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Transcription is a fundamental process necessary for life.  In Eukaryotes this 

process is shaped and constrained, in part, by the 3D structure of chromatin –the 

assemblage of protein and DNA into which the genome is organized.  Additionally, 

chromatin itself is reorganized as conditions change and different transcriptional 

programs are activated.  Within this work, I present an exploration of the dynamic system 

created by this intricately intertwined regulation between chromatin structure and 

transcriptional outputs. 

In Chapter 1, I begin with a review of the determinants of direction in the 

initiation stage of Eukaryotic transcription.  The process of initiation involves numerous 

forms of regulation, including chromatin based.  The next three chapters investigate 

different aspects of the nucleosome, which has been the primary topic of my research.  

Chapter 2 presents an overview on researching the nucleosome in the yeast 

Saccharomyces cerevisiae.  Chapter 3 examines the connections between H2A.Z and 

transcription.  Here, I challenge the generally accepted model of H2A.Z incorporation at 

the +1 and -1 nucleosomes hedging the transcription start site.  Chapter 4 focuses 

specifically on perturbations to nucleosomal structure produced either from gene 

deletions or in response to environmental changes.  Finally, I conclude by summarizing 
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my findings and with a general discussion of questions in the field that remain to be 

explored. 
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INTRODUCTION 

The central dogma of biology as proposed by Francis Crick (Crick, 1970) outlines 

the canonical view of the flow of genetic information.  DNA serves as a storage molecule 

in which information is encoded in nucleotides (composed of the bases A, T, G, and C).  

This information is then transferred from static but stable DNA to the less stable but 

mobile RNA via the process of transcription.  The information contained within discreet 

RNA messages is then converted into polypeptide form via the process of translation.  

Proteins, the end product of these processes, have structural and catalytic functions and 

perform the various functions of life.  This canonical view of the order of things in 

molecular biology has since been modified and amended to incorporate numerous new 

findings.  For example, the discovery of reverse transcriptases in retroviruses has 

necessitated adding a path to the model through which information initially stored in 

RNA can be hard coded into DNA (Baltimore, 1970, Temin and Mizutani, 1970).  

Similarly, RNA has proven itself capable of carrying out catalytic (Lewin, 1982, Noller et 

al., 1992) and structural functions (Fang et al., 2015, Yan et al., 2016). 

Information can also be encoded within the structure of chromatin.  By 

controlling access of the transcriptional machinery to DNA, chromatin fine-tunes the 

quantity of information produced.  By changing chromatin structure in ways that 

encourage alternate transcription start site, exon, or polyadenylation site usage (Blazie et 

al., 2015, Brown et al., 2012, Haberle et al., 2014), target molecules for degradation, or 

altogether prevent transcription, the quality of information can also be modulated.  The 

ability of proteins to change the “message” encoded in DNA relies on the addition of 

covalent modifications, the inclusion of histone variants, and the ability of chromatin 

remodelers to mobilize nucleosomes, among many other integrated layers of chromatin 
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related functions.  As part of the “epigenome” these changes can also be heritable from 

generation to generation. 

In metazoans, chromatin structure varies between tissues types, as does 

transcriptional output, and both can be used to determine a cell type of origin (Danielsson 

et al., 2015, Snyder et al., 2016).  These studies demonstrate that chromatin and 

transcription are intrinsically related, and that they unite to determine cell function.  

Within this dissertation I explore this inter-relatedness. 
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CHAPTERS 

Chapter 1: The Determinants of Directionality in Transcriptional 
Initiation1 

“And thus do we of wisdom and of reach, 
with windlasses and with assays of bias, 

by indirections find directions out.” 

-Polonius, Hamlet, II, i 

 

INTRODUCTION 

A new paradigm has emerged in recent years characterizing transcription 

initiation as a bidirectional process, encompassing a larger proportion of the genome than 

previously thought.  Past concepts of coding genes thinly scattered among a vast 

background of transcriptionally inert noncoding DNA have been abandoned.  A richer 

picture has taken shape, integrating transcription of coding genes, enhancer RNAs, and 

various other noncoding transcriptional events.  This review attempts to give an overview 

of recent studies detailing the mechanisms of RNA Pol II-based transcriptional initiation 

and discuss the ways in which transcriptional direction is established, as well as its 

functional implications. 

 

WHAT IS BIDIRECTIONAL TRANSCRIPTION? 

The determinants of transcriptional initiation are intricate and interwoven.  What 

is clear from the high proportion of the human genome that is transcribed (estimated at 

60%) in comparison to the small proportion that is coding (2%) (Consortium et al., 2012, 

Djebali et al., 2012) is that transcriptional processes involve much more of the genome 
                                                
1 A version of Chapter 1 has been previously published in: 14. Bagchi, D.N. and Iyer, V.R. (2016) The 
Determinants of Directionality in Transcriptional Initiation. Trends Genet. 
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than was once thought.  High-resolution analyses and detailed catalogs of transcription 

start sites (TSS) obtained using next-generation sequencing methods have shown that 

transcription initiation frequently occurs in both directions from a given promoter region 

(Preker et al., 2011, Xu et al., 2009).  These studies have raised the question of whether 

transcription initiation is an inherently bidirectional or unidirectional process.  In one 

model, biases in the direction of transcription arise as emergent properties from the 

complex regulatory restrictions placed upon inherently bidirectional promoter elements.  

In an alternative model, transcription at its core is unidirectional, with the appearance of 

bidirectionality arising due to the adjacent placement of individual unidirectional core 

promoters in opposite orientations.  In the latter model, the similar needs of two separate 

gene promoters to coordinately regulate transcription factor (TF) recruitment might select 

for divergent transcript orientations.  Transcription occurring in two directions from a 

single core promoter and divergent transcription originating from two distinct core 

promoters have not always been well distinguished in the literature.  The conflation of 

these two categories has led to some ambiguity.  Here we refer to transcription arising 

from a core promoter in opposite directions as bidirectional, whereas transcription of two 

outward facing transcripts from independent core promoters is termed divergent 

transcription.  To some extent, the terminology that researchers in the field adopt depends 

on variability in the definitions and size estimates of what constitutes a promoter and how 

far divergent genes may lie from one another.  In this review we discuss the evidence for 

each model to illustrate the current understanding of transcriptional initiation, and also 

consider the related issue of sense and antisense transcription at genes.  Ultimately, we 

suggest a more nuanced view of promoters as non-directional, conducive regions of DNA 

prone to the occurrence of an open chromatin structure, the transcriptional potential of 

which is channeled either bidirectionally or unidirectionally in a context dependent 
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manner.  The regulatory constraints of the various layers of regulation then work 

additively to produce specific transcriptional states (Figure 1.1). 

 

 

 

Figure 1.1:  The determinants of directionality. 

The schematic depicts the different factors that go into establishing directionality at a 
transcriptionally permissive site. 
 
 

ASSAYING THE TRANSCRIPTOME 

Methods 

Recently, considerable effort has been directed towards using high-resolution 

methods to define the total RNA pool produced via transcription.  High resolution 

methods to define the transcriptome have revealed that transcription initiates not only in 

the expected location downstream of promoters, but also within promoter regions 

Direction of Transcription 

Upstream Sequence Canonical Transcript 

Chromatin Landscape 

eRNAs and  
Enhancer Interactions 

Binding of Directional  
Transcription Factors 

Core Promoter Elements 
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upstream of coding sequences and bidirectionally at active enhancers.  Both these sources 

of noncoding transcription generally produce short unstable RNAs that are rapidly 

degraded through transcriptional termination and targeted degradation processes (Almada 

et al., 2013, Ntini et al., 2013).  Transcription has also been observed to originate within 

transcript bodies (Kaplan et al., 2003), and from the 3' ends of genes in antisense 

orientation (Gu et al., 2015)(Figure 1.3).  Numerous techniques have been used to detect 

nascent transcripts (Table 1).  Unstable transcripts can be identified when RNA 

degradation pathways are inhibited, causing the persistence of unstable RNAs (Core et 

al., 2014, Preker et al., 2008).  These experiments have been used to interrogate the 

genomic sites of transcriptional initiation and classify them broadly into 3 types based on 

their bidirectional potential: stable/stable, stable/unstable, and unstable/unstable.  These 

categories reflect the functional directionality of a promoter but don't specify whether 

initiation actually occurs in both directions.  For an in-depth account of the various 

noncoding transcripts that have been described and the techniques that have been used to 

identify them, see the review by Wei et al (Wei et al., 2011). 
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Technique Method Results References 
RNA Pol II 
ChIP Seq 

Chromatin is fragmented, 
Pol II is immuno-
precipitated, and the 
interacting DNA is 
sequenced. 

Identifies DNA that is bound 
by RNA Pol II in a non-
strand specific fashion at 
~200 bp resolution. 

(Barski et al., 2007, 
Mikkelsen et al., 
2007) 
 

cap analysis of 
gene 
expression 
(CAGE)/ 
SMORE-seq/ 
TIF-seq 

RNA is treated with 5' 
cap-specific enzyme 
tobacco acid 
pyrophosphatase (TAP) 
and subjected to cDNA 
sequencing. 

Identify 5' ends from stable 
capped RNAs at single 
nucleotide resolution. 

(de Hoon and 
Hayashizaki, 2008, 
Park et al., 2014a, 
Pelechano et al., 
2013) 

global run-on 
sequencing 
(GRO-seq) and 
GRO-cap 

Run on assay, which 
restarts RNA Pol II in 
vitro in the presence of a 
labeled nucleotide 
(BrUTP) in order to purify 
nascent RNA.  

Identify nascent RNAs and 
post initiation pause sites at 
~50 bp resolution. Since 
transcription is restarted in 
vitro, it can detect unstable 
transcripts, which would 
normally be rapidly 
degraded in vivo. 

(Core et al., 2014, 
Core et al., 2008, 
Kruesi et al., 2013) 

precision 
nuclear run-on 
and 
sequencing 
(PRO-seq) 

Run on assay, which 
restarts RNA Pol II in 
vitro using biotin-labeled 
ribonucleoside 
triphosphate analogs. By 
supplying only 1 of the 4 
nucleotides at a time, 
run-on transcription is 
limited and resolution is 
improved over GRO-seq. 

Identifies nascent RNAs and 
post-initiation pause sites at 
<50 bp resolution. Since in 
GRO-seq type assays 
transcription is restarted in-
vitro, it can detect unstable 
transcripts, which would 
normally be rapidly 
degraded in vivo. 

(Kwak et al., 2013) 
 

native 
elongating 
transcript 
sequencing 
(NET-seq) 
 

RNA Pol II associated 
RNA is purified, and the 
associated RNA is 
sequenced. 

Identifies nascent RNA at 
single nucleotide resolution. 
When combined with CTD 
phosphorylation specific 
immunoprecipitation, 
different populations of RNA 
can be identified based on 
the modification status of 
their transcribing RNA Pol II. 

(Churchman and 
Weissman, 2011, 
Mayer et al., 2015, 
Nojima et al., 2015) 
 

RNA-seq 
combined with 
inhibition of 
RNA 
degradation 
pathways 

Different components of 
various RNA degradation 
pathways are inhibited 
(such as exosome 
components) to enable 
the isolation of unstable 
RNAs. 

Identifies RNAs regardless 
of stability. Resolution is 
variable depending on the 
RNA seq method employed. 

(Ntini et al., 2013) 
 

Table 1.1:  Genomic techniques for assaying transcriptional initiation 
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eRNAs 

In mammalian cells, transcriptional activity at enhancers is widespread and 

dynamically regulated, generally producing unstable transcripts in both directions when 

actively functioning as an enhancer (Andersson et al., 2014).  It should be noted though 

that the majority of putative enhancers identified by chromatin profiling have not been 

experimentally validated as being functional.  A small subset of enhancers produce stable 

long noncoding RNAs (lncRNAs) as one of their transcript pairs.  Just as the promoter-

directed effects of enhancers are cell type specific and developmental timing specific, the 

RNAs that they produce also occur in similar waves.  During changing conditions or cell 

states, enhancer RNA (eRNA) production is the most rapid and salient transcriptional 

response, preceding even the transcription of TFs in response to the change (Arner et al., 

2015).  The question of whether the majority of eRNAs are functional remains open.  In 

some specific instances eRNAs have been shown to be important for the function of 

enhancers.  Post transcriptional knockdown of a handful of eRNAs has revealed cases 

where they are necessary for enhancing transcription at interacting genes (Melo et al., 

2013) and for promoter-enhancer loop formation (Hsieh et al., 2014).  However, there are 

also many instances where knockdown of these eRNAs does not inhibit the function of 

the enhancer (Hah et al., 2013).  On average, however, eRNA transcription is a good 

predictor of enhancer activity (Andersson et al., 2014).  The potential functions of eRNAs 

have been discussed in a review by Li et al (Li et al., 2014).  

PROMPTs 

Within promoter regions, noncoding RNAs termed PROMPTs (promoter 

upstream transcripts, Figure 1.3) have been detected after depletion of components of the 

exosome, an RNA degradation complex (Preker et al., 2011).  Similar transcripts have 

been noted by other groups and have been termed bidirectional noncoding RNAs (BNCs) 
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(Park et al., 2014a), cryptic unstable transcripts (CUTs) (Xu et al., 2009) or stable 

unannotated transcripts (SUTs) (Wei et al., 2011, Xu et al., 2009).  In mammalian cells, 

PROMPTs have been observed to be transcribed in both the sense and antisense 

directions (Preker et al., 2008, Seila et al., 2008).  These transcripts are generally 

transcribed by RNA polymerase II (RNA Pol II) but can originate upstream from Pol I 

and Pol III transcribed genes also (Preker et al., 2011).  Antisense PROMPT transcription 

has been reported to be correlated (Preker et al., 2008) and anti-correlated (Preker et al., 

2011) with downstream coding genes.  Skewing in initiation direction may reflect trade-

offs where the presence of activated open chromatin generally recruits more of the 

transcription machinery, but also where a transcript's abundant expression may 

monopolize the pool of available RNA Pol II.  In contrast to stable mRNAs, most 

PROMPTs and eRNAs are depleted for 5' splice sites (Almada et al., 2013) and enriched 

for polyadenylation sites (Ntini et al., 2013), features which target them for early 

transcriptional termination and degradation.  While the majority of PROMPTs are rapidly 

degraded, some stable noncoding transcripts produced from promoter regions have been 

shown to be functional (Albrecht and Orom, 2015, Zhou et al., 2015).  Some promoter 

transcripts are reproducibly observed in specific tissues, cell lineages, and cancers, while 

others are ubiquitous (Balbin et al., 2015). 

The similarity between PROMPTs and eRNAs supports the characterization of 

promoters as a specific type of a general class of origin of transcription, one in which a 

stable transcript with coding potential is produced.  It has been suggested that promoters 

and enhancers should be viewed as a unified category of transcriptional initiation sites 

which are differentially regulated (Andersson et al., 2015b, Preker et al., 2008, Seila et 

al., 2008).  Generally, eRNA transcription occurs bidirectionally, with both directions 

producing roughly equivalent levels of RNA (Andersson et al., 2014).  In contrast, while 
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it is likely that most promoters produce PROMPTs, or antisense transcripts, transcription 

is generally skewed towards the sense direction(Balbin et al., 2015).  While depletion of 

exosome components leads to increases for both eRNAs and PROMPTs, eRNA increases 

are significantly higher (Andersson et al., 2014).  In some cases, intragenic enhancers can 

produce multi-exonic enhancer RNAs (meRNAs) which are spliced and polyadenylated 

just like coding genes, but are unlikely to have coding potential (Kowalczyk et al., 2012). 

