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Nanofabrication via Directed Assembly:  

A Computational Study of Dynamics, Design & Limits 
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Supervisor:  Roger T. Bonnecaze 

 

Three early-stage techniques, for the fabrication of metallic nanostructures, 

creation of controlled topography in polymer films and precise deposition of nanowires 

are studied. Mathematical models and computational simulations clarify how interplay of 

multiple physical processes drives dynamics, provide a rational approach to selecting 

process parameters targeting specific structures efficiently and identify limits of 

throughput and resolution for each technique. 

A topographically patterned membrane resting on a film of nanoparticles 

suspended in a solvent promotes non-uniform evaporation, driving convection which 

accumulates particles in regions where the template is thin. Left behind is a deposit of 

particles the dimensions of which can be controlled through template thickness and 

topography as well as film thickness and concentration. Particle distribution is shown to 

be a competition between convection and diffusion represented by the Peclet number. 

Analytical models yield predictive expressions for bounds within which deposit 

dimensions and drying time lie.  Ambient evaporation is shown to drive convection 

strong enough to accumulate particles 10 nm in diameter. Features up to 1 µm high with 

10 nm residual layers can be deposited in < 3 minutes, making this a promising approach 

for continuous, single-step deposition of metallic nanostructures on flexible substrates. 
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Selective exposure of a polystyrene film to UV radiation has been shown to result 

in non-uniform surface energy which drives convection on thermal annealing, forming 

topography. Film dynamics are shown to be a product of interplay between Marangoni 

convection, capillary dissipation and diffusion. At short times, secondary peaks form at 

double the pattern density of the mask, while at long times pattern periodicity follows the 

mask. Increased temperature, larger surface tension differentials and thick films result in 

faster dynamics and larger features.  

Electric fields in conjunction with fluid flow can be used to position semi-

conducting nanowires or nanotubes at precise locations on a substrate. Nanowires are 

captured successfully if they arrive within a region next to the substrate where 

dielectrophoresis dominates hydrodynamics. Successful assembly is predicated upon a 

favorable balance of hydrodynamics, dielectrophoresis and diffusion, represented by two 

dimensionless groups. Nanowires down to 20 nm in length can be assembled 

successfully. 
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Chapter 1: Introduction 

Nanotechnology has long been seen
1
 to be potentially transformative in 

addressing many pressing technological challenges in applications ranging from energy 

to healthcare. Nanostructures of various kinds have been leveraged to demonstrate label-

free biosensing with unprecedented sensitivity,
2, 3

 gate-all-around transistors,
4
 transparent 

and flexible electronics,
5
 de-coupling of thickness and absorbance in photovoltaics,

6
 

partial invisibility surfaces
7
 and self-cleaning coatings

8
 to name a few. However, 

commercialization of many such devices is precluded by a lack of manufacturing 

processes that can fabricate the requisite nanostructures within constraints of precision, 

repeatability, throughput and economy.
9, 10

 The building blocks (polymer, nanoparticles, 

carbon nanotubes and nanowires), resolution (10 nm – 100 μm) as well as other 

geometric constraints (residual layer thickness, feature aspect ratio), structural integrity 

(tolerance to grain boundaries) and acceptable process conditions (mild temperatures for 

flexible substrates, scarce contaminants for plasmonic devices) that viable processes must 

conform to range as widely
11

 as applications that benefit from nanostructures. The 

research outlined herein is aimed at helping address this void between discovery and 

commercialization. 

Fabrication has two distinct paradigms:
9, 12, 13

 the top-down approach, wherein 

bulk material is fashioned into devices, affords precise shape control but is limited in the 

smallest structures it can fabricate. Conversely, the bottom-up approach encourages 

disparate particles and molecules to assemble into the desired structures; it is more 

naturally suited to ever-reducing dimensions but tends to result in imprecise shapes and 

the ordering process is often prohibitively slow for high-volume manufacturing. We 
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focus on hybrid methods
10

 in which bottom-up ordering of nanoparticles, nanowires or a 

polymer film is guided by a substrate, mask or template pre-patterned top-down.  

Three techniques, working with and targeting different building blocks and 

applications, are studied: 1) assembly of nanoparticles into structures driven by solvent 

evaporation, aimed at plasmonic devices 2) creating controlled topography in polymer 

films by exploiting photochemistry as a way to mediate surface energy, for various  

applications including LEDs 3) deposition of semiconducting nanowires and carbon 

nanotubes onto precise locations on a substrate via a combination of an alternating 

electric field and fluid flow, for photovoltaics and next-generation transistors. The three 

are akin in a number of important ways: they leverage directed self-assembly, fall within 

micro/nano- fluidics and are designed to be amenable to continuous, roll-to-roll 

processing and flexible substrates. 

For each of these early-stage techniques, we aim to develop an understanding of 

how the various physical processes at play drive dynamics and mediate pattern formation. 

We will then leverage this knowledge to address the following questions: can we predict 

the structures resulting from a given set of experimental parameters, and conversely, 

deduce the necessary parameters to target a specific structure efficiently? What 

determines the limits of the technique in terms of resolution and throughput and how can 

these be improved?  

Computational approaches, both continuum- (finite element and finite difference) 

and particle-scale (Brownian dynamics) as appropriate, along with mathematical analysis 

are used to achieve these goals. Predictions from these methods are benchmarked against 

experimental observations from collaborators or from published literature. 

Chapters 2, 3-4 and 5 are dedicated to the three methods in the order listed above. 

Each chapter is composed of four major sections: (i) an introduction to the motivation 
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behind studying the technique and a brief review of relevant research (ii) a description of 

the model systems studied, equations describing its dynamics and the computational and 

analytical methods employed (iii) a presentation and discussion of results (iv) 

conclusions summarizing key takeaways.  Nomenclature is unique to each project and a 

list is included at the end of each chapter. Chapter 5 summarizes both the key results of 

the research, considers its impact as well as shortcomings and identifies future directions.   
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Chapter 2: Templated Evaporative Lithography for High Throughput 

Fabrication of Nanopatterned Films †  

INTRODUCTION 

The ability to fabricate 2-D arrays of nanostructures and nanostructured 

particulate films finds growing application in a wide variety of areas including plasmonic 

devices
15, 16

, high-density data storage,
17, 18

 photonic crystals,
19, 20

 metallized ceramic 

layers,
21

 microchip reactors,
22

 biosensors
23, 24

 as well as masks in various forms of 

nanosphere lithography.
25, 26

 Typically, substrates with topographical
27, 28

 or chemical
29

 

patterns and/or external fields
30, 31

  have been employed to guide particles, polymers, cells 

and even DNA into a desired configuration. Such processes are often specific to a certain 

building block, limited to a few monolayers and necessitate multiple processing steps. 

Many traditional techniques are unsuited to metallic nanostructures. 

Evaporation-induced convection and dewetting-mediated pattern formation in 

suspension droplets
32-36

 and films
37-43

 has been the subject of several studies, and the 

prospect of using such an approach to deposit patterned particulate and polymeric films is 

garnering increasing attention
44-59

 due to the significant advantages it engenders.
26, 60, 61

  It 

is low-cost, materials general and applicable to both mono- and multilayered assemblies.  

Harris et al
58

 performed experiments in which a suspension of particles was 

allowed to evaporate under a mask with periodic holes. Their results demonstrated that 

convection induced by heterogeneous evaporation results in particle migration towards 

regions of relatively fast evaporation, depositing either isolated features or a continuous 

film with raised features under the mask holes. Two attributes render such an approach 

unsuitable to commercial nanofabrication: prohibitively long drying times and 

                                                 
† The research outlined in this chapter has been published previously. Analysis and simulations were 

performed by TAA with suggestions and guidance from RTB.
14
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imprecisely defined deposits. Pattern deposition took around two hours, and arbitrarily 

shaped mounds constituted the features. 

In an attempt to address these issues, we consider a film of suspended 

nanoparticles on a substrate with its top surface in contact with a solvent-permeable 

membrane of periodically varying thickness (Figure 2.1). The membrane’s topographic 

pattern imposes heterogeneity in evaporation rate, resulting in flow of the suspension 

from relatively slow to fast evaporation regions. The membrane-template rests on the 

suspension, descending at a speed corresponding to the average evaporation rate as the 

liquid evaporates. Particle distribution within the film evolves as they convect with the 

liquid and diffuse within it. This continues until any part of the nanoparticulate film dries 

(i.e. the local particle volume fraction corresponds to random close packing), at which 

point the membrane ceases to descend but is left in place until the entire suspension has 

dried. Left behind is a deposit of particles with regions of varying height whose 

dimensions are determined by the pattern of the membrane mask and the properties of the 

nanoparticulate film. Deposits composed of metal nanoparticles can then be sintered to 

create a stable nanostructured film on the substrate.  

 

Figure 2.1 Schematic of templated evaporative lithography. Evaporation occurs more 

rapidly through the thinner regions of the solvent-permeable membrane, creating a 

convective flow which accumulates particles in those regions.  The membrane descends 

at the average evaporation rate until it entraps close-packed or a monolayer of particles 

against the substrate.  A deposit with residual layer and feature heights hrl and hft 
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respectively is left behind once the entire suspension has dried. 

Employing a solvent permeable template in this way is expected to reduce the 

time required for pattern deposition by allowing both a sweep gas to be employed to 

maximize the rate of evaporation. Via template topography, this arrangement also imparts 

greater precision to the deposit than free surface evaporation and allows more flexibility 

in deposit shape than template-free techniques;
44-46

 for the topography shown in Figure 

2.1, for example, rectangular stripes would be formed instead of mounds, and different 

template patterns can be used to define various 2D arrays.  

The template can be positioned over the substrate down to a sub-20 nm resolution 

via the Moire alignment techniques used in imprint lithography.
62, 63

 While a variety of 

methods exist for patterning membranes with features tens to hundreds of nanometers in 

size,
64-67

 the task becomes increasingly challenging when both sub-micron thickness and 

large areas are desired. The former is important to ensure fast evaporation rates and the 

latter beneficial for large-area patterning in a single step. Thangawng and coworkers 

fabricated patterned PDMS membranes 500 nm thick and 700 μm in diameter.
68, 69

  

The minimum thickness and maximum area of the membrane that can be achieved 

while maintaining the requisite mechanical stability for evaporative patterning are 

important questions left to future efforts. Instead, we focus on understanding the 

dynamics of the process to address fundamental issues that underpin its viability for high-

volume manufacturing. Specifically, we investigate the following questions: Can such an 

arrangement reduce drying time to a commercially acceptable level? What is the lower 

limit on drying time if effective particle segregation is to be maintained? How do 

parameters such as the membrane thickness and topography as well as the initial height 

and concentration of the suspension film affect deposit size and drying time? How does 
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the fastest possible drying time vary with the desired feature size, and what is the optimal 

combination of parameters to achieve it? 

In the following sections we first estimate the evaporation rate, present the 

equations describing particle dynamics as well as how they’re solved numerically and 

carry out analysis to derive bounds on deposit dimensions as a function of experimental 

parameters. We then present solutions depicting suspension dynamics for representative 

cases, investigate how deposit dimensions and drying time vary with the independent 

variables, compare with the free surface evaporation experiments of Harris et al.
58

 and 

identify performance limits in terms of shortest achievable drying time and minimum 

residual layer height for various feature sizes.  

FORMULATION & ANALYSIS 

Estimating the Evaporation Rate 

The time for pattern deposition, critical to the viability of any technique as a 

practical industrial process, is governed in this case by the pervaporation rate of the liquid 

through the template. Neglecting evaporative cooling, the evaporation rate can be 

estimated from data for gas permeation in membranes (the liquid being equivalent to a 

gas at a partial pressure equal to the vapor pressure of the liquid): 

 

d

p
PJ


  

(4.1)  

Here J is the evaporative flux, P the permeability of the membrane (usually 

expressed in Barriers ≡ 10
-10

 cm
3
(STP).cm/(cm

2
.s.cmHg)), Δp the partial pressure driving 

force and d the membrane thickness. Considering a toluene solvent at 20°C covered by a 

PDMS membrane with 33% silica:
70
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9130P Barriers 
cmHg

m

s

m
1310

03.4
 . 

(4.2)  

The unit conversion is done so that (2.1) yields an evaporation rate in m/s (i.e. the 

rate of reduction of film thickness). When a sweep gas is used (so that partial pressure of 

solvent at the unpatterned face of the membrane is zero), this gives: 

 

d
E

131085.8 
 m/s (4.3)  

i.e. a 10 nm thick membrane results in an evaporation rate of 88.5 μm/s. This is 

comparable to pervaporation, wherein rates in excess of 100 μm/s have been reported.
71-73

  

Harris et al
58

 reported free-surface drying rates of   0.014 μm/s for water. Hence the 

membrane, by its imposition of a steep chemical potential gradient, has a dramatic effect 

on drying time, dealing with an important barrier to industrial application of this bottom-

up technique. 

Equations Describing Particle Dynamics 

The analysis is carried out in the context of a template with a step pattern as 

shown in Figure 2.1, and symmetry in the problem is exploited to restrict the domain of 

interest to one half period (Figure 2.2). Subscripts s and f refer to slow and fast 

evaporation regions, respectively, and  Φ0 to the initial particle volume fraction in the 

suspension. The evaporation rates are given by 

 

f

f
d

E
131085.8 

 m/s, 









dd
E

f

s

131085.8
m/s (2.4)  

and the average evaporation rate 
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which is also the speed of descent of the membrane.  

 

Figure 2.2 One-half wavelength of the periodically varying template and film of 

suspended nanoparticles. 

Edge effects are ignored and the membrane is taken to be rigid. Scaling vertical 

distances by dΔ+dfilm, horizontal distances by L, vertical velocities v by the average 

evaporation rate Eav, horizontal velocities u by EavL/(dΔ+dfilm) (from continuity) and time 

t by (dΔ+dfilm)/Eav, the dimensionless convection-diffusion equation for particle volume 

fraction Φ is given by 
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(2.6)  

where Pe ≡ EavL2/D0(dΔ+dfilm) is a Peclet number with D0 and D being isolated sphere 

and suspension diffusivity, respectively. The Peclet number dictates the importance of 
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convection relative to diffusion in determining particle segregation between regions of 

fast and slow evaporation. A ≡ (dΔ+dfilm)/L is an aspect ratio.  

Fluid flow is described by momentum and material conservation, while diffusivity 

and viscosity are coupled to volume fraction through constitutive relationships. These, 

along with the appropriate boundary conditions, are described in the Appendix. 

Fluid flow is described by momentum and material conservation. Ignoring 

gravitational effects and taking the fluid to be Newtonian, these are: 
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(2.9)  

with the variables being in dimensionless form. Here pressure p, which includes the 

osmotic pressure, is scaled by μ0EavL/(dΔ+dfilm)2 and the Reynolds number Re is defined 

as ρEavL/μ0. 

Diffusivity and viscosity are coupled to volume fraction through constitutive 

relationships. Diffusivity D is given by the Stokes-Einstein equation:
74

 

 

      


 Z
d

d
KD   

(2.10)  

where K is the particle sedimentation coefficient and Z the compressibility factor, which 

account for hydrodynamic and thermodynamic interactions between particles 
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respectively. These, along with the dimensionless viscosity of the dispersion μ and the 

isolated sphere diffusivity D0, are taken to be:
74

 

 

    55.6
1  K  

(2.11)  
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  
(2.14)  

with particle diameter a, liquid viscosity μ0, temperature T  and Boltzmann constant kB.  

Evaluating the Numerical Solution 

Boundary conditions for equation (2.6) are no penetration at all boundaries, which 

reduces to 
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v

y
D

PeA2

1
 

(2.15)  

at the  horizontal faces of the membrane and 

 

0. n  
(2.16)  

at all other boundaries, with n being a unit normal at the relevant boundary. For 

equations (2.7 – 2.9), symmetry boundary conditions prevail at the fluid boundaries of the 

domain. No slip is assumed at the vertical face of the membrane (as well as at the 
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substrate), while at its horizontal faces, the y-velocities are Es/Eav    ̶ 1 and Ef/Eav    ̶ 1 in 

the slow and fast evaporation regions respectively. A Dirichlet point constraint for 

pressure was imposed at the top right corner of the slow evaporation region (Figure 2.2). 

Since flow is driven by the velocity boundary conditions at the template due to 

evaporation, it is valid to solve for net pressure without breaking it into its osmotic and 

fluid components.   

The aforementioned system of equations was solved using COMSOL 

Multiphysics 3.5a. Membrane descent was modeled with the Automatic Lagrangian-

Eulerian (ALE) mode with re-meshing enabled. A PARDISO direct solver was used in 

conjunction with BDF time stepping while all other settings were the COMSOL default 

values. Meshes with less than 10,000 quadratic Lagrange elements, with a boundary layer 

at the membrane when needed, were found to be sufficient for convergence. 

Deriving Bounds on Deposit Dimensions Analytically 

Diffusion-dominant and convection-dominant limits (Pe→0 and Pe→∞ 

respectively) constitute bounds within which the true particle concentration profile lies. 

The particle volume fractions averaged over the fast and slow evaporation regions (Φf(t), 

Φs(t)) within these limits follow simply from material balances. These then yield limiting 

values for the feature and residual layer heights as well as drying time (td), the quantities 

of primary interest in the context of such a patterning process. This analysis is outlined 

below and the solutions summarized in Table 2.1. 

Diffusive Limit (Pe→0) 

In the infinite diffusion limit particle concentration is spatially uniform: 
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As evaporation proceeds, the membrane continues to descend until it comes into 

contact with either uniformly random close-packed particles or undried monolayers in the 

slow evaporation regions.  In a given system, the former happens if 

   64.0/  avfilm Eadt
 
and the latter otherwise. We refer to the time at which the 

membrane ceases to descend as tm and the total time it takes for the entire suspension to 

dry as the drying time td. 

