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Abstract

A computer model for the sintering of ceramic/polymer composite
materials has been established based on empirical sintering rate data. The
model calculates sintering depths which result from variations in the
operating parameters which include laser power, beam speed, scan
spacing, scan vector length, and initial temperatures of the powder and
surroundings. Sintering depths measured in multiple layer parts made of
polymer coated ceramic powders are compared to sintering depths
calculated by the sintering model.

Introduction

In this paper, the development of a sintering model for composite materials is
examined. The sintering model for composites is based strongly on a previously
developed model which calculates the extent of sintering and subsequent densification of
amorphous polymer powders in response to Selective Laser Sintering (SLS) operating
conditions and scanning parameters [Nelson, 1993].

Composite materials are comprised of a non-sintering phase, ceramic or metal,
and a sintering phase, polymer. The non-sintering phase is either mixed or coated with
the polymer prior to sintering. As the laser scans the composite powder during the part
build, the polymer is selectively melted, and upon cooling, solidifies binding the non-
sintering phase together. Post-processing of green! SLS part removes the polymer phase
and bonds the ceramic or metal in a homogeneous phase.

The material system examined in this paper is a ceramic/polymer composite. The
ceramic is Silicon Carbide (SiC), and the polymer is poly(methyl methacrylate). The
polymer is polymerized in emulsion form, and in a subsequent step, the SiC powder is
coated with a thin layer of polymer in a spray dryer. Twenty-five volume percent
polymer is applied to the ceramic powder in the spray drying step, then uncoated ceramic
is added to reduce the polymer content to twenty volume percent.

Sintering Model

The development of a computer model is crucial in the understanding and future
automation of the SLS process. The sintering model is used as a tool to investigate how
the various process variables (i.e. scan speed, laser power, and scan spacing) effect the
quality of the finished SLS parts. A sintering model also allows one to perform a

1A “green” part refers to the state of the SLS object after removal from the sintering machine but before
undergoing any post-processing steps.
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parametric analysis to study how variations in one parameter affect the sintering depths

within a powder layer. _ .
The first building block, used to model the thermal gradients in the SLS powder

bed, is the differential equation for thermal diffusion. The differential equation is written
in one-dimension as follows:
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where p is the bed density at position z, Cp is the specific heat, K is the thermal
conductivity, T the temperature, ¢ the time, G is the internal heat source, Q the heat source
term at the surface, and 4 the heat transfer coefficient which includes contributions from
both convection and radiation transfer at the surface, and T.. the ambient temperature.
The flux term, Q, represents the energy input from the laser as a function of the laser
power, laser spot size, scan speed, and scan spacing.

The thermal-diffusion equation, Equation (1), is used to calculate the thermal
profiles within a solid region as a function of the thermal properties of the material and
the boundary conditions. However, during sintering the material properties change as a
function of the void fraction, or porosity, within the solid. Therefore, the material
properties are calculated as a function of both temperature and void fraction. The

porosity is related to the bed density, p, and the material solid density, p,, by the
expression,

(0, - p) @

and is a function of the powder size distribution, the powder aspect ratio, and the fraction
of sintering that has occurred.

The second building block is the sintering model which is used to calculate the
change in void fraction as a function of temperature. Several theoretical models are
available to model sintering; however, these models are not adequate for powders with
broad particle size distributions, or more importantly for composite materials. The
sintering rate used in this study is an empirical rate measured using an oven sintering
apparatus, [Nelson, 1990; Nelson 1993]. Sintering rate data is acquired at several
temperatures 10 to 50 K above the T, or T, of the material. The temperature dependence
of the sintering rate is calculated, and the rate data is extrapolated into the regime where
sintering occurs during laser processing.

This method works very nicely for homogeneous polymeric materials (i.e.
polycarbonate), however, because the composite material is primarily a ceramic phase,
which sinters at very high temperatures relative to the polymer phase, the total
densification during oven sintering at the highest operating temperatures was only about
5 percent. Since the amount of sintering was so small, the uncertainty in the extrapolated
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rate data was large. For this reason, we measured the sintering rate of a sample of
polymer binder in powder form.

