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Asymmetric Time Evolution and
Indistinguishable Events

P. W. Bryant

Center for Complex Quantum Systems, Department of Physics, University of Texas at Austin,
Austin, Texas 78712, USA

Abstract. With a time asymmetric theory, in which quantum mechanical time evolution is given
by a semigroup of operators rather than by a group, the states of open systems are represented by
density operators exhibiting a branching behavior. To treat the indistinguishably of the members of
experimental ensembles, we hypothesize that environmental interference occurs during events that
are themselves fundamentally indistinguishable.
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1. ASYMMETRIC TIME EVOLUTION

The theoretical image of any closed, quantum mechanical system is an operator algebra
defined in a linear scalar-product space, Φ [1]. The vectors ϕn span Φ, and every linear
combination of the ϕn can represent the state of the system. For simplicity, in this section
we shall consider a single vector, ϕ , that spans a one-dimensional subspace of Φ. The
ray spanned by ϕ represents a quantum system in a pure state.

Let us work in the Schrödinger picture and assume that the system’s dynamics is given
by the Schrödinger equation,

ih̄
∂
∂ t

ϕ = Hϕ . (1)

As a constraint on the solutions, one has historically chosen ϕ ∈ H , where H is the
Hilbert space. With this choice, Stone and von Neumann showed [2, 3] that (1) integrates
to

ϕ(t) = e−
iHt
h̄ ϕ , −∞ < t < ∞.

The solution ϕ evolves in time via the one-parameter group of unitary operators

U(t) = e−
iHt
h̄ , −∞ < t < ∞. (2)

The group product is U(t1)U(t2) =U(t1 + t2), and the inverse exists:(
U(t)

)−1
=U(−t). (3)

Because of (3), the time-reversed version of ϕ(t), which is ϕ(−t), is also a solution of
the Schrödinger equation. When ϕ ∈ Φ = H , the dynamics is symmetric in time.
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Suppose that, instead of the group in (2), time evolution is given by a one-parameter
semigroup of operators

U(t) = e−
iHt
h̄ , 0 ≤ t < ∞. (4)

Note the lower bound on the time parameter, t. While the product is unchanged, being
a semigroup means that the inverse no longer exists. In other words, the time-reversed
state, ϕ(−t), is not a solution of the Schrödinger equation. Such a dynamics is asymmet-
ric in time.

This asymmetric time evolution can also be mathematically derived. For a variety
of reasons, mostly concerning scattering theory [4], one chooses another possible con-
straint for ϕ :

⟨E|ϕ⟩ ≡ ϕ(E) ∈
(
S ∩H 2

−
)
|R+, (5)

where S is the Schwartz space, and H 2
− is the space of Hardy class functions analytic

in the lower half plane. The energy wave functions, ϕ(E), are thus required to be
“well-behaved” functions that can be analytically continued into C−. This constraint (5)
defines the scalar-product space for state vectors, which we will call Φ−:

ϕ ∈ Φ− ⊂ H ⊂ Φ×
−, (6)

where Φ×
− is the dual space. This triplet of spaces constitutes a Rigged Hilbert Space.

For details, see [5].
By the Paley-Wiener theorem [6], with the constraint (6), the dynamical equation (1)

integrates to [7]
ϕ(t) = e−

iHt
h̄ ϕ , 0 ≤ t < ∞.

This is precisely the asymmetric time evolution described by the semigroup (4). Given
that energy wave functions can be continued into C− (5), the semigroup time evolution
may come as no surprise to readers familiar with the Lippmann-Schwinger equation
from scattering theory or with Feynman propagators from field theory.

2. PHYSICAL INTERPRETATION OF TIME PARAMETERS

We will distinguish between the time parameter for the group and the time parameter for
the semigroup by writing t̃ for the group’s parameter (2), and writing t for the semigroup
parameter (4). Considering the ranges from which values of t or t̃ are chosen,

t ∈ [0,∞) and t̃ ∈ (−∞,∞),

this distinction is necessary.
For non-relativistic quantum mechanics, because −∞ < t̃ < ∞, one identifies t̃ with

“Newton’s absolute,” or coordinate, time [8]. Coordinate time has also been called
“external” time because it is not dynamically linked to any quantum system that might
be in a state represented by ϕ(t̃) [9].

