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Transportation Planning via Location-Based Social Networking Data:  

Exploring Many-to-Many Connections 

 

Meredith Kimberly Cebelak, Ph.D. 

The University of Texas at Austin, 2015 

 

Supervisor:  C. Michael Walton 

 

Today’s metropolitan areas see changes in populations and land development 

occurring at faster rates than transportation planning can be updated. This dissertation 

explores the use of a new dataset from the location-based social networking spectrum to 

analyze origin-destination travel demand within Austin, TX. A detailed exploration of the 

proposed data source is conducted to determine its overall capabilities with respect to the 

Austin area demographics. A new methodology is proposed for the creation of origin-

destination matrices using a peer-to-peer modeling structure. This methodology is 

compared against a previously examined and more traditional approach, the doubly-

constrained gravity model, to understand the capabilities of both models with various 

friction functions. Each method is examined within the constructs of the study area’s 

existing origin-destination matrix by examining the coincidence ratios, mean errors, mean 

absolute errors, frequency ratios, swap ratios, trip length distributions, zonal trip 

generation and attraction heat maps , and zonal origin-destination flow patterns.  

Through multiple measures, this dissertation provides initial interpretations of the 

robust Foursquare data collected for the Austin area. Based upon the data analytics 

performed, the Foursquare data source is shown to be capable of providing immensely 

detailed spatial-temporal data that can be utilized as a supplementary data source to 
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traditional transportation planning data collection methods or in conjunction with other 

data sources, such as social networking platforms. The examination of the proposed peer-

to-peer methodology presented within this dissertation provides a first look at the 

potential of many-to-many modeling for transportation planning. The peer-to-peer model 

was found to be superior to the doubly-constrained gravity model with respect to 

intrazonal trips.  Furthermore, the peer-to-peer model was found to better estimate 

productions, attractions, and zone to zone movements when a linear function was used 

for long trips, and was computationally more proficient for all models examined.  
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Chapter 1: Introduction  

This dissertation expands on the Master’s thesis, “Location-Based Social 

Networking Data: Doubly-constrained Gravity Model Origin-Destination Estimation of 

the Urban Travel Demand for Austin, TX,” (Cebelak 2013) concept of using location-

based social networking for transportation planning. While the thesis examined the 

doubly-constrained gravity model, this effort proposes using many-to-many connections 

models as another viable transportation planning model for determining origin-

destination patterns.  

MOTIVATION  

Transportation planning, an essential part of a community’s ability to plan for the 

future, has been studied since the 1940’s (Weiner 1986). The goal of the planning effort 

is to understand where trips begin and end, what modes are being used, and what 

roadways and pathways are being utilized. Early efforts to determine human mobility 

patterns used the growth factors to distribute future origin-destination travel data in what 

is known as the Fratar method (Brokke and Mertz 1958). This in turn lead to the now 

commonly used four step model (McNally 2008), which is comprised of trip generation, 

distribution, mode split, and traffic assignment. This dissertation will focus on the trip 

generation and distribution steps of the four step model and will present a novel approach 

that make use of many-to-many concepts. 

Within relational database theory, the “many-to-many” connections concept refers 

to relationships between a “parent” or entity row and several “child” or characteristic 

rows as well as the relationship between a “child” row and several “parent” rows, and has 

been described as a “mirror of the real-life relationship between the objects” (Janssen 

2014). The concept has been applied to a variety of disciplines including business, 
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marketing, technology based industry, as well as anthropology. The movements of 

individuals can be influenced by business marketing and social anthropology, and thus 

can be analyzed under the spectrum of many-to-many connections. There are three many-

to-many modeling structures that focus in these areas: business-to-customer, peer-to-peer, 

and social forces.  

Business-to-customer (B2C), where the “parent” role is filled by businesses and 

the “child” role is filled by customers, has been researched with respect to the 

transportation field; one of the earlier examples was in 2001. This effort (TRIP 2001) 

examined the relationship between the economy and the transportation system within the 

US, with respect to freight movement, noting the higher levels and greater reliability for 

freight transport for business-to-business and business-to-customer exchanges. After this 

initial effort, two additional research efforts were done in the early part of this century. 

Both used B2C to further analyze trends within the freight industry, specifically the 

parcel component of the industry (Pagano 2001, Rabah and Mahmassani 2002). Research 

in this area had a brief hiatus until 2006, after which a handful of related research was 

conducted examining the relationships between suppliers and customers with respect to 

logistic services (Davis and Mentzer 2006, Leinbach 2007, Park, Min, and Park 2011), 

aviation (Franke 2007), and personal vehicles (Aboltins and Rivza 2014). 

With regard to the transportation industry, the research within the social forces 

genre of many-to-many connections in recent years focuses primarily on pedestrian 

interactions. In 1991, Helbing proposed a mathematical model to describe the movement 

of pedestrians that became the basis for his later effort that related behavioral changes in 

pedestrians to social forces, which were defined as external influences or the 

environment, public opinion, and social norms and trends (Helbing 1994). This effort 

lead to studies in crowd dynamics (Helbing et al. 2005), bottleneck flow for pedestrians 
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(Kretz, Hengst, and Vortisch 2008), prediction and simulation of pedestrian movements 

(Rudloff et al. 2011, Deroo and Auberlet 2012, Duives, Daamen, and Hoogendoorn 

2013), and pedestrian route choice (Werberich et al. 2014). 

Within the peer-to-peer modeling dynamic, transportation research trends are 

similar to those seen in the social forces modeling. Where social forces research has 

focused mainly on pedestrians, in recent years, peer-to-peer transportation modeling has 

concentrated in the carsharing spectrum, but to a lesser degree (Hampshire and Gaites 

2011, Rivasplata et al. 2012, Chen, McNeil, and Dill 2014, Ballús-Armet et al. 2014, 

Dill, Howland, and McNeil 2014). Prior to this, one of the first transportation related (via 

supply chain management) research efforts in peer-to-peer modeling examined the use of 

an e-supply chain portal to overcome large number of peer-to-peer relations for complex 

organizations focusing on business modeling (Boyson, Corsi, and Verbraeck 2003). 

Additionally early efforts focused on vehicle-to-vehicle information sharing (Yang and 

Recker 2006, Yang and Recker 2008), signals (Coplen 2007, Sabra and Riniker 2009), 

and college age driver incidents (Tisdale 2013).  

Data collection is a critical part of any modeling effort. Conventionally, the four 

step model has employed the traditional household survey, traffic counts, and position 

technologies (i.e., GPS, Bluetooth) as data collection methods. Recent research has 

explored the opportunities to use smartphones (INRIX 2010, AirSage 2014), and other 

data sources including vehicle to infrastructure (V2I) communications (Tornero, 

Martínez, and Castelló 2012). While all of these data collection methods have pros and 

cons, the most notable con for them is the cost of the data. Data collection through social 

networking can range from free to a few thousand dollars, while the conventional 

methods range from tens of thousands of dollars to hundreds of thousands of dollars.  
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Location-based services (LBS), which use location and time data, have four 

distinct areas of concentration: maps/navigation, tracking, information, and applications. 

Location-based social networking (LBSN) falls within the applications category of LBS 

combining it with social networking sites like Facebook, Twitter, and Foursquare. As 

tablets and smartphones are owned and used by more of the population, this data source 

has becomes a more population representative data source. Thus, researchers have begun 

to mine this data source to better understand user’s spatial patterns, geographic 

movements, temporal dynamics, networking ties, and location predictions. The first 

efforts to explore spatial patterns of users of LBSN used Markov-based location 

predictors to determine future locations of users (Li 2009). Further studies of user 

location prediction based on a user’s friends (Backstrom, Sun, and Marlow 2010) and a 

user’s content (Cheng, Caverlee, and Lee 2010) were examined in subsequent years and 

proved valuable. Consequently, research explored LBSN’s data relationships between 

geographic movements (Cho, Myers, and Leskovec 2011), human movement’s temporal 

dynamics (Zheng, Xie, and Ma 2010), as well as the links of social networking (Karimi 

2010). 

The most popular LBSN site is Foursquare, which has over 55 million users and 

over seven billion check-ins (Foursquare 2015), has users that include business and 

individuals. Researchers have recently begun to explore this site’s data set due to its 

popularity, high penetration rate, and large sample size, specifically to explore mobility 

patterns across spatial, temporal, and social aspects among users (Cheng, Caverlee, and 

Lee 2011, Scellato et al. 2011). Additionally, the site’s data has been explored more 

recently for its transportation planning application. The 2011 study by F. Yang et al. 

(2014) specifically used Foursquare data to estimate an origin-destination matrix for the 

Chicago urban area, and was among the first to demonstrate the data’s potential for use in 
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transportation planning. Continuing this effort, the modeling technique was applied to the 

Austin, TX area using a singly-constrained gravity model (Jin et al. 2013). To further 

analyze the use of Foursquare data for transportation planning, a doubly-constrained 

gravity model was proposed for the Austin area and demonstrated better learning 

capabilities when compared to the singly-constrained gravity model (Jin et al. 2014). 

Finally, exploration of the data with respect to mode choice revealed the data set’s 

potential to provide information on select modes (airplane, bus, rail, and bicycle), but 

could not provide any insight on the walk or automobile modes (Cebelak, Jin, and Walton 

2014). While these efforts have utilized the data from Foursquare, an in-depth and 

detailed exploration of Foursquare as a data source has not been done to date. This has 

limited the realization of the data source’s potential with respect to transportation 

planning.  This dissertation will include a detailed examination that will consist of 

identifying day-to-day as well as time dependent trends, a first for the industry. 

RESEARCH QUESTIONS 

Due to the lack of exploration in many-to-many modeling with respect to 

transportation planning and the novel nature of the use of LBSN as a data source for 

transportation planning, this dissertation attempts to apply these modeling concepts in 

conjunction with the LBSN database to answer the questions: 

1. Will many-to-many modeling provide a more insightful origin-destination 

matrix for the Austin area when compared to the doubly-constrained 

gravity model method while employing LBSN data using the local MPOs 

origin-destination model as a base comparison?  

2. How impactful is LBSN as a data sources?  How well does the data set 

represent the existing demographic of the study area with respect to land 
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use? Can it be used as a stand-alone data set or are additional 

complementary data sets needed?  

