 10, 15

years are 150%, 250%, 350%. One can then verify that none of the Hankel de-

terminants are zero. Hence we must have n0 = K = 2, and q(z) = 1
4
z2+ 1

4
z−1.
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The two roots are z1 = −2.56, z2 = 1.56. Since z1 is negative, y1 is no longer

a real number. Therefore, we do not have a valid solution for νx.

The issue here is that, the expected returns provided above cannot be gener-

ated by any forward performance process. In practice, this issue will almost

always arise since no one can state the returns they expect exactly according

to their utility functions. It is therefore necessary that we find the measure

νx which generates a return sequence that is closest to the sequence given.

Here, we choose the l2 norm as the objective function to minimize. In or-

der to formally state the problem, we denote the discrete measure we wish to

approximate as,

νx =

n0∑
i=1

piδ{yi}.

As in the last section, we allow yi and pi to be negative so that both the full

range and half range cases are included. However, we need piyi ≥ 0, since νx

assigns positive (resp. negative) measure to positive (resp. negative) values.

Finally, denote zi = eλ
2yi∆T . Then, for a given sequence of returns {Ri}Ni=0,

we solve the optimization problem below,

minimize
p,z

L(p, z, n0) =
N∑
j=1

(

n0∑
i=1

piz
j
i −Rj)

2

subject to: (zi − 1)pi ≥ 0, i = 1, 2, . . . , n0

(3.10)

The only question left is, how do we choose n0, the number of elements included

the support of νx. Obviously, larger n0 will only decrease the approximation

error, but it also renders the optimization less stable due to higher dimen-

sionality. Therefore, we stop at the point when increasing n0 only marginally

decreases the value of L. The procedure is demonstrated in the example below.
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3.4.3 Example: Vanguard Target Retirement 2045 Fund

We apply the tools developed so far to study asset allocation strategies

of Vanguard target retirement fund, currently the largest lifecycle fund in

AUM. In particular, we focus on the 2045 fund (VTIVX), which is designed

for investors planning to leave the workforce in or within a few years of 2045. It

would be interesting to find the forward performance process that best explains

the fund’s strategy. Figure 3.7 displays the glide path adopted by the fund.

The chart shows that the fund invests in five major asset classes. To simplify

things, we consider the strategy as investing in only a stock with log-normal

dynamics and a bond with zero interest rate. The proportion allocated to

stocks, π̃(t), as distinguished by the grey and blue area, starts at 90%, then

gradually declines following a piecewise linear function, and eventually settles

at 30% after year 55. Since π̃(t) is deterministic, under log-normal market

assumption, it is straightforward to calculate the expected total returns,

Ret(T ) = eµ
∫ T
0 π̃(t)dt.

Figure 3.7: Asset allocation of Vanguard Target Retirement 2045 Fund

70



We apply the preference calibration tool to find the measure νx that

produces expected returns that best matches the returns implied by the Van-

guard deterministic strategy. To increase accuracy, we sample the returns

every quarter (∆T = 0.25) for 70 years, which generates a sequence of 281

returns, Ri = Ret(i∆T ), i = 0, 1, . . . , 280. We then solve the optimization

problem (3.10) for n0 = 1, 2, 3, 4. The outputs are reported in table 3.3.

Table 3.3: Estimation results for νx

n0 = 1 n0 = 2 n0 = 3 n0 = 4
y1 0.34 0.16 0.16 0.00
y2 - 0.00 0.00 0.16
y3 - - −2.88 −1.16
y4 - - - 0.00
p1 1.00 7.38 7.38 0.00
p2 - −6.38 −6.38 7.38
p3 - - 0.00 0.00
p4 - - - −6.38
L 4.00× 103 371.49 317.49 317.49

Surprisingly, after the large drop in L, the penalty function we try to

minimize, when n0 increases from 1 to 2, there seems to be no further improve-

ment by using a larger n0, which suggests that a two point measure might be

the best solution. Further confirming this are the distribution structures gen-

erated under n0 = 2, 3, 4. All three of them show that νx is supported at 0.16

and 0 only, with weights 7.38 and −6.38. Therefore, we can firmly conclude the

forward performance that best describes the allocation strategy of Vanguard
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2045 retirement fund is generated by, the measure

νx = 7.38δ{0.16} − 6.38δ{0}. (3.11)

The forward optimal strategy derived from the above measure is actually quite

simple. The investor with initial wealth $1 would borrow $6.38 from the bank,

then invest the entire $7.38 with a CRRA manager with relative risk tolerance

0.16. Although, the forward optimal strategy is stochastic, hence different

from the deterministic glide path of Vanguard fund, the expected returns they

produce are reasonably close (see panel A of figure 3.8).
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Figure 3.8: A: expected returns. B: stock proportion

A second, more illustrative approach is to compare the strategies them-

selves. Since π̃ for the forward performance process is stochastic, we have to

introduce some kind of averaging before comparing to the deterministic glide

path. Here we introduce the forward implied deterministic strategy π̃fImp(t)

as the deterministic strategy that produces the same expected return function
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Figure 3.9: cdf for Xv(T ) and Xf (T ).

as the forward optimal strategy, i.e.

π̃fImp(t) =
1

µ

∂

∂t

(
ln(E[

X∗(t)

x
])
)
.

where X∗(t) is the optimal wealth process derived from νx.

Panel B of figure 3.8 shows that π̃fImp(t) is a much steeper “glide path”. With

an initial leverage higher than 200%, it rapidly declines and comes down to the

same level as the VTIVX glide path around year 10, then it slowly converges to

the post-retirement level, tracking the fund glide path more closely. Judging

from the high leverage in the first decade, one might suspect that the dynamic

forward strategy is too risky. To find out if this is case, we need to compute

the risk-return profiles for both strategies. Assume for simplicity that the ini-

tial wealth is one dollar. Let Xv(T ) and Xf (T ) denote the wealth processes

by following the Vanguard glide path and the forward optimal strategy. We

plot the cumulative distribution functions for both wealth variables at horizons

T = 10 and T = 55. As shown in figure 3.9, at year 10 the forward strategy is

indeed riskier since it poses a greater downside risk, as there is a 6% chance
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of losing 50% or more, while for the Vanguard glide path the probability of

such loss is only slightly above 1%. However, apart from the worst cases, the

forward strategy does dominate in most of the other scenarios. For example,

it offers a 48% chance of at least tripling the initial wealth, while under the

glide path, the probability goes down to 17%. In fact, under the notion of

“almost stochastic dominance”, introduced by Leshno and Levy (2002), the

forward strategy has “almost first order stochastic dominance” over the Van-

guard glide path, with violation parameter ε = 0.031 (ε ≤ 0.059 is commonly

considered as acceptable).

Surprisingly, the situation reverses at the time of retirement (T = 55). The

forward strategy is actually more conservative in that it offers a higher con-

siderably probability of getting a decent return while forgoes some chances of

exceptional returns. This can also be observed from the summary statistics

in table 3.4. While the mean returns are about the same, standard deviation

for the forward strategy is much lower. Among the recorded quantiles, the

Vanguard glide path only outperforms at the highest decile.

Table 3.4: Retirement wealth summary statistics
D1 Q1 Median Q3 D10 Mean Stdev

forward strategy 8.1 12.7 19.6 29.1 40.5 22.5 13.9
Vanguard glide path 3.2 6.1 12.8 27 52.8 23.6 24.3
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3.5 Concluding remarks

In this chapter, we studied optimal investment problem under an ini-

tial, instead of terminal utility function, based on the additional assumption

of time-consistency. The focus is on how the investment strategy depend on

time. What separates our work from the previous ones is that we do not

make specific assumptions about the functional form of investor’s risk prefer-

ence. Instead, we seek to find the connections between the structure of risk

preferences and the way equity allocations change dynamically over time. For

those preferences that generate a strictly positive optimal wealth, the propor-

tion of wealth allocated to stock does exhibit a systematic upward/downward

trend depending on whether the investor is strictly more/less risk averse than

a log utility investor. Moreover, through numerical examples, we show that

the speed of change in asset allocation depends heavily on the risk tolerance

distribution as well. From a preference based perspective, our work provides

answers to the long debated question of whether lifecycle funds should follow

aged-based risk reduction schemes, or exactly the opposite, as some academics

have proposed. While there seem to be no “one-size-fits-all” solutions, in that

the exact path of equity allocation should be designed based on the investor’s

risk attitude towards different proportions of his wealth, our work does tilt

toward the “contrarian” view since even at the subportfolio level, being more

risk-seeking than the log-utility investor is rarely the case.

The second part of our work deals with the problem of preference calibration.

We show how to infer the risk tolerance distribution (hence the initial util-
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ity) based on the investor’s expected returns for different stages of life. As

an application, we study the asset allocation strategy of the Vanguard target

retirement 2045 fund from the forward investment perspective. We find the

forward performance process that best mimics the return function (of horizon)

implied from the fund’s glide path. It turns out that at the year of retirement,

the dynamic forward optimal portfolio generates a more balanced risk-return

profile compare to the deterministic glide path. Although the glide path does

outperform at the most optimistic scenarios (first decile), for all the other

quantiles, the forward portfolio delivers higher returns. For future work, it

will be interesting to conduct empirical tests which compare performances of

deterministic glide path strategies and their forward approximation counter-

part.

While here we focus on the optimal strategy itself, performance related ques-

tions are largely left unexplored. One interesting example would be the connec-

tion between the distribution of risk tolerance parameters and the probability

distribution of optimal wealth at a given horizon, since the portfolio is es-

sentially driven by all the risk tolerance moments. For the calibration part,

a more general problem we did not pursue is to find the theoretical connec-

tion between a given portfolio strategy and the forward strategy closest to it.

This would let us understand, for example, why the Vanguard glide path, a

piecewise linear function, should correspond to a risk tolerance distribution as

simple as the one given in (3.11). These questions will be explored in future

works.
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Chapter 4

Applications in dynamic mean-variance

analysis

4.1 Introduction

Mean-variance analysis has become one of the most widely adopted

portfolio construction tool since its introduction in Markowitz (1952). The

idea is intuitive, a desirable portfolio allocation should achieve the highest

expected return while keeping its risk as small as possible. The method is

easy to implement in that one only needs to estimate the mean and variance

of asset returns and the optimal portfolio weights are obtained by solving a

quadratic program. As a result, most existing works are along the lines of mak-

ing the single period optimal portfolio more practical and yield better out of

sample performance. The focus has been on refining the statistical estimation

procedure or reformulating the optimization program by imposing portfolio

constraints or introduce robust optimization criteria. On a different direc-

tion, some researchers went beyond the “buy-and-hold” framework to study

dynamic mean-variance problems which allow discrete or continuous trading.

However, static or dynamic, all the work done so far is built essentially on the

single period framework, in the sense that a single mean-variance objective

function is imposed at a pre-determined horizon T , which guides every invest-
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ment decision before T . If optimization needs to be carried out repeatedly

in multiple periods, a common practice is to assume the same mean-variance

objective function for every period. So far, to the best of our knowledge, there

has been no research that takes this question to a theoretical level. To fill

this gap, we propose applying the forward theory to the special context of

mean-variance optimization. Compared with the ad hoc choice, the forward

approach imposes time-consistency condition, such that the individual mean-

variance problems are now connected in a way that improves performance in

the long term. The following simple example illustrate the point.

Consider a mean-variance investor who trades between cash (with zero risk-

free rate) and a stock market index. The index has an annualized expected

return of 10%, with 20% volatility. The investor sets a targets return of 8% to

be achieved by the end of the first year, then run the mean-variance optimiza-

tion and starts investing. At t = 1, the investor decides to invest for one more

year. However, according to his estimate, market volatility for the second year

has gone up to 60% (with the same expected return). The question is, facing

the volatility hike, what is the return target the investor should pursue for the

second year? If he keeps seeking an 8% return, then one can compute that

the two year Sharpe ratio is at 0.33. The forward theory on the other hand,

insists that the choice of the second year target should take into account both

the new market condition and portfolio performance in the first year, hence

is a random variable realized at t = 1. We can calculate that, the time zero

average of the second target is merely 0.74%. Therefore, the forward theory
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actually advises the investor to dramatically adjust his target downward in

response to the market volatility increase. The result is that two-year Sharpe

ratio now increases to 1.1, which is a significant improvement compared with

the ad hoc choice.

In the next section, we first construct forward mean-variance in the buy-and-

hold setting, i.e. the underlying single period problems are static problems.

Performance comparison will be made between the forward mean-variance ap-

proach and the ad hoc approach of keeping a constant mean-variance trade-off

coefficient. In particular, we show that in the entire spectrum of market auto-

correlation, the forward approach always outperforms in terms of long term

Sharpe ratio.

In section 4.3, we discuss the dynamic mean-variance problem with continuous-

time trading. We show how the wealth target should be chosen when multiple

dynamic problems are solved sequentially in time. Furthermore, we discuss

the trade-off between solving a single dynamic (backward) problem with long

horizon and splitting it into several forward problems of short horizons. We

find that even a slight model risk suffices to justify the latter approach. Sec-

tion 4.4 deals with robust mean-variance in continuous time, and its forward

generalization. Section 4.5 concludes.
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4.2 Forward mean-variance with discrete valuation and
static trading

We consider a fund manager faces the task of managing a portfolio

for twenty years, with rebalancing occurring at the beginning of each year.

What approach should he choose for this problem? The theoretically best

approach is to run a dynamic optimization, and solve all optimal decisions in

the future using the dynamic programming principle. If we denote by {ωt}19
t=0

the portfolio strategies at t = 0, 1, . . . , 19, and denote X20 the terminal wealth,

the manager solves the single optimization program,

max
ω0,...,ω19

Eµ,Σ[Xω
20]− γ

2
Varµ,Σ(Xω

20) (4.1)

This approach is termed by some as the dynamic mean-variance. When asset

returns are normally distributed and independent over time, the above problem

has been solved in closed form by Li and Ng (2000). Under much more general

model assumptions, one may apply the linear approximation scheme of Collin-

Dufresne et al. (2003). In practice, however, the manager may be aware that

to actually adopt the solution he would have to assume the market parameters

µ, Σ, that he estimated initially, are valid for the entire twenty year horizon.

Realizing that it is unlikely the case, he might feel safer to simply optimize

one year at a time. Hence, the following sequence of one-period mean-variance

problems are solved instead,

max
ωt

Eµt,Σtt [Xωt
t+1]− γt

2
Varµt,Σtt (Xωt

t+1), t = 0, . . . , 19 (4.2)
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The obvious advantage is that µt, Σt can now be updated each year based

on new information. Indeed, this is the framework adopted by most existing

literature when empirically testing the performance of mean-variance optimal

portfolios. An important question then arises: how shall one choose the se-

quence of mean-variance tradeoff parameters {γt}?

Before starting the discussion, it is necessary to point out that the mean-

variance problem proposed by (4.2), which aims at optimizing the wealth vari-

able, can be equivalently formulated to optimizing the variable of returns,

max
ωt

Et[Re
t+1]− γt

2
Vart(R

e
t+1), t = 0, . . . , 19 (4.3)

Here Re
t+1 = Xt+1

Xt
−Rf is the excess return at time t.

Obviously, if one is concerned only about optimizing in a single period, it makes

no difference to pick either formulation, since the corresponding γt parameters

only differ by a multiple of Xt. However, if one aims to define a series of

mean-variance problems inter-connected through time, formulations (4.2) and

(4.3) need to be treated separately as they lead to different approaches. We

defer discussing the differences to the end of the section.

In the empirical mean-variance literature, the convention is to consider formu-

lation (4.3) with the γ parameter assumed to be time-independent, i.e.

γt = γ, ∀t.

However, such a choice is ad hoc in at least two ways. Firstly, γt = γ does not

take into consideration portfolio performances up to t, hence the sequence of
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mean-variance problems are virtually a naive concatenation of unrelated in-

dividual problems. While it does not affect single-period performance, multi-

period performance, which depend heavily on the autocorrelation of portfolio

returns, is left entirely to chance. On the other hand, from a preference per-

spective, the manager is indeed likely to determine the objective of the current

period based on performances of the previous periods.

Secondly, a time-independent γt does not compare market conditions at differ-

ent times. For example, if volatility estimate for this year has doubled, does

this imply the same person would want to keep the γ parameter the same?

To tackle this issue, it is necessary to establish a multi-period mean-variance

theory that connects forward in time the single-period problems in an eco-

nomically meaningful way. Moreover, for the theory to be practically imple-

mentable, the inputs required to determine γt should be no more than the

market parameters for the current period. Therefore, the forward approach

described in previous chapters, which provides consistent, forward in time op-

timization, becomes a natural candidate for prescribing a reasonable dynamic

structure on γt. Indeed, this idea was considered by Musiela et al. (2015),

based on the view that the (time-dependent) mean-variance portfolio of (4.3)

can be considered as a time-discretization of the optimal portfolio of a time-

monotone forward utility. To see this, let U(x, t) = u(x,At) denote a forward

utility process. If we discretize the time dimension and solve for the optimal

portfolio policy at each small time interval [t, t+ ∆t], then at each t we face a
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single-period utility maximization problem

max
ωt

Et[u(Xω
t+∆t, At)]. (4.4)

Considering the Taylor series expansion of u(Xω
t+∆t, At) around the point Xt

yields

u(Xω
t+∆t, At) ≈ u(Xt, At) + u′(Xt, At)∆Xt +

1

2
u′′(Xt, At)(∆Xt)

2 + o(∆t),

where ∆Xt = Xω
t+∆t −Xt.

In particular, as ∆t approaches 0, we can replace the difference operator by

the differential operator and omit the high order terms in ∆t. Then taking

expectation on both sides then gives

Et[u(Xω
t+∆t, At)] ≈ u(Xt, At) + u′(Xt, At)E[dXt] +

1

2
u′′(Xt, At)Vart(dXt).

Note that Et[(dXt)
2] is replaced by Vart(dXt) because they only differ by

(E[dXt])
2, a term of order (∆t)2.

If we use Rt = dXt
Xt

to denote the portfolio return at [t, t + ∆t], then the

above equation implies that the single-period utility maximization problem is

equivalent to the mean-variance problem

max
ωt

Et[Rt] +
1

2

u′′(Xt, At)Xt

u′(Xt, At)
Vart(Rt). (4.5)

Therefore we arrive at a natural choice for the mean-variance trade off param-

eter γ,

γt = −u
′′(Xt, At)Xt

u′(Xt, At)
=

1

r̃(Xt, At)
, (4.6)
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where r̃(x, t) as before denotes the relative risk tolerance function.

To the best of our knowledge, the above idea of Musiela et al. (2015) is the

first one that discusses dynamic choice of γ in a multi-period mean-variance

setting. The time-consistency of the forward approach thus guarantees that

the sequence of mean-variance problems defined by γ in (4.6) is infinitesimally

time-consistent. However, the downside is, by construction, that the approach

is valid only if ∆t can be considered as very small. For large ∆t, the sequence

of mean-variance problems become a poor approximation of the underlying for-

ward utility problem, hence time-consistency might break down. This brings

up another serious issue. This method requires that the timing of updating γ

coincides with that of trading. In reality, however, it is more natural for an

investor to revise his objective function less frequently than for him to trade.

To address these issues, we propose in this chapter an alternative construction

for γt. Our approach is more restrictive in that, as we will show, it only ac-

commodates quadratic type forward performance. However our approach does

not rely on ∆t being small. Moreover, it is straightforward to generalize it to

the case that trading and preference update can occur at separate frequencies.

For the rest of the section, we limit our discussion to the case where trading

and updating γ occur discretely and at same times. Starting from section 4.3,

we proceed with the “discrete-continuous” case, where the investor still solves

a sequence of mean-variance problems as defined in (4.2), but trades continu-

ously within each sub-period.
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4.2.1 Forward mean-variance with risk-free asset

To illustrate the main idea of our approach, we consider the simplified

problem of only two trading periods, say [0, T ] and [T, T̃ ]. The market consists

of n risky assets S1, S2, . . . , Sn and a risk-free asset S0. At t = 0, the investor

has estimated that the total returns Ri
0 =

SiT
Si0

follow the normal distribution

R0 = [R1
0, R

2
0, . . . , R

n
0 ] ∼ N(µ0,Σ0),

where µ0 = [µ1
0, µ

2
0, . . . , µ

n
0 ]′ and Σ0 denote the vector of expected returns and

the covariance matrix. With initial risk aversion parameter γ0, the investor

solves at t = 0

max
ω0

E[Xω0
T ]− γ0

2
Var(Xω0

T ), (4.7)

where ω0 = [ω1
0, ω

2
0, . . . , ω

n
0 ]′ denote the proportion of wealth invested in

S1, S2, . . . , Sn. At t = T , the investor re-estimates the market parameters

(µT ,ΣT ), decides on a new parameter γT and solves the updated mean-variance

problem

max
ωT

ET [XωT
T̃

]− γT
2

VarT (XωT
T̃

). (4.8)

We now aim to determine γT such that a reasonable connection between the

two problems can be established. To this end, we apply the forward ap-

proach introduced in Chapter 2. Recall that in the continuous time setting,

the utility process Ut(x) is called a forward utility if it satisfies the martingale-

supermartingale condition

Us(x) = max
ω

E[Ut(X
ω
t )|Xs = x], ∀ t > s ≥ 0. (4.9)
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In our current setting where time is discretized, there is a discrepancy between

the times when the utility is applied and it is determined. For example, the

utility U0(x) determined at 0 is applied to evaluate portfolio payoff at t = 1.