 For systems in which uniform random close packing (RCP) is the 

operating regime, the drying time (td = tm) follows simply by setting Φ(t)=0.64 in 

(2.17). Deposit heights are then given by hrl=dfilm  ̶ Eavtm and hft= hrl+dΔ. For a monolayer 

residual layer on the other hand, the drying time is the time it takes for the membrane to 

reach a point where it is one particle diameter away from the substrate plus the additional 

time for the fast evaporation region to dry, while the feature height is given by hft= 

(dΔ+a)Φ(tm)/0.64. 

Convective Limit (Pe→∞) 

Next consider a situation such that there is no diffusion of particles parallel to the 

substrate. In the slow evaporation region, the volume of liquid: 

 

  savfilmss tEdLl  1 , (2.18)  
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(2.19)  

Incompressibility dictates that the rate of convection from the slow to the fast 

evaporation regions is (Eav  ̶ Es)Ls. The rate of change of liquid volume in the slow 

evaporation region is therefore given by 

 

   savsss
s EEEL

dt

dl
 1  

(2.20)  

Comparing equations (2.19) and (2.20) gives 
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The volume fraction of particles averaged over the fast evaporation region then follows 

from conservation of particles: 
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(2.22)  

Equations (2.21) and (2.22) are valid as long as the membrane continues to 

descend. It ceases to descend when it comes into contact with random close packed 

particles in either the slow or the fast evaporation regions, or with undried monolayers in 

the slow evaporation regions. The operative regime within these three possibilities can be 
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inferred by using (2.21, 2.22) to determine whether either the slow or the fast evaporation 

regions attain random close packing before the membrane reaches a distance of one 

particle diameter from the substrate.  

For systems in which the fast evaporation regions are the first to dry, the time at 

which the membrane stops descending (tm) is given by setting Φf(t)=0.64 in equation 

(2.22) and solving the resulting polynomial numerically. Deposit heights are then given 

by hft = dΔ + dfilm    ̶ Eavtm and hrl= (dfilm    ̶ Eavtm)Φs(tm)/0.64. When the slow evaporation 

regions dry first, tm  is simply obtainable by setting Φs(tm)= 0.64  in (2.21), while hft = 

(dΔ + dfilm    ̶ Eavtm)Φf(tm)/0.64 and hrl = dfilm    ̶ Eavtm. Finally, when the monolayer hrl 

regime is operative, the drying time is the time it takes for the membrane to reach a point 

where it is one particle diameter away from the substrate plus the additional time it takes 

for the fast evaporation regions to dry, and hft = (dΔ + a)Φf(tm)/0.64. 

The results of the analysis are summarized in the Table 2.1, which should be used 

in conjunction with equations (2.17), (2.21) and (2.22) for Φ(t), Φs(t) and Φf(t) 

respectively to arrive at limiting values for the deposit heights and drying time. These 

serve as a heuristic to guide experiments targeting specific feature and residual layer 

dimensions and drying times.  
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Table 2.1: Analytically-derived bounds on deposit heights and drying time 
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Independent Variables 

Four independent variables allow us to affect the dimensions of the deposit and 

the drying time: two membrane thicknesses along with the initial thickness and 

concentration of the suspension film. Accessible ranges for these were taken to be 10 nm 

≤ df ≤ 1 mm, 0 ≤ dΔ ≤ 2df, 100 nm ≤ dfilm ≤ 1 mm, 0.001 ≤ Φ0 ≤ 0.2. Particle diameter a 

was set at 10 nm and ambient temperature (20°C) was assumed.  

Table 2.2: Independent variables 

Variable Range 

df 10 nm – 1 mm 

dΔ 0  – 2 df 

dfilm 100 nm – 1 mm 

Φ0 0.001 – 0.2 

RESULTS & DISCUSSION 

Dynamics for Representative Cases 

Figure 2.3 shows simulation results for two different feature widths, giving 

different Peclet numbers. Heterogeneous evaporation induces flow from slow to fast 

evaporation regions, depicted by the streamlines. For 100 nm wide features, Pe is low; 

diffusion dominates and the suspension dries to uniform RCP throughout. For 1 μm wide 

features on the other hand, Pe is high (Pe ∝ L
2
); convection dominates, and instead of the 

entire suspension drying uniformly, the fast evaporation region attains RCP while the 

slow evaporation region is still fluid. The insets show the final size of the dried deposit; 

this is the same as shown in the numerical solution for Pe = 0.27, whereas at Pe = 27, the 

final deposit is realized once the entire suspension has dried. In the latter case, the deposit 

size is calculated assuming that once the fast evaporation region dries, membrane descent 

ceases and there is no further transfer of particles from the slow to the fast evaporation 

region.  
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It is noteworthy that the simulated deposit dimensions and drying times in these 

two cases correspond to the diffusive and convective limits respectively. These limiting 

cases are independent of the absolute feature width (they depend only on the relative 

width Lf/Ls). Narrow features tend towards the diffusive limit, whereas broad ones tend 

towards the convective.  

 

Figure 2.3 Evolution of particulate volume fraction contours and velocity streamlines for 

(a) 100 nm and (b) 1 μm wide features. The insets on the right show the final dimensions 

of the dried deposit in each case. The horizontal scale in (b) has been compressed. In both 

(a) and (b), df = 10 nm, dΔ = 2df, dfilm = 100 nm, Φ0 = 0.20 and 10 nm particle diameter. 

Effects of Independent Parameters 

We now investigate the role played by each of the independent variables in 

determining the dimensions of the deposit and the drying time required to achieve it. The 

primary dependent process variables are the differential feature height (hft-hrl), residual 

layer thickness (hrl) and the drying time (td).  Figure 2.4 shows how these quantities vary 
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with membrane thickness (df) and initial suspension film height (dfilm) within the 

diffusive and convective limits, with dΔ = 2df. Note that increasing df has two opposing 

effects: it reduces Pe, thus hampering particle segregation by pushing the system towards 

the diffusive limit, but allows larger dΔ, thus increasing the volume of the fast evaporation 

region and resultantly the height of the feature within the diffusive limit.  

It is evident in Figure 2.4 that thick membranes result in more pronounced 

features as well as thinner residual layers at the cost of longer drying times.  As df 

increases, so does the volume of the fast evaporation region (since dΔ = 2df), producing 

higher features. Thick suspension films produce higher features with longer drying times 

as well, but also thicker residual layers. This is expected, since at a constant initial 

volume fraction of particles, thick suspension films have more particles as well as more 

fluid that needs to evaporate.  
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Figure 2.4 (a),(d) Differential feature height (b),(e) residual layer height and (c),(f) 

drying time as a function of film height and template thickness in the (a)-(c) diffusive and 

(d)-(f) convective limits, with dΔ = 2df, Φ0 = 0.2, Lf/Ls = 1 and 10 nm diameter particles. 

Discontinuities in contour lines represent transition to a different operating 

regime, with two different regimes being operative in different regions of the parameter 

space. In the diffusive limit, undried monolayers impede membrane descent at high df  

and/or low dfilm (top left of the plots in Figure 2.4(a-c)) due to the large difference in 

volume between the two regions. The residual layer height (Figure 2.4(b)) is therefore 
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one particle diameter, and the drying time (Figure 2.4(c)) is relatively insensitive to film 

height since the total volume of the suspension is determined mainly by df through dΔ. At 

low df and/or high dfilm (bottom right of the plots in Figure 2.4(a-c)), on the other hand, 

uniform RCP occurs when the membrane is more than one particle diameter away from 

the substrate. In this domain, the residual layer and feature heights increase equally with 

dfilm, leaving the differential height (Figure 2.4(a)) unchanged. The drying time (Figure 

4(c)) becomes a function of both df  and dfilm. 

In the convective limit, the slow evaporation region dries first at high df  

and/or low dfilm (top left of the plots in Figure 2.4(d-f)) due to its smaller volume. The 

height of the residual layer in this part of the parameter space is unaffected by df since 

the membrane-substrate distance at which the slow evaporation region attains RCP is 

insensitive to df,. The differential feature height and drying time do however depend on 

df. At low df and/or high dfilm (bottom right of the plots in Figure 2.4(d-f)), the fast 

evaporation region dries first, and drying time as well as deposit heights vary with both df  

and dfilm. 

Thus, thick films drying under thick templates result in the most pronounced 

features but also long drying times. The diffusive and convective limits predict similar 

values for these quantities, except for the feature height for thick films dried under thin 

templates and the residual layer height for thin films dried under thick templates. 

Interestingly, in the latter case, the diffusive limit predicts a thinner residual layer than 

the convective. This is because in these cases particle concentration in the slow 

evaporation region within the convective limit increases at a faster rate than the fast 

evaporation region due to its much smaller volume. There exists a small region of the 

parameter space wherein residual layer height is very sensitive to suspension film and 

template thicknesses (Figure 2.4(b)), possibly leading to experimental uncertainty. 
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Differential feature heights of hundreds of nanometers can be achieved with a drying 

time of less than 30 s.  

Figure 2.5 depicts results at a lower initial volume fraction of particles. The 

general trends in deposit dimensions with varying film height and template thickness 

remain largely unchanged but are shifted to smaller deposit sizes due to the presence of 

fewer particles. The operative regimes for dilute suspensions are the same as for 

relatively concentrated ones except that at high df and/or low dfilm within the convective 

limit  (top left of the plots in Figure 2.5(d-f)) undried monolayers instead of RCP in the 

slow evaporation region impede membrane descent. As a result, at a low initial 

concentration of particles (Figure 2.5(b,e)), there exists a large parameter space wherein a 

monolayered residual layer is predicted by both limiting cases. Such a region is barely 

extant at higher particle concentrations (Figure 2.4(b,e)). Low concentrations are 

therefore preferable if thin residual layers are of importance. This is relevant when 

isolated features are desired instead of contiguous films, in which case a film with a 

monolayered residual layer could be deposited and the residual layer possibly sonicated 

away prior to sintering.
75
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Figure 2.5 (a),(d) Differential feature height (b),(e) residual layer height and (c),(f) 

drying time as a function of film height and template thickness in the (a)-(c) diffusive and 

(d)-(f) convective limits, with dΔ = 2df, Φ0 = 10
-3,

 Lf/Ls = 1 and 10 nm diameter particles. 

Two further controls on the process are temperature and particle size. Evaporation 

rate has been shown to increase exponentially with temperature,
76-78

 while the rate of 

diffusion only increases linearly (see equation 2.14). As a result, the Peclet number is 

expected to increase with temperature, making more pronounced features patternable 

with faster drying times. Particle size sets the minimum residual layer height, and Pe is 
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proportional to it (through diffusivity). Therefore, the largest feasible particles for a 

mechanically stable deposit of the desired size are best used to maximize Pe for efficient 

particle segregation. 

Comparison with Free-Surface Evaporative Lithography 

Next we investigate how templated evaporative lithography compares with free 

surface evaporation
58

 in depositing features of various widths. Figure 2.6 shows the 

differential feature heights resulting from a microparticle suspension within the two 

techniques, with the x-axis depicting how much the fast and slow evaporation rates differ. 

Only the convective limit is shown for templated evaporation since the Peclet number 

ranges from 4×10
5 

̶ 4×10
8
 for this system. These curves do not extend to higher 

evaporation rate differences due to limits on membrane fabrication (dΔ≤2df). The drying 

times for the deposits shown are approximately 10 seconds for templated evaporative 

lithography and 2 hours for free surface evaporation. Therefore, templated evaporative 

lithography is able to produce features of half the size as free surface evaporation within 

a drying time which is two orders of magnitude smaller. 
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Figure 2.6 Differential feature height as a function of the dimensionless difference 

between the fast and slow evaporation rates at two different relative feature widths with a 

microparticle suspension. Shown is the relevant limit for templated evaporative 

lithography (lines; df = 100 nm and dΔ = 0 - 2df) and experimental results reported
58

 for 

free surface evaporation (points) with dfilm = 100 μm, Φ0 = 0.30 and 1.18 μm diameter 

particles. The drying time is approximately 10 seconds for templated lithography and 2 

hours for free surface evaporation. 

In free surface evaporation, the difference between the two evaporation rates (and 

hence the attainable differential feature height) is a function of the width of features 

relative to the distance between them, with narrower features (Lf/Ls=0.009) being several 

times higher than broader ones (Lf/Ls=0.3). Moreover, the two evaporation rates, and 

hence also the feature and residual layer height, are coupled and cannot be controlled 

individually. In templated lithography, on the other hand, feature height can be seen in 

Figure 6 to be insensitive to relative feature width. Also, both evaporation rates can be 

controlled individually via membrane thicknesses (df and dΔ), providing independent 

control over feature and residual layer height. When nanoscaled deposits are desired, the 

constraint which free surface evaporation imposes in terms of a maximum relative feature 
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width above which features are not formed is likely to be considerably more severe (and 

possibly even prohibitive) due to stronger diffusion. 

Performance Limits 

One further aspect of interest is the best performance, taken here to be defined by 

short drying times and thin residual layers, achievable within such a system and how it is 

influenced by desired feature size. In order to investigate this we approximate the 

differential height and drying time for any given system to be the average of their values 

within the diffusive and convective limits,‡ and optimize the independent variables to 

achieve the minimum drying time or residual layer height. Figure 2.7(a) shows the 

minimum attainable drying time and associated residual layer height for a range of 

differential feature heights. Both can be seen to increase linearly, and the minimum time 

is approximately 1 s per 10 μm of differential feature height: 

 

min. dt [s]  
rlft hh  4103.1 [nm] 

(2.23)  

 

rlh (min. dt )   134.2  rlft hh  
(2.24)  

These drying times represent the ideal limit, since they are dependent on 10 nm 

thick templates which are difficult to realize. Even with a more usual membrane 

thickness of 1 μm, however, the minimum time would be ten seconds per micron of 

feature height above the residual layer, which is acceptable for high throughput 

processing.  

                                                 
‡ As seen earlier, for certain systems differential feature heights predicted by the diffusive and convective 

limits differ by orders of magnitude, and so this serves only as a coarse estimate. However, this is mitigated 

by the fact that none of the estimated optimal systems lie within that region of the parameter space. 
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Figure 2.7 Minimum attainable drying time and resulting residual layer height (a) and 

minimum attainable residual layer height and resulting drying time (b) as a function of 

differential feature height, for deposits with Lf/Ls = 1 and 10 nm diameter particles (at hft 
– hrl = 10

2
, 10

3
, 10

4
, 10

5
 nm, the values of the independent variables are: df = 10 nm, dΔ 

= 12,12,20,18 nm, dfilm = 1, 11, 92, 940 μm, Φ0 = 0.2 in (a), while in (b), df = 10, 10, 50, 

500 μm, dΔ = 3.9, 14, 100, 1000 μm, dfilm = 1 μm, Φ0 = 1.31×10
-2

, 4.12×10
-2

, 6.33×10
-2

, 

6.33×10
-2

). 



 28 

Another performance criterion is residual layer height, the lower limit on which is 

one particle diameter (as mentioned previously, this is especially relevant when isolated 

features are desired). Figure 2.7(b) depicts the minimum drying time for a range of 

feature heights with monolayered residual layers. It can be seen that the drying time 

increases at an accelerating rate with the desired feature height, and that it exceeds the 

minimum drying time (without the monolayer residual layer constraint) by as much as 

approximately four orders of magnitude in seconds. Isolated features up to a micron high, 

however, can be deposited within around 200 seconds. Interestingly, given enough time, 

even millimeter sized features are patternable with 10 nm diameter monolayered residual 

layers. 

CONCLUSIONS 

Spatially heterogeneous evaporation caused by a templated membrane drives an 

accumulation of particles in regions with fast evaporation, resulting in a deposit with 

raised features. Importantly, evaporation is rapid enough for continuous processing to be 

feasible, and nanosized deposits are achievable. Films with 10 nm ̶ 100 μm sized features 

can be patterned with a drying time of 1 - 100 seconds per 10 μm of differential feature 

height, depending upon the thickness of the membrane template. Experiments targeting 

specific deposits can be guided by analytically derived bounds on deposit dimensions and 

drying time (and optionally also by simulation). The analysis here shows that templated 

evaporative lithography presents potential improvement over free surface evaporation by 

making nanosized deposits attainable, reducing the drying time by two orders of 

magnitude, depositing sharply defined patterns and allowing independent control over 

each of their dimensions. Both the throughput and maximum area for deposition will be 

limited by the minimum thickness and maximum size of mechanically stable membranes. 
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Within these constraints, templated evaporative lithography constitutes a promising route 

for the low-cost deposition of three-dimensional metallic nanostructures of varying 

shapes over large areas in high-throughput processing. 

NOMENCLATURE 

Latin 

a particle diameter 

df template thickness in the fast evaporation region 

dfilm initial thickness of the suspension film 

dΔ difference between the two template thicknesses 

hft height of the resulting feature above the substrate 

hrl height of the residual layer 

kB Boltzmann constant 

ls volume of solvent in the slow evaporation region 

p pressure (including both osmotic and fluid components) 

t time 

td the time it takes for the entire suspension to dry 

tm the time it takes for the membrane to entrap either close-packed or a 

monolayer of particles against the substrate  

  

A aspect ratio 

D diffusivity of the suspension 

D0 diffusivity of an isolated particle 

E evaporation rate 

Eav average evaporation rate 

Ef evaporation rate in the fast evaporation regions 

Es evaporation rate in the slow evaporation regions 

J evaporative flux 

K particle sedimentation coefficient 

L half-wavelength of template pattern 

Lf half-width of the fast evaporation region 

Ls half-width of the slow evaporation regions 

P permeability of the membrane  

Z particle compressibility factor 

  

Greek 
μ viscosity of the suspension 

μ0 viscosity of the solvent 

φ volume fraction of particles 

φf volume fraction of particles in the fast evaporation region 

φs volume fraction of particles in the slow evaporation region 
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φ0 initial volume fraction of particles in the suspension 
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Chapter 3: Precision Marangoni-Driven Patterning§ 

INTRODUCTION 

Topographically patterned coatings and substrates can enhance surface properties 

and enable a wide variety of important applications. Polymer films possessing 

topographies that mimic the lotus leaf can act as super-hydrophobic and self-cleaning 

surfaces
80

 while the highly anisotropic adhesion properties of gecko feet can be replicated 

by reproducing the structures on them.
81

 Topographically patterned polymer surfaces are 

effective ways to resist biofouling
82

 and direct cellular alignment.
83

 Further, substrates 

and coatings with smoothly-varying thickness profiles have been employed to improve 

the efficiency of solar cells
84

 and light-emitting diodes
85

 by ~50% by passively 

manipulating light reflections within these devices. These applications would benefit 

from a process that can create well-defined topographic patterns on rigid and flexible 

substrates with various materials.  

