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Abstract

How the scattering dynamics of a quantum system is affected by an application of

a time-periodic driving field, such as coherent electromagnetic radiation, has been a

subject of increasing importance in the past three decades. Time-periodic fields can

profoundly alter the dynamics of matter in ways that are relevant to the design of

semiconductor structures, such as quantum dots and superlattices, that have possible

applications to quantum computation and quantum information processing.

This thesis is a theoretical treatment of a localized one-dimensional quantum system

that is subject to an external driving field, such as an oscillating electric field of a laser

or of some microwave radiation, that oscillates periodically in time. When not subject

to the driving field, the system is characterized by a potential energy function that is a

finite one-dimensional square well (i.e. a 1D quantum potential well with finite depth

and a flat bottom. Also, the zero level of potential energy is set such that the potential

in the well’s exterior is zero). To this well, we specifically introduce a driving field that

causes the well’s bottom to bend from a flat shape to a V-shape, such that the potential

energy as a function of position is held fixed at the endpoints of the well’s region of

space and forms the spike of the letter “V” at the midpoint of the well. Our chosen

external field makes the V-shaped bottom perpetually bend up and down, causing the

potential energy in the region of the well to vary periodically in time.

In this study, we analyze how a plane wave that propagates toward the region of

our well and is with a fixed incident energy not only scatters into outgoing plane waves

with the same energy — propagating in both directions of one-dimensional space —

but is also induced by the driving field to have nonzero probabilities of transition to

infinitely many other states with different energies. Due to the time-periodicity of our

potential, an incoming wave-particle (i.e. a matter wave) of a given energy can only

access energies that differ by integer multiples of h̄ω from its original energy, where ω

is the angular frequency of the oscillation of the potential. In the case that the time-

periodic driving is due to an electromagnetic field oscillating at an angular frequency

ω, we can explain the transitions in which a particle can only gain or lose an amount of

energy that is an integer multiple of h̄ω as follows: The electromagnetic field induces

the particle to absorb or emit photons, each carrying a quantum of energy equal to an

integer multiple of h̄ω.

The analysis to be revealed comprises three main achievements, all of which would

help one to accomplish suitable computational precision, accuracy, and efficiency when

making a prediction about a scattering phenomenon in our chosen system. The first

achievement is that my research supervisor and I managed to solve the Schrödinger

equation for this system analytically (i.e. exactly), so for a choice of four intervals that

together constitute one-dimensional space, we were able to find the actual space of

(complex-valued) explicit solutions to the equation in every interval separately. Within

that space of solutions, if we only consider functions that are continuously differentiable,

square-integrable, and somewhere nonzero (that is, nonzero solutions for which their

partial derivatives with respect to spatial variables exist and are continuous everywhere

and the squares of their absolute values are integrable over all space), then we obtain

the set of all possible states that a particle can access in our quantum system. By

accurately finding the space of solutions to the Schrödinger equation and by impos-
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ing the requirement that a wavefunction must be continuously differentiable, we were

able to deduce into what superposition of states a given incoming plane wave must

scatter into in order to form a state that is possible to include in a physically allowed

superposition of states.

Accounting for the fact that a physically acceptable solution must be at least con-

tinuously differentiable is directly related to the second success of the study, which is

to derive a formula enabling me to find the scattering matrix (or S-matrix), a mathe-

matical construct that relates the incoming plane waves to the states of definite energy

outside the well into which they scatter. Despite the complexity of the solutions, I

managed to exploit the reflection symmetry of the system about the center of the well

and other simplifying properties to come up with expressions for four matrix blocks

that constitute a matrix that contains the S-matrix, such that all four expressions

involve the same eight matrices.

This in turn led to the third achievement, which was that I set up an efficient method

for using computational software (in my case, I used Wolfram Mathematica 11.0) to

find the elements of the S-matrix. Such a method was suitably fast at generating

high-quality graphs of moduli squared of some matrix elements as functions of incident

“energy” (actually, quasienergy, as we shall see later). Those graphs revealed the

probability for an incoming wave (with a fixed energy and a unit probability current)

to both transmit through the region of the well and to transition to a state, such as

an outgoing wave or a negative-energy state, of some fixed energy. The energy of the

new state did not necessarily have to be equal to the incident energy.

Given these computational freedoms, I created a demo of my method by construct-

ing these transmission graphs for a specific set of parameters expressed in Hartree

atomic units: well width of 2, particle mass µ = 1, amplitude U0 = 0.5 and angular

frequency ω = 4 of the oscillation of the V-shaped bottom, and unperturbed well depth

V0 = 10. When I compared the different graphs of some of the combined transmis-

sion and transition probabilities provided by the elements of the S-matrix, I noticed

two incident energies for which transmission resonances occur. Next, I exploited those

resonances to determine some energies of quasibound states, which are states in which

a particle’s probability is localized inside the region of the well for a finite amount of

time. (In contrast, bound states have their probability localized for an infinite amount

of time). For the version of our system without the external field (i.e. with U0 = 0),

the bound state energies for the first and second excited states are -6.7791 and -3.0542

Hartrees, respectively, while for the driven system, I found that the corresponding en-

ergies of quasibound states were -6.7788 and -3.0534 Hartrees. The fact that these

energies of quasibound states for the perturbed system are quite close to those of the

unperturbed system is an indication that the chosen oscillation strength U0 = 0.5

Hartrees is weak enough to preserve many of the general properties of the unperturbed

system.
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1 Background

1.1 An Overview of the Field of Research

Since the 1990s, there has been a growing interest among physicists in determining how

the application of a time-periodic field, such as coherent time-periodic radiation (like a

laser) or an alternating current’s (AC) electromagnetic field, controls an atomic-scale or a

mesoscopic1 system [10, 16]. Time-periodic fields can introduce fundamental changes to the

dynamics of matter that are relevant to various aspects of technological innovation, such

as AlxGa1−xAs/GaAs quantum dots [2, 7, 13], quantum diodes [4], superlattices [11, 12],

nanotubes [15], and semiconductor heterostructures [18, 19], many of which have potential

applications to quantum computation and quantum information processing.

For instance, in quantum dots, quantum diodes, and superlattices, the process of photon-

assisted tunneling (PAT) is caused by the presence of AC electromagnetic radiation, namely

by the oscillating electric field component of that radiation [7, 16]. Such an oscillating electric

field is the same kind of external field leading to the Autler-Townes (or AC Stark) effect,

which is the phenomenon in which the spectral lines of a confined quantum system (usually

an atom or a molecule) split into more lines, representing the formation of new energy

states. From the perspective of non-relativistic quantum mechanics, due to its significant

variation over time, the oscillating electric field allows particles in propagating modes of

certain energies to have high probabilities of transition into evanescent modes, which are the

modes through which quantum tunneling occurs. From the relativistic perspective, however,

the electromagnetic radiation assists those same transitions by stimulating the particles to

emit photons, and as it is well known, photons are characterized by the quanta of energy

equal to h̄ω, where ω is the angular frequency of the incoming electromagnetic wave. Both

interpretations end up predicting the same phenomenon of photon-assisted tunneling.

To predict the effects of introducing a time-periodic field into a certain closed quantum

system, physicists have relied on the feature that due to the time-periodicity of the introduced

field, the potential2 is time-periodic as well, thereby allowing the application of Floquet’s

theorem (to be formulated in Section 1.2) [10, 16]. Floquet’s theorem has allowed physicists

to develop a so-called “Floquet formalism,” formally treating systems with time-periodic po-

tentials as if they contain states of definite “energy” [22]. Nonetheless, the formalism makes

the distinction that the conserved quantity in those states is not the energy by assigning to

that quantity the name “quasienergy” [10] or “Floquet eigenenergy” [16].

An early example of a method similar to the Floquet technique has been provided by the

electrical engineer Ping K. Tien and physicist James P. Gordon in 1963 [25]. The method

was a heuristic approach to understand the effect of time-periodic driving on the current-

voltage characteristics of superconductor-insulator-superconductor junctions. Beginning in

1Mesoscopic refers to systems that are greater than nano-scale systems, but are still small enough for

quantum effects to be significant. Mesoscopic physics typically encompasses the range of scales between the

typical size of a virus (100 nm) and that of a bacterium (1 µm).
2In quantum mechanics, the word “potential” is often used to refer to the potential energy function and

is not to be confused with the electric potential.
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the 1980s, the Floquet formalism has been commonly employed to find expressions for prob-

abilities that incident waves of definite energies have to transmit through specific examples

of localized systems with time-periodic potentials [3, 5, 10, 16, 17, 20, 24, 26]. At times,

there were resonance dips and peaks in those transmission probabilities that were employed

to find what are called the “energies” of quasibound states [16], which are states such that

for a finite amount of time, a particle’s probability is concentrated inside the region where

the system is localized.

Our study demonstrates another example (described in Section 1.3) of a localized time-

periodically driven system in which transmission probabilities can be computed and plotted

as functions of an incoming wave’s incident quasienergy and in which the bound state energies

can be found. Our system has interesting complexities involved in the relationships between

wavefunctions in different regions. Furthermore, plotting graphs of transmission probabilities

versus incident quasienergy can be a challenge for this system, but I set up a convenient

method of setting up the necessary equations that helped the plotting done by computational

software take a small amount of time. This method can serve as a basis for creating a program

predicting the transmission properties of the system considered in this paper.

1.2 Theoretical Background

Given a quantum mechanical system with a certain potential defined over all space and

time, the nature of the time dependence of the potential has a fundamental impact on the

dynamics of particle scattering and on the conservation properties of physical observables,

such as energy. Suppose that a quantum system is closed, meaning that the corresponding

potential does not change with time. Then, in any quantum state in which a particle has

a definite energy at one time, the particle’s energy will remain constant at all times. Such

states in which energy conservation holds are called stationary states. By analogy, in

classical Newtonian mechanics, energy conservation in a system is only guaranteed when

all of the force fields present are conservative (that is, they have a corresponding potential

energy function) and have no explicit time dependence.

A quantum system subject to a net time-dependent field no longer permits the existence

of stationary states, but if an otherwise closed system is only driven by a time-periodic

field, then a conservation property similar to that of energy still holds. To understand this

property, let us consider the mathematical consequences of a system with a time-periodic

potential.

In non-relativistic quantum mechanics, the space of complex-valued solutions to the

Schrödinger equation determines the set of all states (or wavefunctions) accessible to

any particle in the system. In fact, the set of wavefunctions is a subset of the space of all

possible solutions and is determined by the conditions that the wavefunction needs to be:

1. Square-integrable over all space, meaning that the volume integral over all space of the

absolute value squared of the wavefunction exists.

2. Nonzero in some nonempty subset of space, for otherwise it represents no particle.

3. (a) Continuously differentiable at every point where the potential is finite, meaning
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that its partial derivatives with respect to spatial variables all exist and are continuous

at every such point, and (b) only continuous at points where the potential is infinite.

I would like to note that from this point forward, any function that satisfies condition 2

above, we will refer to it as a nonzero function, which should not be interpreted as a

function that is nowhere zero. In addition, for the system we will consider in this paper,

condition 3 will imply that a physically acceptable wavefunction must be continuously

differentiable everywhere (i.e. case (a) must hold in all of space), because our chosen

potential will be finite at all positions in space.

In one-dimensional space, the single-particle Schrödinger equation is the following

partial differential equation:

ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2µ

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t), (1)

where x is the position along one-dimensional space, t is the time, h̄ is the reduced Planck’s

constant, µ is the mass of the considered particle, V (x, t) is the potential energy function

determining the system in question and the corresponding Schrödinger equation, and Ψ(x, t)

is the wavefunction, which is a complex-valued function of space and time and is the tool

that contains all of the information that can be known about the particle’s state. The wave-

function is the most physically informative mathematical construct in quantum mechanics,

because it determines a particle’s probability distribution not only over position, but over

any physical observable, such as momentum and energy.

The right-hand side of equation (1) is often written as

Ĥ(x, t)Ψ(x, t),

where

Ĥ(x, t) = − h̄
2

2µ

∂2

∂x2
+ V (x, t).

Ĥ(x, t) is called the Hamiltonian operator, and it is a linear function acting on the vector

space of wavefunctions and assigning to every wavefunction Ψ some function ĤΨ, which

according to the Schrödinger equation (Eq. (1)), must equal to the imaginary number ih̄

times the partial derivative ∂Ψ(x,t)
∂t

of the wavefunction with respect to time.

We are interested in the situation when the potential V (x, t) is time-periodic with some

period T = 2π/ω, meaning that the potential satisfies V (x, t) = V (x, t + T ) for any time t.

Such a property of the potential implies that the Hamiltonian operator Ĥ(x, t) fulfills the

condition Ĥ(x, t) = Ĥ(x, t+ T ) for all t as well, so the Schrödinger equation is of the form

ih̄
∂Ψ(x, t)

∂t
= Ĥ(x, t)Ψ(x, t), (2)

such that Ĥ(x, t) is a time-periodic operator.