We now state the definition that reflects the correct measurability condition.

Definition 4.2.1. A stochastic sequence of utility functions {Ut(x)}∞t=0 defined

on the probability space (Ω,F,P) is called a forward utility if the following

conditions are satisfied for t = 0, 1, . . .

(i) Ut(x) is increasing, concave, twice continuously differentiable and satis-

fies the Inada condition.

(ii) Ut(x) is measurable w.r.t. Ft

(iii) For any admissible wealth process {Xt}∞t=0, the utility process {Ut(Xt+1)}∞t=0

is a supermartingale. And there exists an admissible wealth process

{X∗t }∞t=0 such that {Ut(X∗t+1)}∞t=0 is a martingale. In other words, for

any t > s > 0 we have

Us−1(x) = max
ω

Es[Ut−1(Xω
t )|Xs = x]. (4.10)

The above definition however, is not directly applicable to construct-

ing mean-variance preferences in a forward manner. The reason is that the

variance operator does not enjoy the tower property of conditioning. Hence

condition (iii) above would lose meaning. To circumvent this issue, we apply

the well known result that for the classical, single period mean-variance, there
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is an equivalent quadratic utility preference which yields the same optimal

portfolio.

Proposition 4.2.2. The quadratic utility problem,

max
ω0

E[Xω0
T −

δ0

2
(Xω0

T )2], (4.11)

is equivalent to the mean-variance problem (4.7) if and only if

1

δ0

=
1

γ0

(1 + µe0
′Σ−1

0 µe0) + rfX0. (4.12)

Here µe0 = [µ1
0 − rf , . . . , µn0 − rf ]′ denote the vector of excess returns.

Proof. See Appendix C.1.

Applying the above result at each trading period (t, t + 1], “transforms” the

sequence of mean-variance preferences to a sequence of quadratic utility pref-

erences. This allows us to completely bypassing the trouble of sequential

conditioning of the variance operator. Natually, we can now define the notion

of forward mean-variance in terms of its forward quadratic utility counterpart.

Definition 4.2.3. A sequence of mean-variance preferences {MVt}∞t=0 is called

a forward mean-variance if the corresponding quadratic utility sequence {Ut}∞t=0

(determined by (4.12)) is a forward performance satisfying Definition 4.2.1.

The construction of forward mean-variance can thus be implemented by iter-

atively performing the following steps:
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1. At t, estimate the market parameters (µt,Σt), and apply equation (4.12)

to find δt.

2. At t+ 1, solve the forward quadratic utility problem to determine δt+1

3. Re-estimate the market parameters (µt+1,Σt+1), and apply equation

(4.12) again to find γt+1.

Now only the second step is yet to be solved. In the previous two-period

example, suppose that at t = 0 the first period quadratic utility U0(x) =

x − δ0
2
x2 has been determined through equation (4.12). Then at t = T , we

need to solve the reversed optimization problem, in that we need to determine

the quadratic utility UT (·) at T , such that

U0(x) = max
ωT

ET [UT (XωT
T̃

)|XT = x]. (4.13)

Here UT (x) is a general quadratic utility of the form,

UT (x) = aT (x− δT
2
x2) + bT ,

where aT , bT and δT are parameters measurable w.r.t. FT . We now look for

the appropriate coefficient δT , such that equation (4.13) is satisfied.

Proposition 4.2.4. The quadratic utilities U0(x) = x − δ0
2
x2 and UT (x) =

aT (x− δT
2
x2) + bT satisfy equation (4.13) if and only if

δT =
δ0

rf
. (4.14)

Proof. See Appendix C.1.
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We are now ready to derive the main result following proposition 4.2.2

and 4.2.4.

Theorem 4.2.5. A sequence of mean-variance preferences parameterized by

{γt}∞t=0,

Et[Xt+1]− γt
2

Vart(Xt+1) (4.15)

is a forward mean-variance preference if and only if for t = 1, 2, . . ..

1

γt
= rf

( 1

γt−1

1 + µet−1
′(Σt−1)−1µet−1

1 + µet
′(Σt)−1µet

+
rfXt−1 −Xt

1 + µet
′(Σt)−1µet

)
. (4.16)

Proof. See Appendix C.1.

We can see from equation (4.16) that the way γt is updated now takes

into consideration the market condition estimated at t, and the performance

realized in the previous period. In fact, the interpretation (4.16) is more

straightforward if we re-write the mean-variance problems in terms of the

return variable.

max
ωt

Et[Re
t+1]− γ̃t

2
Vart(R

e
t+1)

Under this parameterization, we obtain that γ̃t = γtXt. Then (4.16) implies

that

1

γ̃t
=

rf
Rt+1

( 1

γ̃t−1

1 + θ2
t−1

1 + θ2
t

−
Re
t+1

1 + θ2
t

)
. (4.17)

Here Rt+1 and Re
t+1 are the total and excess returns realized at t + 1, and

θt :=
√
µet
′(Σt)−1µet denotes the market Sharpe ratio estimated at t. Hence,

as opposed to the common practice assumption that the investor maintains
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a constant γ̃ over time, the investor under forward mean-variance would de-

crease his risk appetite if he anticipates an improvement in market conditions,

as indicated by the term
1+θ2t

1+θ2t−1
, or if he realized a poor performance in the last

period. In particular, in the knife edge case that the portfolio return coincides

with the risk-free rate and market condition stays unchanged, we would have

γ̃t+1 = γ̃t.

4.2.2 Multi-period performance analysis

We have mentioned in the previous section that one of the motiva-

tions of introducing forward mean-variance is to establish a (time-consistent)

connection between the individual mean-variance problems solved in each pe-

riod. Although the new approach has no impact on single period performances

(since optimal mean-variance portfolio always achieves the highest single pe-

riod Sharpe ratio, regardless of the choice for γ), performance evaluated over

multiple periods will differ depending on the dynamic choice of γt. In this sec-

tion, we conduct a comparative study, between the forward approach of setting

γ and the conventional approach of keeping γ constant, under a market where

the risky asset returns are serially correlated.

The reason we introduce serial correlation is twofold. First, we have seen from

(4.17) that the investor will decrease risk if he did relatively well in the past.

This is a type of dynamic strategy that is sensitive to return serial correla-

tion. The second reason comes from the fact the investor compares market
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conditions. Again, by (4.17), γ will be set higher or lower if he estimates an

increase or decrease in the market Sharpe ratio. Hence, the predictability in

asset returns introduced by autocorrelation makes this consideration on γ non-

trivial as well. As a result, we believe that the simple autoregressive model is

a parsimonious approach that highlights the two main features of the forward

mean-variance preference.

For the rest of the section, we first focus on the γ parameter itself. In partic-

ular, we quantify the impact of a market shock in a single period to the value

of γ in the next period. We will see that the past performance effect and the

market condition effect discussed above actually influence the future value of

γ in opposite directions.

Next, we compare the long term performances measured as unconditional

Sharpe ratio. It turns out that the forward investor always outperforms the

conventional investor regardless of the way returns are correlated. This result

is in fact related to the studies of Dybvig and Ross (1985a,b), Ferson and

Siegel (2001), which we will discuss at the end of this section.

Suppose the investor solves two consecutive mean-variance problems, at t = 0

and t = 1, trading between a single risky and risk-free asset. The excess return

of the risky asset is assumed to follow an AR(1) process,

Re
t+1 − µ = β(Re

t − µ) + εt+1,

where µ denotes the long term mean, and εt+1 is i.i.d. normal with variance

σ2. Assume also that the initial period return follows the long run stationary

distribution, which can be written as Re
1 = µ + ε1, with ε1 ∼ N(0, σ2

1−β2 ).
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Hence Re
2 = µ+ βε1 + ε2.

We study two types of mean-variance investors, defined by {γCt }t=0,1 and

{γFt }t=0,1, with γC0 = γF0 = γ, using the superscripts C and F to denote

the “classical” and the “forward” approaches. At t = 1, γF1 is set accord-

ing to the forward mean-variance formula (4.16), while γC1 is simply γX0

X1
(i.e.

γ̃C1 = γ̃C0 ). The initial wealth is set at 1, without loss of generality.

For the first period [0, 1], the investors solve identical problems as they start

with the same initial γ. Based on the above model assumptions, the market

parameter estimates for the first period would be,

µe0 = µ and σ2
0 =

σ2

1− β2

The portfolio strategy at 0 is given by ωC0 = ωF0 = 1
γ
µ0
σ2
0
, which implies that the

wealth at t = 1 is given by

XC
1 = XF

1 =
1

γ

µ0

σ2
0

Re
1 + rf =

1

γ

1− β2

σ2
(µ2 + µε1) + rf .

At t = 1, the optimal portfolio strategy is given by

ω∗1 =
1

γi1X1

µ1

σ2
1

, i ∈ {C,F}.

To study the difference in risky asset holdings at t = 1, we focus on the more

relevant quantity 1
γ̃1

= 1
γ1X1

(instead of γ1 itself). The conventional investor

would simply set his new preference as

1

γ̃C1
=

1

γ
.
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The forward investor, however, would first need to re-estimate market param-

eters

µ1 = βε1 + µ, σ2
1 = σ2,

and then apply equation (4.16) to find 1
γF1

=
rf
γ
σ2−(1−β2)µε1
σ2+(µ+βε1)2

, or, equivalently

1

γ̃F1
=

1

γF1 X1

= rf
(σ2 − (1− β2)µε1)σ2

(σ2 + (µ+ βε1)2)((1− β2)(µ2 + µε1) + γrfσ2)
. (4.18)

To understand how does 1
γ̃F1

relates to asset performance in the first period,

measured by the unexpected return ε1, first consider the case β = 0, that is,

the returns for the two periods are i.i.d. As mentioned before, in setting γF1 ,

the forward investor would take into account both past performances and the

updated estimate of the market. When β = 0, the second effect vanishes.

Hence, 1
γ̃F1

depends on ε1 solely through the performance effect, and as it is

suggested by (4.17), the dependence is negative since good performance in the

past would induce the investor to reduce risk. The observation is verified in

mid panel of Figure 4.1. When β 6= 0 however, the second effect is also present.

If β is negative, a positive ε1 not only means positive portfolio performance

but also a lower expected return in the next period, as indicated by

µ1 = E1[Re
2] = µ+ βε1.

Therefore by (4.17), the lower estimate for θ1 would prompt a forward investor

to increase risk so that sufficient return is guaranteed. As shown in the left

panel of figure 4.1, the market effect and performance effect do introduce
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Figure 4.1: 1
γ̃F1

vs. ε1.

competing impacts and they interplay to dominate at different locations of

the ε1 domain.

Next, we analyze the long term performance measured as the two-period

Sharpe ratio,

θ0,2 :=

√
E[X2]− r2

f

Var(X2)
.

To calculate θ0,2, first we explicitly calculate the optimal wealth at t = 2,

XC
2 =

(1

γ

1− β2

σ2
(µ2 + µε1) + rf

)((µ+ βε1)(µ+ βε1 + ε2)

γσ2
+ rf

)
XF

2 =
rf
γσ2

(
(µ+ βε1)(µ+ βε1 + ε2)

σ2 − (1− β2)µε1
σ2 + (µ+ βε1)2

+ (1− β2)(µ2 + µε1)

)
+ r2

f .

In turn, the moments of the terminal wealth as well as θ0,2 can be calculated

using Monte Carlo simulation. As shown in figure 4.2, the two-period Sharpe

ratio varies wildly as β changes. However, the forward investor always outper-

forms, irrespective of the direction and magnitude of return autocorrelation.

Unlike the conventional investor, the forward investor is able to capture the

high benefit of strong return predictability, realizing sizable Sharpe ratio at

both ends of the β interval. Comparing the two plots in figure 4.2, the per-
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Figure 4.2: Two-period Sharpe ratio vs. AR coefficient

formance gap is even larger when both investors are more risk-seeking in the

initial period.

The above difference in multi-period performance is best understood from

the perspective of Hansen and Richad (1987), Dybvig and Ross (1985a,b) and

Ferson and Siegel (2001), who studied performance measurement using con-

ditioning information. The authors pointed out that, when a fund manager

constructs mean-variance optimal portfolios based on more refined informa-

tion sets, the portfolio might be seen as inefficient by outside investors who

evaluates moments of returns based on coarser information. In fact, if we re-

formulate the single period problem studied in Ferson and Siegel (2001) into

a two-period forward mean-variance problem, the forward optimal portfolio

exactly coincides with the unconditionally optimal portfolio they derived. To
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show this, consider the following model for the risky asset return at t = 1,

R1 = µ(s) + ε.

Here s is a random signal, which can be observed by the fund manager but

cannot be observed by outside investors. The market noise ε, conditional on

s, is normally distributed with mean 0 and variance σ2
ε (s).

The manager who can observe the signal will optimize the conditional mean-

variance preference,

Es[rf + ω(s)(R1 − rf )]−
γs
2

Vars(ω(s)(R1 − rf )), (4.19)

where we use ω(s) to denote the manager’s portfolio based on the observed

signal s. On the other hand, an “outside” investor who cannot observe s would

evaluate the portfolio with the unconditional mean-variance preference,

E[rf + ω(s)(R1 − rf )]−
γ

2
Var(ω(s)(R1 − rf )). (4.20)

This unconditional problem was solved by Ferson and Siegel (2001). They

showed that the optimal portfolio is given by

ω∗(s) =
1

γ

µ(s)− rf
(µ(s)− rf )2 + σ2

ε (s)
. (4.21)

However, a relevant question not explicitly stated in Ferson and Siegel (2001) is

the following: in order to achieve the outside investor’s unconditional objective

(4.20), how should the fund manager, who only solves conditional problems,

determine the trade-off parameter γs to be applied to problem (4.19)? If he

simply set γs = γ, he would obtain the solution

ω(s) =
1

γs

µ(s)− rf
σ2
ε (s)

=
1

γ

µ(s)− rf
σ2
ε (s)

,
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which is clearly different from (4.21), hence is not unconditionally optimal, as

evaluated by the outside investor.

Now we look at the manager’s problem from a forward mean-variance per-

spective. Assume that there is an actual time, denoted as ts, 0 < ts < 1, at

which the signal s is indeed revealed to the manager. We can then consider

the manager’s problem as a two-period forward mean-variance problem, de-

fined at [0, ts] and [ts, 1]. Before ts, with the investor’s objective in mind, the

manager would set his initial risk-return trade-off parameter as γ. However,

after he observes s at ts, the forward theory suggests that γ be updated to γs

according to (4.16),

1

γs
= rf

(1

γ

1 + θ2
0

1 + θ2
ts

+
rfX0 −Xts

1 + θ2
ts

)
. (4.22)

However, [0, ts] is an “artificial” time interval, inside which no trading oppor-

tunity is available. Hence we have θ0 = 0, rf = 1 and Xts = X0. At ts with

s observed, the manager would estimate θ2
ts =

(µ(s)−rf )2

σ2
ε (s)

. Equation (4.22) then

becomes,

1

γs
=

1

γ

1

1 +
(µ(s)−rf )2

σ2
ε (s)

. (4.23)

Therefore, the manager’s conditional portfolio is given by

ω(s) =
1

γs

µ(s)− rf
σ2
ε (s)

=
1

γ

1

1 +
(µ(s)−rf )2

σ2
ε (s)

µ(s)− rf
σ2
ε (s)

=
1

γ

µ(s)− rf
(µ(s)− rf )2 + σ2

ε (s)
,

which is exactly the same as the unconditionally optimal portfolio in (4.21)

derived by Ferson and Siegel (2001).

We can now understand the performance gap found in our previous example.
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From the perspective of Ferson and Siegel (2001), the forward investor achieves

“efficient use of conditioning information”, by optimally setting γ1 based on

the observed signal, which in this case is the market shock ε1. On the other

hand, the conventional investor who keeps a constant γ ignores conditioning

information conveyed by ε1, hence cannot obtain portfolio that is efficient when

evaluated based on information sets at t < 1. Therefore we see the difference

in two-period Sharpe ratio, which by definition is an unconditional measure.

4.2.3 Forward mean-variance without risk-free asset

In the first section we considered an asset market where a risk-free as-

set is available. The corresponding forward mean-variance strategy can be

considered as a dynamic trading strategy between the risk-free asset and the

tangency portfolio (with relative weights determined by γt). However, there

has been ample evidence showing that, in practice, the portfolio that mini-

mizes variance alone actually achieves much higher risk adjusted return than

the tangency portfolio (e.g. Jagannathan and Ma (2003)). Hence in this

section we re-derive forward mean-variance requiring full investment (i.e. no

risk-free asset available). The resulting optimal strategy then becomes a dy-

namic rebalancing strategy between the tangency portfolio and the minimum

variance portfolio. In particular, the forward strategy degenerates to the min-

imum variance strategy if the investor estimates the same expected returns for

all the risky assets.

We follow exactly the same logic as in section 4.1 Firstly, for any single pe-
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riod mean-variance problem, we determine the quadratic utility problem that

generates the same optimal portfolio. Then, we proceed with the multi-period

setting, and derive the equation showing the time-evolution of the forward

quadratic utility coefficients, under the additional portfolio weight constraint.

Finally, we map the forward quadratic utility problem back to forward mean-

variance problem, completing our proposed construction.

The single period mean-variance now takes the form,

max
ω

E[Xω
T ]− γ

2
Var(Xω

T )

subject to: ω1 + ω2 + . . .+ ωn = 1
(4.24)

Let λ denote the Lagrange multiplier of the weights constraint. Then, (4.24)

can be rewritten into the unconstrained problem,

max
ω

ωµX0 −
γ

2
(ωΣω′)X2

0 − λωe, (4.25)

where e denote the column vector of all 1’s. Then, the first order condition

gives

µX0 − γΣω′X2
0 − λe = 0.

Therefore, ω∗′ = 1
γX2

0
Σ−1(µX0 − λe) and λ = µ′Σ−1e

e′Σ−1e
X0 − 1

e′Σ−1e
γX2

0 . In

other words, we have found the single period optimal portfolio

w∗MV
′ =

1

γX0

Σ−1(µ− rve) + ωv,

where ωv = Σ−1e
e′Σ−1e

and rv = µ′Σ−1e
e′Σ−1e

are the weights and expected return of the

minimum variance portfolio.
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On the other hand, we may solve the fully invested quadratic utility problem

max
ω

ωµX0 −
δ

2
ωΘω′X2

0

subject to: ω1 + ω2 + . . .+ ωn = 1,

(4.26)

where Θ = Σ+µµ′ denote the second moment matrix. Similarly, we can derive

the solution,

w∗QU
′ =

1

δX0

Θ−1(µ− rue) + ωu,

where ωu and ru denote the weights and expected return of the minimum

second moment portfolio.

Now, our objective is to find the γ, δ correspondence such that the w∗MV and

w∗QU are the same. The result is analogous to the one in Proposition 4.1.1.

Proposition 4.2.6. The optimal portfolio strategies for (4.24) and (4.26)

coincides if and only if

1

δ
=

1

γ

(
1 + (µ′ − rve)Σ−1(µ− rve)

)
+ rvX0. (4.27)

Proof. See Appendix C.1.

Comparing Propositions 4.2.2 and 4.2.6, the results are surprisingly

similar. When a risk-free asset is unavailable, the manager simply synthesizes

a risky portfolio that is closest to being “risk-free”, and the expected return

of this (minimum variance) portfolio is treated as the risk-free rate. However,

the analogy stops here. In the next step, where we derive the updating scheme

of the forward quadratic utility coefficient, we no longer have that, δ̃ = δ
rTv

.

The reason is that our “risk-free” asset is not actually risk-free. Therefore its

100



covariance with other risky assets will distort the upcoming quadratic utility

coefficient.

Before discussing the forward quadratic performance in this setting, we first

derive the value function of a one period quadratic utility problem. Recall

that w∗QU
′ = 1

δX0
Θ−1(µ− rue) + ωu. Therefore, we easily obtain that

V0 = E[w∗QUR]X0 −
δ

2
E[(w∗QUR)2]X2

0

= w∗QUµX0 −
δ

2
w∗QUΘw∗QU

′X2
0

= ru
(
X0 −

δ

2

ωuΘω
′
u

ru
X2

0

)
+ c,

(4.28)

where c is a function of market parameters which does not depend on X0.

Moreover, since wu = Θ−1e
e′Θ−1e

and ru = µ′Θ−1e
e′Θ−1e

, it can be verified that

ωuΘω
′
u

ru
=

1 + µ′Σ−1µ

µ′Σ−1e
.