In answering these questions, this dissertation will provide a first in-depth 

examination of a Foursquare dataset through the analysis of check-in data characteristics 

over the spatial-temporal range. This analysis will reveal the data sources strengths, 

limitations, and potential for usage within the transportation planning due to the richness 

of the data available.  Further, the foray into peer-to-peer modeling will be the first 

exploration pertaining to the field of transportation planning and its comparison to the 

doubly-constrained gravity model will disclose the model’s capabilities and potential 

usage for industry practitioners.  

ORGANIZATION OF DISSERTATION  

The remaining sections of this document are organized as follows. Chapter 2 

presents the literature review, which covers the research conducted within the areas of 

transportation planning, location-based social networking, and many-to-many modeling. 

Chapter 3 explores the location-based social networking dataset used within this 

dissertation with respect to category, time of day, and day of week for venue check-ins, 

user demographics, and the relationship between land use and venue categories. Chapter 

4 provides details on the methodologies used to analyze variations of doubly-constrained 

gravity and peer-to-peer models using the location-based social networking data. Chapter 

5 gives the results of a case study examined using the proposed methodologies from 

Chapter 4. Chapter 6 offers the conclusion of the dissertation efforts and presents future 

areas of exploration. 
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Chapter 2:  Literature Review 

This chapter examines the literature reviewed in an effort to explore the relevant 

topics of transportation planning and modeling approaches, trends in data collection for 

the transportation planning process, the area of social media and location-based social 

media, and the many-to-many model. The endeavor aims to provide a foundation for the 

relevance and value of this dissertation.  

TRANSPORTATION PLANNING 

Since the 1940’s, Transportation planning has been studied as an essential part of 

a community’s ability to plan for the future (Weiner 1986). Prior to this time period, the 

focus of transportation planning was limited to the collection and analysis of existing 

information with little thought given to the future. Not until the post-World War II boom 

in automobile demand, which the existing infrastructure was not equipped to handle, and 

the city dwellers migration to the suburbs was there a need and interest to further the 

efforts in transportation planning. In 1944, the need to understand the complexities of 

urban street systems from a trip origin and destination perspective led to the development 

of the home-interview origin-destination (OD) survey (Weiner 1999). 

The 1950s brought new ideas and techniques to urban transportation planning to 

determine human mobility patterns using growth factors to distribute future OD travel 

data in what is known as the Fratar method (Brokke and Metz 1958). Following this 

effort, Robert B. Mitchell and Chester Rapkin (1954) established a link between travel 

and activities in an effort to create a thorough framework for exploration into travel 

behavior. Based upon the work of Mitchell and Rapkin, the now commonly used four-

step model (McNally 2008), which is comprised of trip generation, distribution, mode 

split, and traffic assignment, was first comprehensively applied in the Chicago Area 
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Transportation Study in the 1950s. Further discussion of this model is provided in the 

next portion of this chapter. The 1960’s brought Federal legislation that required 

“continuous, comprehensive, and cooperative” urban transportation planning and in the 

1970s environmental concerns and multimodal elements were included in the 

requirement (McNally 2008)    

Modern day efforts in transportation planning incorporate the views of various 

transportation agencies and the general public within the analysis of potential strategies 

(The Transportation Planning Process 2007). These efforts include the monitoring of 

existing conditions, forecasting future populations and employment growth through the 

assessment of projected land uses and identification of major growth corridors, 

identifying both current and future transportation issues and needs, developing long-

range plans and short-range programs, estimating impacts from recommended future 

improvements, as well as developing financial plans for the implementation of strategies. 

The Federal Highway Administration’s (FHWA) overview of their Transportation 

Planning Process is shown in Figure 1.  
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D 

Figure 2.1: FHWA’s Transportation Planning Process (The Transportation Planning 

Process 2007). 

Metropolitan Planning Organizations (MPOs) use transportation planning models 

to simulate the impacts of changes to their system and aid in their decision making 

process. The models employed include the traditional land use models, the emissions 

models, the four-step models, and the activity-based models. The land use models, used 

often for forecasting future development patterns, and the emissions models, used for 

examination of key pollutants from vehicle exhaust, are outside the focus of this effort 

and will not be further discussed. The four-step and activity-based models will be 

discussed further in the subsequent sections of this chapter. 

Four-Step Travel Demand Model 

For the prediction of demand for transportation services, the four-step model is 

one of the most commonly used models by MPOs comprising of the four-steps of trip 

http://www.planning.dot.gov/documents/briefingbook/D.htm#fig1
http://www.planning.dot.gov/documents/briefingbook/D.htm#fig1
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generation, trip distribution, modal split, and network assignments. The first two steps are 

the main focus of this dissertation. 

The first step of the four-step model, trip generation, measures the frequency of 

trips. The earliest effort of trip generation was in San Juan, Puerto Rico in 1948 in a study 

that developed rates for land use categories based on location, intensity, and type of 

activity (Weiner 1999). Following this effort, the Detroit Metropolitan Area Traffic Study 

in 1955 developed trip generation rates for each zone within the study area by land use 

category. In 1972, the Institute of Transportation Engineers’ (ITE) Trip Generation 

Committee was tasked with the collection and compilation of existing trip generation rate 

data. Published in 1976, the first edition of this effort, The Trip Generation, contained 

data from nearly 80 sources. The 1991 version and 5th edition was considered the most 

comprehensive database containing trip generation rates for 121 land use categories from 

over 3,000 studies. The most current edition is the 9th edition and was published in 2012 

containing rates for 172 land uses based on over 5,500 studies (ITE 2013). For 

transportation professionals, the ITE Trip Generation reports are the most widely used 

reference for trip generation data with respect to site level planning and analysis (Weiner 

1999). 

For MPOs, the trip generation process’s goal is to determine the magnitude of 

total daily travel at the household and traffic analysis zonal level for all trip purposes 

included within the study. These trip purposes typically include at a minimum three 

types: home-based work, home-based non-work, and non-home-based (McNally 2008). 

The trip end points are modeled as either productions or attractions within this 

transportation demand model.  

Upon attaining the trip generations for the study area, the second step of the 

model, trip distribution, is undertaken. This process recombines the production and 
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attraction rates for each traffic analysis zone (TAZ) and creates a matrix of the number of 

trips occurring between each origin and destination TAZ (McNally 2008). The 

recombination effort is done using models which include, but are not limited to, logit, 

entropy, growth, and gravity. Within the logit models, the multinomial logit destination 

choice model is commonly used with activity-based models (Bhat and Koppelman 1999). 

The entropy maximizing method was established by Wilson in 1976 and was able to 

relate the probability of the distribution of trips occurring in an OD pair to the number of 

states of the system (Wilson 1967). Growth models have two variations: uniform, which 

only requires a general growth rate for the study area, and constrained, which uses 

information on the growth of the number of trips that originate and terminate within each 

zone allowing for different factors to be utilized (O’Flaherty 1997). While both versions 

of the growth model benefit from simplicity, the uniform method suffers from the 

assumption of a single growth factor for all zones and attractions, and the doubly-

constrained suffers from its heavy dependence on observed trip patterns and the lack of 

inclusion of changes in travel costs within its trip distribution. Gravity models will be 

discussed in depth within the following section. 

Gravity Models 

The aggregate gravity model originated from Newton’s gravitational law 

(Mathew and Rao 2007), which states that force, F, is related to the gravitational 

constant, G, the masses of two objects, m1 and m2, and the distance between the objects, d, 

and is formulated as follows: 

𝐹 =
𝐺 ∗ 𝑚1 ∗ 𝑚2

𝑑
  (𝐸𝑞𝑛. 2.1) 
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The trip distribution formula is analogous with this Newtonian formula and is shown 

below in the general form, with the following relationships: 

 the number of trips per O-D pair (𝑇𝑖𝑗) component relating to force (F), 

 the 𝐶 relating to the gravitational constant (G), 

 the productions from zone i (𝑂𝑖) and the attractions from zone j (𝐷𝑗) 

relating to the mass entries (m1, m2), and  

 the travel cost between O-D pairs (𝑐𝑖𝑗𝑛) relating to the distance between 

objects (d). 

𝑇𝑖𝑗 =  
𝐶 ∗ 𝑂𝑖 ∗ 𝐷𝑗

𝑐𝑖𝑗𝑛
  (𝐸𝑞𝑛. 2.2) 

To ensure the total number of productions and attractions are equal, a balancing 

factor (b) is added to Equation 1.2 to either the productions or attraction factors for the 

singly-constrained gravity model (Equation 2.3), which attempts to preserve zonal inputs 

for the productions only (TMIP 2010). Additionally, within this model the general travel 

cost term, (𝑐𝑖𝑗𝑛) from Equation 2.2, is replaced by a friction function (𝑓(𝑐𝑖𝑗)) to de-

incentivize travel based on time via distance or a cost increases. Further details on 

friction functions are discussed in a subsequent section of this chapter. 

𝑇𝑖𝑗 =  𝑏 ∗ 𝑂𝑖 ∗ 𝐷𝑗 ∗ 𝑓(𝑐𝑖𝑗)  (𝐸𝑞𝑛. 2.3) 

The doubly constrained gravity builds upon the singly-constrained gravity model 

and attempts to preserve zonal inputs for the productions and attractions (TMIP 2010). 

This model encompasses balancing factors for both the productions and the attractions 

and its equation is shown below (Mathew and Rao 2007). Within this equation, the 

balancing factor for the productions is defined by 𝛽𝑖, and 𝛼𝑖 defines the balancing factor 

for the attractions. 
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𝑇𝑖𝑗 =  𝛽𝑖 ∗ 𝑂𝑖 ∗ 𝛼𝑗 ∗ 𝐷𝑗 ∗ 𝑓(𝑐𝑖𝑗)  (𝐸𝑞𝑛. 2.4) 

The sum of the total trips for each destination should equal the sum of the combination of 

productions, attractions, balancing factors, and friction functions for each destination. 

Using this principle, Equation 4 can be manipulated into Equation 2.5. 

∑ 𝑇𝑖𝑗

𝑖

= ∑ 𝛽𝑖 ∗ 𝑂𝑖 ∗ 𝛼𝑗 ∗ 𝐷𝑗 ∗ 𝑓(𝑐𝑖𝑗)

𝑖

  (𝐸𝑞𝑛. 2.5) 

The sum of trips in any specific row or column of the OD matrix should equal the total 

number of trips produced in that zone as shown in Equations 2.6 and 2.7.  