Gradients in surface energy are known to generate convection in liquid films,
86

 

manifesting themselves in numerous ways including the ‘tears of wine’ effect,
87

 striation 

defects in spin-coating
88

 and surface tension driven propulsion of floating objects.
89, 90

 

Surface tension is a material property and tends to decrease with increasing temperature; 

therefore both non-uniform concentration and temperature result in surface tension 

gradients.  

Previous work
91

 demonstrated that polymer photochemistry can be exploited to 

generate surface energy patterns. When such a film is heated above its glass transition 

temperature, these gradients drive convection resulting in the formation of topography. A 

schematic for topographical patterning of polymers in this way is shown in Figure 3.1. 

                                                 
§ The research outlined in this chapter has been published previously.

79
 Analysis and simulations were 

performed by TAA with suggestions and guidance from RTB; experiments were performed by CBK, NAP, 

JMK and DWJ with suggestions and guidance from CJE. 
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UV irradiation of a polystyrene (PS) film through a photo-mask selectively 

dehydrogenates the PS backbone and increases the local surface energy in the UV 

exposed regions compared to the unexposed regions. This was predicted by a group 

contribution method and confirmed by a decrease in water contact angle. As a result, the 

polymer flows from low surface tension regions (unexposed to light) to high surface 

tension regions (exposed to light) upon subsequent thermal annealing above the glass 

transition temperature (i.e., in the liquid state) due to the Marangoni effect. This flow 

creates smooth, three dimensional topography reflective of the original light exposure 

pattern. 

While earlier experimental work demonstrates the viability of this approach to 

creating controllable topography, the processes driving film dynamics remain poorly 

understood. The effect of material selection and experimental parameters on film 

dynamics is unclear, as is how these may be selected to target specific structures 

efficiently. Here, we develop a model for the dynamics of the film leading to a predictive 

capability for the topography resulting from a given experiment.  

In the sections below, we first outline equations describing film dynamics, the 

numerical technique used to solve them, scaling analysis identifying key dimensionless 

groups and an analytical solution based on linearization. We then compare simulation 

results for the evolution of topography with experimental observations of it, investigate 

the role played by various experimental parameters in determining the size of the 

resulting features as well as the timescale over which they form and consider how insight 

furnished by the model can help maximize the resolution accessible via this method. 

Details of experimental procedures can be found elsewhere.
79
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Figure 3.1 Patterning schematic. (a) UV illumination through a line-and-space photo-

mask possessing a half-periodicity, λ, while the polymer film is in the solid state with an 

initial film thickness h0. (b) The topographical profile after a short period of thermal 

annealing above the glass transition temperature of the polymer shows its melt-state flow 

is initiated near the boundary between UV exposed and unexposed regions. (c) Further 

annealing develops the topographical profile into a complete sinusoidal shape with the 

same periodicity as the mask reaching the maximum peak-to-valley height, hmax, then, (d) 

the topography dissipates after extended thermal annealing. 

h0

Exposed
Higher γ

a)

b)

hmax

c)

d)

2λ

2λ



 34 

FORMULATION & ANALYSIS 

Model 

The dynamics of the film are driven by interplay of Marangoni (i.e. surface 

tension-generated) and capillary forces. The photochemically-induced surface tension 

gradient drives flow from relatively low to high surface tension regions. This is 

counteracted by capillary forces, which act to minimize surface area by maintaining a flat 

film. These dynamics are described by the thin film equation: 

 
𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
[(

1

2𝜇
) ℎ2

𝜕𝛾

𝜕𝑥
+ (

1

3𝜇
) ℎ3

𝜕

𝜕𝑥
{𝛾

𝜕2ℎ

𝜕𝑥2
}] = 0 

(3.1)  

where ℎ is the thickness of the film at any given location, 𝛾 is local surface tension, 𝜇 

viscosity, and 𝑥 and 𝑡 are the lateral distance and time, respectively.
92, 93

 The first and 

second terms inside the square brackets account for Marangoni and capillary flux 

respectively. Van der Waals and gravitational forces are neglected since they only 

become relevant at length scales much smaller or larger than those of interest here. Since 

only thin films were used (the thickest being 148 nm), temperature gradients 

perpendicular to the substrate are taken to be negligible. The thin film equation is also 

predicated on the assumptions that (i) the lateral length-scale (represented by the mask 

linewidth λ) is much larger than the vertical one (the initial film thickness h0) and (ii) Re 

×h0/λ, where Re is the Reynolds number, is small. For systems of interest here, the latter 

is easily met (𝑅𝑒~10−16), but the former imposes a lower limit on the characteristic 

width of the mask pattern. The equation is written in one spatial dimension since a mask 

with a line space pattern is employed which implies that the film is uniform parallel to the 

mask lines.  
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The local surface tension at any point is related to the concentration of the 

photochemically-generated species. As a first-order approximation, the surface tension of 

the blend is taken to vary linearly with concentration:  

 

𝛾 = 𝛾0 + (∆𝛾)𝑐 
(3.2)  

where 𝑐 is the mole fraction of the photochemical product,  𝛾0 is the surface tension of 

the original polymer and ∆𝛾 is the difference in surface tensions between the original 

polymer and the polymer resulting from the photo-initiated reaction. ∆𝛾 is defined to be 

positive when the photo-exposed polymer exceeds the base polymer in surface tension. 

Concentration is expressed in fractional (dimensionless) terms.  The evolution of this 

concentration is described by: 

 
𝜕𝑐

𝜕𝑡
− 𝒟

𝜕2𝑐

𝜕𝑥2
+

𝜕

𝜕𝑥
[(

1

𝜇
) ℎ

𝜕𝛾

𝜕𝑥
+ (

1

2𝜇
) ℎ2

𝜕

𝜕𝑥
{𝛾

𝜕2ℎ

𝜕𝑥2
}] 𝑐 = 0 

(3.3)  

where 𝒟 is the diffusivity. This is simply the convection-diffusion equation with fluid 

velocity being a sum of its Marangoni and capillary components (the first and second 

terms within the square brackets, respectively).
92, 93

 Since the mask pattern is periodic, 

symmetry boundary conditions are applied at x = - and +, where the x = 0 is at the 

centerlines of the chrome lines on the mask under which the film is unexposed to light: 

 
𝜕ℎ

𝜕𝑥
= 0 

(3.4)  

 
𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑥
(−𝛾

𝜕2ℎ

𝜕𝑥2
) = 0 

(3.5)  
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𝜕𝑐

𝜕𝑥
= 0 

(3.6)  

Initial Concentration Profile 

Informed by fluorescence microscopy observations of fluorophore-labeled 

polystyrene films, a smoothed step function was used as the initial concentration profile. 

For on-half period of the mask pattern with peak conversion c0, this is given by: 

 
𝑐

𝑐0
(𝑥

𝜆⁄ , 𝑡 = 0) = 6(𝑥
𝜆⁄ )

5

− 15(𝑥
𝜆⁄ )

4

+ 10(𝑥
𝜆⁄ )

3

 
(3.7)  

The fluorescence intensity profile
79

 as well as the initial concentration profile 

employed in simulations is shown in Figure 3.2. Since the labeled PS content was set 

below the threshold for self-quenching, this intensity is linearly proportional to the 

concentration of fluorophore. 
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Figure 3.2 Normalized fluorescence intensity profile obtained experimentally from 

fluorescence microscopy using labeled PS after typical exposure protocol for patterning 

was performed. Solid line represents the initial concentration profile used in the model 

prediction. 

Numerical Method 

Equations (3.1, 3.3) with the aforementioned initial and boundary conditions were 

solved using a second-order finite difference method. A second-order scheme, with 

upwinding for the first the derivative of concentration in (3.3) for stabilization, along 

with explicit time-stepping are employed. 80 node points over a half periodicity of the 

mask pattern were found to be sufficient for convergence. 

Scaling & Linearized Solution 

The size of features resulting from a given experiment and the length of time over 

which the form are determined by the relative strength of Marangoni forcing and 

capillary dissipation, which itself depends upon a number of factors: geometry (pattern 

periodicity and film thickness), material properties (surface tension, diffusivity and 

viscosity) and experimental parameters (photochemical conversion and thermal annealing 
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temperature). To gain insight into these interrelationships, we non-dimensionalize the 

governing equations, employing the scales 𝑥~𝜆 (mask half-periodicity),  ℎ~ℎ0 (initial 

film thickness), 𝑐~𝑐0 (peak fractional conversion), 𝛾~𝛾0 (surface tension of the neat PS) 

and 𝑡~ 𝜇𝜆2 ℎ0𝛾0⁄ . Rescaling equations (3.1 and 3.3) to make them dimensionless but 

retaining the same symbols for clarity gives the following: 

 
𝜕ℎ

𝜕𝑡
+

∂

∂𝑥
[(

1

3𝐴
) ℎ3

𝜕

𝜕𝑥
{𝛾

𝜕2ℎ

𝜕𝑥2
} + (

1

2
) ℎ2

𝜕𝛾

𝜕𝑥
] = 0 

(3.8)  

 
𝜕𝑐

𝜕𝑡
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1

𝑃𝑒
)

𝜕2𝑐

𝜕𝑥2
−

∂
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1

2𝐴
) ℎ2

𝜕

𝜕𝑥
{𝛾

𝜕2ℎ

𝜕𝑥2
} + ℎ

𝜕𝛾

𝜕𝑥
}] 

(3.9)  

where 𝐴 ≡ 𝜆2 ℎ0
2⁄  is the square of a geometric aspect ratio, and the Peclet number 

𝑃𝑒 ≡ ℎ0𝛾0 𝜇𝐷⁄ = (𝜆2/𝐷)/(𝜇𝜆2 ℎ0𝛾0⁄ ) is a ratio of the diffusive timescale to the 

convective timescale. The third relevant dimensionless group is 𝑐0∆𝛾 which describes the 

initial surface tension difference between exposed and unexposed regions. 

In order to develop analytic solutions leading to a predictive capability for feature 

size and time scale for feature formation for any given system, the governing equations 

are linearized. For small perturbations from their initial values, the film height and 

concentration profile are assumed to be have the forms 

 

ℎ = 1 + 𝜂(𝑥, 𝑡) = 1 + 𝜂̂(𝑡)
cos(𝜋𝑥)

2
 

(3.10)  

 

𝑐 =
1

2
+ 𝜉(𝑥, 𝑡) =

1

2
+ 𝜉(𝑡)

cos(𝜋𝑥)

2
 

(3.11)  

Here the initial concentration profile is taken to be sinusoidal: 𝑐𝑡=0 =

0.5(1 + cos(𝜋𝑥)). 𝜂(𝑥, 𝑡) and 𝜉(𝑥, 𝑡) represent the deviation in film thickness and 

concentration, respectively, from their steady state values, 1 and ½. 𝜂̂ and 𝜉 are the purely 
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time-dependent amplitudes of 𝜂(𝑥, 𝑡) and 𝜉(𝑥, 𝑡). Substituting these into the governing 

equations and neglecting higher order terms, the linearized equations are then 

 
𝜕𝜂̂

𝜕𝑡
+ [(

1 + ∆𝛾𝑐0𝑐𝑓

3𝐴
) 𝜋4] 𝜂̂ − [(

∆𝛾𝑐0

2
) 𝜋2] 𝜉 = 0 

(3.12)  

 

𝜕𝜉

𝜕𝑡
+ [(

(1 + ∆𝛾𝑐0𝑐𝑓)𝑐𝑓

2𝐴
) 𝜋4] 𝜂̂ − [(∆𝛾𝑐0𝑐𝑓 −

1

𝑃𝑒
) 𝜋2] 𝜉 = 0 

(3.13)  

with the initial conditions 𝜂̂(𝑡 = 0) = 0 and 𝜉(𝑡 = 0) = 1. These are solved to yield: 

 

𝜂̂ =
𝜋2 ∆𝛾𝑐0

2
𝜓1 − 𝜓2

(𝑒𝜓1𝑡 − 𝑒𝜓2𝑡) 
(3.14)  
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𝜋4
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∆𝛾𝑐0
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𝜋4
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) 𝑒𝜓2𝑡 

(3.15)  

where 

 

𝜓1, 𝜓2 =
𝛼 ± √𝛼2 − 𝛽

2
 

(3.16)  

with 

 

𝛼 = (1 −
𝜋2

3𝐴
) 𝜋2

∆𝛾𝑐0

2
− 𝜋2 (

1
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2
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(3.18)  
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These describe the evolution of the film thickness and concentration profiles. The 

imposed surface tension profile results in the formation and growth of features when the 

film is thermally annealed above its glass transition temperature, which eventually decays 

due to capillary forces and self-diffusion.
94

 The maximum thickness attained and the 

thermal annealing periods after which it is achieved can be found from: 
 

𝜂̂𝑚𝑎𝑥 =
𝜋2 ∆𝛾𝑐0

2
𝜓1 − 𝜓2

{exp [
𝜓1

𝜓1 − 𝜓2
ln (

𝜓2

𝜓1
)] − exp [

𝜓2

𝜓1 − 𝜓2
ln (

𝜓2

𝜓1
)]} 

(3.19)  

 

𝑡(𝜂̂𝑚𝑎𝑥) =
ln (

𝜓2

𝜓1
)

𝜓1 − 𝜓2
 

(3.20)  

Hence we arrive at analytical expressions for both the evolution of the film profile 

with time as well as the maximum feature size and associated time for any given choice 

of materials and experimental parameters. Equations 3.17 and 3.18 and the appropriate 

scaling factors can be used to find the dimensional maximum peak-to-valley height, 

ℎ𝑚𝑎𝑥 = 𝜂̂𝑚𝑎𝑥ℎ0, and the heating time necessary to achieve it, 𝑡𝑚𝑎𝑥 = 𝑡(𝜂̂𝑚𝑎𝑥) ×

𝜇𝜆2 ℎ0𝛾0⁄ . It should be noted that since higher order terms have been ignored, these 

expressions apply only to situations where the non-dimensional feature size and 

conversion are small. However, they serve as a useful tool to understand how the 

numerous independent variables and material properties affect film dynamics and the 

quantities of primary interest, namely the feature size and time scale. 

Physical Property Values 

Material property values used as input for model predictions are summarized in 

Table 3.1 at the temperatures considered. The viscosity, μ, of the PS blend as used was 

measured at 120
o
C under steady shear.  This viscosity was adjusted to lower values at 
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higher temperatures using free-volume parameters obtained from literature 𝜇(𝑇) data.
95

 A 

handbook value
96

 was used for 𝛾0, the surface tension of PS, and was subsequently 

adjusted for smaller molecular weights and higher temperatures.
97

  

 

Table 3.1: Physical property values used in model predictions 

Property 
Value 

Ref. 
120°C 126°C 136°C 140°C 

𝜇 [Pa∙s] 2550 1000 250 150  
79, 95

 

𝛾0 [dyne/cm] 32.2 31.7 31.1 30.8 
96, 97

 

𝛾0∆𝛾 [dyne/cm] 2.0 3.0 3.1 3.1 
79

 

𝒟 [cm
2
/s] 3.63×10

-11
 2.15×10

-10
 4.49×10

-10
 5.91×10

-10
 

79
 
98

 

The difference in surface tension between PS and poly(phenyl acetylene) (PPA), 

𝛾0∆𝛾, was extracted from the experimentally observed feature height evolution at short 

times. The linearized solution gives, for the peak to valley height in dimensionless form: 

 

𝜂̂ =
𝜋2 ∆𝛾𝑐0

2
𝜓1 − 𝜓2

(𝑒𝜓1𝑡 − 𝑒𝜓2𝑡) 
(3.19)  

Substituting in the Taylor series expansion for the exponential function and 

retaining terms only up to first order yields the evolution of peak-to-valley height at short 

times: 

 

𝜂̂ ≈ (𝜋2
∆𝛾𝑐0

2
) 𝑡     ∀     𝑡 ≪ 1 

(3.20)  

Comparing this to short-time experimental results, the difference in surface 

tension between the exposed and unexposed polymer (∆𝛾) can be extracted from the 

slope of the line.  
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Figure 3.3 (a) Experimental results at short times (b) Non-dimensional surface tension 

difference values extracted from experimental data at four different temperatures. 

While literature values for the surface energy of PPA are not available for 

comparison, it was previously estimated using a group contribution method that, the 

difference in surface tension between PS and PPA at 25
o
C, is 6.8 dyne/cm.

91
 

Furthermore, note that an equimolar copolymer of ethylene and propylene possesses a 

surface tension 1 dyne/cm lower than its partially dehydrogenated form, poly(isoprene), 

at 20
o
C.

96
 The values of 𝛾0∆𝛾 in Table 3.1 are reasonable because they agree in 

magnitude, and lie between, these examples. At the photochemical conversion typically 

used for patterning (c0 = 6.4 mol%
91

) the surface energy difference between exposed and 

unexposed regions (𝑐0𝛾0∆𝛾) is at most 0.2 dyne/cm. 𝑐0𝛾0∆𝛾 does not appear to have a 

strong temperature dependence within the relatively narrow temperature range explored 

in this work. 