Therefore, we readily see that the coefficient δ gets scaled by 1+µ′Σ−1µ
µ′Σ−1e

. To

interpret this constant, let Rv denote the realized return of the minimum

variance portfolio and Rµ the return of the (tangency) mean-variance efficient

portfolio with weights ωµ = Σ−1µ
e′Σ−1µ

. It can be verified that,

1 + µ′Σ−1µ

µ′Σ−1e
=

E[RvRµ]

E[Rv]
.

In the case that a risk-free asset does exist, both the tangency and the mini-

mum variance portfolio become the risk-free asset itself. Thus, the above ratio

degenerates to rf .

To illustrate the time evolution of the forward quadratic coefficient, consider
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the two trading periods [0, T ] and T, T̃ ], with market parameters µ0, Σ0 and

µT , ΣT . At t = 0 and t = T , the investor optimizes the quadratic utilities

Ut(X) = x− δt
2
x2, t = 0, T . We now derive the equation that δ0, δT should sat-

isfy such that U0(x) and UT (x) are time-consistent, in the sense of Definition

4.2.1.

Proposition 4.2.7. The quadratic utility problems defined by U0(x) and UT (x)

are time-consistent if and only if,

δT =
µT
′ΣT

−1e

1 + µT ′ΣT
−1µT

δ0. (4.29)

The proof follows directly from equation (4.28). Combining Proposi-

tions 4.2.6 and 4.2.7, we arrive at the main result.

Theorem 4.2.8. Following the notation of Theorem 4.2.5, the sequence of

coefficient {γt} defines a forward mean-variance preference if, for t = 1, 2, . . .,

1

γt

(
1 + (µt

′ − rvt e′)(Σt)
−1(µt − rvt e)

)
+ rvtXt

=
1 + µt

′(Σt)
−1µt

µt′(Σt)−1e

(
1

γt−1

(
1 + (µt−1

′ − rvt−1e
′)(Σt−1)−1(µt−1 − rvt−1e)

)
+ rvt−1Xt−1

)
.

(4.30)

Here

rvt :=
µt
′(Σt)

−1e

e′(Σt)−1e

is the expected return of the global minimum-variance portfolio at [t, t+ 1].

Proof. By Proposition 4.2.6, the equivalent quadratic utility coefficients at

time t− 1 and t are given by,

1

δi
=

1

γi

(
1 + (µi

′ − rvi e′)(Σi)
−1(µi − rvi e)

)
+ rviX

i, i = t− 1, t.
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By Proposition 4.2.7, time-consistency is satisfied if

δt =
µt
′(Σt)

−1e

1 + µt′(Σt)−1µt
δt−1.

Combining the above equations we obtain (4.30).

Recall that we have derived before,

ω∗t =
1

γtXt

Σ−1
t (µt − rvt e) + ωvt = ηtω

µ
t + (1− ηt)ωvt ,

where ωµt , ωvt are the portfolio weights of the tangency and minimum variance

portfolios at t, and

ηt =
µt
′(Σt)

−1e

γtXt

.

Therefore, the forward mean-variance strategy is essentially a dynamic rebal-

ancing strategy between the tangency and minimum variance portfolios, with

relative weights determined by γt. Compared with equation (4.16), γt deter-

mined by (4.30) also takes into account relative market condition as well as

past performance. However, here “market condition” is no longer measured as

the Sharpe ratio, but as the information ratio of the tangency portfolio, with

the minimum variance portfolio chosen as the benchmark asset. Indeed, it is

straightforward to verify, that the information ratio, denoted by IRt, is given

by

IRt :=
Et[Rµ

t+1 −Rv
t+1]√

Vart(R
µ
t+1 −Rv

t+1)
= (µt

′ − rvt e′)(Σt)
−1(µt − rvt e).

Therefore, (4.30) implies that the forward investor will increase γ in the case

that he estimates a higher IRt. In particular, the case of “no information”
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comes when the investor cannot distinguish expected returns of the risky as-

sets, µ = ke, for some k ∈ R. Then, we have that ωµt = ωvt , ω
∗
t = ωvt . The

entire wealth is invested in the minimum variance portfolio. In this case, the

forward mean-variance problem degenerates since we cannot find γt following

(4.30) with IRt = 0.

4.3 Forward mean-variance with discrete valuation and
continuous trading

The forward mean-variance framework established in the previous sec-

tion introduced a special time-concatenation of single period static problems.

Hence, in each trading period, the investor is only allowed to trade once at the

beginning, then hold the portfolio fixed until the end of the period, when the

mean-variance preference gets updated. In other words, trading and prefer-

ence update happen at exactly the same times. However, in reality these are

independent events, therefore an ideal multi-period investment theory should

allow them to occur at separate frequencies. To address this issue, we gen-

eralize the forward framework, such that the investor is permitted to trade

arbitrarily many times within each period. In fact, we will look at the limiting

case and allow for continuous trading. Hence, we look to define the problem

in the following form. Let 0 = t0 < t1 < . . . ti < . . ., on each time interval

[ti, ti+1] the investor solves the mean-variance problem,

max
πs,ti≤s≤ti+1

E[Xπ(ti+1)]− γi
2

Var(Xπ(ti+1)), (4.31)
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where π(s), s ∈ [ti, ti+1] is a continuous rebalancing strategy between ti and

ti+1. Then we aim to apply the idea of the previous section to find the time-

consistent approach to generate the sequence {γi}∞i=0. We stress however,

that since we allow continuous-time rebalancing, the single period problem we

now face becomes the so called dynamic mean-variance optimization problem,

which is no longer trivial to solve. We briefly review recent developments in

dynamic mean-variance in section 4.3.1. In section 4.3.2, we introduce the

notion of predictable forward utility, which generalizes the time-monotone for-

ward utility in chapter 1, such that utility functions are updated only discretely

while trading is continuous. Finally in section 4.3.3, we combine the notions

above and establish our main theory of predictable mean-variance.

4.3.1 Dynamic mean-variance optimization within a single period

Assume that the market consists of n risky assets S1, S2 . . . , Sn, with

dynamics governed by the SDE system,

dSk(t) = Sk(t)
(
µk(t)dt+

K∑
j=1

σkj(t)dWj(t)
)
, k = 1, 2, . . . , n, (4.32)

and one risk-free asset S0, with short rate r(t), i.e.,

dS0(t) = r(t)S0(t)dt.

The parameters µ(t) = [µ1(t), . . . , µn(t)]′ and Σ(t) = {σkj(t)}nk,j=1 are stochas-

tic processes adapted to the filtration generated by the Brownian motion W (t).
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The risk-free rate r(t) is assumed to be deterministic. The dynamic mean-

variance problem defined at a single period [0, T ] aims at finding an optimal

continuous-time self-financing strategy π(t), t ∈ [0, T ], such that the terminal

wealth Xπ(T ) under π maximizes the mean-variance objective function,

E[Xπ(T )]− γ

2
Var((Xπ(T ))2). (4.33)

The above objective function is parameterized by the investor’s trade-off be-

tween the mean and variance of terminal wealth. It is well known that problem

(4.33) can be more intuitively formulated as minimizing the variance while

achieving a target terminal wealth.

minimize
π(t)

Var(Xπ(T )),

subject to: E[Xπ(T )] = d.
(4.34)

It is then straightforward to derive a one-to-one correspondence between γ and

d such that problems (4.33) and (4.34) are equivalent. To make our results

comparable to those in the existing literature, in most of the analysis that fol-

lows we adopt the formulation given by (4.34). Before discussing the results,

it is worth mentioning that there is one specific, well-known issue in the defi-

nition of dynamic mean-variance optimization. Unlike the static counterpart,

the dynamic problem is inherently time-inconsistent, in the sense that for any

t2 > t1 ≥ 0, an optimal policy π∗t1(s) derived at t1 is no longer seen as optimal

at t2, or π∗t2(s) 6= π∗t1(s) for any s > t2. Hence, a policy that is “optimal”

from the perspective of every point in time is virtually non-existent. Most of

the work done so far circumvented this issue by only focusing on the so called
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pre-commitment policy π∗0(s), the policy that is only optimal when seen at

time zero. The first study that truly deals with the issue of time-inconsistency

was Basak and Chabakauri (2010). There, dynamic mean-variance optimiza-

tion was formulated as an intra-personal game, which the investor plays with

different copies of himself at all points in time. Hence the “optimal” policy

was defined as the equilibrium policy, a policy that makes each time-copy of

the investor equally happy. For further results along this line of research, see

Bjork et al. (2014), Bjork et al. (2017).

The drawback with the game-theoretic approach is that the portfolio it gen-

erates is often too conservative. The comparative study of Angoshtari et al.

(2015) found that because of the low risk feature, the annual certainty equiva-

lent return it generates it less than one fifth that of the pre-commitment policy.

For this reason we still adopt the pre-commitment approach for solving each

single period dynamic problems.

The pre-commitment optimal solution to problem (4.34) was first provided

by Bajeux-Besnainou and Portait (1998) and Li and Zhou (2000), under a

log-normal market with deterministic model coefficients. Under a complete

market model with random coefficients, Lim and Zhou (2002) characterized

the optimal portfolio using the techniques of stochastic linear-quadratic con-

trol. Furthermore, also assuming market completeness, Bielecki et al. (2005)

employed the convex duality argument to derive the efficient portfolio under

no-bankruptcy constraints. Xiong and Zhou (2007) considered the case of par-

tial information, in which the model parameters are uncertain and needs to be
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learned. For dynamic mean-variance with transaction cost and more general

trading constraints, see Dai et al. (2010), Hu and Zhou (2005).

We now follow the idea of Bielecki et al. (2005) and describe the method for

solving problem (4.34). Let Z(t) denote the stochastic discount factor process.

It follows easily that

dZ(t) = Z(t)(−r(t)dt− λ(t) · dW (t)),

where λ(t) = Σ−1(t)(µ(t)− r(t)e) denote the market price of risk vector. The

self-financing constraint can be simply expressed as,

E[Xπ(T )Z(T )] = X(0).

Hence, we can rewrite problem (4.34) as

minimize
π(t)

Var(Xπ(T )),

subject to: E[Xπ(T )] = d, E[Z(T )X(T )] = X(0).
(4.35)

By proposition 4.1 of Bielecki et al. (2005), there exists a pair of deterministic

coefficients η1 and η2, such that the above is equivalent to the unconstrained

optimization,

minimize
π(t)

E[(Xπ(T ))2]− 2η1(T )E[Xπ(T )]− 2η2(T )E[X(T )Z(T )], (4.36)

From the first order condition we have

X∗(T ) = η1(T ) + η2(T )Z(T ),

For some η1(T ) and η2(T ). Then η1 can η2 can be obtained by solving the

system of equations{
η1(T ) + η2(T )E[Z(T )] = d,

η1(T )E[Z(T )] + η2(T )E[(Z(T ))2] = X(0).
(4.37)
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Therefore,

η1(T ) =
dE[(Z(T ))2]−X(0)E[Z(T )]

Var(Z(T )
, η2(T ) =

X(0)− dE[Z(T )]

Var(Z(T ))
.

We now have an explicit solution for the optimal terminal wealth,

X∗(T ) =
dE[(Z(T ))2]−X(0)E[Z(T )]

Var(Z(T )
+
X(0)− dE[Z(T )]

Var(Z(T ))
Z(T ). (4.38)

Finally, the optimal portfolio π∗(t) is obtained by solving the backward stochas-

tic differential equation

dX∗(t) = rX∗(t)dt+ (µ(t)− r(t)e)π(t)′dt+ Σ(t)π(t)dW (t), (4.39)

where the terminal condition is given by (4.38). In particular, when the market

parameters are deterministic, the above BSDE can be solve be in closed form,

yielding

π∗(t) = −(Σ(t)Σ(t)′)−1(µ(t)− r(t)e)′[X∗(t)− φe−
∫ T
t r(s)ds], (4.40)

where

φ :=
d−X(0)e

∫ T
0 (r(t)−|λ(t)|2dt

1− e−
∫ T
0 |λ(t)|2ds

. (4.41)

4.3.2 Predictable forward performance process

In section 4.2.1 we have defined the discrete time forward utility pro-

cess. However, the definition requires the underlying single period problems

to be static, hence dynamic rebalancing is not allowed. For this reason, in this

section we apply the theory of predictable utility process recently established
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in Angoshtari et al. (2015), where the authors assumed continuous or discrete

trading under discretely updated utility functions. We recall their definition

below.

Assume that an investment paradigm is defined over a probability space (Ω,F,P)

augmented with the filtration (F)t, t ≥ 0, and that the set of the admissible

wealth processes is denoted by A. (See Angoshtari et al. (2015) for further

details.)

Definition 4.3.1. Let 0 = t0 < t1 < . . . < ti < . . . be a sequence of points

in time, and {G}i, i = 0, 1, . . . be a sub-filtration, i.e. Gi ⊂ Fti . A family of

random functions {Ui(·)}i≥0 is a forward performance criteria if:

(i) Ui(·) ∈ C2(R+) is Gi−1-measurable, increasing, concave and satisfy the In-

ada conditions, for i = 0, 1, . . ..

(ii) For any admissible wealth process X(t), t ≥ 0, the discrete process

{Ui(X(ti))}i≥0 is a {Gi}-supermartingale, namely

Ui−1(X(ti−1)) ≥ E
[
Ui(X(ti))|Gi−1

]
, ∀i = 0, 1, . . . X(t) ∈ A. (4.42)

(iii) There exists an admissible wealth process {X(t)∗}, such that {Ui(X(ti)
∗)}

is a {Gi}-martingale, i.e.

Ui−1(X∗(ti−1)) ≥ E
[
Ui(X

∗(ti))|Gi−1

]
, ∀i = 0, 1, . . . (4.43)

To implement the above framework, one specifies an initial utility input

U0(x) at t = 0. The investment problem at [ti−1, ti] is solved by recursively

following the procedure described below.
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1. At ti−1, estimate a model Mi which describes the dynamics of the market

at [ti−1, ti].

2. Find Ui by solving the inverse optimization problem,

Ui−1(x) = max
π∈A

EMi
ti−1

[Ui(X
π(ti))|X(ti−1) = x]. (4.44)

3. Solve optimal portfolio strategy πt, t ∈ [ti, ti+1] by,

π = argmax
π∈A

EMi
ti−1

[Ui(X
π(ti))|X(ti−1) = x]. (4.45)

Note that the major advantage of the above framework is that model

specification as well as portfolio construction can both be conducted in short,

medium or long horizons. Based on the information available up to ti−1, the

agent has full flexibility in determining which model to adopt for the current

investment period, while the utility functions constructed from equation (4.44)

guarantee that portfolio strategies at different periods are time-consistent,

which prohibits the agent from arbitrarily altering his risk attitude from period

to period. As it will be illustrated in subsequent sections, maintaining a stable

risk attitude over time is crucial for achieving better long run performance.

4.3.3 Predictable forward mean-variance

We are now ready to establish the theory of predictable forward mean-

variance. Let 0 = t0 < t1 < . . . < tN < . . . and assume that at each [ti−1, ti]

the investor solves the dynamic mean-variance problem (MVi),

min
π

Vari−1

(
Xπ(ti)

)
,

subject to: Ei−1[Xπ(ti)] = di−1, di−1 ∈ Fti−1
.

(4.46)
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The condition di−1 ∈ Fti−1
ensures that the target wealth to be achieved at ti is

fully determined by the information available up to the beginning of the period.

We now provide a construction for the sequence of target wealth {di}∞i=0, such

that the dynamic mean-variance problems defined at different trading periods

are time-consistent.

Definition 4.3.2. The sequence of mean-variance preferences {MVi}∞i=0 given

by (4.46) is said to be a forward mean-variance preference, if there exists a

predictable forward quadratic performance process {Ui}∞i=0, such that MVi and

Ui are equivalent in that they have identical optimal portfolios, for all i ≥ 0.

The definition prescribes an approach to generate mean-variance pref-

erences forward in time, while maintaining time-consistency. Suppose that

the investor has determined the target mean di−1 to be achieved at ti, in order

to find an appropriate target for the period [ti, ti+1], we first “transform” the

mean-variance problem at ti−1 into its equivalent quadratic utility problem.

Then we apply the definition of forward utility, and solve the inverse dynamic

optimization problem (4.44) to determine the time-consistent quadratic util-

ity to be applied for the next period. Finally, we map the quadratic utility

function back to the mean-variance objective function, thus obtaining di.

Assume at ti−1 the investor has estimated the market model at [ti−1, ti] to be

dSk(t) = Sk(t)
(
µi−1
k (t)dt+

K∑
j=1

σi−1
kj (t)dWj(t)

)
, k = 1, 2, . . . , n, t ∈ [ti−1, ti].

(4.47)
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Denote the pricing kernel in this period by Z(t), i.e.

Z(t) = Z(ti−1)exp
(
−
∫ t

ti−1

(r(s)+
1

2
|λ(s)|2)ds−

∫ t

ti−1

λ(s)·dW (s)
)
, t ∈ [ti−1, ti].

To accomplish the first step, define the quadratic utility function to be solved

at [ti−1, ti] as Ui−1(x) = 2ηi−1x − x2, with ηi−1 being Fti−1
-measurable. We

have the following equivalence result,

Theorem 4.3.3. The quadratic utility problem

min
π∈A

Ei−1[Xπ(ti)
2 − 2ηi−1X

π(ti)] (4.48)

has the same optimal portfolio as the mean-variance problem (4.46) if and only

if ηi−1 is given by,

ηi−1 = di−1
Ei−1[Z(ti)

2]

Vari−1(Z(ti))
− Z(ti−1)

X(ti−1)Ei−1[Z(ti)]

Vari−1(Z(ti))
. (4.49)

Proof. See Appendix C.2.

Next, we show how to construct predictable forward quadratic perfor-

mance process based on solving the inverse utility optimization problem (4.44).

The following theorem provides the main result.

Theorem 4.3.4. Define a sequence of quadratic utility {Ui(x)}∞i=0 functions

as,

Ui(x) = ai(x− ηi)2 + bi, ai < 0 a.s. i = 1, 2, . . . ,

where the coefficients ai, bi and ηi are Fi–measurable. If the risk-free rate r(t)

is deterministic, then {Ui(x)}∞i=0 is a predictable forward performance if and

only if

ηi = e
∫ ti+1
ti

r(s)dsηi−1, n = 1, 2, . . . . (4.50)
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Proof. See Appendix C.2.

Combing the theorems 4.3.3 and 4.3.5, we obtain the main result sum-

marized as below,

Theorem 4.3.5. The sequence of mean-variance preferences {MVi}∞i=0,

min
π

Vari−1

(
Xπ(ti)

)
,

subject to: Ei−1[Xπ(ti)] = di−1, di−1 ∈ Fti−1
. (MVi)

is a predictable forward mean-variance preference if the wealth targets satisfy

di = e
∫ ti+1
ti

r(s)ds
[
di−1

1 + ξi−1

1 + ξi
+
ξiX(ti)− e

∫ ti
ti−1

r(s)ds
ξi−1X(ti−1)

1 + ξi

]
, (4.51)

where ξj =
Ej [Z(tj+1)]2

Varj(Z(tj+1))
, with j = i− 1, i.

Proof. By equation (4.49), we can replace ηj, j = i− 1, i in (4.50) by

dj
Ej [Z(tj+1)2]

Varj(Z(tj+1))
− Z(tj)

X(tj)Ej [Z(tj+1)]

Varj(Z(tj+1))
. Rearranging the terms gives us equation

(4.51).

To provide some intuition for the above results, we first note that the

term ξj is related to the market ratio. Let SRi−1 denote the highest Sharpe

ratio achievable at [ti−1, ti]. By Cvitanić et al. (2008), we have

SRi =

√
Vari−1(Z(ti))

Ei−1[Z(ti)]
(4.52)
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Let us further set θi :=
SR2

i

1+SR2
i
. Define also the target gain (TG) and realized

gain (RG), as the wealth gain in excess of the gain by investing in the risk-free

asset only, i.e.,

TGi−1 := di−1 − e
∫ ti
ti−1

r(s)ds
X(ti−1)

RGi−1 := X(ti)− e
∫ ti
ti−1

r(s)ds
X(ti−1).

Then equation (4.51) can be more concisely represented as

TGi =
θi
θi−1

TGi−1 − θiRGi−1. (4.53)

Equation (4.53) suggests a straightforward interpretation of how the wealth

targets get updated. At [ti, ti+1], the agent would target a gain that equals

the gain targeted in the last period, scaled by the relative “market condition”,

expressed via the coefficient θi
θi−1

, and subtract the gain realized in the last

period, scaled by θi. Therefore, a connection between the MV problems at

different periods has been established. At the beginning of each period, the

agent would assess whether the market has became better or worse, and re-

spond to the changes by adjusting upward or downward the target pursued

before.

