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1 Abstract

For my thesis project we have been studying the analysis of the parabolic An-
derson model in 2 spatial dimensions on the whole plane, performed by Hairer
and Labbé in early 2015. This problem is a nice example as it requires renormal-
ization to control the singularities and weighted spaces to control the divergence
at infinity. After adding the necessary logarithmic counter term and posing the
problem in the correct space we are then able to prove existence and uniqueness
of the solution. Our main contribution is to offer a more explicit account than
was previously available, and to correct some typos in the original work. This
work is of importance because the parabolic Anderson model, which models a
random walk driven by a random potential, can be used to study several topics
such as spectral theory and some variational problems. Moreover, this analysis
is of interest because it presents a particularly clean example, in that there is
no need for any complicated (though more general) renormalization procedures.
Rather, we use a trick from the analysis of smooth partial differential equations
to identify the diverging terms and then add an appropriate counter term.

2 Background and Introduction

2.1 Stochastic PDE

In this work we study a class of problems known as stochastic partial differential
equations (S)PDE. That is, partial differential equations (equations involving
a function and its derivatives in multiple variables) where one of the functions
in the equation is a stochastic process. Where a stochastic process is defined
to be a collection of, not necessarily continuous, functions (or rather random
variables) indexed by time. The difficulty is then that our solution depends on
these typically highly irregular random inputs and so may not be differentiable.
This creates a problem because our solution is defined using derivatives in a
PDE.

To make this discussion more clear consider the class of semilinear (S)PDE,
that is (S)PDE of the form:

Lu(x, t) = F (u(x, t), ξ(x, t)),

where L is a differential operator, ξ is the random input, F is a nonlinearity
and where (t, x) ∈ R×Rn. Assume further L = ∂t −L where L is some spatial
operator (involves no derivatives in t). In this case, a standard theorem in the
theory of PDEs, Duhamel’s formula, states that (for 0 initial condition):

u(x, t) =

∫ t

0

e(t−t′)LF (u, ξ)(x, t′)dt′ =: I(F (u))

One natural thing to do now is insert a trial solution into the right hand side
and see what happens. If we insert a trial solution a(x, t) then we expect our
true solution u(x, t) to include terms (in a series) of the form I(F (a)). But
if the solution includes terms of the form I(F (a)), it must contain terms of
the form I(F (I(F (a))) (and others). Thus, we must iterate this porcess over
and over again infinitely many times, generating an infinite series trial solution.
Herein lies the difficulty, because F depends on ξ which is very irregular, some
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of the terms in our expansion will be highly irregular. So irregular that they
have divergences in the plane (one can think of these terms as like 1

xm for some
negative m). As such, they are not solutions to the equation at the divergent
point.

In general there are two approaches to such problems. To understand large
scale properties such as steady states and scaling properties one can consider a
regularized equation where the random input is replaced by one which is smooth
on small scales. Alternatively, one could consider small scale questions, such as
the existence and uniqueness of solutions without regularizations. We will be
taking the latter approach.

2.2 Introduction to the Problem

In this article, we present the 2015 work by Martin Hairer and Cyril Labbé
[5] in which the authors renormalize and construct a solution to the parabolic
Anderson model on R2:

∂tu = ∆u+ u · ξ, u(0, x) = u0(x) (1)

where u is a function of t ≥ 0, where x ∈ R2 and where ξ is a white noise on R2.
There are 2 main difficulties associated with this problem: u · ξ is not classically
well-defined (equivalent to the diverging terms described in the previous section)
and, because we are working on R2, we need to properly weight our functions
in order to prevent blow-up at infinity. That is, when solving a pde on an
unbounded domain we require our solution to go to zero at infinity. As this
may not be the case, we need to “weight” our functions i.e divide all of them
by a function. Otherwise put, if we were to expand our solution into terms of
a given homogeneity (where homogeneity refers to the rate at which a function
goes to infinity: a homogeneity n implies the function goes to infinity like xn),
we need to remove the singularities from the negative homogeneity terms and
we need to ensure that the sum of all the positive homogeneity terms does not
diverge either. The first problem will be solved by renormalizing the equation.
Fortunately for this presentation, we can reformulate this equation in terms of
a stationary solution which will allow us to see clearly the diverging terms and
so subtract them (thus, it is not necessary for this model to employ a more
complex procedure such as the theory of regularity structures[3]). The second
problem is dealt with by properly weighing our solution spaces.

Because of these difficulties, this work contributed in two significant ways
to the general theory. Firstly, to our knowledge, it is the first incorporation of
weighted Hölder spaces into the theory of (S)PDEs allowing one to characterize
solutions on the whole space. This would then allow the same authors in [4] to
extend this work to dimensions 1 and 3, where the authors need to renomalize
more terms and so, make use of the methodology of regularity structures and
moreover, incorporate weights into that same theory. The second contribution
to the general theory is the stationary solution argument which is a nice way to
rewrite this equation to isolate the singularity.

This work by Hairer and Labbé offers a nice example of how to solve an
(S)PDE without the need to fully get into the theory of regularity structures.
In this article we aim to expand this example in full detail, correct a few typos in
the previous work, and present a complete account of the methodology needed
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for this equation: starting by characterizing white noise and presenting the
necessary properties we will make use of. Then, we present the expanded Hölder
spaces used to make sense of negative homogeneity terms like ξ and present
a valuable convergence criterion. Then, we present several extremely useful
properties of smooth functions with singularities. We next present the stationary
solution argument which will allow us to renomalize the equation easily. Finally,
we present the fixed point argument which brings this all together and solves
the equation.

Remark 1
A key typo we appear to have found, which leads to a mismatch of some ex-
ponents in our exposition as compared to the original work is the following.
In the proof of (what appears here as) proposition 3, the authors omit a fac-
tor of 2 in the exponent of 2 when applying lemma 3 (i.e Lemma 3 implies,
E[L(ψnx )2] . 2−nd+2κn and not 2−nd+κn ). This will later manfest itself in the
fixed point argument where κ ∈ (0, 1/4) not (0, 1/2). Otherwise the integral in
(146) diverges.

Remark 2
All of the theorems and proofs have been taken from several sources ([3][5]).
A main objective in our work is to expand many of the arguments, fill in the
details of the proofs and to give a very accessible account of the important work
of Hairer and Labbé.

3 results

3.1 White Noise

Definition 1 (White Noise)
We denote by “white noise” a Gaussian stochastic process ξ(t)(ω) with covari-
ance Eξ(s)ξ(t) = δ(t − s). That is, if we take 〈·, ·〉 to be the scalar product in
L2(R), this implies

E 〈g, ξ〉 〈h, ξ〉 =

∫ ∫
g(s)h(t)ξ(s)ξ(t)dsdt =

∫ ∫
g(s)h(t)δ(t− s)dsdt = 〈g, h〉

(2)

To give meaning to this definition we begin by proving the statement “white
noise is the derivative of Brownian motion”. Integrals of the form

∫
g(s)ξ(s)ds,

for g ∈ L2(R) are well-defined random variables, although proving this requires
a discussion of Gaussian measures beyond the scope of this review, for the in-
terested reader we suggest [M. Hairer, lecture notes: Introduction to Stochastic

PDEs]. Hence, if we take g(s) = 1[0,t](s), then B(t) =
∫ t

0
ξds is in L2(R).