The effective polymer blend diffusivity 𝒟 was extracted from the feature height 

decay at 120
o
C observed at long experimental times. At long times, peak-to-valley height 

reduces to 
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𝜂̂ ≈
𝜋2 ∆𝛾𝑐0

2
|𝜓1 − 𝜓2|

𝑒𝜓𝑚𝑎𝑥𝑡     ∀     𝑡 ≫ 1 
(3.21)  

where 𝜓𝑚𝑎𝑥 ≡ max (𝜓1, 𝜓2). This can be re-written as 

 

𝑙𝑛(𝜂̂) ≈ 𝑙𝑛 (
𝜋2 ∆𝛾𝑐0

2
|𝜓1 − 𝜓2|

) + (𝜓𝑚𝑎𝑥)𝑡 
(3.22)  

Since the eigenvalues 𝜓1 and 𝜓2 are a function of diffusivity, it can be extracted by 

comparing this expression with experimental observations for peak-to-valley height at 

long times. As noted earlier, the linearized solution is valid for cases where the features 

are small compared to the thickness of the unperturbed film. This is always true at short 

times, but applies at long times only for low temperatures or small initial conversions. 

For this reason diffusivity was extracted using experimental results at 120°C and 

extrapolated to higher temperatures using correlations from literature (after shifting them 

to agree with the value at 120°C). 
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Figure 3.4 (a) Experimental results at 120°C for long times (b) Diffusivity values 

extracted from experimental data at 120°C and extrapolated to higher temperatures in 

accordance with correlations from literature.
99

 

This value of 𝒟 was adjusted to higher temperatures using an Arrhenius fit to bulk 

self-diffusion coefficient values measured by Fleischer
99

  for PS with molecular weight 

MW = 2.1 kg/mol and MW = 4.0 kg/mol at temperatures between 160
o
C and 220

o
C to 

obtain the values in Table 3.1. Note that Ediger and coworkers
100

 described 𝒟 (T > 84
o
C) 

for a PS blend possessing Mw = 1.8 kg/mol and Tg = 59
o
C using a Williams-Landel-Ferry 

equation 

 

log10𝒟 = −14.48 +
10.37(𝑇 − 𝑇𝑔 − 16.6 °C)

56.11 °C + (𝑇 − 𝑇𝑔 − 16.6 °C)
. 

(3.23)  

The PS blend used had Tg = 61
o
C and MW = 3.98 kg/mol, the latter of which is a 

factor 2.2 higher than that determined by Ediger and coworkers. A direct comparison can 

be made between their values of 𝒟 and the ones in Table 3.1 by using Tg = 61
o
C  in 

Equation 3.23 and dividing the 𝒟 values it predicts by 2.2.
101

 Since their values differ 

from mine by less than 50% at all 4 temperatures used in this work, the values of 𝒟 used 

in model predictions are reasonable. These demonstrations imply, therefore, the 
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combined theoretical and experimental methodology would be a potential 

characterization method for very subtle surface energy changes and/or diffusion 

coefficients of complex polymer blends in confined thin films, using only inexpensive 

bench equipment and materials. 

RESULTS & DISCUSSION 

Evolution of Topographical Features After Heating Above Tg 

Figure 3.5 includes both experimental results and model predictions for the film 

thickness profile after short and long thermal annealing periods. Each different stage of 

topography development as illustrated in Figure 3.1 is revealed by experiments and 

theory. It is evident that the (non-linear) model reproduces both the formation of 

secondary minima observed at short periods of thermal annealing and that of the 

complete sinusoidal features at the extended annealing periods. 
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Figure 3.5 Representative 100 μm wide
 
optical micrographs of one 128 nm thick PS film 

supported on a Si wafer after short (a,b) and long periods (c,d) of thermal annealing 

at120°C. Prior to the heating, the PS film was exposed to UV light through a 25 µm pitch 

photo-mask. Different colors observed in the optical micrograph are light interference 

patterns resulting from the film thickness variations. Experimentally characterized height 

profiles for one periodicity from the same polymer film are shown in (e) and (f) after 

short and long periods of heating, respectively. Two different film thickness profiles were 

also theoretically predicted for a 128 nm thick film and are shown in (g) and (h) 

respectively. 

Both theory and experiment reveal that the appearance of secondary peaks at short 

thermal annealing times is related to the shape of the initial surface tension profile. 

Intuitively, one expects polymer transport to occur first at the interface between exposed 

and unexposed regions before it can reach the regions relatively far from that interface. 
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This concept is verified by noting that Equation (3.1) shows that the Marangoni flux is 

proportional to the second derivative of surface tension. At very short times, the film is 

essentially flat and capillary dissipation is negligible, resulting in maximum accumulation 

(and depletion) at points where the second derivative of surface tension has its largest 

magnitude. At intermediate and long times, on the other hand, when capillary forces are 

also relevant, maxima and minima in film height coincide with the maxima and minima 

of the concentration profile at the centerlines of mask quartz spaces and chrome lines, 

respectively. When the points of maximum magnitude of the second derivative of the 

initial surface tension profile do not coincide with the centerlines of the mask lines and 

gaps, secondary peaks form at short times. As long as the surface tension profile is 

present, these peaks always form; however, they may be short-lived in many cases. This 

finding is practically relevant because it represents a strategy, rooted in the physical 

nature of fluids, to double the areal density of topographic features from that present in 

the projected photo-mask pattern. 
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Figure 3.6 Simulated film height profiles at short times clearly depict secondary peaks at 

four different annealing temperatures. Thicknesses of the film in ascending order of 

temperature are 145, 148, 130 and 148 nm. 

It is also apt to note that the three distinct regimes of film topography evolution 

once heated above its glass transition temperature are strongly connected to the structure 

of the theoretical model. At very short times, secondary peaks form at points where the 

second derivative of the initial surface tension profile has its largest magnitude. At 

intermediate times, features rise as Marangoni flux dominates over capillary dissipation. 

The Marangoni driving force decays with time as polymer self-diffusion makes the 

concentration profile, and as a result the surface tension profile, increasingly uniform. On 

the other hand, capillary dissipation intensifies as features grow. Eventually capillary 

forces dominate; features begin to decay and the film tends towards its original flat form. 

Quantitative Comparison of Model to Experimental Data  

Figure 3.7 depicts both the experimentally-observed and model-predicted 

evolution of peak-to-valley height 𝜂̂ℎ0 as a function of cumulative annealing time at four 

different temperatures. Reasonable agreement between model predictions and 

experimental results are achieved for three of the four temperatures. The theoretical 
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model quantitatively predicts both the height of features as well as the timescale 

associated with their growth and decay. The quality of agreement obtained at the two 

highest temperatures is especially encouraging since those model predictions were made 

with only one parameter 𝑐0∆𝛾 that was gleaned from the data itself.  Unfortunately, as 

evident in Figure 3.8, the highest 𝜂̂ℎ0 values measured at 126
o
C are exceptionally large 

relative to the two neighboring datasets, and the model predictions do not closely match 

them. 
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Figure 3.7 Comparison of peak-to-valley height evolution between experimental results 

(opened circle) and model predictions (solid line) at (a) 120°C, (b) 126°C, (c) 136°C, and 

(d) 140°C for PS films on glass. 

Raising temperature reduces the viscosity of the film and increases its diffusivity. 

The former promotes the formation of larger features and more rapidly, while the latter 

hastens the onset of decay. Any change in the patterned surface tension gradient with 

temperature would also affect the process. Results show that overall, higher temperatures 

make larger features accessible while reducing the time needed to form them. Again, only 

the experimental data point for ℎ𝑚𝑎𝑥 collected at 126
o
C lies outside this general trend. A 

20 °C rise in temperature increases feature height by 50% while reducing the heating time 
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eleven-fold. Higher temperatures, within material constraints, are therefore preferable as 

long as the films are stable. 

 

Figure 3.8 (a) Attainable maximum feature size and (b) associated thermal annealing 

time as a function of temperature. 

Model Predictions of Marangoni-Driven Flow at Various Conditions 

In the context of a patterning process targeting a specific feature size, it is prudent 

to engineer a process wherein the maximum height attained by features coincides with 

the target feature height. This ensures that the desired pattern is achieved in the most 

efficient way possible and is an important goal to enable rapid processing methods, such 

as roll-to-roll processing. Therefore, key variables for the application of this technique for 

various purposes are the maximum feature height attained and the heating time needed to 
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achieve it. In order to be able to design a process targeting a specific feature size with the 

desired resolution for a given application in the shortest possible heating time, an 

understanding of the limits of the process and the effects of each process variable on the 

two key quantities is necessary.  
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Figure 3.9 Normalized maximum peak-to-valley height ℎ𝑚𝑎𝑥/ℎ0, and heating time as a 

function of resolution (photo-mask half-periodicity) for different film thicknesses (a, b), 

surface tension differentials (c, d), and heating temperatures (e, f). Data points represent 

model predictions and lines are guides to the eye. All case studies are otherwise at 

identical conditions as a base condition with h0 = 145 nm, 𝑐0∆𝛾 = 0.004, and/or T = 

120°C 

Figure 3.9 shows how absolute feature height and thermal processing time vary as 

a function of the desired pattern periodicity, and how experimental parameters, namely 

film thickness, the initial surface tension differential and annealing temperature affect this 
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relationship. An increase in pattern periodicity results in an enhancement in the 

accessible feature height but delays the achievable throughput time-scale. This is due to 

the fact that features farther apart can draw material from a larger region of low surface 

tension polymer. This effect was also seen in the evaporative self-assembly of particles
14, 

58
 in Chapter 2 where reduced pitch results in smaller features. As seen in Figure 3.9, this 

feature height penalty worsens with decreasing periodicity whereas promotion in 

throughput is approximately linear on this log-log plot. 

The feature height in normalized terms (i.e. relative to the initial film thickness) is 

larger for thinner films. However, the absolute height of the features above the residual 

layer is larger for thicker films. This means that in applications tolerant to thick residual 

layers, greater variations in film thickness can be achieved by using thicker films. On the 

other hand, for applications in which the residual layer thickness between the feature 

minima and substrate surface needs to be minimized, thinner films are preferable. The 

data in Figure 3.9a predict that for the thinner film ℎ0 = 145 nm the highest possible 

aspect ratio of features, ½ℎ𝑚𝑎𝑥𝜆−1, is achieved for a mask with a periodicity between 10 

and 25 μm. However, for the thicker film ℎ0 = 1000 nm the maximum achievable aspect 

ratio can be made with a mask possessing a periodicity between 100 and 200 μm. 

The initial surface tension differential is set by conversion which can be 

controlled through exposure dosage. A larger dosage increases the surface tension 

differential and results in significantly larger features. The heating time necessary to 

reach the maximum feature height is not strongly affected by the surface tension 

difference. Figure 3.9 (c, d) predicts that maximizing the surface tension difference is the 

most effective way to fabricate films with the greatest variations in film thickness. 

 As noted above, higher temperature promotes the formation of larger features at 

faster rates. Figure 3.9 (e, f) shows that while the increase in feature height resulting from 
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a 20 degree rise in temperature to 140°C is relatively modest (~50%), the necessary 

thermal processing time shortens by over an order of magnitude.  

These results for varying temperature also suggest the role the molecular weight 

of the polymer plays in determining feature size and heating time. Temperature affects 

the dynamics of the film through variation in viscosity and diffusivity. According to the 

Rouse model for unentangled polymer melts, the product of diffusivity and viscosity is 

directly proportional to temperature and inversely proportional to molecular weight.
101

  

Reduced molecular weight would therefore exert an effect on feature height and 

throughput time-scale as a function of pattern periodicity similar to that of increased 

temperature. The relatively modest rise in feature height with increased temperature is 

due to the fact that the viscosity of the polymer melt and the diffusivity of the photo-

exposed polymers are coupled, as predicted by the Rouse model. With increasing 

temperature, a sharp decline in viscosity, which should promote the formation of larger 

features more rapidly, is accompanied by an increase in the polymers’ self-diffusion, 

resulting in a more rapid dissipation of the surface tension gradient. This suggests that a 

polymer blend comprising of a small amount of a large molecular weight photoactive 

polymer within a bulk low molecular weight polymer would simultaneously minimize 

diffusivity and maximize viscosity, resulting in the largest possible features even at high 

resolutions.  

CONCLUSIONS 

Here a model was introduced which accurately describes topography formation in 

thin polymer films which possess surface energy patterns. All of the stages of topography 

development (see Figure 3.2) are qualitatively predicted by a relatively simple, 

computationally efficient adaptation of the film equation. Strictly speaking, if a polymer 
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film possesses a surface energy pattern, even one in which the variations are only 0.2 

dyne/cm, Marangoni flow will result when it is heated above its glass transition. Only the 

size and longevity of the topographical features varies with the properties of the system. 

This, rather than a critical value of the Marangoni number, defines a criterion for feature 

formation.  

Furthermore, the model is capable of quantitatively predicting the peak-to-valley 

heights of the smoothly varying thickness profile at different heating times and 

temperatures, using reasonable physical parameters as input. The model was used to 

define process trends to guide future development of this patterning methodology. The 

highest feature aspect ratios, ½ℎ𝑚𝑎𝑥𝜆−1, can be achieved for thinner films, high surface 

energy differences between exposed and unexposed regions, a mask periodicity that is 

optimized for film thickness, and systems which possess both low viscosity and low self-

diffusion coefficients. The dissipation of film topography at excessively long heating 

times was used to extract a diffusion coefficient at 120
o
C that matched a literature 

value
100

 within 50%. Therefore, this demonstration could motivate the application of this 

combined theory/experimental methodology as a measurement method for surface energy 

changes and diffusion coefficients of complex polymer blends in confined thin films, 

using only inexpensive bench equipment and materials. 

NOMENCLATURE 

Latin 

c fractional concentration of the photo-generated polymer 

c0 peak fractional concentration of photo-generated polymer a exposure 

h local height of the film above the substrate; dimensional up to equation 

4.8 and dimensionless thereafter, 

hmax dimensionless maximum film height attained over the course of heating 

h0 initial film thickness 

t time 

x space co-ordinate perpendicular to mask lines and parallel to the substrate 
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A squared aspect ratio 𝐴 ≡ 𝜆2 ℎ0
2⁄  

𝒟 diffusion coefficient of the photo-generated polymer within the blend 

Pe ratio of the surface tension-induced convective and diffusive timescales  

T temperature 

  

Greek 

𝜆 linewidth of the mask 

μ viscosity of the polymer 

𝜂̂ peak-to-valley height of sinusoidal perturbation in film thickness 

𝜂̂𝑚𝑎𝑥 maximum size of the perturbation in film thickness over the course of 

heating 

𝛾 local surface tension of the blend 

∆𝛾 surface tension of the photo-generated polymer minus that of the base 

film 
𝛾0 surface tension of the base polymer at the operating temperature 

𝜉 size of sinusoidal perturbation in concentration 

𝜓1, 𝜓2 intermediate variables introduced for clarity, defined in equation 4.18 
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Chapter 4: Marangoni-Driven Patterning for 3D Shapes 

In Chapter 3, Marangoni-driven patterning was studied for line-shaped patterns. 

The technique is not limited to lines, and in principle, any shape for which a 

corresponding mask is available can be patterned. Here we extend simulations to 3D 

shapes. 

FORMULATION & ANALYSIS  

Model 

Relaxing the assumption that the exposure pattern is uniform in one direction, 

equations (3.8, 3.9) are written in vector form as: 

 
𝜕ℎ

𝜕𝑡
+ 𝛻. [(

1

3𝐴
) ℎ3𝛻{𝛾𝛻2ℎ} + (

1

2
) ℎ2𝛻𝛾] = 0 

(4.1)  

 
𝜕𝑐

𝜕𝑡
− (

1

𝑃𝑒
) 𝛻2𝑐 + 𝛻 [𝑐 {(

1

2𝐴
) ℎ2𝛻(𝛾𝛻2ℎ) + ℎ𝛻𝛾}] = 0 

(4.2)  

Since one period of the exposure pattern is simulated, symmetry conditions in 

film height, pressure and concentration apply at the boundaries: 

 

∇ℎ. 𝒏 = 0 
(4.3)  

 

∇𝑝. 𝒏 = ∇(𝛾∇2ℎ). 𝒏 = 0 
(4.4)  

 

∇𝑐. 𝒏 = 0 
(4.5)  

where n is the normal at the boundary. 
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 The linear dependence of concentration on surface tension is retained. Written 

non-dimensionally: 

 

𝛾 = 1 + (∆𝛾)𝑐 
(4.6)  

Numerical Method 

This system of equations was solved via the finite-difference method. A second-

order scheme, incorporating upwinding for the first derivative of concentration in (4.2) 

for stabilization, along with explicit time stepping were employed.  

RESULTS & DISCUSSION 

Figure 4.1 shows the evolution of film topography and concentration for a 150 nm 

thick film exposed through a mask with triangular gaps of 60 μm side-length, resulting in 

6.4% peak conversion, and subsequently heated to 120°C, corresponding to the 

experiments of Katzenstein et al.
102

 The initial concentration profile is taken to be a step 

function, and the material property values in Table 3.1 are retained. 
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Figure 4.1 Concentration (top) and film height (bottom) profiles at 0 (left), 60 (middle) 

and 360 (right) minutes of heating.  

It can be seen that due to diffusion, the step change in concentration broadens and 

the sharp corners round out over time. The evolution of film topography is qualitatively 

similar to the 1D case. At intermediate times, multiple peaks form where the 

concentration changes most rapidly, in this case at the corners of the exposed region. At 

long times, on the other hand, a single peak forms at the center of the exposed region. 

The transient peaks at intermediate times persist for more than an hour, as opposed to a 

few minutes for the 1D case. Figure 4.2 shows that the predicted topography agrees well 

with experimental observation. 
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Figure 4.2 (a) Optical micrograph of triangular features. (b) Profilometry line scan 

across the black line shown in (a). (c) Equivalent fil profile prediction from simulations at 

t = 6 hrs. 

