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Stochastic control is a broad tool with applications in several areas of

academic interest. The financial literature is full of examples of decisions made

under uncertainty and stochastic control is a natural framework to deal with

these problems. Problems such as optimal trading, option pricing and eco-

nomic policy all fall under the purview of stochastic control. These problems

often face nonlinearities that make analytical solutions infeasible and thus nu-

merical methods must be employed to find approximate solutions. In this

dissertation three types of stochastic control formulations are used to model

applications in finance and numerical methods are developed to solve the re-

sulting nonlinear problems. To begin with, optimal stopping is applied to

option pricing. Next, impulse control is used to study the problem of interest

rate control faced by a nation’s central bank, and finally a new type of hybrid

control is developed and applied to an investment decision faced by money

managers.
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Chapter 1

Introduction

This dissertation focuses on developing numerical methods to solve stochas-

tic optimal control problems, specifically applied to three problems related to

finance. Firstly, we consider the problem of finding optimal exercise policies

for American options, both under constant and stochastic volatility settings.

Rather than work with the usual equations that characterize the price exclu-

sively, we derive and use boundary evolution equations that characterize the

evolution of the optimal exercise boundary. Using these boundary evolution

equations we show how one can construct very efficient computational meth-

ods for pricing American options that avoid common sources of error. Finally

we compare runtime and accuracy to other popular numerical methods. The

ideas and methodology presented herein can easily be extended to other op-

timal stopping problems. This work was completed together with Jonathan

Goodman and Kumar Muthuraman and a version is forthcoming in Mitchell

et al. (2014b).

Next, we examine the effect that a central bank’s interventions have

on longer term interest rate securities by examining a stochastic short rate

process that can be controlled by the central bank. Rather than investigate the
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motivations for the intervention, we assume that the bank is able to quantify

its preferences and tolerances for various rates. We allow for a very general

class of stochastic processes for the short rate and most of the popular models

in literature fall within this class. Interventions are best modeled as Impulse

controls which are very difficult to handle, even computationally, except in

very special cases. Allowing interventions to be modeled by Impulse controls,

we develop a computational method and provide relevant convergence results.

We also derive error bounds for intermediate iterations. Using this method

we solve for the central bank’s optimal control policy and also study the effect

of this on longer term interest rate securities using a change of measure. The

method developed here can easily be applied to a very wide range of impulse

control problems beyond the realm of interest rate models. This work was

completed together with Haolin Feng and Kumar Muthuraman and a version

is forthcoming in Mitchell et al. (2014a).

Finally we study the problem of hedge fund contracts, which are gen-

erally characterized by a flat fee, a performance fee and what are known as

high-water-mark provisions. We describe and characterize these contract fea-

tures and analyzes how they influence the hedge fund’s risk choices. We model

the hedge fund’s portfolio choice as a stochastic control problem with hybrid

discrete and continuous controls. We develop a computational method to solve

this widely applicable class of problems and prove its convergence. This work

was completed together with Kumar Muthuraman and Sheridan Titman.
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Chapter 2

Boundary Evolution Equations for American

Options

2.1 Introduction

This chapter develops numerical methods to solve the optimal stopping

problem associated with pricing American style options. American options

provide the holder the right (but not the obligation) to trade an underlying

asset for a specified strike price anytime before a specified expiry time. Pric-

ing and finding the optimal exercise policy, which is known to be a surface

that partitions the domain into exercise and hold regions, are interrelated and

are solved for by transforming them to differential equation problems. The

resulting differential equation, along with boundary conditions, formulate a

free-boundary problem and characterize the price of the option. An accurate

computation of the solution to the free-boundary problem relies on an accu-

rate representation of the boundary and an accurate treatment of its dynamics.

Rather than work with the equation that characterizes the price evolution of

an American security exclusively, one could potentially derive and use the

equations that characterize the evolution of the free-boundary for computa-

tional purposes. This however has not been seen as a valuable method because

the boundary evolution equation also depends implicitly on the price, which
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seemed to be challenging to handle efficiently.

In this paper we consider American options, in the Black-Scholes setting

and in a stochastic volatility setting, and derive boundary evolution equations.

We show how one can construct computational procedures that efficiently uti-

lize these evolution equations to compute both the price and the optimal ex-

ercise policy of American options. The evolution equations tell us exactly how

fast the exercise boundary should move in time. This speed is dependent on

both the current level of the boundary and a mixed derivative of the price

function at the boundary, resulting in a system of differential equations. By

solving these equations simultaneously we can track both the optimal exercise

policy and the price function.

A challenge in constructing a boundary evolution equation based com-

putational procedure, apart from that posed by the implicit dependence of the

equation on the price, is in taming the errors that arise from having to choose

amongst points on a predefined grid to represent the boundary. Hence, we first

construct a computational procedure that works on the standard rectangular

cartesian grid by allowing a boundary to float between grid points. Though

the performance of this first step is very encouraging, one could potentially

eliminate any error due to the grid and boundary mismatch by allowing the

grid to adapt to the boundary rather than pre-define it. To this extent we next

construct an improved methodology that dynamically builds a non-linear grid

while solving the boundary evolution equations. Such a dynamic evolution

while being a relatively complicated implementation, performs significantly

4



better and becomes essential under stochastic volatility. For cases where an

integral representation of the option price is available, as is the case for the

Black-Scholes model, we could potentially use the representation for further

efficiency in solving the boundary evolution equation. We demonstrate how

this can be done too for the Black-Scholes case. We also provide numerical

evidence that the methods constructed in this paper are faster and more accu-

rate than other relevant numerical methods. More work could potentially be

done to extend this to existing integral representations of American options

with stochastic volatility.

The primary objective of the paper is to show that it is possible to con-

struct efficient numerical methods that take advantage of boundary evolution

equations to avoid common sources of error. The expressions for the dynam-

ics of the boundary in the Black-Scholes setting was found in van Moerbeke

(1975) then rediscovered, independently, in Goodman and Ostrov (2002), and

they were extended to some multi-factor models in Hayes (2006). The cor-

responding equations for the stochastic volatility case have been derived in

this paper. American option pricing is probably the most popular example

amongst a larger class of very similar problems known as optimal stopping

problems. Although this paper focuses exclusively on American options, the

arguments for deriving the boundary evolution equations and the computa-

tional methods that solve these equations can readily be extended to other

optimal stopping problems.

In Section 2.2 we consider the classical Black-Scholes setting of con-
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stant volatility and present three methods which leverage on the boundary

equation. We then compare these methods to other numerical methods and

find that all three methods constructed perform better. Section 2.3 considers

the stochastic volatility case with a setting that is general enough to encom-

pass several popular stochastic volatility models. For numerical comparisons,

we only consider the most popular Heston model and describe the dynamic

grid based method in this context. We then compare the method to other

existing numerical methods and find improved performance. A version of this

work is forthcoming in Mitchell et al. (2014b).

2.1.1 Background and Previous Literature

A put option is a contingent claim that gives the owner the right, but

not the obligation, to sell a share of stock (or any other asset) at a pre-specified

price. Throughout the paper we restrict discussion to the put option only

because almost the same arguments and equations will hold for the call option,

wherein the owner has the right to buy a share of stock at a pre-specified price.

Put options come in two main flavors, “European,” where the owner can only

exercise this right at one pre-specified time (expiration), and “American,”

where the owner can exercise this right anytime before expiration. When

valuing an American put option the crucial step is to find the optimal early

exercise boundary, which indicates the circumstances under which the option

should be exercised before it expires. While a closed form solution for the value

of a European option with constant volatility was found in the classical paper
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Black and Scholes (1973) and for one particular stochastic volatility model in

the paper in Heston (1993), there is no known closed form solution for the

value of an American option with constant or stochastic volatility.

For constant volatility there are two main classes of numerical methods

that approximate the price of American options. The first class computes

the expected value of the American’s payoff under the risk neutral measure.

This class usually consists of Monte Carlo and binomial methods, and these

methods only find the price of the option for one particular price and time to

expiration and are typically unable to compute the early exercise boundary

efficiently. The second class rephrases the expected value as the solution to a

free-boundary partial differential equation, and methods in this class find the

entire pricing function and the early exercise boundary. It can be difficult to

compare methods in different classes because PDE methods give much more

information than the first class.

The most well known numerical method for solving the free-boundary

problem was developed in Brennan and Schwartz (1977) but there have been

several numerical methods developed since then. Muthuraman (2008) uses

an iterative method to convert the free-boundary problem into a sequence of

fixed boundary problems. Also Goodman and Ostrov (2002) find a differential

equation that governs the early exercise boundary, which will be used heavily

in this paper, and use it to derive a short time asymptotic expansion of the

boundary.

There are other methods that do not solve the free-boundary problem;

7



rather they evaluate the risk neutral expected value of the option’s payoff. Two

common methods in practice that solve this problem are the binomial and tri-

nomial tree methods. The binomial method was first seen in Cox et al. (1979).

Also, there has been much success in solving this problem using Monte-Carlo

simulation, most notably in Tilley (1993), Broadie and Glasserman (1997) and

Longstaff and Schwartz (2001). Other methods that solve this problem par-

tition the price as a European option’s price plus an early exercise premium

which results in an integral equation (Kim (1990); Jacka (1991); Carr et al.

(1992)).

Recently there has been some work that exploits asymptotic analysis of

the early exercise boundary to find approximate closed form solutions to the

American option problem in the Black-Scholes setting. In Bunch and John-

son (2002) the authors find an implicit equation that can approximate the

boundary at any time and then use numerical integration to find the price of

the option. In Stamicar et al. (1999) the authors find an approximate explicit

formula for the early exercise boundary. In Chen and Chadam (2007) the au-

thors provide a detailed mathematical analysis of the early exercise boundary

and provide an implicit ODE that governs the boundary. Evans et al. (2002)

provides results for American options on dividend paying stocks. A more com-

prehensive comparison of numerical methods can be found in AitSahlia and

Carr (1997).

In the years since the seminal work of Black and Scholes there have been

many empirical studies that suggest that simple Geometric Brownian Motion

8



does not capture enough of the dynamics of a stock price to give an accurate

price for derivative securities. As a result people have studied the case when

the volatility of the stock follows a stochastic process. There have been several

models that incorporate this but most work has focused on European options.

As in the Black-Scholes setting, there is no known closed form solution for

American options under any model.

Despite the vast research in American options with constant volatil-

ity there has been relatively less work exploring stochastic volatility. While

some of the methods mentioned above can be extended to handle stochastic

volatility, namely the PDE and Monte-Carlo methods, there are also many

methods that cannot handle stochastic volatility. Given the limitations of the

above methods there has been some work looking for fast methods to price

American options with stochastic volatility, including the multigrid method in

Clarke and Parrott (1999) and a moving boundary method in Chockalingam

and Muthuraman (2011). Ikonen and Toivanen (2007) uses a component-

wise splitting method to create three simple linear complementarity problems

which they solve using the Brennan-Schwartz method. Also Wilmott (1998)

describes how to use projected successive over relaxation (PSOR) to solve the

free-boundary problem. In Detemple and Tian (2002) the authors present an

integral representation for American options with stochastic volatility and in-

terest rates that can be recursively solved to find the early exercise boundary.

Broadie et al. (2000) uses non-parametric techniques to investigate properties

of the early exercise boundary under stochastic dividends and volatility. In

9



Ikonen and Toivanen (2008) the authors present a more exhaustive review of

other computational methods for American options with stochastic volatility.

2.2 Constant Volatility

In this section we generalize a boundary evolution equation, for the

Black-Scholes setting, found in Goodman and Ostrov (2002) to a more general

setting than non-dividend paying stocks that includes assets such as futures,

dividend paying stocks and options on foreign currency. We then develop

three numerical methods that leverage on the boundary evolution equation to

obtain fast and accurate approximations of the price of an American option

with constant volatility. For the rest of the paper we use the notation of

Karatzas and Shreve (1998).

2.2.1 The Boundary Equation

We start with the classical Black-Scholes partial differential equation for

valuing an American put option, p(x, τ), where x is the price of the underlying

asset and τ is the time until expiry. An American put option can be exercised

at any time before it expires with payoff of q − x, where q is the strike price

of the option. This suggests that we should partition the domain into two

distinct regions separated by the early exercise boundary, c(τ). If at time τ ,

x ≤ c(τ) the option should be exercised immediately with a payoff of q−x, and

if x > c(τ) the option should be held. The optimal choice of c(τ) is decided

by comparing the intrinsic value of the option to its tradable value; if it is

10



worth more on the open market than its intrinsic value, then it should not be

exercised. In the constant volatility case if x > c(τ) then p(x, τ) is governed

by the classical Black-Scholes PDE,

∂p

∂τ
= 1

2
σ2x2 ∂

2p

∂x2
+ bx

∂p

∂x
− rp. (2.1)

Here r is the risk-free interest rate, σ is the volatility of the underlying asset

and b is the instantaneous cost of carrying the underlying asset, as in Huang

et al. (1996). Using this notation for b allows us to price several financial

instruments. For example, for non-dividend paying stocks, b = r; for stocks

with constant dividend yield δ, b = r − δ; for futures, b = 0; and for options

on foreign currency with foreign risk-free rate rf , b = r − rf .

We know that at τ = 0 the option expires, thus it must be exercised

or abandoned and therefore c(0) = q, if b ≥ 0, otherwise c(0) = r
r−bq. The

last thing we need to know about this option is the smooth pasting condition,

which states that on the boundary p must be differentiable as shown in Merton

(1992). With this information we can establish initial and boundary conditions

for p; which are

p(x, 0) = max(q − x, 0),

p(c(τ), τ) = q − c(τ), (2.2)

∂p(c(τ),τ)
∂x

= −1. and (2.3)

lim
x→∞

p(x, τ) = 0 (2.4)

Equation (2.4) implies that

lim
x→∞

∂p

∂x
= 0, (2.5)

11



because p is convex and decreasing, as seen in Karatzas and Shreve (1998). It

is more convenient, numerically, to use Equation (2.5) as a boundary condition

for large x, so we will not use Equation (2.4) in numerical experiments.

Now that we have the boundary conditions we would like a differential

equation that governs c(τ). We find this using higher order derivatives that are

continuous up to the early exercise boundary from the continuation region, but

not across into the exercise region (see, for example, Lawrence and Salsa (2009)

for a proof of this in several multi-asset cases). We use these expressions to

treat the price and boundary as a coupled system to be solved simultaneously.

Theorem 2.1. The differential equation that governs c(τ) is

∂c(τ)

∂τ
= −∂

2p(c(τ), τ)

∂x∂τ

σ2c2(τ)

2qr − 2(r − b)c(τ)
. (2.6)

The proof can be found in the appendix.

Even with this equation, finding the price of the American put is still a

hard problem. We see in Equation (2.6) that the boundary’s evolution depends

on both a mixed derivative of the price function and the current boundary level,

which creates a system of non-linear differential equations. The price of the

put option depends on the boundary and the boundary depends on the price

of the put. In order to solve these equations we must find a way to evolve

them simultaneously.

Figure 2.1 shows the state space partitioned into the exercise region and

the continuation region. The two regions are separated by the early exercise

12
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Figure 2.1: Partitioned State Space

boundary. In the exercise region the price of the put is equal to its intrinsic

value. In the continuation region the price of the put is governed by Equation

(2.1).

2.2.2 Numerical Method on a Static Grid

This section constructs a numerical method that uses Equation (2.6) to

compute the early exercise boundary and the price function of an American put

option. The basic idea is to step forward in time to expiry discretely, evolving

p and c at each step using finite difference approximations to Equations (2.1)

and (2.6). In this process several intricacies need to be addressed so we describe

the algorithm with a three step iterative procedure.

Step 1: Initialize p and c at a small time before expiration
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To begin evolution using Equations (2.1) and (2.6) we need an initial

value of p and c. We know that at τ = 0 the boundary is located at c(0) =

min(q, r
r−bq), and at every value of x such that x ≥ q we have p(x, 0) = 0. In

this numerical method we only consider the domain where x ≥ c(τ) because

when x > c(τ) we know that p is governed by Equation (2.1) and when x =

c(τ), p must obey the boundary conditions so any value of x < c(τ) cannot

be used. Using this information as an initial value we will see that all finite

difference approximations to derivatives in the x variable will be zero if b ≥ 0.

This happens because we do not consider the domain such that x < c(0), the

only place where p(x, 0) 6= 0, so any place that we calculate a derivative in

x will result in a linear combination of zeros, which is zero. For example, if

q = 100 and b > 0 then c(0) = q. Now if we try to approximate the derivative

of p at x = 101, using a finite difference approximation, we will find that

p(101 + ∆x, 0) = p(101−∆x, 0) = 0, and ∂p
∂x
≈ p(101+∆x,0)−p(101−∆x,0)

2∆x
= 0−0

2∆x
=

0.

This fact together with Equation (2.1) tells us also that the numerical

approximation of ∂p
∂τ

must also be zero. This means the price of the put cannot

change in one step, and thus the location of the boundary cannot change in

one step, if we start with the initial data at τ = 0. If they do not move in

the first step then they will not move in any subsequent step and the price

of the put will stay at zero for all times to expiry, which is clearly incorrect.

However, if b < 0 we do not have a problem.

In order to overcome this problem we approximate the put, at a short
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time before expiration, as a European option, as in Broadie and Detemple

(1996), and with this we can take advantage of the closed form Black-Scholes

equation for European options. On a discrete set of equally spaced grid points

in x between zero and some x̂, where x̂ is the maximal value in the com-

putational domain, we find the value of a European put, f(x, τo), a short

time before expiration, τo. The choice of x̂ is not entirely trivial here, we

need to pick x̂ so that Equation (2.5) is approximately true for all times

to expiry that we consider. Since f is a European option it must satisfy

f(x, τo) = qe−rτoN(−d2)− xe−(r−b)τoN(−d1), where d1 =
log(x/q)+(b+

1
2
σ2)τo

σ
√
τo

and

d2 = d1− σ
√
τo. Here N is the standard normal cumulative distribution func-

tion. We initialize p for a short time as p(x, τo) = max(f(x, τo), q − x).

In order to find the initial value for the boundary, c(τo), we use a binary

search to find the place where f(x, τo) intersects the line q − x. Here we will

almost certainly find that c(τo) is not located at one of the grid points chosen

above, but this is not a problem; we will evolve p on the fixed grid and let c

move between the grid points.

In Figure 2.2 we illustrate how to initialize p and c. In the figure the

dashed line represents the intrinsic value of the put and the solid line repre-

sents the value of a European option. We say that to the left of the intersection

the American is equal to the dashed line, to the right of the intersection the

American is equal to the solid line and the boundary is located at the in-

tersection of the two lines. However we only work in the domain such that

x ≥ c(τ) so we only need the location of the intersection and the solid line
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Figure 2.2: Initialization of p(x, τo) and c(τo)

to the right for initialization. Figure 2.2 exaggerates the initialization proce-

dure for illustrative purposes. In the numerical experiments we run in Section

2.2.5 we find that the slope of the European option at the initial approximate

boundary ranges between -0.999 and -0.975 when we initialize at half a trading

day before expiration, τ0 = 1
2

1
252

.

Step 2: Evolve p one step in time to expiry and approximate the

mixed derivative

The next step is to evolve p one step backwards in time, holding c(τ)

fixed. This, however, presents a problem because the values of p are not exactly

uniform and we want to use a finite difference method. The grid points where

we know p are uniformly spaced, but we also know the value of p at the
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boundary, which does not fit on this uniform spacing. In order to use a finite

difference method we need to approximate all derivatives using the value of

the price function at discrete grid points. For most of the grid points we can

use standard central difference methods however at the first grid point to the

right of the boundary, call this point x0, we cannot use these standard central

difference formulae. To find the derivatives of p at x0 we use Taylor series

expansion to derive non-central finite difference approximations involving x0,

x0 + h and x0 − h2.

Here h2 is the distance between x0 and c(τ), and p(x0− h2) = q− c(τ)

because x0 − h2 = c(τ). One advantage of using this method to compute

the derivatives of p at x0 is that we can insert these equations directly into

any discrete time stepping finite difference algorithm, like the Crank-Nicolson

algorithm(Crank and Nicolson (1947)), which we use.

In the evolution of p we do not need to calculate any derivatives at

c(τ) or x̂ because we can use Equations (2.2) and (2.5) as boundary condi-

tions. Equation (2.2) means that in one time step the value of the put at

c(τ) does not change. Equation (2.5) means that the value of the put at x̂ is

equal to the value of the put at the grid point just before x̂. Both of these

boundary conditions can easily be satisfied implicitly using the Crank-Nicolson

algorithm.

After we evolve p we need to approximate the x derivative of the price

function at the early exercise boundary so that we can use it to calculate

∂2p(c(τ),τ)
∂x∂τ

. In order to calculate this derivative we need to use the location of
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the boundary, c(τ), the value of the put at the boundary, q − c(τ), and a few

grid points to the right of the boundary. In this calculation we cannot simply

use standard one sided finite difference formulae because the boundary is not

located at a grid point. This means that the places where we know the value

of the put to the right of the boundary are not equally spaced; if the distance

between grid points is h then the space between the boundary and the first

grid point to the right of the boundary must be less than h. To overcome this

problem we fit a spline through the boundary and a few grid points to the

right of the boundary. Using the coefficients of this spline we can analytically

approximate the derivative of the price function at the boundary.

With this value for the x derivative we can approximate ∂2p(c(τ),τ)
∂x∂τ

using

a first order finite difference method in time. If we say the value of the x

derivative at the boundary before we evolved p is pold
x = −1 and the value

after we evolved p is pnew
x then ∂2p(c(τ),τ)

∂x∂τ
≈ pnewx +1

∆τ
, where ∆τ is the step size in

time to expiry.

Step 3: Evolve c one step in time to expiry

Now that we have evolved p and calculated the mixed derivative at the

boundary we need to evolve c(τ) one step in time to expiry to catch up with p.

For this we hold ∂2p(c(τ),τ)
∂x∂τ

fixed and use Equation (2.6) and an explicit Runge-

Kutta method to evolve c, we use the second order Runge-Kutta method in

numerical experiments; see Iserles (2008) for details on Runge-Kutta methods.

There is one last problem we face: what happens when the boundary
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crosses from one side of a grid point to the other? For example, if at time τ ,

c(τ) is located between the 99th and 100th grid points and at time τ +∆τ , c(τ)

is located between the 98th and 99th grid points, what do we do? Here there

are a few options as well. In Chen et al. (1997) the authors suggest using a

spline to interpolate the value of p, however we find that simply leaving p at

this point as its intrinsic value, q−x, does not lead to any significant reduction

in accuracy, and thus using a spline is not worth the added complexity. We

then repeat steps 2 and 3 until we reach the desired time before expiration.

2.2.3 Numerical Method on a Dynamic Grid

In the previous section we allowed the optimal early exercise boundary

to move between fixed grid points in the computational domain, however this

can lead to some error when the boundary is very close to the next grid point

and h2 is very small when compared to h. In order to overcome this error we use

numerical grid generation to force the grid points to conform to the boundary

at every time step by using a change of variables. This forces the grid points we

use, to approximate p, to move over time, and the space between the boundary

and the closest grid point remains a constant. This has the advantage of

allowing us to use standard high-order finite difference approximations when

calculating the mixed derivative at the boundary and the standard difference

methods at the first grid point greater than the boundary.

Numerical grid generation is used to transform complicated computa-

tional domains, through a change of variables, to much simpler domains that
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allow the use of standard finite difference methods. In our case we wish to

transform the domain {(x, τ) : ∀τ ≥ 0, x ≥ c(τ)} to R2
+. For details of numer-

ical grid generation see Thompson et al. (1985). The front fixing methods in

Nielsen et al. (2002) and Wu and Kwok (1997) also use a change of variables to

eliminate the moving boundary, however this does not translate to a compu-

tational advantage because they do not use the boundary evolution equation

considered here. The change of variable we use to transform our domain is

ω = x− c(τ), (2.7)

g(ω, τ) = p(x, τ).

Time to expiry, τ
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Exercise Boundary, c(τ)

Grid Points

Figure 2.3: Computational grid in x at different times τ

Here ω can be interpreted as distance to the boundary. Given this

change in variable we discretize ω uniformly from zero to some ω̂, which is

20



equivalent to re-discretizing x at every time step uniformly from c(τ) to some

x̂, where x̂ changes at each step to c(τ) + ω̂. Figure 2.3 shows the compu-

tational grid in the (x, p) space for different values of τ . As τ increases c(τ)

decreases and the grid points align with the boundary for every value of τ .

After transformation to the (ω, g) space the computational grid is a standard

rectangular region.