Moreover, we will show it is a Brownian motion on some space (Ω,F ,P).

Definition 2 (Brownian Motion)
A Brownian motion is a stochastic process W = {W (t)}t≥0, that is, a collection
of random variables W (t) defined on some probability space (Ω,F , P ), such that:

1. The function W (t)(ω) is almost surely continuous in t for every ω ∈ Ω
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2. W has stationary and independent increments, that is, for any positive n
and any 0 = t0 < t1 < ... < tn, the random variables W (ti) −W (ti−1),
i ∈ {1, ..., n} are mutually independent, and

3. W (s+ t)−W (s) has the same distribution as W (t) for any s, t > 0

The first property is clear for our process B(t). To show the increments are
independent, consider for all A,C ∈ B(R) (the Borel σ-algebra on R) and all
0 ≤ i < j ≤ n

P({B(ti)−B(ti−1) ∈ A} ∩ {B(tj)−B(tj−1) ∈ C}) = (3)

P({
∫ ti

ti−1

ξds ∈ A} ∩ {
∫ tj

tj−1

ξds ∈ C}) (4)

These 2 integrals are evaluating ξ over disjoint intervals and because the covari-
ance is δ(t− s) these integrals are independent. Thus,

P({
∫ ti

ti−1

ξds ∈ A} ∩ {
∫ tj

tj−1

ξds ∈ C}) = P({
∫ ti

ti−1

ξds ∈ A})P({
∫ tj

tj−1

ξds ∈ C}) (5)

and so the random variables B(ti)−B(ti−1) are independent.
To show that our stochastic process has stationary increments we need to

show

µB(t+s)−B(s) = µB(t) (6)

P[(B(t+ s)−B(s))−1(C)] = P[B(t)−1(C)] (7)

P[(

∫ s+t

s

ξdt′)−1(C)] = P[(

∫ t

0

ξdt′)−1(C)] (8)

for every C ∈ B(R). Because ξ is equally distributed in time the last probability
shows the equality. So B(t) is a Brownian motion, therefore, the statement
“white noise is the derivative of Brownian motion” is justified.

At this stage we will prove a crucial proposition in the theory of (S)PDEs,
the equivalence of Gaussian moments. To do so we will need the following
theorem of Fernique, a proof of which can be found in [M. Hairer, lecture notes:
Introduction to Stochastic PDEs].

Theorem 1 (Fernique 1970)
Let µ be any probability measure on a separable Banach space B such that µ⊗µ
is invarient under rotation by π/4 . That is for Rψ : B2 → B2 defined by

Rψ(x, y) = (x sinψ + y cosψ, x cosψ − y sinψ) (9)

we require R∗ψ(µ ⊗ µ) = µ ⊗ µ for ψ = π/4. Then, there exists an α > 0 such
that: ∫

B
exp(α||x||2)µ(dx) <∞. (10)

In particular, for µ(||x|| ≤ τ) ≥ 3/4:∫
exp

(
α||x||2

τ2

)
µ(dx) ≤ eα + 2α

∫ ∞
1

te−αt
2

dt (11)
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Proposition 1 (Equivalence of Gaussian Moments)
There exist universal constants α, K > 0 with the following properties. Let µ
be a Gaussian measure on a separable Banach space B and let f : R+ → R+ be
any measurable function such that f(x) ≤ Cfexp(αx2) for every x ≥ 0. Define
furthermore the first moment of µ by M =

∫
B ||x||µ(dx). Then, one has the

bound
∫
B f( ||x||M )µ(dx) ≤ KCf .

In particular, the higher moments of µ are bounded by
∫
B ||x||

2nµ(dx) ≤
n!Kα−nM2n

Proof. Fernique’s theorem states that, for µ(||x|| ≤ τ) ≥ 3/4, for any β > 0:∫
exp

(
β||x||2

τ2

)
µ(dx) ≤ eβ + 2β

∫ ∞
1

te−βt
2

dt (12)

Note that the right hand side is independent of τ .
Chebyshev’s inequality states that:

µ(|x−M | ≥ k) ≤ σ2

k2
(13)

For some k > 0 and where σ is the variance of x. The variance of x must be
less than M because x > 0. Thus, we have:

µ(||x|| ≤ τ) = 1− µ(|x−M | ≥ τ −M) (14)

≥ 1− σ2

(τ −M)2
(15)

Taking for instance τ = 4M gives

µ(||x|| ≤ τ) ≥ 1− σ2

9M2
≥ 3

4
. (16)

Thus, in equation (10) we may take τ = 4M . And so, taking β = 16α in
equation (11) gives:∫

B
f

(
||x||
M

)
µ(dx) ≤ Cf

∫
B

exp

(
α||x||2

M2

)
µ(dx) (17)

≤ Cf

∫
B

exp

(
β||x||2

(4M)2

)
µ(dx) (18)

≤ Cf

(
eβ +

1

2

∫ ∞
1

te−βt
2

dt

)
(19)

≤ CfK (20)

In order to prove the last inequality we use the fact:

eαx
2

≥ αnx2n

n!
, (21)

(evident from the Taylor expansion of eαx
2

). Therefore,∫
B
||x||2nM−2nµ(dx) ≤

∫
B
eαx

2

n!α−nµ(dx) (22)∫
B
||x||2nM2nµ(dx) ≤ n!Kα−nM2n (23)
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3.2 Weighted Hölder Spaces

At this stage, we will introduce a collection of weighted Hölder spaces, in which
negative Hölder regularity spaces will define distributions, separated by degrees
of regularity. From there we will be able to formulate a fixed point arguement
associated to the (PAM). Throughout this subsection we work in Rd for d ∈ N,
later on we will apply the results to the case d = 2.

Definition 3 (Weights)
A function w : Rd → (0,∞) is a weight if there exists a positive constant C > 0
such that:

C−1 ≤ sup
|x−y|≤1

w(x)

w(y)
≤ C (24)

To construct the necessary Hölder spaces we begin with the usual definition:

Definition 4 (Cαw(Rd) - α > 0)
For α ∈ (0, 1), let Cαw(Rd) be the space of functions f : Rd → R such that:

||f ||α,w := sup
x∈Rd

|f(x)|
w(x)

+ sup
|x−y|≤1

|f(x)− f(y)|
w(x)|x− y|α

<∞ (25)

For α > 1, define Cαw recursively as the space of differentiable functions f
such that:

||f ||α,w := sup
x∈Rd

|f(x)|
w(x)

+

d∑
i

||Dxif ||α−1,w <∞ (26)

To define the space for negative α we need a space of test functions. For r ∈
N, let Br1 be the space of smooth, compactly supported in a unit ball, functions
on Rd whose Cr (usual unweighted Hölder) norm is less than 1. Moreover, let
ηλx : y 7→ λ−dη

(
y−x
λ

)
.