CONCLUSIONS 

Marangoni-driven patterning can be extended to 3D patterns. At intermediate 

times, multiple peaks form at the transitions between exposed and un-exposed regions, 

whereas at long times, a single peak forms at the center of the exposed region.  
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Chapter 5: Flow-Assisted Dielectrophoretic Assembly of Nanowires 

INTRODUCTION 

Semi-conducting nanowires and carbon nanotubes possess optical, mechanical 

and electronic properties which are both unique and tunable, and these have been 

exploited for important improvements in a breadth of applications including flexible 

electronics,
103

 transistor scaling,
104

 photonic computing,
105

 photovoltaics,
106, 107

 lithium-

ion batteries,
108

 thermoelectrics
109

 and biosensing.
110

 Many of these applications 

necessitate an array of nanowires arranged at precise locations on a substrate. While the 

growth of nanowires with specific properties has been demonstrated widely, their 

assembly into arrays on rigid and flexible substrates with the requisite density and 

precision while avoiding degradation in properties remains a challenge
111

 in spite of the 

considerable attention it has received.
112, 113

  

One of the most promising approaches for nanowire assembly
114

 demonstrated to 

date is flow-assisted dielectrophoresis,
115, 116

 wherein a suspension of nanowires is made 

to flow across the target substrate with (lithographically) pre-patterned electrode sites. 

When the suspension flowrate and electric field strength are tuned correctly, this results 

in the deposition of individual nanowires at each electrode site, aligned with the electric 

field. This approach combines parallel assembly over large areas with a high degree of 

precision, has the potential for high resolution, has demonstrated unprecedented yields 

(98%
116

) of accurately positioned and aligned nanowires and is facile to flexible 

substrates.  

The dynamics of the nanowire are determined by interplay of hydrodynamic drag 

from the fluid and the dielectrophoretic force from the electric field. The two can be 

mediated primarily through suspension flowrate and electric field strength, but are also 

affected by the channel size, electrode configuration and material properties. When 
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hydrodynamic drag dominates, nanowires are carried past the electrode site without being 

captured, whereas when dielectrophoresis is dominant, multiple nanowires assemble at 

each site. A careful calibration of the flowrate and the applied field will therefore result in 

a precise number of nanowires at each site. In addition to these deterministic forces, 

nanowires also undergo Brownian diffusion; for higher pattern densities (and hence 

shorter nanowires), diffusion becomes increasingly strong making deterministic assembly 

difficult.
117

 

 
Figure 5.1 Schematic showing flow-assisted dielectrophoretic deposition. A nanowire in 

pressure-driven flow across a pre-patterned electrode site experiences forces (and 

torques) from fluid drag, the electric field and collisions with solvent molecules causing 

Brownian motion.  

The promise of flow-assisted dielectrophoretic deposition notwithstanding, 

several questions critical to assessing its limits as well as understanding the criteria 

necessary for successful assembly remain unanswered.
114

 What is the relationship 

between electric field-strength and suspension flowrate for the deposition of exactly one 

nanowire at each site? What effect do material properties, most notably the conductivity 

of the nanowire, have on the process? How does an increase in the desired pattern density 

affect the viability of assembly? Does Brownian diffusion place a lower limit on the 

minimum nanowire size that can be deposited reliably? Is there an efficient way to think 
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about how the many different experimental parameters determine the dynamics of the 

nanowire and the probability of successful assembly? 

In order to address these questions, we develop simulations of the dynamics of an 

individual nanowire in pressure-driven flow within a parallel-plate channel and across an 

electrode site with an alternating electric field. In the sections below, we first outline my 

model and the geometry we consider. This is followed by a portrayal of the dynamics of 

nanowires under characteristic flowrates and voltages. We then consider the flowrate-

field strength combinations necessary for successful assembly and compare with 

experimental observations. We note how the model implies scaling that clarifies how the 

myriad of experimental parameters affect nanowire dynamics. The role played by 

diffusion in mediating assembly is investigated, followed by the effect of pattern density 

on the conditions necessary for successful assembly and nanowire conductivity on the 

minimum nanowire length for which flow-assisted dielectrophoretic assembly is feasible.  

FORMULATION & ANALYSIS 

For my investigations we consider a nanowire of length 𝑙 and radius 𝑎 immersed 

in pressure-driven flow of volumetric flowrate 𝑄 and fluid viscosity 𝜇 within a parallel 

plate channel of height 𝐻 and width 𝑤. The substrate is patterned with electrode sites 

composed of finger electrodes separated by a gap length 𝑑 and an AC signal of root-mean 

square strength 𝑉0 and angular frequency 𝜔. The particle (𝑝) and solvent (𝑠) have 

electrical permittivities 𝜀𝑝.𝑠 and conductivities 𝜎𝑝.𝑠. The fluid flows in the x-direction, the 

z-coordinate is perpendicular to the substrate and the origin of the coordinate system is 

located at the center of the electrode gap (Figure 5.1). 
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Figure 5.2 The geometry of finger electrodes for nanowire length l = 18 µm long 

nanowires. When nanowire length is varied, electrode dimensions and gap length are 

scaled accordingly. 

For the base system, we use electrode geometry (Figure 5.2) as well as parameter 

values (Table 5.1) that coincide with the experiments of Freer and coworkers.
116

 When 

particle length is varied, it’s diameter as well as electrode dimensions (including the 

length of the gap) are scaled accordingly so that they remain fixed multiples of nanowire 

length. 

Table 5.1: Base parameter values 

Nanowire Geometry 

Length 𝑙 = 18 μm 

Radius 𝑎 = 120 nm 

  

Channel Geometry Flow 

Height 𝐻 = 635 μm Volumetric flowrate 𝑄 = 1.2 ml/min. 
Width 𝑤 = 4.9 cm Fluid viscosity 𝜇 = 2 × 10−3 Pa. s 

  

Electrode Geometry Applied Field 

Gap length d = 12 µm RMS voltage 𝑉0 = 0.35 V 

Other dimensions as in Figure 5.2 Frequency 𝜔 = 2𝜋(500 Hz) 

  

Particle Electrical Properties Fluid Electrical Properties 

Permittivity 𝜀𝑝 = 24𝜀0 Permittivity 𝜀𝑠 = 12𝜀0 

Conductivity 𝜎𝑝 = 2 × 103 S/m Conductivity 𝜎𝑠 = 1.9 × 10−6 S/m 
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Simulation Methodology 

Consider a dilute suspension of semiconducting nanowires (or carbon nanotubes) 

in a channel with the substrate patterned with electrode sites. The dynamics of the 

nanowire are described by
118
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(5.1)  
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(5.2)  

Here ∆𝒓 and ∆𝜽 represent the positional and orientational displacement of the 

particle in time ∆𝑡. 𝒇 and 𝒕 denote force and torque which originate from 

dielectrophoresis (𝐷𝐸𝑃), hydrodynamics (ℎ𝑦𝑑) and Brownian diffusion (𝐵𝑟); the 

hydrodynamic force and torque (𝒇𝟎,𝒉𝒚𝒅, 𝒕𝟎,𝒉𝒚𝒅) are for a particle held stationary. 𝑹𝒕𝒓𝒂𝒏𝒔 

and 𝑹𝒓𝒐𝒕 are the translational and rotational hydrodynamic resistance tensors. Vectors 

and tensors are in bold lowercase and bold uppercase respectively. 

Advancing in Time 

Since the forces on the particle vary spatially, a mid-point algorithm
119

 was 

employed: 
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(5.4)  

The particle coordinate frame is defined to be the laboratory frame (shown in 

Figure 5.1) rotated such that the x-axis aligns with the major axis of the particle. The 

matrix 𝑨 transforms between the lab and particle frames: 
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where a hatted symbol denotes a quantity in the particle frame.  

𝑨 and a corresponding set of Euler parameters (quaternions) 𝑞 are initialized 

consistent with the initial orientation of the particle and updated at each step:
120
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Dielectrophoretic Force 

Needle-like particles are often modeled as prolate ellipsoids
121, 122

 and the 

dielectrophoretic force calculated via the effective dipole p:
123
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The Clausius-Mossotti factor 𝐾 is a measure of the polarizability of the particle 

relative to the solvent. For an ellipsoid, it is anisotropic:
124
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𝜀𝑝,𝑠
∗ = 𝜀𝑝.𝑠 − (𝜎𝑝,𝑠/𝜔)𝑖 are complex permittivies of the particle and the solvent. 𝐿 is the 

depolarization factor determined by the geometry of the particle. For highly elongated 

particles, 𝐿 ≈ 0, 1/2 along the long and short axes respectively.   

Effective dipole moment (EDM) theory relies on the simplification that the 

electric field varies over a length-scale much longer than the particle.
125, 126

 For 

dielectrophoretic assembly of nanowires, however, the electrode gap is comparable in 

length to the nanowire. To account for this, we discretize the nanowire lengthwise into 

smaller cylinders, calculating the total force and torque as a mean over the length of the 

wire..  

Hydrodynamics 

For a slender body of aspect ratio 𝑠 = 2𝑎/𝑙 immersed in a fluid the components 

of the translational resistance matrix  𝑹𝒕𝒓𝒂𝒏𝒔 are
127

 4𝜋𝜇𝑙 ln (2/𝑠)⁄  and 8𝜋𝜇𝑙 ln (2/𝑠)⁄  

along the long and short axes of the particle respectively, while the component of the 

rotational resistance matrix  𝑹𝒓𝒐𝒕 about the short-axes is 4𝜋𝜇𝑙3 3ln (𝑙/𝑎)⁄ .  

The hydrodynamic force 𝒇𝟎,𝒉𝒚𝒅 and torque 𝒕𝟎,𝒉𝒚𝒅 for a particle held stationary in 

Poiseuille flow follow from a generalization of Faxen’s law. A stationary spheroid of 

radius 𝑎 and length 2𝑏 in an ambient Stokes flow 𝑢 experiences a hydrodynamic force 

and torque given by
128, 129
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The subscript 0 denotes that the quantity is evaluated at the center-of-mass of the particle, 

and 
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For planar pressure-driven flow 
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This gives 
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This accounts for the curvature of the flow field but not for the effects of the 

channel walls. Wall effects have been shown to decrease with increasing particle 

asphericity.
129

 

Brownian Motion 

Finally, the Brownian force (and torque) have the following stochastic 

properties:
130
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where 𝛿 is the Dirac delta function and 𝑰 the identity tensor.  

Computing the Electric Field 

The electric field is given by Laplace’s equation for potential
131
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2 0V   
(5.23)  

Insulation/symmetry boundary conditions are applied at the substrate as well as 

the extremities of the solution domain: 

 

0V .n  
(5.24)  

while the potential is specified to be 𝑉0 and 0 at the biased and grounded electrodes 

respectively. The electric field is solved for via finite-element simulations in COMSOL 

using quartic Lagrange elements for improved accuracy of derivatives. The solution is 

exported at the nodes of the finite-element mesh, and during dynamic simulations is 

interpolated between these values.  

Scaling 

Scaling the electric field by 𝑉0/𝑑, equation (5.10) implies that the 

dielectrophoretic force can be scaled by (2𝜋𝑎2𝑙)(𝜀𝑠Re𝐾𝑙𝑜𝑛𝑔))(𝑉0
2 𝑑3⁄ ), where Re𝐾𝑙𝑜𝑛𝑔 

refers to the real part of the long-axis Clausius-Mossotti factor. We scale the 

hydrodynamic force by 𝛾̇𝑅𝑙𝑜𝑛𝑔𝑙/2, which is the drag on a wire oriented in the x-direction 

and 𝑙/2 above the substrate. 𝑅𝑙𝑜𝑛𝑔 = 4𝜋𝜇𝑙/𝑙𝑛(2/𝑠) is the translational resistance along 

the major axis, while 𝛾̇ = 6𝑄/𝐻2𝑤 refers to the shear rate at the substrate. The Brownian 

force is scaled by 𝑘𝑇/𝑑. Then, equation (5.1) describing the dynamics of the wire 

reduces to the following non-dimensional form:  
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Here 𝐹̅ are the aforementioned force scales and ̃  indicates a dimensionless 

quantity. Resistance is scaled by 𝑅𝑙𝑜𝑛𝑔, position by 𝑙 and time by 𝑅𝑙𝑜𝑛𝑔𝑙/𝐹
𝐷𝐸𝑃

.   

We refer to the ratio of the dielectrophoretic and hydrodynamic force scales as the 

dielectrophoretic number Di. The other force ratio can then be written in terms of Di and 

the Peclet number Pe, which is traditionally a ratio of hydrodynamic and Brownian 

forces. 
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The two dimensionless groups Di and DiPe are defined such that they have large values 

when dielectrophoresis is dominant. 

RESULTS & DISCUSSION 

Hydrodynamic Force Calculation 

The hydrodynamic model outlined above (based on Faxen’s law) accounts for the 

curvature of the flow field but neglects interactions with the substrate. Figure 5.3 shows 

estimates of the lift force (i.e. perpendicular to the substrate) for an ellipsoid 0.6l above 

the wall in semi-infinite shear flow as a function of its orientation. Shown are 

calculations based on the boundary-element method that include the wall from Gavze & 

Shapiro
129

 as well as estimates using the method employed here for two different particle 

aspect ratios. Predictions based on Faxen’s law are qualitatively similar to when 

hydrodynamic interactions with the wall are included but underestimate the magnitude of 

the force. Gavze and Shapiro
129

 show that wall effects become increasingly irrelevant for 
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more extreme particle aspect ratios. The discrepancy between the two calculations is 60% 

at δ = 0.7 and 30% at δ = 0.1. The nanowires used in Freer et al’s experiments and 

simulated here have δ = 0.013.  

 

 

Figure 5.3: Comparison of hydrodynamic lift force calculations based on Faxen’s law 

ignoring wall effects with boundary element simulations including them for two different 

particle aspect ratios 

Dielectrophoretic Force Calculation 

The most rigorous calculation of the dielectrophoretic force is by integrating the 

Maxwell stress tensor (MST) over the surface of the particle. While this approach is 

unparalleled in accuracy, it makes dynamic simulations computationally expensive since 

it necessitates that the electric field be solved for at each time step with the particle 

present. Due to its simplicity, the effective dipole moment (EDM) moment method is 

most commonly used in the literature to estimate the dielectrophoretic force and torque. 

However, it assumes that the electric field varies over a length-scale significantly larger 

than the particle, which does not apply to nanowire assembly with the electrode gap and 

nanowire being comparable in length. The discretized EDM approach used here is meant 

to mitigate errors arising from this assumption.  
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Figure 5.4 shows a comparison of the dielectrophoretic force calculated in this 

way versus a rigorous calculation based on the Maxwell stress tensor (MST) from 

literature.
132

 As is evident, a discretized EDM approach performs reasonably well in 

matching MST predictions qualitatively, while the standard EDM approach does not. 

This serves as a caution against employing the latter for dielectrophoretic assembly of 

individual particles. The agreement between the discretized EDM and MST approaches 

improves with increasing distance from the substrate; these results pertain to a 2 μm 

nanowire with its surface 100 nm from the substrate. 

 
Figure 5.4: Comparison of dielectrophoretic force from a rigorous Maxwell stress tensor 

calculation
132

 with estimates based on the standard and discretized effective dipole-

moment method. These are for 2 𝜇𝑚 long nanowires 200 nm in diameter with their 

centers 300 nm above parallel plate electrodes and oriented in the plane of the substrate 

and perpendicular to electrode edges.  

The Electric Field 

Figure 5.5 shows the electric field strength and direction for a 12 μm long gap and 

a 350 mV signal. The electric field is strongest at the electrode tips, and the field vectors 

show that a particle that tends to align with its major axis along the field will orient along 

the gap.  
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Figure 5.5: The electric field at z = 0 (top) and y = 0 (bottom) at V0 = 0.35 V for a 12 μm 

electrode gap. The color indicates the magnitude of the field and the arrows its direction. 

Dynamics of a Nanowire During Flow-Assisted Dielectrophoretic Deposition 

The dielectrophoretic force on the nanowire is strongest at the electrode site and 

decays moving away from the substrate. The hydrodynamic drag, on the other hand, 

increases moving away from the substrate and towards the channel center-line. Therefore, 

there exists a finite region next to the substrate within which the electric field is strong 

enough to resist fluid drag and capture the nanowire.  

Figure 5.6(a) depicts the trajectory of an 18 𝜇𝑚 long nanowire as it comes across 

a 12 𝜇𝑚 long electrode gap. The center of the nanowire is initially 18 𝜇𝑚 upstream of the 

center of the electrode gap and 8 𝜇𝑚 above the substrate. It moves with the flow only as 

far as the center of the gap and is pulled towards the substrate by the electric field, finally 

coming to rest spanning the gap.  
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Figure 5.6: (a) Dynamics of an 18 μm long nanowire initially at x = -18 μm and z = 8 μm 

at 350 mV and 1.3 ml/min. The electric field pulls the nanowire in place and aligns it 

along the gap (b) When initially at z = 10 μm, the nanowire is carried away by the fluid 

without being captured. (c) Increasing the voltage to 500 mV results in capture even 

when initially at z = 10 μm. (d) Increasing the flowrate to 2.5 ml/min results in escape 

even at 500 V. 

Figure 5.6(b) shows the trajectory of an identical nanowire that starts 10 𝜇𝑚 

above the substrate. At this distance, the electric field is too weak to counteract the fluid 

drag, and the nanowire is seen to flow across and past the gap without being captured 

even as it descends due to the electric field. 
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Electric field strength and suspension flowrate are convenient ways to mediate 

these dynamics. Figure 5.6(c) illustrates how the dynamics of the nanowire in Figure 

5.6(b) alter when the electric field strength is increased to 500 mV. Instead of escaping, 

the nanowire is captured. Now increasing the suspension flowrate to 2.5 ml/min. results 

in the nanowire escaping even at 500 mV as shown in Figure 5.6(d). 

Capture Criteria: Field Strength vs. Flowrate 

It is clear that in order to be captured, a nanowire must arrive within a capture 

zone, the region next to the substrate within which the dielectrophoretic force dominates 

fluid drag.
115

 The width of this region, which we refer to as the capture width, is 

determined by the relative strength of dielectrophoresis and hydrodynamics within a 

given experimental setup. 