Using the chain rule we find the PDE that governs the evolution of g

and c to be

∂g

∂τ
= 1

2
σ2(ω + c(τ))2 ∂

2g

∂ω2
+ b(ω + c(τ))

∂g

∂ω
− rg +

∂g

∂ω

∂c

∂τ
, (2.8)

∂c(τ)

∂τ
= −∂

2g(0, τ)

∂ω∂τ

σ2c2(τ)

2qr − 2(r − b)c(τ)
. (2.9)

The main difference between Equations (2.8) and (2.1) is the addition of the

final non-linear term which comes from using the chain rule to differentiate g

with respect to time. Known as the grid speed, this term allows us to find

the value of p at the new grid points without the need for any sort of inter-

polation. Here, however, it is not as easy to estimate the mixed derivative at

the boundary and we must come up with a new method of approximation. As

the grid speed term in Equation (2.8) also depends on the boundary evolution

equation we cannot simply evolve g one step and use that to calculate the

boundary evolution. The numerical method presented here can be described

by a three step iterative procedure as well.

Step 1: Initialization
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We initialize p for a small time before expiry, τ0, the same way we did

in Section 2.2.2. However in this case we first find c(τ0) and then initialize

p uniformly between c(τ0) and x̂. Then we assign these values to ω and g

according to the change of variables (2.7).

Step 2: Calculate ∂2g(0,τ)
∂ω∂τ

Here, again, the calculation of the mixed derivative at the boundary

can be difficult. In order to approximate this we simply evolve a few grid

points greater than the boundary using Equation (2.8) with out the last term,

the grid speed, and calculate the ω derivative after this evolution to use in a

time finite difference method. Omitting the grid speed term has the effect of

freezing the grid points for one small step in time and telling us how much the

price of the put would change on those fixed grid points. For example if we

use a 4 point finite difference approximation for the ω derivative and a second

order Runge-Kutta method for the time derivative, we only need to evolve six

grid points larger than the boundary, so that we do not need to worry about

right boundary conditions, which is not computationally expensive so we use

this in numerical experiments.

Figure 2.4 shows how we calculate ∂2g(0,τ)
∂ω∂τ

in the (ω, g) space. We see

that all grid points are equally spaced and the grid points on the solid and

dashed lines correspond the the same horizontal values because we dropped

the grid speed term to get the dashed line. We also see that we only have

the value of the put on the dashed line for a few grid points. Using the grid

points on the dashed line and a standard one sided finite difference equation

22



Slope = −1

Slope =
∂g

∂ω

∣∣∣∣∣
τ +∆ τ

Distance to Boundary, ω

V
a

lu
e

 o
f 

P
u

t,
 g

 

 

τ

τ + ∆τ

Grid Points

Figure 2.4: Difference in slopes, to calculate ∂2g
∂ω∂τ

we calculate the ω derivative. Using these two values with Equation (2.3) we

can approximate ∂2g(0,τ)
∂ω∂τ

.

Step 3: Evolve g and c simultaneously one step

Once we have calculated the mixed derivative we hold it constant while

we evolve Equations (2.8) and (2.9). Since we hold this constant we can use

a coupled Runge-Kutta method to evolve g and c; in numerical experiments

we use the second order coupled Runge-Kutta method. Also for this method

we use the same boundary condition for large ω as we did in Section 2.2.2.

However to increase accuracy we add an extra grid point to the end of the

computational domain every time c(τ) + ω̂ < x̂. When this extra grid point is

brought into the computational domain it is introduced according to Equation
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(2.5). We repeat steps 2 and 3 until we reach the desired time and then change

the variables back to x and p.

We could potentially evolve the system implicitly but Equations (2.8)

and (2.9) are both non-linear. This means we either need to linearize the

equations or use a non-linear solver to evolve the system, however we do not

want to rely on the speed of any specific non-linear solver to determine the

computational time of the algorithm. When we consider stochastic volatility

we will have non-linear PDEs similar to these and we apply a linearization to

the system. However in constant volatility the linearization is not beneficial

on a fine mesh so we only use an explicit method.

In this method we cannot evolve g one step, calculate the mixed deriva-

tive and then evolve c one step as we did in the previous section because the

grid is moving. Considering the (x, p) space in the evolution of the price with

the grid speed term, the grid points used to calculate the space derivative

before the price evolution and the grid points used after the evolution are not

the same. Therefore we cannot combine these values to calculate the mixed

derivative. Also, the value of the grid speed term is partially determined by

the mixed derivative. If we do not know the value of the mixed derivative,

then we do not know the value of the grid speed term and we cannot evolve g

through time.

Figure 2.5 shows the evolution of the value of the put and the grid

points used to calculate its value over a step in time to expiry. The solid line

represents the value of the put in the (x, p) space and the corresponding grid
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Figure 2.5: Illustrating different grid points used at two different times

points in x before the price and boundary are evolved one step. The dashed

line shows the value of the put and the corresponding grid points after the

price and boundary are evolved in step 3. We can see that the grid points on

the solid and dashed curves do not coincide because they have moved over the

course of a step in time to expiry. The first grid point on each line corresponds

to the early exercise boundary at that time.

There are a couple minor drawbacks to this algorithm. The first prob-

lem is that we will almost always have to use a spline to compute the price

of the put at some x value after the algorithm is finished because we cannot

pick the grid to include that value like we could in the method presented in

Section 2.2.2. For example, if we wish to know the price of the option when

25



the underlying stock costs $100 the method in Section 2.2.2 lets us pick 100 to

be a grid point since the grid is static. However if we choose the grid spacing

so that 100 is a grid point when we initialize we will almost certainly find that

100 is not a grid point when the algorithm is finished because the grid has

moved. Therefore we must interpolate to find the value of the option when

the underlying costs $100. The next problem is that since we include the

non-linear term to the end of Equation (2.8) the CFL condition forces us to

use a smaller time step size than that required in Section 2.2.2. We will see

however that despite these problems this method compares favorably in speed

and accuracy to the static grid method.

2.2.4 Modified Integral Method

In the previous sections we needed to evolve the boundary and the value

function simultaneously because the boundary evolution equation requires a

mixed derivative of the value function evaluated at the boundary. In this sec-

tion we present a numerical method that does not require the value function to

be explicitly evolved with the boundary. This is achieved by using the integral

representation of the American put option, as in Kim (1990). Although we

do not directly extend this to American options with stochastic volatility, this

method gives a good example of how to use boundary evolution equations to

improve other numerical methods besides PDE methods.

The integral representation of the American put option states that the

value of an American put is equal to the value of a European put, plus an early
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exercise premium. The early exercise premium is an integral of a function of

the boundary. The value of an American put is

p(x, τ) = f(x, τ) +

∫ τ

0

[
rqe−r(τ−u)N(−d∗2)− (r − b)xe−(r−b)(τ−u)N(−d∗1)

]
du,

(2.10)

where

d∗1 =
log(x/c(u)) + (b+ 1

2
σ2)(τ − u)

σ
√
τ − u and d∗2 = d∗1 − σ

√
τ − u.

Here f(x, τ) is the value of a European put, N is the standard normal cu-

mulative distribution function, and we see that d∗1 and d∗2 are functions of the

boundary.

Using this representation, if we know the value of the boundary between

τ = 0 and some time to expiry, τ1, then we would like to express the value of

the mixed derivative at τ1 as some integral of the known boundary, which we

can approximate using numerical integration. If this is possible we can then

calculate the value of the boundary at τ1 + ∆τ using Equation (2.6), and an

ODE solver. This is exactly what we will do, however there are a few subtleties

that arise that make this process complicated so we describe the process in

four steps below.

Step 1: Initialization

In order to start this algorithm we must know the value of the boundary

at a small time to expiry, as we did in the previous sections, because in order

to calculate the mixed derivative using Equation (2.10) we need something to
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integrate. To initialize this method we tried two different approaches. First we

tried the asymptotic expansions for small τ , found in several papers mentioned

in Section 2.1.1. We also tried the method we have used in previous sections:

find the intersection of the European option with the intrinsic value of the

put. It is somewhat surprising, but in numerical experiments we find that the

method of finding the intersection is about five times more accurate than the

asymptotic expansions that we tried, so we initialize with the binary search

method. Once we know the boundary, we do not need to calculate the price

function as we did in the previous sections because we will evaluate the mixed

derivative as an integral of the boundary.

Step 2: Calculate ∂2p
∂x∂τ

In order to calculate the mixed derivative we differentiate Equation

(2.10) first with respect to x and then τ . The derivative with respect to x is

∂p

∂x
=
∂f

∂x
−

∫ τ

0

[
rq

xσ
√
τ − ue

−r(τ−u)N ′(d∗2)− r − b
σ
√
τ − ue

−(r−b)(τ−u)N ′(d∗1) +

(r − b)e−(r−b)(τ−u)N(−d∗1)

]
du. (2.11)

When we differentiate Equation (2.11) with respect to τ , using the

Liebniz rule, and evaluate at x = c(τ) we find that ∂2p
∂x∂τ

= ∂2f
∂x∂τ

+∞−∞.

This does not mean that the derivative does not exist, rather it means

that there is no analytical expression for the derivative, because there is no

analytical expression for the integral in Equation (2.11). This happens because

the integrand in Equation (2.11) blows up when u = τ , even though it is still

integrable.
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In order to overcome this problem we employ numerical integration to

calculate ∂p
∂x

, using Equation (2.11), evaluated at (c(τ − ∆τ), τ) and assume

that limu→τ d
∗
1,2 = 0. Then we can approximate the mixed derivative as

∂2p

∂x∂τ

∣∣∣∣
(c(τ),τ)

≈
(
∂p

∂x

∣∣∣∣
(c(τ−∆τ),τ)

+ 1

)
/∆τ.

Here the “plus one” comes from the assumption that ∂p
∂x

∣∣
(c(τ−∆τ),τ−∆τ)

= −1.

The approximation of the integral in Equation (2.11) is also not en-

tirely straightforward because the integrand blows up when u = τ , so any

standard numerical approximation will undervalue the integral. To fix this

we split the integral into two parts, first the integral from 0 to τ − ∆τ and

then the integral from τ − ∆τ to τ . The first part of the integral can easily

be approximated using any numerical integration technique and the second

part of the integral can be approximated in closed form if we assume that

d∗1,2 = 0 on the interval [τ − ∆τ, τ ]. In fact, d∗1,2 = 0 when u = τ only if we

evaluate at x = c(τ). Since we are trying to approximate the derivative at a

value close to c(τ) we use d∗1,2 = 0 as an approximation. If d∗1,2 = 0 on the

interval then N ′(d∗1,2) = 1√
2π

and N(d∗1,2) = 1
2
. This together with the fact that

∫
e−β(τ−u)√

τ−u du = −
√

π
β
erf
(√

β(τ − u)
)
, where erf is the error function, we can

approximate the second part of the integral, and the mixed derivative quite

accurately.

Step 3: Evolve c(τ)

After the mixed derivative is calculated we hold it constant for one

step and evolve the boundary one step using Equation (2.6). Since we hold
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the mixed derivative constant for one step we see that Equation (2.6) becomes

an ODE and we can evolve it using any ODE solver. Once we evolve the

boundary one step we repeat steps 2 and 3 until we know the boundary at the

desired time to expiration.

Step 4: Calculate the price of the put

Once we know the boundary for all values between 0 and τ we can use

Equation (2.10) to find the value of an American put at any value of x. Again

we need to use numerical integration but this time the integral is very simple

because the integrand does not blow up, so we can use any standard numerical

integration technique. Numerical results are presented in the next section.

2.2.5 Numerical Results

In order to compare the speed and accuracy we compute the (long-

dated) option values over the set of parameters presented on Table 3a in

AitSahlia and Carr (1997). Here we assume that the underlying asset is a

constant dividend paying stock and thus b = r − δ, where δ is the divi-

dend yield and we use x̂ = 6.5q. The value of the put is calculated when

x = 80, 85, 90, 95, 100, 105, 110, 115, 120 for the parameter values q = 100,

τ = 3, σ = 0.4, r = 0.06 and δ = 0.02. Then holding all other pa-

rameters fixed at this level we evaluate the at-the-money put with the pa-

rameters r = 0.02, 0.04, 0.08, 0.1, δ = 0, 0.04, σ = 0.3, 0.35, 0.45, 0.5 and

τ = 0.5, 1, 1.5, 2, 2.5, 3.5, 4, 4.5, 5, 5.5. This leads to 21 sets of parameters where

we evaluate the American put.
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We compare these values to the values calculated using the very ac-

curate, yet very slow, binomial tree method. We then compare this accuracy

measure to the accuracy of four other computational methods: the finite differ-

ence moving boundary method in Muthuraman (2008), the Brennan-Schwartz

method, the front fixing method in Nielsen et al. (2002) and the standard

integral method in Carr et al. (1992). A more comprehensive comparison of

other numerical methods can be found in Muthuraman (2008). The Brennan-

Schwartz and the moving boundary method have some similarity to the static

grid and dynamic grid methods since they find the boundary and evolve the

price by time stepping. However in these methods the boundary is always

considered to be at a grid point and the way it is found, by evolving Equation

(2.1) over a large domain several times, is much slower than our method, evolv-

ing an ODE. We compare to the standard integral method because we have

created a modified integral method that uses the boundary evolution equation

and we would like to see if this is advantageous. The front fixing method is

considered too, because it also removes the moving boundary by a change of

variables similar to the one considered here, however this method is very slow

and inaccurate because it must solve a large system of nonlinear equations at

each time step.

The measure of accuracy here is the same as the one used in Broadie and

Detemple (1997), root mean squared relative error, RMSE, and we consider

the “exact” price to be the average of a 10,000 and a 10,001 step binomial

tree approximation, as in AitSahlia and Carr (1997). RMSE is defined as
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Figure 2.6: RMSE vs Runtime for Constant Volatility

RMSE =

√
1
n

∑n
i=1

(
approxi−exacti

exacti

)2

where the sum is taken over all numerical

experiments, approxi is the value of the ith put found by the approximate

numerical method, and exacti is the “exact” value of the put.

The measure of speed is simply average total computational time. We

calculate the speed and error of these methods over several grid sizes and show

the results in Figure 2.6. For the dynamic and static grid methods the labels

refer to the number of spacial grid points; the number of grid points in time to

expiry is determined by the CFL condition: the step size in τ is proportional

to the square of the step size in x, which guarantees that the matrices used

for evolution are positive definite. It is important that the evolution matrices
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be positive definite because if values on the main diagonal are negative then

roundoff error can accumulate quickly, see Courant et al. (1967). For the

modified and standard integral methods the labels refer to the number of time

grid points, and for the Brennan-Schwartz, moving boundary and front fixing

methods the labels refer to the number of space and time grid points. All

computations were performed in Matlab on a PC with a 3.06 GHz processor

and 4GB of RAM running Ubuntu Linux 10.10.

All analysis here was performed with 0 ≤ δ ≤ r. Unfortunately, when

r < δ it can happen that our initial approximation of c(τo) is greater than r
δ
q.

This means that the denominator of Equation (2.6) is negative and the whole

equation is positive, indicating that the boundary is increasing in time-to-

expiry, which is clearly incorrect. To overcome this problem we can use other

methods to initialize the American put, such as a few steps in the integral

method or any variety of short time asymptotic approximations. It seems that

using a few steps in the integral method is favorable to short time asymptotic

approximations because the time required to initialize with the integral method

does not increase total computational time by much and it typically results in

less error than short time asymptotic approximations. Alternatively if δ < 0,

(i.e. b > r), there is no change to the method and speed and accuracy are

comparable to the existing results.

We can see that the static and dynamic grid methods perform better

than the standard integral method in both computational time and accuracy.

They also provide better accuracy than the Brennan and Schwartz method

33



and the moving boundary method. We also see that the front fixing method

is the worst method considered, as is also seen in Muthuraman (2008).

The dynamic grid method is faster than the static grid method despite

requiring more time steps because one time step of an explicit method, used

in the dynamic grid method, can be faster than one time step of an implicit

method, used in a static grid method. The dynamic grid method forces us to

use an explicit method because of the non-linearities. Each step in this explicit

method results in a few matrix multiplications (depending on the order of the

Runge-Kutta method) whereas the Crank-Nicolson method requires matrix

multiplication and factorization, to solve a system of equations, at each time

step. It is not possible to pre-store the matrix factorization before evolving

the system because at each step the matrix changes and thus the factorization

changes as well. Even though the dynamic grid method takes more time steps

than the static grid method, each step in the dynamic grid method is faster

than a step in the static grid method and this trade off comes out in favor of

the dynamic grid method for most mesh sizes.

Even more impressive than the static and dynamic grid methods is

the modified integral method. The modified integral method offers a huge

improvement over the standard integral method in both computational time

and accuracy. It also out performs the static and dynamic grid methods,

especially on a coarse grid. We do not directly extend the modified integral

method to stochastic volatility but this would be an interesting direction for

future research following Detemple and Tian (2002).
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We would also like to know how error in these methods depend on grid

size. In order to do this we will perform two convergence studies where we

systematically decrease the step size in the x and τ variables. The first study

will be performed on the Fixed Grid and Dynamic Grid methods. In this study

when we reduce the step size in x (or ω) linearly, we reduce the step size in τ

quadratically, to maintain the CFL condition. We then calculate the L2 error

and find the slope of the log step size versus the log error, this gives us the

order of accuracy of the method.

In order to approximate the L2 error we compute the price of the put

for x ∈ [80, 120] at τ = 3 for the first parameter set described above. When

we perform this regression we find the slope is 1.985 for the dynamic grid

method and 1.419 for the fixed grid method, suggesting that the dynamic grid

method is second order accurate. The most likely reason that the fixed grid

method loses some accuracy is the non-uniform grid spacing at the boundary;

the small distance between the boundary and the first grid point can dominate

finite difference calculations.

In the second study we examine the effect of ∆τ on error. We perform

this test only on the modified integral method. Here we systematically decrease

the step size in τ , there is no step size in x, and again approximate the L2

error over the same domain as in the previous example. When we perform this

regression we find the slope is 0.949. This method is only first order accurate,

despite using what seemed to be a second order finite difference method for

c(τ), because the calculation of the mixed derivative at the boundary, which
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is only first order accurate in time, dominates the error.

2.3 Stochastic Volatility

In this section we seek the boundary evolution equation that charac-

terizes the early exercise boundary when the dynamics of the underlying asset

are modeled by a stochastic volatility process. We will also leverage on the

derived equation to create a fast and accurate numerical method to approxi-

mate the price of an American option. This time however we will only be able

to implement the numerical method on a dynamic grid due to grid effects that

will be explained later.

Working with stochastic volatility makes pricing options challenging

since there are two space dimensions and one time dimension. The space di-

mensions are x, which represents the price of the underlying asset, and y, which

represents the volatility, or some function of the volatility, of the underlying

asset.

Unlike the constant volatility case, when we consider stochastic volatil-

ity there are several models in literature for the underlying dynamics of the

asset’s volatility. The popular models are the Heston model (Heston (1993)),

the Hull and White model (Hull and White (1987)), the Scott model (Scott

(1987)) and the Stein and Stein model (Stein and Stein (1991)). As each model

uses a different stochastic process for volatility the PDE describing the risk

neutral expectation is different for each model. In each of these the authors

have worked on pricing European style derivatives. Of the above models, the
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Heston model is the most popular and in the next sections we focus mostly on

this model but also present some results for the other models above.

2.3.1 The Boundary Equation

As in the constant volatility case we must partition the computational

domain into two distinct regions separated by the early exercise boundary.

Now, however, the early exercise boundary is not just a function of time, but

also the volatility level because different levels of volatility will lead to different

optimal exercise policies. Before we can derive a PDE for the early exercise

boundary we must first understand stochastic volatility models. We will begin

working with a set of stochastic differential equations that are sufficiently

general to accommodate the popular stochastic volatility models. The SDEs

are

dXt = µXtdt+ f(Yt)XtdW1,

dYt = η(Yt)dt+ λ(Yt)dW2,

〈dW1, dW2〉 = ρdt.

Here Xt is the stochastic process representing the price of the under-

lying asset, Yt represents the volatility of the underlying asset, f, η, and λ are

model specific functions and ρ is the correlation between the two Brownian

motions, W1 and W2. With these SDE’s we can use a dynamic programming

argument with Itô calculus and the no-arbitrage argument to write a PDE and

boundary conditions that the value of the American put must satisfy in the
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non-exercise region of the domain, {(x, y, τ) : ∀y, τ ≥ 0, x > c(y, τ)}. Here we

do not consider dividends for simplicity. The differential equation is

∂p

∂τ
= 1

2
x2f(y)2 ∂

2p

∂x2
+ 1

2
λ(y)2∂

2p

∂y2
+ ρλ(y)f(y)x

∂2p

∂x∂y
+ rx

∂p

∂x
+ η(y)

∂p

∂y
− rp,

(2.12)

with boundary conditions

p(c(y, τ), y, τ) = q − c(y, τ), (2.13)

∂

∂x
p(c(y, τ), y, τ) = −1, (2.14)

∂

∂y
p(c(y, τ), y, τ) = 0, and (2.15)

p(x, y, 0) = max(q − x, 0).

We also assume

lim
y→∞

∂p

∂y
= 0, (2.16)

which implies that limy→∞
∂c
∂y

= 0. And for large x we use the same bound-

ary condition as Equation (2.5). Equations (2.14) and (2.15) are the smooth

pasting conditions for stochastic volatility, as found in Fouque et al. (2000).

Now that we have the boundary conditions we next seek a differential equation

that governs c(y, τ). We give the proof for the general formulation and later

present the results for several specific models.

Theorem 2.2. If ∂c
∂τ
6= 0 and c(y, τ) is sufficiently smooth, the differential

equation that governs c(y, τ) is

∂c

∂τ
= −∂

2p(c, y, τ)

∂x∂τ

1

2rq

(
f(y)2c2 − 2ρλ(y)f(y)c

∂c

∂y
+ λ(y)2

(
∂c

∂y

)2
)
. (2.17)
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The proof can be found in the appendix.

Now that we have the formula for the general stochastic volatility for-

mulation we plug in the model specific functions, f , η and λ, and describe the

boundary equations for the four models above in Table 2.1. In all of these

models the market price of risk is assumed to be zero but it could be inserted

into the differential equations without much effort because the coefficient of

the first derivative in y, which is where the market price of risk enters the

system, is not present in the boundary evolution equation.

In the statement of Theorem 2.2 we only derive the boundary evolution

equation when ∂c
∂τ
6= 0 for all values of y. This guarantees that we do not divide

by zero when plugging Equation (A.7) into (A.10). If this is not true, then the

boundary just does not move at that point. It seems however for the Heston

model and the Hull and White model that as y → 0 we also have ∂c
∂τ
→ 0 for

all values of τ . This would mean that c(0, τ) = q and p(x, 0, τ) = 0 for all

τ and x ≥ q. For the Hull and White model this is not surprising because

the variance in this model follows a Geometric Brownian Motion, which stays

at zero forever if the process is ever zero, almost surely. This means that the

value of the underlying becomes deterministic and thus an out-of-the-money

put can have no value when y = 0, which can be used as a boundary condition

for the Hull and White model.

This point is subtle because even though a Geometric Brownian Mo-

tion can never reach zero, if it starts at a positive value, the PDE for the

value function needs a boundary condition. The boundary condition chosen
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here needs to agree with the dynamics of the stochastic process, and since a

Geometric Brownian Motion that starts at zero must stay at zero, this is the

boundary condition that we must use.

The above economic reasoning, however, does not make sense for the

Heston model because the variance follows a square root process which be-

comes positive immediately after hitting zero, almost surely (for certain pa-

rameter values satisfying the Feller Condition, zero is inaccessible to the vari-

ance process, like Geometric Brownian Motion, but we still need a boundary

condition.) This means that the value of the underlying cannot be determin-

istic and thus an out of the money put must have positive value when y = 0,

implying that limy→0+
∂c
∂y

= −∞.

In this case the rate that the derivative explodes must be very specific.

It must go to infinity like −1√
y
. If it goes to infinity any faster then the last

term in the Heston boundary equation will go to infinity and so will the whole

boundary equation. If it goes to infinity any slower then the last term will go

to zero and so will the whole boundary equation. If the derivative does go to

infinity at the right speed then the last term becomes indeterminate, which

makes

∂c(0, τ)

∂τ
= −∂

2p(c, y, τ)

∂x∂τ

v2

2rq
γ. (2.18)

Although the above constant, γ, is unknown we can interpret this as a

boundary condition for the Heston model, which will be explained in further

detail in the next section.
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Figure 2.7: Partitioned State Space for Heston Model

Figure 2.7 shows the state space partitioned to the exercise region and

the continuation region for the Heston model. The two regions are separated

by the early exercise surface. The exercise region is below the surface and the

price of the put is equal to its intrinsic value there. The continuation region

is above the surface and there the price of the put is is governed by Equation

(2.12).