Definition 5 (Cαw(Rd) - α < 0)
For every α < 0, set r := −bαc and define Cαw(Rd) as the space of distributions
f on Rd such that:

||f ||α,w := sup
x∈Rd

sup
η∈Br1

sup
λ∈(0,1]

|f(ηλx)|
w(x)λα

<∞ (27)

Moreover we can extend the classical multiplication map of functions to the
space Cαw as follows:

Theorem 2 (Multiplication of Cαw spaces)
Let f ∈ Cαwf and g ∈ Cαwg with α < 0, β > 0 and α+ β > 0. Then there exists a

continuous bilinear multiplication map (f, g) 7→ f · g from Cαwf ×C
β
wg into Cαwfwg

that extends the classical multiplication map.

Proof. The proof of this lemma is not integral to this presentation; to see how
the theorem is true for non-weighted space we direct the reader here: [[2] -
Theorem 2.52]. To see how that theorem can be extended to the weighted
spaces see [[5] - Theorem 2.6].
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To state a useful convergence criteria we need a countable number of test
functions to test against. Hence, for any ψ ∈ Cr, set:

ψnx (y) := 2
nd
2 ψ((y1 − x1)2n, ..., (yd − xd)2n). x, y ∈ Rd, n ≥ 0. (28)

Moreover define Λn := {(2−nk1, ..., 2
−nkd) : ki ∈ Z, ∀ 1 ≤ i ≤ d}.

Proposition 2 (Convergence in Cαw(Rd))
Let α < 0 and r > |α|. There exits a finite set Ψ of compactly supported
functions ψ,ϕ ∈ Cr such that {ϕ0

x, x ∈ Λ0} ∪ {ψnx , n ≥ 0, x ∈ Λn, ψ ∈ Ψ}
forms an orthonormal basis of Rd, such that for every distribution ξ on Rd, the
following equivalence holds: ξ ∈ Cαw if and only if ξ belongs to the dual of Cr and

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

|〈ξ, ψnx )〉|
w(x)2−

nd
2 −nα

+ sup
x∈Λ0

|〈ξ, ϕ0
x〉|

w(x)
<∞ (29)

Proof. The proof relies on several theorems from wavelet analysis by Ingrid
Daubechies and Ives Meyer in 1988 and 1992 (citations from Prop 3.20 Hai14).
A proof of the theorem for non-weighted spaces can be found here [[3] Prop 3.20].
Because all the arguements needed for the proof are localized on the support of

the test functions the fact that w(x)
w(y) is bounded uniformy for all x, y ∈ R such

that |x− y| ≤ 1 ensures that the proof applies.

Note that if ξ satisfies (29) and is a linear transformation on the linear span
of ϕ0

x and ψnx , then the bound (29) will hold for linear combinations of ϕ0
x and

ψnx . Therefore ξ belongs to Cαw.
To characterize white noise, we define two families of weight functions in-

dexed by a, l ∈ R:

pa(x) := (1 + |x|)a (30)

el(x) := exp(l(1 + |x|)) (31)

Take ξ to be a white noise on R2, let % be a smooth, compactly supported,
even function on R2 which integrates to 1, and let

%ε(x) := ε−2%(
x

ε
) for all x ∈ R2, (32)

then we can define the mollified noise to be ξε = ξ ∗ %ε. At this stage we are
ready to classify the regularity properties of white noise, ξ:

Lemma 1 (Regularity of ξ)
For any a, ε, κ > 0, ξε belongs almost surely to C−1−κ

pa (R2) and, as ε → 0, ξε
converges in probability to ξ in C−1−κ

pa .

Proof. Working in dimension 2, by Proposition 2, to show the first statement,
it suffices to show:

sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

|〈ξ, ψnx )〉|
pa(x)2−

nd
2 −nα

. 1 (33)

sup
x∈Λ0

|〈ξ, ϕ0
x〉|

pa(x)
. 1 (34)
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To achieve the first bound take p to be an integer greater than 0 and write:

E

[
sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

(
|〈ξ, ψnx 〉|

2−n(1+α)pa(x)

)2p
]
.
∑
n≥0

∑
ψ∈Ψ

∑
x∈Λn

22pn(1+α)E[〈ξ, ψnx 〉2p]
pa(x)

(35)

At this stage we’d like to use the equivalence of Gaussian moments to conclude
that we can take the 2p out of the expectation, but as it is written in proposition
1 we do not have a bound uniform in p. Because we have convolved our Gaussian
random variable with a compactly supported function, equation (21) can be

made stronger: eαx
2 ≥ Cx2n where the constant depends on the domain of x

and α only. Therefore, we can bound the higher moments of 〈ξ, ψnx 〉 uniformly
in p: E[〈ξ, ψnx 〉2p] ≤ K[E〈ξ, ψnx 〉]2p where K is independent of p. Using this, the
fact that the lattice Λn has less than 22n points in the unit ball (the number of
points in the enclosing square) and the fact that there are finitly many ψ ∈ Ψ,
we get:

E

[
sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

(
|〈ξ, ψnx 〉|

2−n(1+α)pa(x)

)2p
]
.
∑
x∈Z

∑
n≥0

22pn(1+α)+2n(E[〈ξ, ψnx 〉2])p

pa(x)2p
. (36)

And so, because the L2 norm of ψnx is 1, we can take p large enough for the
sum to converge, and because our bound is uniform in p this shows we have
convergence in L1 and so the bound (33) holds. The same proof can be used
when ξ is tested against ϕ0

x. Thus, ξ belongs to Cαpa for evvery α < −1 (or
rather 〈ξ, ·〉 does).

Turning now to ||ξε− ξ||α,pa the proof is identical except for the L2 moment
of 〈ξ, ψnx 〉 is replaced with

E〈ξ − ξε, ψnx 〉2 = ||ψn0 − %ε ∗ ψn0 ||2L2 . 1 ∧ (ε222n) (37)

(where the ∧ denote the “meet” or infimum of the elements). Hence, for p large
enough we have:

E

[
sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

(
|〈ξε − ξ, ψnx 〉|

2−n(1+α)pa(x)

)2p
]
.
∑
x∈Z

∑
n≥0

22pn(1+α)+2n(1 ∧ ε2p22np)

pa(x)2p
. (38)

Treating each case of the supremum seperately and taking p as large as necessary
gives:

ε2p
∑
x∈Z

∑
n≥0

22pn(2+α)+2n

pa(x)2p
. ε2p

∑
n≥0

22pn(2+α)+2n (39)

.
ε2p

1− 22p(α+2)+1
(40)

which, for an appropriate choice of p and ε, can be written

ε2p

1− 22p(α+2)+1
. ε2p |log2 ε| (41)
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For the other case,∑
x∈Z

∑
n≥0

22pn(1+α)+2n

pa(x)2p
.