Now, it is time to introduce the formulation of Floquet’s theorem in finite dimensions3:

3The version of Floquet’s theorem presented here is a slightly weaker statement than the original Floquet’s

theorem, because most members of the Dean’s Scholars Honors program might not be acquainted with some

linear algebra concepts, such as bases and Jordan canonical form, necessary to state the full theorem.
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Theorem 1 (Floquet’s theorem in finite dimensions [21]): Let n be a finite positive

integer. Suppose that an n × n matrix-valued function A(t) is periodic in variable t with a

period T (i.e. for all t, A(t) = A(t+T )). Then, the system of n homogeneous linear ordinary

differential equations
dx(t)

dt
= A(t)x(t), (3)

where x(t) is a column vector of length n and is the unknown to be found, has a space of

solutions that fully consists of superpositions (or, more technically, linear combinations)

of solutions of the form

xΩ(t) = eΩtpΩ(t), (4)

where pΩ(t) is a nonzero function for at most n values of Ω 4 and, for all Ω and t, pΩ

satisfies pΩ(t) = pΩ(t + T ). In other words, for no more than n values of Ω, there exist

nonzero functions pΩ that are periodic with period T/m for some positive integer m, such

that the corresponding xΩ solves Eq. (3). For every such special value of Ω, however, pΩ is

not necessarily unique up to multiplication by a constant.

In the case of Eq. (2), one needs the infinite-dimensional version of Floquet’s theorem, be-

cause unlike the linear operator corresponding to multiplication of column vectors by the ma-

trix A(t), the time-periodic Hamiltonian operator Ĥ(x, t) does not act on a finite-dimensional

vector space, but rather on an infinite-dimensional vector space for which the wavefunctions

are its elements. Fortunately, Floquet’s theorem has a straightforward generalization to some

infinite-dimensional cases, including our case with the Schrödinger equation:

Theorem 2 (Floquet’s theorem in the case of the Schrödinger equation [6, 9, 16,

23]): If the Hamiltonian operator is time-periodic with a period T , then the Schrödinger

equation (expressed in both equations (1) and (2)) has a space of solutions that fully consists

of superpositions of solutions of the form

ΨΩ(x, t) = e−iΩt/h̄φΩ(x, t), (5)

where for any real number Ω, φΩ(x, t) can be a nonzero function that is time-periodic with

the period T/m for some positive integer m and is not necessarily uniquely determined up to

multiplication by a constant. In the Floquet formalism, these solutions are called Floquet

states [10]. Moreover, the Floquet states form a complete orthonormal basis in the

space of solutions [10], which is a stronger version of the statement that the superpositions

of Floquet states fully comprise the space of solutions.

The conserved quantity in the Floquet states from Eq. (5) is Ω, and it is called a

quasienergy (or Floquet eigenenergy). The conservation of quasienergy is precisely

that aforementioned property replacing the conservation of energy in a time-periodically

driven system, such that Floquet states serve as replacements for stationary states.

4The values of Ω for which pΩ is allowed to be nonzero in order for xΩ to satisfy Eq. (3) will not be

discussed here, but they are discussed in the actual formulation of Floquet’s theorem. These Ω are the

eigenvalues of 1/T times the logarithm of the so-called monodromy matrix. The monodromy matrix relates

the solutions of Eq. (3) at any time t to the solutions of the same equation at time t+ T .
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One important aspect to note about Floquet states is that their quasienergy is not

uniquely determined. Denoting the angular frequency of the time-periodic oscillation of

the potential by ω (so that period T = 2π/ω), all that we can say about the quasienergy is

that it is uniquely determined up to the addition of an integer multiple of h̄ω. Indeed, by

Euler’s formula that eiθ = cos(θ) + i sin(θ), we have that e−iωt is a time-periodic function

over the period T = 2π/ω. Hence, if we consider a Floquet state with quasienergy Ω + h̄ω

ΨΩ+h̄ω(x, t) = e−i(Ω+h̄ω)t/h̄φΩ+h̄ω(x, t),

then we can also write that

ΨΩ+h̄ω(x, t) = e−iΩt/h̄ · (e−iωtφΩ+h̄ω(x, t)), (6)

where e−iωtφΩ+h̄ω(x, t) is time-periodic over the period T/p for some positive integer p,

so this equation implies that any Floquet state ΨΩ+h̄ω(x, t) of quasienergy Ω + h̄ω also

has quasienergy Ω. By almost identical reasoning, any Floquet state of quasienergy Ω has

quasienergy Ω + h̄ω as well. By induction, we conclude that a Floquet state of quasienergy

Ω also has any quasienergy Ω + nh̄ω, where n is any integer.

From now on, when we will state that the quasienergy of a Floquet state is Ω, we will

think of Ω as representing the entire set of values Ω + nh̄ω for which n is some integer.

Furthermore, the set of all Ω + nh̄ω, such that Ω belongs to the interval [0, h̄ω) and n is an

integer, contains every real number. This means that the quasienergies Ω within the interval

[0, h̄ω) represent all real numbers, thereby accounting for all of the possible quasienergies

that the Floquet states can have.

1.3 The Problem Considered

Recall that the potential V (x, t) determines the one-dimensional system in question and

the Schrödinger equation corresponding to that system (see Eq. (1) and the description

below it). In this thesis, we are interested in a system with one spatial dimension and with

the following time-periodic potential:

V (x, t) =

{
− V0 + U0(1− |x|)cos(ωt) for − 1≤x≤1

0 for−∞ < x < −1 and − 1 < x <∞
, (7)

where V0 is some positive constant, while U0 and ω are any real constants. In Section 3,

the units that we will use for the parameters U0, V0, and ω and other physical quantities

involved will be Hartree atomic units, so x = 1 will mean x = 1 Bohr radius in the future.

To understand the shape of the potential, let us first consider the following potential:

Vnopert(x) =

{
− V0 for − 1≤x≤1

0 for−∞ < x < −1 and − 1 < x <∞
. (8)
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Figure 1: A schematic diagram of our

chosen time-periodic potential V (x, t)

from Eq. (7). The bottom of the po-

tential well is shown at three different

times during one period of oscillation.

V0 is the “unperturbed” well depth and

U0 is the oscillation amplitude of the po-

tential well’s V-shaped bottom.

Then, Vnopert(x) is a special case of V (x, t) for which

the time dependence is eliminated by setting U0 = 0.

Hence, Vnopert(x) is the version of V (x, t) that is not

perturbed by the time-periodic oscillation due to the

term U0(1−|x|)cos(ωt) within the spatial interval be-

tween x = −1 and x = 1. The shape of the unper-

turbed potential Vnopert(x) is a one-dimensional finite

square well centered at x = 0 with a width of 2 and

a depth of V0. For this reason, we will refer to the

parameter V0 as the “unperturbed well depth.”

While the bottom of the potential well depicted

by Vnopert(x) remains flat (i.e. square) over time, the

bottom of the potential well in the case of V (x, t) con-

stantly deforms as depicted in Figure 1. Due to the

time-periodic perturbation U0(1 − |x|)cos(ωt) within

the region of the well, the bottom of the new well has

an oscillating V-shape. The time-periodic oscillation

is such that the potential energy is held fixed at the

endpoints x = ±1 of the well, forms the spike of the

letter “V” that oscillates sinusoidally with amplitude

U0 in the middle at x = 0, and has its linearity with

respect to position preserved over time at other posi-

tions within the well. The average of the oscillation

is the flat bottom of the unperturbed potential well

Vnopert(x).

Our first goal will be to solve the Schrödinger

equation for this potential, which is
ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2µ

∂2Ψ(x, t)

∂x2
+ [−V0 + U0(1− |x|)cos(ωt)]Ψ(x, t) for |x|≤ 1

ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2µ

∂2Ψ(x, t)

∂x2
for |x|> 1

(9)

Next, we will exploit the solutions to this equation to analyze the scattering dynamics of

this system.
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2 Derivations and Results

2.1 Solving the Schrödinger Equation

By the generalization of Floquet’s Theorem (Theorem 2 from Section 1.2), Eq. (9) has

solutions of the form expressed in Eq. (5). If we substitute Eq. (5) into Eq. (2), then we

have

ih̄
∂ΨΩ(x, t)

∂t
= ih̄(−iΩ/h̄)e−iΩt/h̄φΩ(x, t) + ih̄e−iΩt/h̄

∂φΩ(x, t)

∂t

= e−iΩt/h̄
(

ΩφΩ(x, t) + ih̄
∂φΩ(x, t)

∂t

)
= Ĥ(x, t)ΨΩ(x, t) = e−iΩt/h̄Ĥ(x, t)[φΩ(x, t)].

Canceling out the exponential factors in the third and fifth expressions above, we obtain

ΩφΩ(x, t) + ih̄
∂φΩ(x, t)

∂t
= Ĥ(x, t)φΩ(x, t). (10)

The Floquet Hamiltonian is the following operator:

ĤF (x, t) = Ĥ(x, t)− ih̄ ∂
∂t
.

Therefore, Eq. (10) can be written as

ĤF (x, t)φΩ(x, t) = ΩφΩ(x, t). (11)

This equation is a statement that for every Floquet state ΨΩ(x, t), the time-periodic

function φΩ(x, t) chosen in equation (5) is an eigenfunction of the Floquet Hamiltonian ĤF

with eigenvalue Ω. By the discussion following equation (6), the part of the solution that

is time-periodic over period T/m for some positive integer m can be chosen differently such

that it is an eigenfunction of ĤF with an eigenvalue that differs from Ω by an integer multiple

of h̄ω. Thus, via Eq. (11), we can define the quasienergy of a Floquet state ΨΩ(x, t) more

rigorously as the set of eigenvalues of all possible time-periodic parts with period that is

an integer divisor of T that ΨΩ(x, t) can have. For every Ψ(x, t), such definition yields

that the quasienergy is any value Ω + nh̄ω such that n is an integer. As mentioned in the

last paragraph of Section 1.2, out of all of the values Ω + nh̄ω, we can (and will) choose a

representative value for the quasienergy that belongs to the interval [0, h̄ω).

The aspect that any chosen time-periodic part (period T/m) of a Floquet state is an

eigenfunction of ĤF with the eigenvalue as the quasienergy explains quasienergy conservation

in the same way that, for closed systems, the fact that the time-independent part of a

stationary state is an eigenfunction of the Hamiltonian Ĥ with the eigenvalue as the energy

explains energy conservation.
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From this point forward, we will use the Hartree atomic units, in which we have the

convenience that h̄ = 1. For our potential V (x, t) given by Eq. (7), we have that Eq. (10) is

i
∂φΩ(x, t)

∂t
+ ΩφΩ(x, t) =


− 1

2µ

∂2φΩ(x, t)

∂x2
+ [−V0 + U0(1− |x|)cos(ωt)]φΩ(x, t) for |x|≤ 1

− 1

2µ

∂2φΩ(x, t)

∂x2
for |x|> 1

,

(12)

where we have also made the conversion to atomic units.

Our first step will be to find the solutions to Eq. (12) for each of the following four spa-

tial regions: The intervals (−1, 0), (0, 1), (−∞,−1), and (1,∞). We are calling the interval

(−1, 1) Region I, so we refer to the intervals (−1, 0) and (0, 1) as Region IL and Region IR,

respectively. We assign to the remaining intervals (−∞,−1) and (1,∞) the names Region

II and Region III, respectively.

� Region I (|x|< 1)

In Region I, let us define the function fΩ(x, t) = eiU0 sin(ωt)/ωφΩ(x, t). Substituting

φΩ(x, t) = e−iU0 sin(ωt)/ωfΩ(x, t) into Eq. (12) for |x|≤ 1, we find after some cancellations

that

i
∂fΩ(x, t)

∂t
+ ΩfΩ(x, t) = − 1

2µ

∂2fΩ(x, t)

∂x2
− [V0 + U0|x|cos(ωt)]fΩ(x, t). (13)

In Region IR, where x ∈ (0, 1), Eq. (13) takes the form:

i
∂fΩ(x, t)

∂t
+ ΩfΩ(x, t) = − 1

2µ

∂2fΩ(x, t)

∂x2
− [V0 + U0xcos(ωt)]fΩ(x, t). (14)

Let us define another function that is written in terms of the solution:

gΩ(ξR, t) = e−iw(x,t)fΩ(x, t), (15)

where

w(x, t) =
U0x sin(ωt)

ω
+
U2

0 sin(2ωt)

8µω3
(16)

and

ξR = x+
U0

µω2
cos(ωt). (17)

If we also let

χR(x, t) = eiw(x,t), (18)

then the form of the Floquet state that we are searching for is

ΨR
Ω(x, t) = e−iΩt/h̄exp

[
−iU0 sin(ωt)

ω

]
χR(x, t)gΩ(ξR, t), (19)

where the superscript R for ΨΩ indicates that we are trying to find the Floquet state in

Region IR.
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We want to substitute fΩ(x, t) = χR(x, t)gΩ(ξR, t) into Eq. (14). For convenience, let us

first compute the necessary partial derivatives of fΩ(x, t). The time partial derivative is

∂fΩ

∂t
= χR

∂gΩ

∂t
+
∂χR
∂t

gΩ = χR
∂gΩ

∂t
+ i

∂w

∂t
χRgΩ

= χR

(
∂gΩ

∂t
+ i

(
U0x cos(ωt) +

U2
0 cos(2ωt)

4µω2

)
gΩ

)
The double-angle formula cos(2ωt) = 1− 2 sin2(ωt) gives

∂fΩ

∂t
= χR

(
∂gΩ

∂t
+ i

(
U0x cos(ωt) +

U2
0 (1− 2 sin2(ωt))

4µω2

)
gΩ

)
(20)

The second-order spatial derivative is

∂2fΩ

∂x2
= χR

∂2gΩ

∂x2
+ 2

∂χR
∂x

∂gΩ

∂x
+
∂2χR
∂x2

gΩ

= χR

(
∂2gΩ

∂x2
+

2iU0 sin(ωt)

ω

∂gΩ

∂x
− U2

0 sin2(ωt)

ω2
gΩ

)
(21)

Inserting fΩ = χRgΩ and the partial derivatives given by equations (20) and (21) into Eq.