In the special case when the parameters µi and σi are constant at [ti−1, ti], we

have

SRi =
√
e|λi|2∆t − 1

θi = 1− e−|λi|2∆t.
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For a concrete example, assume that the investor solves two consecutive mean-

variance problems at t ∈ [0, 1] and t ∈ [1, 2]. Assumed also that the risk-free

rate is zero in the first period, the stock market has an annualized rate of return

of 10%, with 20% volatility. Then SR0 = 0.53 and θ0 = 0.22. If the investor

starts with wealth of, say, one dollar, and sets a target return of d0 = 8% to

be achieved by the end of the first year, then, according to equation (4.41),

the optimal amount of wealth invested in the market index is given by

π∗(t) = 3.4− 2.5X∗(t), t ∈ [0, 1].

At t = 0 in particular, 90% of the wealth will be invested in the index.

At t = 1, suppose that the investor estimates a turbulent market in the coming

year, with volatility increases to 60%, but expected return stays at 10%. Then,

SR1 = 0.17 and θ1 = 0.027. The question is, how should the investor set the

target to be achieved by year two? According to (4.53), we have

TG1 = 0.01− 0.027(X∗(1)− 1).

Since X∗(1) given by equation (4.38) follows a shifted log-normal distribution,

we are able to calculate the expected target gain at t = 1. In terms of target

return, we have

E[
TG1

X∗(1)
]− 1 = 0.0074.

In fact, in response to the volatility hike, the investor dramatically lowers his

target to less than one percent!

This is in sharp contrast to the assumption made in Cvitanić et al. (2008), that
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a multi-period mean-variance investor would maintain constant return targets.

In fact, if the investor indeed chooses to maintain the 8% target return for the

second period, he will only achieve a two-year Sharpe ratio of 0.3. On the

contrary, the forward mean-variance investor who lowers the target achieves a

Sharpe ratio of 1.1, which is a considerable improvement!

We close this section by pointing out that the forward mean-variance con-

structed in (4.51) and (4.53) is ‘viable, in the sense that the target gain

TGn ≥ 0, ∀ i = 0, 1, . . .. If this condition fails, then the agent would tar-

get a return smaller than the risk-free rate, resulting in a portfolio that falls

on the inefficient half of the mean-variance frontier. The results below ensure

that this situation is excluded, provided that the initial mean-variance criteria

is efficient.

Theorem 4.3.6. If TG0 ≥ 0, then TGi ≥ 0 for i = 0, 1, . . ..

Proof. Clearly, it is enough to show TGi−1 ≥ 0 implies TGi ≥ 0. First, we

prove that

TGi−1 ≥ 0⇐⇒ ηi−1 ≥ e
∫ ti
ti−1

r(s)ds
X(ti−1) ,∀i ≥ 1. (4.54)

Rearranging equation (4.49) into

TGi−1 = di−1−
Z(ti−1)

Ei−1[X(ti)]
X(ti−1) =

Vari−1(Z(ti))

Ei−1[Z(ti)2]

(
ηi−1−

Z(ti−1)

Ei−1[X(ti)]
X(ti−1)

)
,

the equivalence follows since Vari−1(Z(ti))
Ei−1[Z(ti)2]

> 0 and Z(ti−1)
Ei−1[X(ti)]

= e
∫ ti
ti−1

r(s)ds
, when

r(t) is deterministic.
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It is easy to derive that the optimal terminal wealth X∗(ti) has the represen-

tation,

X∗(ti) = ηi−1 +
(
X(ti−1)− e−

∫ ti
ti−1

r(s)ds
ηi−1

)Z(ti)Z(ti−1))

Ei−1[Z(ti)2]
(4.55)

Since X(ti−1)− e−
∫ ti
ti−1

r(s)ds
ηi−1 ≤ 0 by (4.54) and Z(t) > 0, we have

X∗(ti) ≤ ηi−1.

By (4.50) and the above inequality, we deduce that ηi = e
∫ ti+1
ti

r(s)dsηi−1 ≥

e
∫ ti+1
ti

r(s)dsX∗(ti). The equivalence relation in (4.54) implies TGi ≥ 0.

4.3.4 Multi-period performance analysis under model uncertainty

A natural question is why in the first place do we choose to solve

dynamic mean-variance problems period over period? Instead of solving N

problems at [ti, ti+1], i = 0, 2, . . . N − 1, shouldn’t it be better to just solve a

single dynamic problem defined at [t0, tN ]? Indeed, if the investor is capable

of knowing exactly what the market model is, running a single mean-variance

optimization formulated over the entire investment lifetime would generate

the best risk-adjusted return. However, uncertainties in reality more often

present themselves as the “unknown-unknowns”, the distributions of which

cannot be modeled easily far in advance, for even with dynamic learning, a

priori parametric assumption still needs to be made! Hence, the need to model

and optimize in shorter horizons, to delay making assumptions until sufficient

information arises.

Because of the multi-period nature of forward mean-variance, at ti−1, the agent
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needs only to estimate a model that works at [ti−1, ti], and remains agnostic

about what would happen beyond ti, therefore avoiding making incorrect as-

sumptions when information is insufficient. However, this convenience comes

at a cost. Since forward MV optimizes in short terms, it seems that only

short term optimality is guaranteed. Indeed, optimal strategies derived under

the forward approach may not take into account return distributions beyond

the current period, hence is impossible to achieve “global”, long term opti-

mality. As a result, when model uncertainty is not significant, we expect the

forward MV to underperform the classical approach in terms of long run perfor-

mance measures. In this section, we present numerical examples to illustrate

the trade-off between investing myopically and investing under wrong model

assumptions. Regarding the former, we further compare short term mean-

variance strategies with and without imposing the time-consistency condition.

Our comparative study is closely related to that of Cvitanić et al. (2008).

Therein, the authors focused on comparing long-run performances of dynamic

mean-variance investors who choose to optimize a single, long horizon mean-

variance objective function, and those who optimize repeatedly but over short

horizons. They find that short term optimizers do suffer tremendously in terms

of long term Sharpe ratio.

In our study, we add to the comparative study a third type of investors, namely

the forward mean-variance investors. From now on we refer to the long term

and short term investors as the backward and myopic investors, respectively, to

emphasize that the former solves a single dynamic control problem backward
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in time, while the latter is concerned exclusively with near-term optimality.

Their optimization criteria are listed blow.

1. The backward investor solves a single MV problem on [0, T ],

min
π

Var
(
Xπ(T )

)
,

subject to: E[Xπ(T )] = d = eRTX(0).
(4.56)

2. The forward investor solves a sequence of short term MV problems,

min
π

Vari−1

(
Xπ(ti)

)
,

subject to: Ei−1[Xπ(ti)] = di−1, di−1 ∈ Fti−1
.

(4.57)

with d0 = eR∆tX(0). di, i ≥ 1 are determined by (4.51).

3. The myopic investor solves a sequence of short term MV problems, as in

(4.57), with only difference being that the investment targets are given

by

di−1 = eR∆tX(ti−1).

In subsequent numerical analysis, we take T = 5, ti = i∆t, ∆t = 0.25, i.e.

the forward and myopic investors would split up the five-year investment pro-

gram into twenty quarter-long trading periods, while the backward investor

optimizes a single 5-year mean-variance objective.

To develop a meaningful comparison between the investors, we have assumed

the backward and myopic investor target the same instantaneous rate of re-

turn R. Hence, the difference in their wealth targets, namely db = X(0)eRT

and dim = X(ti)e
R∆t, comes only from the difference in their horizons. The
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forward investor sets targets dynamically, but we assume that his initial target

matches that of the myopic investor.

The main difference between our work and Cvitanić et al. (2008) lies in the

market model assumptions. In their study, the risky asset is modeled as a

diffusion with stochastic drift,{
dS(t) = µ(t)S(t)dt+ σS(t)dW (t),

dµ(t) = κ(β − µ(t))dt− σµdW (t).
(CLW08)

The more important underlying assumption is that the above “true” model is

fully known by the investors. However, in reality the true model can never be

accurately estimated, hence it is more practically relevant to study how the

investors perform when only part of model can be estimated. As a result, we

propose the following changes to the model.
dS(t) = µ(t)S(t)dt+ σS(t)dW (t),

dµ(t) = κ(β − µ(t))dt+ σµdW̃ (t).

dW (t)dW̃ (t) = ρdt, ρ ∈ {−1, 1}.
(4.58)

Furthermore, we assume that ρ oscillates between −1 and 1, and its distri-

bution is not known to the investor. When ρ = 1, the market is said to

be in momentum, as it suggests that a positive shock to the realized return

is accompanied by a positive shock to the expected return. Similarly, when

ρ = −1, we call the market mean-reverting. Note that these are polar oppo-

site market conditions under which optimal portfolio strategies are drastically

different. Hence, a wrong forecast of market state could lead to dire conse-

quences in performance. To see this, we calculate in equation (4.59) the time
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zero optimal portfolios under both market states. We then obtain

π∗MR = X(0)Λ+(τ, µ(0))
e(R−r)τ − 1

Λ+(τ, µ(0))− 1

(
(1 + A+(τ)σµ))

µ(0)

σ2
+B+(τ)

σµ
σ

)
π∗MTM = X(0)Λ−(τ, µ(0))

e(R−r)τ − 1

Λ−(τ, µ(0))− 1

(
(1− A−(τ)σµ))

µ(0)

σ2
−B−(τ)

σµ
σ

)
,

(4.59)

where τ = T,∆t denotes the investment horizon. The quantities Λ, A, B are

functions of model parameters and τ , derived in Cvitanić et al. (2008).

We also, define the instantaneously optimal portfolio πins as the optimal port-

folio of an investor who does not take into account future changes in market

parameters. Then πins can be obtained by replacing µ(t) with µ(0) in equation

(4.40). The difference between π∗(t) and πins is what is usually referred to as

the hedging demand, namely, the additional risky holdings of the investor to

hedge future changes in the market opportunity set.

We plot the hedging demand as a function of investment horizon for both

πMR and πMTM in Figure 4.3. We can then see that, under different market

states, the hedging demand have different signs, and the discrepancy grows

larger with longer horizon. Therefore, the backward investor who solves a

long horizon problem would suffer the most when model mis-identification oc-

curs. For instance, if a momentum market is estimated but a mean-reverting

market occurs, instead of putting an extra (in excess of πins) 70% of wealth

in the index, the backward investor would sell short S in the amount 14% of

his wealth. On the other hand, the forward and myopic investors looking at

one quarter ahead, will hedge by putting only 20% (as opposed to 70%) in the

index, a significant under-hedging! Hence it is clear that when the exact model
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Figure 4.3: Hedging demand and horizon
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cannot be known, the trade-off between optimizing in long and short horizons

is essentially a complicated trade-off between sub-optimality from modeling

error and from under-hedging.

To gauge the exact impact of these effects, we further assume that the true

value of ρ changes after every trading period. At [ti−1, ti], the market model

is then given by{
dS(t) = µ(t)S(t)dt+ σS(t)dW (t),

dµ(t) = κ(β − µ(t))dt+ ρi−1σµdW (t). t ∈ [ti−1, ti].
(4.60)

where ρi is a stochastic process takes value in {−1, 1} and is independent of

W (t). The probability structure is characterized by (Ω,F,P), where the fil-

tration F is generated by both Wt and ρi, i.e. Ftrue = FW ∨ Fρ. We assume

that the investors observe St, µt and ρi but does not know the true probability

structure of ρi. Note that the short term agents (forward and myopic) are not

affected by the uncertainties in future values of ρi, as their optimization prob-

lems only require observing the model in the current period. The backward

agent however, needs to know the probability distribution for the entire future

path of ρ and therefore he has to make subjective assumptions. Since the true

distribution of ρi is unknown, one approach for the backward investor is to

treat it as Knightian uncertainty and formulate the problem as a min-max op-

timization. In other words, the agent chooses a portfolio strategy such that the

variance is minimized if the worst possible model for Bn turns out. However,

our objective here is not to look for the best possible way for the backward

agent to deal with such model risk, but rather, we are interested in quantifying

the relationship between model errors and portfolio performance. Therefore,
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we make the rather simplistic assumption that the backward investor imposes

a trivial subjective probability measure on ρi, i.e. ρj ≡ ρi for j ≥ i.

We assume however, that the true ρi follows a discrete Markov process, with

transition probability matrix,

Q =

[
1− q q
q 1− q

]
, q ∈ [0, 1].

Here q characterizes the rate at which the market switches states at the be-

ginning of each trading period. In particular, q = 0 implies that the market

remain at a fixed state throughout [0, T ]. In this case, the backward agent

makes no modeling errors, hence he outperforms the other two since his opti-

mization is based on the entire investment horizon.

Figure 4.4 plots 5-year mean-standard deviation frontiers, for q = 1, 0.4 , 0.05 , 0.

In all cases except the last one (q = 0) the forward frontier dominates. As

q decreases, the performance gap shrinks as the backward agent is less prone

to modeling error. Notice also that the backward and forward frontiers are

both straight lines, suggesting that the Sharpe ratio is a target-independent

performance measure. Figure 4.5 plots 5-year Sharpe ratio for all three types

of investors. The backward investor outperforms only for q close to 0. As q

grows, his Sharpe ratio rapidly declines and is soon dominated by the forward,

after q > 0.02. Therefore, running a classical dynamic optimization through-

out the entire horizon is no longer optimal if model estimation is error-prone.

Here a 2% chance of error lowers the long run Sharpe ratio by as much as

23%, making the short term optimization with forward preference a better

alternative. Furthermore, note that, while both investors optimize at short
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horizons, the forward outperforms the myopic one substantially. As men-

tioned before, the myopic investor targets the same rate of return in each

period (di−1 = eR∆tX(ti−1)), irrespective of the market condition. But be-

cause the market switches between the mean-reverting and momentum states,

with the former being less volatile in general, a constant target return actually

implies a swinging risk attitude. Figure 4.5 shows that inconsistent strategies

over time significantly damages the performance in the long term. The forward

mean-variance therefore indicates that target expected return in each period

should be chosen such that time-consistency throughout [0, T ] is guaranteed.

4.3.5 Conflicting objectives: measuring performance at different
horizons

The horizon issue arises often in the practice of investment manage-

ment. On the one hand, fund managers are more likely to focus on short term

performance as it is more closely related to their compensations. On the other

hand, clients may expect long term stable growth of their investments, hence

tend to evaluate fund performance using long run measures.

Cvitanić et al. (2008) discussed the implication of using Sharpe ratio to mea-

sure performances of fund managers aiming at different horizons. Under the as-

sumption that asset returns are i.i.d. and mean-reverting, the authors showed

that in both cases managers optimizing at short horizons obtain much lower

long term Sharpe ratios. In fact, the converse is also true if the model pa-

rameters are stochastic. A mean-variance strategy set out to maximize five-

year Sharpe ratio will not achieve the highest one-year Sharpe ratio. Hence,
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maximizing Sharpe ratios at different horizons are conflicting objectives and

cannot be accomplished by any single mean-variance optimal strategy. That

being said, it does not mean that a better trade-off cannot be pursued.

In this section we will show that, even for the managers who optimize in short

horizons, if he chooses his (short term) preferences such that time-consistency

in the long term is guaranteed, he will not suffer much long run Sharpe ra-

tio loss. In particular, when the return distribution is i.i.d., there will be no

Sharpe ratio loss at all.

We start our discussion with a log-normal market environment, assume that

St follows

dSt = µStdt+ σStdWt, (4.61)

where µ and σ are constant parameters known to the manager at time zero.

Cvitanić et al. (2008) considered a horizon [0, T ] and a short-term manager

who solves a series of mean-variance problems at [ti, ti+1], with 0 = t0 < t1 <

. . . < tN = T , namely, he solves

min
π

Vari−1

(
Xπ(tn)

)
,

subject to: Ei−1[Xπ(ti)] = dSi−1 = eR∆tX(ti−1),
(4.62)

with R fixed. In other words, the short-term manager is assumed to target

the same expected return in each period. On the other hand, the long term

manager solves

min
π

Var
(
Xπ(T )

)
,

subject to: E[Xπ(T )] = dL = eRTX0,
(4.63)
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Cvitanić et al. (2008) reported that solving (4.62) instead of (4.63) incurs

significant loss in long-term Sharpe ratio. For example, at 5-year horizon

with ∆t = 0.25 years and R = 14%, the loss is at 68%! However, since the

model parameters are assumed to be deterministic, there should be no hedging

demand for market parameter risk. Therefore, optimizing at shorter horizons

should not necessarily mean worse long-run performance. Here we argue that

the issue with the short-term manager is rather due to the way he chooses

his targets, which causes the portfolio strategies across different periods to be

time-inconsistent. Indeed, the following proposition indicates the improvement

if the short term manager adopts instead the forward MV framework,

Proposition 4.3.7. The forward mean-variance problem with initial target

wealth dF0 is equivalent to the long term mean-variance problem (4.63) with

target wealth

dL = e(r−λ2)(N−1)∆t
( eλ2T − 1

eλ2∆t − 1
dF0 −

eλ
2(N−1)∆t − 1

eλ2∆t − 1
er∆tX0

)
. (4.64)

Hence, the forward manager achieves the same Sharpe ratio as the long term

manager,

SRF = SRL =
√
eλ2T − 1.

One may now wonder how does the forward manager perform at dif-

ferent horizons when the market parameters are stochastic. To see this, we

consider the mean-reversion and momentum market studied in section 3, i.e.

for t ∈ [0, T ], S(t) follows{
dS(t) = µ(t)S(t)dt+ σS(t)dW (t),

dµ(t) = κ(β − µ(t))dt+ ρσµdW (t).
(4.65)
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Figure 4.6: Sharpe ratio and investment horizon

To simplify the analysis, we assume here that ρ is constant (1 or −1) through-

out the entire horizon, and is known to the investor at time zero.

Let SRmax(t) denote the maximal Sharpe ratio achievable at horizon [0, t],

namely,

SRmax(t) = max
π∈A

E[Xπ(t)]− ertX0√
VarXπ(t)

. (4.66)

It is well known that mean-variance optimal strategies achieve the highest

Sharpe ratio at the horizon which the mean-variance objective is defined.

Therefore, we have

SRF (∆t) = SRS(∆t) = SRmax(∆t), SRL(T ) = SRmax(T ).

The question is then how do SRF (t) and SRS(t) compare with SRmax(t), for

t > ∆t.

Figure 4.6 plots the Sharpe ratios for the forward and short term managers,

131



measured at horizons ranging from 0.25 to 5 years. As expected, both SRF and

SRS attain the maximal value at t=0.25. However, divergence from SRmax

grows substantial as the measurement horizon increases. At 5-year horizon,

SRS is only a third of SRmax in the mean-reversion case. Cvitanić et al. (2008)

reported even more dramatic difference (due to difference in parameter choice),

that SRmax is more than 50 times higher than SRS.

However, the difference between SRF and SRmax is not nearly as dramatic.

In the momentum case, the curves almost overlap at all horizons, implying

little or no Sharpe ratio loss at all. In the mean-reversion case, SRF traces

SRmax closely and the loss at 5-year horizon is less than 8%. The result is

quite surprising in that the forward manager’s portfolio strategy is derived

based entirely on short term preferences. Hence, any long term objective is

not sought after by the manager. However, by merely choosing the targets

such that time-consistency is maintained, the manager achieves much better

long term performance without looking at the future asset return distributions

at all!

4.4 Robust forward mean-variance

The classical mean-variance approach to portfolio selection suffers from

a major shortcoming, in that the associated optimal portfolios are often sen-

sitive to changes in the input parameters of the problem. The inability of

estimating the parameters in accuracy often result in unrealistic risky posi-

tions as well as large turn over ratios with periodic readjustments of the input
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estimates. To dampen the sensitivity to input parameters, the first, Bayesian

approach is to assign a prior probability distribution to input parameters and

explicitly incorporate this distribution into mean-variance optimization; see

for example, Bawa et al. (1979) and Jorion (1986).

An alternative view of the parameter uncertainty, called Knightian uncertainty

(following Knight (1921)) or ambiguity, recognizes that the probability struc-

ture cannot be modeled. Therefore, a set of possible parameter values are

instead specified.

The robust mean-variance approach is built on this view. It aims to struc-

ture the portfolio such that it optimizes performance should the worse case

parameter from the specified set occurs. The robust problem has been studied

by a number of authors in the past decade. For example, Goldfarb and Iyen-

gar (2003) reformulated this problem as a second order convex-cone program.

Tütüncü and Koenig (2004) discussed numerical algorithms under different

choices of the parameter uncertainty set. Garlappi et al. (2007) provided an

interpretation of robust optimal portfolio, as a shrinkage of the mean-variance

portfolio towards either the risk-free asset or the minimum variance portfolio.

Boyle et al. (2010) linked ambiguity to investor’s familiarity toward assets,

and characterized its asset allocation implications.