∑
n≥0

22pn(1+α)+2n (42)

.
1

1− 22p(α+1)+1
(43)

. ε−(1+2p(α+1)). (44)

Therefore,

E

[
sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

(
|〈ξε − ξ, ψnx 〉|

2−n(1+α)pa(x)

)2p
]
. ε−(1+2p(α+1)) ∨ ε2p |log2 ε| (45)

As such, E||ξε − ξ||α,pa → 0 as ε→ 0.

We close this subsection with a lemma we will make use of later on. Let

Pt(x) := (2πt)−
d
2 e−

|x|2
4t be the heat kernel in dimension d. Let Pt ∗ f denote

spacial convolution only. Then:

Lemma 2
For every β ≥ α and every f ∈ Cαel , we have

||Pt ∗ f ||β,el . t−
β−α

2 ||f ||α,el , (46)

uniformly over all l in a compact set of R and all t in a compact set of [0,∞).

Proof. To see this decompose Pt(x) = P+(x, t) + P−(x, t) into 2 components:
P+, which is supported in the unit ball around 0 and P−, which is smooth, i.e
we isolate the singularity at 0 in P+. Regarding P−, we can take t > 0:

sup
x,η,λ

|P− ∗ f(ηλx)|
el(x)λβ

. sup
x,η,λ

|
∫
R2

∫
R2\B1(0)

t−d/2e−
|z|2
4t f(y)λ−dη(x−z−yλ )dydz|

el(x)λβ

(47)

. sup
x,η,λ

|
∫
R2

∫
R2 e
− |z|

2

4 f(y)λ−dη(x−zt
1
2−y
λ )dydz|

el(x)λβ
(48)

. sup
x,η,λ

t
d
2
|
∫
R2

∫
R2 e
− |z|

2

4 f(yt
1
2 )λ−dη( t

1
2 (x−z−y)

λ )dydz|
el(xt

1
2 )λβ

(49)

. sup
x,η,λ

t−
β
2 |
∫
R2

∫
R2 f(yt

1
2 )λ−dη( (x−z−y)

λ )dydz|
el(xt

1
2 )λβ

(50)

. sup
x,η,λ

t−
β
2 +α

2 |〈f, ηλx〉|
el(xt

1
2 )λβ

(51)

.t−
β−α

2 ||f ||α,el , (52)

Addressing P+, set P+ =
∑
n∈N Pn, where Pn is a smooth function supported

in the annulus: {(t, x) : 2−n−1 ≤ |t| 12 + |x| ≤ 2−n+1}. Therefore, Pn(t, x) =
2dnP0(22nt, 2nx). Then we have the following inequalities:

|〈f, ηλx(· − y)〉| . λαel(x+ y) (53)
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for f ∈ Cαel , and

|〈f,Dk
xPn(t, · − y)〉| . |

∫
f(z)Dk

xPn(t, z − y)dz| . el(y)2−nα+n|k| (54)

uniformly for all η ∈ Br1, x, y ∈ Rd, t > 0, n ≥ 0 and k ∈ N2. Notice that Pn(t, ·)
vanishes at |t| 12 ≥ 2−n+1, or n ≥ 1− 1

2 log2t. Hence:

|〈P+(t, ·) ∗ f, ηλx〉| . el(x)(λα ∧ tα/2) (55)

|〈f,Dk
xP+(t, · − x)〉| . el(x)t

α−|k|
2 . (56)

If β < 0, (57) shows that the statement is true for P+. For β > 0, (58)
ensures that the sum in definition 4 converges appropriately.

3.3 Properties of Smooth Functions with Singularities at
the Origin

Definition 6 (Order of Smooth Functions Away From the Origin)
Let K : Rd\{0} → R be a smooth function. K is of order ζ if, for all multi-
indices k, there exists a constant C > 0 such that |DkK(x)| ≤ C||x||ζ−|k| holds
for all x such that ||x|| < 1.

For all m ≥ 0 we write,

|||K|||ζ;m := sup
|k|<m

sup
x∈Rd

||x|||k|−ζ |DkK(x)|. (57)

With that we can equivalantly say K is of order ζ if |||K|||ζ;m < ∞ for all
m ∈ N.

Note that if K is of order ζ, K is of order ζ for all ζ < ζ. Another very
powerful set of tools in theory of (S)PDEs are the following properties of smooth
functions away from the origin:

Theorem 3 (Properties of K : Rd\{0} → R)
For any m ∈ N:

1. If K1 and K2 are of order ζ1 and ζ2 respectively, then K1K2 is of order
ζ = ζ1 + ζ2 and the bound:

|||K1K2|||ζ;m ≤ C|||K1|||ζ1;m|||K2|||ζ2;m (58)

holds for some C > 0.

2. If we assume ζ1, ζ2 > −d and set ζ = ζ1 + ζ2 + d. If ζ < 0 then K1 ∗K2

is of order ζ and the bound:

|||K1 ∗K2|||ζ;m ≤ C|||K1|||ζ1;m|||K2|||ζ2;m (59)

holds. And for ζ > 0, such that ζ 6∈ N, if K1 and K2 are compactly
supported, then the function:

K(x) = (K1 ∗K2)(x)−
∑
|k|<ζ

xk

k!
Dk
x(K1 ∗K2)(0) (60)
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is of order ζ and a similar bound to (60) holds with the constant depending
on the supports of K1 and K2.

3. Lastly, for %ε as defined earlier, define Kε = K ∗ %ε. In that case, if K
is of order ζ ∈ (−d, 0) then for all m ∈ N, there exists a constant C > 0
such that |||Kε|||ζ,m ≤ C|||K|||ζ,m uniformly over all ε ∈ (0, 1]. Moreover,
for all ζ ∈ [ζ − 1, ζ), there exists a constant C > 0 such that:

|||K −Kε|||ζ;m ≤ Cε
ζ−ζ |||K|||ζ;m (61)

holds.

Proof. To prove 1. simply apply the general Leibnitz rule:

|||K1K2|||ζ;m := sup
|k|<m

sup
x∈Rd

||x|||k|−ζ |Dk(K1K2)(x)| (62)

≤ C

(
sup
|k|<m

sup
x∈Rd

||x|||k|−ζ1 |Dk(K1)(x)|

)(
sup
|j|<m

sup
y∈Rd

||y|||k|−ζ2 |Dj(K2)(y)|

)
(63)

≤ C|||K1|||ζ1;m|||K2|||ζ2;m (64)

To prove statement 2. requires more work. First for every x 6= 0 and k such
that ζ < |k| we assume:

|Dk(K1 ∗K2)(x)| . ||x||ζ−|k|s |||K1|||ζ1;|k||||K2|||ζ2;|k| (65)

Inserting this into the definition of the ||| · |||ζ;m, because ζ < 0, this proves the
statement for ζ < |k|.

To prove the statement concerning K(x) (as defined in (52)), note that
DkK = Dk(K1∗K2) for all |k| > ζ. Hence, by our assumption, these derivatives
are appropriately bounded. It remains to show that there exists a set of reals,
which we call Dk(K1 ∗ K2)(0) such that the same sort of bound applies for
ζ ≥ |k|.