(14) and canceling out the χR yields

i
∂gΩ

∂t
−
(
U0x cos(ωt) +

U2
0 (1− 2 sin2(ωt))

4µω2

)
gΩ + ΩgΩ

= − 1

2µ

∂2gΩ

∂x2
− iU0 sin(ωt)

µω

∂gΩ

∂x
+
U2

0 sin2(ωt)

2µω2
gΩ − [V0 + U0xcos(ωt)]gΩ.

Canceling the terms −U0x cos(ωt)gΩ and
U2
0 sin2(ωt)

2µω2 gΩ existing on both sides of this equation

lets us obtain

i
∂gΩ

∂t
+ (Ω− U2

0

4µω2
)gΩ = − 1

2µ

∂2gΩ

∂x2
− iU0 sin(ωt)

µω

∂gΩ

∂x
− V0gΩ,

which we can also write as

i

(
∂gΩ

∂t
+
U0 sin(ωt)

µω

∂gΩ

∂x

)
= − 1

2µ

∂2gΩ

∂x2
− (Ω + V0 −

U2
0

4µω2
)gΩ. (22)

Next, we want to perform a coordinate transformation from (x, t) to (ξR, t), so we note

that 
∂gΩ

∂x
=
∂gΩ

∂ξR
∂gΩ

∂t
=

(
∂gΩ

∂t

)
ξR

− ∂gΩ

∂ξR

∂ξR
∂t

=

(
∂gΩ

∂t

)
ξR

− U0sin(ωt)

µω

∂gΩ

∂ξR

(23)

The coordinate conversion allows us to turn Eq. (22) to an equation of the same form as a

free-particle Schrödinger equation:

i

(
∂gΩ

∂t

)
ξR

= − 1

2µ

∂2gΩ

∂ξ2
R

− (Ω + V0 −
U2

0

4µω2
)gΩ. (24)

11



This partial differential equation is separable into two ordinary differential equations (ODEs):
− 1

2µ

d2ΞΩ

dξ2
R

= (Ω + Epseudo + V0 −
U2

0

4µω2
)ΞΩ

i

(
∂τΩ

∂t

)
ξR

= EpseudoτΩ

, (25)

where we have let gΩ(ξR, t) = ΞΩ(ξR)τΩ(t) be the form of the solution and Epseudo be the

separation constant. The general solutions to these ODEs for a given Epseudo are clearly{
ΞΩ(ξR) = αR eikξR + βR e−ikξR

τΩ(t) = Ce−iEpseudot
,

where

k =

√
2µ

(
Ω + Epseudo + V0 −

U2
0

4µω2

)
and αR, βR, and C are arbitrary constants. Without loss of generality, we can set C = 1.

Thus, we obtain for any fixed Epseudo that

gΩ(ξR, t) = e−iEpseudot
(
αR eikξR + βR e−ikξR

)
. (26)

The solution that we are searching for, however, is of Floquet type (as in Eq. (5)).

Therefore, φΩ(x, t) must satisfy φΩ(x, t) = φΩ(x, t+ T ), forcing

gΩ(ξR, t) = exp

[
i

(
U0 sin(ωt)

ω
− w(x, t)

)]
φΩ(x, t)

to be time-periodic with period T . Since ξR is time-periodic with period T (see Eq.(17)

where we defined it), so is ΞΩ(ξR) regardless of Epseudo. This signifies that what we have left

to require is that τΩ(t) = τΩ(t+ T ), a condition that holds only when Epseudo = `ω for some

integer `. Hence, the general solution of Eq. (24) in the space of functions with period T/m

for some positive integer m is

gΩ(ξR, t) =
∞∑

`=−∞

e−i`ωt
(
αR` eik`ξR + βR` e−ik`ξR

)
, (27)

where

k` =

√
2µ

(
Ω + `ω + V0 −

U2
0

4µω2

)
. (28)

Finally, we can use Eq. (19) to construct the general form of a Floquet state in Region IR

from what we have found:

ΨR
Ω(x, t) = e−iΩt exp

[
−iU0

ω
(1− x) sin(ωt)

]
exp

[
iU2

0 sin(2ωt)

8µω3

]
×

∞∑
`=−`LB

e−i`ωt
(
αR` e

ik`

(
x+

U0
µω2

cos(ωt)
)

+ βR` e
−ik`

(
x+

U0
µω2

cos(ωt)
))
, (29)

12



where the lower bound −`LB of the index ` is chosen to keep k` real, so `LB is the largest

integer satisfying

`LB ≤
1

ω

(
Ω + V0 −

U2
0

4µω2

)
. (30)

Solutions with imaginary k` are physically forbidden, because they turn e
±ik`

(
x+

U0
µω2

cos(ωt)
)

into real exponentials. To understand why the real exponentials make those solutions prob-

lematic to include, consider forming a basis set of solutions inside Region IR composed of

every function

ΨR
Ω, `(x, t) = e−iΩt exp

[
−iU0

ω
(1− x) sin(ωt)

]
exp

[
iU2

0 sin(2ωt)

8µω3

]
×e−i`ωt

(
αR` e

ik`

(
x+

U0
µω2

cos(ωt)
)

+ βR` e
−ik`

(
x+

U0
µω2

cos(ωt)
))

,

for which Ω is real and ` is an integer. The only superpositions of basis elements that are

physically acceptable are those that, when matched to the solutions outside Region IR via

the boundary conditions guaranteeing continuous differentiability, form a wavefunction that

is square-integrable over the whole real line. If we consider a basis element with an imaginary

k`, then due to its real exponentials, when it is matched to the external solutions, we obtain

a wavefunction Ψ(x, t) (defined over the whole real line) for which either limx→∞|Ψ(x, t)|2 =

∞ or limx→−∞|Ψ(x, t)|2 =∞ holds5. As a result, if we take any superposition that includes

this basis element and match it with the external solutions, then we will get a wavefunction

that is not square integrable over all space.

In Region IL, where x ∈ (−1, 0), Eq. (13) takes the form:

i
∂fΩ(x, t)

∂t
+ ΩfΩ(x, t) = − 1

2µ

∂2fΩ(x, t)

∂x2
− [V0 − U0xcos(ωt)]fΩ(x, t). (31)

The method of solving Eq. (31) is analogous to that for Eq. (14) and it yields that the

general Floquet state in Region IL is

ΨL
Ω(x, t) = e−iΩt exp

[
−iU0

ω
(1 + x) sin(ωt)

]
exp

[
iU2

0 sin(2ωt)

8µω3

]
×

∞∑
`=−`LB

e−i`ωt
(
αL` e

ik`

(
x− U0

µω2
cos(ωt)

)
+ βL` e

−ik`
(
x− U0

µω2
cos(ωt)

))
, (32)

where the superscript L for ΨΩ is a reference to Region IL.

5That is because the Schrödinger equation imposes certain constraints on how the sign of the wavefunc-

tion’s curvature depends on the value of the wavefunction.
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� Regions II and III (|x|> 1)

Let us slightly rewrite Eq. (12) for |x|> 1 as follows:

i
∂φΩ(x, t)

∂t
= − 1

2µ

∂2φΩ(x, t)

∂x2
− ΩφΩ(x, t). (33)

Let E denote the separation constant for Eq. 33, then it is obvious that for a fixed E, the

solution in Region II is

φ
(II)
Ω (x, t) = e−iEt

(
A√
ko

eik
ox +

B√
ko

e−ik
ox

)
,

and in Region III is

φ
(III)
Ω (x, t) = e−iEt

(
C√
ko

eik
ox +

D√
ko

e−ik
ox

)
,

where

ko = +
√

2µ (Ω + E).

Here, the function +
√
· is defined over the whole real line such that for all x ≥ 0, +

√
x is

the positive square root of x and +
√
−x = i · (+

√
x). For simplicity, we will denote i · (+

√
x)

by +i
√
x. We will also need the function −

√
·, which just selects the square root that +

√
·

does not choose.

Nevertheless, what we need are the Floquet states, so in Region II, we must have the

time-periodicity condition φ
(II)
Ω (x, t) = φ

(II)
Ω (x, t + T ), an equation that holds only when

E = qω for some integer q. The general solution of Eq. (33) in Region II in the space of

functions fulfilling the time-periodicity condition is thus

φ
(II)
Ω (x, t) =

∞∑
q=−∞

e−iqωt

(
Aq√
koq

eik
o
qx +

Bq√
koq

e−ik
o
qx

)
(34a)

=
∞∑
q=0

e−iqωt

(
Aq√
koq
eik

o
qx +

Bq√
koq
e−ik

o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Aq̂√
Ko
q̂

e−K
o
q̂x +

Bq̂√
Ko
q̂

eK
o
q̂x

)
, (34b)

where for any integer q,

koq = iKo
q = +

√
2µ(Ω + qω), (35)

i.e.

Ko
q = −ikoq = −

√
−2µ(Ω + qω).

Note that in the last paragraph of Section 1.2, we said that for definiteness, we make the

representative quasienergy values Ω lie in the interval [0, ω), which means that koq is real for

all nonnegative integers q and Ko
q̂ is real for all negative integers q̂.
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Exactly the same should be said regarding the time-periodicity condition φ
(III)
Ω (x, t) =

φ
(III)
Ω (x, t+ T ) in Region III, so

φ
(III)
Ω (x, t) =

∞∑
q=−∞

e−iqωt

(
Cq√
koq

eik
o
qx +

Dq√
koq

e−ik
o
qx

)
(36a)

=
∞∑
q=0

e−iqωt

(
Cq√
koq
eik

o
qx +

Dq√
koq
e−ik

o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Cq̂√
Ko
q̂

e−K
o
q̂x +

Dq̂√
Ko
q̂

eK
o
q̂x

)
. (36b)

At this point, we simply have to attach the exponential factor e−iΩt to finally obtain the

general Floquet states in Regions II and III. For Region II, we get

Ψ
(II)
Ω (x, t) = e−iΩt

∞∑
q=−∞

e−iqωt

(
Aq√
koq

eik
o
qx +

Bq√
koq

e−ik
o
qx

)
(37a)

= e−iΩt

 ∞∑
q=0

e−iqωt

(
Aq√
koq
eik

o
qx +

Bq√
koq
e−ik

o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Aq̂√
Ko
q̂

e−K
o
q̂x +

Bq̂√
Ko
q̂

eK
o
q̂x

) ,
(37b)

and for Region III, we get

Ψ
(III)
Ω (x, t) = e−iΩt

∞∑
q=−∞

e−iqωt

(
Cq√
koq

eik
o
qx +

Dq√
koq

e−ik
o
qx

)
(38a)

= e−iΩt

 ∞∑
q=0

e−iqωt

(
Cq√
koq
eik

o
qx +

Dq√
koq
e−ik

o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Cq̂√
Ko
q̂

e−K
o
q̂x +

Dq̂√
Ko
q̂

eK
o
q̂x

) .
(38b)

As in Region I, we must eliminate solutions that are impossible to superpose with other

solutions such that the resulting state is square-integrable. Clearly, the solutions e−K
o
q̂x in

Region II and eK
o
q̂x in Region III are forbidden for all negative integers q̂, because the former

tends to infinity as x → −∞, while the latter does the same as x → ∞. Therefore, we set

Aq̂ = Dq̂ = 0 for all integers q̂ < 0, which gives:

Ψ
(II)
Ω (x, t) = e−iΩt

 ∞∑
q=0

e−iqωt

(
Aq√
koq

eik
o
qx +

Bq√
koq

e−ik
o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Bq̂√
Ko
q̂

eK
o
q̂x

) ,
(39)

and for Region III, we get

Ψ
(III)
Ω (x, t) = e−iΩt

 ∞∑
q=0

e−iqωt

(
Cq√
koq
eik

o
qx +

Dq√
koq
e−ik

o
qx

)
+

−1∑
q̂=−∞

e−iq̂ωt

(
Cq̂√
Ko
q̂

e−K
o
q̂x

) .
(40)
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Equations (39) and (40) are general representations of Floquet states that are closer to

depicting the space of physically acceptable wavefunctions outside the well than equations

(37) and (38). In fact, every term in equations (39) and (40) has physical significance. Given

that the potential is V (x, t) = 0 in Regions II and III, it is not surprising that the basis of

solutions that we use to express the general Floquet states in those intervals consists of

eigenfunctions of the kinetic energy operator, which are either propagating plane waves (or

modes) if they have positive energy or evanescent modes if they have negative energy.