Therefore, instead of measuring the rate at which the composite material sinters,
we obtained the sintering rate of the binder. Our next task, was to relate the polymer
sintering rate to the composite sintering rate. After proposing several models for the
interactions that may occur during the sintering of ceramic agglomerates coated with a
polymer binder, we settled on a very simple model. Basically, the ceramic and the
polymer are treated as two separate powders, and the change in void fraction only occurs
in the polymer phase. By this approximation, if the polymer phase completely sinters to
full density, the overall change in void faction is proportional to the amount of polymer
present. In our study, the complete sintering of polymer results in the complete sintering
of 20 percent of the composite material.

The two building blocks described above, the thermal diffusion equation and the
sintering rate equation, are combined in a one-dimensional finite element program
optimized to model powder sintering. This transient model calculates the temperature
profiles within the powder bed during SLS processing. Within each time step, the
temperature profile is used to compute the degree of sintering at each node, and any
changes in porosity are calculated. The simulation is complete when the temperature of
the powder bed drops below the softening temperature of the polymer where sintering no
longer occurs.

Material Properties

In order to model sintering and the subsequent densification during SLS
processing, four pieces of information about the material system must be known which
are the thermal conductivity, specific heat, density, and sintering rate of the composite
material. Traditionally, the thermal properties of powders are not readily available,
therefore, methods of measurement and calculation of the thermal properties must be
examined. Calculation of the thermal properties of a powder poses several challenges.
The fact that the material system focused upon in this paper is a composite, increases the
difficulty of calculation. Techniques for measurement and prediction of the thermal
properties needed for the development of a sintering model are presented below.

Density
The solid density of the composite material is calculated as a function of densities

of the individual materials,

Py = 0P pmma + (1- ¢)PSic &)

where ¢ is the volume fraction of polymer binder. For our material system, the polymer
comprises 20 percent of the total volume and has a density of 1.2 g/cm3. The ceramic,
Silicon Carbide has a solid density of 3.217 g/cm3. Therefore the solid density of the
composite material is 2.81 g/cm3 by Equation (5).

The density of the agglomerated powder is calculated as a function of the solid
density and the powder porosity, Equation (4). The initial porosity of the powder bed is
0.5, which corresponds to a density of 1.41 g/cm3. As the porosity decreases, the density
of the powder bed approaches the solid density of the composite.
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Specific Heat .
The specific heat of the composite is calculated as the mass average of the specific

heats of each phase,
Cr = gc}’(pmma) + (1 - é)CP(SiC) ()
where £ is the weight fraction of polymer binder. For the composite material system, the

weight fraction of polymer is 0.085, which corresponds to a volume fraction of 0.20
polymer. The weight fraction and the volume fraction are related by the following,

- P8 v
h P2§1+P1(1‘§1) @

where the two components are designated by the subscripts 1 and 2.

The specific heat of a material can be readily measured using a DSC (Differential
Scanning Calorimeter) or similar apparatus. Figure 1 presents specific heat data for each
phase (solid lines) and for the composite (dashed line). The specific heat of PMMA was
unavailable at the time of the simulation, therefore, the specific heat of polycarbonate was
used in the calculations. The specific heat of the polymer is double that of the silicon
carbide. The specific heat of the composite calculated from a mass average of the two
components agrees fairly well with the measured data.

0.55

045

0.35

specific heat, cal/g-K

0.25

Temperature, K

Figure 1 Effective specific heat of the powder bed. The markers (@) represent
data measured using a DSC. The specific heat of the composite calculated
by a mass average is represented by a dashed line.
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Thermal Conductivity

For most solid materials, thermal conductivity data is reported at one or more
temperatures. However, the thermal conductivity data for powders is not readily
available. Therefore, the properties of powder must be measured or modeled. The
transient heat conduction method [Naumann, 1983] is one method used to measure
thermal conductivity of a powder. The transient method is used by Xue, [Xue, 1991], to
measure thermal conductivity of powders used in the SLS process. The data reported
below for the SiC/PMMA system was measured by Xue using a water bath method and a
laser-heated method, [Shi, 1993]. In Figure (1), thermal conductivity data measured by
both methods is reported for the composite material at a bed void fraction, &, of 0.53. The
water bath method and the laser heating method are represented by circles (e) and
diamonds (¢), respectively. The water bath method is limited to temperatures below 100
°C; however, the laser heat method allows the measurement of thermal properties at
higher temperatures. The sharp increase in thermal conductivity above 100 °C is due to
the sintering of the polymer, and the improved contact between Silicon Carbide (SiC)
particles.