Figure 5.7(a) shows the capture width, defined as the maximum initial height (𝑧0) 

of a nanowire at 𝑥0 = −𝑙 for a ≥ 5% probability of being captured (100 particles were 

seeded at x0 = -l and various z0). As seen earlier, higher voltages and lower flowrates 

result in an increased capture width, implying a greater likelihood of capture. For the 

moderate flowrates and voltages shown, capture widths range between approximately 

one-third and two-thirds nanowire length. 



 78 

  

 

Figure 5.7: (a) The maximum distance from the substrate within which a nanowire at x = 

-18 μm needs to be to have a 5% probability of capture as a function of the applied 

voltage and volumetric flowrate (b) Comparison of the criteria for capture observed 

experimentally
116

 with capture distance (c) Pole-vaulting motion of a nanowire initially at 

z = 3 μm (no electric field). The x-axis is not to scale and the particle x-positions are 

labeled. 

Due to steric and hydrodynamic effects as well as their anisotropy, ellipsoidal 

particles in pressure-driven flow are known distribute themselves non-uniformly across 

the channel height.
133

 Figure 5.7(c) shows the ‘pole-vaulting’ motion
134

 of an 18 μm long 

nanowire that is initially 3 μm above the substrate. Shear flow adjacent to the wall causes 

it to tumble (i.e. undergo full rotations), and as it does so, steric effects push it away from 

the wall. Therefore, there results at steady state a depletion layer next to the channel walls 

largely void of particles. 
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In flow-assisted dielectrophoretic assembly, whether or not nanowires are 

captured depends upon the relative magnitude of the capture and depletion layer widths. 

If the depletion width exceeds the capture width, no nanowires arrive in the region where 

dielectrophoresis dominates and thus none are captured. On the other hand when the 

capture width is greater than the depletion width, nanowires are assembled successfully.   

Figure 5.7(b) shows the capture curve observed by Freer and coworkers in their 

experiments;
116

 for flowrate-voltage combinations lying below the curve, nanowires were 

deposited at the electrode sites, whereas above the curve, no wires were deposited. Note 

that their capture curve corresponds to a capture width of 7.9 μm. For flows with a 

comparable balance of hydrodynamics and diffusion (represented by the Peclet number), 

the depletion layer width has been shown to be slightly less than one-half particle 

length.
135

 Therefore, a critical capture width of 7.9 μm for these 18 μm long nanowires 

agrees well with the understanding that the relative sizes of the capture and depletion 

widths determines whether nanowires are captured. 

Scaling 

The dynamics of the nanowire and hence the likelihood of successful assembly 

depend upon a myriad of factors: material properties (viscosity of the fluid and the 

electrical conductivity and permittivity of the fluid and nanowire), nanowire and gap 

lengths, the geometry of the electrodes and the channel and experimental parameters 

(flowrate, voltage and frequency). 

It is clear from equation (5.25) that for a given electrode geometry, the dynamics 

of the nanowire are determined by Di and DiPe. Therefore, scaling reduces the number of 

parameters from the many mentioned earlier to two. They represent the strength of 

dielectrophoresis relative to hydrodynamics and diffusion respectively, with larger values 
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representing stronger dielectrophoresis. Large values of Di indicate that dielectrophoresis 

is dominant over hydrodynamic drag, whereas large values of DiPe imply that 

dielectrophoresis is dominant over diffusion. 

  
Figure 5.8: (a) Capture height plotted against flowrate for 5 different voltage values. (b) 

When plotted against the dielectrophoretic number, the simulated capture heights at 

varying flowrate and voltage collapse onto a single curve. 

Figure 5.8(a) shows the capture width for 18 µm long wires as a function of 

flowrate at 5 different applied voltages. When plotted against Di in Figure 5.8(b), non-

dimensional capture distance 𝑧̃𝑐𝑎𝑝 at the various voltages collapses onto a single curve, 

indicating that the dielectrophoretic number is indeed the relevant dimensionless group. 
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Figure 5.9: Non-dimensional dielectrophoretic and hydrodynamic forces for a nanowire 

oriented in the x direction as a function of distance from the substrate. The 

dielectrophoretic force is for a nanowire with its center directly above the electrode tip (x 

= 6 µm). 

Figure 5.8(b) also shows that capture width is proportional to Di
0.32

. This 

dependence is a result of how the dielectrophoretic force weakens moving away from the 

substrate, shown in Figure 5.9, due to the decaying electric field. The hydrodynamic 

force, on the other hand, varies linearly close to the substrate. The capture height is the 

distance from the substrate at which these forces are equal: 

 

2.15DEP hyd

cap capF z F z   
(5.28)  

 
0.32

capz Di  
(5.29)  

This simple scaling argument reproduces the relationship between capture 

distance and dielectrophoretic number observed in simulations.  
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The Role Played by Diffusion 

Next we investigate the role played by diffusion, the importance of which for a 

given system is represented by DiPe. Since diffusion strengthens with reducing size, it is 

likely to play an important role in determining how increasing pattern density affects the 

viability of assembly.  

We’ve seen that nanowire dynamics are defined by the parameters Di and DiPe: 

Di represents the ability of the dielectrophoretic force to overcome hydrodynamic drag, 

with large values of Di favoring assembly; DiPe is a measure of the importance of 

diffusion relative to dielectrophoresis, with larger values implying weaker diffusion. We 

have also seen in Figure 5.7(b) that successful capture corresponds to a capture distance 

of 0.44l. Figure 5.10 shows, as a function of DiPe, the value of Di for which 5%** of 100 

particles released at 𝑧̃ = 0.44 are captured. Figure 5.10 is the dimensionless analogue of 

the capture curve in Figure 5.7(b), with successful capture expected in the parameter 

space above the curve. Whereas Figure 5.7(b) shows the conditions necessary for 

successful assembly for a given set of material properties, channel geometry and 

nanowire size, Figure 5.10 includes variations in these through the dimensionless groups. 

                                                 
** For a lower (higher) capture probability, the Di needed for capture will be lower (higher) but 

qualitatively similar 
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Figure 5.10: Dimensionless capture curve showing, as a function of DiPe, the 

dielectrophoretic number Di for which the capture distance is 0.44l (as shown in Figure 

5.7(b), this capture distance corresponds to successful assembly in experiments). 

Successful capture is expected in the parameter space above the curve.  

We see in Figure 5.10 that the capture curve asymptotes at large DiPe, indicating 

that beyond a certain value, the dynamics of the particle and hence the probability of 

assembly become insensitive to DiPe. At intermediate values of DiPe, assembly is aided 

by decreasing values of DiPe as capture is predicted for a larger region of the parameter 

space. However, for DiPe < 98, the Di needed for assembly increases rapidly. 

Increasing values of DiPe indicate weakening diffusion. Therefore, for large DiPe 

Brownian motion is negligible and the dimensionless capture curve in Figure 5.10 

asymptotes as particle dynamics are driven by hydrodynamics and dielectrophoresis only. 

The asymptotic value of Di=1.54 needed for capture at high DiPe when diffusion is 

negligible can also be recovered by substituting 𝑧̃𝑐𝑎𝑝 = 0.44 in the relationship depicted 

in Figure 5.8(b). 
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Figure 5.11: For a uniform distribution of particles released at x = -2l, the distribution at 

x = -l is shown at three different values of DiPe.  

At intermediate values of DiPe, decreasing DiPe aids capture because increasing 

diffusion distributes particles more broadly. Figure 5.11 shows how an initially uniform 

distribution of 100 particles all outside the capture zone evolves as they convect a 

distance equal to one particle length, at three values of DiPe. With decreasing DiPe 

increasing diffusion distributes particles more widely, as a result of which some particles 

move into the region where the electric field is able to capture them.  

For DiPe < 98, the Di necessary to ensure capture increases rapidly because at 

this point diffusion is too strong for the dielectrophoretic force to capture the particle. For 

DiPe > 98, capture is limited by hydrodynamic drag; within this regime, increasing 

diffusion helps capture because it distributes particles more broadly while still allowing 

the electric field to capture them. For DiPe < 98, on the other hand, capture is limited by 

diffusion; increasing diffusion necessitates a stronger dielectrophoretic force for capture. 

Pattern Density & Nanowire Conductivity 

One of the features most critical to assessing the applicability of a nanowire 

deposition technique is the pattern densities it can achieve. Thus far, demonstrations of 
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dielectrophoretic assembly remain limited to nanowires tens of microns in length, 

whereas some of the most obvious potential applications such as field-effect transistors in 

which a single carbon nanotube constitutes the channel between source and drain 

necessitate assembly well below 100 nm. 

Figure 5.12 shows capture curves corresponding to 𝑧̃𝑐𝑎𝑝 = 0.44 for various 

nanowire lengths. Gap length remains a fixed fraction of nanowire length (𝑙 𝑑⁄ = 1.5) as 

particle size is varied. Shorter wires are seen to be captured at lower voltages and higher 

flowrates. This is because for a given applied voltage, the electric field increases with 

decreasing gap length.   

 

Figure 5.12: Comparison of dielectrophoretic force predictions based on our discretized 

effective dipole moment approximation and a rigorous Maxwell stress tensor 

calculation.
132

 These are for 2 μm long nanowires 0.3 𝜇𝑚 above parallel plate electrodes.  

One of the advantages of flow-assisted dielectrophoretic assembly is that it can be 

applied to any semiconducting particle. Amongst the various relevant material properties, 

particle conductivity is most significant in determining the dielectrophoretic force it 

experiences. Both semi-conductor nanowires and carbon nanotubes can span a wide 

range of conductivities.  
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Figure 5.13(a) depicts the Clausius-Mossotti factor along the particle’s major axis 

Klong as a function of the frequency of the applied field for three different particle 

conductivities. For high conductivities, Klong is unchanged over practical frequencies. At 

2 S/m, Klong drops above 0.1 MHz but stays positive across the range of practical 

frequencies. For low conductivities, the Clausius-Mossotti factor is negative at large 

frequencies, meaning that particles are repelled from the electrodes. 

  

Figure 5.13: (a) The Clausius-Mossotti factor along the long axis as a function of field 

frequency for three different particle conductivities. (b) Minimum nanowire length for 

which flow-assisted dielectrophoretic assembly is feasible.  

The transition from a diffusion-aiding-capture to a diffusion-inhibiting-capture 

regime occurs at DiPe = 98. Below this value, diffusion rapidly becomes prohibitive; 

therefore, it is prudent to ensure that experimental parameters are chosen such that DiPe 

≥ 98. The maximum electric field (~V0/d) is limited by dielectric breakdown of solvent 

molecules, which occurs at ~ 60 MV/m.
136

 Since 𝐷𝑖𝑃𝑒 ∝ (𝑉0 𝑑⁄ )2𝑙3, this combination of 

a minimum DiPe and maximum electric field implies a minimum nanowire length for 

which successful assembly is achievable. Figure 5.13(b) shows this minimum length as a 

function of frequency for the three different particle conductivities. It is 20 nm for 2000 
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S/m nanowires, and increases in accordance with the Clausius-Mossotti factor with 

decreasing particle conductivity or increasing frequency. 

CONCLUSIONS 

Flow-assisted dielectrophoretic deposition exploits a precise balance of competing 

impulses on a nanowire; suspension flowrate and applied field strength are the most 

convenient ways to mediate its dynamics. Within a finite distance from the substrate, 

there exists a depletion layer largely void of nanowires (due to hydrodynamics, steric 

effects and nanowire anisotropy) and a capture zone (due to dielectrophoresis competing 

with hydrodynamics). Nanowires are captured when the capture width exceeds the 

depletion width; otherwise they are carried away with the flow. Successful assembly is 

aided by strong electric fields and low flowrates. 

Apart from flowrate and voltage, nanowire assembly is affected by a myriad of 

factors, including field frequency, gap width, nanowire length and material properties. 

Scaling reveals two dimensionless groups as the fundamental variables governing the 

assembly process, simplifying our understanding of how various experimental systems 

compare in terms of ease of assembly. Capture results for various flowrates and applied 

voltages collapse onto a single curve when plotted non-dimensionally. 

With decreasing nanowire length, increasing diffusion distributes particles more 

broadly, thereby aiding assembly by moving some particles into the region where the 

electric field is strong enough for capture. However, the strength of diffusion eventually 

becomes prohibitive, and in conjunction with an upper limit on the applied electric field 

due to dielectric breakdown of solvent molecules, imposes a minimum nanowire length 

for which flow-assisted dielectrophoretic assembly is feasible. This is 20 nm for 2000 
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S/m nanowires, and varies with field frequency and particle and solvent electrical 

properties in accordance with the Clausius-Mossotti factor. 

These investigations yield a fuller understanding of the dynamics of the assembly 

process, its limits and how experiments may be designed for successful assembly for 

various applications. It is prudent to remember that the model herein ignores inter-

particle interactions and hence applies only to the dilute suspensions that are commonly 

employed in dielectrophoretic assembly. Further, the focus here is on ensuring nanowire 

capture and avoiding escape with flow or diffusion; the quality of assembly (i.e. the 

extent of orientational misalignments or capture at undesired locations such as bus bars) 

has been studied elsewhere.
115, 137, 138

  

NOMENCLATURE 

Latin 

a nanowire radius 

d length of the gap between the biased and grounded electrodes 

e electric field 

f
DEP

 force on the nanowire from dielectrophoresis 

f
0,hyd

 force on a nanowire held stationary from hydrodynamic drag  

f
Br

 
force on the nanowire from collisions with solvent molecules causing 

Brownian diffusion 

k Boltzmann constant 

l nanowire length 

p effective dipole of the particle 

r location of the particle’s center 

t time 

t
DEP

 torque on the nanowire from dielectrophoresis 

t
0,hyd

 torque on a nanowire held stationary from hydrodynamic drag  

t
Br

 
torque on the nanowire from collisions with solvent molecules causing 

Brownian diffusion 

w width of the channel in the vorticity direction 

  

H height of the channel perpendicular to the substrate 

K 
Clausius-Mossotti factor, a measure of particle polarizability relative to 

the solvent 

R
rot

 rotational resistance tensor 
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R
trans

 translational resistance tensor 

T temperature 

Q volumetric flowrate of suspension 

V0 applied root-mean square voltage  

  

Greek  

δ Dirac delta function 

εp electrical permittivity of the particle 

εs electrical permittivity of the solvent 

ε*p complex permittivity of the particle 

ε*s complex permittivity of the solvent 

θ orientation of the particle 

μ viscosity of the solvent 

ω angular frequency of the AC electric field 

σp electrical conductivity of the particle 

σs electrical conductivity of the solvent 
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Chapter 6: Conclusions 

Three early-stage techniques for the fabrication of metallic nanostructures, 

creation of controlled topography in polymer films and precise deposition of nanowires 

and nanotubes were studied. Mathematical models and computational simulations clarify 

how the interplay of multiple physical processes drives dynamics, identify limits of 

throughput and resolution for each technique and yield a rational approach to optimizing 

experimental parameters to target specific structures efficiently. 

Evaporation of solvent through a topographically patterned membrane was shown 

to drive segregation of suspended nanoparticles. The drying time ranges from tens of 

seconds to several minutes and the resulting deposit can be sintered, constituting a 

potential route to single-step, roll-to-roll deposition of metallic nanostructures on flexible 

substrates. The Peclet number mediates the strength of evaporative convection relative to 

Brownian diffusion, with large values favoring particle segregation and higher features. 

Analysis yields predictive expressions for deposit dimensions and drying time as 

a function of experimental parameters for idealized limits of Pe = 0,1 between which real 

experiments lie. Thick membranes result in higher features and thin residual layers at the 

cost of longer drying times. Monolayered residual layers can be ensured by employing 

dilute suspensions.  

The analytical expressions can also be used to deduce optimal sets of 

experimental parameters to minimize the drying time while ensuring a certain feature 

and/or residual layer size. When only feature height is controlled and residual layer 

thickness is left unconstrained, the minimum drying time is 10 s. per 1 μm of feature 

height for 1 μm thick templates. When a monolayered residual layer is also desired, 

features up to 1 μm high can be deposited in less than 3 minutes.  
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The model and simulations neglect the possibility of imperfect wetting of the 

template and the presence of air pockets. Practical questions relating to the minimum 

thickness and maximum area achievable for a membrane template remain unanswered.  

Polystyrene films exposed to UV radiation through a photomask possess a higher 

surface energy in the exposed regions relative to the unexposed due to a photo-initiated 

reaction. When the film is heated to above its glass transition temperature, surface tension 

drives convection from the unexposed to the exposed regions, resulting in the formation 

of topography. A theoretical model solved numerically reproduces experimental 

observations of topography evolution and an analytical solution based on linearization 

yields a rudimentary predictive ability. The dynamics of the film are driven by surface 

tension-induced flow, capillary stabilization and diffusive dissipation of gradients in 

concentration of the photo-generated species. At short times, secondary maxima and 

minima form adjacent to the transition between low and high surface energy regions, 

whereas at long times peaks and troughs coincide with the centers of these regions.  

Increasing feature density (i.e. higher resolution) comes with a cost in the 

accessible height of the features. Thick films result in the greatest feature height above 

the residual layer, whereas thin ones minimize residual layer thickness. A higher surface 

tension differential between the exposed and unexposed regions yields higher features 

and thinner residual layers but does not significantly affect the heating time necessary. A 

20°C increase in temperature, on the other hand, reduces heating time by over an order of 

magnitude while also increasing peak-to-valley height by ~ 50%. Feature formation is 

aided by low viscosity as well as low diffusivity of the photo-generated polymer, 

suggesting that a blend of a small amount of a high molecular weight photoactive 

polymer in a bulk low molecular weight polymer would help maximize the resolution 

achievable.  
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The theory employed utilizes lubrication theory based on the assumption that the 

characteristic width of the mask pattern is much larger than the thickness of the film, and 

is therefore expected to lose accuracy for patterns hundreds of nanometers in size. 