2.3.2 Numerical Method on a Dynamic Grid

In this section we will focus only on the Heston model of stochastic

volatility. We want to transform the no exercise region to a simpler domain

that allows for standard finite difference methods. We transform the domain

{(x, y, τ) : ∀y, τ ≥ 0, x > c(y, τ)} to R3
+. The change of variable we use to
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transform our domain is

ω = x− c(y, τ) (2.19)

g(ω, y, τ) = p(x, y, τ).

This change of variable involves derivatives in the y variable. The

second derivative and the mixed derivative lead to several nonlinear terms in

the resulting PDE. Equation (2.12) for the Heston model is

∂p

∂τ
= 1

2
yx2 ∂

2p

∂x2
+ 1

2
v2y

∂2p

∂y2
+ ρvyx

∂2p

∂x∂y
+ rx

∂p

∂x
+ κ(m′ − y)

∂p

∂y
− rp. (2.20)

We use the chain rule to find the pricing equation for the g function and the

corresponding boundary equation, which are

∂g

∂τ
= 1

2
y(ω + c(y, τ))2 ∂

2g

∂ω2
+ 1

2
v2y

(
∂2g

∂ω2

(
∂c

∂y

)2

− ∂g

∂ω

∂2c

∂y2

− 2
∂c

∂y

∂2g

∂ω∂y
+
∂2g

∂y2

)
+ ρvy(ω + c(y, τ))

(
∂2g

∂ω∂y
− ∂c

∂y

∂2g

∂ω2

)
(2.21)

+ r(ω + c(y, τ))
∂g

∂ω
+ κ(m′ − y)

(
∂g

∂y
− ∂g

∂ω

∂c

∂y

)
− rg +

∂g

∂ω

∂c

∂τ
,

∂c

∂τ
= −∂

2g(0, y, τ)

∂ω∂τ

1

2rq

(
yc2 − 2ρvyc

∂c

∂y
+ v2y

(
∂c

∂y

)2
)
. (2.22)

Given this change of variables we seek a numerical method that exploits

the equations for boundary and price evolution. The method presented here

can be summarized in a three step process.

Step 1: Initialization
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Similar to the constant volatility case, we cannot start the numerical

method with the initial conditions when τ = 0, and as such we need to ap-

proximate the value of the American option a short time before expiry as a

European option. There are two ways to approximate the value of the Euro-

pean option. First we could use the semi closed form solution to European

options under the Heston model to find the price of the European a short time

before expiry, the details of which can be found in Heston (1993) or Gatheral

(2006). Alternatively we could use the constant volatility Black-Scholes equa-

tion to find the value of the put a short time before expiration. It might seem

that this simplistic method would lead to large error, but it turns out that the

two methods have comparable accuracy and the second is significantly faster

than the first. The reason is that the functions being integrated in the solution

to the European put under the Heston model are highly oscillatory and are

dampened very slowly for small values of τ . This makes approximating this

integral a very slow process because a large integration domain is required

with a fine integration mesh, and so for numerical tests we simply use the

Black-Scholes equation to initialize p.

In order to initialize we need to divide the y domain uniformly between

0 and ŷ, where ŷ is the maximal value of the computational domain. Here

again the value of ŷ needs to be large enough so that the boundary condition

in Equation (2.16) is approximately true for all values of x. At each grid point

in y we perform a binary search to find the intersection of the value of the

European option and the intrinsic value of the option as in Figure 2.2. If we
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use the Black-Scholes formula to get the value of the European then we need to

set the variance equal to the y grid value. We initialize the boundary at each y

grid point as the location of the intersection. Then for each value of y we find

the value of the European at n equally spaced grid points, in x, larger than

the boundary, where n is chosen large enough so that the boundary condition

(2.5) is satisfied. We find that the initial boundary is deceasing in y and as

such the maximal value of x for each value of y is also decreasing. After we find

the price of the European at all of these grid points we transform the domain

using Equation (2.19). Figure 2.8 shows how the computational domain looks

before the transformation.
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Figure 2.8: Computational grid before transformation.

Step 2: Calculate ∂2g(0,y,τ)
∂ω∂τ
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As in the constant volatility case the hardest part of the algorithm

is finding the mixed derivative at the boundary. In the constant volatility

case we discussed two ways to calculate this derivative; one in the fixed grid

method and one in the dynamic grid method. Here since we only work on a

dynamic grid we simply evolve a few grid points greater than the boundary

for every value of y according to Equation (2.21) without the last term, the

grid speed term, using an explicit Runge-Kutta method. We use a standard

one sided finite difference method to calculate the value of the x derivative

at the boundary for every value of y after this partial evolution. Then using

this value with Equation (2.14) we can approximate the value of the mixed

derivative by using a first order finite difference method.

Step 3: Evolve c and g in time to expiry

As opposed to the method used for constant volatility, we linearize

Equation (2.21) so that we can use an implicit method to step backwards

in time, which dramatically reduces the number of steps required in time to

expiry when compared to an explicit method. In constant volatility we could

have also linearized the price evolution equation in the dynamic grid section

to use an implicit method. However on a fine grid linearization accounts for

a large portion of the numerical error and so we only use an explicit method.

In stochastic volatility it is not practical to use a fine grid because there are

two space dimensions which greatly increases the total number of grid points

and therefore we linearize Equation (2.21).

We see that in Equation (2.21) all the non-linearities come from mul-
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tiplying derivatives of g with derivatives of c. This means that if we can

approximate the derivatives of c then we can use them to linearize the evolu-

tion equation for g. In order to linearize this equation we must get the first

and second order derivatives of the boundary with respect to y. To do this

we simply evolve the boundary one step using a Runge-Kutta method and

compute the derivatives for the boundary at the τ and (τ + 1)st steps using

standard finite difference methods. Then using the values computed here we

plug them into Crank-Nicolson matrices A and B, where A and B are block

tridiagonal matrices satisfying the equation A ·gτ = B ·gτ+1. Here we plug the

values of the derivatives before the evolution into the A matrix and the values

of the derivatives after the evolution into the B matrix. One important fact

to remember is that at each step the matrices A and B must be recalculated

because the boundary and the derivatives of the boundary have changed. Af-

ter we evolve the price function we let the boundary be equal to the value at

the (τ + 1)st step.

There is still a boundary condition we need to address; the boundary

when y goes to 0. For this we simply assume that the constant in Equation

(2.18) is attained at the second y grid point and that the value of p evolves with

the standard PDE when 0 is inserted for y, which eliminates several terms.

After we evolve g one step we repeat steps 2 and 3 until we reach the desired

time to expiration and change the variables back to x and p.

We cannot adopt this method onto a fixed grid, as we did with constant

volatility, because the boundary is decreasing in y. Say for a specific y value
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the boundary is be between the 99th and 100th x grid values and for the next

y value the boundary is between the 98th and 99th x grid values. We will

then get a discontinuity in the calculation of the mixed derivative when this

happens. This discontinuity in the mixed derivative leads to a discontinuous

boundary which in turn leads to large error in the price of the put and as such

we need a dynamical grid method. The boundary is also decreasing in time

to expiry and so this phenomenon could also occur in the τ variable. The

effect, however, is less drastic in τ than in y because at each discrete step in τ

we numerically approximate derivatives in y, whereas we relate derivatives in

τ to derivatives in y using Equation (2.21) removing the need for continuous

derivatives in τ . This relationship is why we were able to use a static grid for

constant volatility.

Also, as in the constant volatility case we add extra grid points to each

value of y every time that the boundary decreases below a certain value. This

again has the benefit of maintaining accuracy for options that are out of the

money.

2.3.3 Numerical Results

Numerical comparison of speed and accuracy is more challenging for

stochastic volatility than for constant volatility because finding a “true” price

for the option is not clear. In this section we only compute the price of the put

for eight set of parameters, the “true” values were calculated by Jari Toivanen

using his component wise splitting method on a very fine mesh. The value of
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the put is calculated when x = 8, 9, 10, 11, 12, y = 0.0625, 0.25 and τ = 0.25

for the parameter values r = 0.1, v = 0.9, κ = 5, m′ = 0.16 and ρ = 0.1. Then

holding all other parameters fixed we evaluate the puts with the parameters

r = 0.08, 0.12, v = 0.7, 1.1, κ = 2.5 and ρ = 0.05, 0.15.
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Figure 2.9: RMSE vs Runtime for Stochastic Volatility

We compare our method to two existing methods, the PSOR and the

moving boundary method, MBM, presented in Choklingham and Muthuraman

(2011), in Figure 2.9. We only compare our method against these methods

because although the PSOR method is quite slow, Ikonen and Toivanen (2008)

finds that it is the simplest to implement, and in Chockalingam and Muthu-

raman (2011) the authors find that the moving boundary method was the

fastest method tested. As in the constant volatility case we plot the root
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mean squared error of the methods versus the total computational time. For

the moving boundary method and the PSOR the labels refer to the number

of x, y and τ grid points. For the dynamic grid method the labels refer to

the number of x and y grid points, and the number of time grid points is

determined by the CFL condition.

The non-linearities of the dynamic grid method unfortunately cause

the necessary number of steps in time to expiry to be quite large, despite

the linearization of Equation (2.21), this however is offset by the speed with

which each time step is executed versus the moving boundary method and the

PSOR. Both of these methods must search for the early exercise boundary

while our method knows exactly where it is. We see that for the coarsest grid

the moving boundary method is slightly better than our method, however on

finer grids our method performs significantly better. For the finest grid our

method is almost three times faster than the moving boundary method.

2.4 Concluding Remarks

Boundary evolution equations have significant computational benefit

when one relies on dynamic grids that are evolved with the boundary during

the solution process. The key insight into the construction of efficient numer-

ical methods is that we do not have to iteratively guess the location of the

boundary at each step, rather the boundary evolution equation tells us its

location. Moreover, by evolving the grid along with the boundary one gets the

added benefit of minimizing the error in approximating the boundaries with a
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predefined grid structure.

The American option pricing problems studied here belong to the much

larger class of optimal stopping problems in stochastic control. Most optimal

stopping problems do not have analytical solutions and are difficult to solve,

especially when the complexity of the state evolution equation increases. In

many cases the location of the boundary that separates the stopping and

continuation regions is of primary interest. As such boundary evolution equa-

tions can provide insight into the structure and nature of these boundaries.

The derivation of the boundary evolution equations rely on the smooth past-

ing condition at the interface between the stopping and continuation regions.

Similar smooth pasting conditions are also common in several derivative secu-

rities and other optimal stopping problems, such as simultaneous hypothesis

testing and earliest detection problems. See Peskir and Shiryaev (2006) for

examples of other optimal stopping problems.

In the Black-Scholes setting we presented a modified integral method

for pricing American options that relied on an integral representation of the

price of the American option. This method proved to be extremely fast and

accurate in the simple case of Black-Scholes. An extension to multi-factor

models of the integral representation has been presented in Detemple and

Tian (2002) and an interesting direction of future research would be to apply

the boundary evolution equations for stochastic volatility found in this paper

to a modified integral method for multi-factor models.

Two other classes of stochastic control problems whose solutions are
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characterized by free-boundary problems are singular and impulse control. In

these problems the state process is not terminated at the boundary, but a

control is applied to it. Both deriving boundary evolution equations and con-

structing computational methods for these would be interesting future work.

The ideas in this paper cannot be immediately extended to optimal stopping

problems with multiple boundaries and this would be interesting future work

as well.
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Chapter 3

Impulse Control of Interest Rates

3.1 Introduction

This chapter develops a numerical method to solve a general class of

Impulse control problems and uses the solution to study the yield curve of

interest rates when a nation’s central bank intervenes, via an Impulse control,

in the short-term interest rate market. Interest rate securities make up a

huge portion of the global financial markets. McKinsey and Company (2011)

estimates that the size of the global interest rate securities market in 2011

was $157 trillion, while the global equities market was only $54 trillion. The

dynamics of interest rates have been heavily studied in the financial literature.

Most of these studies have made the assumption that interest rates move freely

in an open market. Relatively, much less attention has been given to studies

that consider the optimal control of interest rates by a nation’s central bank

that has the power to intervene in the interest rate market. This ability to

intervene in the interest rate market is seen, for example, in the United States

through the Federal Reserve’s open market operations (Freund and Guttentag

(1969)). Here the Federal Reserve (Fed) periodically sets a target short term

interest rate (Fed funds target rate) and trades various securities in large

quantities to keep the short term rate close to this target. This is a common
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practice in many other countries as well. The Fed issued large interventions in

the short term interest rate market 41 times between 2000–20121 and in each

of these instances there were large jumps in the interest rate market indicating

that it is important to investigate the Fed’s intervention policy and the way

this policy affects longer term interest rates.

A central bank may want to intervene in the interest rate market for

several reasons; it may wish to limit inflation to a certain level or it may want

to maintain a certain exchange rate with another country. Rather than investi-

gating the motivations for the bank’s interventions, we assume that the bank

is able to precisely quantify its preferences and tolerances. Specifically this

means that the bank is able to quantify its relative tolerances for various rates

above and below its preferred rate level. Also motivated by the frequency and

size of observed interest rate interventions, we assume that the central bank’s

aversion to intervening too often can be captured by a ‘cost’ of intervention

that the bank can quantify as fixed cost with an optional proportional compo-

nent. The Fed’s objective is then to find the best intervention strategy. Our

goal is to compute and examine the implications that these interventions have

on the term structure of interest rates. In doing this we find that the model is

able to replicate the market’s current yield curve. We can therefore replicate

the current state of the interest rate market while assuming that in the future

the central bank may intervene. This possibility has not yet been seen in the

1Data from the Federal Reserve Bank of New York.
www.newyorkfed.org/markets/omo/dmm/historical/fedfunds/index.cfm
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interest rate literature.

This paper considers a model in which a country’s central bank can

intervene in the domestic short term interest rate market. The model allows

for many popular stochastic short rate models in literature. Given the costs

of deviating from the target rate and the costs of control, the objective of the

central bank is to find the optimal policy that strikes the best balance between

frequent intervention and large deviations from the target rate. This yields a

stochastic control problem and more specifically a stochastic ‘impulse’ control

problem due to the generality of the cost structure. We model the central

banks intervention policy as an impulse control because of the frequency and

size of the Fed’s interventions. A classical control model is only appropriate

when the Fed can make changes to the rate-of-change of short rate rather than

bring about an instantaneous change to the short rate directly. Moreover the

size of short rate jumps are rather significant and hence a singular control

model would be inappropriate as well. Of the 41 times the Fed intervened

between 2000 – 2012 the average magnitude of intervention was about 14% of

the Fed funds rate.

Such impulse control problems, where the controller has the ability

to bring about a discontinuity in the state (the short rate) dynamics, are

notoriously hard to solve. Impulse controls are natural ways to model the large

economic decisions that are made infrequently but are often approximated

with controls that do not bring about such discontinuity (for example by only

allowing proportional costs of control), to foster solvability. There is absolutely

55



no hope of finding closed form solutions of impulse control problems and all

solution methods that are available are numerical. While one can discretize the

problem and then brute force the solution using value or policy iteration, these

methods are very inefficient even for singular control problems. For impulse

control problems, these inefficiencies are even worse. Moreover since there are

several short rate models, this paper also develops an iterative method that

can solve a very general class of impulse control problems and can hence easily

be applied to a very wide range of impulse control problems beyond the realm

of interest rate models. We provide relevant convergence results and derive

error bounds for intermediate iterations. A version of this work is forthcoming

in Mitchell et al. (2014a).

3.1.1 Related literature and outline

Two main streams of literature are relevant; interest rate models and

impulse control. In following the overview of the interest rate literature we

focus mostly on short rate models. We concentrate on short rate models

because the Fed’s main avenue for intervention is in the Fed Funds market,

which is an extremely short term, overnight, interest rate market. Additionally

short rate models are mathematically tractable and guarantee the absence of

arbitrage, see for example Chapter 6.5 in Shreve (2004).

In a popular paper, Vasicek (1977) finds a closed form expression for

bond prices when the short rate follows a simple mean reverting Ornstein-

Uhlenbeck process. Cox et al. (1996) presents a more robust model for the
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short rate that includes state dependent volatility and again finds a closed

form solution for bond prices. Hull and White (1987) generalizes these models

and also finds closed form solutions to bond prices that are able to match any

existing yield curve and Black and Karasinski (1991) considers a model for

the log of the short rate. Chan et al. (1992) makes an empirical comparison

of several short rate models and Chapman and Pearson (2000) investigates

nonlinearities in short rate models. Piazzesi (2005) examines the yield curve

when the Fed funds target rate follows a compound Poisson process, Balduzzi

et al. (1997) looks at the effect of policy changes by the Fed on the yield

curve, and Rudebusch (1995) models the behavior of the Federal Reserve’s

intervention behavior and examines the effect of this on the yield curve.

We model the central bank’s ability to intervene in the interest rate

market as an impulse control problem. Impulse control problems are seen, for

example, in Constantinides and Richard (1978) to model a cash management

problem and in Sulem (1986) to model an inventory management problem.

Harrison et al. (1983) study impulse control in a canonical setting and Feng and

Muthuraman (2010) present a computational method for solving an impulse

control problem in the case of a Brownian motion. Dai and Yao (2012a)

proves a general property of impulse control strategies under Brownian motion.

Additionally, there has been some work at the interface of these two areas.

In particular Cadenillas and Zapatero (1999) presents a model in which the

central bank wishes to keep exchange rates at a certain level. To achieve this

goal the bank issues an impulse control on the exchange rate and in Cadenillas
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and Zapatero (2000) the bank also has the ability to exactly set the interest

rate. The stochastic dynamics in Constantinides and Richard (1978), Sulem

(1986), Feng and Muthuraman (2010) and Dai and Yao (2012a) are restricted

to a Brownian motion. The dynamics in Cadenillas and Zapatero (2000) and

Cadenillas et al. (2010) are restricted to geometric Brownian motion and an

Ornstein-Uhlenbeck process, respectively.

The computational method developed in this paper is a generalization

of the method presented in Feng and Muthuraman (2010) which works only

for the impulse control of a Brownian motion. Feng and Muthuraman (2010)

leverages heavily on the restriction on Brownian motions and also on the past

results that were known for the Brownian case. Popular interest rate models

will not fall within the scope of Feng and Muthuraman (2010) and a gener-

alization is needed. While it is exciting to see that the idea of transforming

a free boundary problem to a sequence of fixed boundary problems can be

helpful in solving a very general class of stochastic processes, establishing the

necessary convergence results in this general case is a significant challenge and

more involved. Apart from the required proofs of convergence, we also present

an ε-optimality result. Since all numerical algorithms have to be stopped after

convergence within a tolerance, the ε-optimality result is extremely critical as

it maps the tolerance to bounds on the objective value.

The rest of the paper is organized as follows. In Section 3.2 we present

the stochastic model for the evolution of interest rates and describe the central

bank’s possible intervention strategies. Section 3.3 describes the equation for
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the expected cost of control and presents an algorithm that minimizes this cost

by solving a free boundary problem for a large class of stochastic processes.

Then using this optimal control policy in Section 3.4 we find the price of

a zero coupon bond and show that the model is able to capture interesting

term structures with a change of measure. Section 3.5 shows a few examples

and highlights the differences between controlled and uncontrolled short rate

processes. Finally, Section 3.6 concludes.

3.2 The Short Rate Model

Following the convention in Vasicek (1977) we start with a market in

which the federal government issues default-free zero-coupon bonds that are

traded in an open market. A zero-coupon bond is a bond which pays some

known quantity, say $1, when it matures with no intermediate payments, or

coupons, before maturity. At time t, we say the price of such a bond that

matures at time T > t is B(t, T ), also called the discount factor. The yield to

maturity of this bond is the value, R(t, T ), that satisfies

B(t, T ) = e−R(t,T )·(T−t). (3.1)

The short rate, rt, the instantaneous rate of interest is given by

rt = lim
T↓t

R(t, T ). (3.2)

As in Vasicek (1977) and Cox et al. (1996) we assume that the short rate

follows a stochastic process, however we incorporate a very general model for
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the stochastic process and we allow the central bank to control it. We model

the uncontrolled short rate as a general stochastic process, under the physical

measure, described by

dr̂t = µ(r̂t)dt+ σ(r̂t)dWt. (3.3)

This general form allows for several common stochastic processes. For exam-

ple, if µ(r) = a−b·r and σ(r) = σ0

√
r then Equation (3.3) is the familiar mean

reverting square root model used to model the short rate in Cox et al. (1996).

Additionally, if σ(r) = σ0 then Equation (3.3) is an Ornstein-Uhlenbeck pro-

cess used to model the short rate in Vasicek (1977). Arithmetic and geometric

Brownian motion are also both possible in this framework.

The central bank is then able to apply an impulse control to the short

rate, which allows them to instantaneously move the short rate up or down by

some non-zero amount. An impulse control, ν, is defined as a sequence of non-

decreasing stopping times {τi}∞i=1 associated with the corresponding amounts

of control {ξi}∞i=1. Given an impulse control ν = (τ1, ξ1; · · · ; τi, ξi; · · · ), the

controlled short rate becomes




drt = µ(rt)dt+ σ(rt)dWt τi ≤ t < τi+1

r0− = r

rτi = rτi− + ξi.

(3.4)

As mentioned earlier, we assume that the central bank has the ability to quan-

tify its preferences and tolerances for the level of the short rate. Specifically,

this implies that the central bank is able to quantify its desire for the short

rate to remain at a target rate with a running cost function and its aversion
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to intervention through fixed and proportional costs. These costs do not nec-

essarily represent money paid by the central bank, rather the running cost

reflects the bank’s desire for the short rate to be at a certain target level, and

the control costs represent the bank’s aversion from intervening in the inter-

est rate market, similar to the policy maker’s objective in Lohmann (1992)

and Cadenillas and Zapatero (1999). The central bank must weigh these two

goals and make a decision about how to best control the interest rate market.

The central bank’s goal is to find the optimal control policy, ν, to minimize

these costs but in order to do this we must first define the cost structure that

encompasses running costs and control costs.

At each moment, t, we say the economy with short rate rt incurs a

running cost at a rate of h(rt) ≥ 0, where h is designed to penalize the bank

for deviations from the target short rate; for example if the central bank’s

target short rate is 1% then h could be increasing above and decreasing below

1% to represent the desire for the rate to stay at 1%. The central bank also

incurs a cost, G(ξ), each time it applies a control of size ξ to the short rate.

This represents the central bank’s desire to avoid intervening too often in the

market. The cost of control has two components, a fixed component and an

optional proportional component. This means that each time the government

increases or decreases the short rate they suffer a fixed cost, as well as a cost

proportional to the amount by which they move the short rate. It is apparent

that central banks do not want to intervene in the interest rate market often,

and for this reason it makes sense that there is a perceived fixed cost for each
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time the bank exerts control. We define the cost of control as

G(ξ) =

{
K + k · ξ if ξ ≥ 0,

L− l · ξ if ξ < 0.
(3.5)

where K,L, k, l > 0. Here we can see that the cost of control is an asymmetric

function of ξ; the fixed cost of increasing or decreasing the short rate are K and

L, respectively, and the proportional cost of increasing or decreasing the short

rate by ξ are k and l, respectively. We consider an infinite planning horizon

and we discount future costs at a rate β > 0. Putting all this together the

central bank’s objective is to pick a control policy to minimize the expected

value of future discounted costs. The total expected cost of using control ν is

given by

Jr(ν) = E

[∫ ∞

0

e−βth(rt)dt+
∑

n

e−βτnG(ξn)

∣∣∣∣r0 = r

]
. (3.6)

In order for this to be a well defined problem we only consider those impulse

controls, ν, such that ∀r < ∞, Jr(ν) < ∞ as in Harrison et al. (1983). We

also place some technical restrictions on h to avoid trivial solutions. The

restrictions on h are detailed in the following assumption.

Assumption 3.1. The function h(·) is a non-negative function, and it is contin-

uously differentiable with the only possible exceptions at a finite set Nh, and

there exist a point x0 such that

• h(r) is non-increasing for all r < x0

• h(r) is non-decreasing for all r > x0
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Also, there exist some points z1 and z2 such that

• h′(r) > (β − µ′(r)) · l for all r > z2 and

• h′(r) < −(β − µ′(r)) · k for all r < z1.

Furthermore,

• h′(r) ≥ (β − µ′(r)) · l implies h′(z) ≥ (β − µ′(r)) · l for all z > r and

• h′(r) ≤ −(β − µ′(r)) · k implies h′(z) ≤ −(β − µ′(r)) · k for all z < r.

The intuition of Assumption 3.1 is that, when the short rate becomes

too large or too small the running cost h will grow fast enough that it is better

to intervene in the short rate. Assumptions on h made in Constantinides and

Richard (1978), Feng and Muthuraman (2010) and Dai and Yao (2012b) are

special cases of Assumption 3.1.