To do this consider a set of multi-indices Aζ = {k : |k| < ζ}, we enumerate
these indices in decreasing order: Aζ = {k0, k1, ..., kM} where, |ki| ≥ |kj | for

i < j. Then, fix K(0)(x) := (K1 ∗K2)(x). For a given n > 0, assume we have
the bound:

|Dkn+eiK(n)(x)| . ||x||ζ−|kn|−1, (66)

(which is true for n = 0 by assumption (67)). This implies that one can find
constants Cn such that:

|DknK(n)(x)− Cn| . ||x||ζ−|kn|. (67)

Now, set K(n+1)(x) = K(n)(x)−Cn x
kn

kn! , and set K(x) = K(M)(x). As such,

|||K|||ζ;m = sup
|k|≤m

sup
x∈Rd

||x|||k|−ζ |DkK(M)(x)| (68)

. sup
x∈Rd

||x|||kM |−ζ |DkMK(0)(x)− Cn
xk0

k0!
| (69)

. |||K1|||ζ1;m|||K2|||ζ2;m. (70)

12



All that remains is to prove that assumption (67) applies. To do so, let
ϕ : Rd → [0, 1] be a smooth function such that ϕ(x) = 0 for all ||x|| ≥ 1 and
ϕ(x) = 1 for ||x|| ≤ 1

2 . For r > 0, set ϕr(x) = ϕ(r−1x1, r
−1x2). Assume without

loss of generality, that for each i = 1, 2, |||Ki|||ζi;|k| = 1. Then we have:

(K1 ∗K2)(x) =

∫
Rd
ϕr(y)K1(x− y)K2(y)dy (71)

+

∫
Rd
ϕr(x− y)K1(x− y)K2(y)dy (72)

+

∫
Rd

(1− ϕr(y)− ϕr(x− y))K1(x− y)K2(y)dy. (73)

Changing variables in the second term gives,

(K1 ∗K2)(x) =

∫
Rd
ϕr(y)K1(x− y)K2(y)dy (74)

+

∫
Rd
ϕr(y)K1(y)K2(x− y)dy (75)

+

∫
Rd

(1− ϕr(y)− ϕr(x− y))K1(x− y)K2(y)dy. (76)

Applying derivatives in x to both sides gives:

Dk(K1 ∗K2)(x) (77)

=

∫
Rd
ϕr(y)Dk(K1(x− y))K2(y)dy (78)

+

∫
Rd
ϕr(y)K1(y)Dk(K2(x− y))dy (79)

+

∫
Rd

(1− ϕr(y)− ϕr(x− y))Dk(K1(x− y))K2(y)dy (80)

−
∑
l<k

k!

l!(k − l)!

∫
Rd
Dlϕr(x− y)Dk−l(K1(x− y))K2(y)dy (81)

Of course, the above equality holds for any r > 0 so set r ≤ ||x||2 and consider
the terms seperately. Therefore, the integrand in the first term is supported in

{y : ||y|| ≤ ||x||2 }. Hence,

|DkK1(x− y)| . ||x||ζ1−|k| (82)

|K2(y)| ≤ ||y||ζ2 (83)

By assumption, ζ > −2 = −|s|, so we have:∫
||y||≤r

||y||ζdy . r2+ζ (84)

Therefore, the first term is bounded by ||x||ζ1+ζ2+2−|k| = ||x||ζ−|k|. The
same holds true for the 2nd term.
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For the third term, we know that ||y|| ≥ ||x||4 and ||x− y|| ≥ ||x||4 . Through
this and the triangle inequality, ||x− y|| ≥ ||y|| − ||x|| it is clear that:

||x− y|| ≥ ε||y||+
(

1− ε
4
− ε
)
||x||, (85)

for any ε > 0. Choosing an appropriate ε gives, ||x−y|| ≥ ||y|| for some constant
C > 0. As such, using that Ki are compactly supported, we have the following
bound:

∫
Rd

(1− ϕr(y)− ϕr(x− y))Dk(K1(x− y))K2(y)dy (86)

.
∫
C≥||y||≥ ||x||4

||y||ζ1+ζ2−|k|dy (87)

. ||x||ζ−|k|. (88)

The 4th bound can be dealt with in the same manor as the 3rd.
We turn now to the proof of statement 3. First observe that:

DkKε −DkK(x) =

∫
Rd

(DkK(x− y)−Dk(x))%ε(y)dy (89)

For ||x|| ≥ 2ε. We know that the support of %ε is contained in a ball of

radius ε. Moreover the integrand is 0 unless ||x− y|| ≥ ||x||2 . Therefore, because

%ε integrates to one we can bound DkK(x− y) ≤ ||x||ζ−|k||||K|||ζ;|k|. Hence:

|DkKε(x)−DkK(x)| . ||x||ζ−|k||||K|||ζ;|k| (90)

. |||K|||ζ,|k|+1

d∑
i=1

|yi|||x||ζ−|k|−1. (91)

Integrating against %ε gives the bound:

|DkK(x− y)−DkKε(x)| (92)

. |||K|||ζ,|k|+1

d∑
i=1

ε||x||ζ−|k|−1 . εζ−ζ |||K|||ζ;|k|+1||x||ζ−|k|. (93)

For ||x|| ≤ 2ε, write

DkKε(x) =

∫
Rd
K(y)Dk%ε(x− y)dy. (94)

Note that the integrand is supported in a ball of radius 3ε and that |Dk%ε| is
bounded by Cε−2−|k| for some constant C. Therefore, we can bound:

|DkKε(x)| . ε−2−|k||||K|||ζ;0
∫
||y||≤3ε

||y||ζdy (95)

. (||x||+ ε)ζ−|k||||K|||ζ;|k| (96)
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As such, (similarly to the previous case) we have the bound:

|DkK(x)−DkKε(x)| . |||K||ζ;|k|||x||ζ−|k| (97)

. εζ−ζ |||K|||ζ;|k|||x||ζ−|k|, (98)

as desired.

3.4 Stationary Solution Argument

As explained in the introduction, there are two difficulties in dealing with the
PAM in two dimensions on the continuum. The first is that on the continuum
solutions need to be controlled at infinity, that is why we have incorporated
weights into our Hölder spaces. These time-increasing weights will allow us to
bound the terms in the fixed point argument by exchanging weights in the norms
(see below). Essentially we would like to find a solution by integrating against
the kernel countably many times and then summing. The weights ensure that
the infinite sum of positive homogeneity terms does not make the sum diverge.

The second difficulty is the negative homogeneity terms we will create. Oth-
erwise put, u ·ξ is not well-defined because the sum of their Hölder regularities is
below 0. We have already given meaning to this product through the expanded
Hölder spaces but it remains to suitably renormalize the equation and remove
the singularity.