Interestingly, not only are enhancers being recognized as resembling promoters, but 

promoters have been characterized with enhancer functions.  Like enhancers, promoters 

often interact with other promoters, and in these cases, can have enhancer-like effects on 

their interacting partners (Kowalczyk et al., 2012, Leung et al., 2015).  In this context, 

both elements should be regarded as sites of transcriptional initiation that are 

differentially characterized by the types of transcripts they produce. 

 

CORE PROMOTER ELEMENTS WORK SYNERGISTICALLY TO ESTABLISH 
TRANSCRIPTIONAL DIRECTIONALITY 

TATA box containing promoters 

Core promoter elements are vital components in determining whether 

transcriptional initiation occurs and the direction in which it occurs.  In bacteria the 

asymmetric nature of the -35 and -10 sequences recognized by the sigma factor convey 

directionality.  In Eukaryotes, however, core promoter elements which recruit RNA 

Polymerases to initiate transcription come in a variety of flavors, exhibit far less 

conservation, and can be hard to identify.  The most widely recognized of these 

sequences, the TATA box, has often been regarded as a directional element, in part due to 

a strong bias in its appearance at sites of asymmetric, directional transcription (Park et al., 
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2014a).  In humans, TATA box like features occur at about 29% of unidirectional 

promoters compared with only about 9% of bidirectional promoters (Trinklein et al., 

2004).  Some experiments investigating TATA box function suggest that the TATA 

sequence orientation matters.  For example, inversion of the TATA box in the yeast 

Saccharomyces cerevisiae HIS4 promoter in vivo causes a failure of HIS4 transcription 

(Nagawa and Fink, 1985).  However, a larger amount of data supports the notion of a 

bidirectionally competent TATA element, even in the context of a specifically 

asymmetric TATA sequence.  The existence of TATA box containing promoters that 

show bidirectional transcription indicates that the TATA box itself is not necessarily 

directional in nature.  Additionally, examples of inverted TATA elements can be found in 

natural genomic contexts (Huang et al., 1996).  In vitro transcription experiments using 

nuclear extract from the amoeba Acanthamoeba castellanii have demonstrated that 

isolated TATA boxes support bidirectional transcription, while addition of an upstream 

TBP promoter element (TPE) stimulates transcription downstream of the TATA and 

prevents transcription upstream of the TPE (Huang et al., 1996) (Figure 1.2).  In yeast, 

the TATA box is able to promote transcription in both orientations but the orientation 

does affect the level of transcriptional output (Lubliner et al., 2015).  These results have 

also been shown to apply to mammalian transcription, as inversion of asymmetric TATA 

boxes in reporter plasmids transfected into human cells still produced transcriptional 

activation of the downstream genes they regulated (Xu et al., 1991).  Since TATA 

elements that are strongly conserved are likely to produce at least weak TATA elements 

in the opposite orientation, this result is not wholly unexpected.  These experiments 

indicate that the position of the TATA box in relation to other promoter elements is more 

important for determining directionality than the TATA box orientation itself. 
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If TATA elements have the potential to stimulate bidirectional transcription, what 

then accounts for the significant enrichment of TATA boxes at sites of unidirectional 

transcription?  In yeast, TATA-containing genes tend to exhibit either high or low 

expression levels, are enriched for genes up-regulated in response to environmental 

stress, and are depleted for housekeeping genes (Basehoar et al., 2004).  Additionally, 

TATA boxes have been associated with tissue specific promoters (Carninci et al., 2006, 

Engstrom et al., 2007).  If TATA-regulated genes are less likely to be constitutively 

expressed, it is possible that divergent transcription occurs from these promoters only 

under specific conditions.  The promoters of genes localized near telomeres are also 

enriched for TATA boxes (Basehoar et al., 2004).  This could indicate a greater 

dependence on regulation by TATA elements for genes that experience heterochromatin 

based repression.  The expression levels of these genes may need to be more dynamically 

regulated, as telomere-adjacent gene regions show less evolutionary conservation 

compared to centrally located regions (Kellis et al., 2003).  A quick look at the yeast 

genome shows that divergent transcripts governed by TATA containing promoters tend 

to have an increased distance to the upstream TSS.  This space could accommodate a 

greater number of core promoter regulatory elements.  These results support a model 

where the regulatory requirements of TATA containing genes are more variable and 

demanding, selecting for their independent regulation from potential upstream transcripts. 
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Figure 1.2: Contributors to divergent and unidirectional transcription within an NFR.  

For head-to-head coding genes, most transcripts arise from two separate core promoter 
elements. Bidirectional transcription from a single core element may be characterized by 
unstable transcripts in the antisense direction in the case of coding genes, and in both 
directions in the case of enhancers. Finally, a subset of promoters show predominantly 
unidirectional transcription. As the majority of TFs have bidirectional activities, the 
number of truly unidirectional promoters may be relatively small. These categories may 
overlap and vary depending on differential conditions and tissue types. In each case, the 
presence or absence of transcription is subject to a variety of secondary regulation 
including TF expression and binding, CTCF and cohesin mediated looping, Ssu72 
mediated 5’ to 3’ gene looping, and modifications to H2A.Z which may further promote 
or antagonize the progression of RNA Pol II. 
 
 

Core promoter elements which establish direction 

Core promoters lacking TATA boxes also impart directional preferences to the 

transcription originating from them. Unidirectional transcription (as measured by 
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luciferase reporter assays) from the insulin-degrading enzyme (IDE) gene promoter is 

achieved through the presence of an upstream transcription blocking element (UTBE) in 

both mice and humans (Zhang et al., 2013a, Zhang et al., 2013b)(Figure 1.2).  In humans 

this element has been mapped to a specific sequence between -318 and -304 relative to 

the transcription start site.  The downstream core promoter in isolation can promote 

transcription in both the sense and antisense directions.  However, in the presence of a 

UTBE, antisense transcription is abrogated (Zhang et al., 2013b).  This UTBE also has 

the ability to block sense transcription of SV40 transcripts when placed downstream of 

the SV40 promoter (Zhang et al., 2013b), highlighting the ability of this promoter 

element to regulate the initiation of transcription in both directions.  In a more expansive 

study, when promoters cloned into luciferase reporters in both orientations and 

transfected into 4 different cell lines were assayed, some showed strong directional 

preferences that varied based on cell line. There was evidence that the divergent 

transcripts competed for the same transcriptional machinery, as deleting one TSS often 

increased activity from the oppositely oriented one (Trinklein et al., 2004).  This indicates 

that the directionality associated with some promoter sequences is not solely due to 

intrinsic sequence factors, but relies on interactions with trans-acting cell specific factors. 

Characterizing bidirectional versus unidirectional promoters 

Some core promoter elements are more likely to be associated with regions of 

bidirectional transcription.  In particular, bidirectional promoters are more likely to have 

a higher GC content and to fall within CpG islands.  In humans, about 90% of 

bidirectional promoters are found within CpG islands compared to only about 45% of 

unidirectional promoters (Yang and Elnitski, 2008).  Other elements slightly more 

common in unidirectional promoters include the downstream core promoter element 
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(DPE) and the initiator (Inr), while the CCAAT box is almost twice as likely to occur in 

bidirectional promoters (Trinklein et al., 2004).  Characterization of the enhancer-

associated unstable/unstable TSSs reveals that they display a lower CpG frequency than 

other bidirectional transcripts.  However, they have core promoter elements (including 

TATA boxes and Inrs), predominantly bind the same TFs, and exhibit a canonical TSS 

structure with a nucleosome-depleted region (NDR) bordered by two well-positioned 

nucleosomes (Core et al., 2014) suggesting a similar mode of transcriptional regulation as 

promoters. 

Despite the demonstrated bidirectional potential of many core promoter elements, 

only 10% of human coding genes are divergently oriented with transcription start sites 

(TSSs) less than 1000 bp apart (Trinklein et al., 2004).  This is in contrast to yeast where 

approximately half of all genes are divergently oriented, and where distances between 

TSSs are constrained by a compact genome and high coding percentage (Chang et al., 

2012).  Divergent transcription is largely absent from D. melanogaster promoters, which 

show a larger number of directional motifs, but is prevalent at their enhancers (Core et 

al., 2012).  Surprisingly, only 5% of D. melanogaster promoters contain a TATA box 

(FitzGerald et al., 2006) and these promoters generally display a strictly conserved 

distance between the TATA, the initiator (INR), and downstream promoter elements 

(DPE), which is important for promoter function and likely for directional enforcement 

(Kutach and Kadonaga, 2000). 

For higher eukaryotes, bidirectional transcription seems to be most closely 

associated with the production of noncoding RNA in at least one direction.  There is 

some debate concerning whether human promoters are inherently unidirectional or 

bidirectional (Andersson et al., 2015a, Duttke et al., 2015).  To some extent, the answer 

to this question rests on which cell types are being examined, the thresholds used to call 
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antisense transcription and the exact methods of detection.  Independent studies support 

the idea that bidirectional transcription is most often a result of separate core promoter 

elements flanking a NDR.  However, there is a great deal of plasticity in what sequences 

are termed core promoter elements.  For divergent transcripts with well defined core 

promoter elements, it may be that despite the potential for bidirectional activity at 

individual core elements, the majority of these transcripts face some selective pressure to 

independently regulate expression, favoring the maintenance of individual promoters 

which retain greater potential for independent regulation. 

At sites of bidirectional transcription in yeast, two pre-initiation complexes (PICs) 

generally flank the NDR in an inverted orientation (Rhee and Pugh, 2012).  Similarly, in 

mice, bidirectional transcription involves the formation of 2 distinct PICs, more TF 

binding, a larger, more distinctly defined NDR, and on average higher gene expression 

(Scruggs et al., 2015).  When only one core promoter is present however, an explanation 

is needed for the asymmetric binding of RNA Pol II on opposite strands, which is needed 

to allow for bidirectional transcription (Figure 1.2).  Non-consensus binding of PIC 

components to the NDR has been suggested to explain binding of general TFs to 

promoter regions without any discernable recognition sequences (Afek and Lukatsky, 

2013a).  Such binding was promoted by the TF Reb1 in yeast and inhibited by CTCF in 

human cells (Afek and Lukatsky, 2013b).  NDRs with two PICs are further characterized 

by a greater occupancy of the -1 nucleosome (Afek and Lukatsky, 2013b), suggesting 

that the chromatin structure at the NDR promotes opening of a transcription bubble and is 

conducive to bidirectional transcription, with PICs forming in both directions at the edges 

of the flanking nucleosomes.  Secondary regulation may then generate a predominant 

direction of transcription either through pre- or post- initiation regulation.  The fact that 

promoters can be unidirectional in some tissue types and bidirectional in others (Balbin et 
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al., 2015) supports the notion that core promoter sequences allow for bidirectional 

transcription but that this capacity is then regulated by secondary mechanisms such as 

cell-type specific TFs that promote either one or both transcripts in the pair in response to 

the different needs of the cell. 

 

TRANSCRIPTION FACTORS CAN MODULATE THE DIRECTIONALITY OF TRANSCRIPTION 
INITIATION SITES 

Akin to core promoter elements, transcription factor binding sites mediate 

important interactions between the transcriptional machinery and trans-acting factors that 

are often necessary for transcription to occur.  The binding motifs for a number of TFs, 

including NF-Y, Nrf-1, YY1, GABP, MYC, E2F1, and E2F4 are overrepresented in 

bidirectional promoters (Lin et al., 2007).  These factors may act as determinants of 

transcriptional direction, not just passively associate with it.  For example, the 

introduction of a GABP binding site into unidirectional promoters caused the appearance 

of bidirectional transcription in 67% of tested promoters (Collins et al., 2007).  Further 

work will need to be done to determine whether insertion of motifs for other transcription 

factors can unilaterally change the type of transcriptional initiation arising from promoter 

regions, and the mechanistic underpinnings by which such effects occur.  In addition to 

coding gene promoters, TFs are also associated with other origins of transcription.  Sites 

producing unstable/unstable transcript pairs in B-cell derived lines show histone 

modifications typical of enhancers (high levels of H3K4me1) and are preferentially 

bound by the immune specific transcription factor PU.1 (known for binding the purine 

rich PU box element(Core et al., 2014).  Sites producing two stable divergently arranged 

coding transcripts show enrichment for GABP (GA binding protein) localization (Core et 

al., 2014).  Finally, sites producing stable transcripts only in one direction are associated 
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with CTCF binding, which likely involves modulating chromatin structure (Bornelov et 

al., 2015, Core et al., 2014).  

The notion of pioneer transcription factors raises the prospect of this special group 

of TFs being implicated in modulating directionality.  Pioneer transcription factors 

possess the ability to open up local chromatin conformation upon binding their motifs, 

thereby, facilitating the binding of additional settler TFs in a cooperative and hierarchical 

fashion (Soufi et al., 2012, Zaret and Carroll, 2011).  The dependence on preliminary 

binding of pioneer TFs has been proposed to, in part, account for the very low (Joseph et 

al., 2010, Kaplan et al., 2011) fraction of binding sites within genomes that are actually 

occupied by TFs (Sherwood et al., 2014, Zaret and Carroll, 2011).  Underlining their 

importance in determining transcriptional outcomes, pioneer TFs have been implicated in 

cell fate specification and cell reprogramming (Drouin, 2014, Iwafuchi-Doi and Zaret, 

2014).  While the majority of pioneer TFs open chromatin on both sides of their motifs, 

several (including Creb/ATF, Klf/Sp, NFYA, and Zfp161) open chromatin in a 

directional manner (Sherwood et al., 2014).  These directional motifs represent a 

plausible mechanism by which transcription from inherently bidirectional core promoter 

elements is converted to unidirectional activation in genomic contexts (Figure 1.2). 

 

THE CHROMATIN LANDSCAPE AND TRANSCRIPTIONAL DIRECTIONALITY 

Histone variants 

By altering the chromatin landscape in the vicinity of the TSS, transcription in 

either direction can be promoted or prevented.  In particular, the +1 nucleosome in the 

direction of transcription plays an important role by presenting a barrier to the 

progression of RNA Pol II.  This barrier can be lowered by incorporation of the histone 
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variant H2A.Z which has been proposed to destabilize the nucleosome and allow 

progression of RNA Pol II (Bonisch and Hake, 2012, Jin and Felsenfeld, 2007, Weber et 

al., 2014).  The CCAAT box binding protein NF-Y has been found to be critical for 

H2A.Z deposition at the +1 nucleosome of cell cycle dependent promoters (Gatta and 

Mantovani, 2011), underscoring a connection between core promoter sequence and 

H2A.Z recruitment.  Research into the covalent modifications present on H2A.Z’s N-

terminal tail has begun to shed light on exactly how it modulates chromatin accessibility 

downstream of the promoter.  Mono-ubiquitination of H2A.Z has been shown to induce 

transcriptional repression (Sarcinella et al., 2007), and its de-ubiquitination is necessary 

for the activation of androgen receptor mediated genes (Draker et al., 2011).  By contrast, 

acetylated H2A.Z is associated with increased levels of gene expression (Hu et al., 2013). 