Flow-assisted dielectrophoretic deposition exploits a precise balance of competing 

impulses on a nanowire; suspension flowrate and applied field strength are the most 

convenient ways to mediate its dynamics. Within a finite distance from the substrate, 

there exists a depletion layer largely void of nanowires (due to hydrodynamics, steric 

effects and nanowire anisotropy) and a capture zone (due to dielectrophoresis competing 

with hydrodynamics). Nanowires are captured when the capture width exceeds the 

depletion width; otherwise they are carried away with the flow. Successful assembly is 

aided by strong electric fields and low flowrates. 

Apart from flowrate and voltage, nanowire assembly is affected by a myriad of 

factors, including field frequency, channel geometry, nanowire length and material 

properties. Scaling reveals two dimensionless groups Di and DiPe as the fundamental 

variables governing the assembly process, simplifying our understanding of how various 

experimental systems compare in terms of ease of assembly. Capture results for various 

flowrates and applied voltages collapse onto a single curve when plotted non-

dimensionally. 

With decreasing nanowire length, increasing diffusion distributes particles more 

broadly, thereby aiding assembly by moving some particles into the region where the 

electric field is strong enough for capture. However, the strength of diffusion eventually 

becomes prohibitive, and in conjunction with an upper limit on the applied electric field 

due to dielectric breakdown of solvent molecules, imposes a minimum nanowire length 

for which flow-assisted dielectrophoretic assembly is feasible. This is 20 nm for 
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nanowires with a conductivity of 2000 S/m, and varies with field frequency and particle 

and solvent electrical properties in accordance with the Clausius-Mossotti factor. 

The model employed ignores inter-particle interactions as well as hydrodynamic 

interactions with the channel walls. Further, the investigation herein focuses on ensuring 

nanowire capture and avoiding escape with flow or diffusion; ensuring a certain quality 

of assembly (i.e. the extent of orientational misalignments or capture at undesired 

locations such as bus bars) may well pose more stringent requirements on experimental 

parameters and electrode design. 

Each of the three problems suggest avenues for useful future work: experimental 

validation of templated evaporative lithography, relaxing the thin-film assumption to 

simulate higher resolutions for surface-tension driven patterning and incorporating inter-

particle interactions as well as hydrodynamic interactions with the substrate into 

simulations of dielectrophoretic assembly of nanowires. 
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Appendix A: Experimental Validation of Templated Evaporative 

Lithography 

The model and simulations detailed in Chapter 2 show that ambient evaporation 

can drive convection strong enough to segregate nanoparticles, making templated 

evaporative lithography a promising route for single-step deposition of nanopatterned 

films in principle. An experimental proof-of-concept remains to be demonstrated. Efforts 

were made towards this end but we were unable to fabricate a suitable template.  

The process requires a topographically patterned template that promotes 

evaporation which is both spatially heterogeneous and fast. Heterogeneous evaporation 

drives transport of particles from slow to fast evaporation regions, resulting in high 

features and thin (or non-existent) residual layers. Fast evaporation ensures that 

nanoparticles segregate in spite of diffusion (which strengthens with decreasing particle 

size) and that the drying time is relevant to scalable, roll-to-roll patterning. Further, large 

area templates are preferable to maximize the area patterned in a single step.. 

These requirements necessitate a nanopatterned polymeric membrane (e.g. 

PDMS) with sub-micron thickness to ensure rapid evaporation. Fabrication of 

membranes becomes increasingly challenging with decreasing thickness and increasing 

area due to their fragility, and the need for topographical patterning only adds to the 

complexity of the task since the soft lithography methods commonly employed to pattern 

membranes are most suited to cases where membrane thickness is arbitrary.
139

 These 

limits have been pushed the furthest by Thangawng and coworkers,
68, 69

 demonstrating 

492 nm thick PDMS films 491 μm in diameter with 3 μm wide lines. 

Three methods were employed for the creation of PDMS templates: (i) spin-

coating PDMS on a photo-lithographically patterned substrate (ii) thermal imprinting of a 

quartz master into a PDMS film at an elevated temperature and (iii) direct 
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photolithography of PDMS. In each case, separation of the patterned PDMS from the 

membrane resulted in breakage. 

  

Figure A.1: SEM images of a quartz master used for thermal imprinting of a PDMS film. 

It consists of cylindrical pillars 218 nm in diameter, 94 nm in height and a 1 μm pitch. 

A 10:1 ratio of Sylgard 184 PDMS base:curing agent was employed in each case, 

and SU-8 photoresist was used for (i). The substrate and master in (i) and (ii) respectively 

were treated with trichloro(1H,1H,2H,2H-perfluorooctyl)silane as an anti-adhesion 

coating.
140

 For (iii), benzophenone,
141

 which is sensitive to UV radiation 200 – 400 nm in  

wavelength, was used as the photoiniator. A 3:5 mixture of benzophenone:xylene was 

added to the PDMS solution to 3% by weight. A 200 – 700 nm broadband exposure was 

used with a dosage well above the 7.2 J/cm
2
 recommended.

141
  

An alternative approach was also attempted: photolithographic patterning of 

commercially available porous alumina membranes.
142

 The membranes are rigid, 45 mm 

in diameter and have 50% porosity, allowing for fast evaporation; resist in the patterned 

areas would selectively block evaporation. However, the roughness on these is of the 

order of 1 micron, and resist seeps into the pores during spin-coating. 
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Figure A.2: A 47 mm diameter, 60 μm thick porous alumina membrane. Porosity is 50% 

with a 20 nm pore size.
142

 

It is important to note that while these efforts demonstrate that the implementation 

of templated evaporative lithography is non-trivial, more work is needed to settle the 

question of its viability decisively. Since thick PDMS templates are relatively easily 

fabricated, they could be employed to demonstrate a proof-of-concept as a first step. 

Further, zeolites
143

 are a possible template material not investigated here.  
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Appendix B: A Note on the Possibility of Wire Breakage During 

Dielectrophoretic Assembly 

Dielectrophoretic assembly leverages a combination of forces and torques to 

assemble nanowires. Here we ascertain the extent to which these can result in breakage. 

Nanowires close to the substrate undergo tumbling motion due to hydrodynamic 

torque. Envisaging a nanowire oriented vertically with its center at z = 0.5l as a 

cantilevered beam with an equivalent point load that causes the same torque as 

hydrodynamic drag, the resulting bending can be estimated from beam theory. 

 

𝑇𝑜𝑟𝑞𝑢𝑒 =  
1

𝑙
∫ 𝐹𝑥

ℎ𝑦𝑑
𝑙

0

𝑧𝑑𝑧 =
1

𝑙
∫ 𝐹̅ℎ𝑦𝑑

2𝑧

𝑙

𝑙

0

𝑧𝑑𝑧 =
2𝑙

3
𝐹̅ℎ𝑦𝑑 

(B.1)  

Then the equivalent load P: 

 

𝑃𝑙 =
2𝑙

3
𝐹̅ℎ𝑦𝑑 ⇒ 𝑃 =

2

3
𝐹̅ℎ𝑦𝑑 

(B.2)  

A cylindrical wire of radius a has a moment of inertia 𝐼 = 0.25𝜋𝑎4, and for a modulus of 

elasticity E, beam theory gives 

 

𝜃𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑃𝑙2

2𝐸𝐼
 

(B.3)  

For silicon E = 140 GPa,
144

 giving 𝜃𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛~10−4°
. Further, the stress on the particle 

(𝐹̅𝐷𝐸𝑃/𝜋𝑎2) is of the order 10
2
 Pa, whereas the yield stress of silicon

144
 is ~ 10

8
 Pa. The 

forces and torques are therefore insufficient to cause any discernible wire deformation.  

 

  



 98 

References 

1. Feynman, R. P. There's plenty of room at the bottom. Engineering and science 

1960, 23, 22-36. 

2. Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance 

Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684. 

3. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. 

Biosensing with plasmonic nanosensors. Nat Mater 2008, 7, 442-453. 

4. Palacios, T. Applied physics: Nanowire electronics comes of age. Nature 2012, 

481, 152-153. 

5. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon 

Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535-539. 

6. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat 

Mater 2010, 9, 205-213. 

7. Monti, A.; Alù, A.; Toscano, A.; Bilotti, F. Optical invisibility through 

metasurfaces made of plasmonic nanoparticles. Journal of Applied Physics 2015, 117, 

123103. 

8. Im, M.; Im, H.; Lee, J.-H.; Yoon, J.-B.; Choi, Y.-K. A robust superhydrophobic 

and superoleophobic surface with inverse-trapezoidal microstructures on a large 

transparent flexible substrate. Soft Matter 2010, 6, 1401-1404. 

9. Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F. Advances 

in top–down and bottom–up surface nanofabrication: Techniques, applications &amp; 

future prospects. Advances in Colloid and Interface Science 2012, 170, 2-27. 

10. Rajagopalan, T.; Venumadhav, K.; Arkasubhra, G.; Nripen, C.; Keshab, G.; 

Shubhra, G. Nanomaterial processing using self-assembly-bottom-up chemical and 

biological approaches. Reports on Progress in Physics 2013, 76, 066501. 

11. Liddle, J. A.; Gallatin, G. M. Lithography, metrology and nanomanufacturing. 

Nanoscale 2011, 3, 2679-2688. 

12. Mazzola, L. Commercializing nanotechnology. Nat Biotech 2003, 21, 1137-1143. 

13. Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block 

copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. 

Soft Matter 2014, 10, 3867-3889. 

14. Arshad, T. A.; Bonnecaze, R. T. Templated evaporative lithography for high 

throughput fabrication of nanopatterned films. Nanoscale 2013, 5, 624-633. 

15. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for 

efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921. 

16. Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. 

L. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010, 9, 193-

204. 

17. Himpsel, F. J.; Ortega, J. E.; Mankey, G. J.; Willis, R. F. Magnetic 

nanostructures. Advances in Physics 1998, 47, 511-597. 

18. Chou, S. Y. Patterned magnetic nanostructures and quantized magnetic disks. 

Proceedings of the IEEE 1997, 85, 652-671. 



 99 

19. Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. 

Experimental demonstration of guiding and bending of electromagnetic waves in a 

photonic crystal. Science 1998, 282, 274-276. 

20. Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, 

I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819-1821. 

21. Masuda, Y.; Koumura, T.; Okawa, T.; Koumoto, K. Micropatterning of Ni 

particles on a BaTiO3 green sheet using a self-assembled monolayer. J Colloid Interf Sci 

2003, 263, 190-195. 

22. Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R. Liquid morphologies on 

structured surfaces: From microchannels to microchips. Science 1999, 283, 46-49. 

23. Hartl, A.; Schmich, E.; Garrido, J. A.; Hernando, J.; Catharino, S. C. R.; Walter, 

S.; Feulner, P.; Kromka, A.; Steinmuller, D.; Stutzmann, M. Protein-modified 

nanocrystalline diamond thin films for biosensor applications. Nat Mater 2004, 3, 736-

742. 

24. Yang, W.; Auciello, O.; Butler, J. E.; Cai, W.; Carlisle, J. A.; Gerbi, J. E.; Gruen, 

D. M.; Knickerbocker, T.; Lasseter, T. L.; Russell, J. N.; Smith, L. M.; Hamers, R. J. 

DNA-modified nanocrystalline diamond thin-films as stable, biologically active 

substrates. Nat Mater 2002, 1, 253-257. 

25. Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography:  A Versatile 

Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. The Journal of 

Physical Chemistry B 2001, 105, 5599-5611. 

26. Yang, B.; Zhang, J. H.; Li, Y. F.; Zhang, X. M. Colloidal Self-Assembly Meets 

Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. 

Advanced Materials 2010, 22, 4249-4269. 

27. Dziomkina, N. V.; Vancso, G. J. Colloidal crystal assembly on topologically 

patterned templates. Soft Matter 2005, 1, 265-279. 

28. Velev, O. D.; Kaler, E. W. In situ assembly of colloidal particles into miniaturized 

biosensors. Langmuir 1999, 15, 3693-3698. 

29. Liu, S. T.; Zhu, T.; Hu, R. S.; Liu, Z. F. Evaporation-induced self-assembly of 

gold nanoparticles into a highly organized two-dimensional array. Phys Chem Chem Phys 

2002, 4, 6059-6062. 

30. Hayward, R. C.; Saville, D. A.; Aksay, I. A. Electrophoretic assembly of colloidal 

crystals with optically tunable micropatterns. Nature 2000, 404, 56-59. 

31. Zhang, J. H.; Zhang, X.; Zhu, D. F.; Li, X. A.; Zhang, X. M.; Wang, T. Q.; Yang, 

B. A Universal Approach To Fabricate Ordered Colloidal Crystals Arrays Based on 

Electrostatic Self-Assembly. Langmuir 2010, 26, 17936-17942. 

32. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. 

Contact line deposits in an evaporating drop. Phys Rev E 2000, 62, 756-765. 

33. Hu, H.; Larson, R. G. Evaporation of a Sessile Droplet on a Substrate. The 

Journal of Physical Chemistry B 2002, 106, 1334-1344. 

34. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. 

Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-

829. 



 100 

35. Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the coffee-ring 

effect by shape-dependent capillary interactions. Nature 2011, 476, 308-311. 

36. Popov, Y. O. Evaporative deposition patterns: Spatial dimensions of the deposit. 

Phys Rev E 2005, 71. 

37. Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-

assembly of nanoparticles. Nature 2003, 426, 271-274. 

38. Yiantsios, S. G.; Higgins, B. G. Marangoni flows during drying of colloidal films. 

Phys Fluids 2006, 18. 

39. Routh, A. F.; Zimmerman, W. B. Distribution of particles during solvent 

evaporation from films. Chem Eng Sci 2004, 59, 2961-2968. 

40. Routh, A. F.; Russel, W. B. Horizontal drying fronts during solvent evaporation 

from latex films. Aiche J 1998, 44, 2088-2098. 

41. Thiele, U.; Vancea, I.; Archer, A. J.; Robbins, M. J.; Frastia, L.; Stannard, A.; 

Pauliac-Vaujour, E.; Martin, C. P.; Blunt, M. O.; Moriarty, P. J. Modelling approaches to 

the dewetting of evaporating thin films of nanoparticle suspensions. Journal of Physics: 

Condensed Matter 2009, 21, 264016. 

42. Jarai-Szabo, F.; Astilean, S.; Neda, Z. Understanding self-assembled nanosphere 

patterns. Chem Phys Lett 2005, 408, 241-246. 

43. Fujita, M.; Yamaguchi, Y. Simulation of 3D crystallization of colloidal 

nanoparticles on a substrate during drying. Int Polym Proc 2007, 22, 16-21. 

44. Xu, J.; Xia, J.; Hong, S. W.; Lin, Z.; Qiu, F.; Yang, Y. Self-Assembly of Gradient 

Concentric Rings via Solvent Evaporation from a Capillary Bridge. Physical Review 

Letters 2006, 96, 066104. 

45. Xu, J.; Xia, J.; Lin, Z. Evaporation-Induced Self-Assembly of Nanoparticles from 

a Sphere-on-Flat Geometry. Angewandte Chemie International Edition 2007, 46, 1860-

1863. 

46. Kim, H. S.; Lee, C. H.; Sudeep, P. K.; Emrick, T.; Crosby, A. J. Nanoparticle 

Stripes, Grids, and Ribbons Produced by Flow Coating. Advanced Materials 2010, 22, 

4600-4604. 

47. Stannard, A. Dewetting-mediated pattern formation in nanoparticle assemblies. 

Journal of physics. Condensed matter : an Institute of Physics journal 2011, 23, 083001. 

48. Han, W.; Lin, Z. Learning from “Coffee Rings”: Ordered Structures Enabled by 

Controlled Evaporative Self-Assembly. Angewandte Chemie International Edition 2012, 

51, 1534-1546. 

49. Larson, R. G. Re-shaping the coffee ring. Angew Chem Int Ed Engl 2012, 51, 

2546-8. 

50. Choi, S.; Jamshidi, A.; Seok, T. J.; Wu, M. C.; Zohdi, T. I.; Pisano, A. P. Fast, 

High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative 

Self-Assembly in Picoliter-Scale Droplets of Particle Suspension. Langmuir 2012, 28, 

3102-3111. 

51. Tang, X.; O’Shea, S. J.; Vakarelski, I. U. Photoresist Templates for Wafer-Scale 

Defect-Free Evaporative Lithography. Advanced Materials 2010, 22, 5150-5153. 



 101 

52. Georgiadis, A.; Routh, A. F.; Murray, M. W.; Keddie, J. L. Bespoke periodic 

topography in hard polymer films by infrared radiation-assisted evaporative lithography. 

Soft Matter 2011, 7, 11098-11102. 

53. Han, W.; Byun, M.; Lin, Z. Assembling and positioning latex nanoparticles via 

controlled evaporative self-assembly. J Mater Chem 2011, 21. 

54. Kumnorkaew, P.; Ee, Y. K.; Tansu, N.; Gilchrist, J. F. Investigation of the 

Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays. Langmuir 

2008, 24, 12150-12157. 

55. Wang, Z. L.; Bao, R. R.; Zhang, X. J.; Ou, X. M.; Lee, C. S.; Chang, J. C.; Zhang, 

X. H. One-Step Self-Assembly, Alignment, and Patterning of Organic Semiconductor 

Nanowires by Controlled Evaporation of Confined Microfluids. Angew Chem Int Edit 

2011, 50, 2811-2815. 

56. Lewis, J. A.; Harris, D. J.; Conrad, J. C. Evaporative lithographic patterning of 

binary colloidal films. Philos T R Soc A 2009, 367, 5157-5165. 

57. Lewis, J. A.; Harris, D. J. Marangoni effects on evaporative lithographic 

patterning of colloidal films. Langmuir 2008, 24, 3681-3685. 

58. Harris, D. J.; Hu, H.; Conrad, J. C.; Lewis, J. A. Patterning colloidal films via 

evaporative lithography. Physical Review Letters 2007, 98. 