Remark 3
A very good example in which to see what renormalization coresponds to for
(S)PDE is the recent work in regularity structures by M. Hairer [cite hai14] .
In his analysis of the 2D PAM on the torus Hairer deals with the same renor-
malization difficulty without the need for weights. But rather than renormalize
using a stationary solution, as we do here, he instead uses the theory of regular-
ity structures. This allows him to write his solution as an expansion analogous
to a truncated Taylor series. Essentially by integrating the noise against the
kernel and then multiplying by the noise (or not) and integrating again one is
able to create a vector space graded by homogeneity. Expressing the fixed point
argument in this space then allows one to write the solution as a sum of vectors
that can be controlled. Because the authors work on the torus they need not
be concerned with summing the positive homogeneity terms. For the PAM in
2d there are 2 negative homogeneity terms each of which needs to be expanded
into its Weiner Chaos decomposition. Then allowing the author to pin-point the
source of the blow up and subtract it.

Fortunately we need not delve into the theory of regularity structures thanks
to a trick which is used in the non-stochastic case as well: we introduce the
“stationary solution” Y and solve the PDE associated to v = ueY .

Remark 4
The analogue to the non-stochastic case is for ∂tu−∆u = bu for b > 0, we can
solve this by inserting v = uebt, doing so shows v solves the heat equation which
we can use to find u.

Take a to be some arbitrary small constant. Let PAMε denote:

∂tuε = ∆uε + uε(ξε − Cε), uε(0, x) = u0(x).
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To construct the stationary solution let G be a compactly supported, even,

smooth function on R2\{0} such that G(x) = − log |x|
2π whenever |x| ≤ 1

2 , i.e G
corresponds to the 2D heat kernel in a ball of radius 1

2 and is even, compactly
supported and smooth otherwise. Applying the Laplace operator to G, in a
distributional sense, gives us a smooth compactly supported function F on the
whole of R2 such that:

∆G(x) = δ0(x) + F (x). (99)

With this we can introduce a process: Yε = G∗ξε. By definition Yε is smooth
and stationary on R2 and is such that:

∆Yε(x) = ξε(x) + F ∗ ξε (100)

With that we can now discuss the limiting nature of Yε in the following Corollary
of Lemma 1:

Corollary 1 (Stationary Solution Limit)
For any κ ∈ (0, 1

2 ), the sequence of processes Yε (and DxiYε respectively), as
ε→ 0 converges in probability in C1−κ

pa (R2) ( C−κ(R2) respectively) towards the
process Y (respectively DxiY ) defined by:

Y := G ∗ ξ (101)

DxiY := DxiG ∗ ξ (102)

Proof. G is compactly supported and identical to the Green’s function for the
Laplacian around the origin. Therefore we can apply some classical Schauder
estimates which can be found here [6], which state that for all α ∈ R the bounds:

||G ∗ f ||α+2 . ||f ||α (103)

||DxiG ∗ f ||α+1 . ||f ||α, (104)

hold uniformly over all f ∈ Cα. Unfortunately we are not done here because we
need these bounds to hold for f ∈ Cαw.

Let χ be a compactly supported function on Rd such that
∑
k∈Zd χ(x−k) = 1

for all x ∈ Rd. For convenience let χk(x) = χ(x− k). Given that, because G is
compactly supported,

||G ∗ (fχk)||α+2 . w(k)||f ||α,w (105)

||DxiG ∗ (fχk)||α+1 . w(k)||f ||α,w (106)

uniformly over all k ∈ Zd and f ∈ Cαw. But for a fixed x, only a bounded
number of {χk(x), k ∈ Zd} are non-zero, uniformly over all x ∈ Rd (because χ
is compactly supported). Since f =

∑
x∈Zd fχk:

||G ∗ f ||α+2,w . ||f ||α,w (107)

||DxiG ∗ f ||α+1,w . ||f ||α,w (108)

uniformly over all f ∈ Cαw. Hence the statement follows from Lemma 1.

16



Let vε(t, x) := uε(t, x)eYε(x) for x ∈ R2 and t ≥ 0. As such, vε solves:

∂tvε = ∆vε + vε(Zε − F ∗ ξε)− 25 vε · 5Yε, (109)

vε(0, x) = u0(x)eYε(x), (110)

where:
Zε(x) := | 5 Yε(x)|2 − Cε. (111)

Because Y and F are smooth, equation (113) shows that the only source of blow
up is the process Zε. With that in mind, we set:

Cε := E[| 5 Yε|2], (112)

thereby removing the divergent 0th order term in the Wiener chaos decomposi-
tion. From there we simply apply the definitions:

E[| 5 Yε|2] = E[5G ∗ %ε ∗ ξ|2] (113)

= [|Kε ∗ ξ|2] (114)

=

∫
Kε(x− y)ξ(y)Kε(x− y′)ξ(y′)dydy′ (115)

=

∫
Kε(x− y)δ(y − y′)Kε(x− y′)dydy′ (116)

=

∫
|Kε(y)|2dy (117)

=

∫
| 5G ∗ %ε(y)|2dy (118)

∼ 1

2π

∫ (
1

|y|+ ε

)2

χ2
[0,1](|y|)dy (119)

∼ 1

2π
| log ε|. (120)

Therefore:

Cε = − 1

2π
log ε+O(1) (121)

where O(1) converges to a constant as ε→ 0. To close this subsection we would
like to show that this renormalized sequence converges in the appropriate space.

Proposition 3 (Convergence of Zε)
For any κ ∈ (0, 1/4), the collection of processes Zε converges in probability as
ε → 0, in the space C−2κ

pa (R2), towards the generalised process Z defined as
follows: for every test function η, 〈Z, η〉 is a random variable in the second
homogeneous Wiener chaos associated to ξ represented by the L2 function:

(z, z̃) 7→
∫ ∑

i=1,2

DxiG(z − x)DxiG(z̃ − x)η(x)dx (122)

To prove this proposition we will need the following lemma bounding Z and
Zε. But first, note that because G is smooth away from the origin, compactly
supported and is equal to the Green’s function for the Laplacian in a neighbor-
hood around the origin, therefore we can characterize its singularity as of order
ζ for all ζ < 0. Moreover, set %∗2 = % ∗ % and assume without lose of generality
that % and %∗2 are compactly supported in R2. In which case:
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Lemma 3 (Bounds on Z and Zε)
For a given κ ∈ (0, 1/2), we have the bounds:

E
[
|Z(ηλx)|2

] 1
2 . λ−κ (123)

E
[
|Zε(ηλx)|2

] 1
2 . λ−κ (124)

E
[
|(Zε − Z)(ηλx)|2

] 1
2 . λ−5κεκ, (125)

uniformly over all ε, λ ∈ (0, 1), all x ∈ R2 and all η ∈ Br1.