Because t ≥ 0, t is more naturally identified with durations in time. In contrast
with time coordinate values, which are physically meaningless, durations are physically
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significant, and the t has been called “intrinsic” time because it is dynamically linked to
a quantum system in the state ϕ(t) [9].

If Tδ is a time translation operator defined on coordinates, then it acts on t̃ as

Tδ t̃ → t̃ +δ .

Durations are invariant under time translation, so

Tδ t → t.

We shall hereafter call the t̃ time coordinates, and we shall call the t time parameters.

3. OPEN SYSTEMS

One represents the state of a closed, dynamical system with a density operator, ρ(t),
which is constructed from the state vectors spanning the scalar-product space, Φ−, for
the system. For the pure state discussed above, ρ(t) = |ϕ(t)⟩⟨ϕ(t)|. By construction,
ρ(t) can describe the state of the closed system itself and of nothing external to it.

A closed system is an idealization, and every experimental system of interest suffers
interaction with an uncontrolled, quantum mechanical environment. By definition, state
vectors for the closed system cannot describe external interference. To treat interactions
with external systems, then, one needs the theoretical image of composite systems made
of the system of interest together with the uncontrolled environment systems [10]. If
(Φ−)1 contains vectors representing the state of the system of interest, one requires

• a space (Φ−)2 for the composite system associated with one type of interaction,
• a space (Φ−)3 for the system associated with another interaction, etc.

We shall denote by ρi the density operator constructed from state vectors spanning the
space (Φ−)i.

Quantum mechanics makes probabilistic predictions, so for every useful experiment
one makes measurements on an experimental ensemble containing as many members as
possible, all identically prepared [11]. At preparation, all members are in a state repre-
sented by, say, ρ1(t1). Because experimental systems are open, eventually environmental
interference affects some subset of the ensemble. One then represents the state of the af-
fected ensemble members by ρ2(t2). The unaffected ensemble members continue to be
in a state represented by ρ1(t1). After another instance of environmental interference,
one requires ρ3(t3) to represent the state of affected members. The entire ensemble,
then, is represented by

a1 ρ1(t1)+a2 ρ2(t2)+a3 ρ3(t3). (7)

In (7), a1 + a2 + a3 = 1. Note that, because the ti correspond to durations and are not
related to any value of the time coordinate, t̃, in general ti ̸= t j ̸=i for a given t̃. For
details, see [10] or Table 1.

This “branching” behavior of the density operator occurs whenever any subset of the
experimental ensemble members suffers the environmental interference inevitable for
open systems. In general, the equation (7) is not well-defined because the ρi will not be
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a1 ρ1(t1)+a2 ρ2(t2)+a3 ρ3(t3)

FIGURE 1. Schematically associating ensemble members with different branches. The circles represent
members of the experimental ensemble.

defined in the same space. To treat it rigorously, to calculate Born probabilities, one must
specify how an operator defined in (Φ−)i is extended or limited to the space (Φ−) j ̸=i.

An alternative treatment for open systems does exist, in which systems of interest
are treated as subsystems of arbitrarily large environmental systems [12]. The useful
result is often a decoherence master equation for the dynamics of the system of interest.
The arbitrarily large environmental systems may include the clocks on the laboratory
walls, and these clocks mark external, or coordinate time values, t̃. Both the system
of interest and the environment evolve in time together, so consistency requires one to
identify the time in the master equation with a time coordinate value, t̃. Because the t
in the semigroup (4) is a parameter, one cannot use this alternative treatment with time
asymmetric theories.

4. PARTITIONING AND PHYSICAL REQUIREMENTS

The probability to find an observable, represented by the operator Λ, in the state ρ , is
given by the Born probability

PΛ
(
ρ(t̃ − t̃0)

)
= Tr

(
Λρ(t̃ − t̃0)

)
. (8)

Measurements are performed in the coordinate time of the laboratory, so we have
written (8) as a function of t̃ − t̃0, where t̃0 is the time coordinate at which ensemble
members are actively prepared.