∑ 𝑇𝑖𝑗

𝑗

= 𝑂𝑖   (𝐸𝑞𝑛. 2.6) 

∑ 𝑇𝑖𝑗

𝑖

= 𝐷𝑗    (𝐸𝑞𝑛. 2.7) 

From Equation 4 and 7, balancing factors (𝛽𝑖, 𝛼𝑗) can be found (Equation 2.8 and 2.9). 

𝛽𝑖 =
1

∑ 𝛼𝑗 ∗ 𝐴𝑗 ∗ 𝑓(𝑡𝑖𝑗)𝑗

   (𝐸𝑞𝑛. 2.8) 

𝛼𝑗 =
1

∑ 𝛽𝑖 ∗ 𝑃𝑖 ∗ 𝑓(𝑡𝑖𝑗)𝑖

   (𝐸𝑞𝑛. 2.9) 

Using equation 2.8 and 2.9 with separate singly constrained models, the following 

formulas can be used to find the 𝑇𝑖𝑗 for each O-D pair from this model using an iteration 

process similar to the Furness method (Mathew and Rao 2007).  

𝑇𝑖𝑗 = 𝑂𝑖 ∗
𝐷𝑗 ∗ 𝑓(𝑡𝑖𝑗)

∑ 𝐷𝑗 ∗ 𝑓(𝑡𝑖𝑗)𝑗

   (𝐸𝑞𝑛. 2. 10) 

𝑇𝑖𝑗 = 𝐴𝑗 ∗
𝑃𝑖 ∗ 𝑓(𝑡𝑖𝑗)

∑ 𝑃𝑖 ∗ 𝑓(𝑡𝑖𝑗)𝑖

   (𝐸𝑞𝑛. 2.11) 
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As used in the singly- and doubly-constrained gravity models, the friction 

function (𝑓(𝑐𝑖𝑗)) de-incentivizes travel based on the increase in time via distance or the 

cost. This “deterrence function” (Mathew and Rao 2007) can use a variety of 

formulations to appropriately calculate the impedance including the linear function, 

negative exponential, power, and gamma function, (Bossard 1993, Mathew and Rao 

2007), which are shown in the equations below. 

Linear:  𝑓(𝑐𝑖𝑗) =  α + β ∗ 𝑑𝑖𝑗  (𝐸𝑞𝑛. 14) 

Negative exponential:  𝑓(𝑐𝑖𝑗) =  α𝑒−β∗𝑑𝑖𝑗   (𝐸𝑞𝑛. 15) 

Power: 𝑓(𝑐𝑖𝑗) =  𝑑𝑖𝑗
−𝑛   (𝐸𝑞𝑛. 16) 

Gamma: 𝑓(𝑐𝑖𝑗) =  α ∗ 𝑑𝑖𝑗
−β ∗ 𝑒−𝛾∗𝑑𝑖𝑗    (𝐸𝑞𝑛. 17) 

In the above equations, α is a positive scaling factor that controls the overall range 

of the function values, β is a negative constant value that affects the distribution of 

shorter trips, n is a positive or negative constant value that affects the distribution of trips, 

𝛾 is a parameter of transport friction relating to the efficiency of the transportation system 

between two locations and always negatively affects the distribution of longer trips, and 

𝑑𝑖𝑗 is the Manhattan distance between the centroids of origin zone i and destination zone 

j in miles. 

The triply-constrained gravity model, the atomistic gravity model, has constraints 

on the productions, attractions, and the trip length frequency. The addition of the 

constraint on the trip length frequency makes the model self-calibrating for both intra-

zonal and inter-zonal trips. For this model, the TAZs are represented by an abstract 

discrete spatial surface made up of “atoms” that are disbursed throughout the TAZ. 
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Additionally, the model uses travel time instead of distance for the zonal radii, which are 

then used with the zonal centroid-to-centroid travel times for the estimation of the spatial 

distribution of the atom pairs. The basic formula used for the atomistic model is as 

follows with 𝑝𝑖𝑣
 represents the trips produced by atom v of zone i, 𝑎𝑗𝑞

the relative 

attraction factor for atom q of zone j, 𝐹𝑑𝑣𝑞
 the relative trip length factor for the estimated 

separation between atom pair vq, 𝐾𝑠𝑖𝑗
 the bias factor for sector pair containing zones i and 

j, 𝑀𝑦 the number of atoms in zone y, and 𝑁 represents the number of zones. 

𝑇𝑖𝑗 = 𝑂𝑖 ∗
∑ ∑ 𝑝𝑖𝑣

∗ 𝑎𝑗𝑞
∗ 𝐹𝑑𝑣𝑞

∗
𝑀𝑗
𝑞=1

𝑀𝑖
𝑣=1 𝐾𝑠𝑖𝑗

∑ ∑ ∑ 𝑝𝑖𝑛
∗ 𝑎𝑥𝑚

∗ 𝐹𝑑𝑛𝑚
∗ 𝐾𝑠𝑖𝑥

𝑀𝑥
𝑚=1

𝑀𝑗
𝑛=1

𝑁
𝑥=1

   (𝐸𝑞𝑛. 2.12) 

𝑂𝑖, the total trips produced in zone i, is calculate using the following formula. 

𝑂𝑖 = ∑ 𝑝𝑖𝑚

𝑀𝑖

𝑚=1

   (𝐸𝑞𝑛. 2.13) 

Activity-Based Travel Demand Model  

Recently, activity-based travel demand models have gained popularity in the 

United States (US). This model type generates activities, identifies destinations for the 

activities, determines the mode used for travel, and predicts the particular network route 

used (Castiglione, Bradley, and Gliebe 2014). These models examine travel through “trip 

chaining” where multiple trip legs are chaining trips into tours. In comparison to four-

step models, activity-based models are able to represent the realistic constraints of time 

and space as well as the connections between activities and travel for individuals as well 

as multiple people within a household (Castiglione, Bradley, and Gliebe 2014). This is 

done through the understanding of behavior theories with respect to how individuals 

decide to or not to participate in activities. Decisions on where and when to participate in 
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activities are also included within the analysis. Table 1 shows a comparison between trip-

based and activity-based models. 

 

Model Type 
Spatial/ 

Temporal Detail 

Person/ 

Household 

Detail 

Sensitivity to 

Policy 

Run 

Time 
Cost 

Four-step Low to Medium Medium Medium Medium Medium 

Activity-based Medium to High High Medium to High Medium Medium 

Table 2.1: Model Comparison Between Four-step and Activity-based (Castiglione, 

Bradley, and Gliebe 2014) 

The activity-based approach is more disaggregated in time, space, and activities; 

thus, the models are better suited for analyzing complex policy alternatives, i.e., flexible 

work hours and variable pricing schemes (Bhat and Koppelman 1999). Additionally, the 

models can be used to produce detailed performance metrics that can be used to support 

equity analysis, regional planning, as well as regional air quality, transit, and 

transportation demand management forecasting. For these reasons, many municipalities 

have begun to move toward using the activity-based model. With this in mind, this 

dissertation will explore how the location-based social networking data may be used to 

aid municipalities towards this modeling structure and how the data may be used within 

an activity-based approach in a latter chapter. 

DATA COLLECTION METHODS 

One of the fundamental components for the creation of an OD matrix, regardless 

of model type, is the data collection. There are a variety of methodologies employed for 

data collection including the more traditional methods of household surveys and traffic 

counts, the increasingly utilized technology-based methods of using global position and 
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cellphones, and future methods that are being researched and include innovative data 

sources and connected vehicle technologies.  

Traditional Methods 

Household Surveys 

Data has conventionally come from traditional household travel behavior surveys 

for the creation of OD matrices. These surveys collect data that includes trip purpose, 

transportation mode used, trip duration, time of day as well as the day of the week the trip 

took place, vehicle occupancy when personal vehicle is used, and personal demographic 

information including age, sex, employment status, income, and education level (NHTS 

2013). Surveys data can be collected via personal home interviews, telephone interviews, 

by mail, or by internet. For the personal home interviews, an interviewer is required to 

visit the respondent’s home or office to administer questions in a face-to-face interview 

(Sharp 2005). This method provides one of the most complete data sets with the highest 

response rates of 60-70% (Giaimo et al. 2010) when compared to other methods covered 

within this section. Despite this high quality data, the conduction of this method is the 

most expensive and time consuming.  

The telephone interview method requires interviewers to contact individuals via 

telephone to administer the survey. Sample bias exists for this method since it limits 

participants to only those households with telephones and response rates are intermediate 

in quality of data and cost and range from 25 to 40% (Giaimo et al. 2010). For the mail 

survey format, a questionnaire is mailed out to respondents with the results returned 

either by mail or telephone. The coverage for this method is similar to that of the personal 

home interview method; however, it has the lowest response rates of 20-30% (Giaimo et 

al. 2010), and low data quality rates. The method does have the advantage of beings one 
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of the least expensive methods for the household surveys. The final method of survey 

deployment is the internet, which is similar to the mail format of survey deployment, but 

places the survey on the internet for respondents to complete. Similar to the sample bias 

discussed for the telephone method, only households with internet access are able to 

participate. The response rates for this method are similar to those of the mail method 

with intermediate data quality and while the costs are lower for this method, there are 

higher startup costs associated with the uses of survey platforms. 

Traffic Counts 

In 1979 a study by Erlander, Nguyen, and Steward were the first to demonstrate 

the ability to create a unique OD matrix if traffic counts for all links were available. 

However, the method required that detector infrastructure would be deployed throughout 

the study area on all viable routes between OD pairs, which is typically cost prohibitive 

for municipalities. This study was followed by additional research in the 1980s. Using 

observed traffic data, OD matrix estimation was conducted for a networks having more 

than 70 links (Van Zuylen and Willumsen 1980, LeBlanc and Farhangian 1982). Fisk and 

Boyce recognized that traditionally only a sample of traffic count data is available and 

proposed a method for estimating link cost functions and formulated doubly-constrained 

distribution assignment model for this data (Fisk and Boyce 1983). The formulated model 

by Fisk and Boyce was extended to include two travel modes in the work by Kawakamik, 

Lu, and Hirobata in 1992. Fisk furthers the 1983 effort with respect to the congested 

network scenario and examines three different formulations to create the OD matrices 

(Fisk 1989). The use of two modes of traffic counts (cars and transit) was also examined 

for OD matrix estimation by Cascetta and Nguyen (1988) using classical and Bayesian 

statistical inference techniques for the model framework and algorithm development. In 
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the 1998 study by Abrahamsson, traffic volumes for each link within a system were used 

to create an OD matrix. The author notes that many different OD matrices could be 

reproduced from the observed traffic counts. 