Notice that the time-independence of the potential in Regions II and III allows us to find

solutions restricted to those regions that can be treated as states of definite energy (only

outside the potential well, not for the whole system). In our problem, the Hamiltonian equals

to the kinetic energy operator in the exterior of the well, so we get that the states of definite

kinetic energy are the same as those with definite energy.

In each of the last two equations (Eqs. (39) and (40)), if we consider the first summation

over index q ranging from 0 to ∞, then we can see that for Ω ∈ (0, ω), it is fully composed

of states with positive energies Ω + qω, i.e. propagating plane waves, while for Ω = 0,

we still have that almost6 all terms in the sum represent propagating modes (with energies

Ω + qω = qω). On the other hand, each of the remaining summations over index q̂ from −∞
to −1 fully consists of states with negative energies Ω + q̂ω, i.e. evanescent modes.

Outside of Region I, there is a direct relationship between energy and quasienergy: Every

Floquet state of quasienergy Ω, which is at the same time of quasienergy Ω + mω for all

integers m, is a superposition of states with definite energies Ω + nω for all integers n.

Consequently, for a particle in a Floquet state of a given quasienergy in the exterior of the

well, the set of all possible energies that have nonzero probability of being measured is a

subset of all quasienergies that can be assigned to the Floquet state. To establish the one-

to-one correspondence between the general Floquet state’s allowed energies and assignable

quasienergies, Floquet formalism provides the concept called a channel [16]. A channel is a

set of all states in either Region II or III that have definite energies and have their energies lie

in the interval [nω, (n+ 1)ω) for some integer n. Given the integer n such that the energies

for a channel lie in the interval [nω, (n+ 1)ω), the channel is referred to as the nth channel.

For example, for a quasienergy Ω ∈ [0, ω), if a propagating or evanescent mode has energy

Ω + nω, then it is considered to be in the nth channel. If we did not set h̄ = 1, all of the

energies and assignable quasienergies that we consider in a Floquet state with quasienergy

Ω would have been of the form Ω + nh̄ω instead of Ω + nω.

Moreover, the terms in equations (39) and (40) with eik
o
qx are rightward propagating

waves and with e−ik
o
qx are leftward propagating waves. Hence, for q ≥ 0, Aq is the probability

amplitude of an incoming propagating mode (i.e. wave) traveling from the left in the qth

channel, Bq is the probability amplitude of an outgoing wave to the left in the qth channel,

Cq is the probability amplitude of an outgoing wave to the right in the qth channel, and Dq

6There is only one exception when Ω = q = 0, because that is when the energy Ω + qω is zero. The

element from our chosen basis of solutions that corresponds to this case is a state in which a particle’s kinetic

energy is zero. Such a state is not relevant for our current purposes, because its zero kinetic energy causes

its probability current to be zero, so it makes no contribution to the flux of probability into or out of the

region of the well.
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is the probability amplitude of an incoming wave from the right in the qth channel. It is

important to note that if an incoming plane wave is part of a Floquet state with quasienergy

Ω ∈ [0, ω) and is in the qth channel, we state that it has an incident quasienergy Ω and

an incident energy Ω + qω. The remaining terms represent evanescent modes. Thus, for

q < 0 7, Bq is the probability amplitude of evanescent modes that tunnel into Region II in

the qth channel, while Cq is the same thing but for Region III.

One might be tempted to ask if there is a certain lower bound −qLB < 0 to the summation

index q such that for all q < −qLB, Bq = Cq = 0. In other words, we might wonder if there

are any evanescent modes with energies that are too low to be physically possible. Indeed,

in reference [10] where a similar potential is considered, it is assumed that qLB = `LB, where

`LB was introduced here on page 13 (in which we eliminated the Region I solutions with

real exponentials). The reason for making such an assumption was based on the fact about

systems with time-independent potentials that the energy of a stationary state (and thereby

the energy expectation value of any state) must exceed the minimum potential energy [8, 14].

Nonetheless, there are three considerations in our time-periodically driven system that would

make this rule not justified at this stage of our analysis:

1. The minimum in the potential energy changes over time.

2. Due to concerns about the divergence of the wavefunction under one of the limits x →
±∞, it was justified to avoid solutions with real exponentials inside the region of the

well. However, there are no such divergence concerns regarding any of the evanescent

modes outside the well, because all of them have probabilities that exponentially decay

as x→ ±∞.

3. The replacement of energy conservation by quasienergy conservation should make us doubt

that it is impossible for an incoming wave of a given energy scattering off the potential

well to be able to transition to any channel as long as it preserves its quasienergy. In other

words, at this stage of our analysis, it is justified to hypothesize that in most cases, the

time-periodic driving in Region I induces an incident wave with definite energy to have at

least some nonzero probabilities8 of transition to every energy that differs by an integer

multiple of ω (if we did not set h̄ = 1, this would be h̄ω) from the initial energy. In fact,

throwing out solutions corresponding to q less than some chosen integer might make it

impossible for the Floquet state to be continuously differentiable at the boundaries.

Based on these considerations, the only way to find out whether or not qLB exists is to

examine what role the evanescent modes play in the boundary conditions guaranteeing the

continuous differentiability of an entire Floquet state defined over all space. If it will turn

out that for any chosen minimum energy threshold, it is impossible to always satisfy the

boundary conditions when we exclude the evanescent modes of energies that are lower than

the threshold, then qLB does not exist. For these reasons, I think it is safest to keep the

general Floquet states Ψ
(II)
Ω and Ψ

(III)
Ω the way they are expressed in Eqs. (39) and (40).

On the other hand, the choice of qLB to be equal to `LB as was done in [10] can have

7Since q̂ is a “dummy” summation index, we can replace it by q to make the index q have any integer

value, as in Eqs. (37a) and (38a). Henceforth, we will not use the index q̂ used in Eqs. (37b) and (38b).
8Many of those probabilities may be extremely close to zero, but still nonzero.
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some practical use. It can serve as a guide to choose only a finite subset of all boundary

conditions to account for such that the matrices needed to find the scattering matrix, or

S-matrix, (defined in the next section) are reasonably truncated to matrices of finite size,

making it possible to compute the elements of the S-matrix approximately. This choice is

especially a good guide when the oscillation strength U0 is small, because that is a situation

for which the scattering dynamics should resemble the scattering in the case when U0 = 0.

As a side-note, it is important to notice that as a consequence of Floquet’s theorem, the

energy transitions mentioned in consideration 3 are the only transitions that an incident

plane wave is allowed to go through in a localized system with a time-periodic potential.

If the driving field is an electromagnetic field, then our application of Floquet’s theorem

provides a non-relativistic prediction of the quantization of the electromagnetic field via

photons (a consequence of which is photon emission and absorption), though it does not

establish the true quantum electrodynamic explanation of what a photon field really is.

2.2 Derivation of the Floquet Scattering Matrix

In this section, our goal will be to derive the Floquet S-matrix, which for a given

quasienergy Ω and for q ≥ 0, relates the probability amplitudes Aq and Dq of incoming

propagating modes to the amplitudes Bq and Cq of outgoing propagating modes as follows:(
B

C

)
=

(
S11 S12

S21 S22

)(
A

D

)
, (41)

where

A := (A0, A1, A2, ... )T , B := (B0, B1, B2, ... )T ,

C := (C0, C1, C2, ... )T , D := (D0, D1, D2, ... )T
(42)

are column matrices of infinite size (i.e. column vectors with infinitely many components),

which we will simply refer to as infinite column vectors, and

S :=

(
S11 S12

S21 S22

)
(43)

is the Floquet S-matrix split into four matrix blocks S11, S12, S21 and S22, all of which are

of infinite size and represent linear operators acting on infinite dimensional space. We call

such matrices of infinite size infinite matrices. Once we find expressions for these blocks,

we will know how to compute the S-matrix.

In order to find the true expression for the S-matrix, we must account for not just

amplitudes of propagating modes (for which q ≥ 0), but also for amplitudes of evanescent

modes (for which q < 0), because transitions from positive channels to negative channels

are possible due to the time-dependence of the potential. To do this, we will first find a

bigger matrix, which I call the Σ-matrix. For a given quasienergy Ω, the Σ-matrix relates

the probability amplitudes Aq and Dq to amplitudes Bq and Cq for all integers q as follows:(
B

C

)
=

(
Σ11 Σ12

Σ21 Σ22

)(
A

D

)
, (44)
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where

A := ( ... , A−2, A−1, A0, A1, A2, ... )T , B := ( ... , B−2, B−1, B0, B1, B2, ... )T ,

C := ( ... , C−2, C−1, C0, C1, C2, ... )T , D := ( ... , D−2, D−1, D0, D1, D2, ... )T
(45)

are infinite column vectors and

Σ :=

(
Σ11 Σ12

Σ21 Σ22

)
(46)

is the Σ-matrix split into four blocks of infinite size. Since all of the amplitudes that the Σ-

matrix relates include the amplitudes that the S-matrix relates, the S-matrix is contained in

the Σ-matrix. In particular, every block Sγδ is a submatrix of the block Σγδ for all γ, δ = 1, 2.

Hence, the elements of the S-matrix are known once the Σ-matrix is found.

The relationships between the amplitudes Aq, Bq, Cq, and Dq are determined by the

boundary conditions guaranteeing the continuous differentiability of the Floquet solutions

at all three boundaries between Regions II and IL, IL and IR, and IR and III. In other words,

the conditions equate the continuous extensions of the Floquet solutions we already found

and their spatial derivatives at boundaries located at x = −1, x = 0, and x = 1. These

conditions are

Ψ
(II)
Ω (−1, t) = ΨL

Ω(−1, t), (47)

∂Ψ
(II)
Ω

∂x

∣∣∣∣∣
x=−1

=
∂ΨL

Ω

∂x

∣∣∣∣∣
x=−1

, (48)

ΨL
Ω(0, t) = ΨR

Ω(0, t), (49)

∂ΨL
Ω

∂x

∣∣∣∣∣
x=0

=
∂ΨR

Ω

∂x

∣∣∣∣∣
x=0

, (50)

Ψ
(III)
Ω (1, t) = ΨR

Ω(1, t), (51)

∂Ψ
(III)
Ω

∂x

∣∣∣∣∣
x=1

=
∂ΨR

Ω

∂x

∣∣∣∣∣
x=1

, (52)

where we will use Ψ
(II)
Ω from Eq. (37a) and Ψ

(III)
Ω from Eq. (38a) for the purposes of

computing the Σ-matrix.