The model considered for the calculation of the thermal conductivity was
published in 1957 by Sakae Yagi and Daizo Kunii [Yagi, 1957] at The University of
Tokyo. Yagi and Kunii presented a theoretical model for the effective thermal
conductivity of packed beds. The influence of both packing characteristics and
temperature on the effective thermal conductivity was studied by comparisons with
experimental data. The general equation derived is reduced to the following in the case
of gas-filled voids in a motionless fluid:

_k;: ﬁ(lws) +8,B Dphrv ®)

k k 1 k
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where k! is the effective thermal conductivity of the powder, k; and k; are the thermal
conductivity of the gas and the solid respectively, ¢ is the void fraction of the powder bed,
D, is the average particle diameter, h,, and h,; are the radiation heat transfer coefficients
for void to void and solid surface to solid surface, and the remaining variables describe
the geometry of the packing. The factor y is defined as the effective length of solid
relating to thermal conduction, divided by the mean diameter of the solid. The factor g is
defined as the ratio of the average length between the centers of two neighboring solids in
the direction of heat flow, to the mean diameter of the packing. The factor ¢ is defined as
the ratio of the effective thickness of fluid film through which heat is conducted to the
mean diameter of the packing material. The geometric factors were found by analyzing
experimental data reported for effective thermal conductivity, and correlating the data
~with the theoretical equations. Values of ¢ are calculated as a function of void fraction, ¢,
from experimental data previously reported for air. The data conforms to Equation (9).

@ =0.1927 x " ©)

The values of both 8 and y are approximately unity, for all cases where the packing
particles were either spherical or cylindrical.
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Table 1 summarizes the solid and gas thermal conductivity data used to calculate
the thermal conductivity of the powder. Because the Yagi-Kunii model, Equation (8),
considers only one material, the thermal conductivity of the ceramic and the polymer
must be consolidated into an effective thermal conductivity, ks,ef, of the solid composite
material. The effective thermal conductivity of the composite 1s then used to calculate
the effective thermal conductivity of the powder. Two methods are used to calculate the
effective thermal conductivity of the solid. First, a simple volume average of the solid
thermal conductivity data is considered, Equation (10). As shown in the fifth column of
Table 1, this method heavily weights the thermal conductivity of the ceramic. The
second method consists of a more complex means of calculating an equivalent thermal
conductivity. Based on the assumption that each ceramic particle is evenly coated with
polymer, a one-dimensional resistance model is defined, and the effective thermal
conductivity is calculated by integrating the thermal conductivity through the particle,
[Badrinarayan, 1990]. This method heavily weights the thermal conductivity of the
polymer, because all of the heat conducted through the particle must pass through a thin
film of polymer. As the thickness of the polymer coating increases, the effective thermal
conductivity of the particle approaches that of the polymer.

k-s‘.eﬁ = (¢)k.r,pmma + (1 - ¢)ks,SiC (10)

Table 1 Thermal conductivity data used in calculate the effective thermal
conductivity in Figure 2. The composite material is 20 percent by volume
polymer. thermal conductivity, ¥ (W/m-K)

Temperature, K solid material, kg gas, kg | composite material (SiC/PMMA), ks,eff
equivalent
SiC PMMA Air | volume average conductivity*
300 (27°C) 456.3 0.195 0.026 368.3 3.04
370 (97°C) 3834 0.248 0.031 309.5 3.64
440 (167 °C) 310.6 0.301 0.036 250.7 423
T extrapolated