Recently, this method has been shown to be possible in practice (Watson and 

Prevedouros 2006, Doblas and Benitez 2005). However, these works concede that 

detectors would need to be installed for full coverage of the network to prevent large data 

gaps which in turn would lead to operation and maintenance costs that would be an 

expensive long term commitment. Fontaine and Smith (2007) noted that there are 

concerns with the accuracy of estimated traffic conditions between detectors as they only 

provide data at fixed locations. An additional limitation of the data set, as stated in 

Abrahamsson’s effort, is the need for a “target” OD matrix to verify the methodology, 

which would typically come from prior information on the anticipated or existing OD 

matrix. 

Technology-Based Methods 

Global positioning systems (GPS), cellphones, and Bluetooth technologies have 

benefited from advances in position technologies and have made these data sources 

viable for traffic flow monitoring, providing traveler information, and advanced traffic 

and demand management. Survey researchers have used these methods in simulation 

efforts and field deployments.  

Global Positioning Systems 

A satellite-based positioning system was initiated by the US Military in the 1970s. 

This system became the fully operational GPS in 1995 (Sen and Bricka 2009). The quick 

adoption of the technology by the domestic and international research community due to 
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the positioning requirement for travel surveys can be attributed to relative low-cost, high 

accuracy of the technology (Bricka 2008).  

In 1996, the first GPS travel survey effort was done in Lexington, Kentucky as a 

proof-of-concept (Murakami and Wagner 1999). Personal Digital Assistants (PDAs) 

equipped with GPS were utilized to capture vehicle based daily trip information for 100 

households over six days. The study had two goals: to identify an alternative to trip 

diaries that was cost effective and to determine individual participant’s willingness to use 

this data collection methodology. In addition to these goals, the study was able to 

demonstrate the technologies ability to collect information on route choice and travel 

speed. Following this initial work, Wolf, Guensler, and Bachman (2001), noting that 

previous efforts had only used GPS as a supplemental data source, attempted to utilize 

GPS as replacement data collection source and demonstrated the ability of the technology 

to collected personal vehicle travel data using a geographic information system (GIS) to 

derive the traditional diary elements. To validate this small scale effort, Wolf et al. 

compared the derived travel diary data with paper diary data finding matching or 

superseding diary elements from the GPS data source. A large scale effort demonstrating 

the proof-of-concept was conducted by Giaimo et al. in 2010. This first of its kind study 

examined the replacement of travel diaries with a multiday GPS survey for the Greater 

Cincinnati Household Travel Survey and was made up of a fully representative sample 

(household size, income, age, geographic region, etc.) where data was recorded for up to 

three days of travel. Resulting in completion rates that were acceptable and 

representative, the method showed that participants were not additionally burdened in 

carrying devices. This effort, however, was not without its drawbacks. Significant 

incentives and logistical issues, including the timely retrieval of GPS units, GPS unit loss 

rates, and battery outages, were noted with these logistical issues resulting in incomplete 
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data. Additionally, the software used with the data had some limitations including the 

map editing process requiring the review of data to ensure its appropriate incorporation, 

and the miss identification of trips as two trips due to a stop within the trip or the loss of 

the GPS signal. 

Research has also been conducted using GPS to determine the characteristics of 

underreporting which occurs with traditional survey methods. Bricka and Bhat (2006) 

conducted a comparative examination of GPS and the traditional household survey to 

determine the level and likelihood of underreporting finding that individuals under 30, 

males, individuals with less than a high school education, those who were unemployed, 

those who make many trips, traveled long distances, and those who trip chained were 

likely to underreport. For GPS surveys, challenges with non-responses were identified by 

Bricka in 2008, who noted the burdens of survey length (duration of study time), privacy 

concerns, and equipment complications. The study noted that non-responses were found 

to be associated with older, less educated, and low income participants, which followed 

the trends associated with technology acceptors typically being young, highly education, 

higher income males. This indication of a sampling bias was supported by the Oregon 

Household Travel Survey test pilot, which utilized GPS as its data collection method and 

suggests that other methods of data collection may be more appropriate and noted that the 

cost for the GPS-based survey was over two times as expensive as traditional methods 

(Bricka et al. 2009). The study did note that these costs were expected to decrease as the 

data collection process became streamlined and as new technology became available. 

An additional limitation of GPS stems from the need of line of sight for the 

technology to function properly. Obstructions, which include tall buildings and trees, 

between GPS devices and satellites may limit the ability of data capture from the device 
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(Bhat 2014). Downtown areas may also have data losses for routes and segments due to 

the limitation of access to GPS antenna. 

Cellphone 

By the end of 2012, over 326.4 million wireless active devices, including 

smartphones, tablets, and hotspots, existed within the US (U.S. Wireless Quick Facts 

2013) and by the middle of 2013, 91% of adults age 18 and older owned a cellular phone 

in the US (Brenner 2013). These statistics along with the availability of wireless location 

technologies (WLT) from wireless carriers have inspired transportation researchers to 

investigate the feasibility of extracting traffic data from the location data of cellphones. 

There are two categories of WLT: mobile based and network based. For mobile 

based WLT, the location is determined from signals received from base stations or from 

GPS; while for network based, an existing network is relied upon to determine the 

location by measuring signal parameters at the base station (Sayed, Tarighat, and 

Khajehnouri 2005). The E911 mandate from the Federal Communication Commission 

(FCC) requires that all cellular carriers be able to provide a 911 caller’s phone number 

for return calls as well as the location of said caller via WTL (Revision 1997). This 

mandate led to Yim’s 2003 examination into cellular probe technologies where it was 

noted that the use of E911 for probe activities introduced privacy concerns and 

improvements in cellular geolocation technologies would be needed to realize the full 

capabilities of the technology. In 2006, Pan et al. demonstrated the theoretical and 

experimental feasibility of using cellular-based data-extracting methods for trip 

distribution showing the methods ability to directly attain traveler spatiotemporal 

information from mobile carriers was advantageous as it required minimal labor and 

costs. Correspondingly, the 2007 effort of Caceres, Wideberg, and Benitez developed a 
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technique that used the global system for mobile communications (GSM) for the 

derivation of OD data via simulated data which produced estimation results of reasonable 

precision. However, a limitation of the technique was the need for the cellphone to be 

powered on for data collection to occur. The simulated effects of using WLT for 

monitoring traffic was examined by Fontaine and Smith (2007) which found 

overestimation in the capabilities of the system for dense networks with mixed 

congestion and free flow conditions. The study also noted the need for WLT data 

collection to be tailored to specific localized parameters including frequency rates for 

sampling, which may need to be adjusted to account for traffic conditions.  

In 2010, a method developed by Schlaich, Otterstätter, and Fiedrich to generate 

time-space trajectories for travelers through the analysis of cellular phone data from 

location-area-updates, which are recorded from mobile phones while in the standby-

mode, found that while trajectories were able to be produced they were only 

representative of SIM-cards and not vehicles, and that short trips could not be detected 

since they may exist within one location area only. This first limitation is of particular 

importance since one vehicle may contain multiple SIM-cards onboard. Concurrently, a 

study by Herrera et al. (2010) used GPS-enabled mobile phones for traffic monitoring 

and served as a proof-of-concept of the proposed methodology. This effort found that 

higher accuracies for velocities were attained in comparison to loop detectors despite 

penetration rates of two to three percent. These minimal penetration rates were found to 

be sufficient to achieve spatiotemporal coverage of the network since the devices would 

be moving throughout the transportation system, thus making the data collection method 

viable for transportation planning purposes. 

Further research using cellphone data to create OD trips by purpose and time of 

day has recently been undertaken. The work by Çolak et al. (2015) explored the use of 
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cellphone data within a four-step model with a focus on opportunities and limitations of 

the data. The effort used only cellphone data and population density for two large cities, 

one in the US and one international, finding the extent the cellphone data was able to 

accurately reflect daily travel and proposing guidance on how to utilize the data for OD 

generation by purpose and time of day. While the effort was successful, the authors only 

accounted for traditional work-life schedules (i.e., working 8 a.m. to 5 p.m., no shift 

work) and did not attempt to account for work locations where cellphone use is limited or 

prohibited (i.e., hospitals, schools). Additionally, the spatial resolution analyzed within 

the study only had success at town and subdistrict level indicating a considerable 

limitation of the current methodology. The authors also note the significant existence of 

mismatched data between the comparison trip data with the estimated data and concede 

that while the method holds promise, the data is not representative of the population at 

the TAZ level traditional needed by metropolitan organizations for planning purposes. 

Recent evolutions in cellphone probe data had been attributed to upgrades in 

wireless communication standards into 3G and 4G, the market domination of 

smartphones, as well as the integration of social media and cloud computing. Companies 

like AirSage have teamed with cellular companies to receive wireless signal data which 

are then used to anonymously determine location (AirSage 2013). This time- and date-

stamped aggregated location data can be used to model, evaluate, and analyze the 

movements of commuters for almost every city in the US. Despite the good 

spatiotemporal coverage, the data cost may make it cost prohibitive for usage by many 

municipalities. Furthermore, there is a lack of trip purpose information for this data type.  

Additional limitations with the technology include the battery life and GPS 

sensors within devices. When GPS is used with a fully charged battery the expected 

battery life is no more than three hours (Bhat 2014), which significantly impacts data 
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collection. The GPS sensors used within cellphones are typically low cost and are likely 

to have failures. Incomplete data from cellphone GPS data collection has been attributed 

a loss of cellphone’s GPS sensor and satellite due to being indoors, and from software 

start-up time often at the beginning of trips (Rasouli 2014). Miss allocation of position 

data due to the cellphone’s GPS positioning itself in an incorrect location and then 

correcting the location leading to paths that do not make sense (Stopher and Speisser 

2011). As mentioned above, privacy is a concern with respect to this technology. Link et 

al. (2014) noted that data collected via smartphones could be used for unintended 

purposes such as a geotagged photo including individuals that did not give consent for a 

study. Finally, the use of data collected via smartphones can introduce selection biases 

specifically when an application is used that must be downloaded from one of the 

application stores (Bhat 2014). 