We mentioned before that Eqs. (39) and (40) are more representative of the space

physically acceptable wavefunctions than Eqs. (37a) and (38a) are, because they account

for the fact that for q < 0, Aq and Dq are amplitudes of nonexistent (i.e. physically

unacceptable) modes that blow up at either x = ±∞. Nevertheless, we want to account for

all boundary conditions as we derive the S-matrix by finding the Σ-matrix first, so instead of

setting Aq = Dq = 0 for all q < 0 right away, we treat the amplitudes of nonexistent modes

as input variables. In fact, observe that the Σ-matrix treats incoming propagating waves

and nonexistent modes as inputs and outgoing propagating waves and evanescent modes as

outputs, so this matrix will truly give us physical amplitudes if we input the amplitudes of

nonexistent modes as equal to zero.
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To facilitate the use of the boundary conditions, we want to note that Floquet solutions

are of the form ΨΩ(x, t) = e−iΩt/h̄φΩ(x, t), such that φΩ(x, t) = φΩ(x, t + T ). Thus, we can

perform Fourier series expansions of φΩ(x, t) and ∂
∂x
φΩ(x, t) in the time variable t in all four

regions and then equate the continuous extensions of the resulting Fourier coefficients (which

still depend on x) at the boundaries. In Regions II and III, there is no need to make any

expansions, because φ
(II)
Ω and φ

(III)
Ω in equations (34) and (36) are already written in terms of

their temporal Fourier series. In contrast, the time-periodic parts of the solutions in Region

I are not expanded yet. To expand them, we employ the Jacobi-Anger identities [1]

eis sin(ωt) =
∞∑

v=−∞

Jv (s) eivωt

e−is sin(ωt) =
∞∑

v=−∞

(−1)vJv (s) eivωt

eis cos(ωt) =
∞∑

v=−∞

ivJv (s) eivωt

e−is cos(ωt) =
∞∑

v=−∞

(−i)vJv (s) eivωt

(53)

all of which come from the following Laurent series (first used by the astronomer Peter

Andreas Hansen) [1]:

exp

[
z

2

(
a− 1

a

)]
=
∑∞

`=−∞
a`J`(z). (54)

� The Boundary Conditions at x = ±1

From Eqs. (32) and (53), we get for the left half of the well that

ΨL
Ω(x, t) = e−iΩt

∞∑
`=−`LB

(
∞∑

v=−∞

(−1)vJv

(
U0

ω
(1 + x)

)
eivωt

)(
∞∑

u=−∞

Ju

(
U2

0

8µω3

)
e2iuωt

)
×

×

(
αL` e

ik`x

∞∑
m=−∞

(−i)mJm
(
k`U0

µω2

)
eimωt + βL` e

−ik`x
∞∑

m=−∞

imJm

(
k`U0

µω2

)
eimωt

)
e−i`ωt, (55)

which via re-indexing (specifically, taking n := m+ 2u, p := n+ v, and q := `− p, yielding

m = `− q − v − 2u), can be written as

ΨL
Ω(x, t) = e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

∞∑
v=−∞

∞∑
u=−∞

(−1)vJv

(
U0

ω
(1 + x)

)
Ju

(
U2

0

8µω3

)
×

× J`−q−v−2u

(
k`U0

µω2

)(
(−i)`−q−v−2uαL` e

ik`x + i`−q−v−2uβL` e
−ik`x

)
e−iqωt. (56)
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By evaluating this series at the boundary x = −1 and noting that Jv(0) = δv0 (so that we

can set index v = 0), we find that

ΨL
Ω(−1, t) = e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−2u

(
k`U0

µω2

)
×

× ((−i)`−q−2uαL` e
−ik` + i`−q−2uβL` e

ik`)e−iqωt. (57)

Observe that my ability to use Jv(0) = δv0 to eliminate infinitely many terms in the expression

for ΨL
Ω at the boundary of the well is due to the simplifying property that the potential is

fixed at that boundary. The same will happen when we will deal with the rightmost boundary

where x = 1. By taking the spatial partial derivative of the expression in Eq. (56), we obtain

∂ΨL
Ω

∂x
= e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

{
αL`

[
∞∑

v=−∞

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−v−2u

(
k`U0

µω2

)
(−i)`−q+v−2u ×

×

[
U0

2ω

(
Jv−1

(
U0

ω
(1 + x)

)
− Jv+1

(
U0

ω
(1 + x)

))
+ ik`Jv

(
U0

ω
(1 + x)

)]
eik`x +

+ βL`

[ ∞∑
v=−∞

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−v−2u

(
k`U0

µω2

)
i`−q+v−2u ×

×

[
U0

2ω

(
Jv−1

(
U0

ω
(1 + x)

)
− Jv+1

(
U0

ω
(1 + x)

))
− ik`Jv

(
U0

ω
(1 + x)

)]
e−ik`x

}
e−iqωt, (58)

where we have used
dJn(x)

dx
=

1

2
(Jn−1(x)− Jn+1(x)).

Evaluating the derivative in Eq. (58) at the boundary x = −1 and again using that Jv(0) =

δv0 gives

∂ΨL
Ω

∂x

∣∣∣∣∣
x=−1

= e−iΩt
∞∑

q=−∞

∞∑
u=−∞

{
Ju

(
U2

0

8µω3

)
×

×
∞∑

`=−`LB

[
U0

2ω

(
J`−q−2u−1

(
k`U0

µω2

)
+ J`−q−2u+1

(
k`U0

µω2

))
−

− k`J`−q−2u

(
k`U0

µω2

)](
(−i)`−q−2u+1αL` e

−ik` + i`−q−2u+1βL` e
ik`
)}

e−iqωt. (59)

Similarly, one can derive from Eqs. (29) and (53) that for the right half of the well,

ΨR
Ω(x, t) = e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

∞∑
v=−∞

∞∑
u=−∞

(−1)vJv

(
U0

ω
(1− x)

)
Ju

(
U2

0

8µω3

)
×

× J`−q−v−2u

(
k`U0

µω2

)(
i`−q−v−2uαR` e

ik`x + (−i)`−q−v−2uβR` e
−ik`x

)
e−iqωt, (60)
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which is analogous to Eq. (56). Also, by analogy with Eq. (57),

ΨR
Ω(1, t) = e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−2u

(
k`U0

µω2

)
×

× (i`−q−2uαR` e
ik` + (−i)`−q−2uβR` e

−ik`)e−iqωt. (61)

By taking the spatial partial derivative of the expression in Eq. (60), we obtain

∂ΨR
Ω

∂x
= −e−iΩt

∞∑
q=−∞

∞∑
`=−`LB

{
αR`

[
∞∑

v=−∞

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−v−2u

(
k`U0

µω2

)
i`−q+v−2u ×

×

[
U0

2ω

(
Jv−1

(
U0

ω
(1− x)

)
− Jv+1

(
U0

ω
(1− x)

))
− ik`Jv

(
U0

ω
(1− x)

)]
eik`x +

+ βR`

[ ∞∑
v=−∞

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J`−q−v−2u

(
k`U0

µω2

)
(−i)`−q+v−2u ×

×

[
U0

2ω

(
Jv−1

(
U0

ω
(1− x)

)
− Jv+1

(
U0

ω
(1− x)

))
+ ik`Jv

(
U0

ω
(1− x)

)]
e−ik`x

}
e−iqωt. (62)

Therefore,

∂ΨR
Ω

∂x

∣∣∣∣∣
x=1

= −e−iΩt
∞∑

q=−∞

∞∑
u=−∞

{
Ju

(
U2

0

8µω3

)
×

×
∞∑

`=−`LB

[
U0

2ω

(
J`−q−2u−1

(
k`U0

µω2

)
+ J`−q−2u+1

(
k`U0

µω2

))
−

− k`J`−q−2u

(
k`U0

µω2

)](
i`−q−2u+1αR` e

ik` + (−i)`−q−2u+1βR` e
−ik`
)}

e−iqωt. (63)

From what we have found so far, it is easier to impose the boundary conditions (47) and

(48) at x = −1 and (51) and (52) at x = 1. For convenience, let us define the following

constants:

Ĵq`u := J`−q−2u−1

(
k`U0

µω2

)
; (64)

J̃q`u :=
U0

2ω

(
J`−q−2u−1

(
k`U0

µω2

)
+ J`−q−2u+1

(
k`U0

µω2

))
− k`J`−q−2u

(
k`U0

µω2

)
. (65)

Now, we consider x = −1. By Eqs. (37a), (57), and (64), the continuity condition (47)

implies that for all q ∈ Z that

Aq√
koq
e−ik

o
q +

Bq√
koq
eik

o
q =

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
Ĵq`u ×

× ((−i)`−q−2uαL` e
−ik` + i`−q−2uβL` e

ik`), (66)
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while by Eqs. (37a), (59), and (65), the differentiability condition (48) implies for all q ∈ Z
that

i
√
koqAqe

−ikoq − i
√
koqBqe

ikoq =
∞∑

`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J̃q`u ×

×
(
(−i)`−q−2u+1αL` e

−ik` + i`−q−2u+1βL` e
ik`
)
. (67)

Next, we consider x = 1. By Eqs. (38a), (61), and (64), the continuity condition (51) implies

that for all q ∈ Z that

Cq√
koq
eik

o
q +

Dq√
koq
e−ik

o
q =

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
Ĵq`u ×

× (i`−q−2uαR` e
ik` + (−i)`−q−2uβR` e

−ik`), (68)

while by Eqs. (38a), (63), and (65), the differentiability condition (52) implies for all q ∈ Z
that

−i
√
koqCqe

ikoq + i
√
koqDqe

−ikoq =
∞∑

`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

)
J̃q`u ×

×
(
i`−q−2u+1αR` e

ik` + (−i)`−q−2u+1βR` e
−ik`
)
. (69)

Remark 3 : In the process of deriving Eq. (69), I multiplied both sides of the equation by

-1 to make it look almost exactly like Eq. (67).

Eqs. (66) and (67) giving the boundary conditions at x = −1 can be written as a single

matrix equation that holds all integers q:(
(e−ik

o
q )/
√
koq (eik

o
q )/
√
koq

i
√
koqe
−ikoq −i

√
koqe

ikoq

)(
Aq

Bq

)
=

∞∑
`=−`LB

∞∑
u=−∞

{
Ju

(
U2

0

8µω3

)
×

×

[(
Ĵq`u

−iJ̃q`u

)
(−i)`−q−2uαL` e

−ik` +

(
Ĵq`u

iJ̃q`u

)
i`−q−2uβL` e

ik`

]}
. (70)

Note that ∣∣∣∣∣(e
−ikoq )/

√
koq (eik

o
q )/
√
koq

i
√
koqe
−ikoq −i

√
koqe

ikoq

∣∣∣∣∣ = −2i

is the determinant of the matrix on the left-hand side of Eq. (70). Thus, applying Cramer’s

Rule to (70), we obtain

Aq =
i

2

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

){ ∣∣∣∣∣ Ĵq`u (eik
o
q )/
√
koq

−iJ̃q`u −i
√
koqe

ikoq

∣∣∣∣∣ (−i)`−q−2uαL` e
−ik` +

+

∣∣∣∣∣ Ĵq`u (eik
o
q )/
√
koq

iJ̃q`u −i
√
koqe

ikoq

∣∣∣∣∣ (−i)`−q−2uβL` e
ik`

}
; (71)
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Bq =
i

2

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

){ ∣∣∣∣∣(e
−ikoq )/

√
koq Ĵq`u

i
√
koqe
−ikoq −iJ̃q`u

∣∣∣∣∣ (−i)`−q−2uαL` e
−ik` +

+

∣∣∣∣∣(e
−ikoq )/

√
koq Ĵq`u

i
√
koqe
−ikoq iJ̃q`u

∣∣∣∣∣ (−i)`−q−2uβL` e
ik`

}
. (72)

Eqs. (71) and (72) can be written in slightly better form:

Aq =
1

2

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

){ ∣∣∣∣∣Ĵq`u (eik
o
q )/
√
koq

J̃q`u
√
koqe

ikoq

∣∣∣∣∣ (−i)`−q−2uαL` e
−ik` +

+

∣∣∣∣∣ Ĵq`u (eik
o
q )/
√
koq

−J̃q`u
√
koqe

ikoq

∣∣∣∣∣ (−i)`−q−2uβL` e
ik`

}
; (73)

Bq =
1

2

∞∑
`=−`LB

∞∑
u=−∞

Ju

(
U2

0

8µω3

){ ∣∣∣∣∣(e
−ikoq )/

√
koq Ĵq`u

−
√
koqe
−ikoq J̃q`u

∣∣∣∣∣ (−i)`−q−2uαL` e
−ik` +

+

∣∣∣∣∣(e
−ikoq )/

√
koq Ĵq`u

−
√
koqe
−ikoq −J̃q`u

∣∣∣∣∣ (−i)`−q−2uβL` e
ik`

}
. (74)

Eqs. (73) and (74) can easily be combined into the following matrix equation:(
A

B

)
=

(
X11 X12

X21 X22

)(
αL

βL

)
, (75)

where A and B are defined as in (45), αL and βL are infinite column vectors defined as

αL := (αL−`LB , ... , α
L
−2, α

L
−1, α

L
0 , α

L
1 , α

L
2 , ... )T ,

βL := (βL−`LB , ... , β
L
−2, β

L
−1, β

L
0 , β

L
1 , β

L
2 , ... )T ,

(76)

and X11, X12, X21, and X22 are infinite matrices with (q, `) entries that are

(X11)q` :=
1

2

∞∑
u=−∞

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣Ĵq`u
e
ik0q√
k0q

J̃q`u
√
k0
qe
ik0q

∣∣∣∣∣∣ (−i)`−q−2ue−ik` , (77)

(X12)q` :=
1

2

∞∑
u=−∞

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣ Ĵq`u
e
ik0q√
k0q

−J̃q`u
√
k0
qe
ik0q

∣∣∣∣∣∣ i`−q−2ueik` , (78)

(X21)q` :=
1

2

∞∑
u=−∞

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣
e
−ik0q√
k0q

Ĵq`u

−
√
k0
qe
−ik0q J̃q`u

∣∣∣∣∣∣ (−i)`−q−2ue−ik` , (79)

(X22)q` :=
1

2

∞∑
u=−∞

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣
e
−ik0q√
k0q

Ĵq`u

−
√
k0
qe
−ik0q −J̃q`u

∣∣∣∣∣∣ i`−q−2ueik` , (80)
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respectively.