In this section, we provide a generalization to the forward mean-variance

framework established earlier, such that it incorporates robustness consider-

ations in each trading period. Our main contribution is the proof that, the

robust forward mean-variance problem is equivalent to the non-robust prob-
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lem under the worst case parameter. In other words, switching the order of

minimization (over the parameter set) and maximization (over the portfolio

set) does not change the solution of the forward mean-variance problem. To

achieve this, we first study robust mean-variance with continuous time trading

in a single horizon. Next, we discuss how the forward machinery can be ap-

plied to generate subsequent mean-variance objectives when market parameter

is ambiguous. A simulation exercise is also provided to demonstrate the steps

for implementing our theory in practical portfolio management.

4.4.1 Continuous time robust mean-variance in a single period

Although the robust mean-variance optimization problem has been

widely studied, most of the existing literature focused on the static, buy-

and-hold setting. A framework which allows continuous trading has not been

established. In this section, we fill this gap.

We assume the investment universe consists of a risk-free asset and n risky

securities with the following dynamics

dSk(t) = Sk(t)
(
µk(t)dt+

n∑
j=1

σkj(t)dWj(t)
)
, k = 1, 2, . . . , n. (4.67)

Here µ(t) is Ft-measurable, Rn-valued stochastic process. According to Merton

(1980), the expected returns of the market are much harder to estimate than

the variance. Therefore we will assume the volatility matrix {σkj(t)} can be

estimated with perfect accuracy, while the return parameter µ(t) is only known

to lie within a certain set, denote by C(t), which we assume to be a convex

bounded closed subset of Rn. The risk-free rate r is set to be constant, and
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the vector r1 is excluded from C(t), ∀t ∈ [0, T ]. To retain tractability, we

make the additional assumption that both the set function C(t) and volatility

matrix {σkj(t)} are deterministic.

We denote by Qµ the probability measure under which the assets have drift

µ. To simplify notations, when µ is used as a superscript, it will be identical

to Qµ (e.g. Eµ[·] and W µ(t) are the same as EQµ [·] and WQµ(t)).

We define Zµ(t), t ∈ [0, T ] to be the (risk-free rate discounted) density process

e−rt dQ
0

dQµ
|Ft . Where Q0 is the unique risk neutral measure. Thus, Zµ solves

under Qµ the SDE,

dZµ(t) = −rZµ(t)dt− Zµ(t)λµ · dW µ(t),

where λµ(t) := (µ(t)− r1) ·Σ(t)−1 is the market price of risk vector associated

with Qµ. By definition, under Qµ we have

Eµ[X(T )Zµ] = X0, for ∀µ ∈ C and X(T ) ∈ AT , (4.68)

where AT is the set of “terminal wealth” generated by admissible portfolio

strategies. Before defining robust mean-variance optimization, we need to

make one additional assumption (which are often implicitly made in existing

literature) to clarify what are considered as “elements” in the parameter set.

For example, if the investor thinks the expected return can be anywhere from

3% to 6%, then only deterministic values within this range are considered

as valid candidate parameters, while random variables whose values fall into

range are excluded.

Assumption: The subjective return parameter µ is deterministic.
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Under this assumption, the applicability of our method is a bit limited. Our

robust solution cannot protect against, for example, measures that are state

dependent. The reason for the assumption is following, notice that in the con-

tinuous time setting, there are two channels through which µ can affect the

variance of the optimal terminal wealth. Firstly, roughly speaking, a higher

µ makes the terminal wealth more volatile, due to the effect of return com-

pounding. Secondly, if µ is random, variances in µ itself would manifest into

variance of terminal wealth. Without restricting µ to be deterministic, the

second effect would render our subsequent search for a “worst case” measure

a daunting task, and it is unclear whether the equivalence relation between

quadratic utility and mean-variance problems remain valid. For these reasons,

we choose to leave the study of more general cases for future research.

We denote by C̃ the set of deterministic subjective return parameters, i.e.

C̃ := {µ : µ(t) ∈ C(t) for ∀ t and µ(t) is deminterministic in t}.

Then, the robust mean-variance is defined as follows:

Definition 4.4.1. A mean-variance investor, who is averse to uncertainty in

the return parameters solves the problem,

min
X(T )∈AT

max
µ∈C̃

Varµ(X(T )),

subject to: Eµ[X(T )] ≥ d, ∀µ ∈ C̃.
(4.69)

where d is the investor’s target level of terminal wealth.

To solve the above problem, we make use of the techniques commonly

seen in robust utility preferences. In most cases, if the mean-variance objective

136



function is replaced with an expected utility functional,

max
X(T )∈AT

min
µ∈C

Eµ[U(X(T ))],

then the robust problem can be reduced to a standard utility problem under a

fixed measure Qµ̂ (at least for the case where model parameters are determin-

istic). It is called by some the “least favorable” measure, in the sense that the

market opportunity set under this measure is minimized. Equivalently, the as-

sociated drift parameter µ̂ minimizes the Sharpe ratio of the market portfolio.

We provide a straightforward definition of µ̂ under our deterministic model

assumption. A more general and abstract definition can be found in Schied

(2004).

Definition 4.4.2. Define the market portfolio under Qµ as the self financing

portfolio which replicates at time T the (negative) stochastic discount factor

−Zµ(T ), and denote by SRµ
m the market portfolio’s Sharpe ratio. The least

favorable return parameter is defined by

µ̂ = argmin
µ∈C

SRµ
m.

By a straightforward calculation, we can verify that µ̂ minimizes the

norm of the market price of risk vector. Computationally, it can be solved by

solving, at each time t, the quadratic program,

µ̂(t) = argmin
µ∈C(t)

|λµ(t)|2 = argmin
µ(t)∈C(t)

(µ(t)−r1) ·(Σ(t)′Σ(t))−1 ·(µ(t)−r1)′ (4.70)

Thus, the conventional wisdom states that

max
X(T )∈AT

min
µ∈C

Eµ[U(X(T ))]⇐⇒ max
X(T )∈AT

Eµ̂[U(X(T )]
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We will show that the same conclusion holds with robust mean-variance opti-

mization. In the proofs that follow, we will make extensive use of the following

lemma.

Lemma 4.4.3. The following three inequalities hold, for any µ ∈ C̃:

1. Eµ[Z µ̂(T )] ≤ Eµ̂[Z µ̂(T )], Eµ[Z µ̂(T )2] ≤ Eµ̂[Z µ̂(T )2].

2. Eµ[Zµ(T )2] ≥ Eµ̂[Z µ̂(T )2], Varµ(Zµ(T )) ≥ Varµ̂(Z µ̂(T )).

3. If µ is deterministic, then Varµ(Z µ̂(T )) ≤ Varµ̂(Z µ̂(T )).

For all the above, equality holds if and only if µ = µ̂.

Proof. See the Appendix C.3.

Next, we state the main result of this section, which states that robust

mean-variance problem can be reduced to its standard version under a fixed

subjective measure Qµ̂. The theorem below shows that µ̂ is exactly the “least

favorable” measure given by (4.70).

Theorem 4.4.4. Let µ̂ be given by (4.70). The robust problem (4.69) has

the same optimal solution as the standard mean-variance problem under the

measure Qµ̂,
min

X(T )∈AT
Varµ̂(X(T )),

subject to: Eµ̂[X(T )] ≥ d.
(4.71)

provided that d ≥ X0e
rT .
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Proof. See Appendix C.3.

Remark 4.4.5. We recognize that problem (4.69) is not the only robust gen-

eralization of the standard mean-variance problem. As is commonly known,

the standard mean-variance problem can also be formulated as maximizing a

single objective function F (E[X(T )],Var(X(T )), where F is increasing in the

first argument and decreasing in the second. We call this the Lagrangian for-

mulation when F is linear. In this setting, a natural generalization to account

for uncertainty in µ is

max
X(T )∈AT

min
µ∈C

Eµ[X(T )]− γVarµ(X(T )), (4.72)

the parameter γ > 0 expresses the investor’s desired risk-return trade-off.

One thing worth noticing from above is that the deterministic assumption on

alternative drift parameters is no longer needed. Thus, the minimization over

µ in (4.72) is now taken over the entire parameter set C, instead of the subset C̃

which contains only the µ’s that are deterministic, as it was done for problem

(4.69). As we show in the next result, the solution to (4.72) again reduces

to the one of a standard mean-variance problem under the “least favorable”

measure Qµ̂.

Theorem 4.4.6. The robust Lagrangian problem (4.72) has the same solution

as the standard Lagrangian problem under the fixed measure Qµ̂

max
X(T )∈AT

Eµ̂[X(T )]− γVarµ̂(X(T )) (4.73)

Proof. See Appendix C.3.
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Recall that in the previous sections, the forward mean-variance is de-

fined based on the fact that each single period mean-variance problem has

its equivalent quadratic utility counterpart. Then, the theory of predictable

forward performance can be applied to generate sequential quadratic utili-

ties with time-consistency guarantee. In the robust optimization domain, our

strategy of updating mean-variance objectives forward in time mimics that

of the previous section. Therefore, we now study the closely related robust

quadratic utility problem and show that the equivalence result still exists un-

der the robust context. To this end, we define the robust quadratic utility

problem as

max
X(T )∈AT

min
µ∈C

Eµ[ηX(T )−X(T )2]. (4.74)

As before, we will show that the above problem can be reduced to the

non-robust problem under the fixed measure Qµ̂. We do this by exploiting the

fact that the optimal terminal wealth for a quadratic utility is linear in the

stochastic discount factor.

Theorem 4.4.7. The robust quadratic utility problem

max
X(T )∈AT

min
µ∈C

Eµ[ηX(T )−X(T )2] (4.75)

is equivalent to the standard utility problem under the fixed measure Qµ̂,

max
X(T )∈AT

Eµ̂[ηX(T )−X(T )2]

Proof. See Appendix C.3.
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Theorems 4.4.7 and 4.4.4 establish connections between the robust

quadratic utility, robust mean-variance and their respective standard versions

without robustness components. We also recall that the standard quadratic

utility and mean-variance problems have been shown to be equivalent by the-

orem 4.3.3. These results can be summarized into the following diagram,

RQU
Theorem 4.4.7⇐=======⇒ QU(µ̂)

Theorem 4.3.3⇐=======⇒ MV(µ̂)
Theorem 4.4.4⇐=======⇒ RMV.

We can see from above an immediate implication, in that the two robust

problems are also equivalent.

Corollary 4.4.8. The robust mean-variance problem (4.69) parameterized by

target mean wealth d, d ≥ x0e
rT , is equivalent to the robust quadratic utility

problem (4.75) parameterized by η, with d and η related by,

η

2
=
dEµ̂[Z µ̂(T )2]−X0E

µ̂[Z µ̂(T )]

Varµ̂(Z µ̂(T ))
. (4.76)

The optimal terminal wealth X∗(T ) under both preferences can be represented

as

X∗(T ) =
dEµ̂[Z µ̂(T )2]−X0E

µ̂[Z µ̂(T )]

Varµ̂(Z µ̂(T ))
− de−rT −X0

Varµ̂(Z(T ))
Z µ̂(T ).

Remark 4.4.9. Notice that the η parameter in (4.76) depends only on the

least favorable measure Qµ̂, instead of on a “to-be-determined” subjective

measure Qµ. Alternatively, the above equivalence can be established with a

quadratic utility with measure-dependent coefficients. In that case µ̂ would

be replaced by µ in (4.76), and η would be given by

η

2
=
ηµ

2
=
dEµ[Zµ(T )2]−X0E

µ[Zµ(T )]

Varµ(Zµ(T ))
.
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One can solve the robust utility problem using the measure-dependent utility

function Uµ(X(T )) := ηµX(T )−X(T )2. We will then have the same solution

as using the fixed utility function U µ̂(X(T )) = ηµ̂X(T )2 −X(T ). We choose

to state corollary 4.4.8 with the fixed utility as we want to obtain a utility

preference where aversion to market risk and to model estimation risk be

separated.

4.4.2 Multi-period robust mean-variance under the forward ap-
proach

Having solved the robust mean-variance and quadratic problems in a

single period, we are ready to apply the established procedure for generating

robust mean-variance forward in time. First, we introduce the appropriate

multi-period problem.

Definition 4.4.10 (multi-period robust mean-variance). Let 0 = T0 < T1 <

. . . < TN = T . A multi-period robust mean-variance preference is a sequence

of robust mean-variance preferences {RMVn}Nn=1, imposed at {Tn}Nn=1. Within

each period [Tn−1, Tn], the investor solves the problem:

min
X(Tn)∈ATn

max
µ∈C̃

Varµn−1(X(Tn)),

subject to: Eµn−1[X(Tn)] ≥ dn, ∀µ ∈ C̃,
(4.77)

where dn is the desired target level at the end of the time interval [Tn−1, Tn].

In section 4.3, we have shown that the dn’s, instead of being specified period

by period in an ad hoc manner, can be generated endogenously, in a way that

guarantees inter-temporal consistency of the optimal investment strategy. As
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we discussed, the key point was that mean-variance at each period is replaced

by an equivalent quadratic utility, which can then be extended forward in

time using the existing forward approach. Here, we apply the same idea to the

robust preferences. The rest of the section will be devoted to establishing a

multi-period robust mean-variance forward criterion which is predictable and

time-consistent. We will call it a robust forward mean-variance preference.

We start with extending the definition of predictable forward performance to

take robustness into account.

Definition 4.4.11. A sequence of random functions {Un}Nn=1 imposed at

{Tn}Nn=1 is a robust predictable forward performance if

(i) Un(·) is measurable w.r.t FTn−1 , for n ∈ {1, 2, . . . , N}.

(ii) For any admissible wealth process X(t), t ∈ [0, T ], the following holds,

for n ∈ {1, 2, . . . , N},

Un−1(X(Tn−1)) ≥ min
µ∈C̃

Eµ[Un(X(Tn))|FTn−1 ] (4.78)

(iii) There exists an admissible wealth process X∗(t), t ∈ [0, T ], such that, for

∀ t ∈ {1, 2, . . . , N},

Un−1(X∗(Tn−1)) = min
µ∈C̃

Eµ[Un(X∗(Tn))|FTn−1 ] (4.79)

In the case of quadratic utility functions Un(x) = anx
2 + bnx + c, n =

1, 2, . . . , N , the lemma below provides a necessary conditions for {Un}Nn=1 to

be a robust predictable forward performance.
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Lemma 4.4.12. Let ηn = − bn
an

. If the family of quadratic utility functions

{Un}Nn=1 is a robust predictable forward utility with η1
2
≥ X0e

rT , then it must

be that

ηn = ηn−1e
r(Tn−Tn−1) (4.80)

Proof. See Appendix C.3.

We have established in Corollary 4.4.8 the equivalence of robust mean-

variance and quadratic utility preferences in a single-period setting. This

result along with Definition 4.4.11 yield the definition of robust forward mean-

variance preferences.

Definition 4.4.13. The multi-perod robust mean-variance preference {RMVn}Nn=1

defined in 4.4.10 is a robust forward mean-variance preference if,

(i) dn is measurable with respect to FTn−1 , for any n = 1, 2, . . . , N .

(ii) There exists a sequence of quadratic utility problems {Un}Nn=1, defined

over time intervals {[Tn−1, Tn]}Nn=1, such that (a) Un and RMVn imply

the same optimal portfolio strategy at [Tn−1, Tn] and (b) The family of

(random) quadratic functions {U1(·), . . . , UN(·)} is a robust predictable

forward preference in the sense of Definition 4.4.11.

We are now ready to characterize the conditions under which {RMVn}Nn=1

is a robust forward mean-variance preference. In particular, we seek a depen-

dence relation of the n-th period wealth target dn on the wealth target at the
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previous period. By Corollary 4.4.8, RMVn and Un being equivalent requires

that dn and ηn be related by the following identity,

ηn
2

=
dEµ̂[Z µ̂(T )2]−X(Tn−1)Eµ̂[Z µ̂(Tn)]

Varµ̂(Z µ̂(Tn))
. (4.81)

On the other hand, by Lemma 4.4.12 we also have that ηn = ηn−1e
r(Tn−Tn−1).

Hence after eliminating the η-variable, it is straightforward to solve from (4.81)

the equation relates dn and dn−1.

Theorem 4.4.14. The sequence of robust mean-variance preference {RMVn}Nn=1

defined in 4.4.10 is a robust forward mean-variance preference if the target

wealth levels satisfy the recursive relation:

dn = er(Tn−Tn−1)
[
dn−1

1 + ξµ̂n−2

1 + ξµ̂n−1

+
ξµ̂n−1X(Tn−1)− er(Tn−1−Tn−2)ξµ̂n−2X(Tn−2)

1 + ξµ̂n−1

]
,

(4.82)

where ξµ̂n−1 =
Eµ̂n−1[Zµ̂(Tn)]2

Varµ̂n−1(Zµ̂(Tn))
.

Recall that in section 4.3, when robustness issue was not considered,

we have derived a similar formula (e.q. (4.51)) for dn. The only difference

in (4.82) is that µ in (4.51) is replaced by µ̂. Therefore, the robust forward

mean-variance can be considered as a standard forward mean-variance prefer-

ence under the least favorable measure Qµ̂.

4.4.3 A simulation exercise

We now conduct performance comparison between the robust forward

mean-variance investor and the robust backward mean-variance investor. We
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assume as before that the expected rate of return cannot be estimated ac-

curately, and both types of investors exhibit aversion to this parameter un-

certainty. However, we do allow learning to occur in our model. As more

data arrives, the investors adopt a Bayesian updating procedure to refine their

previous estimates. Our setup differs from other Bayesian learning methods

in dealing with parameter uncertainty in that we do not take averages over

the probability distribution of parameters (ambiguity neutral). Instead, for a

given level of ambiguity aversion, the estimated parameter distribution is used

only to specify the set C of rival parameters.

More specifically, C is modeled as follows. Suppose that at time Ti we have

estimated that, the expected rate of return over the interval [Ti, Ti+1], denoted

by µi, has posterior mean µi and variance σ2
µi

, then the uncertainty set for µi

is given by

C(i) := {µi :
|µi − µi|
σµi

≤ α}. (4.83)

Here, α specifies how much estimation error the investor intends to be pro-

tected against, reflecting his level of ambiguity aversion. As we have seen in the

previous sections, all robust problems can eventually be reduced to their cor-

responding standard problems under the “least favorable” parameter, defined

as,

µ̂i := argmin
µi∈C(i)

|µi − r|, (4.84)

with r being the risk-free rate. Therefore, the learning procedure in our model

aims at deceasing the size of the uncertainty set C, and increasing the value

of µ̂.
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The difference in the performances of the forward and backward investors

arises for two reasons. Firstly, the forward investor only needs to estimate

expected returns for the next period. In contrast, the backward investor, who

tries to solve a problem backwards in time, is forced to estimate an entire path

of expected returns for the remaining trading horizon. For returns at more

distant future, he faces considerable parameter uncertainty and the “least fa-

vorable” return µ̂ will be extremely low. He then has to take on excessive risky

assets holdings in order to achieve his return target.

Secondly, as the backward investor moves into the next period, he needs to re-

estimate parameters and re-optimize his portfolio, making his decisions time-

inconsistent. The same problem however, does not exist for the forward in-

vestor.

For the rest of the section, we will obtain numerical results for each type of

investor’s performance, and the aforementioned performance difference will be

quantified.

The entire investment horizon [0, T ] is divided intoN equal length sub-intervals,

{[Ti, Ti+1]}N−1
i=0 , Ti+1−Ti = ∆T . Trading takes place continuously throughout

[0, T ], but parameter estimations will only occur at the beginning of each inter-

val [Ti, Ti+1]. Assume that the market consists of one risky asset S(t) and one

risk-free bond B(t). Inside each [Ti, Ti+1], the price of the risky asset follows

a geometric Brownian motion with constant (but unknown) return parameter

µi, i.e.

dS(t)/S(t) = µidt+ σdW (t). t ∈ [Ti, Ti+1]
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We assume that µi evolves discretely, period over period, following an AR(1)

process. For 0 < β < 1, we have,

µi+1 = (1− β)µ+ βµi + νi+1, (4.85)

where µ is the unconditional mean rate of return for asset S, and {νi}N−1
i=0

denotes normally distributed i.i.d. innovations, with zero mean and variance

σ2
ν . To generate mean-reversion in realized returns, we further assume that

νi+1 is correlated with the Brownian increment accumulated during the i-th

period, with correlation ρ < 0. Then, the shocks have the covariance matrix,

Cov(νi+1, σ∆Wi+1) =

[
σ2
ν ρ

√
∆Tσσν

ρ
√
Tσσν σ2∆T

]
The above AR(1) model assumption for µi is consistent with the Pastor and

Stambaugh (2012) and Campbell and Viceira (2002). Its continuous time

analog, the Ornstein-Ulenbeck process, is also commonly employed to model

mean-reverting expected returns in the continuous time portfolio literature,

(see, for example, Kim and Omberg (1996), Watcher (2002)).

Throughout the discussion below, we will assume that the return rates {µi}N−1
i=0

are the only parameters with uncertainty. The investor has perfect knowledge

and can correctly specify all the other parameters.