Schizosaccharomyces pombe cells lacking H2A.Z exhibit increased antisense 

transcription, implying a role for the histone in transcriptional repression (Zofall et al., 

2009).  However in Saccharomyces cerevisiae, H2A.Z incorporated at the 3’ ends of gene 

bodies promoted overlapping antisense transcription (Gu et al., 2015).  It is not clear if 

these studies reveal a difference in the role of H2A.Z in these two species, or if they 

reflect different covalent modification states of H2A.Z promoting different functional 

outcomes.  But they do suggest that altering H2A.Z incorporation at the +1 and -1 

nucleosomes may be a mechanism through which cells establish direction by modulating 

the permissibility of nucleosomes bordering the NDR to polymerase progression, thereby 

promoting or inhibiting transcription in each direction from the TSS.  Another histone 

variant incorporated into NDR proximal nucleosomes, H3.3, is also recruited to 

promoters and enhancers during transcriptional activation and causes destabilization of 

nucleosome structure (Chen et al., 2013).  At enhancers, asymmetric H2A.Z and H3.3 

incorporation levels are associated with asymmetric Pol II enrichment (Won et al., 2015). 
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Figure 1.3: Regulation by covalent chromatin modifications and noncoding transcription.  

The interplay between histone methyltransferase (purple) and histone deacetylase 
(yellow) activities influences noncoding transcription.  When actively transcribing, RNA 
Pol II is phosphorylated on its CTD first at serine 5 and then at serine 2.  Set 1 creates a 
gradient of H3K4 methylation starting with tri methylation at the 5’ end and ending with 
monomethylation at the 3’ end.  Rpd3L deacetylates histones with H3K4me3 marks at 
the 5’ ends of transcripts.  Set3 deacetylates histones with H3K4me2 marks within 
transcript bodies.  Set2 mediated H3K36 methylation takes place within transcript bodies 
and towards the 3’ regions of the transcripts.  This H3K36 modification is then targeted 
by RPD3S, which deacetylates histones within the 3’ proximal regions of transcript 
bodies and prevents aberrant transcription from cryptic initiation sites within the 
transcript body.  Rpd3S has also been implicated in promoting sense strand transcription 
by antisense repression upstream of the TSS. 
 
 

Covalent modifications 

Covalent modification of histones represents an integral component in the 

regulation of sense versus antisense transcription.  Several chromatin remodelers and 
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promoters.  In S. cerevisiae, mutations in the histone chaperone complex Chromatin 

assembly factor 1 (Caf1) (Marquardt et al., 2014), the histone methyltransferase Set2 

(Churchman and Weissman, 2011), the histone deacetylase Set3 (Kim et al., 2012), the 

histone deacetylase Rpd3S (Churchman and Weissman, 2011), and the chromatin 

remodeler Chd1 (Hennig et al., 2012) all result in increased levels of divergent antisense 

transcripts.  By modulating levels of antisense transcripts, these complexes help enforce 

directional transcription.  Chd1 has also been shown to help overcome promoter-proximal 

stalling of RNA Pol II, facilitating productive elongation of sense transcripts (Skene et 

al., 2014).  In the opposing direction, deletion of Hda2 or the histone methyltransferase 

Set1 increases sense transcription by decreasing the presence of transcribed antisense 

RNA (Camblong et al., 2009, Camblong et al., 2007). 

Specific histone modifications characterize divergent human promoters, which are 

enriched for marks associated with transcriptional elongation (such as H3K4me2-3 and 

H3K27ac) in both the downstream and upstream directions, while unidirectional 

promoters lack this enrichment in the upstream direction (Duttke et al., 2015).  Processes 

leading to asymmetric chromatin enrichment patterns across transcriptional initiation 

sites can be inhibitory or conducive to transcription in either direction.  During 

transcription RNA Pol II is phosphorylated on its C terminal domain (CTD) first at serine 

5 (Ser5P) near the 5' end of genes and then at serine 2 (Ser2P), allowing RNA Pol II to 

enter into the elongation phase of transcription, and establishing correct chromatin 

structure across transcribed regions, as many chromatin remodelers interact with the CTD 

(Srivastava and Ahn, 2015).  These chromatin remodelers prevent aberrant transcription 

from taking place within gene bodies after the perturbations to chromatin structure that 

occur concomitant to transcription.  
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The Set and Rpd3 histone methyltransferases and deacetylases exemplify the 

mechanisms by which the spread of co-transcriptional modifications can in turn regulate 

transcription (Figure 1.3).  Histone methyltransferase Set 1 (also known as the 

COMPASS complex) interacts with RNA Pol II Serine5P but not RNA Pol II Serine2P 

and creates a gradient of H3K4 methylation across transcript bodies, starting with tri-

methylation at the TSS, and ending with mono-methylation near the 3’ end.  These 

methyl marks are then targeted by two separate histone deacetylases. Rpd3L (the larger 

complex) recognizes H3K4me3 marks and is likely targeted to promoters to regulate 

initiation in a sequence dependent manner (Terzi et al., 2011).  Set3 is a histone 

deacetylase that despite having a Set domain has not been shown to have methylase 

activity.  It targets and requires H3K4me2 to deacetylate histones, and has been shown to 

repress 5’ proximal cryptic transcripts (Kim and Buratowski, 2009)(Figure 1.3). 

The histone methyltransferase Set2 contributes H3K36me marks to 3’ transcribed 

regions.  This mark is recognized by the histone deacetylase Rpd3S (the smaller 

complex), which works at primarily intragenic regions in a more sequence independent 

manner than Rpd3L (Carrozza et al., 2005).  Rpd3S removes the acetylation that co-

occurs with transcriptional elongation, thereby suppressing cryptic transcripts originating 

within gene bodies near the 3’ end.  These transcripts are thought to arise because the 

chromatin remodeling concomitant with transcription is perturbed, leading to increased 

accessibility of intragenic regions to TFs and Pol II (Lickwar et al., 2009).  Rpd3S has 

also been implicated in the repression of antisense transcripts, thereby promoting sense 

strand directed transcription (Churchman and Weissman, 2011)(Figure 1.3).  These 

chromatin remodelers demonstrate the general principle that by spreading chromatin 

modifications across a genomic region, transcription can be inhibited or promoted.  

Processes leading to asymmetric chromatin enrichment patterns across transcriptional 
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initiation sites could likewise be inhibitory or conducive to transcription in either 

direction. 

Chromatin loops 

A further level of chromatin-based regulation of transcriptional directionality 

involves chromatin loops.  In general, these loops serve to increase the levels of 

unidirectional sense strand transcripts.  Polyadenylation complex factor Ssu72 facilitates 

the formation of gene loops between the 3’ and 5’ end of genes, and loss of these gene 

loops leads to increased levels of divergent transcription at yeast promoters (Tan-Wong et 

al., 2012).  In mammalian cells, CTCF and cohesin facilitate chromatin loop formation 

(Hou et al., 2008, Tark-Dame et al., 2014), and display a biased association with 

unidirectional transcripts (Bornelov et al., 2015)(Figure 1.2).  In these genes, CTCF and 

the cohesin component Rad2 are often found a short distance (60-80 bp) upstream of the 

TSS and their enrichment level is anti-correlated with antisense transcription.  These data 

emphasize the importance of loop formation in directing transcription.  The many 

epigenetic factors involved in repressing antisense transcription support a view of 

promoters where an inherent predisposition towards bidirectional transcription must be 

actively controlled. 

Chromosomal looping also occurs between enhancers and promoters, and this 

interaction is vital for the transcription promoting activities of enhancers.  Surprisingly, 

enhancers and promoters not only share the ability to serve as sites of transcription 

initiation, but also share the ability to promote transcription at locations that they 

physically interact with.  Just as enhancers increase the likelihood of transcription at 

interacting promoters, TSS that physically interact with enhancers through loops 

stimulate the production of eRNAs (Sanyal et al., 2012).  These analyses have also 
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revealed that in some cases promoters can function as enhancers for other promoters 

(Kowalczyk et al., 2012, Leung et al., 2015).  In general, enhancers form fewer 

connections than promoters.  On average, a promoter is associated with 4.9 enhancers 

while an enhancer is associated with 2.4 promoters (Andersson et al., 2014).  The 

determinants of promoter/enhancer interaction specificity have been explored in a review 

by van Arensbergen et al (van Arensbergen et al., 2014). 

 

FUNCTIONS OF NCRNAS  

Although there are many known examples of transcriptional regulation by ncRNA 

or antisense RNA, it has been difficult to ascribe functional relevance to the majority of 

PROMPTs and eRNAs.  For example, deletion of exosome component RRP6 increases 

upstream antisense transcription and represses sense transcription of a certain subset of 

genes.  Whether this is through titration of TFs and RNA Pol II away from the 

downstream gene, or effects of the transcribed PROMPT RNAs themselves remains to be 

determined (Castelnuovo et al., 2014).  The effects of overlapping transcription on coding 

gene transcription are likely to be highly context specific and depend on the direction of 

the overlapping transcription, the length of the coding gene, and the types of co-

translational chromatin modifications.  Each of these features is likely to affect the types 

of methylation gradients and chromatin modifications spread.  As an example, for many 

Set3 regulated genes, upstream originating overlapping transcription places Set1 

dependent H3K4me2 over promoters and causes deacetylation by the Set3 complex, 

thereby repressing coding gene transcription.  Loss of transcription from these 

overlapping transcripts or from internal antisense cryptic transcripts de-represses the 

coding genes (Kim et al., 2012) (Figure 1.3). 
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Other sources of overlapping transcription also modulate the likelihood of a gene 

being transcribed.  In particular, a group of stochastically controlled "promoter switches" 

regulates the genes for the class I major histocompatibility complex (MHC) receptors in 

mouse and humans (Anderson, 2014).  Within these promoters, antisense transcription 

upstream of the primary transcript is generally associated with a transcriptionally off state 

while sense-directed transcription originating upstream of the promoter represents an on 

state (Figure 1.3).  Changes to the direction of transcription within the switch can thereby 

switch the activation state of the downstream gene.  Similarly, antisense transcription 

originating from within gene bodies and converging on the promoter is a feature found 

within a group of low expression genes(Mayer et al., 2015). 

Many noncoding transcripts are up-regulated following growth related changes in 

media nutrient composition or other environmental conditions.  These changes are often 

condition specific and consistent.  These transcriptional changes are often condition 

specific and consistent.  These observations suggest two possibilities.  First, the 

mechanisms controlling repression of cryptic transcripts may be complex and require 

multiple factors to be achieved.  Perhaps, any dramatic change in overall gene expression 

patterns has the potential to disturb their tight regulation.  The factors that must be 

employed to achieve this repression may differ under different conditions.  The up-

regulation may be transient before transcriptional homeostasis is achieved.  Alternatively, 

the increase in cryptic transcripts could be actively regulated and functionally relevant.  

This would indicate that they are somehow involved in acclimation to environmental 

change and to the activation of appropriate transcriptional programs.  It is plausible that 

the cryptic transcripts themselves could be functional, as tissue specific enhancers have 

been characterized within exons (Birnbaum et al., 2012, Ritter et al., 2012). 
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Some TFs have been shown to bind RNA as well as DNA (Cassiday and Maher, 

2002, Sigova et al., 2015).  YY1 binds RNA at promoters and enhancers.  When RNA 

transcription occurs, the nascent RNAs can bind YY1 and increase its occupancy at the 

NDR, creating positive transcriptional feedback.  This RNA-mediated effect has led to 

the hypothesis that trapping of TFs (especially ones with RNA binding domains) at the 

TSS by RNA may be a general mechanism by which RNAs regulate transcriptional 

processes.  This also provides a plausible function for upstream antisense transcription in 

recruiting TFs to the NDR so that they may promote downstream coding gene 

transcription (Sigova et al., 2015).  In a different form of RNA based regulation, YY1 has 

also been shown to interact with a long intergenic noncoding RNA (lincRNA) transcribed 

from its own promoter region.  When Linc-YY1 binds to YY1 it can de-repress YY1 

target genes by causing the eviction of YY1 and PRC2 from gene promoters (Zhou et al., 

2015).  Two other well characterized lncRNAs that have been shown to bind PRC2 

include COLDAIR in Arabidopsis, which mediates repression of the flowering control 

gene FLC (Heo and Sung, 2011, Ietswaart et al., 2012), and HOTAIR in Drosophila, 

which regulates the HOXD locus (Rinn et al., 2007).  The individual transcriptional 

regulatory activities of a number of different lncRNAs have been previously discussed in 

a review (Albrecht and Orom, 2015). 

 

CONCLUDING REMARKS 

The model that current knowledge in the field presents is one where a 

bidirectional core promoter element recruits the transcription machinery to an accessible 

NDR.  Additional promoter elements, TF binding sites and chromatin features then 

specify the directionality of transcription originating from this location.  Post-initiation 
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factors can then modulate the elongation and stability of transcripts.  These regulatory 

features may vary in response to changing environmental conditions and in metazoans, 

according to cell type.  Finally, overlapping sense transcription and 3' end originating 

antisense transcription can spread chromatin signatures, which further encourage or 

repress transcription.  The transcriptional output is likely to rely on a hierarchical 

ordering of these factors, the complex interactions of which are organism and context 

dependent (Figure 1.1). 

Several issues remain to be addressed.  Future experiments must determine the 

factors that promote concordant regulation of bidirectional transcripts versus anti-

correlated regulation.  In particular, the two classes should be analyzed for differential TF 

binding motifs to assess whether correlated expression results from promoters with 

general TF binding sites (where more TF sites represent higher transcription in both 

directions), and anti-correlated expression from promoters with directional TF binding 

sites.  There is also a need to determine whether PROMPTs, especially sense strand 

PROMPTs (Figure 1.3), and promoter switches arise from core promoter element-like 

sequences.  Further, the characterization of bidirectional promoters needs to distinguish 

between promoters from which transcription is initiated in both directions (such as a 

PROMPT-coding gene pair) and from which stable transcripts are produced in both 

directions (such as coding gene pairs) as these two categories are often conflated.  While 

the compact genome size and high density of coding regions in S. cerevisiae may 

necessitate bidirectional transcription, the same logic fails to explanation such 

orientations in the human genome where only ~2% of the genome is coding (Ng et al., 

2009).  It has been suggested that the bi-directional orientation of genes in humans is a 

result of the human genome having evolved from a more compact ancestral genome 

(Takai and Jones, 2004).  A number of cancer associated gene pairs are transcribed 
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divergently in a coordinate manner, suggesting that shared regulatory requirements, and 

transcriptional interdependencies are what keep pairs together (Albrecht and Orom, 

2015). 

More work needs to be done to define how the directional specificities of specific 

core promoter elements and transcription factor binding sites are integrated to determine 

transcriptional direction.  It remains to be determined which individual core promoter 

sequences are capable of initiating bidirectional transcription and whether they actually 

do so in their genomic contexts.  For the majority of TFs, changing the orientation of 

their binding sites does not significantly change their influence on gene expression 

(Sharon et al., 2012), and co-varying expression levels provides further evidence that TF 

binding increases the likelihood of transcription in both directions.  Differential 

regulation of outward-facing transcripts in yeast is associated with the presence of 

insulator-like DNA binding factors Tbf1 and Mcm1 (Yan et al., 2015).  Two possibilities 

present themselves as a way of explaining the phenomenon of bidirectional transcription.  