Repeating the same process (delineated by Eqs. (70) – (75)) for Eqs. (68) and (69)

giving the boundary conditions at x = 1 yields the following matrix equation (analogous to

Eq. (75)): (
C

D

)
=

(
X22 X21

X12 X11

)(
αR

βR

)
(81)

where C and D are defined as in (45), αR and βR are infinite column vectors defined as

αR := (αR−`LB , ... , α
R
−2, α

R
−1, α

R
0 , α

R
1 , α

R
2 , ... )T ,

βR := (βR−`LB , ... , β
R
−2, β

R
−1, β

R
0 , β

R
1 , β

R
2 , ... )T ,

(82)

and X11, X12, X21, and X22 are still the matrix blocks defined in Eqs. (77)– (80).

It will soon be useful for us to know what is the inverse(
X22 X21

X12 X11

)−1

,

so that we can rewrite equation (81) as(
αR

βR

)
=

(
Z11 Z12

Z21 Z22

)(
C

D

)
, (83)

where we define (
Z11 Z12

Z21 Z22

)
:=

(
X22 X21

X12 X11

)−1

(84)

Theorem 4 : Suppose that we are given any square matrix Q of finite size split into four

square blocks as follows:

Q =

(
Q11 Q12

Q21 Q22

)
.

If we assume that all four blocks are invertible 9, then there is a convenient formula for the

inverse of Q:

Q−1 =

(
(Q11 −Q12Q

−1
22 Q21)−1 (Q21 −Q22Q

−1
12 Q11)−1

(Q12 −Q11Q
−1
21 Q22)−1 (Q22 −Q21Q

−1
11 Q12)−1.

)
(85)

Hence, assuming that the linear operators represented by X11, X12, X21, and X22 are invert-

ible, we can apply the infinite-dimensional version of Theorem 4 to write the expressions for

9It is also possible to find an expression for the inverse of Q by only assuming that only two out of the

four matrix blocks are square and only one of the square blocks and some composition of blocks is invertible.

Though this expression would have a slightly larger scale of application, it is not as nice and symmetric as

Eq. (85). Furthermore, it would expand the range of application insignificantly, because the set of invertible

linear maps from a finite-dimensional vector space V to itself is open and dense in the set of all linear maps

from V to itself.
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matrices Z11, Z12, Z21, and Z22 more explicitly as follows:
Z11 = (X22 −X21X

−1
11 X12)−1

Z12 = (X12 −X11X
−1
21 X22)−1

Z21 = (X21 −X22X
−1
12 X11)−1

Z22 = (X11 −X12X
−1
22 X21)−1

. (86)

� The Boundary Conditions at x = 0

Now, we need to consider the remaining boundary conditions (49) and (50) at x = 0.

Recall that (29) and (32) have the exponential factor

exp

[
iU2

0 sin(2ωt)

8µω3

]
in common. Thus, let us reconsider Eq. (55) written in less expanded form:

ΨL
Ω(x, t) = e−iΩtexp

[
iU2

0 sin(2ωt)

8µω3

] ∞∑
`=−`LB

(
∞∑

v=−∞

(−1)vJv

(
U0

ω
(1 + x)

)
eivωt

)
×

×

(
αL` e

ik`x

∞∑
m=−∞

(−i)mJm
(
k`U0

µω2

)
eimωt + βL` e

−ik`x
∞∑

m=−∞

imJm

(
k`U0

µω2

)
eimωt

)
e−i`ωt,

(87)

Via re-indexing p := m + v and q := ` − p (yielding m = ` − q − v), we can turn Eq. (87)

into

ΨL
Ω(x, t) = e−iΩte

i
U2
0

8µω3
sin(2ωt)

∞∑
q=−∞

[(
∞∑

`=−`LB

∞∑
v=−∞

Jv

(
U0

ω
(1 + x)

)
J`−q−v

(
k`U0

µω2

)
×

×
(
(−i)`−q+vαL` eik`x + i`−q+vβL` e

−ik`x
))

e−iqωt

]
. (88)

Similarly, one can get

ΨR
Ω(x, t) = e−iΩte

i
U2
0

8µω3
sin(2ωt)

∞∑
q=−∞

[(
∞∑

r=−`LB

∞∑
v=−∞

Jv

(
U0

ω
(1− x)

)
Jr−q−v

(
krU0

µω2

)
×

×
(
ir−q+vαRr e

ikrx + (−i)r−q+vβRr e−ikrx
))

e−iqωt

]
, (89)

where the index ` is replaced by index r so that the indices are distinguished upon the

application of boundary conditions.
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By evaluating the expressions in equations (88) and (89) at x = 0, it is clear that the

continuity boundary condition (49) implies that for every q ∈ Z,

∞∑
`=−`LB

∞∑
v=−∞

Jv

(
U0

ω

)
J`−q−v

(
k`U0

µω2

)(
(−i)`−q+vαL` + i`−q+vβL`

)
=

∞∑
r=−`LB

∞∑
v=−∞

Jv

(
U0

ω

)
Jr−q−v

(
krU0

µω2

)(
ir−q+vαRr + (−i)r−q+vβRr

)
(90)

Taking the spatial partial derivative of the expression in Eq. (88) yields

∂ΨL
Ω

∂x
= e−iΩte

i
U2
0

8µω3
sin(2ωt) ×

×
∞∑

q=−∞

∞∑
`=−`LB

∞∑
v=−∞

{[
U0

2ω

(
Jv−1

(
U0

ω
(1 + x)

)
− Jv+1

(
U0

ω
(1 + x)

))
+

+ ik`Jv

(
U0

ω
(1 + x)

)]
J`−q−v

(
k`U0

µω2

)
(−i)`−q+vαL` eik`x +

+

[
U0

2ω

(
Jv−1

(
U0

ω
(1 + x)

)
− Jv+1

(
U0

ω
(1 + x)

))
− ik`Jv

(
U0

ω
(1 + x)

)]
×

× J`−q−v

(
k`U0

µω2

)
i`−q+vβL` e

−ik`x

}
e−iqωt (91)

Similarly,

∂ΨR
Ω

∂x
= e−iΩte

i
U2
0

8µω3
sin(2ωt) ×

×
∞∑

q=−∞

∞∑
r=−`LB

∞∑
v=−∞

{[
− U0

2ω

(
Jv−1

(
U0

ω
(1− x)

)
− Jv+1

(
U0

ω
(1− x)

))
+

+ ikrJv

(
U0

ω
(1− x)

)]
Jr−q−v

(
krU0

µω2

)
ir−q+vαRr e

ikrx +

+

[
− U0

2ω

(
Jv−1

(
U0

ω
(1− x)

)
− Jv+1

(
U0

ω
(1− x)

))
− ikrJv

(
U0

ω
(1− x)

)]
×

× Jr−q−v

(
krU0

µω2

)
(−i)r−q+vβRr e−ikrx

}
e−iqωt (92)
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Hence, by evaluating the derivatives provided by equations (91) and (92) at x = 0, we

see that the differentiability boundary condition (50) means that for every q ∈ Z,

∞∑
`=−`LB

∞∑
v=−∞

{[
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
+ ik`Jv

(
U0

ω

)]
J`−q−v

(
k`U0

µω2

)
(−i)`−q+vαL` +

+

[
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
− ik`Jv

(
U0

ω

)]
J`−q−v

(
k`U0

µω2

)
i`−q+vβL`

}

= −
∞∑

r=−`LB

∞∑
v=−∞

{[
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
− ikrJv

(
U0

ω

)]
Jr−q−v

(
krU0

µω2

)
ir−q+vαRr +

+

[
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
+ ikrJv

(
U0

ω

)]
Jr−q−v

(
krU0

µω2

)
(−i)r−q+vβRr

}
(93)

For convenience, we define the following constant:

K`v :=
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
+ ik`Jv

(
U0

ω

)
(94)

Since we require that k` is real, the complex conjugate of K`v must be

K`v =
U0

2ω

(
Jv−1

(
U0

ω

)
− Jv+1

(
U0

ω

))
− ik`Jv

(
U0

ω

)
(95)

Let us introduce the following notation as well:

(W11)q` :=
∞∑

v=−∞

Jv

(
U0

ω

)
J`−q−v

(
klU0

µω2

)
(−i)`−q+v; (96)

(W12)q` := (W11)q`; (97)

(W21)q` :=
∞∑

v=−∞

K`vJ`−q−v

(
k`U0

µω2

)
(−i)`−q+v; (98)

(W22)q` := (W21)q` (99)

With this new notation, it is evident that Eqs. (90) and (93) giving the boundary conditions

at x = 0 give us that for all q ∈ Z,

∞∑
`=−`LB

(W11)qlα
L
` + (W12)qlβ

L
` =

∞∑
r=−`LB

(W12)qrα
R
r + (W11)qrβ

R
r (100)

∞∑
`=−`LB

(W21)q`α
L
` + (W22)q`β

L
` = −

(
∞∑

r=−`LB

(W22)qrα
R
r + (W21)qrβ

R
r

)
(101)

Therefore, if let W11 be the infinite matrix with (q, `) entries equal to (W11)ql, W12 be the

infinite matrix with (q, `) entries equal to (W12)ql, W21 be the infinite matrix with (q, `)
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entries equal to (W21)ql, and W22 be the infinite matrix with (q, `) entries equal to (W22)ql,

then Eqs. (100) and (101) can also be written as a single matrix equation:(
W11 W12

W21 W22

)(
αL

βL

)
=

(
W12 W11

−W22 −W21

)(
αR

βR

)
, (102)

where αL and βL are defined as in (76) and αR and βR are defined as in (82).

Again, we apply the infinite-dimensional version of Theorem 4 to obtain that(
W11 W12

W21 W22

)−1

=

(
(W11 −W12W

−1
22 W21)−1 (W21 −W22W

−1
12 W11)−1

(W12 −W11W
−1
21 W22)−1 (W22 −W21W

−1
11 W12)−1.

)
(103)

Let us introduce the following matrix:(
Y11 Y12

Y21 Y22

)
:=

(
W11 W12

W21 W22

)−1(
W12 W11

−W22 −W21

)
, (104)

so that Eq. (102) becomes (
αL

βL

)
=

(
Y11 Y12

Y21 Y22

)(
αR

βR

)
, (105)

By plugging in Eq. (103) into Eq. (104), one can derive that
Y11 = 2(W−1

12 W11 −W−1
22 W21)−1

Y12 = (I +W−1
11 W12W

−1
22 W21)(I −W−1

11 W12W
−1
22 W21)−1

Y21 = −(I +W−1
22 W21W

−1
11 W12)(I −W−1

22 W21W
−1
11 W12)−1

Y22 = −2(W−1
21 W22 −W−1

11 W12)−1

(106)

� The Transfer Matrix, Σ-Matrix, and S-Matrix

The transfer matrix is a tool that could either be chosen to relate the modes in Region

III to the modes in Region II or vice versa. We choose our transfer matrix

T :=

(
T11 T12

T21 T22

)
to relate the modes in Region III to the modes in Region II, so(

A

B

)
=

(
T11 T12

T21 T22

)(
C

D

)
. (107)

From Eqs. (75), (83), and (105), we already know what is the transfer matrix. It is simply

T =

(
X11 X12

X21 X22

)(
Y11 Y12

Y21 Y22

)(
Z11 Z12

Z21 Z22

)
, (108)

Therefore, we have that for i = 1, 2,

T1i = (X11Y11 +X12Y21)Z1i + (X11Y12 +X12Y22)Z2i. (109)
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Hence, from Eqs (86) and (106), it can be computed that

T11 =
[
2X11(W−1

12 W11 −W−1
22 W21)−1 −X12(I +W−1

22 W21W
−1
11 W12)(I −W−1

22 W21W
−1
11 W12)−1

]
×

× (X22 −X21X
−1
11 X12)−1 + [X11(I +W−1

11 W12W
−1
22 W21)(I −W−1

11 W12W
−1
22 W21)−1 −

− 2X12(W−1
21 W22 −W−1

11 W12)−1](X21 −X22X
−1
12 X11)−1 (110)

and

T12 =
[
2X11(W−1

12 W11 −W−1
22 W21)−1 −X12(I +W−1

22 W21W
−1
11 W12)(I −W−1

22 W21W
−1
11 W12)−1

]
×

× (X12 −X11X
−1
21 X22)−1 + [X11(I +W−1

11 W12W
−1
22 W21)(I −W−1

11 W12W
−1
22 W21)−1 −

− 2X12(W−1
21 W22 −W−1

11 W12)−1](X11 −X12X
−1
22 X21)−1. (111)

Now that we know how to relate C and D to A and B, we can make use of this relationship

to derive how A and D are related to B and C, allowing us to obtain the Σ-matrix. By

equation (107), A = T11C + T12D, so

C = T−1
11 A− T−1

11 T12D. (112)

From this equation, it is obvious that Σ21 = T−1
11 and Σ22 = −T−1

11 T12. Regarding the

remaining two blocks Σ11 and Σ12 of the Σ-matrix, their relationship with the matrix blocks

of the transfer matrix that we found is not as simple generally speaking, but it is just as

simple with the matrix blocks of the other choice of transfer matrix, which relates B and A

to D and C instead. However, given that our potential is an even function, our system has

a reflection symmetry about x = 0, so there is no need to try to derive anything new. It is

clear from the physical perspective that, by analogy with Eq. (112), we also have

B = −T−1
11 T12A+ T−1

11 D, (113)

so the four blocks of the Σ-matrix are:{
Σ11 = Σ22 = −T−1

11 T12

Σ12 = Σ21 = T−1
11

(114)

Hence, the two blocks T11 and T12 of the transfer matrix given by Eqs. (110) and (111)

provide the full Σ-matrix of our system.