Bluetooth  

Capitalizing on short-range personal wireless connectivity technologies, 

Bluetooth allows personal devices to have direct communication with each other without 

the need for line of sight, which is required for radio frequency based connectivity 

(Bisdikian 2001). Developed in 1998, Bluetooth has been noted as a low cost, user 

friendly method for the collection of data (Blogg et al. 2010, Brennan et al. 2010, Hainen 

et al. 2011). Tracking is done by unique media access control (MAC), a 48 bit, 12 

alphanumeric character address assigned to the device by its manufacturer, for each 

device eliminating privacy concerns as the MACs are not affiliated with the users.  

Within the last decade researchers have begun examining how this technology can 

be utilized of OD matrix creation. Bluetooth was found to be effective in the collection of 

OD data in small controlled networks in Blogg et al.’s 2010 study, which demonstrated 
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the favorable comparison of the data to video and automated number plate recognition 

data. These results were substantiated by Hainen et al. (2011) in a study that compared 

the technology with license plate matching.  

Limitations were found for this technology, which included the need for 

appropriate detector placement, short ping cycles of approximately 0.1 seconds 

potentially leading to a single device being detected multiple times as it passes a single 

detector, and the potential for multiple MAC addresses existing within a single vehicle 

similar to the issues of WLT (Blogg et al. 2010, Yucel et al. 2013). Brennan et al. (2010) 

examined concerns with detector placement and noted the lack of existing design 

guidelines for placement and the existing variation in placement locations in both height 

and distance from the monitored facility led to large variances in the number of captured 

addresses. The effort noted between 5 and 10% of the vehicle population had 

discoverable MAC addresses that were able to be collected and that no relationship 

between traffic volume and collection efficiency existed, rather the height of the detector 

influenced the collection efficiency. Friesen and McLeod (2014) noted sensor 

deployment for appropriate coverage in urban areas was a particular challenge that needs 

to be addressed as the technology’s estimation capability is dependent on a high 

penetration of devices thus increasing the reliability of the data attained. 

 Exploration into dynamic OD matrix estimation for freeways using Bluetooth 

was done by Barceó et al. (2010). Noting the variability of the sample collected yielded 

objectionable expansion errors, the authors indicated the use of the technology 

independent of other methods was too risky.  
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Future Methods 

A study by Bricka (2013) indicated that smartphone data sources were resources 

for potential travel survey data. Recent research has explored the opportunities to use 

non-traditional data sources such as smartphones (INRIX 2010, AirSage 2014), smart 

cards (Pellietier, Trepanier, and Morency 2011) and vehicle to infrastructure (V2I) 

communications (Tornero, Martínez, and Castelló 2012).  

Social Media 

Social media has been examined as a data source for transportation planning 

recently. Details specific on the use of location-based social networking for planning will 

be discussed in a subsequent section of this chapter.  

In 2008, Molin, Arentze, and Timmermans examined social relations and the trips 

made to maintain these relations using data collected on 1980’s ego-centric social 

networks in the Netherlands. The authors’ found that socio-demographic attributes have 

only a modest influence on the size of a participant’s network, yet had a larger impact on 

the travel time and frequency of contact. A follow up study was performed by van den 

Berg, Arentze, and Timmermans (2009) that examined ego-centric social networks using 

a data set from 2008. This effort used regression models to explore and predict the size 

and distribution of the network across social categories, geographic distances and contact 

frequency finding the relationships to significant but not strong.  

 A similar effort was recently conducted by Toole et al. (2015). This work 

examined massive, passively collected data from communication technologies with 

geographic information to discovery individual visitation patterns and compare them to 

existing social connections and strangers to determine predictability. The author’s found 

that the contact composition of a user’s ego network correlated with mobility behavior 

and suggested geography as an important feature for contextualizing social relationships.  
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A probabilistic model was defined in the work by Alesiani, Gkiotsalitis, and 

Baldessari (2013) which used social networking data to describe activity patterns. 

Recently, Misra et al. (2014) explored the use of crowdsourcing as a method for 

involving participants in the transportation planning process and noted numerous 

successful efforts within the US. Grant-Muller et al. (2014) examined how social media 

data can be used in conjunction with or separate from current data sources for 

transportation purposes. The study focused on social media text content, which was noted 

to possibly suffer from coverage limitations attributed to a user’s ability to choose to 

contribute content. The authors noted the complexity of sentiment analysis needed for 

this data sources viability. 

Smart Cards 

Smart cards are portable, plastic cards with built-in technology that can contain 

financial, personal, and transactionary data. The use of this type of technology 

deployment is seen predominately in Europe and Asia, but in recent years has begun to be 

implemented within North America (Pelletier, Trépanier, and Morency 2011). This work 

included a review of smart card data uses within the public transportation sector, noting 

the data’s advantage in the reconstruction of user trips to examine travel behaviors. The 

effort also indicated concerns about the use of the data including, but not limited to, 

privacy concerns, the lack of confirmed trip purpose, limited knowledge of ultimate 

destinations, as well as market penetration rates.  

With increased deployment, smart cards have become a detailed dynamic data 

source for public transit agencies. These uses include turnover analysis (Bagchi and 

White 2005), typical user type and trip habits (Agard, Morency, and Trépanier 2006), 

creation of future demand matrices (Park and Kim 2008), and comparison of data with 
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household survey datasets (Trépanier, Morency, and Agard 2009). More recently, 

Devillaine, Munizaga, and Trepanier (2012) presented a method for detecting and 

estimating transit users’ location, time, duration, and purpose of activates using smart 

card data as well as land use and travel behavior information. The authors noted the 

abundance of the smart card dataset allowed for many detailed explorations of time-space 

travel, origin-destination matrices creation as well as user behaviors insights. However, 

the authors noted that the dataset suffered from a lack of socio-demographic information 

and its limitation to public transit movements. Similarly, the study by Munizaga and 

Palma (2012) explored a methodology for origin-destination matrix creation using smart 

card and GPS data for a large scale multimodal public transportation system. This study 

was able to accurately predict the alighting point for 80% of the boarding transactions 

included and obtain origin-destination matrices from the data; however, it was noted that 

the attained matrices were not the same as those obtained from the traditional origin-

destination surveys. Recently, smart card transactions were explored for use in 

discovering and partially correcting travel survey bias (Spurr, Chapleau, and Piché 2014). 

This work indicated the existence of overestimated subway boardings during peak 

periods within the travel survey data and demonstrated the ability to adjust the weights of 

particular trip types to match the entry volumes at subway stations.  

Connected Vehicle 

With the anticipation of pilot deployments in 2015 (CV Pilots Deployment 2014) 

connected vehicle technologies have been explored in recent years for their potential 

contribution to transportation planning. In 2012 Tornero, Martinez, and Castello 

examined the potential of vehicle-to-infrastructure (V2I) communication technologies to 

create OD matrices. This study indicated that the use of dedicated short-range 
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communication (DSRC) for the connection of vehicles via on-board units to 

infrastructure via roadside units potentially would collect data from every vehicle 

connected to the system and would therefore be able to create an accurate, instantaneous, 

and dynamic OD matrix in rea-time. This ability could effectively eliminate the need for 

OD estimation. However, privacy concerns were noted with the use of this data collection 

method and any realization of the data source is still years away. 

SOCIAL NETWORKING  

A social network is defined as a structure made up of a set of individuals or 

organizations and the interaction ties between these individuals or organizations within 

the study of sociology (Wasserman 1994). Traditionally web-based, social networking 

sites build up these interaction ties through constructing networks or relationships among 

individuals with similar interests, activities, backgrounds, and various other types of 

connections. The most popular social networking sites currently include Facebook©, 

Twitter©, and LinkedIn® (eBizMBA DATE) with Facebook© ranked as the number two 

site for web traffic both globally and for the US (Alexa 2015) having over a billion active 

users (Company Info 2015).  

Research efforts have examined social networking within various areas of 

transportation. Social media for marketing approaches for public transportation was 

explored by Morris, Robertson, and Spinks (2009). The authors examined the use of 

blogs, podcasts, social networking sites such as MySpace, Facebook, and Twitter, web 

photos and videos, wikis, virtual worlds, and Google noting how each was being used or 

could be used for public transportation outreach. An effort by Kaufman and Moss (2014) 

suggested that the co-monitoring of social media sites by transit agencies could lead to a 

better understanding of user opinions.  
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Mobile navigation systems have been researched in Europe with respect to social 

media. Huang and Gartner (2012) examined the mobile pedestrian navigation systems 

recommending an intelligence-based routing method to address the lack of social 

navigation support found in current systems. The study used Vienna, Austria as the base 

network for the evaluation of the methodologies with results demonstrating that the 

collective intelligence-based routes had significant improvements on route quality 

compared to those with lower complexity. The 2012 effort by Fiorentino et al. examined 

the intelligent transport system for optimized urban trips or i-Tour project in Naples. The 

authors note that real time information is provided by transportation operators creating a 

traveler information system composed of personalized location based services that 

support the user community with details on traffic events, tourist information, points of 

interests, and recommendations. In recent years, social networks have been used to 

understand how personal attitudes and information diffusion with respect to activity and 

travel behavior choices have been explored (Chen, Frie, and Mahmassani 2014). This 

conceptual work noted the importance of social networks as a source of information for 

travel behavior researchers to gain better insight into the future travel behaviors. In 2015, 

this effort was continued by Chen, Talebpour, and Mahmassani using agent-based 

modeling to probe social influences on route choice in an effort to develop a practical 

tool for encompassing travel behavior patterns not addressed by traditional methods. The 

authors noted the insight offered by the method did have limitations, specifically the 

assumption that all drivers within the system share their opinions about route choice via 

social media daily. 

Social networking has been used for conducting surveys for transportation 

purposes. The study by Efthymiou and Antoniou (2012) used Facebook for survey 

dissemination to elicit opinions on carsharing, bikesharing, electric vehicles, and travel 
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patterns for young Greeks. The authors noted that the medium did have associated sample 

bias with the majority of the participants between the age of 18 and 35. In addition to 

Facebook, the authors examined Twitter feeds for key words related to the study. In the 

United Kingdom (UK) a specially designed website, Cycology, was used to explore 

social processes of commuting cyclists (Bartle, Avineri, and Chatterjee 2013). This effort 

found that the sharing of information provided social and functional roles; however, the 

authors noted that the non-naturally occurring online community and relatively small 

sample size limit the value of the effort. While all of the previously discussed data 

collection methods have pros and cons, one the most notable con is the data cost. Data 

collection through social networking can range from free to a few thousand dollars, while 

more conventional methods range from tens of thousands of dollars to hundreds of 

thousands of dollars.  