Definition 3.1. An impulse control ν = (τ1, ξ1; · · · ; τi, ξi; · · · ) is called admis-

sible if the following conditions are satisfied,

• |ξi| > 0, τi < τi+1, and ξi is Fτi measurable for every i;

• Jr(ν) <∞ ∀r <∞;

• The controlled state process rt satisfies the growth conditions

lim
t→∞

e−βtE
[∣∣rt
∣∣] = 0, (3.7)

E
[∫ ∞

0

e−2βtσ2(rt)dt

]
< ∞. (3.8)
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The collection of all the admissible impulse controls is denoted A.

Equation (3.7) and (3.8) guarantee that the controlled short rate does

not grow uncontrollably and are essentially mild technical conditions similar

to the ones in Korn (1997).

3.3 The Value Function

The bank’s objective is to find a control, ν , such that the associated

cost function Jr(ν) is minimized. We call the cost optimal function corre-

sponding to such a control the value function,

V (r) = min
ν∈A
Jr(ν). (3.9)

Bensoussan and Lions (1973) use Quasi-Variational-Inequalities (QVI)

to study stochastic impulse control problems. Thereafter, QVIs have become a

standard way of formulating impulse control problems. The main goal of QVI

is to adopt dynamic programming arguments with Itô’s formula to character-

ize the value function and the optimal control using a differential equation

problem. The QVI is derived using the idea that if at time zero we use some

control for an infinitesimal amount of time, and then immediately switch to

the optimal control, the resulting cost cannot be less than the cost function

associated with the optimal control applied since the very beginning. We now

develop the QVI for the problem considered here with a brief explanation.

First, let A be the infinitesimal generator of the uncontrolled process,
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so that

Av(r) =
1

2
σ2(r)v′′(r) + µ(r)v′(r).

Then, assuming enough smoothness, we haveAV (r)−β ·V (r)+h(r) ≥ 0 (a.e.).

This is the result of the aforementioned dynamic programming argument, no

intervention is placed during t ∈ [0,∆t) for some small ∆t > 0 and then we

switch to the optimal policy thereafter, the resulting cost function will be no

better than the optimal; letting ∆t go to zero and appling Itô’s formula gives

us this result.

Also due to the dynamic programming argument, for any given r and ξ

we have V (r+ξ)+G(ξ)−V (r) ≥ 0. This means, if at time zero we place some

intervention (to increase or reduce the short rate process) and then switch to

the optimal control policy, the resulting cost function will be at best equal

to the optimal one. Taking infimum over all possible ξ yields infξ V (r + ξ) +

G(ξ) − V (r) ≡ QV (r) ≥ 0. The dynamic programming argument implies

that one of these inequalities should be tight for each value of r, depending

upon what is optimal. Putting all this together we have the following Quasi-

Variational-Inequalities





AV (r)− β · V (r) + h(r) ≥ 0 a.e. r,

infξ V (r + ξ) +G(ξ)− V (r) ≡ QV (r) ≥ 0 ∀ r,
QV (r) · [AV (r)− β · V (r) + h(r)] = 0 ∀ r.

(3.10)

Hereafter, we refer to (3.10) as the QVI for the impulse control problem

considered. Theorem 3.1 says that, if a cost function v associated with an
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admissible impulse control policy ν̂ satisfies the QVI (3.10) together with some

technical conditions, then v coincides with the value function V .

Theorem 3.1 (Verification Theorem). Suppose v(r), the cost function associ-

ated with an admissible impulse control policy ν̂, satisfies the QVI (3.10). If

the following are satisfied

1. v is linear for r ≤ d and r ≥ u for some d < u,

2. v ∈ C1(R) ∩ C2(R \ {d, u}),

then v coincides with the value function V .

The proof can be found in the appendix.

Due to the dynamic programming argument, in the region C = {r :

AV (r) − β · V (r) + h(r) = 0}, the optimal decision is not to intervene. Such

a region, C, is called the continuation region. As soon as the process leaves

the continuation region we have QV (r) = 0, and thus the control implied by

the QVI chooses to intervene by increasing or decreasing the short rate by the

appropriate amount. We next describe the differential equation problem that

will enable us to find the continuation region as well as the value function.

3.3.1 The free boundary problem

The value function, V , which solves the QVI, partitions R into two

disjoint sets, the continuation region and the intervention region. To search

for the optimal policy is essentially to search for boundaries of the continuation
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region and the size of the intervention when the short rate hits the boundaries

of the continuation region. Such a problem, wherein the boundaries must be

computed as part of the solution, is called a free boundary problem.

A control band policy is a policy that can be characterized by four

points, d, D, U and u with d < D ≤ U < u. The corresponding strategy is to

exert intervention if the short rate attempts to exit (d, u) and the process is

left uncontrolled when in (d, u). When the short rate strikes or is below d, the

control policy instantaneously increases it to D and similarly when the rate

strikes or is above u the policy instantaneously decreases it to U . This policy

is illustrated in Figure 3.1. In this paper we will focus exclusively on control

band policies and we will show, by construction, that the optimal policy is a

control band policy.

Now given any admissible impulse control policy, ν, characterized by a

control band (d, D, U, u), Theorem 3.2 shows that we obtain its cost function

Jr(ν) by solving the following second-order differential equation problem with

fixed boundary

0 = Av(r)− β · v(r) + h(r), ∀r ∈ (d, u), (3.11)

v(d) = v(D) +K + k · (D − d), (3.12)

v(u) = v(U) + L+ l · (u− U). (3.13)

Theorem 3.2. Suppose ν is an admissible impulse control characterized by

(d, D, U, u). If v(r) ∈ C2(d, u) solves the differential equation problem
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Figure 3.1: Evolution of rt under a (d,D, U, u) policy

(3.11)-(3.13) in [d, u], then v(r) is equal to the cost function Jr(ν) associated

with ν for r ∈ [d, u].

The proof can be found in the appendix.

By the definition of the (d, D, U, u) policy, we can see that

Jr(ν) =

{
v(D) +K + k · (D − r) = v(d) + k · (d− r) if r ≤ d

v(U) + L+ l · (r − U) = v(u) + l · (r − u) if r ≥ u.
(3.14)

This enables us to obtain the cost function associated with (d, D, U, u) for

every possible r by extending v from (d,u) to the whole real line. Hereafter we

denote v as the solution to Equations (3.11)-(3.13) together with the extension

in Equation (3.14).

Now, given a control policy, ν described by (d, D, U, u) we solve the

boundary value problem described in Equations (3.11)-(3.13) to compute v
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and extend it with (3.14). We then use Theorem 3.2 to verify that this is

equal to Jr(ν). This means that finding the optimal control policy is the same

as finding the (d, D, U, u) such that the resulting v satisfies the optimality

conditions in Equation (3.10), meaning V is the solution to a free boundary

problem.

In the next section we describe an efficient method to find the optimal

policy corresponding to the solution to the free boundary problem.

3.3.2 Finding the free boundary

In order to solve the free boundary problem from the previous section,

we now describe an iterative algorithm that converts the free boundary prob-

lem into a sequence of fixed boundary problems and we restrict our attention

to control band policies. For some given control band policy characterized by

(dn, Dn, Un, un) we find the associated cost function as the solution to Equa-

tions (3.11) - (3.14), and call this Vn. Then with this policy and cost function

the algorithm finds a new policy and cost function, (dn+1, Dn+1, Un+1, un+1)

and Vn+1, that is closer to the optimal control policy and value function. Upon

iteration we find that this algorithm monotonically converges to the optimal

control policy and value function.

To begin the algorithm we start with an initial guess policy (d0, D0, U0, u0)

with d0 < D0 ≤ U0 < u0. We obtain the associated cost function by solving

the fixed boundary problem (3.11)–(3.14) and denote it V0. The choice of this

initial guess is not entirely trivial because we must be sure that the optimal
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continuation region is contained within (d0, u0). We can check this property

with the following condition,

lim
r↓d0

V ′0(r) + k ≥ 0 (3.15)

lim
r↑u0

V ′0(r)− l ≤ 0. (3.16)

We say that an initial guess satisfies the superset condition if the above in-

equalities hold. An initial guess can be found easily by, for example, increas-

ing the length of (d0, u0), by say 50%, repeatedly until the superset condi-

tion is satisfied. Intuitively, if the superset condition is not satisfied, say

limr↓d0 V
′

0(r) + k < 0, then it indicates that in the neighborhood above d0,

the cost function decreases faster than the cost of control. However, when

r is sufficiently small, by assumption the running cost grows fast enough to

justify the exertion of control to increase the short rate. This means, when d0

is small enough, the proportional control cost decreases faster than the cost

function in the neighborhood of d0, which will make the superset condition at

d0 satisfied. An analogous argument holds for sufficiently large u0. A similar

explanation of the assumptions made on the running cost function, h, can be

found in Constantinides and Richard (1978), Feng and Muthuraman (2010),

and Dai and Yao (2012b). Once such an initial guess of (d0, D0, U0, u0) and V0

are found we begin our iteration by setting n = 0.

The next step of the algorithm is to find new values of d and u. We
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define these new values as

dn+1 = sup
{
y ∈ [dn, Dn) : ∀r ∈ [dn, y], V ′n(r) + k ≥ 0

}
, (3.17)

un+1 = inf
{
y ∈ (Un, un] : ∀r ∈ [y, un], V ′n(r)− l ≤ 0

}
. (3.18)

We illustrate the update procedure for d in Figure 3.2. The solid black

line in the figure represents the cost function on an iteration. We see that

between dn and dn+1 we have V ′n(r)+k ≥ 0 and that the slope at dn+1 is equal

to −k. We also illustrate the boundary condition from Equation (3.12) here

which relates the values of the cost function at dn and Dn.

We select dn+1 in this way because in a region above dn if we have

V ′n ≥ −k then the proportional cost decreases at least as fast as the value

function, suggesting it would be beneficial to increase d. Also, we know that at

convergence we want the first derivative to be continuous across d, as required

by Theorem 3.1, so we pick dn+1 to help satisfy that constraint. Similar

reasoning holds for un+1 also. We can see in this figure that the slope of

Vn at dn+1 is equal to −k. This helps us see that at convergence the value

function should have a continuous first derivative, otherwise known as the

smooth pasting principle.

After we find the new values dn+1 and un+1 we find the cost function

associated with the control band policy characterized by (dn+1, Dn, Un, un+1)

by re-solving Equations (3.11) - (3.13). We call this cost function V̄n(r). With
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Figure 3.2: An illustration of updating d and Equation (3.12)

this new cost function, V̄n(r) , we define new values of D and U as

Dn+1 = arg min
r∈(dn+1,un+1)

{
V̄n(r) + k · r

}
, (3.19)

Un+1 = arg min
r∈(dn+1,un+1)

{
V̄n(r)− l · r

}
. (3.20)

Later we will show that Dn+1 ≤ Un+1. Dn+1 and Un+1 are chosen to be the

most efficient ‘jump to’ points for the given associated cost function. With

(dn+1, Dn+1, Un+1, un+1) we can finally find Vn+1(r) by solving Equations (3.11)

- (3.13) with these new boundary locations, and then iterate this until conver-

gence. We present a flowchart that illustrates this algorithm in Figure 3.3.
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Figure 3.3: Description of boundary update algorithm

Theorem 3.3 shows that for any r we have Vn+1(r) ≤ Vn(r) and the

superset condition holds with the new Vn+1, dn+1 and un+1. These conditions

warrant the repetitive improvement on the cost function as well as a sequence

of shrinking continuations regions, (dn, un).

Theorem 3.3. Given an admissible impulse control policy characterized by

(dn, Dn, Un, un), let Vn(r) be defined by the solution to Equations (3.11)-

(3.14). If Vn and (dn, Dn, Un, un) satisfy the superset condition, let dn+1,
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un+1, V̄n, Dn+1, Un+1 and Vn+1 be as in the above algorithm, then we have

1. V̄n(r) ≤ Vn(r), ∀r

2. limr↓dn+1 V̄
′
n(r) + k ≥ 0, limr↑un+1 V̄

′
n(r)− l ≤ 0

3. Dn+1 ≤ Un+1

4. Vn+1(r) ≤ V̄n(r), ∀r

5. Vn+1 satisfies the superset condition with dn+1 and un+1, which means

limr↓dn+1 V
′
n+1(r) + k ≥ 0 and limr↑un+1 V

′
n+1(r)− l ≤ 0.

The proof of this theorem can be found in the appendix.

Theorem 3.3 establishes that the boundary update procedure can be

iteratively used to improve the cost function monotonically and to shrink the

continuation region, thus the scheme is guaranteed to converge. Figure 3.4

gives an illustration of a sequence of Vn. The sequence is monotonically de-

creasing and the dots on each curve represent (dn, Dn, Un, un). Each Vn in

the sequence is not expected to be in C1 over the whole space, however the v

associated with the converged (d,D, U, u) policy is expected to have a contin-

uous derivative everywhere due to the smooth pasting nature of the boundary

update equations (3.17) and (3.18). The following theorem provides the con-

ditions that guarantee the optimality of the cost function obtained at conver-

gence, given that it is C1.
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Theorem 3.4. Suppose that h(r) satisfies Assumption 3.1 and let (d,D, U, u)

be the policy obtained at convergence with v, its associated cost function. This

implies that v(r) solves (3.11)–(3.14) and that v is C1. If β−µ′(r) ≥ 0 ∀r then

it is identical to the optimal value function V . If, however, β − µ′(r) < 0 for

some r, and if h′(d)+(β−µ′(d)) ·k ≤ 0, −k < v′(r) < l in (D,U), v′(r)+k ≤ 0

in [d,D], −v′(r) + l ≤ 0 in [U, u], and h′(u) + (µ′(u) − β) · l ≥ 0 then v(r) is

identical to the value function V (r), and (d, D, U, u) is the corresponding

optimal control policy.

The proof is given in the appendix.

We can see that popular short rate models such as the Vasicek and the

CIR model have µ′(r) < 0 which falls into the case β − µ′(r) ≥ 0. Therefore,

the optimality of the solution obtained by the monotone improvement scheme

is warranted. For general diffusion process with drift that does not necessarily

satisfy β − µ′(r) ≥ 0 ∀r we have provided additional conditions for optimality

in Theorem 3.4.

Since any computational iteration must be stopped when a specific

tolerance is reached, the question of how the tolerance relates to deviations

from optimality is important. The following theorem and corollary provide

an upper bound on the difference between the optimal value function and

the cost function associated with the (d,D, U, u) policy obtained in any step

of the scheme. It is also important to note that while the convergence to

optimality established in Theorem 3.4 requires some conditions on β − µ′(r),

the ε-optimality result that follows does not make any assumptions on µ′(r).
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Theorem 3.5 (ε−Optimality). Suppose v(r) is the cost function associated

with some admissible impulse control characterized by d < D ≤ U < u. If

v(r) satisfies the following conditions for some ε1, ε2, ε3 > 0





Av(r)− β · v(r) + h(r) ≥ −ε1 a.e. r

infξ>0

{
v(r + ξ) +K + k · ξ

}
− v(r) ≥ −ε2

infξ>0

{
v(r − ξ) + L + l · ξ

}
− v(r) ≥ −ε3

v′(d+) + k ≥ 0

−v′(u−) + l ≥ 0

then we have

v(r) ≤ (1 +
ε2
K

+
ε3
L

) · V (r) +
ε1
β
.

in which V (r) is the value function.

The detailed proof is found in the appendix.

Corollary 3.1. Suppose v(r) is the cost function associated with some admis-

sible impulse control characterized by d < D ≤ U < u. If v(r) satisfies the

following conditions for some ε > 0
{
Av(r)− β · v(r) + h(r) ≥ −ε a.e. r

Qv(r) ≥ −ε

v′(d+) + k ≥ 0

−v′(u−) + l ≥ 0
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then we have

v(r) ≤ (1 +
ε

K̄
) · V (r) +

ε

β
,

in which K̄ ≡ min{K,L}

The detailed proof can be found in the appendix.

3.4 Bond Prices

This section focuses on pricing a bond whose short rate follows the

optimally controlled dynamics. In the previous sections all computations were

performed by the central bank under the physical measure because the bank is

concerned with the actual deviations from the target short rate. Now, however,

we must abandon this measure and use the risk-neutral measure to find bond

prices, as this prevents arbitrage in the market.

We first note that the price of a bond is determined by the bond’s tenor

and the current short rate, in this way we can rewrite the price of a bond as

B(t, T, r). To find the price of the bond we must use the Girsanov theorem to

change the physical measure to the risk neutral measure. In doing this we can

rewrite the controlled dynamics between the stopping times that correspond

to d and u as

drt = µ̃(t, rt)dt+ σ(rt)dW
Q
t , τi ≤ t < τi+1, (3.21)

where µ̃(t, r) is determined by the market and WQ
t is a Brownian motion under

the risk-neutral measure. Given this representation the price of a bond is given
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by

B(t, T, r) = EQ
[
e−

∫ T
t rsds

∣∣rt = r
]
, (3.22)

where the expectation is taken with respect to the risk-neutral measure, and

the short rate process that is being evaluated includes the impulse controls

administered by the central bank. This is the typical bond pricing formula

however it is not very useful in our setting because we do not know µ̃(t, r).

We therefore state the following theorem to find the appropriate change of

measure and price a bond based on the controlled short rate.

Theorem 3.6 (Price of a Bond). The price of a bond, whose short rate follows

the optimally controlled dynamics described in the previous section, satisfies

the following PDE with boundary conditions

0 =
∂B

∂t
+ (µ(r) + σ(r) · q(t, r))∂B

∂r
+

1

2
σ2(r)

∂2B

∂r2
− r ·B, (3.23)

t < T, r ∈ (d, u)

B(T, T, r) = 1, ∀ r, (3.24)

B(t, T, d) = B(t, T,D), ∀ t ≤ T, (3.25)

B(t, T, u) = B(t, T, U), ∀ t ≤ T, (3.26)

where d, D, U and u describe the optimal control policy and q(t, r) is the

so-called market price of risk, and is independent of the bond’s tenor.

The proof of this theorem, which relies on an arbitrage argument and

closely follows Vasicek (1977), is found in the appendix.

The market price of risk, q(t, r) found in Equation (3.23) represents

the instantaneous trade off between the expected return of a bond per unit
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of volatility and is to be observed by the market. Given this market price

of risk, we can immediately recognize that µ̃(t, r) = µ(r) + σ(r) · q(t, r). If

we take σ(r) to be constant and q(t, r) to be a function of only time, then

this can be a variant of the model found in Hull and White (1987). This

model has a closed form solution for Equations (3.23) and (3.24) without the

boundary conditions (3.25) and (3.26), which is the solution to Equation (3.22)

without control. However with these boundary conditions there is no closed

form solution and thus any solution to the PDE with boundary conditions

must be found numerically.

A convenient property of this model is that given the controlled dynam-

ics of the short rate we can extract the market price of risk from the current

yield curve, where the relationship between bond prices and the yield curve is

defined in Equation (3.1). In fact, we are able to generate almost any desired

yield curve by finding the appropriate market price of risk.

Under this model it is also possible to consider a market price of risk

that is a function of both time and the short rate. We can select µ(r) and

q(t, r) in such a way that under the risk-neutral measure the dynamics of the

short rate can be represented as

drt =
(
ā(t)− b̄(t)rt

)
dt+ σ(rt)dW

Q
t .

This means that we can represent the short rate as a mean reverting process

with time varying mean and mean reversion rate, if b̄(t) > 0. In this model we

can still perfectly replicate the market’s yield curve and we can also replicate
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the interest rate derivative market as in Hull and White (1987).

3.5 Analysis of Results

In the previous sections we described how to find the optimal inter-

vention policy and the yield curve based on that intervention policy. We now

present a few examples that use these results to highlight the differences be-

tween a controlled and an uncontrolled short rate process. In our first example

we take the uncontrolled short rate process to be a mean reverting square root

process, as in Cox et al. (1996), described by dr̂t = λ(θ−r̂t)dt+σ
√
r̂tdWt, where

we set λ = 1, θ = 0.07, σ = 0.12. Additionally we set the costs of control to be

K = 0.005, k = 0.18, L = 0.005, l = 0.12, β = 0.01. For the sake of illustra-

tion we take the running cost function to be h(r) = 0.07 log(r
/
θ)2 + (θ − r)2.

This choice of non-linear running cost function is motivated by Cadenillas

and Zapatero (2000). It captures the preference to keep rates well above zero

and also the central bank’s preference to keep the rate close to a target θ.

This running cost function also satisfies the technical growth conditions, from

Assumption 3.1, to ensure that the formulation is meaningful.

Under this short rate process and cost structure we can find the op-

timal control policy using the method discussed in Section 3.3.2. In Figure

3.4 we plot the sequence of Vn(r) given an initial guess of (d0, D0, U0, u0) =

(0.005, 0.08, 0.12, 0.25). Here the cost functions, Vn(r), are getting smaller in

each iteration and the dots represent the intervention policy associated with

each iteration of the algorithm. The algorithm converges to the optimal value
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Figure 3.4: Converging sequence of Vn, dots represent (dn, Dn, Un, un) policy

function at the bottom of Figure 3.4 and the optimal policy is described by

(d,D, U, u) = (0.0334, 0.0614, 0.0853, 0.1343). While one can discretize the

problem using the finite difference schemes proposed in Kushner (1976) and

then brute force the solution using value or policy iteration, this methodol-

ogy is not expected to perform well on impulse control problems due to the

discontinuities in the state evolution that translates to insufficient smoothness

in the value function for accelerated convergence. However, for illustration,

comparing our method with that of using policy iteration on the discretized

Markov chain, our method converges after 22 iterations in 0.176 seconds on a

10,000 point grid, while policy iteration in the controlled Markov chain case
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converges after 703 iterations in 1,328 seconds on the same grid. Not only is

the number of iterations much larger for the controlled Markov chain, the time

spent for each iteration is larger too, resulting in almost 4 orders of magnitude

difference.

In order to compute the yield curve we next use the optimal intervention

strategy to solve the bond pricing problem found in Theorem 3.6. For this

example we take the market price of risk, q, to be zero. With the solution to

this problem we can then obtain the yield curve of interest rates based on the

controlled short rate model. We plot the resulting yield curves for two initial

values of the short rate in Figure 3.5. In this figure we plot the yield curve

resulting from both the controlled and uncontrolled short rate process, the solid

blue lines represent the yield curve of the controlled short rate process and the

dashed green lines represent the yield curve of the uncontrolled short rate.

There is a closed form solution to bond prices resulting from this uncontrolled

short rate process found in Cox et al. (1996).

Plot (a) in Figure 3.5 shows the two yield curves when the initial value

of the short rate is 4.5%. In this scenario the yield curve of the controlled

short rate process is above the yield curve of the uncontrolled short rate. This

is because when rt is close to d the probability of the central bank intervening

soon is increased. This means we expect the short rate to be elevated to D

soon and thus the yield on longer term bonds that are controlled by the bank

must have a higher yield than bonds that are not controlled by the bank.

Similarly in plot (b) the yield curve of the controlled short rate is below that
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Figure 3.5: Yield curves for two initial values of the short rate

of the uncontrolled short rate, because when rt is close to u to probability of

the central bank pushing the short rate down to U soon is high.

The yield curves in Figure 3.5 consider high and low initial interest

rates and in Figure 3.6 we examine the yield curve when the initial rate is

equal to θ, the long-term mean of the CIR process. In this figure plot (a)

shows the yield curve for the problem described above. In this scenario we see

that while the yield curve of the uncontrolled process is decreasing the yield

curve of the controlled process is increasing. This is a more drastic difference

than the scenarios seen in Figure 3.5 because the shape of the yield curves

here is different for the controlled and uncontrolled processes. In general the

yield curve for an uncontrolled mean reverting process should be decreasing

when the initial value is equal to the long-term mean due to the convexity in

Equation (3.22). We find, however, that by issuing control the central bank can
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Figure 3.6: Yield curves for two control policies when r0 = θ

force this yield curve to be increasing. This could be due to the asymmetry in

the optimal control band policy. In particular, since the running cost function

is steep for small values of rt the optimal policy issues control quickly when the

process goes below the long-term mean. In contrast, the running cost function

is less steep larger values of rt and the optimal policy allows the process to go

relatively high before issuing control. With this in mind we can see that the

controlled short rate process will spend more time, on average, above θ than

below resulting in an increasing yield curve in this case.

To confirm that this increasing yield curve is due to the asymmetry in

the control band policy we next consider a control policy where the optimal

d and u are symmetric around θ and so are D and U . The resulting yield

curve is seen in plot (b) of Figure 3.6. In this plot we see that the yield curve

of the controlled process is also decreasing. It is, however, decreasing faster
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than the yield curve of the uncontrolled process, again due to the convexity

in Equation (3.22) and the asymmetry of the CIR volatility. This example

displays an important case where the central bank’s intervention can not only

change the level of the yield curve, but also the shape.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.04

0.045

0.05

0.055

0.06

0.065

Y
ie
ld

T

r0 = 0.04

 

 

Control l ed, σ = 0.08

Uncontrol l ed, σ = 0.08

Control l ed, σ = 0.14

Uncontrol l ed, σ = 0.14

Figure 3.7: Yield curves for two values of σ

With everything else kept the same from the first example we also

consider another example with two different values of σ. Figure 3.7 displays

the controlled and uncontrolled yield curves when the initial short rate is 4%

for the scenarios when σ = 0.08 and σ = 0.14.