4.4.3.1 The Forward Problem

As we previously discussed, the forward investor by his nature, only

solves a robust mean-variance problem one period ahead of him. Thus at

Ti, the problem he faces is defined over [Ti, Ti+1]. To him, the only relevant
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parameter information is the current period expected return rate µi, which he

cannot observe and has to make a subjective choice (denoted by µ̂i) before

investing. After µ̂i is determined, the investor then solves the standard mean-

variance problem,

min
π∈A

VarQ
µ̂i

i (Xπ(Ti+1))

subject to: EQµ̂i
i [Xπ(Ti+1] ≥ di+1.

(4.86)

We have shown in section 4.4.1 that, being a robust mean-variance investor, he

will choose µ̂i as the worst case parameter from a set C(i) of rival parameters,

where by equation (4.83) C(i) is derived from his estimation of the distribu-

tion of µi. Thus, the problem of specifying µ̂i reduces to a statistical inference

problem for the unobservable variable µi. We discuss this problem next.

We will be using Bayesian inference as the main tool to learn about the dis-

tribution of µi. We assume that at the initial time t=0, the investor has a

Gaussian prior on the return rate µ0 for the first period [T0, T1]. We explain

below in an iterative manner how the prior distribution of µi can be combined

with the signals observed at [Ti, Ti+1], in a way that at Ti+1 the investor is able

to make a prediction on the distribution of µi+1.

If at time Ti, the investor has arrived at a prior belief over µi:

µi ∼ N(µi, σ
2
µi

), (4.87)

At each t ∈ [Ti, Ti+1], the investor observes the realized instantaneous return

on the risky asset, dS(t)
S(t)

, based on which the prior estimate of the expected

return µi will be refined. Since dS(t)
S(t)

∼ i.i.d. N(µidt, σ
√
dt), each observation
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dS(t)
S(t)

should contain the same amount of information, and should receive the

same weight as they appear in the posterior distribution of µi. As a result, the

learning problem in the i-th period can be based solely on the average realized

return over the period [Ti, Ti+1] instead of the entire path. Denote it by bi+1,

then by definition,

bi+1 =
1

∆T

∫ Ti+1

Ti

dS(t)

S(t)
, (4.88)

The dynamics of the stock implies that

bi+1 = µi + σ
∆Wi+1

∆T
.

On the other hand, the next period expected return µi+1 is predicted by the

AR(1) process,

µi+1 = (1− β)µ+ βµi + νi+1.

Therefore, conditional on a fixed value of µi, we can deduce the joint distribu-

tion of (bi+1, µi+1),[
bi+1

µi+1

] ∣∣∣∣
µi

∼ N

([
µi

(1− β)µ+ βµi

]
,

[
σ2

∆T
ρ σσν√

∆T

ρ σσν√
∆T

σ2
ν

])

By time Ti+1, the average realized return bi+1 has been observed by the

investor. This new information helps in two ways. Firstly, the observed returns

reveal information about the true expected return parameter µi. According to

Bayes’ rule,

P (µi|bi+1) =
P (bi+1|µi)P (µi)

P (bi+1)
.

where P (µi|bi+1) denotes the posterior distribution.

Secondly, because the shocks to bi+1 and µi+1 are correlated, the investor is
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able to make inference on µi+1 based on the bi+1 he has already observed, using

that

P (µi+1|bi+1, µi) =
P (µi+1, bi+1|µi)
P (bi+1|µi)

.

Finally, in order for the estimation be conditioned only on the observed data

(and not on the unknown µi), we average µi out by integrating the above

conditional density over the posterior distribution of µi,

P (µi+1|bi+1) =

∫ +∞

−∞
P (µi+1|bi+1, µi)P (µi|bi+1)dµi

=

∫ +∞

−∞

P (bi+1|µi)P (µi)

P (bi+1)

P (µi+1, bi+1|µi)
P (bi+1|µi)

dµi

=

∫ +∞
−∞ P (bi+1, µi+1|µi)P (µi)dµi∫ +∞

−∞

∫ +∞
−∞ P (bi+1, µi+1|µi)P (µi)dµidµi+1

(4.89)

Combing the above with the two density functions, P (bi+1, µi+1|µi) and P (µi),

we obtain,

µi+1|bi+1 ∼ N(µi+1, σ
2
µi+1

), (4.90)

where  µi+1 = (1− β)µ+ βµi + (bi+1 − µi)
σσνρ

√
∆T+βσ2

µi
∆T

σ2+σ2
µi

∆T

σ2
µi+1

= σ2
ν + β2σ2

µi
− (σσνρ+βσ2

µi

√
∆T )2

σ2+σ2
µi

∆T

(4.91)

Equation (4.90) gives the investor’s prior belief about µi+1.

We are now ready to describe the steps for solving the robust forward mean-

variance problem.

(i). Suppose at time Ti the investor has estimated µi ∼ N(µi, σ
2
µi

) and has

determined his target di+1. He picks the subjective parameter µ̂i according to

(4.84), and then solves the standard mean-variance problem (4.86).
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(ii). At Ti+1, the investor follows the steps described in this section and esti-

mates the distribution for µi+1 from (4.90), and determines µ̂i+1 accordingly.

(iii). With µ̂i and µ̂i+1 known to the investor, he is able to determine his new

target dFi+2 to be imposed at Ti+2. By Theorem 4.4.14, we have

dFi+2 = er∆T
[
dFi+1

1 + ξµ̂ii

1 + ξ
µ̂i+1

i+1

+
ξ
µ̂i+1

i+1 X(Ti+1)− er∆T ξµ̂ii X(Ti)

1 + ξ
µ̂i+1

i+1

]
where ξ

µ̂j
j =

E
µ̂j
j [Zµ̂j (Tj+1)]2

Var
µ̂j
j (Zµ̂j (Tj+1))

, j = i, i+ 1.

Then, he goes back to step (i) and solves a standard mean-variance problem

with target di+2 and under the revised parameter µ̂i+1.

4.4.3.2 The Backward Problem

Unlike the forward investor, the backward investor solves a single mean-

variance problem defined over the entire horizon [0, T ]. At time 0, in order to

determine the optimization program defined over [0, T ], the investor first has

to specify the expected rate of return µ̂i for each future period [Ti, Ti+1], i =

0, 1, . . . , N − 1. He does this by estimating the probability distribution of µi,

and then choose the µ̂i from the set C(i) induced by this distribution, all of

these being based only on information available at t = 0.

We will be using double-script notation µ̂ji to denote the investor’s estimate

for expected return at period [Ti, Ti+1], based on information available up to
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time Tj. Thus, the time 0 problem can be written as,

min
X(T )∈AT

Varµ̂
0

(X(T )),

subject to: Eµ̂0 [X(T )] ≥ dB.
(4.92)

where µ̂ := [µ̂0
0, µ̂

0
1, . . . , µ̂

0
N−1].

Note that after the investor reaches T1, he has observed the path of returns

dS(t)
S(t)

, t ∈ [T0, T1]. Using this new information, the investor will update his

parameters into µ̂1
i , i = 1, 2, . . . , N − 1. Because µ̂1

i is different from µ̂0
i ,

the investor would have to resolve his mean-variance problem using the up-

dated parameter set. In general, re-optimization occurs whenever the investor

reaches a new period.

The next theorem provides the investor’s optimal policy at Ti.

Theorem 4.4.15. Assume that at Ti, the investor has estimated return pa-

rameters to be µ̂i = [µ̂i0, µ̂
i
1, . . . , . . . , µ̂

i
N−1]. Then, the optimal amount of wealth

to be invested in the risky asset at t, t ∈ [Ti, Ti+1], is given by,

πB(t) =
µ̂ii − r
σ2

(
ηBi e

r(Ti+1−t) −XB(t)
)
. (4.93)

At Ti+1, the investor’s optimal wealth is given by

XB(Ti+1) = ηBi + φBi
Z µ̂i(Ti+1)

Z µ̂i(Ti)
, (4.94)

where

ηBi =
de∆T (

∑N−1
j=0 (λ̂ij)

2) −X0e
rT

e∆T (
∑N−1
j=0 (λ̂ij)

2) − 1
e−r(T−Ti+1)

φBi = e−((λ̂ii)
2−2r)∆T

(
XB(Ti)− ηe−r(T−Ti)

)
.

(4.95)

and λ̂ij =
µ̂ij−r
σ

, for j = 0, 1, . . . , N − 1.
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Therefore the only problem now left is parameter estimation. Note that

since the entire path of parameters is needed by (4.93), the investor is forced

to make multi-period return forecast. We describe his parameter estimation

procedure next.

Assume at Ti the investor already has a known Gaussian prior distribution

for µi, with mean µi and variance σ2
µi

. The conditional distribution for k-

period ahead return P (µi+k|µi) can be derived from the AR(1) dynamics (4.85)

followed by µ, namely,

µi+k|µi ∼ N
(

(1− βk)µ+ βkµi,
1− β2k

1− β2
σ2
ν

)
.

Integrating over the prior distribution of µi given by (4.87), we obtain the

k-period ahead forecast

µi+k ∼ N(µi+k, σµi+k), (4.96)

with
µi+k = (1− βk)µ+ βkµi

σµi+k =
1− β2k

1− β2
σ2
ν + β2kσ2

µi
.

(4.97)

The above distribution of µi+k then generates a sequence of uncertainty sets

C(i+ k) = {µi+k :
|µi+k − µi+k|

σµi+k
≤ α}, for k = 0, 1, . . . , N − i− 1,

from which we can determine the investor’s subjective parameters by solving

µ̂ii+k := argmin
µi+k∈C(i+k)

|µi+k − r|, k = 1, 2, . . . , N − i− 1 (4.98)

The i-th period optimization problem is then solved by equation (4.94), with

parameters provided by (4.98).
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We can already see from the above that parameter uncertainty has a consid-

erable impact on the backward investor’s performance. As shown by equation

(4.97), σ2
µi+k

, the uncertainty for future parameter µi+k increases with k. In

particular, if β is close to 1, that is the shocks to expected return are persis-

tent, a relatively small variance in ν will be aggregated into a large variance k

periods in the future, making the investor’s current estimate very inaccurate.

As a result, the investor’s current parameter µ̂ii+k may be very different from

µ̂i+ki+k, the parameter he will choose at Ti+k. We will see from the numerical

results how this time-inconsistency in parameter specification would hurt the

investor’s long term performance.

The uncertainty in future parameter value has yet another impact on the in-

vestor’s portfolio, entering through the ambiguity aversion. Note that a large

σ2
µi+k

will increase the size of the parameter set C(i + k), which in turn low-

ers the value of the “worst case” parameter µ̂ii+k. Facing huge uncertainty in

future returns, the investor has to presume that future returns are very low,

so as to insure his portfolio against undesirable parameter realizations. By

equation (4.93), the amount of risky investment at Ti depends positively on

the parameter ηBi , which by (4.95) can be written as,

ηBi = de−r(T−Ti+1) +
d−X0e

rT

e∆T (
∑N−1
j=0 (λ̂ij)

2) − 1
e−r(T−Ti+1).

Thus low values µ̂ii+k increase the value of ηBi which in turn increases risky

investment. Because the ambiguity averse investor sees the future as too un-

certain, he would rather achieve his wealth target early by taking large risks

in the current period!
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Before ending this section, we summarize the steps the backward investor

takes, to formulate and implement his multi-period mean-variance optimiza-

tion.

(i). Suppose at time Ti the prior distribution of µi is known, the investor

determines the path {µ̂i+k}N−i−1
k=1 from (4.96)–(4.98).

(ii). At [Ti, Ti + 1] the investor solves a regular dynamic mean-variance prob-

lem defined over [Ti, T ], under the parameter µ̂ obtained in step (i). At Ti+1,

he obtains the terminal wealth X∗(Ti+1) given by (4.94).

(iii). At Ti+1, the investor refines his estimation for µi+1, based on the sample

average return observed during [Ti, Ti+1]. This leads to the posterior distribu-

tion given by (4.90), which is then served as the prior distribution of µi+1 for

the next trading period.

4.4.3.3 Simulation

We now conduct a simulation study on the forward and backward mean-

variance problems discussed in previous sections. Recall that the joint dynam-

ics of per-period average realized return, bi+1 = 1
∆T

∫ Ti+1

Ti

dS(t)
S(t)

and the expected

return parameter µi can be described by the system,{
bi+1 = µi + σ∆Wi+1

∆T
,

µi+1 = (1− β)µ+ βµi + νi+1,
(4.99)

for i = 0, 1, . . . , N − 1.

Here we take risky asset S to be the U.S. stock market index. We assume the

following parameter values to describe the discrete dynamics of the expected

return, µ = 0.15, β = 0.72, σν = 0.09.. Additionally, we set the correlation
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between the two shocks at ρ = −0.7, the volatility of unexpected return at

σ = 0.4, and the risk-free rate at r = 0.02. The prior distribution µ0 is assumed

to have a mean µ0 = 0.2 and variance σ2
µ0

= 0.01. All parameter values are

annualized, meaning that these values are valid under the assumption that ∆T

equals one year. When we choose to work with ∆T different from one year, β

and σν need to be rescaled to match the period length. (For example, if the

investors update parameters every 1
k

year, we change the value of β = 0.72

into β = 0.721/k, and σν = 0.09 into σν = 0.09
√

1−β2

1−β2k ).

To obtain probability distributions for terminal wealth XF (T ) and XB(T ), we

first simulate 1,000,000 paths of {bi} and {µi}. Under each path simulated,

we compute the terminal wealth X(T ) by calculating recursively the end-of-

period wealth X(Ti), for i = 1, 2, . . . , N .

For the backward investor, the following equation was derived in Theorem

4.4.15. Recall that

XB(Ti+1) = ηBi + φBi
Z µ̂(Ti+1)

Z µ̂(Ti)
. (4.100)

where the coefficients ηBi and φBi are given in equation (4.95).

Similarly for the forward investor, the fact that he solves a standard mean-

variance problem on [Ti, Ti+1] implies

XF (Ti+1) = ηFi + φFi
Z µ̂(Ti+1)

Z µ̂(Ti)
, (4.101)

where,

ηFi =
di+1e

λ̂2i∆T −XF (Ti)e
r∆T

eλ̂
2
i∆T − 1

φFi = −di+1e
r∆T −XF (Ti)e

2r∆T

eλ̂
2
i∆T − 1

(4.102)
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Now, the necessary input are the coefficients ηi, φi and the random

variable Zµ̂(Ti+1)
Zµ̂(Ti)

. To obtain the former for the backward investor, we find at

each Ti the subjective return parameters µ̂i following the procedures described

in section 4.4.3.2, then η and φ are computed from equations and (4.95). Sim-

ilarly, for the forward investor, parameter estimation follows section 4.4.3.1,

and then the coefficients are calculated by (4.102). For computing Zµ̂(Ti+1)
Zµ̂(Ti)

, we

recall that Z µ̂ is the density process of the investor’s subjective measure Qµ̂

with respect to the risk neutral measure Q0. Then, by Girsanov’s theorem,

under the true probability measure Qµ, Z µ̂(t) solves in [Ti, Ti+1] the SDE

dZ µ̂(t) =
(
− r − λµ̂i(λµi − λµ̂i)

)
Z µ̂(t)dt− λµ̂iZ µ̂(t)dW (t).

Here λµi = µi−r
σ

, λµ̂i = µ̂i−r
σ

, with µi being the true parameter and µ̂i the

investor’s estimate. Then Z µ̂(Ti+1) can be solved explicitly,

Z µ̂(Ti+1)

Z µ̂(Ti)
= exp

(
(−r − 1

2
(λµ̂i)2)∆T − λµ̂i(λµi∆T + ∆Wi+1)

)
.

= exp

(
(−r − 1

2
(λµ̂i)2)∆T − λµ̂i ∆T

σ
(bi+1 − r)

) (4.103)

where the last step follows from the relation bi+1 = µi + σ∆Wi+1

∆T
. Therefore,

after we draw a random sample of bi+1 at Ti+1, Zµ̂(Ti+1)
Zµ̂(Ti)

is explicitly computed

using the above equation. This concludes the last step of our simulation pro-

cedure.

Next, we compare the long term performances of forward and backward in-

vestors. Therefore, instead of measuring performance period over period, we

158



should only focus on the long term Sharpe ratio,

SR =
E[X(T )]− erTX0√

Var(X(T )
.

Here the moments are conditional only on the information set at time zero.

As the forward preference suggests, the investor only needs to specify his tar-

get mean dF1 for the first period. The model will then combine information

of market and the investor’s past performances to endogenously generate all

remaining targets for periods that follows. On the contrary, the backward in-

vestor specifies a fixed target dB at the end of the horizon T . It is reasonable

to imagine that, the two approaches will have greater differences under longer

horizons. Therefore, we first look at how does the horizon affect performances

of the two investors differently.

The horizon effect

We calculate the Sharpe ratios for both the forward and backward investors for

horizons ranging from one to ten years. We take ∆T = 0.25, that is we assume

the investors re-estimate parameters every quarter (at the same time the for-

ward investor will update his preference). To also get a sense of how ambiguity

aversion affects performance, the calculations are done separately under the

assumptions α = 0 and α = 1. When estimating the return parameters, in-

vestors with α = 0 do not take any action against parameter uncertainty, and

simply take the mean of the prior distribution as their estimate. In this sense,

they are “ambiguity neutral”. The α = 0 case is shown figure 4.7 panel A. We

can see that both the forward and backward investors’ Sharpe ratios increase

with time, suggesting that the returns of their portfolios increases in horizon
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at a faster rate than the risk. This is a consequence of return mean-reversion

as a result of the negative correlation between the two shocks. Also, notice

that the forward investor almost always outperforms the backward investor at

all horizons. Although the difference is unnoticeable at shorter horizons (for

T=1, the forward investor’s Sharpe ratio is only 1.7 percent higher), it is highly

significant at 10 years horizon, where the forward investor’s Sharpe ratio is 38

percent higher! This is quite intuitive, for the backward investor’s preference

is placed at the terminal time, so his optimization problem requires knowl-

edge of all the returns parameters in the entire horizon, which can only be

estimated based on insufficient information currently available. The forward

investor on the other hand dynamically sets preferences one period ahead, his

optimization problem requires only the parameter for the next period, which

is much easier to estimate. Because the forward investor optimizes based on

more accurate parameter estimations, it is expected that he would achieve a

better performance.

The plot in panel B assumes that α = 1. The Sharpe ratios now are uniformly

lower in comparison to the ones in panel A, and grow with the horizon at a

smaller rate, for the investors would take in this case larger risks. Indeed,

driven by ambiguity aversion, the investors would make more conservative es-

timates on expected returns. Thus they have to make larger investments in

the risky asset in order to achieve the same wealth target. However, this ef-

fect has different impact on forward and backward investors. As parameter

uncertainty faced by the backward investor is significantly larger, aversion to

160



this uncertainty would render his portfolio excessively risky. Therefore, panel

B shows a more striking difference in the performances of the two types of

investors. For example, at T = 10, forward investor’s Sharpe ratio is 100 per-

cent higher.

The effect of learning

We examine how does learning affects the performances of forward and back-

ward investors? Recall that in our setup, although the stock prices are observed

continuously, the investors are only allowed to incorporate this information at

the end of each period Ti. That is, parameters are updated every ∆T years.

If we fix the horizon at T but increases the number of periods N , we then

allow the investors to update their parameters at a higher frequency. This will

obviously benefit the forward investor as the signals he observes can now be in-

corporated earlier in his parameter/preference update. The backward investor

would benefit by the same effect but to a lesser extent, since more frequent

change of subjective parameters also has the negative effect of introducing a

higher degree of time-inconsistency. It is not yet clear which effect plays the

more significant role.

In the numerical study that follows, we fix the horizon at T = 10 years, and let

N vary from 1 to 20. In Figure 4.8, we plot the investors’ Sharpe ratio as func-

tion of N . Again, in all cases expect N = 1, the forward investor outperforms

the backward investor, and the performance gap widens as N increases, imply-

ing that forward investor receives a greater benefit from additional learning.
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Figure 4.7: Sharpe ratio and investment horizon.
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The case N = 1 is special in that it is the only case when the forward investor

does not update his preference in between [0, T ]. As a result, the forward and

backward investors have identical Sharpe ratio performances. N = 1 is also

the only case when learning is completely ignored. We can see that there is

a sizable upward jump in Sharpe ratio when we just increase N from one to

two, which provides evidence that the cost of ignoring learning is substantial,

and is consistent with the findings in Xia (2001).

We also observe that the backward investor’s Sharpe ratio is only increas-

ing in N when α = 0. When α = 1, the Sharpe ratio first increases when

N ≤ 3, and after that it gradually decreases. As it has been discussed in

section 4.4.3.2, in the presence of ambiguity aversion, the backward investor’s

choice for subjective parameter has a greater variation over time (compare to

the ambiguity neutral case), that is, for a fixed period [Ti, Ti+1], the investor

would choose very different µ̂i at different times, introducing a higher degree of

time-inconsistency in his portfolio decision. As the marginal benefit of learn-

ing decreases with N , the time-inconsistency effect would eventually outweigh

the benefit of additional learning. That is why we see the Sharpe ratio drop

at N ≥ 3.