In the first, antisense transcription is a by-product of forward transcription and an NDR, 

meaning that the cell may need to utilize mechanisms to prevent the accumulation of 

detrimental antisense transcripts.  In the second, there is a function for antisense 

transcripts with a number of possible effects including the regulation of sense transcripts.  

While these functions do not need to be mutually exclusive, they could create a 

dichotomy between two different types of TSSs.  If antisense transcription is a necessary 

outcome of forward transcription, a single core promoter might be the most commonly 

encountered situation.  However, two independent promoters would allow for more 

precise regulation of the different transcripts.  Ultimately, the regulation of transcriptional 

direction is accomplished by both pre and post initiation factors and integrates many 
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factors such as promoting and repressing the initiation of transcription, regulating 

elongation and termination, and targeting unstable transcripts for rapid degradation. 
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Chapter 2: An Introduction to Studying the Nucleosome in the Yeast 
Saccharomyces cerevisiae 

“As you set out for Ithaka 
hope the voyage is a long one” 

-C. P. Cavafy, Ithaka (translated by Edmund Keeley) 

 

CHROMATIN 

The nucleosome as the basic unit of chromatin 

In Eukaryotes, the need to organize a large amount of DNA2 within the confines 

of a nucleus and to regulate the accessibility of this DNA, has been answered with 

chromatin –the complex of DNA and proteins into which the genome is packaged.  

Chromatin can allow DNA to be compacted by as much as 10,000 times (Jiang and Pugh, 

2009).  At the most basic level of organization within chromatin, the DNA composing a 

chromosome is packaged into nucleosomes, a structure which is often descriptively 

compared to “beads on a string”3 (Olins and Olins, 1974).  An individual nucleosome 

consists of 147bp of DNA wrapped around a core of 8 histones (2 each of H2A, H2B, 

H3, and H4) approximately 1.65 times (Luger et al., 1997).  This association is mediated 

through interactions between the negatively charged DNA backbone and the arginine and 

lysine rich histone proteins, which bear a positive charge.  An additional H1 linker 

histone is found outside the nucleosome core but can stabilize the nucleosome by binding 

adjacent to it (Allan et al., 1980).  The region of DNA between individual nucleosomes is 

called the linker region, and is, on average, approximately 30 bp long (Shivaswamy et al., 

                                                
2 In humans, approximately 2 meters of DNA is squeezed into the cell nucleus.  21. Bloom, K. and 
Joglekar, A. (2010) Towards building a chromosome segregation machine. Nature 463, 446-456. 
 
3 In the original paper they were described as “particles on a string.” 
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2008).  However, the precise range of these linkers varies between species.  Areas of the 

genome where chromatin is tightly compacted and where, consequently, gene expression 

is repressed, are termed heterochromatin.  In contrast euchromatin describes a chromatin 

structure that allows for access by components of the transcriptional machinery.  In 

regions with active transcriptional initiation a nucleosome depleted region4 (NDR) is a 

common feature, allowing for greater accessibility of DNA to transcriptional machinery.  

NDRs are approximately 160-170bps wide (Yuan et al., 2005) and are enriched for polyA 

and polyT sequences which can produce a bent structure refractory to nucleosomes 

(Nelson et al., 1987). 

The positioning of nucleosomes within chromatin depends on numerous factors.  

These can include intrinsic DNA sequence binding preferences of histones, the effects of 

processes that necessitate the repositioning of nucleosomes, and the actions of ATP 

dependent chromatin remodelers, which can incorporate, evict, or reposition 

nucleosomes.  The most well defined nucleosome arrangement is that which is found at 

the transcription start site (TSS).  Here, a wide NDR is bordered by two well-positioned 

nucleosomes, which set the pattern for a periodicity in nucleosome positioning extending 

upstream and downstream (Yuan et al., 2005).  As distance from the NDR increases the 

periodicity becomes less well maintained. 

Histone variants 

The HGNC (HUGO Gene Nomenclature Committee) database lists approximately 

88 human histone genes that are not annotated as pseudogenes (Gray et al., 2016).  These 

genes code for 52 individual histone proteins.  By contrast, the 11 histone genes in the 

yeast Saccharomyces cerevisiae code for 5 canonical histones and 2 variants (H2A.Z and 

                                                
4 This region is sometimes referred to as the nucleosome-free region (NFR) as well. 
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CenH3).  These variants may replace the canonical histones within nucleosomes (Table 

2.1).  The limited set of histones found within yeast means that studying histone variants 

in yeast is much more tractable than in humans, and that the information gained is likely 

to be relevant in a global fashion.  By comparison, histone variants in humans are often 

associated with specific tissue types, or specific developmental stages, which drastically 

increases the complexity of studying the dynamics of histone variant incorporation. 

H4 shows the least amount of amino acid sequence variation across the histone 

families.  It is worth noting, that a number of reviews claim that there is one H4 variant in 

humans (Kamakaka and Biggins, 2005, Marzluff et al., 2002, Maze et al., 2014).  

However, the HUGO database lists two distinct species, one of which is encoded for by 

14 genes, and one, which is encoded specifically by the gene HIST1H4G.  A BLAST 

database search for the HIST1H4G amino acid sequence reveals two high sequence 

identity hits to predicted amino acid sequences from the common chimp and from gorilla 

that are supported by mRNA evidence.  An alignment (using Clustal Omega 1.2.1) 

between the two histone variants reveals that the G type variant tends to vary more in 

sequence between species, but that there are a number of differences from the canonical 

H4 sequence that are conserved (Figure 2.1).  The dbSNP database also lists an SNP 

occurring nearing the N terminus of the human HIST1H4G gene (dbSNP build 146 

rs41266821 with an allele frequency of ~8%) that converts Valine to Alanine.  A BLAST 

search for the consensus nucleotide sequence between human, chimp, and gorilla for the 

G type variant also turns up hits for a number of uncharacterized cDNAs from other 

species.  It is unclear why this variant has been ignored by the scientific literature, but the 

evidence for its expression in a number of organisms and for variant alleles within 

humans argues for the utility of characterizing this variant in future studies. 
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Histone 
Family 

# Yeast 
Histone Genes 

Yeast Histone 
Protein Variants 

# Human 
Histone Genes 

# Human Histone 
Protein Variants 

H2A 3 H2A, H2A.Z 26 19 

H2B 2 H2B 20 16 

H3 2 H3, CenH3 17 5 

H4 2 H4 15 2 

H1 1 H1 10 10 

Table 2.1: Histone variants in Saccharomyces cerevisiae and Humans 
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Figure 2.1: Alignment between HIST1H4A and HIST1H4G 

Clustal Omega 1.2.1 based alignment between the amino acid sequences for the Human 
H4 genes and the common chimp (Pan troglodytes) and gorilla (Gorilla gorilla) H4 
genes.  The sequences for chimp and gorilla G type H4 are predicted while the A type 
sequences are annotated. 
 
 
 

The regulation of histone variant H2A.Z 

The histone variant H2A.Z is highly conserved, and found throughout Eukaryotes 

displaying sequence conservations of  ~70-90% (Iouzalen et al., 1996).  Performing a 

multiple sequence alignment (using Clustal Omega) between the S. cerevisiae H2A.Z 

protein sequence and the closest human H2A.Z ortholog, H2AFZ, reveals that they share 

a 68.5% identity (Figure 2.2).  In contrast, the S. cerevisiae protein sequences for H2A.Z 

and the canonical histone H2A reveals that they share a 61% identity, with H2A.Z 

containing additional amino acids at both the N-terminal and C-terminal ends (Figure 

2.3). 

In S. cerevisiae the gene encoding H2A.Z is called Htz1.  From here on in, when 

referring to the gene locus, I will use the term Htz1 and when referring to the histone 
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protein I will use H2A.Z.  H2A.Z replaces the canonical H2A histone within 

nucleosomes at specific sites within the yeast genome, including at nucleosomes 

bordering the transcription start site.  Replacement is catalyzed by the ATP dependent 

chromatin remodeler Swr1 (Mizuguchi et al., 2004).  The exchange takes place by 

removal of an H2A/H2B dimer and replacement with an H2A.Z/H2B dimer.  In the 

opposite direction the ATP dependent chromatin remodeler Ino80 exchanges H2A.Z/H2B 

dimers for H2A/H2B dimers (Papamichos-Chronakis et al., 2011)(Figure 2.4).  These 

dynamics occur on a genome wide scale at sites of transcriptional initiation.  

Additionally, the incorporation of H2A.Z subunits within nucleosomes is vital for 

maintaining the boundary between heterochromatin and euchromatin, which occurs 

within the chromosome at centromeres and telomeres.  Loss of H2A.Z allows 

heterochromatin to spread past it proper boundaries and into what should be euchromatic 

regions (Meneghini et al., 2003). 

In most metazoans H2A.Z is essential.  However, S. cerevisiae tolerates loss of 

H2A.Z with little fitness defect under optimal growth conditions (Santisteban et al., 

2000).  This result is somewhat puzzling given strong H2A.Z localization to sites of 

transcriptional initiation.  However, this tolerance also gives us the unique ability to study 

the effects of H2A.Z loss. 
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Figure 2.2: Alignment between yeast H2A.Z and human H2AFZ protein sequences  

The protein sequence for H2AFZ was obtained from the Uniprot database, while the 
protein sequence for H2A.Z was obtain from the Saccharomyces Genome Database 
(SGD).  Sequences were aligned with Clustal Omega. 

 

 

 

 

Figure 2.3: Alignment between yeast H2A.Z and H2A protein sequences 

The protein sequences for H2A.Z and H2A were obtained from (SGD) and were aligned 
with Clustal Omega. 
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Figure 2.4: The nucleosome incorporation dynamics of H2A.Z 

The chromatin remodelers Swr1 and Ino80 work in opposition to regulate the 
incorporation of H2A.Z into nucleosomes. 
 
 

Covalent modifications 

Covalent modifications are often added to the tails of histones extruding from the 

nucleosome.  These modifications are added primarily to N-terminal tails (although some 

C-terminal modifications are possible).  Modifications that have been described are 

numerous and include acetylation, methylation, ubiquitination, and phosphorylation, 

amongst others (Audia and Campbell, 2016).  The combination of these modifications 

has been proposed to comprise a “histone code”, functioning like a language that can be 

read by interpreter proteins that then perform actions based on these instructions (Strahl 

and Allis, 2000).  Varying these modifications can determine chromatin accessibility and 

can recruit transcription factors to modulate transcription outputs. 
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Covalent modification of H2A.Z has also been described, and is primarily 

accomplished by the histone acetyltransferase NuA4 (Keogh et al., 2006).  H2A.Z can be 

acetylated at Lys3, Lys8, Lys10, and Lys14.  Lys14 is the most abundant of these 

modifications, and is associated with active gene promoters.  In humans, H2A.Z can also 

be ubiquitinylated at Lys120, Lys121, and Lys125 by repressive complex PRC1 

(Subramanian et al., 2015), and its monoubiquitylation is associated with facultative 

heterochromatin (Sarcinella et al., 2007). 

 

SACCHAROMYCES CEREVISIAE AS A MODEL ORGANISM 

Genome 

S. cerevisiae is an extraordinarily useful model organism within molecular 

biology.  As a Eukaryote it shares many of the same transcript and chromatin regulatory 

features as metazoans, but in a more simplified format.  The genome is composed of 

approximately 12 million bp of DNA divided among 16 chromosomes and contains 

approximately 6000 genes.  Their compact genome means that the cost of sequencing is 

low.  The modest gene content of their genome also means that there are fewer gene 

homologs that must be considered when investigating the actions of particular protein 

families.   

Unlike in humans where the majority of the genome lacks coding potential, the S. 

cerevisiae genome is densely packed with coding genes, often to the point of being 

interleaved.  This density leaves little room for sizeable intergenic regions, and means 

that particular attention must be paid to transcript orientation and to the distance from 

TSSs to upstream transcripts when studying the structure of the NDR. 
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Growth conditions and strain availability 

S. cerevisiae is typically grown at 30°C either in liquid yeast peptone dextrose 

(YPD) culture media, or on petri dishes containing YPD and agar.  Doubling times are on 

the order of 1.5 hours.  This relatively rapid growth rate enables the production of large 

amounts of experimental material over a relatively short time scale.  The existence of 

numerous commercially available strain collections (including deletion collections, 

tagged protein collections, inducible gene expression collections, etc.) has allowed for 

systematic analyses and lowered the entry barrier to studying specific protein and gene 

functions. 

 

METHODS 

ChIP-seq 

Chromatin Immuno-precipitation followed by DNA sequencing is a technique 

used to map protein binding sites along DNA on a genome wide basis.  To achieve this, 

protein and DNA interactions are fixed by adding formaldehyde to live cells.  DNA 

protein complexes are then isolated.  This is done either by using an antibody that 

recognizes the protein of interest, or by attaching a peptide tag to the end of a protein and 

then pulling down the tagged protein with antibody bound beads.  The DNA associated 

with these complexes is then purified and sequenced.  Aligning these sequences to a 

reference genome allows determine of genomic regions for which the protein of interest 

has a high binding affinity under the specific laboratory conditions used. 

MNase-seq 

MNase-seq is a technique used to isolate mono-nucleosomal DNA from cells and, 

thereby, determine the consensus genome wide localization of nucleosomes within a 
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population. First, zymolyase is used to permeabilize the yeast cell wall.  Then, 

micrococcal nuclease (MNase) treatment at a range of concentrations is used to degrade 

non-nucleosomal DNA.  The structure of the nucleosome protects DNA wrapped around 

it from degradation by MNase.  The resulting purified DNA can then be run on a gel to 

visualize the nucleosomal ladder produced, and to isolate the DNA gel band 

corresponding to mono-nucleosomal DNA.  This DNA can then be sequenced and 

aligned to the yeast genome in order to determine sites of nucleosome localization. 

MNase ChIP-Seq 

By combining chromatin immunoprecipitation with micrococcalnuclease 

treatment, MNase ChIP-seq provides a way of pulling down nucleosomal DNA 

complexes that either contain specific histone variants or modifications, or that interact 

with specific protein factors (Wal and Pugh, 2012) (Figure 2.5).  Input samples are, also, 

usually produced and provide data on background nucleosome occupancy levels. These 

control samples provide data that is equivalent to MNase Seq.  By subtracting out input 

derived background nucleosome levels from MNase ChIP data, high resolution binding 

and incorporation patterns at individual nucleosomes can be produced. 
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Figure 2.5: Overview of MNase ChIP-seq method 

 

RNA-seq 

RNA sequencing provides a way to assay changes in the transcriptome.  Cells are 

grown up to an appropriate OD, and then spun down to isolate a cell pellet.  This pellet is 

then flash frozen using liquid nitrogen in order to preserve the RNAs from degradation by 

RNases.  When the pellet is re-suspended it is done in a buffer that inhibits RNA 
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degradation.  In yeast, total RNA can be isolated using a hot phenol extraction method.  

In order to sequence mRNAs, the transcripts must first be purified away from the very 

high levels of ribosomal RNAs (rRNAs).  While, within log phase cells, total RNA is 

abundant (the ratio of RNA to DNA is 50:1), rRNA accounts for 80% of the RNA, while 

tRNA is 15% and mRNA is 5% (Warner, 1999).  Two methods can be used to increase 

the representation of mRNAs: 1) ribosomal rRNA depletion and 2) poly-A selection.  