In Figure 3.7 the yield curves from the uncontrolled short rate processes

are close together, indicating that the volatility does not affect the yield curve
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very much here. On the other hand the yield curves from the controlled short

rate processes differ much more for different values of σ. This is because for

the controlled short rate process σ affects the optimal intervention policy and

thus the boundary conditions in Equations (3.25) - (3.26). For different control

band policies the probabilities of intervention soon can change drastically, and

this is seen in the resulting yield curves. In this example the probability of an

intervention soon is higher for σ = 0.14 than for σ = 0.08 and thus the yield

curve is also higher in this case.

In order to understand the model’s dependence on volatility better we

now examine the optimal control policy for different values of σ. In doing this

we look at three popular short rate models, the Vasicek, the CIR, and the

model found in Black and Karasinski (1991). The SDE for the uncontrolled

short rate process in the Vasicek model is given by dr̂t = λ(δ−r̂t)dt+φdWt and

the SDE for the Black-Karasinski model is given by dr̂t = λ(µ− log(r̂t))r̂tdt+

γr̂tdWt. In these two models we select the parameters so that the first two

moments of the long-term distribution of the uncontrolled short rate processes

are the same as for the uncontrolled CIR model. In each of the three models

we use the same mean reversion parameter λ. For the Vasicek model this

means we set δ = θ and φ = σ
√
θ and for the Black-Karasinski model we set

µ = log(θ) +
1

2
log

(
σ2

2λθ
+ 1

)

γ =

√
2λ log

(
σ2

2λθ
+ 1

)

where θ and σ are from the CIR model. In all three of these models with
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parameters chosen this way the long-term mean and variance of the uncon-

trolled short rate are given by E[r̂t] = θ and Var[r̂t] = 1
2
σ2θ/λ. We note that

although these three models have equal average volatility, in the Vasicek model

the instantaneous volatility is equal for all values of r̂t however for the CIR

and Black-Karasinski models the instantaneous volatility is asymmetric in r̂t.

In order for these volatilities to average out to the same the CIR and Black-

Karasinski models have smaller instantaneous volatilities for small values of

the short rate and larger instantaneous volatilities for large values of the short

rate. In addition to this asymmetry in volatility the Black-Karasinski model

also has asymmetry in its drift term making the Black-Karasinski model the

most asymmetric of the three.

In Figure 3.8 we show the optimal intervention policy for these three

models, as a function of σ, when λ and θ are the same as in the previous

examples. Here we have also changed the cost structure and set K = L = 0.05,

k = l = 0.15, λ = 1, θ = 0.07, β = 0.01 and h(r) = 20(r−θ)2. We have chosen

cost functions like this so that the cost of control is completely symmetric

about θ; that is it costs the same to issue positive and negative control, and

the running cost is a symmetric function about θ. We can see in Figure 3.8

that the control policy for the Vasicek model is symmetric about θ. In plots

(a) and (b) we see that the solid black line is the same in both plots, indicating

that for the Vasicek model the central bank allows the short rate to deviate

equally above and below θ before intervening. Also in plots (c) and (d) the

solid black lines are the same, indicating that when the short rate process
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hits d or u in the Vasicek model the central bank intervenes equally. This

symmetry however is not present for the CIR or the Black-Karasinski model.

This is due to the fact that in the Vasicek model the uncontrolled short rate is

Gaussian and therefore symmetric, whereas in the CIR model the short rate

follows a non-central χ2 distribution and the Black-Karasinski model follows

a Log-Normal distribution. Both of these distributions are asymmetric and

therefore the central bank must account for this asymmetry when deciding its

optimal control policy for the short rate.

For all three of these models we see that for larger values of σ the

short rate must be further away from θ before the central bank intervenes.

This can be seen in plots (a) and (b) in Figure 3.8; the curves are increasing

with volatility in all cases. The reason that the central bank allows the short

rate to deviate further for larger volatilities is that it must weigh the cost of

being far away from θ with the cost of frequent intervention. For larger values

of σ the cost of frequent intervention is dominant and thus the central bank

must allow the short rate more freedom before intervening. We can see in

plot (a) of Figure 3.8 that the Vasicek model is allowed the most freedom for

smaller values of r, whereas the Black-Karasinski model is the most highly

restricted. All three of these models have the same average volatility however

for small values of r the Vasicek model has the most instantaneous volatility

and the Black-Karasinski model has the least instantaneous volatility. This

means that the potential for frequent intervention for small values of r is the

most prevalent in the Vasicek model and therefore must be allowed the most
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Figure 3.8: Control band policy as a function of σ for three different models,
plots (a) and (b) show how far from θ the short rate must be before control is
issued, plots (c) and (d) show how much control is issued each time a boundary
is hit

89



freedom of the three models. This balance between running cost and frequent

intervention however is exactly opposite for larger values of r, as seen in plot

(b) of Figure 3.8. Here the Black-Karasinski model is allowed the most freedom

while the Vasicek model is the most restricted. This is due to the fact that

for large values of r the Black-Karasinski model has the most instantaneous

volatility while the Vasicek model has the least.

In plots (c) and (d) of Figure 3.8 we show the size of the control issued

by the central bank when the short rate process hits d or u. We see that

for larger values of σ the central bank issues a larger control for each model.

This highlights the tradeoff between fixed and proportional costs; in order to

minimize costs when volatility is high the central bank avoids paying the fixed

cost frequently by issuing larger control and paying larger proportional costs.

Furthermore plot (c) shows that the size of control is the largest for the Vasicek

model when the short rate hits d and smallest for the Black-Karasinski model.

This again is related to the higher instantaneous volatility in the Vasicek model

for smaller values for r. As expected, the central bank issues the most control

for the Black-Karasinski model when the short rate hits u because of its high

local volatility for large values of r relative to the other two models.

In Figure 3.9 we plot the optimal value function for these three models

when σ = 0.06. We see that the symmetry of the Vasicek model also holds

for the value function, but again there is no symmetry for the CIR model,

due to the asymmetry in volatility, or the Black-Karasinski model due to the

asymmetry in both volatility and drift. We also see that the value function
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Figure 3.9: Value function for three models when σ = 0.06, the red dots
represent the optimal (d,D, U, u)

for the CIR and Black-Karasinski models are lower than that of the Vasicek

model. Although we set the parameters of these models so that the first two

moments of the uncontrolled process match we were not able to match higher

moments. The CIR and Black-Karasinski models are both leptokurtic and

therefore have fatter tails than the Vasicek model. When the central bank

imposes a control on the short rate process it is effectively cutting off the tails

of the long term distribution. This has the most effect on the most leptokurtic

distribution, which is the Log Normal Black-Karasinski model, and therefore

the value function for this model is also the lowest.

The examples we have presented here show the rich structure that

comes from issuing control on interest rates. We have seen that this control

can have drastic and interesting effects on the yield curve in many different
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ways. Beyond this the control behaves is rich and interesting way for different

interest rate models. Although this is a stylized version of a central bank’s

intervention methods these examples no doubt shed light on how to best con-

trol interest rates in different situations. Perhaps the most interesting insight

is that for more volatile interest rates the central bank should wait longer to

intervene and when it does finally issue a control it should make a more drastic

intervention.

3.6 Concluding Remarks

The focus of this paper was understanding the implications of inter-

ventions on the short rate by the Fed on the term structure of interest rates.

However to get to this we have had to develop and present a very general

solution technique that can solve optimal control problems that have a fixed

cost of control (thereby making it optimal to bring about discontinuities in the

state dynamics). These problems, usually called impulse control problems, are

notoriously hard to solve and only numerical solutions have been available for

special cases. We hence hope that the method developed in this paper will be

easily leveraged on by researchers in various application areas like inventory

management, portfolio selection and healthcare.

Regardless of the federal government’s motivations to exert influence in

the interest rate markets, whether it be to keep inflation in check or to maintain

certain exchange rates, the influence should be exerted in the most rational way

possible. This paper presented a model for the government’s ability to control
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the interest rate market, found the optimal control policy and contrasted the

resulting term structure with models that do not incorporate control. We also

found that we are able to match the existing yield curves with our model by

extracting the market price of risk from bond prices. This freedom provides

for a rich model that can approximate the federal governments goals and the

free market’s response to those goals.

We have abstracted away from modeling the reasons that the federal

government issues its control by simply assuming that the government has the

ability to quantify its preferences and tolerances precisely. This, however, im-

poses a static nature to the government’s preferences. Allowing for a dynamic

change in the governments preferences is more realistic but will require the

careful modeling of the motivations for and side effects of intervening. This

will undoubtedly yield a multi-dimensional impulse control model that is al-

most impossible to solve with what is available currently. While this paper,

for the first time, looks at the impulse control of these interest rates and the

resulting term structures, going forward it is necessary to consider models that

capture the complex relationships between the many macro economic variables

and the central banks multi-faceted objectives. These goals are important for

the entire economy and quantitatively assessing and optimally achieving these

goals has the potential to lead to a stronger world market.
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Chapter 4

Money Management with Performance Fees

4.1 Introduction

This chapter formulates a new hybrid stochastic control problem, devel-

ops a numerical solution to the problem, and applies it to a problem faced by

money managers. Starting with Ross (1973) financial economists have stud-

ied the agency problems that exist between fund managers and their clients.

One of the key implications of this literature is that performance fees, which

can incentivize portfolio managers to exert more effort, can also distort the

portfolio manager’s risk choices. One of the central issues in this context is

understanding the manager’s investment behavior in the presence of fee col-

lection and comparing this behavior to when the manager is investing his own

money. The presence of performance fees (also called incentive fees) for fund

managers leads to the common intuition that managers increase risk to maxi-

mize fees due to the inherent optionality in performance fees. In their papers

Grinblatt and Titman (1989) and Carpenter (2000) find that in some situa-

tions a fund manager should take on infinite levels of risk. In these papers,

as well as in Basak et al. (2007), the manager tries to maximize a terminal

objective collected without considering the effect of their behavior on future

fee collection opportunities.
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Our primary focus in this paper is in understanding the impact of mul-

tiple fee collections under high-water-mark provisions. We specifically contrast

our results against some of the previous works and revisit the question of the

manager’s incentive to take infinite risk. We set up the manager’s optimal

investment decision as a stochastic control problem and study a fee structure

common to money management firms. The money manager seeks to maximize

the discounted expected utility of future consumption out of his personal ac-

count assuming that fees will be transferred from the fund into his personal

account periodically. To achieve this goal the manager must decide how much

to invest in risky versus risk-free assets. The fee structure we study considers

management fees, charged on assets under management (AUM), and perfor-

mance (incentive) fees, charged on profits using a high-water-mark. When

profits are calculated using a high-water-mark the performance fee is only col-

lected if the current value of the fund is higher than the previous maximal

value of the fund.

We investigate manager behavior taking into consideration the fact

that a fund manager is not merely trying to optimize fees for one time, but

also must look forward to future fee collection opportunities. A manager that

only considers the next fee might take on large amounts of leverage with the

risk of severely diminishing the value of the fund, however a forward looking

manager must consider the impact of this risk on future fee collections. This is

especially important in the presence of high-water-marks because the manager

has to outperform all pervious fee collection opportunities in order to collect
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the performance fee. We also investigate the effect that manager wealth has

on the risk he takes with his clients’ money and the effect of capital flows in

and out of the fund.

The problem faced by the manager implicitly has two distinct time

scales; on the one hand the manager must make investment decisions every

day through trading, and on the other hand fees are collected periodically, such

as quarterly or annually. At the time of fee collection the manager must also

decide whether to keep the fund open or not. In order to examine manager be-

havior when his decisions affect all future fee collections we must formulate an

optimization problem that considers both continuous and discrete time events.

This type of problem, however, has not been seen in literature and thus does

not fall within a class of problems that have standard solution methodologies.

This type of problem cannot be meaningfully approximated entirely as a dis-

crete time or continuous time problem. We thus characterize the solution to

this new type of problem so that we can develop a methodology to solve it.

Portfolio selection from the point of view of a money manager who

collects performance fees is seen in Grinblatt and Titman (1989) where the

manager chooses a β and hedges the performance fee using options. Due to

the static portfolio and risk-neutrality the authors find that the manager will

take on infinite leverage in simple fee structures. Carpenter (2000) studies

a similar problem that allows a risk-averse manager to continuously trade.

Under this setting the manager choses to take on extremely large risks only

when the fund value is below the performance benchmark but takes on much
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lower risk when the fund is above the benchmark. We find, however, that the

manager does not take on such extreme risk when future fee collections are

also important.

Basak et al. (2007) studies a manager’s behavior when fund perfor-

mance influences inflow and outflow of capital to the fund, and finds that,

depending on risk tolerance, the manager may increase or decrease leverage

when the fund is below the performance benchmark; we will consider a model

similar to the one used here to examine the effects of fund flows in the pres-

ence of a high-water-mark provision. Ross (2004) investigates different fee

contracts to determine when a manager is likely to take on risky portfolios

and finds that under certain conditions a manager with performance fees may

take on less risk than expected. The primary focus in the above papers is

in understanding the risk appetite of the manager when his objective is in

maximizing a one time fee. They all find that the manager has incentives to

take on extreme risks at certain times and for certain fund values relative to

the benchmark. Goetzmann et al. (2003) investigates hedge fund that charges

a performance fee calculated using a high-water-mark. The authors examine

the effects of high-water-mark contracts on investors and finds the value of the

hedge fund to the manager and the investor. Also Panageas and Westerfield

(2009) consider a manager who continuously collects performance fees using

a high-water-mark and finds that the manager behaves as a constant relative

risk averse investor due to the indefinite horizon of the contract.

The paper proceeds as follows. Section 4.2 describes the model setup
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and the optimization problem faced by the manager. Section 4.3 character-

izes and describes an algorithm to find the optimal solution to the investment

problem. Section 4.4 gives examples of manager behavior under a few scenar-

ios. Section 4.5 considers an extension to the model that incorporates capital

flows in and out of the fund, and Section 4.6 concludes. All proofs and solution

characterizations are included in the appendix.

4.2 The Model

We consider a model in which a fund manager makes investment deci-

sions in continuous time and collects fees, based on the fund’s value, at fixed

points in time. We assume that the manager has control over investment

decisions in a personal account and the fund’s account. At the fixed points

in time fees are taken out of the fund’s account and some proportion of the

fees are transferred into the manager’s personal account. The remaining fees

are used to pay company expenses, such as rent and employee salaries. In

the event that the fees collected are not enough to pay company expenses

the manager can choose to pay these expenses out of his personal account and

keep the fund open or close the fund and default on the company’s obligations,

without negative effect on his personal account. The manager is able to con-

sume, in continuous time, from his personal account and derives utility from

this consumption. The manager’s objective is to make investment decisions

in both accounts and consume in order to maximize expected utility of fu-

ture consumption. Initially we make the simplifying assumption that the fund
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manager is given an initial endowment and that no money is ever withdrawn

from the fund and that no new money ever comes in, as in Carpenter (2000),

but consider an extension of the model to incorporate capital flows in and out

of the fund in Section 4.5. We also assume that there are no transaction costs,

thus allowing for continuous trading in between the fee collection times.

The fund manager has three investment vehicles: two (possibly corre-

lated) risky assets and a bond, and the manager decides how to invest in these

three assets. One of the risky assets in exclusively available to the manager’s

personal account, the other risky asset is exclusively available to the fund and

the risk-free asset is available to both. Uncertainty is described by the triple

(Ω,F ,P), where Ω is the set of possible outcomes, F is the σ-algebra detailing

the set of all events, and P is the probability measure of each set in the σ-

algebra. At time t the value of the fund is represented by Xt, the value of the

manager’s personal account is represented by Yt, the two risky assets follow

Geometric Brownian motions represented by S1,t, for the fund, and S2,t, for

the personal account, and the bond is represented by Bt. The times at which

the manager collects fees are denoted as {Ti}∞i=1, where Ti − Ti−1 = ∆T . The

fees collected at these times, Fi, are a function of the value of the fund at the

time of collection and the high-water-mark.

We consider a fee structure common in hedge fund management. The

components of the fee consist of management fees and performance fees. The

management fee is represented by λm, so that at time Ti the dollars collected

from the management fee is λm ·XTi . In addition to the management fee we
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also consider the inclusion of a performance fee, which is collected based on

the ‘profits’ over the last time period, where profits are calculated using a

high-water-mark, meaning the fund must exceed its previous high in order to

collect performance fees.

The percentage of profits charged in the performance fee is represented

by λp, and the basis for the profit calculation is represented by H, so that the

dollars charged from the performance fee is λp · max(XTi − H, 0). In general

we refer to H as a water-mark.

The dynamics of the assets are given by

dS1,t = µ1S1,tdt+ σ1S1,tdW1,t,

dS2,t = µ2S2,tdt+ σ2S2,tdW2,t,

〈
dW1,t

∣∣dW2,t

〉
= ρdt

dBt = rBtdt,

where µ1 and µ2 are the expected returns of the risky assets available to

the fund and the managers personal account respectively, σ1 and σ2 are the

volatilities of the risky assets, ρ is the correlation between the two Brownian

motions and r is the risk free rate. Given that the manager invests a fraction,

`t, of the fund’s value in the first risky asset and a fraction pt of his personal

wealth in the second risky asset and consumes at a rate ct out of his personal
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account at time t, the dynamics of X and Y are given by

dXt = [`t(µ1 − r) + r]Xtdt+ σ1`tXtdW1,t, Ti ≤ t < Ti+1, (4.1)

dYt = ([pt(µ2 − r) + r]Yt − ct)dt+ σ2ptYtdW2,t, Ti ≤ t < Ti+1, (4.2)

XTi = XTi− − Fi, (4.3)

YTi = YTi− + φ(Fi), (4.4)

if the manager has not closed the fund yet. Equations (4.3) - (4.4) reflect the

fact that the manager takes the fees out of the fund at time Ti and transfers

some fraction of those fees, φ(Fi) which may be negative, into his personal

account. If, however, the manager decides to shut down the fund at some

time, Ti∗ , then the manager no longer collects fees and Equation (4.2) governs

the dynamics for all t > Ti∗ because shutting down is an irreversible decision.

In order to formalize Fi we must include Ht as a state variable. When

profits are calculated using a high-water-mark the dynamics of Ht are given

by

HTi = max(XTi−, HTi−), (4.5)

dHt

dt
= 0, Ti ≤ t < Ti+1.

Figure 4.1 illustrates the dynamics of the high-water-mark provision.

The solid green line represents the value of the fund through time and at time

Ti the high-water-mark is given by the dashed blue line. At time Ti+1 the

fund value is below the high-water-mark so the manager does not collect a

performance fee and the high-water-mark stays where it is. At time Ti+2 the
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Figure 4.1: An illustration of the high-water-mark provision.

fund value is above the previous high-water-mark so the manager collects a

performance fee proportional to the difference between the dashed blue line on

the right and the dashed blue line on the left, and the high-water-mark resets

to be the value of the fund at time Ti+2 for future fee collection opportunities.

We can see that between Ti and Ti+1 the fund value gets above the high-water-

mark but it finishes at Ti+1 below the water-mark. Even though at one time

the fund was above the water-mark it does not reset at Ti+1 because the only

times that matter for the high-water-mark are the Ti’s. At time Ti+3 the fund

finishes above the high-water-mark from Ti+2 and so the manager will collect

a performance fee and the high-water-mark will reset.

Given these dynamics for Ht the fee charged at time Ti can be written

102



as

Fi = f(XTi−, HTi−) = λm ·XTi− + λp ·max(XTi− −HTi−, 0). (4.6)

In the case where there is no performance fee we have λp = 0 and Ht is no

longer a state variable.

With the dynamics of the state variables we can now examine the man-

ager’s optimal investment problem. The manager wishes to maximize the

discounted utility of future consumption. The manager has multiple control

variables to help him achieve this goal: ct, pt, `t and Ti∗ . In order to guarantee

the manager is non-anticapative these control variables are required to be mea-

surable functions with respect to Ft, the filtration generated by (W1,t,W2,t).

The set of all such measurable functions is denoted Mt. The manager’s opti-

mization problem then becomes

V (x, y, h, t) = max
(cs,ps,`s,Ti∗ )∈Mt

E
[∫ ∞

t

e−β(s−t)U(cs)ds

∣∣∣∣Xt = x, Yt = y,Ht = h

]
,

(4.7)

where U(cs) is the utility the manager gets from consuming at rate cs and β is

the manager’s impatience parameter. We will assume the existence of a finite

value function.

4.3 Characterizing and Finding the Optimal Solution

The formulation presented in the last section culminates in having to

solve Equation (4.7). Unfortunately this formulation does not fall within a

class that has standardized methods for computing the solution. The primary
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reason for the complication comes from the fact that this problem has elements

of both discrete and continuous formulations and cannot be meaningfully ap-

proximated entirely as a discrete time or a continuous time problem. If we had

a terminal time and an objective at the terminal time, we could walk back in

time using dynamic programming and solve the problem. On the other hand

if we did not have a terminal time, usually we would be able to remove the

time variable since the current time will not affect the decision making, only

the other state variables will.

We solve this essentially in two steps. First we look at the continu-

ous control between two discrete fee collection times and construct a mapping

that maps the value function at the end of the period to the beginning of

the period, under the optimal strategy. This mapping is obtained using the

standard Bellman arguments in continuous time. With this mapping, we set

this into the discrete setting, along with the fee collection structure and the

shut-down decision and propose an iterative method that converges to the

fixed point solution. The mapping is set up so that the continuous control

can easily accommodate more general stochastic processes and frictions like

transaction costs. However, we will focus on the model described in the pre-

vious section since our objective is to understand the implications of the fee

structure and the multi-period nature of these money management contracts

with high-water-marks.

We note that if t > Ti∗ or y = 0 (the manager has shut down or

bankrupted the fund) then the manager no longer has to make decisions with
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the fund’s money. In this situation he only makes decisions in his personal ac-

count and faces the standard problem of optimal investment and consumption

found in Merton (1969). Specifically if the manager has a constant relative

risk averse (CRRA) utility function of the form

U(c) =
c1−γ

1− γ

the the manager’s objective function has the solution

M(y) := V (x, y, h, t) =
γγ

1− γ

(
β − 1− γ

2γ

(
µ2 − r
σ2

)2

− r(1− γ)

)−γ
y1−γ.

In the general utility case the solution is not always so nice, but it is still the

solution to an ODE which we will assume has a solution represented by M(y).

From the model described in Section 4.2 we follow the standard prac-

tice, as in Yong and Zhou (1999), and find that between the times that fees are

collected the value function from Equation (4.7) must satisfy the Hamilton-

Jacobi-Bellman (HJB) equation

βV = Vt + max
p,`,c

{
1
2
`2σ2

1x
2Vxx + 1

2
p2σ2

2y
2Vyy + ρσ1σ2p`xyVxy (4.8)

+ [`(µ1 − r) + r]xVx + ([p(µ2 − r) + r]y − c)Vy + U(c)
}
, Ti < t < Ti+1.

Taking first order conditions we find that

`∗ =
(µ1 − r)σ2VxVyy − ρ(µ2 − r)σ1VyVxy

σ2
1σ2x

(
ρ2V 2

xy − VxxVyy
) , (4.9)

p∗ =
(µ2 − r)σ1VyVxx − ρ(µ1 − r)σ2VxVxy

σ1σ2
2y
(
ρ2V 2

xy − VxxVyy
) , (4.10)

c∗ = (U ′)
−1

(Vy) . (4.11)
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These first order conditions hold between fee collections only if Vxx < 0

and Vyy < 0 (more precisely when the Hessian matrix is negative definite),

meaning that V is concave. Due to the performance fee, however, V may not

always be concave close to the water-mark, and the first order conditions will

lead to minimization or a saddle-point rather than maximization. When V is

convex maximizing over (`, p) implies that the manager should take on infinite

leverage, which is not feasible from a practical standpoint. In order to resolve

this issue we place upper bounds, ˆ̀ and p̂, on the amount of leverage, ` and

p, that the manager can take so that whenever V is convex we use ˆ̀ or p̂ in

Equation (4.8). Specifically, if we have the set

G = {(p∗ ∧ p̂, `∗ ∧ ˆ̀), (p̂, `∗ ∧ ˆ̀), (p∗ ∧ p̂, ˆ̀), (p̂, ˆ̀)}

the Equation (4.8) can be rewritten as a discrete choice problem

βV = Vt + max
(p,`)∈G

{
1
2
`2σ2

1x
2Vxx + 1

2
p2σ2

2y
2Vyy + ρσ1σ2p`xyVxy (4.12)

+ [`(µ1 − r) + r]xVx + [p(µ2 − r) + r]y
}

+ U(c∗)− c∗Vy, Ti < t < Ti+1.