4.5 Conclusions

In the practice of portfolio management, investment decisions are al-

most never made based on a single-period optimization approach. Regardless

163



Number of periods
0 2 4 6 8 10 12 14 16 18 20

S
ha

rp
e 

ra
tio

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Panel A. Sharpe ratio for ambiguity averse investors

Number of periods
0 2 4 6 8 10 12 14 16 18 20

S
ha

rp
e 

ra
tio

0

1

2

3

4

5

6
Panel B. Sharpe ratio for ambiguity neutral investors

Figure 4.8: Sharpe ratio vs. number of investment periods.
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of the actual investment lifetime, managers are more likely to construct portfo-

lios based on optimizing objective functions placed at much shorter horizons,

and repeat this effort sequentially and forward in time. Therefore, an in-

evitable decision is to specify a sequence of objective functions which guide

investment decisions in each period. So far, to the best of our knowledge,

there has been little work that takes this issue to a theoretical level. In

mean-variance optimization in particular, the wealth targets in each period

are chosen in ad hoc ways that ignore both the changing market conditions

and realized performances.

We fill this crucial gap by proposing the forward approach in constructing

multi-period mean-variance investment criteria, imposing that portfolio deci-

sions should be consistent over time.

Our numerical examples under both discrete and continuous trading demon-

strate that, maintaining time-consistency when generating multi-period invest-

ment criteria, leads to much higher long term Sharpe ratio, compared to other

multi-period mean-variance approaches that ignore it.

An alternative to the multi-period approach is to formulate the investment

problem as a single period, long horizon dynamic mean-variance optimization.

While it does generate the best long run performance under the assumption

that the investor can precisely estimates all the uncertainties, the quality of

this approach quickly deteriorates even under a slight possibility of estimation

error. As shown in section 4.3.4, a 2% error rate is already enough to make

the multi-period forward mean-variance formulation more attractive.
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Even in an idealized situation where model estimation is not a problem, the

forward approach is still relevant in that it strikes a good balance when per-

formance is measured both at long term and short term. Contrary to what

Cvitanić et al. (2008) claims that managers who seek to maximize short term

performance suffer greatly in the long term, the forward approach, while al-

lowing managers to focus primarily on short term performances, generates far

better long term Sharpe ratios that are only slightly below the managers who

target at long term.

There are several lines of research that are left unexplored herein. Firstly,

since the forward approach grants the investor full flexibility to his model es-

timation based on new information, it would be desirable to combine forward

framework with existing statistical model selection techniques. For example,

one might have a number of factors that have the potential to predict as-

set returns. At the beginning of each period, data analysis techniques may

be applied to determine the best factor combination, as well as factor load-

ing. Another example is the Black-Litterman model (see Black and Litterman

(1991)), which allows the investor to express his subjective views about the

asset returns in each trading period and to combine them quantitatively with

the equilibrium model in order to obtain more refined predictive distributions.

Based on these models, the forward theory can then generate the target wealth

to be pursued in the next period.

A potential issue with this idea, however, is that if the investor’s estimates

or views are very wrong, the wealth targets and the resulting optimal port-
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folios obtained from the forward theory will not be able to guarantee time-

consistency. A possible alternative is the non-parametric approach of Brandt

(1999) or the semi-parametric approach of Ait-Sahalia and Brandt (2001). In

order to avoid model specification errors, in these studies the authors suggest

using the generalized method of moments to directly solve optimal portfolio

weights through solving the empirical Euler equation. This bypasses the mod-

eling step altogether. In fact, one can go one step further to solve not just for

the optimal portfolio, but also for the forward target in a single step. Hence,

the obtained forward mean-variance preference depend only on historical data

and not model specification. These are ongoing research topics which will be

addressed in future work.
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Appendix A

Proofs of Theorems for Chapter 2

A.1

Proof of Theorem 2.2.3

Proof. (i) By (2.10), we have

X∗i (t) =

∫ ∞
0

eyh
(−1)
i (Xi(0),0)+(y− 1

2
y2)A(t)+yM(t)νi(dy).

Moreover, Xi(0) =
∫∞

0
eyh

(−1)(X(0),0)νi(dy), which implies that,

h(−1)(X(0), 0) = h
(−1)
i (Xi(0), 0).

Hence,

n∑
i=1

X∗i (t) =
n∑
i=1

∫ ∞
0

eyh
(−1)
i (Xi(0),0)+(y− 1

2
y2)A(t)+yM(t)νi(dy),

=
n∑
i=1

∫ ∞
0

eyh
(−1)(X(0),0)+(y− 1

2
y2)A(t)+yM(t)νi(dy),

=

∫ ∞
0

eyh
(−1)(X(0),0)+(y− 1

2
y2)A(t)+yM(t)

n∑
i=1

νi(dy),

=

∫ ∞
0

eyh
(−1)(X(0),0)+(y− 1

2
y2)A(t)+yM(t)ν(dy) = X∗(t).

(A.1)

(ii) The definitions of ν and X(0) yield that h(−1)(X(0), 0) = 0. The rest of

proof is similar to (i).
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A.2

Proof of Proposition 2.3.1

Proof. In Musiela and Zariphopoulou (2010a), it was shown that the risk tol-

erance function r(x, t) solves

rt +
1

2
r2rxx = 0. (A.2)

Therefore the function r̃(x, t) solves,

r̃t + xr̃2r̃x +
1

2
x2r̃2r̃xx = 0.

Recall that the optimal wealth process is given by

dX∗(t) = R̃∗(t)X∗(t)(λ2dt+ λdW (t)). (A.3)

Applying Ito’s lemma formula yields that R̃∗(t) needs to satisfy

dR̃∗(t) =dr̃(X∗(t), A(t))

=r̃t(X
∗(t), A(t))dA(t) + r̃x(X

∗(t), A(t))dX∗(t) +
1

2
r̃xx(X

∗(t), A(t))(dX∗(t))2

=λ2

(
r̃t(X

∗(t), A(t)) + r̃x(X
∗(t), A(t))R̃∗(t)X∗(t)

+
1

2
r̃xx(X

∗(t), A(t))(R̃∗(t)X∗(t))2

)
dt+ λr̃x(X

∗(t), A(t))R̃∗(t)X∗(t)dW (t)

=λR∗(t)r̃x(X
∗(t), A(t))

(
λ(1− R̃∗(t))dt+ dW (t)

)
,

(A.4)

where we used (A.2).
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Proof of Lemma 2.3.3

Proof. By definition, R0(t) = X∗(t), R1(t) = R∗(t). Thus, equation (2.28) is

automatically satisfied at n = 0, for X∗(t) and R∗(t) are related by the SDE,

dX∗(t) = R∗(t)(λ2dt+ λdW (t)).

If we write the stochastic processes in their integral forms, the above equation

implies,

d
( ∫

R
eyD(t)− 1

2
y2A(t)ν(dy)

)
=

∫
R
yeyD(t)− 1

2
y2A(t)ν(dy)(λ2dt+ λdW (t)). (A.5)

Note that the equality above is satisfied for any measure ν characterized in

Proposition 2.2.2. Hence, if we replace ν(dy) by ν̃(dy) = ynν(dy), the equation

still holds,

d
( ∫

R
yneyD(t)− 1

2
y2A(t)ν(dy)

)
=

∫
R
yn+1eyD(t)− 1

2
y2A(t)ν(dy)(λ2dt+ λdW (t)).

This is precisely SDE (2.28) by the definition of Rn(t).

Proof of Proposition 2.3.5

Proof. We first show that (2.32) holds when the shift index l equals 0. Consider

the n× (n+ 1) matrix ,

Mα =


1 α1 . . . αn1
1 α2 . . . αn2
...

...
...

1 αn . . . αnn
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It is then easy to show that Mα has rank n, since for ∀ i 6= j, αi 6= αj. Thus,

there exists a non-zero vector q = (q0, q1, . . . , qn)T such that,

Mαq = 0.

Without loss of generality we can set qn = 1. Therefore, for i = 1, 2, . . . , n, we

have

q0 + q1αi + q2α
2
i + . . .+ qn−1α

n−1
i + αni = 0.

In other words, α1,...,αn are n distinct roots of the polynomial,

xn + qn−1x
n−1 + . . .+ q1x+ q0.

Hence, for k = 1, . . . , n− 1, we have

qn−k = (−1)k
∑

1≤i1<...<ik≤n

αi1αi2 . . . αik .

Let p = (p1, p2, . . . , pn) and Z = (Z0, Z1, . . . , Zn) denote the probability and

moment vectors. Then,

Z = pMα.

Since pMαq = 0, we have Zq = 0, and thus, the moment equality (2.32) holds

at l = 0. For the case l > 0, first notice that the relation Mαq = 0 implies

pDl
αMαq = 0, (A.6)

where Dα is the diagonal matrix with αi’s on the main diagonal. Because the

i-th row of Dl
αMα equals (αli, α

l+1
i , . . . , αl+ni ), we have

pDl
αMα = (Zl, Zl+1, . . . , Zl+n).

Therefore equation (A.6) coincides with (2.32).
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Proof of Corollary 2.3.7

Proof. For the matrix Mα defined in the proof of lemma 2.3.5, one can easily

verify that,

R̃(t) = MT
α p(t).

Moreover, the column vectors of MT
α give the eigenvectors of Nα with eigen-

values α1, . . . , αn. Hence,

Nα = MT
αDα(MT

α )−1.

Multiplying equation (2.35) by (MT
α )−1 yields

d(MT
α )−1R̃(t) = λ

(
(MT

α )−1Nα − R̃∗(t)(MT
α )−1

)
R̃(t)(λ(1− R̃∗)dt+ dW (t)),

and, in turn,

dp(t) = λ
(
Dα − R̃∗(t)I

)
p(t)(λ(1− R̃∗)dt+ dW (t)).
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Appendix B

Proofs of Theorems for Chapter 3

B.1

Proof for Theorem 3.2.2

Proof. The drift term of R̃∗(t) is,

λ2Var(Y (t)|Ft)(1− R̃∗).

Clearly, under the above assumption we have Var(Y (t)|Ft) ≥ 0, for all t ≥ 0.

To see the sign of (1− R̃∗(t)), recall the explicit solution of R̃∗(t),

R̃∗(t) =

∫∞
0
yeyD(t)− 1

2
y2A(t)ν(dy)∫∞

0
eyD(t)− 1

2
y2A(t)ν(dy)

.

Therefore,

inf {y| y ∈ supp(ν)} < R̃∗(t) < sup {y| y ∈ supp(ν)}.

If supp(ν) ⊂ [0, 1], we have R̃∗(t) < 1, for all t. Hence, R̃∗(t) has non-negative

drift. Since R̃∗(t) is also bounded, and therefore integrable at all t, it must be

a submartingale. The supermartingale case can be proved similarly.

Proof for Theorem 3.2.3

174



Proof. (i) Without loss of generality, assume α’s are arranged such that |1 −

α1| < |1− α2| < . . . < |1− αn|. Let gi = αi − 1
2
α2
i . Then, g1 > g2 > . . . gn.

π̃ can be rewritten as,

R̃∗(t) =
a1α1 +

∑n
i=2 aiαie

(αi−α1)(h(−1)(x)+M(t))+(gi−g1)A(t)

a1 +
∑n

i=2 aie
(αi−α1)(h(−1)(x)+M(t))+(gi−g1)A(t)

.

For any c ∈ R, if αi > α1, we have

Prob
(
(αi − α1)(h(−1)(x) +M(t)) + (gi − g1)A(t) > c

)
= Prob

(
M(t) >

c

αi − α1

− h(−1)(x)− gi − g1

αi − α1

λ2t
)

= 1−N
( 1

λ
√
t
(

c

αi − α1

− h(−1)(x))− gi − g1

αi − α1

λ
√
t
)
.

(B.1)

Here N(·) is the cumulative density function of a standard normal distribution.

Since gi − g1 < 0, the above probability goes to 0 as t → ∞. It is easy to

show that the case αi < α1 leads to the same result. Therefore, for any

i = 2, 3, . . . , n we have,

plim
t→∞

e(αi−α1)(h(−1)(x)+M(t))+(gi−g1)A(t) = 0.

The result immediately follows.

(ii) If supp(ν) ⊂ [0, 1], we assume without loss of generality that 1 ≥ α1 >

α2 > . . . > αn. We have shown that when the entire support of ν is on the left

side of 1, then R̃∗(t) is a submartingale bounded above by α1. Therefore, by

the martingale convergence theorem, there exists a finite limit R̃∗∞, such that

R̃∗(t)
a.s.→ R̃∗∞.
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We have R̃∗∞ ≤ α1 a.s.

On the other hand, by Fatou’s lemma,

E[R̃∗∞] ≥ lim sup
t→∞

E[R̃∗(t)].

We have shown in part (i) that plim
t→∞

R̃∗(t) = α1. Since R̃∗(t) is also bounded,

we must have,

lim
t→∞

E[R̃∗(t)] = α1.

Therefore, E[R̃∗∞] ≥ α1, which implies that R̃∗∞ = α1 , a.s.. The proof is similar

when supp(ν) ⊂ [1,∞).

Proof for Theorem 3.3.1

Proof. Since R̃∗(t) solves (3.3), classical results (see for example øksendal

(1985)) yield that g(r) solves the following Poisson problem,{
λ2(r̃ − α1)(α2 − r̃)

(
(1− r̃)g′ + 1

2
(r̃ − α1)(α2 − r̃)g′′

)
= −1

g(d) = 0.
(B.2)

One can first solve the ODE under the additional boundary condition g(d1) = 0

and then take d1 → α2. The ODE can be solved through multiplying (B.2) by

the function, ( r̃ − α1

d− α1

)2
1−α1
α2−α1

( r̃ − α2

d− α2

)2
α2−1
α2−α1 ,

and then integrate. The calculations are elementary but tedious, and are hence

omitted.
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Appendix C

Proofs of Theorems for Chapter 4

C.1

Proof for Proposition 4.2.2

Proof. The wealth at T takes the formXT = (ω0(R0−rf )+rf )X0, and E[XT ] =

(ω0µ
e
0+rf )X0, Var(XT ) = (ω0Σ0ω

′
0)X2

0 . Therefore, the mean-variance problem

can be explicitly written as

max
ω

(ωµe0 + rf )X0 −
γ0

2
(ω0Σ0ω

′
0)X2

0 (C.1)

The first order condition implies that µe0X0 − γ0Σ0ω
′
0X

2
0 = 0, and thus

ω∗MV
′ =

1

γ0X0

Σ−1
0 µe0 (C.2)

On the other hand, let Θ0 = Σ0 + µe0µ
e
0
′ denote the second moment matrix of

excess returns. Then, the quadratic utility problem has the explicit form

max
ω0

(ω0µ
e
0 + rf )X0 −

δ0

2
(ω0Θ0ω

′
0 + 2rfω0µ

e
0 + r2

f )X
2
0 (C.3)

Take first order condition we obtain,

ω∗QU
′ = (

1

δ0X0

− rf )Θ−1
0 µe0. (C.4)
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It then follows from (C.2) and (C.4) that equivalence holds if and only if

1

γ0X0

Σ−1
0 µe0 = (

1

δ0X0

− rf )Θ−1
0 µe0.

It is straightforward to verify that,

Θ−1
0 µe0 =

1

1 + µe0
′Σ−1

0 µe0
Σ−1

0 µe0. (C.5)

Combining the above two equations we obtain (4.12).

Proof for Proposition 4.2.4

Proof. For any UT (x) in the above form, we can calculate the value function

VT (·) at t = T as,

VT (XT ) = aTET [Xω∗

T̃
− δT

2
(Xω∗

T̃
)2] + bT

= aT
(
rf (1− c)(XT −

δT rf
2

X2
T ) +

c

2δT

)
+ bT ,

(C.6)

where c = µeT
′Θ−1

T µeT . Identity (C.5) implies that c =
µeT
′Σ−1
T µeT

1+µeT
′Σ−1
T µeT

. Therefore,

VT (x) =
rfaT

1 + µeT
′Σ−1

T µeT
(x− δT rf

2
x2) +

aT
2δT

µeT
′Σ−1

T µeT
1 + µeT

′Σ−1
T µeT

+ bT . (C.7)

In order to have VT (x) = U0(x), we need
δT = δ0

rf
,

aT =
1+µeT

′Σ−1
T µeT

rf

bT = − 1
2δ0

(µeT
′Σ−1

T µeT ),

(C.8)

and we easily conclude.

Proof for Theorem 4.2.5
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Proof. Let δt−1 and δt be the coefficients that define the equivalent quadratic

utility problems at t− 1 and t. Then, by (4.12),

1

δi
=

1

γi
(1 + µei

′(Σi)
−1µei ) + rfXi, i = t− 1, t.

Since by (4.14) the δ coefficients need to satisfy δt = δt−1

rf
, we need

1

γt
(1 + µet

′(Σt)
−1µet ) + rfXt = rf

( 1

γt−1

(1 + µet−1
′(Σt−1)−1µet−1) + rfXt−1

)
Rearranging this equation we obtain (4.16).

Proof for Proposition 4.2.6

Proof. By definition, wu = Θ−1e
e′Θ−1e

and ru = µ′Θ−1e
e′Θ−1e

. We can verify the following

matrix identity,

Θ−1µ =
1

1 + µ′Σ−1µ
Σ−1µ

Θ−1e = Σ−1e− µ′Σ−1e

1 + µ′Σ−1µ
Σ−1µ.

Therefore we notice that both w∗MV and w∗QU are linear combinations of Σ−1µ

and Σ−1e, and they are identical if and only the weights on Σ−1µ coincide.

Hence, we need that

1

γX0

=
1

δX0

( 1

1 + µ′Σ−1µ
+ ru

µ′Σ−1e

1 + µ′Σ−1µ

)
− 1

e′Θ−1e

µ′Σ−1e

1 + µ′Σ−1µ
.

Simplifying the equation yields

1

δ
=

1

γ
(1 + µ′Σ−1µ− (µ′Σ−1e)2

e′Σ−1e
) +

µ′Σ−1e

e′Σ−1e
X0

=
1

γ

(
1 + (µ′ − rve)Σ−1(µ− rve)

)
+ rvX0.
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C.2

Proof for Theorem 4.3.3

Proof. By proposition 4.1 of Bielecki et al. (2005), problem (4.3.3) under the

wealth constraint Ei−1[X(ti)Z(ti)] = X(ti−1)Z(ti−1) is equivalent to the un-

constrained problem,

min
π∈A

E[Xπ(ti)
2 − 2ηi−1X

π(ti)− 2η̃X(ti)Z(ti)], (C.9)

for some η̃ measurable w.r.t. Fti−1
. Therefore, the first order condition implies

that, the optimal terminal wealth has the following form,

X∗(ti) = ηi−1 + η̃Z(ti).

On the other hand, recall that in section 3.3.1 we have derived the optimal

terminal wealth for the mean-variance problem

X∗(ti) =
di−1Ei−1[(Z(ti))

2]−X(ti−1)Z(ti−1)E[Z(ti)]

Var(Z(ti))
+

X(ti−1)Z(ti−1)− di−1Ei−1[Z(ti)]

Vari−1(Z(ti))
Z(ti).

(C.10)

The optimal wealth then coincide if and only if,{
ηi−1 = di−1Ei−1[(Z(ti))

2]−X(ti−1)Z(ti−1)E[Z(ti)]
Var(Z(ti))

,

η̃ = X(ti−1)Z(ti−1)−di−1Ei−1[Z(ti)]
Vari−1(Z(ti))

.
(C.11)

which proves ηi−1 is given by (4.49).

Proof for Theorem 4.3.4
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Proof. By definition, {Ui(x)}∞i=0 is a predictable forward performance if it is

constructed iteratively through the time-reversed HJB equation,

Ui−1(x) = max
π∈A

Ei[Ui(Xπ(ti+1))|X(ti) = x]. (C.12)

To calculate the “value function” on the right hand side, note from the proof

of Proposition 4.3.3 that the wealth variable that maximizes Ei[Ui(x)] has the

form,

X∗(ti+1) = ηi + η̃Z(ti+1).

The wealth constraint Ei[X(ti+1)Z(ti+1)] = X(ti)Z(ti) then implies that

η̃ =
X(ti)Z(ti)− ηiEi[Zti+1

]

Ei[Z(ti+1)2]
.

Therefore,

max
π∈A

Ei[Ui(Xπ(ti+1))|X(ti) = x]

=Ei[ai(X∗(ti+1)− ηi)2 + bi|Xi = x]

= ai
(Z(ti)x− ηiEi[Zti+1

]

Ei[Z(ti+1)2]

)2Ei[Z(ti+1)2] + bi.

(C.13)

In order for the value function to match the quadratic utility Ui−1(x) =

ai−1(x− ηi−1)2 + bi−1, the η-coefficients need to satisfy

ηi−1 =
Ei[Z(ti+1)]

Z(ti)
ηi.