RNAs are then fragmented and reverse transcribed into cDNAs.  These cDNAs can then 

be used to make strand specific libraries, which are sequenced by standard DNA 

sequencing methods.  Sequencing data can then be aligned to a genome, quantified for 

transcript abundance, and used in differential gene expression analysis with publicly 

available programs. 

SMORE-seq 

Simultaneous mapping of RNA ends (SMORE-seq) provides a method for 

determining the 5’ ends of transcripts (Park et al., 2014a).  This technique allows for 

precise mapping of transcription start sites, and, can also allow the detection of short 

antisense RNAs that are difficult to detect by standard RNA-seq methods.  In particular, 

this technique can be used to identify antisense transcripts arising from between tandemly 

arranged genes, which have been termed BNCs (for sites of bidirectional non-coding 

transcription). 
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Chapter 3:  H2A.Z as a Marker of Transcription 

“We cast a shadow on something wherever we stand, and it is no good moving from 
place to place to save things; because the shadow always follows. Choose a place where 
you won't do harm - yes, choose a place where you won't do very much harm, and stand 
in it for all you are worth, facing the sunshine.” 

-George Emerson, A Room with a View 

 

INTRODUCTION 

The histone variant H2A.Z is generally incorporated into nucleosomes bordering 

the nucleosome depleted region (NDR) at the transcription start site (TSS).  These two 

nucleosomes are referred to as +1 for the nucleosome immediately downstream of the 

NDR in the direction of transcription, and -1 for the upstream nucleosome.  In yeast, the 

TSS is predominantly found at about one helical turn into the +1 nucleosome (Albert et 

al., 2007).  Overall, the presence of nucleosomes inhibits transcription (Wasylyk and 

Chambon, 1979), and their presence bordering the NDR provides a plausible means of 

gating transcriptional output.  It has been proposed, that, when H2A.Z is incorporated, it 

may destabilize the nucleosome structure, making its eviction more feasible, and 

lowering the threshold for transcriptional initiation.  However, conflicting studies have 

provided evidence for both more and less stable structures (Zlatanova and Thakar, 2008) 

as well as no significant effect on stability (Thakar et al., 2009).  One interesting thing to 

note, is that the region of H2A.Z that contacts the nucleosome core often displays less 

conservation, perhaps suggesting that H2A.Z’s affect on nucleosome stability may be 

somewhat species specific (Bonisch and Hake, 2012).  Ultimately, the stability of H2A.Z 

containing nucleosomes is likely subject, at least in part, to the covalent modifications it 

is endowed with, the other histones with which it partners, and the heterotypic or 

homotypic nucleosomes it produces. 
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Despite issues of stability, what seems clear is that incorporation of H2A.Z has 

the potential to decrease the barrier posed by the +1 nucleosome (Weber et al., 2014).  

Additionally, the presence of H2A.Z is associated with high nucleosome turnover rates 

(Dion et al., 2007).  It has been argued that RNA Pol II does not actively evict 

nucleosomes as it transcribes, but, that it relies on fluctuations in the nucleosome core to 

access DNA (Hodges et al., 2009).  It is possible that H2A.Z could alter the type or 

frequency of these fluctuations.  These studies suggest a relationship with transcription 

that may be highly context specific, but that is nevertheless significant.  Within this 

chapter, I explore the connections between transcription and H2A.Z’s incorporation at the 

NDR as they are, specifically, laid out in yeast. 

 

MATERIALS AND METHODS 

Strains utilized and growth conditions 

The yeast strains used for the following experiments were all from the WT 

haploid BY4741 background (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and the yeast 

haploid deletion strain collection (Open Biosystems, now GE Dharmacon) (Winzeler et 

al., 1999).  The primary strain used for MNase ChIP-seq experiments contained a TAP-

tagged copy of the histone protein H2A.Z from the TAP-tagged protein collection 

(Ghaemmaghami et al., 2003).  Additional Myc-Tag strains were created via 

transformation of 13Myc-His3MX6 cassettes amplified with primers targeted to the C-

terminus coding region of Swr1 or Ino80 from the pFA6a-13Myc-His3MX6 plasmid 

(Longtine et al., 1998). 

Yeast cells were grown up in liquid culture in yeast extract peptone dextrose 

(YPD) at 30°C until the cells reached a concentration measured via A600 OD of 
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approximately .8.  The cells were then spun down in an ultracentrifuge for 5 minutes at 

4000rpm in order to remove the liquid media and harvest the cells. 

Mononucleosome isolation 

We followed the protocol to isolate nucleosomes described by Shivaswamy et al. 

(Shivaswamy et al., 2008).  Samples were treated with 250 µg of zymolyase (MP 

Biomedicals Catalog # IC320921) to permeabilize the cell wall.  The cells were then 

washed and resuspended in NP buffer.  The cells were then subjected to increasing 

concentrations of MNase (Worthington Biochemical Corp. Catalog # LS004797) at 25, 

50, 75, and 100U/ml for 10 minutes at 37°C.  Reactions were stopped by addition of 

10mM EDTA and 1% SDS.  Reverse crosslinking was performed by a 65°C overnight 

incubation with Proteinase K.  RNA was then removed by RNase treatment.  DNA was 

extracted by phenol chloroform treatment followed by ethanol precipitation.  The DNA 

was then run on an E-gel cassette (from Invitrogen), and the fraction of DNA running at 

approximately 150bp was extracted. 

Chromatin Immunoprecipitation 

Yeast cells were fixed by adding formaldehyde to cultures at a concentration of 

1% and incubating for 30 minutes at 30°C in a shaking incubator.  Cells were then spun 

down, washed, and re-suspended in chilled lysis buffer and subjected to bead beating at 

4°C.  Samples were then sonicated using a Branson Sonifier, spun down, and the 

supernatant was isolated.  A portion of the supernatant was reserved for an input sample 

and the remainder was used subjected to immunoprecipitation using either IgG Sepharose 

6 Fast Flow beads (from GE Healthcare Life Sciences) or anti-Myc conjugated agarose 

beads (from Sigma Aldrich). 
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MNase Chromatin Immunoprecipitation 

The MNase ChIP protocol was largely adapted from a published protocol (Wal 

and Pugh, 2012).  Yeast cells were fixed by adding formaldehyde to cultures at a 

concentration of 1% and incubating for 30 minutes at 30°C in a shaking incubator.  Cells 

were then spun down, washed, and re-suspended in chilled NP buffer and subjected to 

bead beating at 4°C.  The cell lysate mixture was then collected and treated with MNase 

at increasing concentrations of 25, 50, 75, and 100U/ml for 10 minutes at 37°C.  The 

reaction was then terminated by addition of EDTA to a final concentration of 10mM and 

incubating on ice for 10 minutes.  The samples were then spun down at 4°C and the 

supernatants from the different MNase concentrations pooled and collected.  A portion of 

the supernatant was reserved as an input sample, and the rest was used for chromatin 

immunoprecipitation.  TAP-tagged proteins were pulled down by an overnight incubation 

at 4°C with IgG Sepharose 6 Fast Flow beads (from GE Healthcare Life Sciences). 

Library preparation and sequencing 

Libraries were prepared using the NEBNext ChIP-Seq library preparation kit for 

Illumina sequencing (NEB Catalog # E6240L) with adapters from Bioo.  The libraries 

were then sequenced either at the University of Texas at Austin Genome Sequencing and 

Analysis Facility (UT GSAF) or at the M. D. Anderson Next-Generation Sequencing 

Facility at Science Park. 

Analysis of sequencing data 

FASTA files were aligned against the SacCer3 reference genome (from the 

Saccharomyces Genome Database) using the BWA alignment program.  Wig files were 

then produced and uploaded into the UCSC Genome Browser.  Peak files were also 

produced using an in lab peak calling pipeline.  The peaks which are called are then used 
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to create a pergene file which consists of a window of 10bp bins centered either on the 

transcription start site (TSS) or the transcription termination site (TTS) or some other 

genomic loci of interest.  These files are then normalized by in matrix normalization to 

allow comparison across files regardless of sequencing depth.  This, in effect, is a 

normalization system centered around ORF regions, and bypasses having to take into 

account the large variability in nucleosome enrichment seen at repetitive regions.  These 

normalized files can then be used to create an average TSS nucleosome profile, and 

nucleosome heatmaps based on the matrix can be visualized using JavaTree viewer.  

ChIP data was corrected by subtracting out the signal from matched input samples.  For 

MNase ChIP-seq, input samples correspond to the background mono-nucleosome profiles 

(Figure 3.1). 

 

 

Figure 3.1: Uncorrected ChIP, mononucleosome, and input corrected ChIP heatmaps 

In the middle background nucleosome profiles are depicted.  On the left is a heatmap of 
H2A.Z enrichment without input correction.  On the right is the input corrected ChIP 
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(Figure 3.1 continued.) data, with yellow indicating higher signal in the ChIP sample 
(enrichment) and blue indicating higher signal in the input sample (depletion).  
Transcripts are arranged by increasing transcript length, revealing a peak of H2A.Z at the 
5’ end of transcripts and a less pronounced peak at the 3’ end of transcripts.  The 3’ peak 
is often associated with the 5’ end of the nearest downstream gene. 
 

Gene lists used for sorting 

Gene expression data was obtained from publicly available RNA sequencing data 

derived from WT cells (van Dijk et al., 2011).  Reads mapping to annotated transcripts 

were counted and then normalized for gene length.  BNC counts were obtained from 

publicly available SMORE-seq data (Park et al., 2014a).  Reads mapping between -50bp 

and -300bp upstream of the TSS for annotated genes were then counted to give a measure 

of upstream antisense transcription.  For tandemly arranged transcripts, these antisense 

reads are referred to as BNCs.  TATA and TATA-less gene lists were obtained from 

Rhee et al. (Rhee and Pugh, 2012).  A ribosomal protein coding gene list was obtained 

from The Ribosomal Protein Gene Database (Nakao et al., 2004).  Tandem and divergent 

gene orientations were determined computational by annotating each TSS with whether 

the nearest upstream gene end was a transcription start or termination site.  H2A.Z 

enrichment values for +1 and -1 nucleosomes were determined by taking the maximum 

signal across 150bp within a specified range (Figure 3.2). 
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Figure 3.2: Schematic depicting the method used to call enrichment values for the -1 and 
+1 nucleosome 

Above is a heatmap detailing the ranges over which the +1 nucleosome, NDR, and -1 
nucleosomes predominantly fall.  Within these windows a +1 nuc, NDR, and -1 nuc value 
was called for each gene.  For nucleosomes this value corresponds to the maximum 
signal within 15 10bp bins (for 150bp) across the window.  For NDRs the value 
corresponds to the minimum signal within 5 10bp bins (for 50bps) within the NDR 
window. 
 
 

RESULTS 

In order to explore H2A.Z incorporation at nucleosomes across the S. cerevisiae 

genome we performed MNase ChIP experiments to pull down TAP-tagged H2A.Z.  As a 

control, input samples were also produced.  This allowed us to determine nucleosomes 

within the genome at which H2A.Z is incorporated as well as nucleosomes at which it is 

not.  The results of two replicates for the MNase ChIP were fairly consistent, so the 

average of the two was used for further analysis (Figure 3.3).  As the chromatin 

remodelers Swr1 and Ino80 govern the incorporation dynamics of H2A.Z, we also 

performed ChIP experiments for Swr1 and Ino80 Myc tagged strains in both WT and in 
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ΔHtz1 backgrounds.  An additional Htz1-TAP ChIP was also performed for comparison 

with the MNase-ChIP. 

Analysis of the ChIP data revealed Swr1 and Ino80 binding to be fairly low and 

consistent across most genes, with only a handful of genes showing strong binding peaks.  

What was especially striking was that Swr1’s strongest peak (an extreme outlier in our 

data) was localized at its own promoter (Figure 3.4).  This result was confirmed by 

examining publicly available Swr1 ChIP data produced by the Pugh lab (Yen, 2013, 

24034248) and similar observations from microarray data have been made before (Zhang 

et al., 2005).  That Swr1 should bind its own promoter so strongly, was surprising, and 

prompted us to look at H2A.Z incorporation at the promoter as well.  ChIP data for 

H2A.Z revealed a pronounced peak at the upstream gene, but rather weak enrichment at 

the Swr1 binding site (Figure 3.4).  Furthermore, we found that deletion of Htz1 

decreased the Swr1 binding peak height compared to the background and led to a 

pronounced change in shape, with Swr1 spreading farther upstream into the region where 

the H2A.Z peak is found in WT cells.  This binding pattern suggests a feedback system 

that might regulate Swr1 transcription based on Swr1 levels in the cell. 

Overall, the Swr1 ChIP data displays a weak positive correlation with H2A.Z 

localization (Figure 3.5B).  Given the large dynamic range present in the data, it seems 

unlikely that the variance in Swr1 localization alone can account for the variance seen in 

H2A.Z deposition.  It is interesting to note that Swr1 has been reported to switch to a 

“promiscuous” mode in the context of acetylation of H3 at lysine 56 (H3K56Ac) where it 

can exchange either H2A or H2A.Z containing dimers (Watanabe et al., 2013).  There is 

also some evidence for random incorporation of H2A.Z, which is not Swr1-dependent 

(Hardy et al., 2009, Hardy and Robert, 2010).  Likewise, genes that require H2A.Z for 



 51 

expression and not Swr1, as well as genes that require Swr1 but not H2A.Z have been 

reported.  Any, and all of these factors may contribution to the low correlations. 

To account for differences that might exist between two divergent (head-to-head) 

transcripts and two tandem (tail-to-head) ones, genes were separated based on their TSS 

orientation.  They were then grouped by their Swr1 enrichment (top 500, bottom 500, and 

middle for all other genes) and their average H2A.Z profiles were plotted.  While tandem 

and divergent genes showed very similar levels of Swr1 localization across the ranges 

(data not shown), their enrichment patterns for H2A.Z differed (Figure 3.5A).  Both had 

roughly equivalent + 1nucleosome enrichment levels, however divergent genes had 

noticeably more H2A.Z at their -1 nucleosome.  Additionally, the tandem gene -1 

nucleosome was primarily a single peak and was not associated with additional regularly 

spaced arrays of H2A.Z containing nucleosomes decaying upstream. 