Suppose that we label the (λ, ν) entries of the four blocks of the Σ-matrix as follows:{
(Σ11)λν = (Σ22)λν = rλν
(Σ12)λν = (Σ21)λν = tλν

(115)

Then, the S-matrix is simply a submatrix of the Σ-matrix that only contains the entries of

each block with nonnegative row and column indices λ and ν, so it is

S =



r00 r01 ... t00 t01 ...

r10 r11 ... t10 t11 ...
...

...
. . .

...
...

. . .

t00 t01 ... r00 r01 ...

t10 t11 ... r10 r11 ...
...

...
. . .

...
...

. . .


. (116)
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2.3 Transmission Probabilities

� The Physical Interpretation and Graphs of the Elements of the
S-Matrix

If we take a look at Eq. (41), we see that

S21 relates the amplitudes of incoming prop-

agating waves traveling from the left repre-

sented by A to those of the outgoing prop-

agating waves traveling to the right repre-

sented by C, while S12 relates the amplitudes

of incoming waves (D) from the right to those

of the outgoing waves (B) to the left. This

signifies that for an incoming wave traveling

from some direction (either from the left or

from the right) in the νth channel, every (λ, ν)

entry tλν of the matrix blocks S21 = S12 is

the amplitude of both transmission through

the region of the well (Region I) and tran-

sition into the λth channel. Hence, the ab-

solute value squared |tλν |2 of that amplitude

represents the probability that an incoming

wave traveling from some direction in the νth

channel has to both transmit through Re-

gion I and to transition into the λth chan-

nel as an outgoing wave on the other side of

the well. In Figures 2-5, we illustrate graphs

of the combined transmission and transition

probabilities |tλν |2 as functions of the incident

quasienergy Ω for some chosen nonnegative

integers λ and ν and for the following set

of parameters (expressed in Hartree atomic

units): µ = 1, V0 = 10, U0 = 0.5, and ω = 4.

By similar analysis, the modulus squared

|rλν |2 of the (λ, ν) entry of the matrix blocks

S11 = S22 is the probability that an incoming

wave traveling from some direction in the νth

channel has to both reflect off the well and to

transition to the λth channel as an outgoing

wave in the same region outside of the well.

Figure 2: A plot of the probability |t0,0|2 that

a particle from the zeroth channel on one side

of the well will transmit into the zeroth chan-

nel on the other side. Here and in the rest of

the figures of this thesis, the particle’s mass is

µ = 1, the unperturbed well depth is V0 = 10,

the amplitude of the oscillation of the bottom of

potential well is U0 = 0.5, and the frequency of

that same oscillation is ω = 4 (all expressed in

Hartree atomic units).

Figure 3: A plot of the probability |t1,0|2 that

a particle from the zeroth channel on one side of

the well will transmit into the first channel on

the other side.
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Figure 4: A plot of the probability |t2,0|2 that

a particle from the zeroth channel on one side of

the well will transmit into the second channel on

the other side.

Figure 5: A plot of the probability |t0,1|2 that

a particle from the first channel on one side of

the well will transmit into the zeroth channel on

the other side.

� Extending Our Interpretation Beyond the S-Matrix

The S-matrix is a submatrix of the Σ-matrix, so we should also address the physicality

of the entries of the Σ-matrix that are excluded from the S-matrix. As we have restricted

ourselves to consider the meaning of the S-matrix, our discussion has been limited to what

happens in the nonnegative channels. Thus far, we only explained the physical meaning of

|tλν |2 and |rλν |2 for nonnegative λ and ν.

Now, suppose that we took |tλν |2 for which ν is negative, then it is the probability for

a nonexistent mode (defined on page 19) to transmit through the well and transition into

the λth channel. Of course, this makes no physical sense, because we are never given a

nonexistent mode in the first place (as we have seen toward the bottom of page 15). It is

evident that we would also get a nonsensical interpretation if we were to consider |rλν |2 with

negative ν. Thus, we cannot allow ν to be negative in the realms of physics.

On the other hand, there are also |tλν |2 and |rλν |2 for which λ is negative and ν is

nonnegative. In this case, |tλν |2 represents the probability for an incoming propagating

mode in the νth channel to transmit through the well and to form an evanescent mode in the

λth channel on the other side of the well, while |rλν |2 with the same λ and ν is the probability

for that same incoming wave to stay on the same side of the well and to create an evanescent

mode in the λth channel.

Note that an evanescent mode, unlike a propagating mode, has a zero probability current,

i.e. it exhibits no flux (or propagation) of probability in any direction. This implies that

when the incident particle hits the region of the well and is induced by the driving field to

access an evanescent mode, it does not propagate away from the well through that mode.

Instead, the accessed evanescent mode blocks the probability from “leaking” out of the well,

causing the particle’s positional probability distribution to accumulate in the region of the

well.
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We can also think about this as follows: as

an evanescent mode is a part of the wavefunc-

tion that exponentially decays as x → ±∞,

the mode’s contribution to the probability

of the particle being measured at a position

in the well’s exterior tends to zero as the

measurement becomes farther away from the

well. Indeed, the contributions by evanes-

cent modes to the particle’s probability of

being measured outside the well tend to be

much smaller than the particle’s probability

to be measured inside the well and the prob-

abilistic contributions by propagating modes

in the well’s exterior. Therefore, if there is a

certain incident quasienergy for which some

|tλν |2 with a negative λ and a nonnegative ν

has a local maximum, then we have evidence

that the particle’s probability accumulates in-

side the region of our well, because the in-

side of the well should have the greater share

of the probability than the evanescent mode.

For quasienergies close to this maximum, if

some other transmission probabilities |tλ′ν |2
with positive λ′ and with the same ν have lo-

cal minima followed by local maxima, we can

claim that we have found an incident energy

for which the particle’s probability not only

concentrates inside the well, but is also lim-

ited in how it leaks out of the well via prop-

agating modes. In other words, the peak in

the probability that an incident particle tran-

sitions to an evanescent mode induces the dip

in the probability that this particle accesses

an outgoing propagating mode, causing a sig-

nificant portion of the particle’s probability

distribution to get “trapped” within the re-

gion of the well for a finite amount of time.

The phenomenon in which a peak in

transmission into one mode induces a dip in

transmission into another mode is called a

transmission resonance. Furthermore, a

Floquet state that is induced by a resonance

between propagating and evanescent modes

and exhibits the property that the particle’s

probability is localized for a finite amount of

time is called a quasibound state. If the

incident quasienergy that leads to the quasi-

bound state is converted to the energy corre-

sponding to the negative channel in which the

greatest peak in the amplitude of the evanes-

cent mode occurs, then what we will find is

approximately equal to what is referred to as

the energy of the quasibound state.

Figure 6: A plot of the probability |t−1,0|2 that

a particle from the zeroth channel on one side

of the well will transmit into the negative first

channel on the other side.

Figure 7: A plot of the probability |t−2,0|2 that

a particle from the zeroth channel on one side of

the well will transmit into the negative second

channel on the other side.
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Remark 5 Keep in mind that a quasibound

state is a Floquet state over all four regions,

so it cannot actually have a definite energy

and instead has a definite quasienergy. Thus,

when we say “energy of the quasibound state,”

the word “energy” has a different meaning

from what it formally means. Here, it actu-

ally refers to a specific choice of quasienergy.

Suppose that we consider a case in which

the driving field is weak (i.e. U0 is small). If

we gradually stop the time-periodic driving

field to make the potential time-independent

(that is, slowly diminish U0 down to zero),

the quasibound states will be replaced by

bound states, which are stationary states

of negative energy that are localized in the

potential well forever. Bound states are com-

pletely trapped in the well because they are

stationary states, so their energies are con-

served. That makes it impossible for a par-

ticle to transition from a bound state to a

propagating mode through which it can leak

out, unless the potential gets somehow per-

turbed again.

Figure 8: A plot of the probability |t−1,1|2 that

a particle from the first channel on one side of the

well will transmit into the negative first channel

on the other side.

In summary, every entry tλν and entry rλν
of the Σ-matrix for which ν is nonnegative has

physical significance, while other entries with

negative index ν are unphysical. Figures 6-8

are graphs of |tλν |2 as functions of the incident

quasienergy Ω for some chosen negative inte-

ger λ, nonnegative integer ν, and again the

following set of parameters: µ = 1, V0 = 10,

U0 = 0.5, and ω = 4, all expressed in Hartree

atomic units.

� The Method Employed to Create Figures 2-8

The computational software I used to generate the plots of probabilities in Figs. 2-8 is

Wolfram Mathematica 11.0, Student Edition. Since all of the Figures 2-8 only represent

entries from the off-diagonal blocks Σ12 and Σ21 of the Σ-matrix, we have that by (114), I

only needed Eq. (110) for T11 to find the necessary blocks of the Σ-matrix. Thus, I combined

Eq. (110) and the second equation in (114) into

Σ12 = Σ21 =

=
{ [

2X11(W−1
12 W11 −W−1

22 W21)−1 −X12(I +W−1
22 W21W

−1
11 W12)(I −W−1

22 W21W
−1
11 W12)−1

]
×

× (X22 −X21X
−1
11 X12)−1 + [X11(I +W−1

11 W12W
−1
22 W21)(I −W−1

11 W12W
−1
22 W21)−1 −

− 2X12(W−1
21 W22 −W−1

11 W12)−1](X21 −X22X
−1
12 X11)−1

}−1

. (117)

The first question to ask is, given the parameters µ = 1, V0 = 10, U0 = 0.5, and ω = 4, how

can we manage to compute the elements of Σ12 if Eq. (117) involves products of matrices of

infinite size? Since computational softwares are limited to dealing with matrices of finite size,
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our method of computation must involve reasonable truncations of the matrices X11, X12,

X21, X22, W11, W12, W21, and W22 to finite size. Eqs. (77)– (80) and (96)– (99) provide the

(q, `) entries of these eight matrices, and we need to choose certain finite ranges for indices

q and ` in such a way that the matrices end up having the appropriate numbers of rows

and columns for them to be multipliable and invertible in Eq. (117). If the we choose the

ranges for q and for ` to be the same length for all eight matrices, then Eq. (117) will fully

consists of square matrices, which would obviously be of appropriate size to be multipliable

and invertible. In other words, truncating the eight matrices to square matrices of same size

is always an option. Note that it is also possible to truncate some of the eight matrices to

rectangular matrices such that Eq. (117) can still be used, but this thesis only considers

truncations to square matrices.

To perform the truncation to square matrices reasonably, we need to make some physical

considerations (or, if one would like to be more rigorous, mathematically derive the con-

vergence properties as matrices are increased up back up to infinite size). Suppose that an

incoming plane wave with high energy is introduced into our system. If its energy is high

enough, then the unperturbed depth V0 and oscillation amplitude U0 of the well is negligibly

small to the incident energy of the plane wave. Thus, the plane wave should keep propagat-

ing almost as if it is unaffected by the well. This justifies bounding q and ` from above for

the purposes of truncation.

Recall that if we set U0 = 0 so that the bottom of potential well does not oscillate

anymore, then the evanescent modes with energies below the minimum potential energy

cannot exist due to the impossibility for a particle in one energy state to transition to

another energy state. Therefore, if U0 is slightly greater than zero, the probability that

a particle will access evanescent modes of very low energy should be extremely low, which

justifies bounding q from below for truncation purposes (note that index ` is already bounded

from below by −`LB).

In the first paragraph of page 18, I mentioned that `LB can serve as a good guide for

bounding q from below. If we take our parameters µ = 1, V0 = 10, U0 = 0.5, and ω = 4, then

according to Eq. (30), if Ω ∈ [0, 2.0039), then `LB = 2, while if Ω ∈ [2.0039, 4), then `LB = 3.

Based on this, I chose -2 to be the lower bound for both q and ` indices10. Regarding the

upper bound to indices q and `, I figured that given that the strength of the oscillation

U0 = 0.5 is weak, the channels above the positive second channel are accessed by an an

incoming particle in the zeroth and first channels with very low probability, so I decided to

bound both q and ` from above by 2.