Proof. By translation invariance it suffices to consider the case x = 0. Because
Cε corresponds to the 0 order Wiener chaos component in the decomposition of
| 5 Yε|, the terms Z(ηλ), Zε(η

λ) and Zε(η
λ)−Z(ηλ) must belong to the second

homogeneous Wiener chaos associate to ξ. We begin by addressing the second
bound:

Ez[|Zε(ηλ)|2] (126)

=E

[∣∣∣∣∫
x

(| 5 Yε|2 − Cε)ηλ(x)dx

∣∣∣∣2
]

(127)

=E

∣∣∣∣∣
2∑
i=1

∫
x

(DxiYε(z − x))2ηλ(x)dx−
∫
x

∫
z

(DxiYε(z − x))2ηλ(x)dzdx

∣∣∣∣∣
2

(128)

=

2∑
i=1

∫
z

∫
x

∫
x

∫
z

ηλ(x)ηλ(x)(DxiYε(z − x))2 −DxiYε(z − x))2) (129)

(DxiYε(z − x))2 −DxiYε(z − x))2)dzdxdxdz (130)

=

2∑
i=1

∫
z

∫
x

∫
x

∫
z

2ηλ(x)ηλ(x)(DxiYε(z − x))2DxiYε(z − x))2)dzdxdxdz (131)

Because Yε = Gε ∗ ξ, and using definition 1 of white noise:

E[|Zε(ηλ)|2] (132)

= 2

2∑
i=1

∫
z

∫
z

(∫
x

ηλ(x)(DxiGε(z − x))DxiGε(z − x))dx
)2

dzdz (133)

= 2
2∑
i=1

∫
x,x

ηλ(x)ηλ(x)

(∫
z

(DxiGε(z))DxiGε(z − x+ x))dz

)2

dxdx (134)

= 2

2∑
i=1

∫
x,x

ηλ(x)ηλ(x)

(∫
z

(DxiGε ∗DxiGε(x− x))
)2

dxdx (135)

(136)

By theorem 3 (properties of functions with singularities) and corollary 1 (sta-
tionary solution limit), this expectation grows like E[|Zε(ηλ)] . ||DxiGε∗ηλ||2−κ .
λ−2κ. Therefore, the bound (126) holds. And for (125) we can simply replace
Gε by G in the above proof.

Addressing the 3rd bound, write
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E
[
|Zε(ηλ)2|

]
=

2∑
i=1

∫ ∫
ηλ(x)ηλ(x)Hε,i(x− x)dxdx, (137)

where

Hε,i(y) = ((Dxi(Gε −G) ∗DxiGε) · (Dxi(Gε +G) ∗DxiGε))

− ((Dxi(Gε −G) ∗DxiG) · (Dxi(Gε +G) ∗DxiG)) .

Hence, using the bounds from Theorem 3:

||Hε,i(x− x)||0,m (138)

. εκ||(Dxi(Gε −G) ∗DxiG)(Dxi(Gε +G) ∗DxiG)||−κ,m (139)

. εκ||(Dxi(Gε −G) ∗DxiG)||2−κ,m (140)

. ε2κ||(Dxi(G) ∗DxiG)||2−2κ,m (141)

And so

E
[
|Zε(ηλ)2|

]
. ε2κλ−10κ (142)

We turn now to the proof of Proposition 3:

Proof. Take L ∈ {Z,Zε, Z − Zε}. Then:

E

[
sup
n≥0

sup
x∈Λn

(
L(ψnx )

pa(x)2−n+d/2

)2p
]
.
∑
k∈Z2

1

pa(k)2p

∑
n≥0

∑
x∈Λ∩B(k,1)

E[L(ψnx )2]p

2−2np(α+d/2)
.

(143)
By lemma 3, using λ = 2−n, E[L(ψnx )2] . 2−dn+2κn. Moreover the number of
points in (Λn ∩B(k, 1)) . 2dn, hence

E

[
sup
n≥0

sup
x∈Λn

(
L(ψnx )

pa(x)2−n+d/2

)2p
]

(144)

.
∑
k∈Zd

1

pa(k)2p

∑
n≥0

22np(α+ d
2

)−(dn+2κn)p+dn (145)

.
∑
k∈Zd

1

pa(k)2p

∑
n≥0

2np(2α+2κ)+2n (146)

(147)

Which is finite for α = −2κ and large enough p. As such Z and Zε belong
to C−2κ

pa .

Regarding Z − Zε, Lemma 3.1 ensures E[(Z − Zε)(ψ
n
x )2] . ε2κ2n(10κ−2)

uniformly over x, n, and ε. Therefore:

E

[
sup
n≥0

sup
x∈Λn

(
(Z − Zε)(ψnx )

pa(x)2−nα−n

)2p
]
.
∑
k∈Z2

1

pa(k)2p

∑
n≥0

ε2κp2n(2αp+10κp+2) (148)

As such, choosing for example α = −6κ and taking p large we can conclude
that E[||Z − Zε||−6κ,pa ] . εκ uniformly for ε ∈ (0, 1].
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3.5 Fixed Point Argument

Before discussing the central fixed point argument crucial to solving this PDE
we introduce the Banach space Erl,T . For any r > 0, l ∈ R, and T > 0, let Erl,T
define the set of continuous functions v on (0, T ]× R2 such that:

|||v|||l,T := sup
t∈(0,T ]

||vt||r,el+t
t−1+κ

<∞. (149)

To set up the fixed point argument, fix κ ∈ (0, 1
4 ) and let a ∈ (0, κ/2). For

a given g, h(1), h(2) ∈ C−2κ
pa and f ∈ C−1+4κ

el
, define the MT,f (v) as follows:

MT,f (v)t :=

∫ t

0

Pt−s ∗
(
vs · g +Dxivs · h(i)

)
ds+ Pt ∗ f, (150)

where we omit the summation over i = 1, 2 for convenience in the rest of this
article.

Proposition 4 (Fixed Point of MT,f (v))
For any given κ ∈ (0, 1

4 ), g, h(1), h(2) ∈ C−2κ
pa and any f ∈ C−1+4κ

el0
, the map

MT,f admits a unique fixed point v ∈ E1+2κ
l0,T

. Furthermore, the solution map

(g, h(1), h(2), f) 7→ v is continuous.

Proof. Using Lemma 2 we get that ||Pt ∗ f ||1+2κ,el+t . t−1+κ||f ||−1+4κ,el uni-
formly over all t in a compact subset of R+.

Furthermore, observe:

sup
x∈R

pa(x)el+s(x)

el+t(x)
= sup

x∈R
|x|ae(s−t)|x|, (151)

taking a derivative of the left hand side and maximizing gives

sup
x∈R

pa(x)el+s(x)

el+t(x)
≤ e−a

(
a

t− s

)a
(152)

Using the multiplication rule from theorem 3 we deduce that:

||vs · g +Dxivs · h(i)||−2κ,el+t (153)

≤ pa(x)el+s(x)

el+t(x)
||vs · g||−2κ,pael+s + ||vs · h(i)||−2κ,pael+s (154)

. (t− s)−a||vs||1+2κ,el+s(||g||−2κ,pa + ||h(i)||−2κ,el+t) (155)

= (t− s)−as−1+κ|||vs|||l,T (||g||−2κ,pa + ||h(i)||−2κ,el+t) (156)

uniformly over all s, t in a compact set of R+ and l in a compact set of R. Using
Lemma 2 and a < κ/2:∣∣∣∣∣∣∣∣∫ t

0

Pt−s ∗
(
vs · g +Dxivs · h(i)

)
ds

∣∣∣∣∣∣∣∣
1+2κ,el+t

(157)

.
∫ t

0

(t− s)− 1
2−2κs−1+κds|||v|||l,T (||g||−2κ,pa + ||h(i)||−2κ,pa) (158)

. t−1+κT
1
2−2κ|||v|||l,T (||g||−2κ,pa + ||h(i)||−2κ,pa) (159)
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uniformly over all t ∈ (0, T ], ensuring that MT,f (v) ∈ E1+2κ
l,T . Therefore,

|||MT,f (v)−MT,f (v)|||l,T . T
1
2−2κ|||v−v|||l,T (||g||−2κ,pa+||h(i)||−2κ,pa) (160)

uniformly over all l in a compact subset of R, all T in a compact subset of R+,
all f ∈ C−1+4κ

el
and all v, v ∈ El,T (where here and for the remainer of the article

we write El,T = E−1+4κ
l,T ).