We next explored how Swr1 and Ino80 binding patterns were distributed across 

the genome.  First genes were sorted by ChIP binding levels (Figure 3.6 A and C).  Next, 

average binding profiles were produced for the top 500 most bound and bottom 500 least 

bound targets.  Profiles for all other genes are labeled as the middle group.  These plots 

revealed that at a handful of targets, Swr1 and Ino80 could be found at the +1 

nucleosome, while at the majority of genes binding levels did not exceed the values seen 

in the inputs (Figure 3.6 B and D).  The data also revealed that these high binding targets 

were redistributed in the absence of H2A.Z.  This redistribution was more profound for 

Ino80 as both the least and most enriched sites changed.  By contrast, sites with minimal 

Swr1 binding in the WT remained depleted in the ΔHtz1 strain.  Since Ino80 recognizes 

and evicts H2A.Z/H2B dimers (found in a fraction of the total nucleosomes), its more 

pronounced redistribution in the absence of the H2A.Z histone is somewhat 

understandable. 
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Figure 3.3: H2A.Z MNase ChIP replicates and averaged data 

Displayed above are heatmap representations of Input normalized ChIP seq.  The two 
replicates showed very similar enrichment patterns, so, the average of the two replicates 
was taken and was used for further analyses. 
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Figure 3.4: Swr1 binds its own promoter 

The data displayed above has been visualized with a mirror of the UCSC Genome 
Browser.  B displays a more zoomed in version of A, and in both the backgrounds have 
been equalized between tracks.  The top two rows contain Swr1-ChIP binding data (the 
1st contains data from our lab and the 2nd data downloaded which was produced by the 
Pugh Lab).  The 3rd row contains Swr1-ChIP data in a ΔHtz1 strain.  The ChIP signal 
within this mutant is greatly reduced (this can be seen from the increased background 
compared to signal in this track), and partially shifted upstream, compared to the 
wildtype strain.  The 4th row contains H2A.Z ChIP-seq data, and the last row input data 
for comparison. 
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Figure 3.5: H2A.Z localization in response to Swr1 localization 

(A) Plotted are H2A.Z enrichment levels from -1000 to +1000 around the TSS.  Gene 
groups have been determined based on the intensity of input corrected Swr1 binding at 
the NDR, as measured by the total signal between -350 to +200 (this window was picked 
to try to encompass all NDR associated binding, see Figure 3.2 for region estimates).  
The plots further separate tandem from divergent genes.  Consistently, tandem genes are 
associated with a single upstream peak of H2A.Z, which, regardless of Swr1 binding 
level, is much lower than that see at divergent genes.  (B) A plot of the correlation 
between Swr1 ChIP signal between -350 to +200 and the H2A.Z signal over the same 
region.  The correlation is rather low at ~.095.  A handful of Swr1 input corrected 
enrichment values below -200 and above +100 have been dropped to allow plotting, but 
were included in correlation estimates.  The black line represents a moving average 
across 50 genes at a time. 
 



 55 

 

Figure 3.6: Swr1 and Ino80 binding targets are redistributed in the Htz1 deletion strain 

(A and C) Heatmaps of Swr1 and Ino80 ChIP data in WT and ΔHtz1 strains sorted by the 
signal in the WT data between -200 and +200 bp surrounding the TSS.  (B and D) 
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(Figure 3.6 continued.) Average binding profiles of Swr1 and Ino80 across the TSS.  
Gene groups are determined as follows: Top- includes data from the top 500 genes by 
signal, Bottom –includes data from the 500 least genes by signal, Middle –includes data 
for the remaining 4797 annotated genes.  The top plot for each contains WT data.  The 
next two plots contain data from the ΔHtz1 strains, 1st with the groups determined by the 
signal in the WT sample, and 2nd with the groups determined by the signal in the mutant 
sample.  These plots indicate that the main strong binding locations within the genome of 
Swr1 and Ino80 are redistributed in the context of loss of H2A.Z. 

 

H2A.Z and gene expression 

Next we decided to look at the impact of gene expression on genome wide H2A.Z 

patterns.  Previously, data from microarray experiments indicated that H2A.Z might be 

inhibitory to transcriptional initiation, as occupancy was shown to correlate negatively 

with transcription rate (Li et al., 2005, Zhang et al., 2005).  However, when H2A.Z is 

acetylated it is associated with actively transcribed genes (Millar et al., 2006).  There is 

also evidence that H2A.Z promotes transcriptional elongation.  In its absence nucleosome 

occupancy increases over the GAL10p-VPS13 gene locus, and the elongation rate of 

RNA Pol II decreases by ~24% (Santisteban et al., 2011).  Additionally, phosphorylation 

of RNA Pol II’s Ser2 residue within the gene body is deficient. 

We began by examining whether there was a correlation between H2A.Z 

enrichment levels at the +1 nucleosome and gene expression levels in our data.  Sorting 

transcripts based on their expression level failed to produce an overall linear correlation 

with H2A.Z enrichment (Figure 3.7).  Instead we found that genes with very high 

expression or very low expression both showed low levels of H2A.Z enrichment, while 

the majority of genes displayed fairly uniform levels of H2A.Z.  In the case of highly 

expressed genes, the depletion of H2A.Z at the +1 nucleosome could reflect higher 

transcription rates displacing H2A.Z too quickly for detection by MNase-ChIP. 
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Analysis of Swr1 and Ino80 binding patterns at highly expressed genes revealed 

that, under normal conditions, these proteins also display reduced binding at these 

locations (Figure 3.8).  However, in the absence of H2A.Z, Ino80 accumulated upstream 

of these genes and within the NDR.  This increase may suggest that Ino80 is normally 

targeted to the upstream region to regulate the displacement of +1 nucleosomes at these 

genes.  However, in the absence of H2A.Z, it is without a substrate to act upon, and it 

accumulates at the NDR. 

 

 

 

Figure 3.7: H2A.Z enrichment at the +1 nucleosome does not correlate with gene 
expression 

(A) A heatmap (visualized with Java Tree Viewer) displaying the H2A.Z enrichment 
across transcript TSS regions when sorted by gene expression level.  The x axis 
represents distance from the TSS within a range of -1000bp upstream to +1000bp 
downstream. (B) A plot of H2A.Z occupancy at the +1 nucleosome vs a ranked gene 
expression value.  Ranking was used to accommodate outliers that skewed the plot.  The 
black line represents a 50 gene moving average of H2A.Z enrichment. 
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Figure 3.8: Swr1 and Ino80 localization at highly expressed genes in an Htz1 deletion 
strain 
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(Figure 3.8 continued.) (A) Heatmap of Swr1 ChIP data in WT and ΔHtz1 strains sorted 
by gene expression level.  (B) Average binding profiles of Swr1 across the TSS.  Top is 
the signal for the 500 most highly expressed genes, while at bottom is the signal across 
all yeast genes.  (C) Heatmap of Ino80 ChIP data in WT and ΔHtz1 strains sorted by gene 
expression level.  (D) Average binding profiles of Ino80 across the TSS for the 500 most 
highly expressed genes and for all yeast genes. 

 

H2A.Z enrichment at the +1 nucleosome correlates with upstream antisense 
transcription 

A number of studies have described high levels of antisense transcription 

occurring upstream of gene promoters (Neil et al., 2009).  As this antisense transcription 

might also contribute to the chromatin structure found at the TSS, we were interested in 

investigating whether the H2A.Z signal was influenced by upstream antisense 

transcription.  H2A.Z has already been reported to exhibit co-occupancy with antisense 

transcription emanating from the 3’ ends of transcripts (Gu et al., 2015).  For this analysis 

we used antisense transcription measurements from publicly available SMORE-seq data 

(Park et al., 2013), and in particular their calls for antisense transcription upstream of 

tandem genes, which are referred to as bidirectional noncoding RNAs or (BNCs). 

When we separated genes by TSS orientation, and aligned them by upstream 

transcription level within a window designed to allow detection of BNCs (from -300 to -

50 upstream of the TSS), we noted that both groups appeared to show a correlation 

between antisense transcription and H2A.Z occupancy at the -1 nucleosome (Figure 3.9).  

However, the divergent genes displayed significant amounts of H2A.Z enrichment in the 

nucleosomal arrays extending further upstream from the NDR.  Aligning these genes by 

distance to the upstream TSS revealed that much of the diffuse signal was a result of 

upstream TSSs that were farther away.  It also revealed that genes with the highest 

H2A.Z enrichment levels correspond to ones where two diverging coding genes share an 
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NDR, and presumably a bidirectional promoter.  For the remainder of genes, there was a 

notable pattern of stronger antisense transcription corresponding to stronger H2A.Z 

signal at the -1 nucleosome.  We investigated this association by separating genes based 

on BNC levels, and determining whether there were significant differences in H2A.Z 

enrichment among the groups (Figure 3.11).  All comparisons yielded significant p-

values. 

We also determined that levels of Swr1 enrichment were roughly equivalent 

between tandem and divergent genes (data not shown), suggesting that increased Swr1 

targeting to the NDR does not explain the increased H2A.Z incorporation at divergent 

genes.  It became apparent that divergent transcripts had some H2A.Z incorporated at the 

-2 and-3 nucleosomes, whereas the tandem genes only displayed this enrichment at the -1 

(Figure 3.12).  This pattern is consistent with increased displacement occurring at 

divergent genes where upstream transcripts will normally be long and coding.  By 

contrast, antisense upstream reads associated with tandem gene promoters are short, and 

transcription at these regions could, therefore, be less likely to displace H2A.Z in the 

direction of transcription. 
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Figure 3.9: Aligning H2A.Z enrichment data by upstream antisense transcription level 

H2A.Z enrichment data has been segregated based on the orientation of the upstream 
gene at the TSS.  Divergent genes are characterized by a head to head orientation, while 
tandem genes are transcribed in the same direction and on the same strand resulting in a 
tail to head orientation.  Gene tails correspond to arrow tips in the schematics displayed 
above the heatmaps.  The data has been further arranged by antisense transcription level 
in decreasing order.  The x-axis includes a range around each transcript’s annotated TSS 
of -1000 to +2000bp. 
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Figure 3.10: Detecting noncoding antisense reads between divergent transcripts 

The apparent correlation between antisense transcription and H2A.Z incorporation at the 
-1 nucleosome at divergent genes reflects differences in the intergenic distance between 
transcript TSSs.  On the left, genes are sorted based on the distance to the upstream TSS.  
On the right, genes with a TSS-to-TSS distance greater than 300bps are resorted based on 
the level of antisense transcription, revealing a pattern of H2A.Z enrichment matching the 
strength of BNCs emanating from these NDRs. 
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Figure 3.11: H2A.Z enrichment at the -1 nucleosome of tandem transcripts increases with 
increasing antisense transcription 

In both images, tandem transcripts are grouped according to antisense transcription level.  
(A) Boxplots of H2A.Z enrichment at the -1 nucleosome.  Welch t-tests were performed 
to compare the averages between the 3 groups, yielding p-values indicating that the 
differences were significant.  (B) Average profiles are plotted for the transcripts separated 
into quartiles.  The plot clearly shows that, overall, H2A.Z enrichment at the -1 
nucleosome increases in concert with increasing antisense transcription level. 
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Figure 3.12: Average profile of input vs. non-input corrected H2A.Z MNase ChIP by 
TSS orientation 

H2A.Z incorporation at the NDR differs dramatically between divergent and tandem 
transcripts.  By contrast, background nucleosome levels (input) show little difference 
between the two groups. 
 
 

The TATA box 

In general, genes with TATA box containing promoters exhibit different 

transcriptional characteristics.  On average, they produce higher levels of gene 

expression, and much lower levels of upstream antisense transcription (Figure 3.13).  

These features are in agreement with the observation that TATA boxes are generally 

enriched at sites of strong sense directed transcription.  Genes with TATA containing 

promoters also exhibit more dynamic expression levels and are enriched for up-regulation 

during environmental stress and depleted for housekeeping genes (Basehoar et al., 2004).  

Since H2A.Z marks sites of bidirectional transcription, we wanted to explore H2A.Z 

incorporation at TATA box associated TSSs.  Zhang et. al previously demonstrated by 

microarray techniques that, when using a sliding window of 80 genes, regions of the 

genome with higher numbers of TATA boxes displayed less H2A.Z occupancy (Zhang et 

al., 2005).  Modern sequencing methods have increased the resolution that can be 
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obtained through such studies.  Consequently, we decided to investigate the impact of 

TATA boxes on H2A.Z incorporation at the TSS on a genome wide scale.   

We plotted average H2A.Z enrichment levels for TATA possessing and TATA-

less genes, and visualized the gene-by-gene enrichment by producing a heatmap of 

enrichment with JavaTree Viewer (Figure 3.14).  The heatmap revealed that H2A.Z does 

localize to the TSS of TATA possessing genes.  However, the enrichment is lower and 

the signal more diffuse than the precise and strong signal witnessed at TATA-less genes.  

The average profile reveals that, at TATA containing genes, less H2A.Z is incorporated 

into the +1 and -1 nucleosomes, and that H2A.Z can be found at low levels throughout 

the gene body and within the NDR.  These results indicate that, when a TATA box is 

present, H2A.Z is less likely to be incorporated in nucleosomes surrounding the NDR, 

but also that when it is incorporated the localization is not as strictly maintained.  This 

may reflect higher rates of transcription at TATA containing genes displacing H2A.Z 

containing nucleosomes farther down the gene body.  Since the Swr1 and Ino80 

complexes share a number of subunits, the profiles could also indicate, that, regions 

which are less likely to be targeted for H2A.Z incorporation by Swr1 are also less likely 

to be targeted for H2A.Z removal by Ino80.  A t-test based comparison between H2A.Z 

levels at +1 nucleosomes for TATA containing vs. TATA-less genes yielded a p-value of 

< 2.2e-16 (Figure 3.15).  Analysis of the differences between Swr1 and Ino80 binding 

patterns at these two gene groups also revealed that Ino80 accumulated at the TATA 

containing genes in the absence of H2A.Z, while in WT cells both complexes were 

depleted from TATA containing genes (Figure 3.16).  These patterns were similar to its 

accumulation at highly expressed genes.  They also suggest that low levels of H2A.Z at 

TATA containing genes are actively maintained by the actions of Ino80. 
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Figure 3.13: Transcriptional characteristics of TATA-box possessing genes 

Displayed above are box plots for antisense transcription (BNCs) and gene expression 
levels.  Outliers have been dropped.  TATA containing and TATA-less genes show 
notable differences in the transcription emanating from their NDRs.  TATA genes have 
higher expression levels overall, and are decidedly less likely to be associated with 
upstream antisense transcription.  By contrast TATA-less genes display more modest 
levels of transcription downstream, but also increased levels upstream.  Welch t-tests 
were performed for significance. 
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Figure 3.14: H2A.Z localization at the TSS with respect to the occurrence or absence of a 
TATA box 

(A) A heatmap of H2A.Z localization separated by TATA promoter status.  (B) Average 
H2A.Z enrichment levels across the two gene groups.  Genes with TATA boxes show 
less +1 and -1 nucleosome incorporation of H2A.Z, but also display increased H2A.Z 
levels in the gene body. 
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Figure 3.15: Boxplots of H2A.Z levels at +1 nucleosomes of TATA box containing and 
TATA-less promoters 

A Welch t-test was performed for significance. 
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Figure 3.16: Ino80 and Swr1 localization at the TSS based on TATA status 

Overall, Swr1 levels are low at TATA genes, especially in the NDR.  Ino80 levels at 
TATA genes are low in the presence of histone H2A.Z, but show a modest increase in the 
upstream direction in its absence. 
 

Ribosomal protein coding genes 

Finally, we turned our attention to the highly expressed ribosomal protein coding 

genes.  The 78 proteins in the yeast ribosome are encoded for by 137 gene loci (Warner, 

1999).  These genes were previously shown to be depleted for H2A.Z, in contrast to the 

enrichments seen at mitochondrial RP genes and ribosome biogenesis genes (Zhang et al., 

2005).  We also found a pronounced depletion of H2A.Z within these genes (Figure 

3.17).  Swr1 was, extremely depleted from the NDRs associated with these genes, but did 

exhibit of a modest binding peak at the +1 nucleosome.  However, Ino80 was once again 
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detected at the NDR in the absence of H2A.Z.  In light of previous evidence that some 

random incorporation of H2A.Z in the absence of Swr1 may occur within the genome 

(Hardy et al., 2009, Hardy and Robert, 2010), Ino80’s association with RP genes may 

indicate that preventing the accumulation of H2A.Z containing nucleosomes within the 

NDR of these genes is an active process. 