In all, we have chosen q, ` ∈ {−2,−2, 0, 1, 2}, thereby truncating the eight infinite ma-

trices X11,...,X22, W11,...,W22 down to 5×5 matrices. As a result, the resulting Σ12 matrix

is 5×5, while its submatrix S12 is 3×3.

10I have selected a lower bound of -2 just for the purposes of providing some sort of demo. Clearly, it

would have been better to bound from below by -3, and of course, that is something that the reader can try

if he or she wishes to practice using my method. In this paper, we will find quasibound states resembling

the first and second excited states of the unperturbed version of the well (with U0 = 0), but if you bound

from below by -3, one should also find a quasibound state resembling the ground state.
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The next computational challenge to address is that the eight matrices as defined in Eqs.

(77)– (80) and (96)– (99) have entries that are series (i.e. infinite sums), so in order to make

computation possible, the series must be reduced to finite sums. Fortunately, all eight series

converge extremely quickly. For example, this can be seen in the following figure:

Figure 9: Both figures plot the absolute value of the summand Ju

(
U2
0

8µω3

)
(Ĵq`u

√
k0
qe
ik0q −

J̃q`u
e
ik0q√
k0q

)(−i)`−q−2ue−ik` of the series in Eq. (77) with q = ` = 0. The plots show very quick

convergence to zero as the summation index u gets farther away from zero. The lower plot is more

zoomed in than the upper one.
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Therefore, it was justified to truncate the series in Eqs. (77)– (80) and (96)– (99) as

follows:

(X11)q` :=
1

2

10∑
u=−10

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣Ĵq`u
e
ik0q√
k0q

J̃q`u
√
k0
qe
ik0q

∣∣∣∣∣∣ (−i)`−q−2ue−ik` ; (118)

(X12)q` :=
1

2

10∑
u=−10

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣ Ĵq`u
e
ik0q√
k0q

−J̃q`u
√
k0
qe
ik0q

∣∣∣∣∣∣ i`−q−2ueik` ; (119)

(X21)q` :=
1

2

10∑
u=−10

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣
e
−ik0q√
k0q

Ĵq`u

−
√
k0
qe
−ik0q J̃q`u

∣∣∣∣∣∣ (−i)`−q−2ue−ik` ; (120)

(X22)q` :=
1

2

10∑
u=−10

Ju

(
U2

0

8µω3

) ∣∣∣∣∣∣
e
−ik0q√
k0q

Ĵq`u

−
√
k0
qe
−ik0q −J̃q`u

∣∣∣∣∣∣ i`−q−2ueik` ; (121)

(W11)q` :=
10∑

u=−10

Jv

(
U0

ω

)
J`−q−v

(
klU0

µω2

)
(−i)`−q+v; (122)

(W12)q` :=
10∑

u=−10

Jv

(
U0

ω

)
J`−q−v

(
klU0

µω2

)
i`−q+v; (123)

(W21)q` :=
10∑

u=−10

K`vJ`−q−v

(
k`U0

µω2

)
(−i)`−q+v; (124)

(W22)q` :=
10∑

u=−10

K`vJ`−q−v

(
k`U0

µω2

)
i`−q+v. (125)

While experimenting with truncations via Wolfram Mathematica 11.0, I found that re-

placing
∑∞

u=−∞ by
∑10

u=−10 yielded results for |tλν |2 that are exactly the same up to at

least seven decimal places as when I replaced
∑∞

u=−∞ by
∑1000

u=−1000, which is a strong jus-

tification for the truncation I used. I suppose that even replacing
∑∞

u=−∞ by
∑5

u=−5 would

lead to suitably accurate results.

I discovered that the truncations of the series played a significant role in how much time

it took to create the plots in Figs. 2-8. If I truncated with
∑1000

u=−1000, then it took two-and-

a-half minutes for Mathematica to compute t0,0 for a single value of incident quasienergy Ω,

which meant that a plot with |t0,0|2 for 500 values of Ω would have to take about 21 hours to

make. In contrast, if I truncated with
∑10

u=−10, then it would only take less than 15 minutes

to plot |t0,0|2 for 500 values of Ω with equally suitable accuracy. In Figures 2-8, I plotted

each |tλν |2 for about 1500 to 3000 values of Ω.

In conclusion, my plotting method would help one to accomplish suitable computational

precision, accuracy, and efficiency when using Eq. (117) to make computational software

generate graphs of the transmission probabilities as functions of incident quasienergy. An

analogous method can be used to efficiently create graphs of reflection probabilities |rλν |2.
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3 Discussion
Overall, this analysis of our chosen localized one-dimensional quantum system that is sub-

ject to time-periodic driving revealed that the space of explicit solutions to the Schrödinger

equation can be found, that an elegant analytic expression allowing us to compute the ele-

ments of the scattering matrix can be obtained, and that there is a convenient method to

generate plots (Figs. 2-8) representing transmission probabilities.

Figures 2-8 all represent our system with the following parameters (all in Hartree atomic

units): well width is 2, particle mass is µ = 1, amplitude of the oscillation of the potential

bottom is U0 = 0.5, angular frequency of that same oscillation is ω = 4, and unperturbed

well depth is V0 = 10. Notice how the amplitude U0 is a lot smaller than the well depth

V0 and driving frequency ω. This is an indication we chose the version of our system with

a weak driving field, so it should resemble the time-independent case when U0 = 0 in some

fundamental aspects. In other words, a system subject to a weak perturbing field like ours

should still preserve some general properties of the unperturbed system.

Indeed, if we analyze Figures 2-5, we see that all of them have a resonance dip at either

Ω ≈ 1.22 Hartrees or ≈ 0.945 Hartrees, or both. Both of those dips are always followed by

a peak at a slightly higher incident quasienergy Ω. At the same time, Figs. 5-8 all show a

resonance peak at quasienergies that are either 1.2212 or 0.9466 Hartrees, or both. Recall

that in Section 2.3 (specifically on page 33), we discussed a phenomenon in which at around

the same incident quasienergy, there is both a peak in probability that an incoming particle

accesses an evanescent mode and a dip in the probability (followed by a peak) that the

particle transitions to an outgoing propagating mode. As a reminder, this phenomenon is

called a transmission resonance and the state induced by the incident quasienergy for which

the resonance occurs is called a quasibound state. In our case, it is evident that transmission

resonances and quasibound states occur at two quasienergies: 1.2212 and 0.9466 Hartrees.

Comparing Figures 7 and 8, we can suspect (though not with complete confidence, for more

graphs would have to be plotted) that at Ω = 1.2212, the evanescent mode with the greatest

peak in the probability amplitude is the one in the negative second channel. Hence, we can

approximate that the energy of the quasibound state is

Ω− 2ω = 1.2212− 8 = −6.7788 Hartrees.

Comparing Figure 6 with Figs. 7 and 8, we can also suspect that at Ω = 0.9466 the

evanescent mode with the highest amplitude is the one in the negative first channel, so we

can find another energy of a quasibound state:

Ω− ω = 0.9466− 4 = −3.0534 Hartrees.

When again the well width is 2 and the well depth V0 = 10, but U0 = 0 instead, there are

three bound states in the well, which in order of ascending energy, are known as following:

The ground state, first excited state, and second excited state. Here comes the important

observation: The energy of the first excited state, which is -6.7791 Hartrees, is really close

to the energy of the quasibound state corresponding to the transmission resonance at Ω =
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1.2212, while the energy of the second excited state, which is -3.0542 Hartrees, is very close

to the energy of the other quasibound state that we found. From this resemblance between

our driven system and the unperturbed system, we can infer that my method of finding

transmission probabilities gives sensible results.

39



References
[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables (U.S. Government Printing Office, Washington, D.C.,

1964), p. 355.

[2] R. H. Blick, R. J. Haug, D. W. van der Weide, K. von Klitzing, and K. Eberl,“Photon-

Assisted Tunneling Through a Quantum Dot at High Microwave Frequencies.” Appl.

Phys. Lett. 67, 3924 (1995).

[3] M. Buttiker and R. Landauer, “Traversal Time for Tunneling.” Phys. Rev. Lett. 49,

1739 (1982).

[4] H. Drexler, J. S. Scott, S. J. Allen, K. L. Campman, and A. C. Gossard, “Photon-

Assisted Tunneling in a Resonant Tunneling Diode: Stimulated Emission and Absorption

in the THz Range.” Appl. Phys. Lett. 67, 2816 (1995)

[5] A. Emmanouilidou and L. E. Reichl, “Floquet Scattering and Classical-Quantum Cor-

respondence in Strong Time-Periodic Fields.” Phys. Rev. A 65, 033405 (2002).

[6] T. Fromherz, “Floquet States and Intersubband Absorption in Strongly Driven Double

Quantum Wells.” Phys. Rev. B 56, 4772 (1997).

[7] T. Fujisawa, S. Tarucha, “Photon Assisted Tunnelling in Single and Coupled Quantum

Dot Systems.” Superlattices and Microstructures, Vol. 21, No. 2 (1997), p. 247.

[8] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson Education, Inc.,

Upper Saddle River, NJ, 2005, 1995), p. 30.

[9] M. Holthaus and D. Hone, “Quantum Wells and Superlattices in Strong Time-

Dependent Fields.” Phys. Rev. B 47, 6499 (1993).

[10] J.-W. Jung, K. Na, and L. E. Reichl, “Scattering from Radiation-Induced Entangled

States.” Phys. Rev. A 85, 023420 (2012).

[11] B. J. Keay, S. J. Allen, Jr., J. Galán, J. P. Kaminski, K. L. Campman, A. C. Gossard,

U. Bhattacharya, and M. J. W. Rodwell, “Photon-Assisted Electric Field Domains and

Multiphoton-Assisted Tunneling in Semiconductor Superlattices.” Phys. Rev. Lett. 75,

4098 (1995).

[12] B. J. Keay, S. Zeuner, S. J. Allen, Jr., K. D. Maranowski, A. C. Gossard, U. Bhat-

tacharya, and M. J. W. Rodwell, “Dynamic Localization, Absolute Negative Conduc-

tance, and Stimulated, Multiphoton Emission in Sequential Resonant Tunneling Semi-

conductor Superlattices.” ibid. 75, 4102 (1995).

[13] L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa,

and H. Sakaki, “Observation of Photon-Assisted Tunneling Through a Quantum Dot.”

Phys. Rev. Lett. 73, 3443 (1994).

40



[14] L. D. Landau and E. M. Lifshitz, Quantum Mechanics—Non-Relativistic Theory, 3rd

ed. (Pergamon Press, Oxford, 1976), p. 53.

[15] P. J. Leek, M. R. Buitelaar, V. I. Talyanskii, C. G. Smith, D. Anderson, G. A. C. Jones,

J. Wei, and D. H. Cobden, “Charge Pumping in Carbon Nanotubes.” Phys. Rev. Lett.

95, 256802 (2005).

[16] W. Li and L. E. Reichl, “Floquet Scattering Through a Time-Periodic Potential.” Phys.

Rev. B 60, 15732 (1999).

[17] W. Li and L. E. Reichl, “Transport in Strongly Driven Heterostructures and Bound-

State-Induced Dynamic Resonances.” Phys. Rev. B 62, 8269 (2000).

[18] H. Linke, T. E. Humphrey, P. E. Lindelof, A. Lofgren, R. Newbury, P. Omling, A. O.

Sushkov, R. P. Taylor, and H. Xu, “Quantum Ratchets and Quantum Heat Pumps.”

Appl. Phys. A 75, 237 (2002).

[19] H. Linke, T. E. Humphrey, A. Lofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and

P. Omling, “Experimental Tunneling Ratchets.” Science 286, 2314 (1999).

[20] D. F. Martinez and L. E. Reichl, “Transmission properties of the oscillating δ-function

potential.” Phys. Rev. B 64, 245315 (2001).

[21] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations

(Princeton University Press, Princeton, NJ, 1960), p. 179.

[22] N. Rohling and F. Grossmann, “Optimization of Electron Pumping by Harmonic Mix-

ing.” Phys. Rev. B 83, 205310 (2011).

[23] J. H. Shirley, “Solution of the Schrödinger Equation with a Hamiltonian Periodic in

Time.” Phys. Rev. 138, B979 (1965).

[24] C. S. Tang and C. S. Chu, “Coherent Quantum Transport in Narrow Constrictions in

the Presence of a Finite-Range Longitudinally Polarized Time-Dependent Field.” Phys.

Rev. B 60, 1830 (1999).

[25] P. K. Tien and J. P. Gordon, “Multiphoton Process Observed in the Interaction of

Microwave Fields with the Tunneling between Superconductor Films.” Phys. Rev. 129,

647 (1963).

[26] G. Zhou and Y. Li, “Floquet scattering approach to electron transport for a quantum

wire under longitudinally polarized electromagnetic field irradiation.” J. Phys. Condens.

Matter 17, 6663 (2005).

41