Location-Based Social Networking 

As a specific subset of social networking, location-based social networking 

(LBSN) falls under the umbrella of location-based services (LBS). LBS, which use 

location and time data, has four distinct areas of concentration: maps/navigation, 

tracking, information, and applications. Figure 2 shows a depiction of this breakdown. 

Under the maps/navigation group, common applications include Waze, Google Maps, 

and Metr0. Waze is a navigation application that allows drivers to connect with one 

another to share real-time traffic and road information such as existing incidents and 

police traps (Waze 2014). Similar to Waze, Google Maps provides users with navigation 

for travel via vehicle, transit, or by walking, and offers satellite imagery and street views 

(Google Maps 2014). Metr0 provides public transportation guidance for over 400 cities in 

75 different countries worldwide and provides users information on places of interest for 
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select cities (Metr0 2014). Common tracking applications include Find My Friends, 

Life360, and Glympse. Find My Friends is an application that allows users to keep track 

of family and friends by allowing users to share their location with other users (Find My 

Friends 2014). Similarly, Life360 allow users to view users within their private circle on 

a map and has a feature that allows for group messaging (Life360 2014). Glympse is 

another application that allows users to share locations and to let friends know anticipated 

arrival times (Glympse 2014). The information based category contains applications that 

can assist with local searches as well as city guides; Yelp, WeatherPro, and Zillow are 

commonly used applications. Yelp is an application with the purpose of helping users 

find local businesses based on reviews of services and allows for businesses to directly 

address concerns of customers (Yelp 2014). Zillow (2014) has a similar objective but 

focuses on the real estate market by providing information to consumers about homes for 

sale and rent in addition to estimated market values and neighborhood information like 

walkability and transit access. WeatherPro is Europe’s leading paid-for weather 

application and provides high-quality weather forecasts for over two million locations 

around the world (WeatherPro 2014).  

The final category is applications, which contains social networking sites and 

context advertising and includes the popular Foursquare, Facebook, Twitter, and AdMob. 

Facebook is used by billions of people around the world to connect with friends, family, 

and the world through sharing and expressing what matters to them (Facebook 2014). 

Like Facebook, Twitter (2014) connects friends and other individuals by allowing users 

to send and read short 140-character messages or “tweets.” Google’s AdMob is an 

application that provides application developers a way to monetize, promote, and analyze 

their applications through the placement of relevant advertisements within the user’s 

application (AdMob 2014). LBSN falls within this last category of LBS combining it 
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with social networking sites and will be the focus of this dissertation. LBSN services 

include geo-tagged-media-based, point-location-driven, and trajectory-centric locations. 

Geo-tagged-media-based services are media focused and include applications like 

Twitter, while point-location-driven services focus on point locations providing instant 

real-time information and include applications like Foursquare. A general discussion 

about Foursquare will be provided within this chapter with a more detailed discussion to 

be found within subsequent chapters of this dissertation. The trajectory-centric services 

are focused on trajectories providing rich data and include sites like Waze.  

 

 

Figure 2.2: Location-Based Services Categories with Application Icons. 

  As tablets and smartphones are owned and used by more of the population, this 

LBSN data source has becomes a more population representative data source. Thus, 

researchers have begun to mine it to better understand user’s spatial patterns, geographic 

movements, temporal dynamics, networking ties, and location predictions. The first 

efforts to explore spatial patterns of users of LBSN used Markov-based location 

predictors to determine future locations of users (Li and Chen 2009). This study used 
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Brightkite, a site that allowed users to share their locations, post notes, and upload 

photos, and employed a Markov-based location predictor to determine future locations of 

users with moderate success. 

Further studies of user location prediction based on a user’s friends (Backstrom, 

Sun, and Marlow 2010) and a user’s content (Cheng, Caverlee, and Lee 2010) were 

examined in subsequent years and proved valuable. The effort of Backstrom, Sun, and 

Marlow showed that a user’s Facebook friend network could be used to predict the user’s 

location within 25 miles for over 69% of the users with 16 or more friends. 

Contemporarily, Cheng, Caverlee, and Lee examined Twitter data for the estimation of a 

user’s city-level location based solely upon the content of the user’s tweets with a success 

rate of placement of 51% of the users within 100 miles of their actual location. Following 

these efforts, research explored LBSN’s data relationships between geographic 

movements (Cho, Myers, and Lseskovec 2011), human movement’s temporal dynamics 

(Zheng, Xie, and Ma 2010), as well as the links of social networking (Karimi 2010). In 

Cho, Myers, and Lesckovec’s work the relationship between geographic movements and 

social networking ties was explored using Brightkite and Gowalla, a site that allowed 

users to check-in to their current locations. The results indicated that while short-ranged 

travel was periodic spatially and temporally in nature, long-distance travel was influenced 

by social networking ties and social relationships could explain between 10 and 30% of 

human movements. The studies by Zheng, Xie, and Ma and by Karimi explored two 

different data sources, GeoLife and Genetic Location-Based Social Networks (G-LBSM), 

respectively. 

To assist in the identification of dangerous intersections in Israel, Fire et al. 

(2012) examined Waze data to identify locations with reoccurring incidents and where 

there locations with high police presence without reported incidents. The results of the 
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analysis revealed areas where there were a large number of incidents but not enough 

police coverage or the reverse situation; also, it was estimated that almost 68% of the 

incidents did not have police intervention and the average response time to an incident 

was just under 29 minutes. Facebook was used in the 2014 study by Wall, Macfarlane, 

and Watkins to characterize individual travel behavior based on size and distribution of 

online social networks examining whether individuals traveled further via airline travel to 

reach destinations where they had friends as compared to those where they did not have 

friends. The authors showed that this assumption was correct; however, the sample had a 

significant bias toward students who traditionally have limited discretionary funds for 

travel and for out-of-state students, travel is likely to be to their hometowns for holidays 

and the summer semester. 

Recently, much research has been conducted using Twitter. Wang and Taylor 

(2014) proposed a method for the collection and analysis of data from Twitter creating a 

process map for the collecting data on human mobility in New York City. Twitter posts 

were examined by Doran, Gokhale, and Konduri (2014) for the Metropolitan Transit 

Authority (MTA) in New York City to be used to improve service. The authors noted that 

the while there was promise there were a number of challenges including data quality 

concerns since the data suffers from sparsity as individuals are less willing to share unless 

they are pursuing trips on the network and the existence of false-positive reports. Other 

concerns noted data fusion issues that indicate a need to develop data fusion and mining 

techniques that can synthesize the information when there are quality issues, and 

participant availability, specifically recruiting participants and ensuring continued 

involvement. Gal-Tzur et al. (2014) used Twitter data from Liverpool, UK analyzing 

content characteristics with specific attention paid to transportation posts. The results of 

this study used syntax analysis that included 500 terms, showed that valuable information 
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for policy makers did exist within the media, and this information could be effectively 

harvested although done so with much difficulty. Similar to this effort, sentiment analysis 

was used to analyze Twitter data for the Chicago Transit Authority (CTA) with focus on 

the “L” system. This study by Collins, Hasan, and Ukkusuri (2013) noted the benefits of 

cost effectiveness, the ability to collect the data in real-time, and the meaningful insight 

provided by using the data source. However, the analysis did note that riders were more 

likely to assert a negative sentiment compared to positive ones and that the sample 

contained biases toward certain “L” lines, may have excluded the large Latino and Polish 

communities with the collection of only English based tweets, and the limited access of 

lower income populations to the technology that is needed for Twitter. A study of 

sentiment analysis via Weibo, a Chinese application similar to Twitter, also noted barriers 

to the analysis. The study noted the challenges the Chinese character based language 

presented and that the rule-based approached had difficulty identifying ironic statements 

(Cao et al. 2014). The work of Hasan and Ukkusuri (2014) examined the use of New 

York City Foursquare check-in data via Twitter to develop a methodology to understand 

activity patterns of individuals through the use of machine learning techniques. The 

authors use an activity pattern model, which was found to have promising results. A 

limitation noted for the effort was the lack of report of certain activities that are 

participated in at the home or work place. 

The most popular LBSN site is Foursquare, which has over 30 million users and 

over three billion check-ins (Media 2013), has users that include business and 

individuals. Researchers have recently begun to explore this sites data set due to its 

popularity, high penetration rate, and large sample size, specifically to explore mobility 

patterns across spatial, temporal, and social aspects among users (Cheng et al. 2011, 

Scellato et al. 2011).  
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Additionally, the site’s data has been explored more recently for its transportation 

planning application. The 2011 study by F. Yang et al. (2014) specifically used 

Foursquare data to estimate an origin-destination matrix for the Chicago urban area, and 

was among the first to demonstrate the data’s potential for use in transportation planning. 

Continuing this effort, the modeling technique was applied to the Austin, TX area using a 

singly-constrained gravity model (Jin et al. 2013). Goers (2013) used Foursquare data to 

investigate its potential to inform planning and redevelopment decisions for the Tampa 

(Florida) Planning Division finding that the data source revealed morning work related 

check-ins and the ebb and flow of activities at restaurants. The data also showed a lack of 

check-in data for neighborhoods with older and poorer populations, demonstrating a bias 

within the source. To further analyze the use of Foursquare data for transportation 

planning, a doubly-constrained gravity model was proposed for the Austin area and 

demonstrated better learning capabilities when compared to the singly-constrained 

gravity model (Jin et al. 2014). Finally, exploration of the data with respect to mode 

choice revealed the data set’s potential to provide information on select modes (airplane, 

bus, rail, and bicycle), but could not provide any insight on the walk or automobile modes 

(Cebelak 2014).  

Further exploration of Foursquare for OD estimation was performed by SA et al. 

(2015). This study compared OD estimation from Foursquare, using the method proposed 

by Jin et al. 2013, and from cell phone data to an existing OD matrix that was constructed 

from travel surveys confirming the ability of the Foursquare data to correlate to the 

existing OD estimation. The authors also indicated Foursquare data was better than the 

cell phone data at OD estimation. Research has also been conducted to relate Foursquare 

data and land use data for automated travel activity inferring. Abdulazim et al. (2015) 

used data from the Greater Toronto and Hamilton Area to develop adaptive algorithms to 
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estimate activity distributions from land use with the goal of addressing survey burdens 

from the collection of long-term personal travel diaries. The results of the machine 

learning classifiers used in this study revealed that trip distance and time had a more 

predictive power than land use. 