To analyze an experiment, from a preparation procedure or from a measurement
one infers the density operator, ρ(t̃ − t̃0). With the branching density operators, the
inferred density operator, ρ(t̃ − t̃0), is compared to a calculated density operator with
many branches that are functions of the parameters ti, such as the one in (7). One then
faces the interesting problem of determining which ensemble members are in states
represented by which branch of the density operator. Consider the density operator with
three branches from (7). Any model of an open system will depend on how the ensemble
members are partitioned among the branches. A schematic of this is shown in Figure 1.

The ai in Figure 1 are determined by the partitioning scheme, and we can immediately
make a strong, general requirement on models by noting that no model should ever de-
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TABLE 1. Relating timescales to time parameter values
from (7). The pattern continues as more branches form.

value of t̃− t̃0 value of t1 value of t2 value of t3

0 0 not defined not defined
1∆t̃ 1∆t̃ 0 not defined
2∆t̃ 2∆t̃ 1∆t̃ 0
3∆t̃ 3∆t̃ 2∆t̃ 1∆t̃

pend on how many measurements are made. Partitioning, therefore, must be independent
of the size of the experimental ensemble.

Another requirement comes from the fact that the different members of experimental,
quantum mechanical ensembles are fundamentally indistinguishable from each other.
Upon the development of a third branch, for example,

a1 ρ1(t1)+a2 ρ2(t2)
branching−→ a1 ρ1(t1)+a2 ρ2(t2)+a3 ρ3(t3),

one cannot say which members represented by ρ1(t1) on the left hand side have, due to
environmental interaction, become representable by ρ3(t3) on the right hand side, etc.
To do so would require the labeling of individual ensemble members.

Based on physical considerations, then, we have the general requirements:

1. Models must be independent of ensemble size.
2. Indistinguishable ensemble members cannot be labeled.

The framework of branching density operators is flexible, but creating a reasonable
model that meets both physical requirements can be quite complicated. To simplify
models, we hypothesize the existence of indistinguishable events.

5. INDISTINGUISHABLE EVENTS

Tractable models for environmental interference with dynamical systems will often
depend on a timescale for the interference, ∆t̃.1 This means that, for a given type of
interference, on average the discontinuous branching process occurs at increments of
∆t̃: k∆t̃ = 1∆t̃, 2∆t̃, 3∆t̃. . . n∆t̃. For a model with one type of interference and thus one
timescale, time parameters, for example from (7), are related to durations in the lab
according to Table 1.

When an ensemble member suffers interference, its state is initially represented by
ρi(ti = 0). With Table 1, knowing at which k∆t̃ a member suffers interference suffices
to fix the appropriate branch, ρi(ti), allowing one to define the ai. Both physical re-
quirements above can be realistically met if we suppose that indistinguishable ensemble

1 We write ∆t̃, a duration in coordinate time, rather than ∆t, a duration in parameter time, because
interference time scales are inferred from measurement, which occurs in the coordinate time of the lab.
Furthermore, parameters in the problem are all associated with the density matrix of the system of interest,
and not with an uncontrolled environment.
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members are labeled by the particular k corresponding to k∆t̃ at which they have suffered
interference, and then that the individual ∆t̃’s are treated as indistinguishable. In effect,
we hypothesize that the events in which systems suffer environmental interference are
themselves indistinguishable.

To implement indistinguishable events, we parametrize the probability, β , that a
given ∆t̃ passed before an interference event. We use the binomial distribution to count
the combinations with k indistinguishable intervals, of length ∆t̃, occurring before the
duration k∆t̃, and thereby relate the label k to the passage of time:(

n
k

)
β k(1−β )n−k ⇐⇒ k from k∆t̃.

Here the n is related to the total number of intervals of length ∆t̃ that have passed, and it
is unrelated to the ensemble size. With this approach, we have thus satisfied the physical
requirement that models be independent of the number of measurements.

A model with indistinguishable events was developed in [10], and it successfully re-
sulted in quantitative agreement with previously puzzling experimental data. Encour-
aged by this, we hope to investigate further the measurable consequences of indistin-
guishable interference events.
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