¥ method derived by Badrinarayan, 1990

Figure 2 compares the measured and calculated effective thermal conductivity of
a randomly packed bed of coated ceramic particles. The lines represent the thermal
conductivity calculated using the Yagi-Kunii model in conjunction with the effective
thermal conductivity of the solid listed in Table 1. The void fraction of the powder bed is
decreased linearly from 0.53 (370 K) to 0.41 (420 K) to account for sintering of the
polymer phase. The change in void fraction is based on density measurements made by
Xue. Although there is a significant difference between the effective thermal
conductivity of the composite, the effective thermal conductivity of the powder differs by
approximately 20 percent. However, the thermal conductivity model fails to capture the
true temperature dependence of the composite material.
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Figure 2 Effective thermal conductivity of the powder bed where the SiC
particles are coated with 20 % by volume PMMA, and the void fraction is
0.53. The markers represent data measured by the (@) water bath method,
and the (%) laser heating method. The lines represent values of thermal
conductivity calculated using the Yagi-Kunii model. The solid thermal
conductivity used in the model is either (- - - -} a volume average, Or (=m==)
an equivalent conductivity, see Table 1.

Sintering Rate

The sintering rate measurement is a key element in the sintering model. Figure 3
shows rate data for both pure PMMA powder and for the composite spray dried powder.
The data points represent isothermal rate measurements made using an oven sintering
apparatus. The temperatures at which the experiment was performed ranged from 100 to
150 °C. The temperature range used is dependent on the softening temperature of the
binder (low value) and the viscosity of the binder (high). Below the softening
temperature no sintering occurs. And at higher temperatures, sintering occurs too
quickly, and may finish before the sample reaches an equilibrium temperature. Typically,
the operating range is between 10 to 50 °C above the softening temperature of the binder.
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Figure 3 Sintering rate data for both polymer (PMMA) powder and composite
(SiC/PMMA) spray dried powder.

Results and Discussion

Analyzing the results posed several challenges. First, during the actual SLS
processing of the composite material, there is no noticeable change in density.
Consequently, the density of the green part is the same as that of the unsintered powder.
This negligible change in density during SLS processing prevents the direct comparison
of sintering model results to the experimental data. For example, in the case of the
amorphous sintering model [Nelson, 1993], a direct comparison was made between the
density of a SLS part to the density calculated by the sintering model. However, this
correlation cannot be made for the composite materials.

Therefore, another means of comparing model results to a measurable parameter
has to be established. Bending strength data is available for SiC/PMMA composite SLS
parts as well as pictures of the fracture surfaces, [Vail, 1993]. In order to compare the
sintering model results to this experimental data, the SLS operating parameters used to
make the composite parts via SLS, are used to calculated the surface boundary condition
in the model. For the sintering model, a void fraction profile is obtained after the
sintering is complete.

To reduce the number of variables in the analysis, the SLS operating parameters
are reduced to an energy per unit area, 4y (cal/cm?), Equation (11). Figure 4 compares
both the bending strength of SLS green parts and the percent change in void fraction of
the fusible material to the energy flux.

_ laser power
N (beam speed)(scan spacing)

(11)
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Both curves increase as the energy flux increases, which is the expected response. In
Figure 4a, the change in the initial void fraction of the polymer phase is plotted versus the
energy input. As the energy flux is increased, the powder reaches higher temperatures
leading to more sintering. In Figure 4b, as the energy flux increases, the strength of the
SLS parts increases leveling off at higher values of Ay.
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Figure 4 Effects of an increase in the energy per unit area delivered by the laser
during a part build. The predicted change in void fraction (left), and the
measured bending strength of test bars via SL.S processing (right).

The data in Figure 4 can be replotted by relating the two curves by their common
variable, 4y. Based on the assumption that the strength increases as the void fraction
decreases, the sintering model accurately predicts the expected trends.
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Figure 5 Comparison of model results to measured bending strengths.
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Summary

The task of developing a laser sintering model for composite materials has
presented several challenges. A very simple sintering model to explain void reduction is
used because of a lack of information about the sintering of polymer coated agglomerates.
The thermal properties of the composite material are calculated from the material
properties of each phase. The material properties and the sintering rate data for the
composite material are combined in a sintering model which calculates temperature and
void fraction profiles in one-dimension. The results of the numerical analysis compare
favorable to the measured bending strengths of composite test bars via SLS. The general
trends of increasing strength and decreasing void fraction are compared over a range of
SLS operating parameters. Future modeling should focus on the interactions between
particles and agglomerates during two phase sintering.
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