MANY-TO-MANY MODELING 

Within relational database theory, the “many-to-many” connections concept refers 

to relationships between a “parent” or entity row and several “child” or characteristic 

rows as well as the relationship between a “child” row and several “parent” rows, and has 

been described as a “mirror of the real-life relationship between the objects” (Janssen 

2014). The concept has been applied to a variety of disciplines including business, 

marketing, technology based industry, as well as anthropology. The movements of 

individuals can be influenced by business marketing and social anthropology, and thus 

can be analyzed under the spectrum of many-to-many connections. There are three many-

to-many modeling structures that focus in these areas: business-to-customer, social 

forces, and peer-to-peer. Brief descriptions of business-to-customer and social forces 

efforts are given in the following sections, with the majority of the effort below given to 

the peer-to-peer focus of this dissertation. 

Business-to-Customer  

Business-to-customer (B2C), where the “parent” role is filled by businesses and 

the “child” role is filled by customers, has been researched with respect to the 

transportation field; one of the earlier examples was in 2001. This effort (TRIP 2001) 

examined the relationship between the economy and the transportation system within the 

US, with respect to freight movement, noting the higher levels and greater reliability for 

freight transport for business-to-business and business-to-customer exchanges. After this 
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initial effort, two additional research efforts were done in the early part of this century. 

Both used B2C to further analyze trends within the freight industry, specifically the 

parcel component of the industry (Pagano 2001, Rabah and Mahmassani 2002). Research 

in this area had a brief hiatus until 2006, after which a handful of related research was 

conducted examining the relationships between suppliers and customers with respect to 

logistic services (Davis and Mentzer 2006, Leinbach 2007, Park, Min, and Park 2011), 

aviation (Franke 2007), and personal vehicles (Aboltins and Rivza 2014). 

Social Forces  

With regard to the transportation industry, the research within the social forces 

genera of many-to-many connections in recent years focuses primarily on pedestrian 

interactions. In 1991, Helbing proposed a mathematical model to describe the movement 

of pedestrians, which became the basis for his later effort that related behavioral changes 

in pedestrians to social forces, which were defined as external influences or the 

environment, public opinion, and social norms and trends (Helbing 1994). This effort 

lead to studies in crowd dynamics (Helbing et al. 2005), bottleneck flow for pedestrians 

(Kretz, Hengst, and Vortisch 2008), prediction and simulation of pedestrian movements 

(Rudloff et al. 2011, Deroo and Auberlet 2012, Duives, Daamen, and Hoogendoorn 

2013), and pedestrian route choice (Werberich et al. 2014). 

Peer-to-Peer  

According to Amad et al. (2012), peer-to-peer (P2P) modeling has attracted 

interest in recent years due to the ability to support today’s internet applications and the 

characteristics of scalability, fault tolerance, and robustness making it well adapted for 

social networks. P2P network modeling consists of unstructured and structured systems. 

Unstructured systems generally are based on a global index or use a flood algorithm to 
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locate and discover peers, while structured systems are based on the Distributed Hash 

Table concepts where each entity name in the system can be mapped into a single search 

space (i.e., ring topology, hierarchical rings) using hash functions and all entities within 

the system have a consistent view of that mapping. Figure 3 shows how these systems are 

structured. Examples of unstructured and structured systems include the peer-to-peer file 

audio file sharing Napster (Napster 2014) and the file sharing application BitTorrent (Xu 

et al. 2013), respectively.  

 

Figure 2.3: P2P Network Structures. 

Internet and Computer Network 

P2P is most commonly used for internet and computer networks. Beginning in the 

early 2000s, efforts explored wireless ad-hoc networks using directional antennas (Yi, 

Pei, and Kalyanaraman 2003, Cain et al. 2003). In 2006, Popa et al. presented an effort to 

reduce congestion in wireless networks via multipath routing using mechanisms on non-

greedy paths to improve energy efficiency. This effort and the efforts of 2003 were used 
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density of nodes (aircrafts) are significantly higher. This effort explored the use of greedy 

forwarding, a concept where information packets selected locally optimal or greedy 

choices in choosing the next node to hop to which is the closest neighboring node 

geographically, and the use of omnidirectional antenna. Medina et al. (2010) continued 

this effort examining an airborne mesh network via direct air-to-air radio links in an 

effort to extend the coverage of broadband air-to-ground infrastructure networks (i.e., 

aircraft to ground station). Each node within the proposed network potentially hosts 

several hundred bandwidth-demanding users (i.e., passengers) and the use of multipath 

routing algorithms can improve network performance under these conditions. The authors 

propose a geographic load share routing (GLSR) algorithm that exploits path diversity 

thus, mitigating congestion within the multi-hop wireless network with directional 

antennas. GSLR extends the greedy routing algorithm by take advantage of the 

multiplicity of OD paths in multi-hop networks with the choice of neighbor 

simultaneously maximizing advancement toward the destination while minimizing 

queueing delay. . 

With respect to computer networks, Gradowski, Mrowinski, and Kosinski (2010) 

presented a P2P network configuration where files are exchanged directly without the use 

of a central server. Work done by Sukjit (2011) presented a novel algorithm for 

generating logical layers of hole-free, non-overlapping rectangular grids to support the 

data processing needs of oriented connectivity from P2P networks. In the same year, 

Neumayer, Doulkeridis, and Norvag examined unstructured P2P computer networks 

presenting a hybrid approach that used a hierarchical overlay network for document 

retrieval. This hierarchical overlay is an aggregation of selected terms with high-

frequency values and is combined with a gossip-based aggregation of remaining low-

frequency terms. To provide fault tolerance and increased availability within systems, 
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Barshan, Fathy, and Yousefi (2012) proposed a 3-tier hierarchical architecture based on 

P2P modeling for network management. Within their architecture, peers used in several 

roles give the network its increased availability. In support of recent movements toward 

cloud computing, a proposed cloud-based parallel data processing system, MapReduce, 

was described in the 2012 effort of Morozzo, Talia, and Trunfio. A 4-dimentional model 

to collect information about and obtain a peer status description was proposed by 

Mirtaheri et al. (2014) for both server and P2P server-less architectures. Most recently Xu 

et al. (2013) proposed a methodology for using P2P modeling to determine computer 

network traffic matrices, which served as the inspiration for this dissertation. More on 

this effort will be presented in the methodology chapter of this dissertation. 

Transportation Endeavors 

Within the peer-to-peer modeling dynamic, transportation research trends are 

similar to those seen in the social forces modeling. Where social forces research has 

focused mainly on pedestrians, peer-to-peer transportation modeling has concentrated in 

supply chain systems, the carsharing spectrum, the connected vehicle, and minimally into 

transit and human interactions with respect to safety. A 2011 study by Min looked at the 

P2P services of paratransit, which included the door-to-door and curb-to-curb services 

offered by the Massachusetts Bay Transport Authority in the Greater Boston area. Min 

examined the number of requested and cancelled trips, completed rides, on time 

completed trips in his effort. With respect to the human interaction P2P efforts, an 

anonymous P2P observation-feedback was used in the Clear Signal for Action (CSA) 

project, which is a proactive safety risk management method (Ranney et al. 2007). This 

project examined the ability of CSA to improve safety within the rail industry when 

operators function under constraining signals. Where the efforts by Ranney et al. focused 
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on rail safety, efforts by Winston and Jacobsohn (2009) and Tisdale (2013) used P2P to 

promote safe driving for teens and college aged individuals, respectively. Supply chain, 

carsharing, and connected vehicle efforts will be further described below. 

Supply Chain 

In 2003 a project sponsored by the Office of the Secretary of Defense in 

conjunction with the Department of Defense was undertaken by Boyson, Corsi, and 

Verbraeck to identify the characteristics and demonstrate the effectiveness of a portal-

based architecture for management of defense supply chains. The authors noted that the 

exchange of information between companies was often hindered by the varying systems 

used, the number of peer-to-peer relationships with other companies, and the lack of 

openness of existing systems for the exchange of information. The resulting e-supply 

chain portal provided all parties involved the necessary tools for effective management 

and reduced significantly the response times for critical events. Gumzej and GajAiek 

(2011) investigated the quality of service provided by suppliers to customers within a 

supply chain and assessed the impacts of the measurements of quality of service which 

provided identification of weak spots within the supply chain. This effort spurred the 

2012 effort of Gumzej, Sukjit, and Unger which considered overlay networks of P2P 

systems for data interchange in the global e-marketplace. The proposed overlay network 

allowed for searching and routing of information via a coordinate space to participating 

peers using a novel decentralized structure-building algorithm.  

Carsharing 

Research into peer-to-peer carsharing has been conducted since 2011. Peer-to-

peer carsharing allows individual car owners the ability to convert their personal vehicles 
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into vehicles that can be rented for short-terms by other drivers. This early effort 

examined the potential renter demand for P2P carsharing based on the current methods 

use for assessing demand for traditional carsharing (Hampshire and Gaites 2011). One of 

the main differences the authors noted was the need to estimate the number of parked 

cars for the P2P carsharing effort. In 2012, Shaheen, Mallery, and Kingsley explored P2P 

carsharing with respect to business models, marketing opportunities, and barriers of 

services to determine the mode viability with respect to sustainable transportation. This 

effort was followed by the Dill, Howland, and McNeil (2013) examination using 

participants from Portland, Oregon. Participants had the number of trips taken and length 

of trip calculated via GPS and ignition data; this data was used to examine block groups 

that contained one or more P2P vehicles, traditional business-to-consumer (B2C) 

carsharing vehicles (i.e., Zipcar), and one-way pay-per-minute vehicles (i.e., Car2Go) 

finding that the P2P model yielded vehicles that served a greater number of block groups 

and a larger percentage of families in poor, non-white as well as foreign-born population 

compared to the other models. The authors found that the P2P models had the benefit of a 

lesser concentration of vehicles that allowed for larger geographic coverage and thus 

more potential users. Also in Portland, Chen, McNeil, and Dill (2014) conducted a P2P 

carsharing participation survey concerning Getaround, a P2P carsharing program within 

the area. The survey results indicated that renters tended to be a more heterogeneous 

group, with full-time employment and limited travel options (i.e., low numbers of house 

hold members with transit passes) and that schedule flexibility was an important factor 

for vehicle owner participation.  