59. Lin, Z. Q.; Hong, S. W.; Byun, M. Robust Self-Assembly of Highly Ordered 

Complex Structures by Controlled Evaporation of Confined Microfluids. Angew Chem 

Int Edit 2009, 48, 512-516. 

60. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-

assembly: Nanostructures made easy. Advanced Materials 1999, 11, 579-+. 

61. Maenosono, S.; Okubo, T.; Yamaguchi, Y. Overview of Nanoparticle Array 

Formation by Wet Coating. Journal of Nanoparticle Research 2003, 5, 5-15. 

62. Wang, L.; Ding, Y.; Lu, B.; Qiu, Z. In Novel nano-scale overlay alignment 

method for room-temperature imprint lithography, 2006; Yang, L.; Wen, S.; Chen, Y.; 

Kley, E.-B., Eds. SPIE: 2006; pp 61491V-6. 

63. Li, N.; Wu, W.; Chou, S. Y. Sub-20-nm Alignment in Nanoimprint Lithography 

Using Moiré Fringe. Nano Letters 2006, 6, 2626-2629. 

64. Zhang, X.; Wang, X.; Kong, W.; Yi, G.; Jia, J. Tribological behavior of 

micro/nano-patterned surfaces in contact with AFM colloidal probe. Applied Surface 

Science 2011, 258, 113-119. 

65. Li, J.; Wang, M.; Shen, Y. Chemical modification on top of nanotopography to 

enhance surface properties of PDMS. Surface and Coatings Technology 2012, 206, 2161-

2167. 

66. Yim, E. K. F.; Reano, R. M.; Pang, S. W.; Yee, A. F.; Chen, C. S.; Leong, K. W. 

Nanopattern-induced changes in morphology and motility of smooth muscle cells. 

Biomaterials 2005, 26, 5405-5413. 

67. Nam, H. J.; Kim, J.-H.; Jung, D.-Y.; Park, J. B.; Lee, H. S. Two-dimensional 

nanopatterning by PDMS relief structures of polymeric colloidal crystals. Applied 

Surface Science 2008, 254, 5134-5140. 



 102 

68. Thangawng, A. L.; Swartz, M. A.; Glucksberg, M. R.; Ruoff, R. S. Bond–Detach 

Lithography: A Method for Micro/Nanolithography by Precision PDMS Patterning. 

Small 2007, 3, 132-138. 

69. Thangawng, A. L.; Ruoff, R. S.; Swartz, M. A.; Glucksberg, M. R. An ultra-thin 

PDMS membrane as a bio/micro–nano interface: fabrication and characterization. 

Biomed Microdevices 2007, 9, 587-595. 

70. Mark, J. E., Polymer Data Handbook. Oxford University Press: Oxford, 1999. 

71. Kim, H. J.; Nah, S. S.; Min, B. R. A new technique for preparation of PDMS 

pervaporation membrane for VOC removal. Advances in Environmental Research 2002, 

6, 255-264. 

72. Peng, P.; Shi, B.; Lan, Y. Preparation of PDMS—Silica Nanocomposite 

Membranes with Silane Coupling for Recovering Ethanol by Pervaporation. Separation 

Science and Technology 2011, 46, 420-427. 

73. Zhan, X.; Li, J.-d.; Huang, J.-q.; Chen, C.-x. Pervaporation properties of PDMS 

membranes cured with different cross-linking reagents for ethanol concentration from 

aqueous solutions. Chin. J. Polym. Sci. 2009, 27, 533-542. 

74. Russel, W. B. S., D.A.; Schowater, W.R.;, Colloidal Dispersions. Cambridge 

University Press: Cambridge, 1989. 

75. Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile 

nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 

2001, 105, 5599-5611. 

76. Xiangli, F.; Chen, Y.; Jin, W.; Xu, N. Polydimethylsiloxane (PDMS)/Ceramic 

Composite Membrane with High Flux for Pervaporation of Ethanol−Water Mixtures. 

Industrial & Engineering Chemistry Research 2007, 46, 2224-2230. 

77. Wu, H.; Liu, L.; Pan, F.; Hu, C.; Jiang, Z. Pervaporative removal of benzene from 

aqueous solution through supramolecule calixarene filled PDMS composite membranes. 

Separation and Purification Technology 2006, 51, 352-358. 

78. Satyanarayana, S. V.; Sharma, A.; Bhattacharya, P. K. Composite membranes for 

hydrophobic pervaporation: study with the toluene–water system. Chemical Engineering 

Journal 2004, 102, 171-184. 

79. Arshad, T. A.; Kim, C. B.; Prisco, N. A.; Katzenstein, J. M.; Janes, D. W.; 

Bonnecaze, R. T.; Ellison, C. J. Precision Marangoni-driven patterning. Soft Matter 2014, 

10, 8043-8050. 

80. Dey, R.; Raj M, K.; Bhandaru, N.; Mukherjee, R.; Chakraborty, S. Tunable 

hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus 

leaf replica) walls. Soft Matter 2014, 10, 3451-3462. 

81. Puthoff, J. B.; Holbrook, M.; Wilkinson, M. J.; Jin, K.; Pesika, N. S.; Autumn, K. 

Dynamic friction in natural and synthetic gecko setal arrays. Soft Matter 2013, 9, 4855-

4863. 

82. Schumacher, J. F.; Carman, M. L.; Estes, T. G.; Feinberg, A. W.; Wilson, L. H.; 

Callow, M. E.; Callow, J. A.; Finlay, J. A.; Brennan, A. B. Engineered antifouling 

microtopographies - effect of feature size, geometry, and roughness on settlement of 

zoospores of the green alga Ulva. Biofouling 2007, 23, 55-62. 



 103 

83. Aubin, H.; Nichol, J. W.; Hutson, C. B.; Bae, H.; Sieminski, A. L.; Cropek, D. 

M.; Akhyari, P.; Khademhosseini, A. Directed 3D cell alignment and elongation in 

microengineered hydrogels. Biomaterials 2010, 31, 6941-6951. 

84. Kim, J. B.; Kim, P.; Pegard, N. C.; Oh, S. J.; Kagan, C. R.; Fleischer, J. W.; 

Stone, H. A.; Loo, Y.-L. Wrinkles and deep folds as photonic structures in photovoltaics. 

Nat. Photon. 2012, 6, 327-332. 

85. Koo, W. H.; Jeong, S. M.; Araoka, F.; Ishikawa, K.; Nishimura, S.; Toyooka, T.; 

Takezoe, H. Light extraction from organic light-emitting diodes enhanced by 

spontaneously formed buckles. Nat. Photon. 2010, 4, 222-226. 

86. Scriven, L. E.; Sternling, C. V. The Marangoni Effects. Nature 1960, 187, 186-

188. 

87. Thomson, J. On certain curious motions observable at the surfaces of wine and 

other alcoholic liquors. Lond. Edinb. Dublin Philos. Mag. 1855, 10, 330-333. 

88. Haas, D. E.; Birnie, D. P., III. Evaluation of thermocapillary driving forces in the 

development of striations during the spin coating process. J. Mater. Sci. 2002, 37, 2109-

2116. 

89. Burton, L. J.; Cheng, N.; Vega, C.; Andrés, J.; Bush, J. W. M. Biomimicry and 

the culinary arts. Bioinspir. Biomim. 2013, 8, 044003. 

90. Okawa, D.; Pastine, S. J.; Zettl, A.; Fréchet, J. M. J. Surface Tension Mediated 

Conversion of Light to Work. J. Am. Chem. Soc. 2009, 131, 5396-5398. 

91. Katzenstein, J. M.; Janes, D. W.; Cushen, J. D.; Hira, N. B.; McGuffin, D. L.; 

Prisco, N. A.; Ellison, C. J. Patterning by Photochemically Directing the Marangoni 

Effect. ACS Macro Lett. 2012, 1, 1150-1154. 

92. Jensen, O. E.; Grotberg, J. B. Insoluble surfactant spreading on a thin viscous 

film: shock evolution and film rupture. J. Fluid Mech. 1992, 240, 259-288. 

93. Gaver, D. P.; Grotberg, J. B. The dynamics of a localized surfactant on a thin 

film. J. Fluid Mech. 1990, 213, 127-148. 

94. Janes, D. W.; Katzenstein, J. M.; Shanmuganathan, K.; Ellison, C. J. Directing 

convection to pattern thin polymer films. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 

535-545. 

95. Williams, M. L. Free Volume Approach to Polystyrene Melt Viscosity. J. Appl. 

Phys. 1958, 29, 1395-1398. 

96. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., Polymer 

Handbook. 4th ed.; John Wiley & Sons: Hoboken, 2005. 

97. Bicerano, J., Prediction of Polymer Properties. 3rd ed.; Marcel Dekker, Inc.: New 

York, 2002. 

98. Fleischer, G. Temperature dependence of self diffusion of polystyrene and 

polyethylene in the melt an interpretation in terms of the free volume theory. Polym. Bull. 

1984, 11, 75-80. 

99. Fleischer, G. Temperature dependence of self diffusion of polystyrene and 

polyethylene in the melt an interpretation in terms of the free volume theory. Polymer 

Bulletin 11, 75-80. 



 104 

100. Urakawa, O.; Swallen, S. F.; Ediger, M. D.; von Meerwall, E. D. Self-Diffusion 

and Viscosity of Low Molecular Weight Polystyrene over a Wide Temperature Range. 

Macromolecules 2004, 37, 1558-1564. 

101. Rouse, P. E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of 

Coiling Polymers. J. Chem. Phys. 1953, 21, 1272-1280. 

102. Katzenstein, J. M.; Janes, D. W.; Cushen, J. D.; Hira, N. B.; McGuffin, D. L.; 

Prisco, N. A.; Ellison, C. J. Patterning by Photochemically Directing the Marangoni 

Effect. ACS Macro Letters 2012, 1, 1150-1154. 

103. Wei, L.; Ping, X.; Lieber, C. M. Nanowire Transistor Performance Limits and 

Applications. Electron Devices, IEEE Transactions on 2008, 55, 2859-2876. 

104. Haselman, M.; Hauck, S. The Future of Integrated Circuits: A Survey of 

Nanoelectronics. Proceedings of the IEEE 2010, 98, 11-38. 

105. Yan, R.; Gargas, D.; Yang, P. Nanowire photonics. Nat Photon 2009, 3, 569-576. 

106. Garnett, E. C.; Brongersma, M. L.; Cui, Y.; McGehee, M. D. Nanowire Solar 

Cells. Annual Review of Materials Research 2011, 41, 269-295. 

107. Peng, K.-Q.; Lee, S.-T. Silicon Nanowires for Photovoltaic Solar Energy 

Conversion. Advanced Materials 2011, 23, 198-215. 

108. Peng, K.; Jie, J.; Zhang, W.; Lee, S.-T. Silicon nanowires for rechargeable 

lithium-ion battery anodes. Applied Physics Letters 2008, 93, 033105. 

109. Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard Iii, W. A.; 

Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 

168-171. 

110. Balasubramanian, K. Challenges in the use of 1D nanostructures for on-chip 

biosensing and diagnostics: A review. Biosensors and Bioelectronics 2010, 26, 1195-

1204. 

111. Long, Y.-Z.; Yu, M.; Sun, B.; Gu, C.-Z.; Fan, Z. Recent advances in large-scale 

assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors 

and photovoltaics. Chemical Society Reviews 2012, 41, 4560-4580. 

112. Hobbs, R. G.; Petkov, N.; Holmes, J. D. Semiconductor Nanowire Fabrication by 

Bottom-Up and Top-Down Paradigms. Chem Mater 2012, 24, 1975-1991. 

113. Liu, J.-W.; Liang, H.-W.; Yu, S.-H. Macroscopic-Scale Assembled Nanowire 

Thin Films and Their Functionalities. Chemical Reviews 2012, 112, 4770-4799. 

114. Gates, B. D. Self-assembly: Nanowires find their place. Nat Nano 2010, 5, 484-

485. 

115. Oh, K.; Chung, J.-H.; Riley, J. J.; Liu, Y.; Liu, W. K. Fluid Flow-Assisted 

Dielectrophoretic Assembly of Nanowires. Langmuir 2007, 23, 11932-11940. 

116. Freer, E. M.; Grachev, O.; Duan, X.; Martin, S.; Stumbo, D. P. High-yield self-

limiting single-nanowire assembly with dielectrophoresis. Nat Nano 2010, 5, 525-530. 

117. Castellanos, A.; Ramos, A.; González, A.; Green, N. G.; Morgan, H. 

Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of 

Physics D: Applied Physics 2003, 36, 2584. 

118. Satoh, A., Introduction to Molecular-Microsimulation for Colloidal Dispersions. 

Elsevier Science: 2003. 



 105 

119. Grassia, P. S.; Hinch, E. J.; Nitsche, L. C. Computer simulations of Brownian 

motion of complex systems. Journal of Fluid Mechanics 1995, 282, 373-403. 

120. Zhang, H.; Ahmadi, G.; Fan, F.-G.; McLaughlin, J. B. Ellipsoidal particles 

transport and deposition in turbulent channel flows. International Journal of Multiphase 

Flow 2001, 27, 971-1009. 

121. Raychaudhuri, S.; Dayeh, S. A.; Wang, D.; Yu, E. T. Precise Semiconductor 

Nanowire Placement Through Dielectrophoresis. Nano Letters 2009, 9, 2260-2266. 

122. Florent, S.; Sven, S.; Maéva, C.; Samuel, G.; Liviu, N.; Guilhem, L.; Emmanuel, 

F.; Christophe, V. A combination of capillary and dielectrophoresis-driven assembly 

methods for wafer scale integration of carbon-nanotube-based nanocarpets. 

Nanotechnology 2012, 23, 095303. 

123. Morgan, H.; Green, N. G., AC Electrokinetics: Colloids and Nanoparticles. 

Research Studies Press: 2003. 

124. Jones, T. B., Electromechanics of Particles. Cambridge University Press: 2005. 

125. Brown, D. A.; Kim, J.-H.; Lee, H.-B.; Fotouhi, G.; Lee, K.-H.; Liu, W. K.; 

Chung, J.-H. Electric Field Guided Assembly of One-Dimensional Nanostructures for 

High Performance Sensors. Sensors (Basel, Switzerland) 2012, 12, 5725-5751. 

126. Rosales, C.; Lim, K. M. Numerical comparison between Maxwell stress method 

and equivalent multipole approach for calculation of the dielectrophoretic force in single-

cell traps. Electrophoresis 2005, 26, 2057-2065. 

127. Batchelor, G. K. Slender-body theory for particles of arbitrary cross-section in 

Stokes flow. Journal of Fluid Mechanics 1970, 44, 419-440. 

128. Happel, J.; Brenner, H., Low Reynolds number hydrodynamics: with special 

applications to particulate media. Springer Netherlands: 2012. 

129. Gavze, E.; Shapiro, M. Particles in a shear flow near a solid wall: Effect of 

nonsphericity on forces and velocities. International Journal of Multiphase Flow 1997, 

23, 155-182. 

130. Satoh, A., Introduction to Practice of Molecular Simulation: Molecular 

Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative 

Particle Dynamics. Elsevier Science: 2010. 

131. Jackson, J. D., Classical Electrodynamics. Wiley: 1998. 

132. Liu, Y.; Chung, J.-H.; Liu, W. K.; Ruoff, R. S. Dielectrophoretic Assembly of 

Nanowires. The Journal of Physical Chemistry B 2006, 110, 14098-14106. 

133. Park, J.; Bricker, J. M.; Butler, J. E. Cross-stream migration in dilute solutions of 

rigid polymers undergoing rectilinear flow near a wall. Phys Rev E 2007, 76, 040801. 

134. Park, J.; Mittal, A. An Improved Model for the Steric-Entropic Effect on the 

Retention of Rod-like Particles in Field-Flow Fractionation: Discussion of Aspect Ratio-

Based Separation. Chromatography 2015, 2, 472. 

135. Park, J.; Butler, J. E. Inhomogeneous distribution of a rigid fibre undergoing 

rectilinear flow between parallel walls at high Péclet numbers. Journal of Fluid 

Mechanics 2009, 630, 267-298. 

136. Toriyama, Y.; Shinohara, U. Electric Breakdown Field Intensity of Water and 

Aqueous Solutions. Physical Review 1937, 51, 680-680. 



 106 

137. Quan, T.; Minlin, J.; Guangyong, L. Simulation and Experimental Study of 

Nanowire Assembly by Dielectrophoresis. Nanotechnology, IEEE Transactions on 2014, 

13, 517-526. 

138. Papadakis, S. J.; Hoffmann, J. A.; Deglau, D.; Chen, A.; Tyagi, P.; Gracias, D. H. 

Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. 

Nanoscale 2011, 3, 1059-1065. 

139. Qin, D.; Xia, Y.; Whitesides, G. M. Soft lithography for micro- and nanoscale 

patterning. Nat. Protocols 2010, 5, 491-502. 

140. Koo, N.; Bender, M.; Plachetka, U.; Fuchs, A.; Wahlbrink, T.; Bolten, J.; Kurz, 

H. Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-

Nanoimprint lithography using diluted PDMS material. Microelectronic Engineering 

2007, 84, 904-908. 

141. Preetha, J.; Andrew, C.; Ali Asgar, S. B.; Gui, L.; James, E. M.; Ian, P. 

Photodefinable PDMS thin films for microfabrication applications. Journal of 

Micromechanics and Microengineering 2009, 19, 045024. 

142. SPI supplies. http://www.2spi.com/item/a0247-fa/anopore_002/ (May 2, 2016),  

143. Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite membranes 

- a review and comparison with MOFs. Chemical Society Reviews 2015, 44, 7128-7154. 

144. Ashby, M. F.; Jones, D. R. H., Engineering Materials 1: An Introduction to 

Properties, Applications and Design. Butterworth-Heinemann: 2011. 

 

 

http://www.2spi.com/item/a0247-fa/anopore_002/