This implies that there exists a sufficiently small T ∗ > 0 such thatMT∗,f is
a contraction on El,T∗ uniformly over all l ∈ [l0, l0+T ] and f ∈ C−1+4κ

el
. We then

proceed by iterating using linearity of MT,f to cover [0, T ]: Let the fixed point
ofMT∗,f be v∗ ∈ El0,T∗ . If T ∗ > T we are done. If not, set f∗ = v∗T∗/2 ∈ C

1+2κ
el∗0

where l∗0 = l0 +T ∗. We know l∗0 ≤ l0 +T andMT∗,f∗ is a contraction on El∗0 ,T∗ ,
hence it admits a fixed point, v∗∗ ∈ El∗0 ,T∗ . Let vs = v∗s for s ∈ (0, T ∗/2] and
vs = v∗∗s−T∗/2 for all s ∈ (T ∗/2, 3T ∗/2]. By linearity, v is a fixed point ofM 3T∗

2 ,f

and v ∈ El0,3T∗/2. Suppose v was another fixed point, by uniqueness of the fixed
point on (0, T ∗], v = v∗ there, and v is necessarily a fixed point of MT∗,f∗ , so
it must coincide with v∗∗. Iterating further ensures existance and uniqueness of
a fixed point on any subinterval of [0, T ].

Addressing the continuity of the solution map with respect to f, g, h(i). Let
M be the fixed point map associated to some g and h. For initial conditions,
f, f ∈ C−1+4κ, MT,f and MT,f admit unique fixed points, v and v ∈ E1+2κ

l0,T
.

Moreover,

vt − vt = (MT,f (v)−MT,f (v)) (161)

+
∫ t

0
Pt−s ∗

(
(vs(g − g)) +Dxivs(h

(i) − h(i)
)
)
ds+ Pt ∗ (f − f). (162)

Therefore,

|||v − v|||l,T

. T
1
2−2κ|||v|||l,T (||g − g||−2κ,pa + ||h(i) − h(i)||−2κ,pa + ||f − f ||−1+4κ)

+ T
1
2−2κ|||v − v|||l,T (||g||−2κ,pa + ||g||−2κ,pa + ||h(i)||−2κ,pa + ||h(i)||−2κ,pa)

uniformly over all l in a compact subset of R and all T in a compact set of R+.
For a given R > 0, there exists a T > 0 such that:

|||v−v|||l,T . ||f−f ||−1+4κ,el+T
1
2−2κ(||g−g||−2κ,pa+||h(i)−h(i)||−2κ,pa). (163)

uniformly over all l in a compact subset of R and all g, g, h, h such that
|||v|||l,T , ||g||−2κ,pa , ||g||−2κ,pa , ||h||−2κ,pa , and ||h||−2κ,pa are all less than R.
This implies continuity of the solution map for (0,T]. Iterating the same argu-
ment gives continuity on any bounded interval.

At this stage we are in a position to present the main theorem in this work:

Theorem 4 (Convergence in Probability)
Consider an initial condition u0 ∈ C−1+4κ

el
and a final time T > 0. For all l′ > l,
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the sequence of processes vε converges in probability as ε→ 0 in the space E1+2κ
l′,T

to a limit v which is the unique solution of:

∂tv = ∆v + v(Z − F ∗ ξ)− 25 v · 5Y , v(0, x) = u0(x)eY (x). (164)

As such, uε converges in probability in E1−κ
l′,T towards the process u = ve−Y

Proof. Take u ∈ C−1+4κ
el

for a given l ∈ R and define fε := u0e
Yε . By Corollary

1 (the Stationary Solution Limit) and Theorem 2 (Multiplication of Cαw spaces),
fε ∈ C−1+4κ

e′′l
for all l′′ > l.

Let vε be the unique fixed point of MT,fε associated to gε = Zε − F ∗ ξε
and h(i) = DxiYε. By Corollary 1 and Proposition 3 (Convergence of Zε), we
know gε and h(i) converge in probability to g = Z − F ∗ ξ, h(i) = −2DxiY
in C−2κ

pa . Moreover by Lemma 1, F ∗ ξε converges towards F ∗ ξ, since F is
smooth and compactly supported. Therefore, by Proposition 4, vε converges in
probability to E1+2κ

l′′,T to a unique fixed point v ofMT,f associated to g and h(i).

Furthermore, Theorem 2 ensures that for every l′ > l′′, uε = vεe
Yε converges to

u = ve−Y in E1−κ
l′,T

4 Discussion

As discussed in the introduction, there are two approaches to solving (S)PDEs.
The first is to homogenize (smooth) the noise and to then look for properties like
stationary states. The second is to add counter terms to the equation so that
solutions can be presented in a suitable space. Herein we have done the latter
by rewriting the equation in a “stationary” form and controlling the diverging
terms. Which allowed us to prove existence and uniqueness of solutions to the
new renormalized equation. As such the importance of this result (independent
of its use as an example) depends on the importance of the parabolic Anderson
model.

One motivating example from which one can derive the discrete parabolic
Anderson model is through random walks and particle dynamics. Consider a
system of two types of particles, an A (catalyst) type and a B (reactant) type.

• Suppose the A particles evolve independently with the random input being
related to the number of A-particles at a site (x, t) (i.e the number of A
particles, a is such that ξ = γa− δ for some γ, δ > 0 and a white noise ξ).

• Suppose the B particles perform independent random walks at a rate 2d
(where d is the dimension) and the number of particles at a site doubles
at a rate of γ times the number of A particles.

• Suppose futher, that B particles die at a rate of δ

• Lastly, assume that the number of B particles at a site (x, 0) is u0(x)

In this setting the solution to the PAM:

∂tu(x, t) = ∆u(x, t) + ξ(x, t)u(x, t), (165)

u, represents the number of B particles at a point (x,t) conditioned on the
behavior of the A particles [1].
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Therefore, one can see that the discrete parabolic Anderson model has
relevence to (at least one) physical model and as such it is interesting to ask
whether this model is realistic in the limit as the spacing goes to 0. Where by
realistic we refer to the existence and uniqueness of solutions. i.e we have shown
that this model is realistic in the sense that it has a unique solution.
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