We need not worry about c∗ because the utility function, U , is concave by

definition.

Figure 4.2 in Section 4.4 shows an example of a convexity in the value

function from the performance fee. This derivation has been similar to Merton

(1969), however in this case we must consider the extra income from managing

the fund.

For a PDE of the form in Equation (4.12) to be well defined it must also

have a terminal condition. Typically this terminal condition is exogenously
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defined, however in this case we do not know what the terminal condition is.

Due to the infinite horizon in this problem the value function at the Ti’s must

be the same and we can use this to define a terminal condition endogenously.

In order to find the appropriate terminal condition we define an oper-

ator, A, that maps the value function at the end of a period to the beginning

of the period, on a general class of functions which will be described later. To

define this operator suppose there are functions g and ψ such that ψ satisfies

Equation (4.12) with the terminal condition ψ(x, y, h, Ti) = g(x, y, h) then the

operator, A, acting on g is defined by

(Ag)(x, y, h) = ψ(x, y, h, Ti−1). (4.13)

Intuitively, the operator A takes a function, g, and evolves it backwards, using

the HJB from Equation (4.12), ∆T amount of time, from Ti to Ti−1. We

need this to examine the difference between a proposed value function at the

different Ti’s and to formalize the endogenous terminal condition for the HJB.

Defining the class of functions that can be operated on by A is not

entirely straightforward. In order for there to be a classical solution to the

PDE in Equation (4.12), we must have that g is twice differentiable with its

second derivative not equal to zero. However, stochastic control problems are

seldom that ‘nice’ and we will have to find the viscosity solution to Equation

(4.12) and so we define A on a more broad class of distributions that possibly

have finitely many places where the first derivatives, with respect to x and y,

are discontinuous for each value of h.
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In order to characterize the solution to Equation (4.7) we provide the

following theorem.

Theorem 4.1. Suppose there is a function, v that satisfies Equation (4.12),

weakly, as well as

v(x, y, h, Ti) = max
{

(Av)(x− f(x, h), y + φ(f(x, h)),max(x, h), Ti),

M(y + φ(f(x, h))),M(y)
}

(4.14)

then v is the optimal value function in Equation (4.7).

The proof follows directly from Theorem C.1, which is stated and

proved in the appendix.

The maximization in Equation (4.14) comes from the fact that the

manager has the option to shut down the fund at the Ti’s. The first option

in the maximization represents the manager deciding to keep the fund open

and continuing to collect fees in the future. The second option corresponds

to the manager collecting fees this time but closing the fund afterwards. The

third option corresponds to the manager closing down the fund and defaulting

on its obligations. This may happen if φ(f) < 0 which is possible if the fees

collected aren’t enough to cover fixed costs associated with the fund. When

φ(f) < 0 the manager has the option of paying the remaining costs out of his

personal account and keeping the fund open, but he can also shut down.

In order to find a function that satisfies the conditions in Theorem 4.1

we develop an algorithm that, upon iteration, converges to the optimal value
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function. First we find the value function at the times Ti and then with this

we can find the value function between the Ti’s using Equation (4.12).

To define this iterative algorithm let us first define v̂0(x, h) as the ex-

pected future utility from collecting fees just one time and shutting down,

v̂0(x, y, h) = max{M(y + φ(f(x, h))),M(y)}. (4.15)

The iterative steps are next defined as

vj(x, y, h) = (Av̂j)(x, y, h), (4.16)

v̂j+1(x, y, h) = max{vj(x− f(x, h), y + φ(f(x, h)),max(x, h)), (4.17)

M(y + φ(f(x, h))),M(y)
}
.

Theorem 4.2. If the expected value in Equation (4.7) exists and is bounded

then in the limit as j approaches infinity we have

lim
j→∞

v̂j(x, y, h) = V (x, y, h, Ti−), (4.18)

lim
j→∞

vj(x, y, h) = V (x, y, h, Ti), (4.19)

where convergence is pointwise.

The proof of this theorem follows directly from Theorem C.3 in the

appendix.

Here the difference between Equations (4.18) and (4.19) comes from the

definition of the value function in Equation (4.7). Time Ti− is infinitesimally

before a fee is collected and so it is in the managers expected future utility,

109



however at time Ti the fee has been collected and so that fee is no longer

expected in the future, because it was collected already.

Thus, if a solution to this problem exists then the algorithm in Equa-

tions (4.16) and (4.17) will find the value function at the times of fee collection.

Then the converged solution, or an approximation there of, can be used to find

the value function and the manager’s optimal investment strategy at times be-

tween fee collections using Equations (4.9) - (4.12).

4.4 Analysis of Manager Risk Profile

When a money manager considers a one-time performance fee payout,

it is understandable that when the fund value is low the money manager will

take large risks to maximize his payout objectives. Several analytical results

in the literature have given us good insights into the risk profile under such

one-time performance fee payouts. While these analytical results offer clear

insights on the nature of the results’ dependence on various parameters, the

fee structures and the models setup are also quite limited. Our objective in

this section is to understand how risk profiles change when the manager’s

objective is in maximizing the rewards from a series of payouts rather than

just one terminal payout, especially under high-water-marks.

We begin with a simpler setup comparing the manager’s risk profiles

under different fee structures under the one-time payout setup, as in Carpenter

(2000), where the manager gains utility from fees collected at the end of one

period without intermediate consumption. In this setup the manager’s wealth
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does not influence his behavior since he only gains utility from a one-time fee.

We specify the parameters of the model so that the expected return,

µ1 = 8%, the volatility, σ1 = 20%, the risk-free rate, r = 2%, the impatience

parameter, β = 10%, the performance fee, λp = 15%, the management fee,

λm = 1.5% (per year), the manager has a CRRA utility function (as above)

with γ = 2, and the maximum amount of risk the manager is allowed to take is

ˆ̀= 1, 000%. From Merton (1969) we know that if the manager were managing

this money for himself (rather than for the client) then he would optimally set

`∗ =
µ− r
γσ2

= 75%,

which we will denote `M , and we will compare the risk exposures to this so we

can understand the manager’s relative risk taking profile.

In Carpenter (2000) the author considers a single period problem where

the management collects a known base-line fee and the performance fee is

charged on the final value of the fund. For the purposes of comparison we

can consider the base-line fee collected by the manager to be a management

fee that is collected on the initial value of the fund and is known before the

problem begins. Between the beginning of the fund and fee collection the

manager has the same opportunity set as in our paper and seeks to maximize

the expected utility of the first fee collection; once the fee is collected the

problem is over. In her paper, Carpenter finds an analytical solution to this

problem and finds that the manager will always take on infinite leverage when

the fund value is close to zero, and lower risk when the fund value is higher

111



than the benchmark.
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Figure 4.2: Terminal value function when the management fee is known ahead
of time and when it depends on the final value of the fund. We can see that
when the management fee is known ahead of time the utility is flat when the
fund is below the water-mark because the performance fee does not get paid
until the fund exceeds H. Alternatively, the utility function is increasing below
the water-mark when the management fee is determined at the end because.
When the management fee is determined at the end the manager may not
want to take as much risk so that he doesn’t forfeit the fee.

If, however, rather than setting the management fee at the beginning of

the period, the fee is set at the end then we find that the manager drastically

changes his risk taking behavior. Figure 4.2 plots the objective function in

these two cases. The blue dashed line represents the objective function that

the manager wants to maximize when the management fee is known at the

beginning. Here we see that the objective is flat when the fund is less than

112



H because the manager will only get the management fee, which is known

ahead of time, so that the manager has incentive to take on extra risk in this

region since he has nothing to lose. Alternatively, the solid green line repre-

sents the manager’s objective function when the management fee is computed

as a function of the fund’s terminal value. Here the objective is increasing

everywhere (it goes to −∞ as the fund value goes to zero because γ > 1) and

so the manager does not have as much incentive to take on extra risk in this

region.

In Figure 4.3 we illustrate the manager’s behavior in these two scenar-

ios: when the management fee is known ahead of time, and when it is not.

We plot the optimal value of ` versus the fund value, 6 months before the fee

is collected where H = $50. In this figure the blue dashed line represents the

optimal leverage when the management fee is determined at the beginning of

the contract, as in Carpenter (2000), the solid green line represents the op-

timal leverage when the management fee is determined by the final value of

the fund, the red dash-dotted line is the Merton portfolio (`M) and the dotted

black line is the water-mark.

In the case where the management fee is determined at the beginning

of the contract we can see, as expected, the manager takes on as much risk as

possible when the fund value is low, relative to the benchmark, because he has

nothing to lose in this region. However once the manager has exceeded the

benchmark he drastically reduces his risk to help lock in the performance fee.

We note, however, that he begins to reduce his risk when the fund value is still
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Figure 4.3: Optimal leverage when the management fee is known ahead of time
and when it depends on the final value of the fund, 6 months before the fees
are collected. The blue dashed line shows the optimal leverage in the risky
asset when the management fee is known ahead of time. It shows that the
manager should take on as much risk as possible when the fund value is low
to attain the performance fee. The solid green line shows the optimal leverage
when the management fee is determined by the final value of the fund. Here
the manager takes on much less risk than in the alternative case. The red
dash-dotted line shows the Merton portfolio, or the optimal leverage in the
risky asset if the manager were investing his own money.

slightly below the water-mark. This is because there are still six months until

the fee will be collected and so he has plenty of time for the fund value to go

above the water-mark before the fee will be collected, and so he reduces his

risk to help the positive trend of the risk-free asset guarantee the fund value

goes above the benchmark. When the fund value is very large relative to the

water-mark the manager asymptotes to the Merton portfolio because it seems
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more and more likely that the performance fee is guaranteed.

In the case where the management fee is determined by the terminal

value of the fund the manager no longer maxes out his risk for small fund values

because by doing this he would risk losing his management fee, which is not a

concern in Carpenter (2000). Instead, when the fund value is low the manager

sets his optimal leverage close to the Merton portfolio, `M , because attaining

a performance fee is not realistic and thus behaves as if the management fee

is the only possibility. He then increases his leverage as he gets closer to the

water-mark to increase the chance of getting the performance fee. After he

goes above the water-mark the manager reduces his risk below `M to help

lock-in the performance fee, and finally for large fund values the manager sets

his leverage close to `M because losing the performance fee is not likely and so

he begins to behave as if it is guaranteed. We can see that even by changing

something as minor as the timing of the management fee the manager will

drastically change his risk levels. By charging the management fee at the end

of the contract there will be much less distortion in the manager’s risk as

compared to the Merton portfolio.

We next move on to an example following our more complex model

setup where fees are transferred into the manager’s personal account period-

ically and he consumes out of this account in continuous time. As we are

primarily concerned with the management of the client’s assets we assume

that the manager invests 100% of his personal wealth in the risk-free asset at

all times, but still consumes optimally. As this eliminated the dependence on
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S2 we set the remaining parameters to be µ1 = 17%, σ1 = 25%, γ = 2, λm =

1.5%, λp = 15% and we set φ(f) = α(f − κ) where α = 75% and κ = 0.1.

Setting φ in this way means that every period the manager has to pay a fixed

cost of 10¢ for rents and then he takes home 75% of whatever is leftover after

paying the fixed cost.

Figure 4.4 plots the optimal portion of the fund invested in the risky

asset as a function of the fund’s value 6 months before the next fee will be

collected, assuming the manager currently has $1 in personal wealth. The

dashed line represents a manager who will definitely shut down the fund after

the fee is collected (perhaps sub-optimally) and the solid line represents a

manager who will make an optimal shut down decision and keep collecting

fees in the future.

We can see that when the manager is definitely going to shut down

the fund after one period (myopically) the manager behaves similar to the

manager in Carpenter (2000). In this situation since the manager has his own

personal wealth, if the fund value is low the manager really has nothing to lose,

as in the case of Carpenter (2000), because if the fund goes bankrupt he still

has his own money to consume. On the other hand, however, if the manager

keeps the fund open the manager behaves quite differently. For extremely low

fund values we see that the manager takes on large risk for the same reason as

before, just not as drastically. When the fund value increases a bit we see that

the manager takes on much less risk than the myopic manager because his

ability to collect fees in the future could be diminished if he takes on too much
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Figure 4.4: Optimal proportion of the fund invested in the risky asset as
a function of the fund’s value for a manager with a personal wealth of $1,
six months before the next fee will be collected. The dashed line represents
a manager who will close down after one fee collection, and the solid line
represents a manager who will keep playing the game.

risk; his upside is still present but his downside has been increased due to his

ability to collect fees in the future. We can also see that around the current

high-water-mark the manager alters his risk profile similar to the solid green

line in Figure 4.3. As the fund value increases from zero the manager decreases

his risk but as he gets closer to the water-mark he realizes that earning the

performance fee is possible and so he increases his risk slightly. Then above the

water-mark the manager decreases his risk again to lock-in the performance

fee and finally when the fund value is high the manager asymptotes to some
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stable level. Interestingly the forward looking manager takes on a little more

risk than the myopic manager for large fund values. This is due to the fact

that the water-mark will reset to a high level if the fund finishes at a high level,

meaning that in the next period the performance fee will be harder to collect.

Therefore the manager is willing to take on a little more risk and accepts

the possibility of lowering the fund value because it could lead to easier fee

collection in the future; a consideration not taken into account by the myopic

manager.
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Figure 4.5: Optimal proportion of the fund invested in the risky asset as a
function of the fund’s value, 6 months before the next fee will be collected, for
various values of manager wealth.

We are also interested in knowing how a manager’s initial wealth affects
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the risk that he takes with his clients’ money. In Figure 4.5 we plot the optimal

proportion of the fund’s value to be invested in the risky asset six months

before the next fee will be collected for several values of the manager’s initial

wealth. The solid line on top represents a manager whose personal wealth is

20% of the fund’s value at the last fee collection, and is therefore relatively

rich as compared to the assets he manages. The dashed line on the bottom

represents a manager whose personal wealth is 1% of the fund’s value at the

last fee collection, and is therefore relatively poor as compared to the assets he

manages. We can see that for the most part the richer managers take on more

risk than the poorer managers. This is because the richer managers have much

less to lose than the poorer managers, meaning that the rich managers are

affectively “playing with house money.” For the poorer managers the ultimate

goal is to become rich and this is not possible if the fund blows up.

We also notice that the poorer managers alter their risk profile more

drastically than the rich managers around the current high water mark. For

a poor manager the additional performance fee can make a big difference in

personal wealth. Alternatively a manager who is already rich doesn’t benefit as

much from the additional income and therefore doesn’t change his risk profile

by much.

4.5 Model Extension

The basic model set up in Section 4.2 is flexible enough to incorporate

several extensions. This section considers such an extension; we consider the
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setting where fund performance affects capital flows in and out of the fund. For

example, if the fund is doing well investors may want to invest more money

in the fund, or alternatively if the fund is performing poorly investors may

want to take some money out of the fund. There have been empirical studies

of capital flows in and out of funds, as in Chevalier and Ellison (1997), and

generally speaking funds get new investments when they have positive returns

and investors leave the fund when there are negative returns.

We model capital flows in and out of the fund with a multiplicative

function, Qi, that is observed only at fee collection times, Ti, corresponding to

when the fund reports performance. If Qi > 1 then money flows into the fund

and if Qi < 1 money leaves the fund. In general we assume that Qi is a function

of the fund’s performance through the relationship between XTi− and HTi−; if

XTi− > HTi− then the fund has performed well recently and we expect money

to come into the fund and vice versa. For the sake of accounting we assume

that if XTi− < HTi− then Qi ≤ 1. Without this assumption the problem

becomes infinite dimensional and each individual investor’s high-water-mark

would have to be tracked. With this assumption, however, all investors’ high-

water-marks can be aggregated and the dimensionality of the problem remains

unchanged.

With capital flows in and out of the fund the dynamics of the fund

value and the high-water-mark change at the fee collection times, Ti, to

XTi = Qi(XTi−, HTi−) · (XTi− − Fi),

HTi = Qi(XTi−, HTi−) max(XTi−, HTi−).
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Here the Q in the new high-water-mark equation is simply a scaling factor

that aggregates all investors’ high-water-marks.

With these new dynamics the solution to Equation (4.7) no longer

satisfies Equation (4.14), but rather must satisfy

v(x, y, h, Ti) = max

{
(Av)(Q(x, h)(x− f(x, h)), y + φ(f(x, h)),

Q(x, h) max(x, h), Ti),M(y + φ(f(x, h))),M(y)

}
.

With this we can appropriately modify the algorithm to find V so that

vj(x, y, h) = (Av̂j)(x, y, h),

v̂j+1(x, y, h) = max

{
vj(Q(x, h)(x− f(x, h)), y + φ(f(x, h)),

Q(x, h) max(x, h)),M(y + φ(f(x, h))),M(y)

}
.

As a numerical example using the same parameters as in Section 4.4 we

assume that Qi’s follow a piecewise linear function of returns, as in Chevalier

and Ellison (1997) and Basak et al. (2007). In these papers the authors judge

the returns of the fund relative to the market as a whole. Here the market is

not included so we modify their functional form of Q to depend on the fund’s

return relative to the high-water mark; specifically

Q(x, h) =





QD, log x
h
< ηD

QD + ζ(log x
h
− ηD), ηD ≤ log x

h
< ηU

QU ≡ QD + ζ(ηU − ηD), ηU ≤ log x
h

and we set QD = 0.75, QU = 1.35, ηD = −0.08, ηU = 0.112 and ζ = QU−QD
ηU−ηD

=

3.125. Figure 4.6 plots Q as a function of the returns of the fund relative to

the high-water-mark.
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Figure 4.6: Q as a function of the fund’s return relative to the high-water-
mark. For fund losses relative to the water-mark money flows out of the fund
because Q < 1 and for fund gains relative to the water-mark money flows
into the fund because Q > 1. The potential gains from new investment are
larger than the potential losses from poor performance because empirically it
seems that investors are bit sticky with their old investments, see Chevalier
and Ellison (1997).

In Figure 4.7 we plot the optimal percentage of the fund’s value to be

invested in the risky asset six months before the next fee collection opportunity

under the assumption that at the end of each period money will flow in or out

of the fund according to the Q function shown in Figure 4.6. We can see

that in this situation the manager’s risk profile is qualitatively similar to the

case without capital flows, however everything is a little more extreme. When

the fund is a bit below the water-mark the manager alters his risk profile,

however he drops his risk very quickly as he gets closer to the water-mark.
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Figure 4.7: Optimal proportion of the fund’s value invested in the risky asset
six months prior to the next fee collection opportunity. At the end of each
period money will flow in or out of the fund and presently the manager has
$1 in personal wealth.

The manager has a lot more to lose in this scenario because if he doesn’t get

above the water mark he knows that clients will withdraw their money, so

getting positive returns is doubly important. Also when the fund is slightly

above the water-mark the manager reduces his risk by much more than when

money doesn’t flow into the fund because it is even more important to stay

above the water-mark now to avoid withdrawals. As the fund gets more above

the water-mark the manager is willing to take on more risk. Here the manager

sees a bright future of potential extra investment and wants to take the gamble

to try to get even more money invested in the fund so next period he can collect
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extra fees. If this gamble doesn’t pay off he will quickly decrease his risk to

avoid large losses. This more extreme behavior, relative to the case without

capital flows, is fundamentally due to the extra convexity introduced to the

problem by considering capital flows. As we saw earlier, the performance fee

brings a convexity into the manager’s objective and the addition of capital

flows serves to intensify this convexity.

4.6 Conclusion

This chapter investigates the behavior of a money manager under sev-

eral common fee structures. For this investigation we model the dynamics of

stock and bond behavior and pose an optimization problem to be solved by

the fund manager. We formulate this problem as a stochastic optimal con-

trol problem and then transform it into a Hamilton-Jacobi-Bellman equation

that characterizes the optimal solution. We then present an algorithm that

converges to this solution.

We find that the inclusion of a management fee that is determined by

the terminal value of the fund can drastically change the risk taking behavior

of a manager from the behavior found in Carpenter (2000). When the fund

value is low, relative to the benchmark, the manager should not take on large

leverage because he may put the management fee at risk.

We see that when fees are collected repeatedly using a high-water-mark

the manager must weigh two opposing incentives. These two incentives are the

very next fee that will collected and potentially resetting the water-mark which
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will make future fee collections more difficult. When the manager optimally

weighs these incentives his risk taking behavior can be drastically different

than when the next fee is the only thing on his mind. We also investigate

the effect that a manager’s initial wealth has on the risk he takes with client

money and the effect that capital flows has on manager risk taking behavior.

Going forward it would be interesting to study this problem in the

presence of transaction costs to understand when the manager is more or less

willing to pay transaction costs with respect to the timing of management and

performance fee collections. We could also study this problem in the presence

of heavy tails and diminishing returns commonly found in the hedge fund

world.
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Chapter 5

Concluding Remarks

This dissertation has focused on developing numerical methods to solve stochas-

tic optimal control problems. Three classes of stochastic control models were

considered and applied to financial problems. While the methods and tech-

niques developed here were specific to the application areas considered in the

previous chapters there are many other applications that could benefit from

the numerical methods developed here. Additionally, more analysis could be

considered for each problem as well.

In the first example we considered the optimal stopping problem of

pricing American derivative securities. To solve this problem we derived dif-

ferential equations that govern the evolution of the early exercise boundary and

developed numerical methods that exploit these boundary evolution equations

to price American options quickly and accurately. In the constant volatil-

ity setting we found that the modified integral method was the best method

considered; to extend upon this it would be prudent to investigate integral

equations for American options with stochastic volatility, as in Detemple and

Tian (2002), and try to implement our boundary evolution equations in this

setting. Following this application area it would be interesting to also examine
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local volatility models. Local volatility models are nice because they can eas-

ily replicate the volatility smiles seen empirically in the options market, and

they also maintain the low dimensionality of the classic Black-Scholes setting.

To this end, it could be insightful to modify Equation (2.6) to incorporate

local volatility models, such as the constant elasticity of variance model seen

in Emanuel and MacBeth (1982). There are many other application areas for

optimal stopping problems, such as real options and earliest detection prob-

lems, and investigating boundary evolution equations for these problems could

be an interesting area of future work as well.

In the second example we considered a general impulse control model

applied to the intervention problem faced by a nation’s central bank. A key

contribution of this chapter is the development of an efficient and systematic

numerical method that can solve a very large class of impulse control prob-

lems. We formulate the bank’s intervention problem as an impulse control

because of the relative infrequency of interventions and the jumps resulting

from intervention. Going forward we would like to consider the problem of

calibrating the model and solving the inverse problem to determine the bank’s

objective function. This would be insightful so that we could have a better un-

derstanding of the bank’s preferences and tolerances. Additionally we believe

the bank’s control problem could be more realistically modeled by considering

extra factors such as inflation or payroll growth. In our work so far the only

driving factor behind the bank’s intervention is deviations in the short rate,

when in reality inflation is a more reasonable driving factor for intervention.
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Although the bank is more concerned with inflation than interest rates, the

interest rate market is the main vehicle for intervention; the hope being that

changes in the interest rate market affect inflation. We also believe that the

intervention mechanism could be more realistically modeled. For example, in

the United States the Federal Reserve meets every six weeks to set a “target

rate” and then buys and sells repurchase agreements daily to reach its goals.

This type of control could perhaps be more realistically modeled using the

mechanism developed in Chapter 4.

Finally, we considered a new hybrid problem that has elements of dis-

crete and continuous time control. Here we formulated a general class of

problems and developed a numerical method to solve them. This hybrid con-

trol was applied to the problem faced by a money manager that discretely

collects fees and continuously makes trading decisions. Going forward we are

interested in considering the case where the fund’s and the personal risky as-

sets are negatively correlated. This will effectively allow the manager to hedge

his position in the personal risky asset with the fund’s assets. We still expect

to see similar behavior around the high-water-mark but there may be more

interesting behavior related to this hedge. The frequency with which fees are

collected is also an interesting setting to examine. When a manager collects

fees more frequently he is guaranteed to make more money through the per-

formance fee but it would be interesting to see if he also reduces his leverage

since he may not need as much risk to get the same reward. Given these com-

peting objectives for the manager we would also like to look at this problem
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from the point of view of the investor. Specifically, it would be interesting to

model the investor’s objectives and set up a competitive market with several

possible money managers and then find the optimal fee structure for the fund

given the investor’s behavior.
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Appendix A

Boundary Evolution Equations for American

Options

A.1 Proofs of Theorems

Proof. Theorem 2.1. First differentiate the boundary conditions with respect

to time, which will be in terms of the time derivative of p. This will also lead to

time derivatives of the exercise boundary, c(τ), which is indeed differentiable

by Lemma 4.1 in Myneni (1992). Notice that the time derivative of p also

satisfies Equation (2.1). The first boundary condition, (2.2) becomes

∂p

∂x

∂c

∂τ
+
∂p

∂τ
= − ∂c

∂τ

which is simplified using Equation (2.3) to

∂p(c(τ), τ)

∂τ
= 0. (A.1)

Next take the time derivative of Equation (2.3) and find

∂2p

∂x2

∂c

∂τ
+

∂2p

∂x∂τ
= 0. (A.2)

Now take the limit as x→ c(τ) from the right and substitute Equation (A.1)

into Equation (2.1) and get

0 = 1
2
σ2c2(τ)

∂2p(c(τ), τ)

∂x2
+ bc

∂p(c(τ), τ)

∂x
− rp(c(τ), τ). (A.3)
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Next substitute Equations (2.2) and (2.3) into (A.3),

∂2p(c(τ), τ)

∂x2
=

2qr − 2(r − b)c(τ)

σ2c2(τ)
. (A.4)

Finally combine Equations (A.2) and (A.4) and rearrange terms to find the

desired function, (2.6).