 

 

 

 

Figure 3.17: Ino80, Swr1, and H2A.Z dynamics at ribosomal protein genes 
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DISCUSSION 

 Our finding, that H2A.Z localization at both sides of the NDR is 

associated with upstream transcription, argues against a +1, NDR, -1 model, and instead, 

contends that NDRs with upstream and downstream H2A.Z are encompassed by two +1 

nucleosomes (Figure 3.18).  In light of our results, it is interesting to note, that, the NDR 

structure has been characterized differently in different organisms.  In humans, peaks of 

H2A.Z enrichment are also found at both sides of the NDR, and correspondingly, 

bidirectional promoters producing bidirectional transcription are common (Preker et al., 

2011, Trinklein et al., 2004).  In contrast, the Drosophila NDR shows H2A.Z enrichment 

at the +1 nucleosome but not at the -1 (Mavrich et al., 2008).  It is enticing to speculate, 

that, the lack of an upstream -1 nucleosome containing H2AZ could result from the fact 

that Drosophila gene promoters also display a pronounced lack of bidirectional 

transcription and a larger number of directional motifs (Core et al., 2012).  Adding 

further weight to the importance of the +1, Schizosaccharomyces pombe predominantly 

lack -1 nucleosomes and regular nucleosomal arrays upstream of the NDR, while their 

downstream arrays also appear to form co-directionally with transcription (Lantermann et 

al., 2010).  It has been noted, however, that a small subset of genes produce weak 

upstream nucleosomal arrays and that these promoters often contain H2A.Z.  The 

formation of nucleosomal arrays co-transcriptionally, is in agreement with our data, as, 

BNC associated tandem promoters produce single peaks of H2A.Z upstream and not 

arrays, commensurate with the short transcript lengths of BNCs.   

At first glance, the reports about H2A.Z’s association with antisense transcription 

in S. pombe and S. cerevisiae seem contradictory, with one claiming H2A.Z suppressed 

antisense transcription, and the other claiming it had positive effects on it (Gu et al., 

2015, Zofall et al., 2009).  The S. pombe study looked specifically at long anti-sense 
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transcripts that are primarily produced from 3’ originating convergent transcription.  In 

this case, 5’ incorporation of H2A.Z could increase sense strand transcription and lead to 

the appearance of antisense down-regulation through transcriptional repression.  This 

suggests that converging transcripts compete for transcriptional access to the same 

regions and that incorporation of 5’ H2A.Z at a transcript’s +1 nucleosome increases the 

likelihood of competitive transcription increasing from that locus and decreasing from the 

converging locus.   

The S. cerevisiae study also examined antisense transcripts originating from the 3’ 

ends of coding genes, but they looked specifically at the association between these 

transcripts and the H2A.Z levels in these same 3’ locations.  Here, H2A.Z had a positive 

affect on transcription originating from the locus.  Both studies, therefore, are compatible 

with H2A.Z having a positive affect on whether or not transcriptional initiation occurs at 

a precise location.  It should be noted, that, the median distance between S. pombe genes 

has been calculated as 442bp and while the distance between S. cerevisiae genes is 366bp 

(Zofall et al., 2009).  As transcription produces different covalent modifications at 

different distances from the TSS (see Chapter 1), this variation in intergenic distances 

could also lead to different outcomes being produced from converging transcription.  
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Figure 3.18: Models of H2A.Z Incorporation at the NFR 

(A) The old model of H2A.Z incorporation at both the +1 and -1 nucleosomes at the NFR 
of a transcription start site. 
(B) The new model demonstrating that incorporation of H2A.Z at both sides of an NFR is 
indicative of transcription produced in both directions.  Hence, -1 nucleosomes that 
incorporate H2A.Z likely reflect +1 nucleosomes of diverging transcripts. 
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 Chapter 4: H2A.Z and the Environment 

“Summer surprised us, coming over the Starnbergersee” 

-T. S. Elliot, The Waste Land 

 

INTRODUCTION 

One way to induce the remodeling of chromatin within yeast cultures is to subject 

cells to physiological stress.  In particular, heat shock induced changes in gene expression 

have been shown to involve a repositioning of nucleosomes.  In a 2008 paper, 

Shivaswamy et al. identified patterns of nucleosome displacement localized at gene 

promoters in response to heat shock (Shivaswamy et al., 2008).  They found that 

nucleosome eviction was generally associated with gene activation while nucleosome 

appearance was generally associated with gene repression.  This pattern makes sense, as 

strongly positioned nucleosomes could interfere with accessibility of DNA to the 

transcriptional machinery. There is, therefore, reason to think that the remodeling of local 

chromatin landscapes may play an integral part in cell responses to stress, ultimately 

contributing to the activation of groups of genes that respond to the specific stress 

conditions. 

The deletion of some chromatin remodelers can also lead to changes in the 

location of nucleosomes.  The deletion of the remodeler Chd1 has an impressive effect on 

global nucleosome positioning despite weak effects on phenotype (Gkikopoulos et al., 

2011, Park et al., 2014b).  However, in most cases single gene deletions do not show a 

dramatic effect on nucleosome positions.  For example, deletion of the remodeler Snf2 

has a dramatic phenotypic effect, significantly retarding cell growth (Shivaswamy and 

Iyer, 2008).  However, when looking at the average transcription start site (TSS) 
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nucleosome profile, no large scale effects can be seen (data not shown).  Since 

nucleosome positioning can be altered in a dynamic fashion by stimuli affecting large-

scale gene expression, we wanted to investigate how H2A.Z and its chromatin remodelers 

might be involved in mediating appropriate chromatin responses to stress. 

 

MATERIALS AND METHODS 

Strains utilized 

Cells used for the following experiments were all from the haploid BY4741 

background (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0).  Specific strains were obtained 

from various collections.  A TAP-tagged H2A.Z strain was used from the TAP-tagged 

protein collection (Ghaemmaghami et al., 2003).  Deletion mutant strains for Htz1 and 

Swr1 were obtained from the yeast haploid deletion strain collection (Open Biosystems, 

now GE Dharmacon) (Winzeler et al., 1999).  Since the collection lacked an Ino80 

deletion strain, we created the strain via tetrad dissection using heterozygous diploid cells 

containing the intact Ino80 gene and the deletion (Figure 4.1).  We obtained this strain 

from the diploid essential deletion collection (from GE Dharmacon). 
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Figure 4.1: Schematic of haploid deletion strain creation by tetrad dissection 

Diploid cells, heterozygous for the intact Ino80 gene and a deletion at that locus, were 
obtained from the diploid essential deletion collection (from GE Dharmacon), which is in 
the BY4743 background. The cells were transformed with a covering plasmid containing 
a copy of Ino80 to limit problems in meiosis.  The diploid strains were then sporulated to 
produce tetrads.  Tetrads were then dissected and only ones yielding 4 colonies were 
further screened.  By replica plating on media containing Kan-MX, cells that possessed 
the KanMX cassette in place of the genomic copy of Ino80 were isolated.  The cells were 
then grown without selection to give them a chance to lose the covering plasmid.  
Individual colonies were screened to select for plasmid loss.  The resulting Ino80 haploid 
deletion strain was then confirmed with confirmation PCR. 
 
 

Experimental conditions 

Yeast cells were grown up in 200 ml cultures to an OD of .8.  Cells were then 

divided into 4 (50ml) aliquots, and spun down at 30°C for 5mins at 4000rpm.  The 

supernatants were discarded and cells were re-suspended in pre-warmed media, either at 

30°C for normal (T0) or rapamycin treated samples, or at 39°C for heat-shocked samples.  
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The heat-shocked samples were then placed back into a 39°C shaking incubator.  

Rapamycin was added to the rapamycin treatment sample to a final concentration of 

100nM, and the sample was placed in a 30°C shaking incubator for 30 minutes.  The T0 

sample was immediately fixed with formaldehyde.  After 15 minute and 30 minute 39°C 

incubations, respectively, T15 and T30 heatshock samples were fixed and collected.  All 

samples were collected after formaldehyde treatment by spinning down the samples, 

discarding the supernatant, and freezing the cell pellet for use downstream in MNase-seq 

or MNase ChIP-seq experiments (Figure 4.2).  Since the 15 minute heatshock produced 

more pronounced changes in chromatin structure, we used this sample instead of the 30 

minute heatshock sample for further downstream analysis. 

 

 

 

Figure 4.2: Schematic showing the experimental setup for heatshock and rapamycin 
treatment samples 
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MNase-seq and MNase ChIP-seq 

The protocols used were identical to those described in Chapter 3. 

Gene lists used for sorting 

Lists of heat activated and heat repressed genes were obtained from Shivaswamy 

et al. which utilized microarray data from heat shocked cells to call differentially 

expressed genes with a log fold change cutoff of 2 and an adjusted p-value of .05 

(Shivaswamy et al., 2008).  Lists of rapamycin activated and rapamycin repressed genes 

were obtained from publicly available microarray data also using a log fold change cutoff 

of 2 and an adjusted p-value of .05 (Park et al., 2013). 

 

RESULTS 

We decided to characterize the effects of loss of H2A.Z and its chromatin 

remodelers on both phenotype and on chromatin structure.  Deletion strains for Htz1 and 

for Swr1 were readily obtainable from the haploid deletion collection.  However, since 

the Ino80 deletion mutant did not feature in the collection, we were forced to knock out 

the gene ourselves.  Repeated failures in attempting to produce the knockout through 

conventional transformation methods, forced us to produce the strain using tetrad 

dissection (see Methods). 

We first wanted to assess the affects of these deletions on growth rates of cells 

grown under typical laboratory conditions.  This was performed both on solid media 

(with incubation in a standing 30°C incubator for 2 days) and in liquid culture (cells were 

grown in a shaking 30°C incubator with time-points tested for OD) (Figure 4.3).  The 

ΔSwr1 strain showed the least amount of growth inhibition.  Both ΔHtz1 and ΔIno80 

showed pronounced growth defects, with ΔIno80’s being the most severe.  In light of the 



 79 

difficulty in producing the ΔIno80 strain, the growth defect is not terribly surprising.  The 

growth curve of the ΔIno80 strain suggests that, in addition to a longer doubling time, the 

mutant takes significantly longer to transition from stationary phase to log phase. 

We next wanted to assess the distribution of nucleosomes within our deletion 

strains under normal growth conditions.  Overall, nucleosomes around the NDR in the 

ΔHtz1 strain are still well positioned, indicating that H2A.Z is not required for producing 

regularly spaced arrays of nucleosomes within gene bodies (Figure 4.4).  It has, 

previously, been argued that H2A.Z may affect positioning (Guillemette et al., 2005, 

Thakar et al., 2009) and that it does not (Li et al., 2005).  This also indicates that 

decreased levels of H2A.Z at the NDR are not responsible for the fuzzy positioning of 

nucleosomes seen at genes with TATA containing promoters (Shivaswamy et al., 2008).  

By contrast, ΔIno80 displayed a dramatically altered nucleosome pattern.  While the 

regular spacing between nucleosomes was well maintained, occupancy bordering the 

NDR and even within the NDR substantially increased.  There was also a marked 

decrease in nucleosome occupancy levels through the gene body. 
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Figure 4.3: Growth defects of H2A.Z, Swr1, and Ino80 haploid deletion strains 

(A) Growth curves, as measured by change in OD, of deletion strains grown in YPD with 
time-points taken every 3 hours. (B) Change in OD measured after 24 hours. (C) Growth 
defects of deletion strains on stationary media, assessed after 24 hours growth at 30°C.  
Serial dilutions were 1:10. 
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Figure 4.4: Average nucleosomes profiles across deletion strains 

Mononucleosome profiles for each deletion mutant are plotted against the WT profiles.  
Overall, the Htz1 and Swr1 mutants produce little impact on global nucleosome patterns. 
By contrast, the Ino80 mutant exhibits reduced nucleosome levels throughout transcript 
bodies and increased levels in the NDR and -1 nucleosome position. 
 
 

Heatshock 

Evidence for the importance of H2A.Z in thermo-regulatory programs stems from 

experiments in several species.  In yeast, deletion of Htz1 causes a small growth defect 

under normal conditions, but a much more pronounced one under heatshock (Santisteban 

et al., 2000).  Additionally, H2A.Z incorporation has been found to increase the thermal 

mobility of nucleosomes, allowing for relocation at a temperature 4°C lower than 

nucleosomes containing canonical histones (Flaus et al., 2004).  In Arabidopsis, under 

normal conditions, H2A.Z containing nucleosomes bind DNA tighter than canonical 

ones, but increasing temperatures lead to decreased H2A.Z nucleosome occupancy 

(Kumar and Wigge, 2010).  Loss of H2A.Z causes these plants to grow as if they are 

grown at warm temperatures and to engage the transcription programs characteristic of 

those temperatures as well.  Finally, in the fish Cyprinus carpio, H2A.Z levels within 

cells fluctuate with season (Talbert and Henikoff, 2014). 
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We wanted to further explore the effects of H2A.Z on heatshock tolerance, so, we 

subjected our deletion strains to a heatshock assay at 39°C (Figure 4.5).  We found that 

heatshock inhibited growth for both the ΔHtz1 and the ΔIno80 strains, while having a 

comparatively small effect on ΔSwr1 cells.  This result underscores the importance of 

H2A.Z in responding to a changing environment.  The fact that the phenotype of the 

ΔSwr1 strain was so markedly different from the ΔHtz1 strain presents a few interesting 

possibilities.  The first is that the rapid incorporation of H2A.Z at loci that are repressed 

can be accomplished in an Swr1 independent manner.  The second is that the heat 

sensitivity is a consequence of problems caused by Swr1 and not by a lack of H2A.Z.  

Indeed, there is evidence, that, in the context of some other types of stresses, Swr1 causes 

genomic instability in the absence of H2A.Z, and that by deleting both the chromatin 

remodeler and histone variant these sensitivities can be ameliorated (Morillo-Huesca et 

al., 2010).  The third, and more improbable, possibility is that H2A.Z performs a function 

related to heatshock response that is independent from its ability to be incorporated into 

chromatin.  The extreme growth defect of the ΔIno80 strain suggests that an inability to 

remove H2A.Z from the genome is more problematic than an inability to incorporate 

H2A.Z 

We next explored H2A.Z occupancy dynamics in WT cells at heat responsive 

loci.  This was done by performing MNase ChIP for H2A.Z under normal conditions, and 

after a 15 minute heatshock at 39°C (Figure 4.6).  We chose to focus our analyses on 

gene loci that are either up or down-regulated in response to heatshock in order to 

increase the likelihood of seeing occupancy changes that are transcriptionally relevant.  

In genes activated by heatshock, H2A.Z was depleted from all regions of our TSS profile 

(including upstream, -1, NDR, +1, and within the gene body).  This finding is consistent 

with previous reports that H2A.Z is evicted during gene activation.  For genes repressed 



 83 

during heatshock, H2A.Z occupancy increased at the +1 nucleosome and within the gene 

body. 