In particular, when the risk-free rate is deterministic, we have

Ei[Z(ti+1)]

Z(ti)
= e−

∫ ti+1
ti

r(s)ds.
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C.3

Proof of Lemma 4.4.3

Proof. (1). By definition, Z µ̂(t) has the following dynamics under Qµ̂,

dZ µ̂(t) = −rZ µ̂(t)dt− Z µ̂(t)λµ̂ · dW µ̂(t).

By Girsanov’s theorem, Z µ̂(t) should solve under Qµ the SDE,

dZ µ̂(t) =
(
− r − λµ̂(t) · (λµ(t)− λµ̂(t))′

)
Z µ̂(t)dt− Z µ̂(t)λµ̂(t) · dW µ(t).

We can then prove that Eµ[Z µ̂(T )] ≤ Eµ̂[Z µ̂(T )] by showing Z µ̂ under Qµ has

a smaller drift. In other words, it would be sufficient to prove

λµ̂(t) · (λµ(t)− λµ̂(t))′ ≥ 0, a.s., and for ∀ t ∈ [0, T ].

To show this let us first define the function

f(θ) = |θλµ + (1− θ)λµ̂|2, θ ∈ [0, 1].

Let D(t) denote the set of market price of risk vectors: {λ(t) = (µ(t) −

r1)Σ(t)−1 : µ(t) ∈ C(t)}. Clearly, D(t) is convex and closed since it is ob-

tained as an affine transformation of C(t). Therefore, the convex combination

θλµ(t) + (1− θ)λµ̂(t) ∈ D(t), for ∀ θ ∈ [0, 1]. By definition, λµ̂(t) achieves the

smallest norm in D(t), implying that the vector θλµ(t) + (1 − θ)λµ̂(t) should

attain minimum norm at θ = 0, or equivalently, f(θ) is minimized at θ = 0.

After rearranging the terms we get (time variable t is omitted) that

f(θ) = |λµ − λµ̂|2θ2 + 2λµ̂ · (λµ − λµ̂)′θ + |λµ̂|2.
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The only way that f(θ), defined over [0, 1], attains minimum at θ = 0 is when

the first order coefficient is non-negative. We thus get λµ̂ · (λµ−λµ̂)′ ≥ 0. This

proves Eµ[Z µ̂(T )] ≥ Eµ̂[Z µ̂(T )]. Eµ[Z µ̂(T )2] ≤ Eµ̂[Z µ̂(T )2] can be proved in a

similar fashion.

(2). By Itǒ’s lemma, after differentiating Zµ(t)2 under Qµ:

dZµ(t)2 = Zµ(t)2
(
(|λµ(t)|2 − 2r)dt− 2λµ(t) · dW µ(t)

)
.

Taking expectations on both sides and apply the fact that |λµ(t)|2 ≥ |λµ̂(t)|2,

Qµ-a.s. we get

dEµ[Zµ(t)2] ≥ E[Zµ(t)2(|λµ̂(t)|2 − 2r)dt]

. Notice that the deterministic assumption on C(t) and Σ(t) implies that µ̂(t),

and hence λµ̂(t) is deterministic. The above is therefore reduced to

dEµ[Zµ(t)2] ≥ (|λµ̂(t)|2 − 2r)E[Zµ(t)2]dt.

By Gronwall’s inequality,

Eµ[Zµ(t)2] ≥ e
∫ T
0 (|λµ̂(t)|2−2r) dt = Eµ̂[Z µ̂(t)2].

Varµ(Zµ(T )) ≥ Varµ̂(Z µ̂(T )) follows immediately since Eµ[Zµ(T )] = Eµ̂[Z µ̂(T )] =

e−rT .

(3). Notice that if we also assume λµ(t) to be deterministic, then the dynamics

of Z µ̂(t) under both Qµ and Qµ̂ would have deterministic coefficients. This
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enables us to directly compute the variances. We can then verify that

Varµ(Z µ̂(T )) = e−2
∫ T
0 λµ̂(t)·(λµ(t)−λµ̂(t))′dtVarµ̂(Z µ̂(T )),

and Varµ(Z µ̂(T )) ≤ Varµ̂(Z µ̂(T )) follows again from the inequality

λµ̂(t) · (λµ(t)− λµ̂(t))′ ≥ 0.

Proof of Theorem 4.4.4

Proof. Denote by RV (·) the robust variance functional

RV (X(T )) := max
µ∈C̃

Varµ(X(T )).

It would be enough to show that X µ̂(T ), the optimal terminal wealth of the

standard mean-variance problem (4.73), satisfies the robust wealth target con-

straint,

Eµ[X µ̂(T )] ≥ d, ∀µ ∈ C̃, (C.14)

and minimizes the robust variance functional, i.e.,

X µ̂(T ) = argmin
X(T )∈AT

RV (X(T )). (C.15)

To show (C.14), we work as follows. By definition we have Eµ̂[X µ̂(T )] ≥ d.

Also from the proof of Theorem 4.3.3, we know that the terminal wealth X µ̂(T )

is of the form

X µ̂(T ) =
η

2
− φZ µ̂(T ),

where η and φ are F0-measurable, depending on µ̂. Under the assumption that

d ≥ X0e
rT , we deduce that φ = de−rT−X0

Varµ̂(Z(T ))
should be non-negative. Applying
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part (1) of lemma 4.4.3 yields

Eµ[X µ̂(T )] =
η

2
− φEµ[Z µ̂(T )] ≥ η

2
− φEµ̂[Z µ̂(T )] = Eµ̂[X µ̂(T )] ≥ d,

which proves (C.14).

To prove (C.15), we first note that for ∀X(T ) ∈ AT , RV (X(T )) ≥ max
µ∈C̃

Varµ(Xµ(T )).

Here, again, Xµ(T ) denotes the optimal terminal wealth of the standard mean-

variance problem under subjective measure Qµ. Straightforward calculation

then shows that

Varµ(Xµ(T )) =
(dE−rT −X0)2

Varµ(Zµ(T ))
.

By Lemma 4.4.3 part (2), the above is maximized at µ = µ̂. We thus obtain

the lower bound

RV (X(T )) ≥ (dE−rT −X0)2

Varµ̂(Z µ̂(T ))
.

The calculations below shows that the above lower bound is attained at X µ̂(T ),

RV (X µ̂(T )) = max
µ∈C̃

Varµ(X µ̂(T ))

= max
µ∈C̃

(dE−rT −X0)2(
Varµ̂(Z µ̂(T ))

)2 Varµ(Z µ̂(T ))

=
(dE−rT −X0)2

Varµ̂(Z µ̂(T ))
,

(C.16)

where the last equality follows from part (3) of Lemma 4.4.3. Thus, so far

we have shown that the terminal wealth X µ̂(T ) minimizes the robust variance

functional function, while satisfying the target wealth constraint under any

Qµ. We easily deduce that X µ̂(T ) is the solution to the robust mean-variance

problem.
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Proof of Theorem 4.4.6

Proof. Let RL(X(T )) := min
µ∈C

(
Eµ[X(T )]− γVarµ(X(T ))

)
denote the robust

Lagrangian functional. The theorem states that X µ̂(T ) = argmax
X(T )∈AT

RL(X(T )).

To prove this, we will first derive an upper bound for RL(X(T )), and then

show that RL(X µ̂(T )) attains this upper bound.

For an arbitrary but fixed µ ∈ C, let Xµ(T ) denote the optimal terminal

wealth for the standard problem under Qµ,

max
X(T )∈AT

(
Eµ[X(T )]− γVarµ(X(T ))

)
. (C.17)

Applying the embedding technique of Li and Zhou (2000), Xµ(T ) can be shown

to have the representation,

Xµ(T ) =
x0

Eµ[Zµ(T )]
+

1

2γ

Eµ[Zµ(T )2]

Eµ[Zµ(T )]2
− 1

2γ

Zµ(T )

Eµ[Zµ(T )]
(C.18)

Thus, by the optimality assumption of Xµ, we have

RL(X(T )) = min
µ∈C

Eµ[X(T )]− γVarµ(X(T ))

≤ min
µ∈C

Eµ[Xµ(T )]− γVarµ(Xµ(T ))

= min
µ∈C

x0

Eµ[Zµ(T )]
+

1

4γ
(
Eµ(Zµ(T )2)

(Eµ[Zµ(T )])2
− 1). (by (C.18))

(C.19)

Because Eµ[Zµ(T )] = Eµ̂[Z µ̂(T )] = e−rT , and by part (2) of Lemma 4.4.3 we

have Eµ[Zµ(T )2] ≥ Eµ̂[Z µ̂(T )2]. In other words, the right hand side of (C.19)

is minimized at µ̂. Therefore,

RL(X(T )) ≤ x0

Eµ̂[Z µ̂(T )]
+

1

4γ
(
Eµ̂(Z µ̂(T )2)

(Eµ̂[Z µ̂(T )])2
− 1). (C.20)
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Next we prove that the above upper bound is attained by the robust La-

grangian functional RL at X µ̂(T ). Straightforward calculations give

RL(X µ̂(T )) = min
µ∈C

(
Eµ[X µ̂(T )]− γVarµ(X µ̂(T ))

)
= min

µ∈C

( x0

Eµ̂[Z µ̂(T )]
+

1

2γ

Eµ̂[Z µ̂(T )2]

Eµ̂[Z µ̂(T )]2
− 1

4γ

· 1

(Eµ̂[Z µ̂(T )])2
(Varµ(Z µ̂(T )) + 2Eµ[Z µ̂(T )]Eµ̂[Z µ̂(T )])

)
.

(C.21)

We can ignore the first two terms as they are independent of the minimization

argument µ. For the third term, we rewrite

Varµ(Z µ̂(T )) + 2Eµ[Z µ̂(T )]Eµ̂[Z µ̂(T )]

=Eµ[Z µ̂(T )2]− (Eµ[Z µ̂(T )]− Eµ̂[Z µ̂(T )])2 + (Eµ̂[Z µ̂(T )])2.
(C.22)

By part (1) of Lemma 4.4.3, Eµ[Z µ̂(T )2] ≤ Eµ̂[Z µ̂(T )2]. Thus, the first and

second terms of the above expression are both maximized at µ = µ̂, and

therefore the minimum on the RHS of (C.21) is achieved at µ = µ̂. We obtain

from (C.21),

RL(X µ̂(T )) =
x0

Eµ̂[Z µ̂(T )]
+

1

4γ
(
Eµ̂(Z µ̂(T )2)

(Eµ̂[Z µ̂(T )])2
− 1).

Comparing the above with equation (C.20), we have shown that X µ̂(T ) attains

the upper bound of the robust Lagrangian functional, and we easily conclude.

Proof of Theorem 4.4.7

Proof. We first let Xµ(T ) denote the optimal terminal wealth that maximizes

under Qµ the expected utility QUµ(X(T )) = Eµ[ηX(T ) − X(T )2], and let
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RQU(·) denote the robust utility functional

RQU(X(T )) = min
µ∈C

(
Eµ[ηX(T )−X(T )2]

)
.

The theorem then states that

X µ̂(T ) = argmax
X(T )∈AT

RQU(X(T )).

We prove this in two steps. First, we derive an upper bound of the robust

utility functional, and then we show that the upper bound is attained at

X µ̂(T ).

By definition, Xµ(T ) is the optimal terminal wealth for the standard utility

problems under Qµ̂, for which we have the solutions:

Xµ(T ) =
η

2
− φ

2
Zµ(T ), with φ =

ηe−rT − 2X0

Eµ[Zµ(T )2]
. (C.23)

This in turn gives the utility at the optimum

QUµ(Xµ(T )) =
η2

4
− (ηe−rT − 2X0)2

4Eµ[Zµ(T )2]
. (C.24)

Next, we consider the robust problem. We have by the definition of Xµ(T )

that, for any admissible terminal wealth X(T ), the inequality QUµ(X(T )) ≤

QUµ(Xµ(T )) holds, for ∀µ ∈ C. This implies

RQU(X(T )) = min
µ∈C

QUµ(X(T )) ≤ min
µ∈C

QUµ(Xµ(T )).

By (C.24), we can see that the right hand side above is minimized exactly

when Eµ[Zµ(T )2] is minimized. By Lemma 4.4.3 part (2), this minimum is
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achieved at the “least favorable” measure µ̂. This gives an upper bound for

RQU(X(T )),

RQU(X(T )) ≤ QU µ̂(X µ̂(T )) =
η2

4
− (ηe−rT − 2X0)2

Eµ̂[Z µ̂(T )2]
.

It remains to show that RQU(X µ̂(T )) = QU µ̂(X µ̂(T )). Substituting the rep-

resentation (C.23) of Xµ(T ) into the above, the problem reduces to proving

max
µ∈C

Eµ[Z µ̂(T )2] = Eµ̂[Z µ̂(T )2],

which however follows directly from part (1) of Lemma 4.4.3.

Proof of Theorem 4.4.12

Proof. Part (ii) of definition 4.4.11 implies the restriction on Un,

Un−1(X(Tn−1)) = max
X(Tn)∈ATn

min
µ∈C̃

Eµ[Un(X(Tn))|FTn−1 ].

By Theorem 4.4.7, the robust utility problem on the right hand side is equiv-

alent to the standard utility problem under the “least favorable” measure µ̂.

The equation can thus be rewritten as,

Un−1(X(Tn−1)) = max
X(Tn)∈ATn

Eµ̂[Un(X(Tn))|FTn−1 ].

In other words, {Un}Nn=1 is a predictable forward performance under the fixed

measure Qµ̂. Applying theorem 4.3.4 gives,

ηn = ηn−1
Z µ̂(Tn−1)

Eµ̂[Z µ̂(Tn)]
.
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Under the assumption that the interest rate is constant, the above reduces to,

ηn = ηn−1e
r(Tn−Tn−1),

and we conclude.
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J. Cvitanić, A. Lasrak, and T. Wang. Implications of the sharpe ratio as a per-

formance measure in multi-period settings. Journal of Economics Dynamics

& Control, 32:1622–1649, 2008.

M. Dai, Z. Xu, and X. Zhou. Continuous-time markowitz’s model with trans-

action costs. SIAM Journal on Financial Mathematics, 1:96–125, 2010.

193



S. Das, H. Markowitz, J. Scheid, and M. Statman. Portfolio optimization

of mental accounts. Journal of Financial and Quantitative Analysis, 45:

311–334, 2010.

P. Dybvig and L. Rogers. Recovery of preferences from observed portfolio

choice in a single realisation. Review of financial studies, 10:151–174, 1997.

P. Dybvig and S. Ross. Differential information and performance measurement

using a security market line. The Journal of Finance, 40:383–399, 1985a.

P. Dybvig and S. Ross. The analylitics of performance measurement using a

security market line. The Journal of Finance, 40:401–416, 1985b.

J. Estrada. The glidepath illusion: an international perspective. The Journal

of Portfolio Management, 40, 2015.

P. Farquhar. Utility assessment methods. Management Science, 30:1283–1330,

1984.

W. Ferson and A. Siegel. The efficient use of conditioning information in

portfolios. The Journal of Finance, 56:967–982, 2001.

L. Garlappi, R. Uppal, and T. Wang. Portfolio selection with parameter and

model uncertainty: A multi-prior approach. Review of Financial Studies,

20:41–81, 2007.

T. Geng and T. Zariphopoulou. Temporal and spatial turnpike-type results

under forward time-monotone performance criteria. 2017.

194



G. Gennotte. Optimal portfolio choice under incomplete information. Journal

of Finance, pages 733–746, 1986.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics

of Operations Research, 28:1–38, 2003.

O. Grischenko, X. Han, and V. Nistor. A volatility-of-volatility expansion of

the option prices in the sabr stochastic volatility model. working paper,

2014.

L. P. Hansen and S. Richad. The role of conditioning information in deducing

testable restrictions implied by dynamic asset pricing models. Econometrica,

55:587–613, 1987.

H. He and C.-F. Huang. Consumption-portfolio policies: An inverse optimal

problem. Journal of Economic Theory, 62:257–293, 1994.

V. Henderson and D. Hobson. Horizon-unbiased utility functions. Stochastic

Process and their Applications, pages 1621–1641, 2006.

V. Henderson and D. Hobson. Horizon-unbiased utility functions. Stochastic

Processes and their Applications, 117:1621–1641, 2007.

Y. Hu and X. Zhou. Constrained stochastic lq control with random coefficients,

and application to mean–variance portfolio selection. SIAM Journal on

Control and Optimization, 44:444–466, 2005.

195



R. Jagannathan and T. Ma. Risk reduction in large portfolio: why imposing

the wrong constraints helps. Journal of Finance, 58:1651–1684, 2003.

P. Jorion. Bayes-stein estimation for portfolio analysis. Journal of Financial

and Quantitative Analysis, 21:279 – 292, 1986.

T. Kim and E. Omberg. Dynamic nonmyopic portfolio behavior. Review of

Financial StudiesReview of Financial Studies, 9:141–146, 1996.

F. H. Knight. Risk, uncertainty and profit. Boston, New York, Houghton

Mifflin Company, 1921.

D. Kreps and E.L. Porteus. Temporal resolution of uncertainty and dynamic

choice theory. Econometrica, pages 185–200, 1978.

M. Leshno and H. Levy. Preferred by ’all’ and preferred by ’most’ decision

makers: Almost stochastic dominance. Management Science, 48:1074–1085,

2002.

D. Li and W. Ng. Optimal dynamic portfolio selection: Multiperiod mean-

variance formulation. Mathematical Finance, 10:387–406, 2000.

D. Li and X. Zhou. Continuous-time mean-variance portfolio selection: A

stochastic lq framework. Applied Mathematics and Optimization, 42:19–33,

2000.

A. Lim and X. Zhou. Mean-variance portfolio selection with random parame-

ters in a complete market. Mathematics of Operations Research, 27:101–120,

2002.

196



A. Lioui. Time-consistent vs. time-inconsistent dynamic asset allocation: Some

utility cost calculations for mean-variance preferences. Journal of Economics

Dynamics & Control, 37:1066–1096, 2013.

J. Liu. Portfolio selection in stochastic environments. Review of Financial

Studies, pages 1–39, 2007.

P. Maenhout. Robust portfolio rules and detection-error probabilities for a

mean-reverting risk premium. Journal of Economic Theory, 128:136–163,

2005.

H.M. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.

R. Merton. Optimum consumption and portfolio rules in a continuous-time

model. Journal of Economic Theory, 3:373–413, 1971.

R. C. Merton. On estimating expected return of the market: An exploratory

investigation. Journal of Financial Economics, 8:323–361, 1980.

P. Monin. On a dynamic adaptation of the distribution builder approach to

investment decisions. Quantitative Finance, 14:749–760, 2014.

P. Monin and T. Zariphopoulou. On the optimal wealth process in a log-normal

market: applications to risk management. Journal of Financial Engineering,

1, 2014.

M. Musiela and T. Zariphopoulou. Optimal asset allocation under forward

exponential performance criteria. Markov Processes and Related Topics: A

197



Festschrift for T. G. Kurtz, pages 285–300, 2008. Lecture Notes - Monograph

Series, Institute for Mathematical Statistics.

M. Musiela and T. Zariphopoulou. Portfolio choice under dynamic investment

performance criteria. Quantitative Finance, pages 161–170, 2009.

M. Musiela and T. Zariphopoulou. Portfolio choice under space-time monotone

performance criteria. SIAM Journal on Financial Mathematics, pages 326–

365, 2010a.

M. Musiela and T. Zariphopoulou. Stochastic partial differential equations in

portfolio choice. Contemporary Quantitative Finance, pages 195–216, 2010b.

M. Musiela, P. Vitoria, and T. Zariphopoulou. Infinitesimal mean-variance

analysis: convergence and time-consistency. Working Paper, 2015.

S. Nadtochiy and M. Tehranchi. Optimal investment for all time horizons and

martin boundary of space-time diffusions. Mathematical Finance, pages

438–470, 2015.

S. Nadtochiy and T. Zariphopoulou. A class of homothetic forward investment

performance processes with non-zero volatility. In Inspired by Finance, pages

475–504. Springer International Publishing, 2014.

B. øksendal. Stochastic differential equation. Springer-Verlag, Berlin, 1985.

L. Pastor and R. Stambaugh. Are stocks really less volatile in the long run.

Journal of Finance, pages 431–478, 2012.

198



W. Pfau. The portfolio size effect and lifecycle asset allocation funds: a dif-

ferent perspective. The Journal of Portfolio Management, 37:44–53, 2011.

P. Samuelson. Lifetime portfolio selection by dynamic stochastic programming.

Review of Economics and Statistics, 51:239–246, 1969.

A. Schied. Optimal investments for robust utility functionals in complete

market models. Working paper, University of Berlin, 2004.

H. Shefrin and M. Statman. Behavioral portfolio theory. Journal of Financial

and Quantitative Analysis, 35:127–151, 2000.

R. Shiller. Lifecycle portfolios as government policy. The Economists’ Voice,

2, Article 14, 2005.
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