Proof. Theorem 2.2. Similar to the derivation of Equation (A.1), in stochas-

tic volatility we also have

∂

∂τ
p(c(y, τ), y, τ) = 0. (A.5)

Next we differentiate (2.14) with respect to y and τ , and (2.15) with respect

to y giving us

∂2p

∂x2

∂c

∂y
+

∂2p

∂x∂y
= 0, (A.6)

∂2p

∂x2

∂c

∂τ
+

∂2p

∂x∂τ
= 0, and (A.7)

∂2p

∂x∂y

∂c

∂y
+
∂2p

∂y2
= 0. (A.8)

Now combine (A.6) and (A.8) to see that

∂2p

∂y2
=
∂2p

∂x2

(
∂c

∂y

)2

. (A.9)

Next evaluate (2.12) at the boundary and substitute in (2.13), (2.14), (2.15),

(A.6) and (A.9), which gives us

0 = 1
2
f(y)2c2 ∂

2p

∂x2
− ρλ(y)f(y)c

∂2p

∂x2

∂c

∂y
+ 1

2
λ(y)2

(
∂c

∂y

)2
∂2p

∂x2
− rq. (A.10)

Finally plug in (A.7) to Equation (A.10) and rearrange terms to obtain the

desired result, (2.17).
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Appendix B

Impulse Control of Interest Rates

B.1 Proofs of Theorems and Lemmas

Unless otherwise specified, each expectation and Brownian motion in

the appendix is taken with respect to the physical measure, P . We also specify

the notation that Er[ · ] = E
[
·
∣∣r0 = r

]
. The proofs of several of the theorems

rely on the following lemma.

Lemma B.1. Suppose F (r) is linear in (−∞, d] and in [u,∞) for some d and u

such that d < u. If F ∈ C1(R)∩C2(R\NF ) where NF is a set of finitely many

points, then for any admissible impulse control ν = (τ1, ξ1; · · · ; τi, ξi; · · · ) and

r ∈ R, we have

−F (r) = Er

[∫ ∞

0

e−βt[AF (rt−)− βF (rt−)]dt+
∞∑

i=1

e−βτi [F (rτi)− F (rτi−)]

]
.

(B.1)

Proof. Lemma B.1. We first define some notation. For any admissible im-

pulse control ν = (τ1, ξ1; · · · ; τi, ξi; · · · ), we define η(t) as

η(t) =
∑

i:τi≤t

ξi. (B.2)

Then η(t) is an Ft measurable càdlàg process. As in (3.4), we have

rt = r +

∫ t

0

µ(rs)ds+

∫ t

0

σ(rs)dWs + η(t), (B.3)
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which is the integral form of the dynamic of the state process under control ν.

Applying the extant second derivative Meyer-Itô’s formula (c.f. page

221 of Protter (2005)) together with integration by parts, we have

e−βTF (rT )− F (r0−) =

∫ T

0

e−βtF ′(rt−) · σ(rt−)dW (t)

+

∫ T

0

e−βt[AF (rt−)− βF (rt−)]dt+

∫ T

0

e−βtF ′(rt−)dη(t)

+
∑

t≤T :η(t)6=η(t−)

e−βt[F (rt)− F (rt−)− F ′(rt−) · (η(t)− η(t−))].

(B.4)

Note that dη(t) = 0 whenever η(t) = η(t−) since ν is an impulse

control. Also, η(t) = η(t−) for every t /∈ {τi : i = 1, 2, · · · }. Therefore,
∫ T

0

e−βtF ′(rt−)dη(t) =
∑

t≤T :η(t) 6=η(t−)

e−βtF ′(rt−) · (η(t)− η(t−))

=
∑

i:τi≤T

e−βτiF ′(rτi−) · ξi,

and (B.4) becomes

e−βTF (rT )− F (r) =

∫ T

0

e−βtF ′(rt−) · σ(rt−)dW (t)

+

∫ T

0

e−βt[AF (rt−)− βF (rt−)]dt+
∑

i:τi≤T

e−βτi [F (rτi)− F (rτi−)].

(B.5)

Taking expectation of both sides, the first term on the RHS of (B.5) vanishes

since F ′ is bounded, and we have

e−βTEr[F (rT )]− F (r) = Er
[ ∫ T

0

e−βt[AF (rt−)− βF (rt−)]dt

+
∑

i:τi≤T

e−βτi [F (rτi)− F (rτi−)]

]
.
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Taking the limit as T → ∞, the LHS of above is −F (r). The first term

of the RHS, Er[
∫ T

0
e−βt[AF (rt−)− βF (rt−)]dt] goes to Er[

∫∞
0
e−βt[AF (rt−)−

βF (rt−)]dt] as T → ∞, thanks to the Fubini Theorem and the assump-

tions on F . The last term of RHS,
∑

i:τi≤T e
−βτi [F (rτi) − F (rτi−)] goes to

∑
i:τi<∞ e

−βτi [F (rτi)− F (rτi−)], due to the admissibility of ν and the assump-

tions on F .

Proof. Theorem 3.1 (Verification Theorem). By definition, we have v ≥

V . Thus we only need to prove that v ≤ V . Let ν be an arbitrary admissible

impulse control. Applying Lemma B.1 to v, we have

−v(r) = Er

[∫ ∞

0

e−βt[Av(rt−)− βv(rt−)]dt+
∞∑

i=1

e−βτi [v(rτi)− v(rτi−)]

]
.

On the other hand, the cost function associated with ν is

Jr(ν) = Er
[ ∫∞

0
h(rt)e

−βtdt+
∑

nG(ξn)e−βτn
]
. This leads to

Jr(ν)− v(r) = Er
[ ∫ ∞

0

e−βtLv(rt−)dt

+
∞∑

i=1

e−βτi [G(ξi) + v(rτi− + ξi)− v(rτi−)]

]

≥ 0, (B.6)

where we define

Lv(·) ≡ Av(·)− β · v(·) + h(·). (B.7)

The last inequality is because, v is a solution to the QVI. Therefore, V (r) =

infν∈A Jr(ν) ≥ v(r). This leads to v(r) = V (r).
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Proof. Theorem 3.2 (The fixed boundary problem). Applying the ex-

tant second derivative Meyer-Itô’s formula and integration by part, we have

−v(r) = Er
[ ∫ ∞

0

e−βt[Av(rt−)− βv(rt−)]dt

+
∞∑

i=1

e−βτi [v(rτi)− v(rτi−)]

]
∀r ∈ [d, u].

Thus, for any r ∈ [d, u], we have

Jr(ν)− v(r) = Er
[ ∫ ∞

0

e−βtLv(rt−)dt

+
∞∑

i=1

e−βτi [G(ξi) + v(rτi− + ξi)− v(rτi−)]

]
(B.8)

= 0.

The last equality above is due to definition of the (d, D, U, u) policy and the

fact that v solves the differential equation problem (3.11)-(3.13).

Proof. Theorem 3.3. 1. Let w(r) = Vn(r)− V̄n(r), then we have

Aw(r)− βw(r) = 0, r ∈ (dn+1, un+1) (B.9)

w(dn+1) = Vn(dn+1)− V̄n(dn+1) = Vn(dn)− V̄n(dn+1)

+Vn(dn+1)− Vn(dn)

= Vn(Dn)− V̄n(Dn) + [Vn(dn+1) + k · dn+1]

−[Vn(dn) + k · dn]

= w(Dn) +

∫ dn+1

dn

(V ′n(s) + k)ds ≥ w(Dn). (B.10)

The final inequality in (B.10) is because V ′n(r) + k ≥ 0 in [dn, dn+1]. Similarly,

we have w(un+1) ≥ w(Un). Therefore, ∃t0 ∈ (dn+1, un+1) such that ∀r ∈
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[dn+1, un+1], w(t0) ≤ w(r). At t0, we have w′(t0) = 0 and w′′(t0) ≥ 0. This,

together with Equation (B.9), yields

w(t0) =
1

β
· σ

2(t0)

2
w′′(t0) ≥ 0, (B.11)

and this implies that for any r ∈ [dn+1, un+1],w(r) ≥ w(t0) ≥ 0.

Also, by Equation (B.10), we know that

Vn(dn+1)− V̄n(dn+1) = w(dn+1) = w(Dn) + [Vn(dn+1) + k · dn+1]

−[Vn(dn) + k · dn]

≥ [Vn(dn+1) + k · dn+1]− [Vn(dn) + k · dn]

or equivalently, V̄n(dn+1) ≤ Vn(dn) − k · (dn+1 − dn). Thus any r ∈ [dn, dn+1],

we have

V̄n(r) = V̄n(dn+1) + k · (dn+1 − r) ≤ Vn(dn)− k · (r − dn)

= Vn(r)−
∫ r

dn

[k + V ′n(s)]ds ≤ Vn(r).

Similarly, we have V̄n(r) ≤ Vn(r) in [un+1, un]. In (−∞, dn] and [un,+∞),

it is trivial to see that V̄n(r) ≤ Vn(r) since both cost functions are linear with

the same slope in those regions.

2. To prove that V̄ ′n(dn+1+) + k ≥ 0, we only need to show that

w′(dn+1+) ≤ 0. Assume the contrary, then we have w′(dn+1+) > 0. This,

together with w(dn+1) ≥ w(Dn), implies that ∃t1 ∈ (dn+1, Dn) such that

w(t1) = maxr∈[dn+1,Dn] w(r), and w(t1) > w(dn+1). This leads to

βw(t1) =
1

2
σ2(t1)w′′(t1) + (a+ b · t1)w′(t1) =

1

2
σ2(t1)w′′(t1) ≤ 0, (B.12)
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which contradicts that w(t1) > w(dn+1) ≥ 0. Thus w′(dn+1+) ≤ 0, which

implies V̄ ′n(dn+1) + k ≥ V ′n(dn+1) + k ≥ 0. Similarly, it is easy to show that

−V̄ ′n(un+1) + l ≥ 0.

3. Assume the contrary, that is Dn+1 > Un+1.

Case 1: V̄n(Dn+1) ≤ V̄n(Un+1).This leads to V̄n(Dn+1) − l · Dn+1 ≤

V̄n(Un+1)− l ·Dn+1 < V̄n(Un+1)− l · Un+1, which contradicts the definition of

Un+1.

Case 2: V̄n(Dn+1) > V̄n(Un+1). We have V̄n(Dn+1) + k · Dn+1 >

V̄n(Un+1) + k ·Dn+1 > V̄n(Un+1) + k ·Un+1, which contradicts the definition of

Dn+1.

Thus both cases lead to Dn+1 ≤ Un+1.

4 and 5. Let w̄(r) = V̄n(r) − Vn+1(r), then, Aw̄(r) − βw̄(r) = 0 in

[dn+1, un+1]. Also, we have

w̄(dn+1) = V̄n(dn+1)− Vn+1(dn+1)

= V̄n(Dn) + k ·Dn − [Vn+1(Dn+1) + k ·Dn+1]

= {[V̄n(Dn) + k ·Dn]− [V̄n(Dn+1) + k ·Dn+1]}

+[V̄n(Dn+1)− Vn+1(Dn+1)]

≥ V̄n(Dn+1)− Vn+1(Dn+1) = w̄(Dn+1).

The inequality is because V̄n(Dn) + k · Dn ≥ V̄n(Dn+1) + k · Dn+1, according

to the definition of Dn+1.

Similarly, we have w̄(un+1) ≥ w̄(Un+1). Following exactly the same argument
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in the proof for claim 1 and 2, we know that w̄(un+1) ≥ 0, and w̄′(dn+1) ≤ 0,

and w̄′(un+1) ≥ 0. This implies, Vn+1(r) ≤ V̄n(r) for any r ∈ [dn+1, un+1],

V ′n+1(dn+1) + k ≥ 0 and −V ′n+1(un+1) + l ≥ 0. In (−∞, dn+1], Vn+1(r) ≤

V̄n(r) since both functions are linear with the same slope. So is the case in

[un+1,+∞).

Proof. Theorem 3.4. We first focus on the case when β − µ′(r) ≥ 0 ∀r. Due

to the Theorem 3.1, to prove that v(r) is the value function, it suffices to show

that v(r) satisfies the QVI (3.10), since the rest of the requirements in The-

orem 3.1 are automatically satisfied. We prove this Theorem by establishing

the following,

(i) Av(r)− βv(r) + h(r) ≥ 0 a.e. r ∈ R.

(ii) Qv(r) ≥ 0 for all r ∈ R.

(iii) QV (r) · [AV (r)− β · V (r) + h(r)] = 0 ∀ r.

Now, to prove i, we first define f(r) = v′(r). Since (d,D, U, u) is the

policy obtained at convergence, and v is its associated cost function, there

exists ε1 > 0 such that
{
v′(r) + k < 0, ∀r ∈ (d, d+ ε1]

−v′(r) + l < 0, ∀r ∈ [u− ε1, u).
(B.13)
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Also, we have
{
D = arg minr∈(d,u)

{
v(r) + k · r

}
(implying v′(D) = −k)

U = arg minr∈(d,u)

{
v(r)− l · r

}
(implying v′(U) = l).

(B.14)

The reason is, if any of (B.13)–(B.14) does not hold, the scheme could further

update (d,D, U, u) to improve v, which contradicts to the assumption that

(d,D, U, u) and v are the policy and the associated cost function obtained

at convergence. The assumption that v is C1 leads to v′(d) + k = 0 and

−v′(u)+ l = 0, and this together with (B.13) implies f ′(d+) = v′′(d+) < 0 and

f ′(u−) = v′′(u−) < 0. Since f ′(d+) = v′′(d+) < 0 and f(d) = f(D) = −k, we

know that ∃ r̄1 ∈ (d,D) which minimizes f over the closed interval [d,D]. We

define

r1 = min
r>d
{r is a local minimizer of f}

r2 = max
r<D
{r is a local minimizer of f}.

And from (3.11), we know that

1

2
σ2(r)v′′(r) = −µ(r) · v′(r) + β · v(r)− h(r),∀r ∈ (d, u). (B.15)

The RHS of (B.15) is C1(R − Nh), and thus the LHS is also C1(R − Nh).

Taking left Derivative of (B.15), we get

1

2
σ2(r)v′′′(r−) + σ′(r)σ(r)v′′(r) = −µ(r) · v′′(r) + (β − µ′(r)) · v′(r)− h′(r−),

∀r ∈ (d, u),

or equivalently,

1

2
σ2(r)f ′′(r−)+(σ′(r)σ(r)+µ(r))·f ′(r) = (β−µ′(r))·f(r)−h′(r−),∀r ∈ (d, u).
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Let r = r2, we have

1

2
σ2(r2)f ′′(r2−) = (β − µ′(r2)) · f(r2)− h′(r2−)

≤ (β − µ′(r2)) · f(D)− h′(r2−)

= −(β − µ′(r2)) · k − h′(r2−).

The last inequality above is because f(r2) ≤ f(D) and β − µ′(r) ≥ 0

∀r. This can be easily seen from the definition of r2 together with the fact that

f ′(D) = v′′(D) ≥ 0. Since f ′′(r2−) ≥ 0, we know that h′(r2−)+(β−µ′(r2))·k ≤

0. By the assumption on h(r), we have h′(r−) + (β − µ′(r)) · k ≤ 0, ∀r < r2.

Therefore, ∀r ∈ (−∞, d), we have

Lv(r) =
1

2
σ2(r)v′′(r) + µ(r) · v′(r)− β · v(r) + h(r)

= 0− µ(r) · k − β · [v(d) + k · (d− r)] + h(r)

= [0− µ(d) · k − β · v(d) + h(d)]− βk · (d− r) + µ(d) · k − µ(r) · k

+h(r)− h(d)

= [0− µ(d) · k − β · v(d) + h(d)]

−[(β · (d− r)− µ(d) + µ(r)) · k + h(d)− h(r)]

>
1

2
σ2v′′(d+) + µ(d) · v′(d)− β · v(d) + h(d)

−
∫ d

r

[(β − µ′(s)) · k + h′(s)]ds

≥ Lv(d+) = 0.

The inequality in the above is because 1
2
σ2v′′(d+) < 0 and (β − µ′(s)) · k +

h′(s) ≤ 0 for any s ∈ (r, d).
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Similarly, we define

r3 = min
r>U
{r is a local maximizer of f}

r4 = max
r<u
{r is a local maximizer of f}.

Then, we have (β−µ′(r)) ·l−h′(r) ≤ 0, ∀r > r3. By similar arguments, we can

prove that Lv(r) > 0, ∀r > u. Therefore, Av(r)− βv(r) + h(r) = Lv(r) ≥ 0,

a.e. r ∈ R.

Next we will prove ii. We define the notation: Iv(r) ≡ infξ>0

{
v(r +

ξ) +K+kξ
}

which represents the value of increasing the short rate. Similarly

we define Dv(r) ≡ infξ>0

{
v(r − ξ) + L + l · ξ

}
, which represents the value of

placing a control to decrease the short rate. We will finish the proof of ii by

showing the following:

(I) Iv(r)− v(r) ≥ 0 for all r ∈ R.

(a) Iv(r)− v(r) = 0 for r ∈ (−∞, d].

(b) Iv(r)− v(r) > 0 for r ∈ [u,∞).

(c) Iv(r)− v(r) > 0 for r ∈ (d,D].

(d) Iv(r)− v(r) > 0 for r ∈ [U, u).

(e) Iv(r)− v(r) > 0 for r ∈ (D,U).

(II) Dv(r)− v(r) ≥ 0 for all r ∈ R.

(a) Dv(r)− v(r) = 0 for r ∈ [u,∞).
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(b) Dv(r)− v(r) > 0 for r ∈ (−∞, d].

(c) Dv(r)− v(r) > 0 for r ∈ [U, u).

(d) Dv(r)− v(r) > 0 for r ∈ (d,D].

(e) Dv(r)− v(r) > 0 for r ∈ (D,U).

Note that d < D < U < u, and D minimizes v(r) + k · r over [d, u], and

thus, minimizes it over R. This is because v′(r) + k ≡ 0 for all r < d, and

v′(r) + k > 0 for all r > u. Therefore, (I.Ia) is easy to verify. Considering

r ≥ u, it is easy to see that

Iv(r)− v(r) = inf
η>r,η∈R

{
v(η) +K + k · (η − r)

}
− v(r)

= inf
η>r,η∈R

{
v(r) + l · (η − r) +K + k · (η − r)

}
− v(r)

≥ K > 0.

Thus (I.Ib) is proved. To prove (I.Ic), we claim that v′(r) + k ≤ 0 for any

r ∈ [d,D]. If r1 = r2, then the claim is easy to verify. If r1 < r2, and

assuming the contrary, there will be an r̂ ∈ (r1, r2) which is a local maximizer

of v′(r) ≡ f(r) such that v′(r̂) > −k. Using f(r) to denote v′(r), and we have

h′(r̂−) = (β − µ′(r̂)) · f(r̂)− 1

2
σ2(r̂)f ′′(r̂−)

> (β − µ′(r̂)) · (−k).

However, since h′(r2−) + (β − µ′(r2)) · k ≤ 0 and r̂ < r2, we should have

h′(r̂−) + (β − µ′(r̂)) · k ≤ 0 which leads to a contradiction. So, we have that
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v′(r) + k ≤ 0 for r ∈ [d,D]. Similarly, we have −v′(r) + l ≤ 0 for r ∈ [U, u].

Then, considering Iv(r)− v(r) for any r ∈ (d,D), we have

Iv(r)− v(r) = v(D) +K + k · (D − r)− v(r)

= v(D) +K + k · (D − d)− v(d) + v(d)− v(r) + k · (d− r)

= 0−
∫ r

d

[v′(s) + k]ds

> 0.

The inequality is due to the fact that v′(s) + k ≤ 0 over the interval of

integration. At r = D, we have

Iv(D)− v(D) = inf
ξ>D,ξ∈R

{v(ξ) +K + k · (ξ −D)} − v(D)

≥ inf
ξ≥D,ξ∈R

{v(ξ) +K + k · (ξ −D)} − v(D)

= v(D) +K + k · 0− v(D)

> 0

This proves (I.Ic). Now, (I.Id) is trivial since, when proving (I.Ic) we showed

that v′(r) ≥ l > 0 for r ∈ [U, u], which yields

Iv(r)− v(r) = inf
ξ>r,ξ∈R

{v(ξ) +K + k · (ξ − r)} − v(r)

= inf
ξ>r,,ξ∈R

{
∫ ξ

r

[v′(s) + k]ds}+K

≥ K.

To prove (I.Ie), we claim that v′(r) + k ≥ 0 for all r ∈ (D,U). (Note

that we only need to consider the case where k, l ≥ 0 and k + l > 0, since if
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k = l = 0, then the assumption in the theorem implies D = U , and hence the

(I.Ie) is automatically true.) To prove this claim, we first define r5 as

r5 = inf{r > D : v′(r) + k 6= 0}.

Since v′(U) = l > −k, we know that r5 < U . Then, either there exists some

ε > 0 such that v′(y) + k > 0 for all y ∈ (r5, r5 + ε), or there exists some ε > 0

such that v′(y) + k < 0 for all y ∈ (r5, r5 + ε). Due to the fact that D is the

minimizer of v(r) + k · r over [d, u], and d < D < U < u, we know that, only

the first case could be true; otherwise, v(y) + k · r < v(D) + k · D for any

y ∈ (r5, r5 + ε), which is a contradiction. Therefore, we can define r6 as

r6 = min{r > D : r is a local maximizer of v′(r)}.

Due to the above reasoning, v′(r6) > −k. Now, if the claim were false, there

should be some point r7 ∈ (r6, U) such that v′(r7) < −k and r7 is a local

minimizer of v′(r). These lead to the following

h′(r6−) = (β − µ′(r6))f(r6)− 1

2
σ2(r6)f ′′(r6−) > −(β − µ′(r6)) · k

h′(r7−) = (β − µ′(r7))f(r7)− 1

2
σ2(r7)f ′′(r7−) < −(β − µ′(r7)) · k,

and this contradicts the assumption on h(r) since r6 < r7. The claim is proved.

Combining this with the result we proved above, we know that v′(r) + k ≥ 0
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if r > D, which implies that for every r > D, we have

Iv(r)− v(r) = inf
ξ>r,ξ∈R

{v(ξ) +K + k · (ξ − r)} − v(r)

= inf
ξ>r,ξ∈R

{v(ξ) + k · (ξ − r)− v(r)}+K

= inf
ξ>r,ξ∈R

{
∫ ξ

r

[v′(s) + k]ds}+K

≥ K

> 0,

proving (I.Ie).

The proof of (II.IIa)–(II.IIe) is similar to those of (I.Ia)–(I.Ie).

Lastly, we need to prove iii. Note that Av(r) − βv(r) + h(r) = 0 in

(d, u) due to the assumptions on v, therefore Qv(r)[Av(r)− βv(r) + h(r)] = 0

in this region. Also note that Qv(r) = min{Iv(r) − v(r),Dv(r) − v(r)}.

(I.Ia) and (II.IIb) yields Qv(r) = Iv(r) − v(r) = 0 ∀r ≤ d; similarly from

(I.Ib) and (II.IIa) we have Qv(r) = Dv(r) − v(r) = 0 in ∀r ≥ u. Thus

Qv(r)[Av(r)− βv(r) + h(r)] = 0 ∀r.

We next focus on the case when β − µ′(r) < 0 for some r. Similar to

the case when β − µ′(r) ≥ 0 ∀r, we only need to show that v(r) satisfies the

QVI (3.10).