We then proceeded to characterize the effect of heatshock on the nucleosome 

profiles of our mutant strains at heat responsive genes.  Overall, the profiles of our ΔSwr1 

and ΔHtz1 strains did not different dramatically from WT.  However, the ΔIno80 strain 

produced dramatically different results.  Heat activated genes in this strain exhibited a 

severely dis-regulated nucleosome profile that largely seemed to have lost the regularly 

spaced nucleosomal arrays (Figure 4.7).  These genes exhibited a dis-regulated pattern 

regardless of condition, but the shapes of the profiles between conditions did differ.  

Conversely, heat repressed genes in the Ino80 mutant exhibited more dis-regulated 

patterns under normal conditions and less dis-regulated patterns under heatshock (Figure 

4.8).  These results argue that the severe growth defect of the Ino80 mutant under 

heatshock conditions results from an inability to properly maintain nucleosome 

positioning and occupancy levels in the context of active transcription. 
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Figure 4.5: Phenotypic effects of deletion mutants exposed to heatshock 

Strains were grown up overnight till saturation.  They were then diluted to equivalent 
ODs and used for spotting assays, with serial dilutions of 1:10.  Two identical plates were 
produced, one was placed in a 30°C incubator while the other was placed in a 39°C one.  
After two day’s growth the 30°C plate was assessed for growth differences.  Since 
growth at 39°C is considerably slower even in WT strains, the 39°C plate was assessed 
after 4 days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WT 

∆Ino80 
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Figure 4.6: H2A.Z enrichment across heat responsive genes during heatshock 

(A) Heatmaps produced with JavaTree displaying changes in H2A.Z localization between 
normal conditions and a 15 minute heatshock for heat activated and heat repressed genes.  
Genes are aligned by transcript length and display a window from -1000 bps upstream of 
the TSS to +6000 bps downstream.  (B) Average profiles of H2A.Z enrichment across 
heat activated and heat repressed genes.  Overall, actively transcribed genes are depleted 
for H2A.Z in both directions from their NDRs, whereas repressed genes accumulate 
H2A.Z only at the +1 nucleosome and within their gene bodies. 
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Figure 4.7: Average nucleosomes profiles across heat activated genes 
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Figure 4.8: Average nucleosomes profiles across heat repressed genes 
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Rapamycin 

We next turned our attention to characterizing H2A.Z based chromatin responses 

to the stress caused by rapamycin treatment.  Phenotypic data suggests that rapamycin 

treatment induces G0 and mimics stationary phase (Zaragoza et al., 1998).  Stationary 

phase cells display increased thermo-tolerance, maintaining viability at high temperatures 

for longer (Allen et al., 2006).  In WT cells subjected to a 30 minute rapamycin 

treatment, we found that H2A.Z was depleted from the +1 nucleosome and from the gene 

body of activated genes (Figure 4.9).  While this response was similar to the depletion 

seen in heat-shocked cells, the extent of the depletion was more modest, and did not 

include regions upstream of the +1 nucleosome.  Rapamycin repressed genes 

accumulated H2A.Z within the gene body and slightly at the -1 nucleosome, but there 

was no increased incorporation at the +1 nucleosome.  An explanation for the differences 

in the regions of H2A.Z incorporation and depletion between rapamycin responsive and 

heat responsive genes remains undetermined.  These differences may reflect the 

activation of different chromatin regulatory modes, or perhaps result from the large scale 

repressive effects of rapamycin on gene transcription. 

Turning our attention to the effects of rapamycin on nucleosome occupancy in our 

deletion strains, we observed that the ΔIno80 strain again displayed greater occupancy at 

the NDR and depletion distally, while the other two strains showed minimal differences 

compared to WT (Figure 4.10).  Sorting the profiles into activated and repressed groups 

revealed similar global nucleosome patterns to those seen in our heat-shocked samples 

(Figure 4.11).  Genes activated in response to rapamycin, displayed lower occupancy 

levels both before and after treatment than were seen for the genome at large, while 

repressed genes showed more nucleosome occupancy in both conditions.  Ino80 patterns 
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were again aberrant, and most notably so for the activated genes both before and after 

treatment. 

 

 

 

Figure 4.9: H2A.Z localization at rapamycin responsive genes under rapamycin treatment 

(A) Heatmaps display changes in H2A.Z localization between normal conditions and a 30 
minute rapamycin treatment for activated and repressed genes.  Genes are aligned by 
transcript length and display a window from -1000 bps upstream of the TSS to +6000 bps 
downstream.  (B) Average profiles of H2A.Z enrichment across rapamycin activated and 
repressed genes.  Actively transcribed genes show H2A.Z eviction at the +1 nucleosome 
and near their 3’ ends.  Repressed genes incorporate H2A.Z within their gene bodies in 
regularly spaced arrays. 
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Figure 4.10: Average nucleosome positioning in rapamycin treated deletion strains across 
all genes 

Overall, nucleosome patterns in the ΔHtz1 and ΔSwr1 strain are similar to WT patterns.  
By comparison, the ΔIno80 strain displays a very noticeably different pattern with 
nucleosomes over incorporated at the -1 and +1 nucleosome sites and mis-incorporated 
within the NDR. 
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Figure 4.11: Nucleosome patterns across rapamycin responsive genes 

Plotted above are average profiles of rapamycin activated and repressed genes across our 
samples.  Rapamycin activated genes show aberrant nucleosome localization upstream of 
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(Figure 4.11 continued.) the TSS both in treated and non-treated samples within the 
ΔIno80 mutant strain.  At rapamycin repressed genes, nucleosomes in the ΔIno80 mutant 
strain accumulate tightly at the +1 and -1 locations.  WT cells instead showed decreased 
occupancies upstream of the -1 nucleosome and towards the 3’ end for activated genes, 
and -1 depletions and 3’ end increase for repressed genes.  

 

RP genes 

Finally, we decided to examine changes in nucleosome occupancy at the RP 

genes more closely, as, the expression patterns of these highly expressed genes have been 

shown to respond to cell stress.  In particular, rapamycin induces down regulation of RP 

genes by inhibiting the target of rapamycin (TOR) pathway (Powers and Walter, 1999, 

Shamji et al., 2000).  It was shown that for at least two of these RP genes, rapamycin 

caused the release of the histone acetyltransferase Esa1 from the locus, leading to 

decreased H4 acetylation levels (Rohde and Cardenas, 2003).  Similarly, during 

heatshock, RP genes exhibit decreased H4 acetylation levels, and are generally repressed 

(Shivaswamy and Iyer, 2008).  We therefore examined the nucleosome profiles of these 

genes in our data (Figure 4.12).  Under both normal and rapamycin treatment conditions, 

deletion of Ino80 caused nucleosomes to increase in occupancy upstream of the RP 

genes.  The size of the NDR in this strain was also noticeably compressed.  By contrast, 

heatshock and rapamycin treatment of the ΔSwr1 strain caused an appreciable widening 

of, and decreased occupancy within, the NDR of RP genes.  Deletion of Htz1 produced 

only minor changes in the nucleosome occupancy of these genes from WT. 
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Figure 4.12: Nucleosome profiles across RP genes in deletion mutants and under stress 

 

DISCUSSION 

We have demonstrated that, in response to heatshock and rapamycin treatments, 

H2A.Z is depleted from activated genes and incorporated into repressed genes, though 

with somewhat different patterns.  Previously, H2A.Z was shown to be incorporated 

more strongly into recently repressed genes (the study looked specifically at Ino1 and 

Gal1), and to be necessary for their rapid re-activation (Brickner et al., 2007).  It may 

therefore serve the purpose of bookmarking a gene that was recently transcribed so that 

when conditions again require it, those genes may quickly be reactivated.  This could 

provide a plausible reason why some genes lack H2A.Z at their NDRs, namely, that they 

are transcribed too infrequently to necessitate, or, perhaps, to allow for continued H2A.Z 

retention.  In agreement with this model are studies showing that H2A.Z can act as a 
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binding platform for pioneer transcription factors, priming chromatin for future use 

(Subramanian et al., 2015).  H2A.Z incorporation may, therefore, be a way to place a 

gene “on hold” so that it may then be retrieved faster at a later date.  Evidence that 

H2A.Z plays a role in anti-silencing, and may prevent genes from being 

heterochromatinized (Kumar and Wigge, 2010) supports this theory. 

We have also characterized the growth defects, thermo-tolerance sensitivities, and 

nucleosome profiles of strains deficient in aspects of H2A.Z regulation.  In particular, we 

have shown that Ino80 deletion mutants take longer to transition from stationary phase to 

log phase, are incapable of handling heatshock, and produce highly aberrant nucleosome 

occupancy profiles.  Nucleosomal dis-regulation is more pronounced at activated genes, 

and is present even before the administration of stress.  A closer look reveals that genes 

activated in response to stress are highly enriched for TATA boxes, while genes that are 

repressed in response to stress are depleted for these promoter elements (Table 4.1).  It 

therefore seems that, while H2A.Z is more strongly targeted to TATA-less promoters, its 

mis-regulation has a more detrimental impact on chromatin features at TATA containing 

genes where chromatin structure is less rigidly defined, and more susceptible to 

perturbation.  It was shown in Chapter 3 that Ino80 can bind TATA box genes, and that 

its binding increases in the absence of H2A.Z.  Our results, therefore, provide support for 

a model where H2A.Z is incorporated into TATA containing genes, and where Ino80 

must actively remove it to maintain appropriate chromatin structure. 
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 Total Genes TATA TATA % TATA-less TATA-less % 

Heat Activated 359 186 51.81 173 48.19 

Heat Repressed 489 69 14.11 420 85.89 

Rapamycin Activated 209 94 44.98 115 55.02 

Rapamycin Repressed 302 20 6.62 282 93.38 

Table 4.1: The proportion of stress responsive genes with TATA box containing 
promoters 

 
  



 96 

CONCLUSION 

 

H2A.Z has a long evolutionary history, likely having arisen only once, early in 

Eukaryotic evolution.  It displays sequence conservation across species that is more 

strictly maintained than that for the canonical H2A histone (Thatcher and Gorovsky, 

1994).  Despite evidence of an ancient yeast genome duplication event (Wolfe and 

Shields, 1997), which could explain duplicate genes for canonical histones and their 

consistent pairings (Eriksson et al., 2012), in the yeast genome we find only one version 

of H2A.Z.  These properties emphasis the important functions that this histone variant 

carries out, and how they must be strictly regulated and maintained. 

Under “ideal” laboratory conditions, H2A.Z is dispensable for cell viability.  In 

the wild, however, yeast cells must contend with a plethora of insults and challenges.  

Some of those most commonly experienced will, undoubtedly, be temperature 

fluctuations and nutrient depletion induced stationary phase growth.  In these contexts, 

H2A.Z likely helps mediates the cells ability to rapidly remodel chromatin in order to 

activate frequently used transcriptional programs.  By marking loci that have recently 

undergone transcription with H2A.Z, cells can, essentially, index these transcripts for 

future reference and prevent these loci from too quickly being sent back for 

heterochromatic storage.  Conversely, dis-regulation in H2A.Z maintenance may lead to 

problems in responding appropriately to change.  The disorganization of nucleosomal 

arrays seen within TATA genes in ΔIno80 cells, may reflect overuse or misuse of a 

cataloguing system meant instead to be used for functionally and structurally different 

TATA-less genes.  Ultimately, along the yeast genome, NDRs are anchor points, setting 

the rhythm of well positioned proximal nucleosomes which fade with distance like 
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ripples over a pond.  Nestled at their edges H2A.Z may be found providing signposts 

commemorating the occurrence and direction of recent transcriptional events. 

Yeast provide us with a paired down nucleosome regulatory system, which, we 

can probe to gain insights about the basic functions of histones and chromatin 

remodelers.  The complexity found within these components increases dramatically 

within metazoans.  The ~88 human histone genes demonstrate how this complexity can 

increase.  As the components of many of the human chromatin remodeling complexes 

have not yet been well defined, and may be highly tissue specific, a good deal of work 

remains to be done in order to translate insights gained from nucleosome regulation in 

yeast into insights in humans.  However, investigating these proteins in humans may also 

provide some very different kinds of insights. 

In order to more comprehensively study H2A.Z’s functions within metazoans, 

and, more particularly, within humans, a number of techniques could be employed.  

Tissue specific immunoprecipitation followed by mass spectrometry could help clarify 

chromatin remodeler complex compositions.  It may also help sort out interactions 

between the various human Swr1 and Ino80 homologs and the radiation of human H2A 

and H2A.Z histones.  In addition, genome wide ChIP-seq experiments for these proteins 

could provide data on co-localized binding and more specific information about how 

these proteins actually interact within different tissue types. 

Some components of the human H2A.Z regulatory system have already been 

revealed.  The human Swr1 homologs that are responsible for H2A.Z deposition include 

the catalytic subunits SRCAP and EP400 (Gevry et al., 2009, Wong et al., 2007).  The 

deposition chaperone YL1 may also contribute to H2A.Z incorporation (Latrick et al., 

2016).  Eviction of H2A.Z is likely accomplished by INO80 and the histone chaperone 

ANP32E (Obri et al., 2014). 
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Dis-regulation of chromatin is a common feature of cancers, and mutations in 

many histone variants and chromatin remodelers have been noted, including in H2A.Z 

variants and in its chromatin remodelers.  Up-regulation of heat shock proteins has been 

noted in a number of cancers (Ciocca and Calderwood, 2005).  In light of H2A.Z’s 

conserved associations with heatshock response, a closer look at connections between 

changes in heat regulatory properties of cancer cells and possible mutations in these 

proteins is warranted.  Of note, both hyperthermia and hypothermia have been used in 

cancer treatments with a number of positive effects in different cancers (Evans et al., 

2015, Kalamida et al., 2015). 

The Cancer Genome Atlas (TCGA) provides datasets detailing the numbers of 

somatic mutations found in specific genes across a variety of cancer types.  Examining 

the mutation patterns within H2A.Z variants and some of its remodelers provides an 

interesting perspective (Figure C.1).  Some cancers are strongly depleted for mutations in 

these genes, possibly suggesting that the tissue types they come from are highly 

dependent on these histones and complexes, and therefore extremely intolerant to 

mutations in them.  What also becomes apparent, is that mutations in these genes show 

discernable patterns across cancer types.  The commonalities in their mutation profiles, 

raises the possibility of using this type of mutation data to make predictions about gene 

and protein interactions.  Ultimately, as more whole genome sequencing data becomes 

available, new approaches will allow us to uncover patterns and extract a wealth of 

information that could prove extremely useful in probing the molecular underpinnings of 

chromatin and transcription. 
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Figure C.1: Somatic mutations in H2A.Z and its chromatin remodelers in TCGA 

Somatic mutations data was downloaded from TCGA in the form of .maf files.  A master 
file was then created containing all calls of all types from all centers.  Unique 
associations between patient IDs and genes with non-silent mutations were then derived.  
This provided us with a list of all genes with a mutation call for an individual patient.  
This list was then filtered by our list of H2A.Z associated genes within humans, and 
counts were separated by cancer type.  All gene names listed to the right of Ino80 have 
been associated with the Ino80 complex.  However, there is likely to be variation within 
these complexes between different tissue types, etc.  RUVBL1 and RUVBL2 are also 
found within the SRCAP and EP400 complexes. 
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