First, we want to prove that Av(r)−βv(r)+h(r) ≥ 0 a.e. r ∈ R. Based

on the same reasoning as that in the proof of Theorem 3.4, we have (B.13)–

(B.14) hold as well as v′′(d+) < 0 and v′′(u−) < 0. Therefore, ∀r ∈ (−∞, d),
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we have

Lv(r) =
1

2
σ2(r)v′′(r) + µ(r) · v′(r)− β · v(r) + h(r)

= 0− µ(r) · k − β · [v(d) + k · (d− r)] + h(r)

= [0− µ(d) · k − β · v(d) + h(d)]− βk · (d− r) + µ(d) · k − µ(r) · k

+h(r)− h(d)

= [0− µ(d) · k − β · v(d) + h(d)]

−[(β · (d− r)− µ(d) + µ(r)) · k + h(d)− h(r)]

>
1

2
σ2v′′(d+) + µ(d) · v′(d)− β · v(d) + h(d)

−
∫ d

r

[(β − µ′(s)) · k + h′(s)]ds

≥ Lv(d+) = 0.

The inequality in the above is because (β − µ′(s)) · k + h′(s) ≤ 0 for any

s ∈ (r, d).

Similarly, we can prove that Lv(r) > 0, ∀r > u. Therefore, Av(r) −

βv(r) + h(r) = Lv(r) ≥ 0, a.e. r

Next we will prove that Qv(r) ≥ 0 for all r. Specifically we will show

the following, which are the counterpart of those in the proof of Theorem 3.4

(I) Iv(r) ≡ infξ>0

{
v(r + ξ) +K + kξ

}
≥ v(r) for all r.

(a) Iv(r)− v(r) = 0 for r ≤ d.

(b) Iv(r)− v(r) > 0 for r ≥ u.

(c) Iv(r)− v(r) > 0 for r ∈ (d,D].
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(d) Iv(r)− v(r) > 0 for r ∈ [U, u).

(e) Iv(r)− v(r) > 0 for r ∈ (D,U).

(II) Dv(r) ≡ infξ>0

{
v(r − ξ) + L+ l · ξ

}
≥ v(r) for all r ∈ R.

(a) Dv(r)− v(r) = 0 for r ≥ u.

(b) Dv(r)− v(r) > 0 for r ≤ d.

(c) Dv(r)− v(r) > 0 for r ∈ [U, u).

(d) Dv(r)− v(r) > 0 for r ∈ (d,D].

(e) Dv(r)− v(r) > 0 for r ∈ (D,U).

Note that D minimizes v(r) + k · r over [d, u], and thus, minimizes it over all

possible r. This is because v′(r) + k ≡ 0 for all r < d, and v′(r) + k > 0 for all

r > u. Therefore, for r ≤ d infξ>0

{
v(r+ξ)+K+kξ

}
= v(D)+K+k(D−r) =

v(r), implying (I.Ia).

For r ≥ u, v′(r) = l ≥ 0, verifying (I.Ib) since infη>r,η∈R

{
v(η) + K +

k · (η − r)
}
− v(r) ≥ K > 0.

Note that we have v′(r) +k ≤ 0 for any r ∈ [d,D] from the assumption

of the Theorem. Then we have Iv(r)− v(r) = v(D) +K+k · (D−d)− v(d) +

v(d)− v(r) + k · (d− r) = 0−
∫ r
d

[v′(s) + k]ds > 0 for r in (d,D], proving (I.Ic).

(I.Id) and (I.Ie) are trivial since v′(r) + k ≥ 0 for r > D, which yields

Iv(r)−v(r) = infξ>r{v(ξ)+K+k·(ξ−r)}−v(r) = infξ>r{
∫ ξ
r

[v′(s)+k]ds}+K ≥

K.
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The proof of (II.IIa)–(II.IIe) is similar to those of (I.Ia)–(I.Ie).

Finally, Av(r)− βv(r) + h(r) = 0 in (d, u) due to the assumption on v;

(I.Ia) and (II.IIb) yields Qv(r) = Iv(r)− v(r) = 0 ∀r ≤ d; (I.Ib) and (II.IIa)

yieldsQv(r) = Dv(r)−v(r) = 0 in ∀r ≥ u. ThusQv(r)[Av(r)−βv(r)+h(r)] =

0 ∀r. Therefore v satisfies the QVI, and this finishes the proof of the theorem.

To prove ε−Optimality Theorem, we first establish the following lemma.

Lemma B.2. Suppose v(r) is the cost function associated with an admissible

impulse control characterized by d < D ≤ U < u, which implies that v(r)

solves (3.11)–(3.14). Further assume that σ2(·) > 0, v′(d+)+k ≥ 0, −v′(u−)+

l ≥ 0 and v(r) satisfies the following conditions for some ε1, ε2, ε3 > 0





Av(r)− β · v(r) + h(r) ≥ −ε1 a.e. r

infξ>0

{
v(r + ξ) +K + k · ξ

}
− v(r) ≥ −ε2

infξ>0

{
v(r − ξ) + L + l · ξ

}
− v(r) ≥ −ε3

Then, ∀ε̄ > 0, ∃v̄ ∈ C1 such that v(r) − ε̄ ≤ v̄(r) ≤ v(r), and it is linear

outside some finite interval (d̄, ū). Also, it is C2 except on a few points, and

it satisfies the following conditions





Av̄(r)− β · v̄(r) + h(r) ≥ −(ε1 + ε̄) a.e. r

infξ>0

{
v̄(r + ξ) +K + k · ξ

}
− v̄(r) ≥ −(ε2 + ε̄)

infξ>0

{
v̄(r − ξ) + L + l · ξ

}
− v̄(r) ≥ −(ε3 + ε̄)

Proof. Lemma B.2. If v′(d+)+k = 0 and −v′(u−)+ l = 0, then we are done

by setting v̄ = v. If at the case where at least one of them is positive, say,

v′(d+) + k = ∆ for some ∆ > 0, then let v̄(r) = v(r) in [d, u] and define v̄(r)
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in the following way for r ≤ d:

v̄(r) =

{
A2r

2 + A1r + A0 ∀r ∈ [d̄, d]

v̄(d̄) + k(d̄− r) ∀r < d̄
(B.16)

in which d̄ = d− δ, and δ is a positive constant whose value will be specified

later. Here A0, A1 and A2 are some constants whose value are specified in the

way to make v̄ be C1, therefore, we need

v̄(d) = A2 · d2 + A1 · d+ A0 = v(d), (B.17)

v̄′(d−) = 2A2 · d+ A1 = v̄(d+) = v′(d+) = ∆− k, (B.18)

v̄′(d̄−) = 2A2 · d̄+ A1 = −k = v̄′(d̄+). (B.19)

Solving (B.17)–(B.19), we have

A2 =
1

2

∆

δ
, A1 = ∆− k − ∆ · d

δ
, A0 = v(d)− (∆− k) · d+

1

2

∆

δ
· d2. (B.20)

It is easy to verify that maxr≤u{v(r) − v̄(r)} = v(d̄) − v̄(d̄) = 1
2

∆
δ
> 0 and

v(r) ≥ v̄(r) ∀r ≤ u. When setting δ small enough, we have v(r)− ε̄ ≤ v̄(r) ≤

v(r) ∀r ≤ u. Similarly, if −v′(u−) + l is strictly positive, we set v̄(r) =

B2r
2 +B1r+B0 in [u, ū] and extend it linearly with slope l for r ≥ ū ≡ u+ δ.

Choosing δ small enough we will have v(r)− ε̄ ≤ v̄(r) ≤ v(r) ∀r. We omit this

construction for r ≥ u.

Now we look at I v̄(r) ≡ infξ>0

{
v̄(r + ξ) +K + kξ

}
. Since

v̄(r + ξ) +K + kξ − v̄(r) ≥ v(r + ξ)− ∆

2
δ +K + kξ − v(r),

we have infξ>0

{
v̄(r+ξ)+K+k ·ξ

}
− v̄(r) ≥ −(ε2 + ε̄) when δ is small enough.

Similarly we have infξ>0

{
v̄(r − ξ) + L + l · ξ

}
− v̄(r) ≥ −(ε3 + ε̄).
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Now we look at v̄(r)− β · v̄(r) + h(r). In (d̄, d) using (B.20) we have

Av̄(r)− β · v̄(r) + h(r) =
σ2(r)

2

∆

δ
+ µ(r) · (−k +

r − d̄
δ

∆)− βv̄(r) + h(r)

≥ [
σ2(r)

2

∆

δ
+ µ(r)

r − d̄
δ

∆]

+µ(r) · (−k)− βv(r) + h(r) (B.21)

Since µ(r) is bounded in [d̄, d], and 0 ≤ r−d̄
δ
≤ 1, for small enough δ we have

Av̄(r)− β · v̄(r) + h(r) ≥ 0 + (−k)µ(r)− βv(r) + h(r)− ε̄

= Av(r)− βv(r) + h(r)− ε̄ ≥ −(ε1 + ε̄).

For r < d̄, v̄′′(r) = v(r) = 0, v̄′(r) = v̄′(r) = −k, implying Av̄(r) = Av(r).

This, together with v̄(r) ≤ v(r), yields Av̄(r) − β · v̄(r) + h(r) ≥ Av(r) −

βv(r) + h(r) ≥ −ε1 ≥ −(ε1 + ε̄).

Similarly, we can haveAv̄(r)− β · v̄(r) + h(r) ≥ −(ε1 + ε̄) for r ∈ (u, ū)

and for r > ū. Lastly, v̄(r) is C2 except on {d, u, d̄, ū}, finishing the proof of

the Lemma.

Proof. Theorem 3.5 (ε−Optimality Theorem). Take any admissible im-

pulse control policy ν = (τ1, ξ1; · · · ; τi, ξi; · · · ). For any given ε̄ > 0, we apply

Lemma B.2 to construct v̄from v(r). Applying Lemma B.1

−v̄(r) = Er

[∫ ∞

0

e−βt[Av̄(rt−)− βv̄(rt−)]dt+
∞∑

i=1

e−βτi [v̄(rτi)− v̄(rτi−)]

]
,

151



This leads to

Jr(ν)− v̄(r) = Er
[∫ ∞

0

e−βtAv̄(rt−)− β · v̄(rt−) + h(rt−)dt

]

+Er

[ ∑

n:ξn>0

e−βτn [K + kξn + v̄(rτn− + ξn)− v̄(rτn−)]

]

+Er

[ ∑

n:ξn<0

e−βτn [L− lξn + v̄(rτn− + ξn)− v̄(rτn−))]

]

≥
∫ ∞

0

(−ε1 − ε̄)e−βtdt

+Er

[ ∑

n:ξn>0

e−βτn(−ε2 − ε̄) +
∑

n:ξn<0

e−βτn(−ε3 − ε̄)
]
(B.22)

≥ −ε1 + ε̄

β
− (ε2 + ε̄)

Jr(ν)

K
− (ε3 + ε̄)

Jr(ν)

L
.

The last inequality is because

Jr(ν) ≥ Er

[∑

n

G(ξn)e−βτn

]
≥ K · Er

[ ∑

n:ξn>0

e−βτn

]
+ L · Er

[ ∑

n:ξn<0

e−βτn

]
.

(B.23)

This leads to (1 + ε2+ε̄
K

+ ε3+ε̄
L

) · Jr(ν) + ε1+ε̄
β
≥ v̄(r) ≥ v(r)− ε̄. Re-arranging

the terms we have

v(r) ≤ (1 +
ε2 + ε̄

K
+
ε3 + ε̄

L
) · Jr(ν) +

ε1 + ε̄

β
+ ε̄

Since this holds for any given ε̄ > 0, taking the limit ε̄→ 0+ we have

v(r) ≤ (1 +
ε2
K

+
ε3
L

) · Jr(ν) +
ε1
β
.

This is true for any admissible impulse control ν, and thus is true for the

optimal one.
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Proof. Corollary 3.1. In the proof of Theorem 3.5, take ε1 = ε2 = ε3 ≡ ε.

From (B.23) we have

Jr(ν) ≥ K · Er
[ ∑

n:ξn>0

e−βτn

]
+ L · Er

[ ∑

n:ξn<0

e−βτn

]
≥ K̄ · Er

[∑

n

e−βτn

]
,

(B.24)

in which K̄ ≡ min{K,L}. Combining this with (B.22) yields

v(r) ≤ (1 +
ε+ ε̄

K̄
) · Jr(ν) +

ε+ ε̄

β
+ ε̄

Taking the limit ε̄ → 0+ leads to v(r) ≤ (1 + ε
K̄

) · Jr(ν) + ε
β
. This holds for

any admissible impulse control, and in particular, holds for the optimal one.

Therefore

v(r) ≤ (1 +
ε

K̄
) · V (r) +

ε

β
.

Proof. Theorem 3.6 (Bond Price Theorem). This proof closely follows

the derivation in Vasicek (1977). We begin with the fact that the price of a

bond is a function of time and the current short rate, and so we can use Itô’s

lemma to find the dynamics of the bond price. Given that d < rt < u, the

bond price dynamics are

dBt = Bt · π(t, T, rt)dt−Bt · s(t, T, rt)dW P
t , (B.25)

π(t, T, r) =
1

B(t, T, r)

[
∂B

∂t
+ µ(r)

∂B

∂r
+

1

2
σ2(r)

∂2B

∂r2

]
, (B.26)

s(t, T, r) = − 1

B(t, T, r)
σ(r)

∂B

∂r
. (B.27)
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Now consider a portfolio consisting, at time t, of a short amount θ1 of

a bond that expires at T1 and a long amount θ2 of a bond that expires at T2.

The total value of this portfolio is then Θ = θ2 − θ1, and its dynamics are

dΘt = (θ2π(t, T2, rt)− θ1π(t, T1, rt))dt− (θ2s(t, T2, rt)− θ1s(t, T1, rt))dW
P
t ,

(B.28)

if d < rt < u. Now pick the weights proportional to the variance of the two

bonds, so that

θ1 = Θ
s(t, T2, r)

s(t, T1, r)− s(t, T2, r)
, (B.29)

θ2 = Θ
s(t, T1, r)

s(t, T1, r)− s(t, T2, r)
. (B.30)

After plugging these weights into Equation (B.28) we find that

dΘt = Θ
π(t, T2, rt)s(t, T1, rt)− π(t, T1, rt)s(t, T2, rt)

s(t, T1, rt)− s(t, T2, rt)
dt, (B.31)

which does not include a Brownian motion term, and thus is riskless over the

next instant. To prevent arbitrage we must have that Θ yields the same return

as an investment in the short rate, by definition, and we have

π(t, T2, rt)s(t, T1, rt)− π(t, T1, rt)s(t, T2, rt)

s(t, T1, rt)− s(t, T2, rt)
= rt, (B.32)

which can be rearranged to the equivalent

π(t, T1, rt)− rt
s(t, T1, rt)

=
π(t, T2, rt)− rt
s(t, T2, rt)

, (B.33)

if d < rt < u. We derived Equation (B.33) for general expiration dates, and

thus this quantity must be independent of the bond’s tenor. We therefore
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denote

q(t, r) =
π(t, T, r)− rt
s(t, T, r)

, (B.34)

and call this the market price of risk, since π and s represent the mean and

volatility of instantaneous returns on a bond. We then plug the definitions

of π(t, T, r) and s(t, T, r), from Equations (B.26) and (B.27), into Equation

(B.34) and we recover Equation (3.23) for d < rt < u. The only thing left are

the boundary conditions, Equations (3.24) – (3.26).

To see that these boundary conditions hold we must consider a path

of rt that reaches d or u. This, of course, is impossible because rt is right

continuous with left limits, but we can consider a limiting case without any

theoretical issues. We know that if the short rate were to reach either of these

points it would immediately jump to D or U , respectively almost surely, due

to the central bank’s control. Given that a trader can know the entire price

function, with respect to rt, if the price at d and D were not equal there would

be an opportunity for arbitrage. The same is true for u and U . Therefore

these boundary conditions must hold at all times.
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Appendix C

Money Management with Performance Fees

C.1 Optimization Problem

We consider a minimum discounted cost infinite horizon problem in

multiple dimensions. The controller has some preferences for the state vector,

Xt, and continuous control, represented by h(Xt, ct) ≥ 0, as well as the discrete

control, represented by K(ξ) ≥ 0, with K(0) = 0. Putting this all together

with a discount parameter, β, the controller wishes to minimize the value

function, V , such that

V (x, t) = min
c,ξ

E
[ ∫ ∞

t

e−β(s−t)h(Xs, cs)ds+
∑

j:Tj>t

e−β(Tj−t)K(ξj)

∣∣∣∣Xt = x

]
.

(C.1)

Here, even though this is an infinite horizon problem, time is still important

because the time until the next discrete control should affect the controller’s

decisions about the continuous control.

In order to solve this optimization problem we must rely on a dynamic

programming Bellman operator. To find this operator we evaluate Equation

(C.1) at t = Ti− and rewrite it, taking advantage of the fact that XTi =
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XTi− + ξi, as

V (x, Ti−) = min
c,ξ

E
[ ∫ Ti+1

Ti

e−β(s−Ti)h(Xs, cs)ds+K(ξi) (C.2)

+e−β(Ti+1−Ti)
(∫ ∞

Ti+1

e−β(s−Ti+1)h(Xs, cs)ds

+
∞∑

j=i+1

e−β(Tj−Ti+1)K(ξj)

)∣∣∣∣XTi− = x

]
,

Assuming continuity of the value function at Ti (with probability 1) we find

that

V (x, Ti−) = min
ξi
{V (x+ ξi, Ti) +K(ξi)}. (C.3)

We note however that the second line of Equation (C.2) is, in fact, the

discounted value function evaluated at t = Ti+1− so that

V (x, Ti−) = min
ξi

{
min
c

E
[ ∫ Ti+1

Ti

e−β(s−Ti)h(Xs, cs)ds

+e−β(Ti+1−Ti)V (XTi+1−, Ti+1−)

∣∣∣∣XTi− = x

]
+K(ξi)

}
(C.4)

For our purposes we will define an operator, A, that takes a function

over Rn and returns another function over Rn such that

Af(x) = min
c

E
[ ∫ Ti+1

Ti

e−β(s−Ti)h(Xs, cs)ds

+e−β(Ti+1−Ti)f(XTi+1−)

∣∣∣∣XTi = x

]
(C.5)

In general, Af takes the form of the solution to a terminal value partial integro-

differential equation problem, or PIDE. We assume this equation can be solved

and that for the specific forms of Xt and h verification can also be proved.
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We can therefore combine Equations (C.4) and (C.5) to find, excusing

the abuse of notation1, that

V (x, Ti−) = min
ξi
{AV (x+ ξi, Ti+1−) +K(ξi)} (C.6)

However, since Ti and Ti+1 are both opportunities to use the discrete

control we must have that

V (x, Ti−) = min
ξi
{AV (x+ ξi, Ti−) +K(ξi)} (C.7)

where the difference between Equations (C.6) and (C.7) is that in (C.7) we

have V at Ti− on both sides of the equal sign. With this we can also find that

V (x, Ti) = AV (x, Ti−). (C.8)

If, however, we have that the optimal ξi = 0 then we also have that V (x, Ti) =

V (x, Ti−).

Equation (C.7) will help us find an algorithm to find V at the Ti’s,

however we use Equation (C.6) to show that any function that satisfies this

relationship, for all i, must be the solution to the original optimization problem

in Equation (C.2).

Theorem C.1. Any function that satisfies Equation (C.6) for all i is the optimal

solution to Equation (C.2).

1The abuse of notation is that Af(x) should actually be written as (Af(·))(x) so that
AV (x, t) should be interpreted as (AV (·, t))(x).
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Proof. Suppose we have a function v(x, t) that satisfies Equation (C.6) for all

i then

v(x, Ti−) = min
ξi

{
min
c

E
[ ∫ Ti+1

Ti

e−β(s−Ti)h(Xs, cs)ds

+e−β(Ti+1−Ti)v(XTi+1−, Ti+1−)

∣∣∣∣XTi− = x

]
+K(ξi)

}
. (C.9)

However since v also satisfies this equation at time Ti+1− we can substitute

Equation (C.9) into itself on the right hand side of the equal sign and use the

law of iterated expectations to find that

v(x, Ti−) = min
ξi,ξi+1

{
min
c

E
[ ∫ Ti+2

Ti

e−β(s−Ti)h(Xs, cs)ds

+e−β(Ti+2−Ti)v(XTi+2−, Ti+2−)

+e−β(Ti+1−Ti)K(ξi+1)

∣∣∣∣XTi− = x

]
+K(ξi)

}
. (C.10)

Upon iteration we find that

v(x, Ti−) = min
c,ξi,...,i+m

E
[ ∫ Ti+m

Ti

e−β(s−Ti)h(Xs, cs)ds (C.11)

+
m∑

j=0

e−β(Ti+j−Ti)K(ξi+j)

+e−β(Ti+m−Ti)v(XTi+m−, Ti+m−)

∣∣∣∣XTi− = x

]

Taking the limit as m → ∞, under relatively mild growth conditions on v,

we find that the last term inside the expectation in Equation (C.11) vanishes

and, indeed, this is equal to the original optimization problem in Equation

(C.2). Therefore any function that satisfies Equation (C.6) for all i must be

the solution to Equation (C.2).
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C.2 Algorithm

We now present an iterative algorithm to find the optimal value function

at times {Ti} and show that this algorithm converges to the true solution.

After that we present a result on the convergence rate.

Let us first define v̂0(x,Θ) as the solution to the infinite horizon problem

with only continuous control, that is, without the opportunity to issue discrete

control. In this way

v̂0(x) = min
c

E
[∫ ∞

0

e−βsh(Xs, cs)ds

∣∣∣∣X0 = x

]
. (C.12)

This is a time homogeneous problem and can typically be solved using a partial

integro-differential equation, such as an HJB equation.

We now define our iterative steps as

vj(x) = min
ξ
{v̂j(x+ ξ) +K(ξ)} , (C.13)

v̂j+1(x) = Avj(x). (C.14)

We would like to show that in the limit we have that

lim
j→∞

vj(x) = V (x, Ti−). (C.15)

In order to prove this we must first show that Equation (C.15) converges,

pointwise, to some function, then we must show that the converged value

satisfies Equation (C.7) and is therefore the optimal solution.

Theorem C.2. Equation (C.15) converges pointwise.
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Proof. To do this first we have to show that vj is non-increasing in j for every x.

Let us consider v0(x); suppose at time 0- the state is at x, v̂0(x) corresponds

to the minimum expected cost if we can never change Xt discretely in the

future. Therefore, by the definition of Equation (C.13), v0(x) corresponds to

the optimal value function if the controller is given one opportunity to change

X and so v0(x) ≤ v̂0(x) ∀x.

This also means that v1(x) corresponds to the minimal value function

if the controller is given the opportunity to change X at time 0, plus one

additional time in the future, T1. Therefore v1(x) ≤ v0(x) ∀x, because the

controller has the option to not control at T1 which would exactly correspond

to v0, since it is free to not control, K(0) = 0. However with this additional

opportunity to control, at T1, the controller can do no worse than without this

opportunity. Iterating Equations (C.13)-(C.14) and applying the definition

of A we can see that vj(x) corresponds to the situation where the controller

is given the opportunity to control at times 0, T1, T2, ..., Tj. This means that

for every j we have vj(x) ≤ vj−1(x) because the controller is given one more

opportunity to control, at Tj, and he can do no worse than if he is given one less

opportunity to control. This shows that vj(x) is decreasing in j. Furthermore,

vj(x) ≥ 0 ∀(j, x) since we assumed that h and K are non-negative. Putting

this together, for every x we have a non-increasing sequence that is bounded

below; therefore this sequence must converge by the monotone convergence
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theorem. Stating this mathematically we can write

vj−1(x) = min
c,ξ0,...,j−1

E
[ ∫ Tj+1

0

e−βsh(Xs, cs)ds+ e−βTj+1 v̂0(XTj+1
)(C.16)

+

j−1∑

k=0

e−βTkK(ξk)

∣∣∣∣X0− = x

]
,

vj(x) = min
c,ξ0,...,j

E
[ ∫ Tj+1

0

e−βsh(Xs, cs)ds+ e−βTj+1 v̂0(XTj+1
) (C.17)

+

j∑

k=0

e−βTkK(ξk)

∣∣∣∣X0− = x

]
, .

Here the only difference between Equations (C.16) and (C.17) is that Equa-

tion (C.17) has one more optimization variable than (C.16), and therefore

vj(x,Θ) ≤ vj−1(x,Θ).

Since we have proved that the vj converge we now need to show that

Equation (C.7) is satisfied.

Theorem C.3. Suppose that v∗(x) = limj→∞ vj(x), then v∗(x) corresponds to

the optimal value function V (x, Ti−).

Proof. Since v∗(x,Θ) is the converged function from Equations (C.13)-(C.14),

by the definition of the iterative steps we have that

v∗(x) = min
ξ
{Av∗(x+ ξ) +K(ξ)} .

This is exactly Equation (C.7) and in Section C.1 we proved that any function

that satisfies this relationship must be the optimal value function at the Ti’s,

therefore we have v∗(x) = V (x, Ti−).
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