In the San Francisco Bay area, an intercept survey was conducted by Ballús-

Armet et al. (2013) to determine the existing attitudes toward traditional carsharing, peer-

to-peer carsharing, and the sharing economy, an economic model based on sharing assets 
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among groups of people rather than owning. The results indicated a low awareness of 

P2P carsharing which was most notable among participants without private vehicle 

access and that there was openness toward P2P carsharing and the sharing economy with 

many individuals agreeing that P2P seemed to be a convenient, affordable, and 

innovative mobility approach. A study by Rivasplata et al. (2013) explored the 

relationship between P2P carsharing and off-street parking in the San Francisco Bay area. 

The study found that each of the 441 site within the study provided 2.8 carsharing spaces 

with approximately half located in parking lots or garages. A global perspective study of 

P2P carsharing was conducted by Shaheen and Cohen (2013) which included 26 nations 

and their future carsharing developments from 2006 through 2015. 

Connected Vehicle 

As mentioned above, the anticipation of connected vehicle deployments has 

influenced research in recent years for the transportation community. However, the P2P 

community has been researching these vehicles since the turn of this century. The 2000 

effort by Breisemeister, Schafers, and Hommel developed an approach for distributing 

warnings about hazards in road traffic for vehicle to vehicle communications through 

omni-directional antennas that allowed a sender to simultaneously transmit to multiple 

hosts. Bogenberger and Kosch (2002) presented a test bed and software for ad-hoc P2P 

communications for vehicles. Füßler et al. (2002) also examined ad-hoc networks for 

vehicles by comparing routing strategies for highway traffic. The authors note the 

advantages of ad-hoc routing are significant when communications spans more than two 

or three hops. If knowledge of geographic position of network nodes, better performance 

through geocast-routing algorithms can be achieved for the dissemination of information 

in multi-hop vehicle-to-vehicle (V2V) networks according to Kosch, Schwingenschlogl, 
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and Ai (2002). A decentralized vehicle-based traffic information system that would 

eliminate public investment was proposed by Ziliaskopoulos and Zhang (2003) for a 

freeway with various levels of market penetration and congestion. In 2004, Festag et al. 

examined an effort to a leverage V2V communication platform and developed suitable 

communication concepts based on ad-hoc network and available position information. 

The authors noted that field trials yielded promising first results. Work by Caizzone et al. 

(2005) proposed an enhancement to the GPSR routing protocol to improve the 

performance of point-to-point IP-based voice communications within a vehicular ad-hoc 

network that yields significant reductions for the end-to-end delay resulting in network 

scalability and quality improvements were shown with this method. 

Yang and Recker (2006) examined inter-vehicle communications (IVC) to 

analyze information-sharing between vehicles via P2P communication within the 

network. The effort models a self-organizing, situated traffic information system that was 

built upon V2V information exchange testing the pre-trip route-choice and in-trip re-

route behaviors of drivers with access to traffic information from the proposed 

information system. Using average travel time to compare different groups of vehicles, 

results show that IVC-capable vehicles required less time to complete their simulated 

trips than vehicles restricted to following their initial paths. Explorations into the 

reliability of IVC for different penetration rates, transmission ranges, and traffic scenarios 

were examined by Jin and Recker (2006). Yang and Recker (2008) continued their 

previous work and presented an analysis of system performance of proposed self-

organizing, distributed traffic information based on real-time V2V information-sharing 

architecture with information propagation through the simulated traffic network via IVC. 

The research effort has the goal of determining the IVC market penetration rate that is 

desired for information propagation to provide useful information pertaining to the entire 
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network. The results of the simulation show a dramatic increase in the percentage of 

vehicles that are able to use P2P information exchange for market penetration rates 

greater than about 10%, which results in significant travel time savings for vehicles. Lee, 

Jo, and Kum (2011) focused on social networking services in SMART highways through 

the use of vehicle-to-infrastructure (V2I) and the multi-hop V2V communication 

environment developing an architecture where all services have a defined function and 

content scenario. In 2012, Rivas and Guerrero-Zapata examined ad-hoc networks for the 

connected vehicle network with respect to points of interest using poiSim software which 

is capable of simulating a large number of nodes. 

CONCLUDING STATEMENTS 

The above literature discussion has explored the relevant existing transportation 

planning and modeling approaches which provides the basis for further discussion on the 

proposed many-to-many modeling methodology of this dissertation. Additionally, trends 

in traditional data collection and discussions on general social media as well as location-

based social media provide a foundation that will be further explored within this 

dissertation.  
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Chapter 3:  LBSN Dataset Analysis 

The purpose of this dissertation effort is to further explore the use of location-

based social networking data (LBSN) for transportation demand planning through the 

investigation of many-to-many connections modeling. The literature review that precedes 

this section demonstrated the interest in the use of LBSN data from the research 

community with respect to human mobility, as well as the variety of areas that many-to-

many modeling has been applied to within transportation related areas. However, many-

to-many models have not been used for transportation demand modeling nor have they 

been used with social media applications making this dissertation novel in its approach. 

This chapter will present additional information on LBSN. 

LOCATION-BASED SOCIAL NETWORKING 

The literature review covered the research that has been done concerning general, 

as well as location-based social networking data, demonstrating its relevance for this 

effort. In this chapter further details on the data source used will be provided including 

the advantages and limitations of the data source.  

Foursquare Data 

Foursquare is a smartphone and tablet application or app that is used by 

individuals to connect with the places they visit. This connection is done by checking-in, 

i.e., indicating the user is at a certain location, which is shared with the venue (aka the 

location) as well as friends that also uses the app. Founded in 2008 by Dennis Crowley 

and Naveen Selvaduai, the app officially launched in 2009 at the annual South by 

Southwest Interactive event in Austin, TX and used “badges” to encourage check-ins. A 

user could share in real-time locations that were visited and become “Mayor” of a venue 

by checking-in to the venue more often than anyone else within a 60 day period. The 
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ability to become “Mayor” provided an incentive for individuals to check-in to venues for 

which venue business could then offer rewards such as coupons. Business could also use 

the Foursquare platform for promotion of news, events, and discounts and the app could 

offer users insight on new locations and activities within their locations (Wikipedia 

2015).  

In May 2014, Foursquare recognized the competing nature of how users (business 

and individuals) were using the app. This led to the current version of Foursquare and its 

sister app Swarm (What Can We Help You With? 2015). Foursquare now is a platform 

where users can rate venues and find local places based on recommendations from the 

app. These recommendations come from user input on desirable venues, user ratings from 

similar places, and input from friends and experts that the user trusts the most. The social 

networking component of the original Foursquare has moved to the new app Swarm. 

Swarm allows users to share their location with friends as well as see which friends are 

close by to the user’s current location. Swarm still employees the “Mayor” competition, 

but has changed the method to allow for “Mayoring” to be done within friend groups. 

Additionally, users can become the “Mayor” of categories (i.e., “Mayor” of going to 

parks the most) as well as venues. Additionally, the app allows users to add a photo, 

leave a comment, add a friend, and/or add stickers to describe a mode or category with 

their check-in. Categorical stickers are based upon the surroundings of the users (i.e., 

coffee cup while at a coffee shop). To further incentivize check-ins, these stickers are 

attained by users based on real-world accomplishments based on how often a user is 

checking-in to a venue, checking-in at a particular venue, and commenting within a 

check-in. Stickers, comments, and the ability to add a friend to a check-in allows for 

more insight into a user’s check-in than was available in the past. Figure 3.1 and 3.2 

show the new interfaces of Foursquare and Swarm, respectively. All future references to 
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Foursquare will refer to the previous version of Foursquare that housed the combination 

of current Foursquare and Swarm capabilities. 

 

 

Figure 3.1:  Foursquare Interface (Foursquare 8 2015). 

 

Figure 3.2:  Swarm Interface (Swarm 2015). 
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According to the Foursquare website, there are over 55 million users worldwide 

that have contributed to the over seven billion check-ins (2015). Additionally, of the 65+ 

million venues throughout the world, more than two million businesses have claimed 

their venue locations. Claiming a venue allows businesses to access tools to update 

business information, create discounts or freebies for users when they check-in, and to 

attain visitor statistics.  

Foursquare also has a developer component via its application programming 

interface (API) which can be used for Foursquare or Swarm applications. Currently there 

are over 85,000 developers that use Foursquare location data. Foursquare’s API has four 

different functions:  

1.) API Endpoints – provides a method for accessing a resource (i.e., venue, 

user), which can then be drilled into for information on an aspect (check-

ins, likes, mayor-ships).  

2.) Real-time API – provides a push service that provides real-time 

information from the user or venue perspective. The User Push API 

notifies when an authenticated user checks-in, while the Venue Push APO 

notifies venue managers when a certain action (i.e., check-ins, likes, tips) 

occurs at a venue. 

3.) Venues Service – allows developers to search for places through the 

Venues Database to find information on tips, photos, and check-in counts.  

4.) Merchant Platform – allows developers to create applications for venue 

owners to manage their presence on Foursquare via customer experiences. 

Of these four functions, only the Venues Service option is free to users; all other versions 

require authorization. Venues Services allows for searches to be done within a certain 

location or through an entire city. The free data is available at a rate of 5,000 requests per 
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hour, which may not be enough for some applications of the dataset. However, rate limit 

increases can be requested. The limited amount of data available per hour makes this 

method for data collection impractical for the data collection used in this dissertation. 

In addition to the use of the Foursquare API for data collection, data from 

Foursquare as well as other LBSN data sources can be attained using two other 

approaches: through a third party or through the use of a trolling algorithm. While the 

third party method is able to provided data via historical or “firehose,” the instantaneous 

streaming of data from the app as it is received to the app, there are costs associated 

ranging from a few hundred dollars to a few thousand dollars (Gnip 2014) which make 

the source less accessible for this research project.  

The final method of using a trolling algorithm included the identification of 

venues and the creation of computer programing code that would create a snapshot of the 

total number of check-ins for each venue within the study area. In addition to the number 

of check-ins, each venue’s unique ID, name, categorical information, geographical 

information in the form of latitude and longitude, and the number of unique users was 

collected for each time period during the study duration. Since the computer program was 

coded to take snapshot at 45-50 minute intervals, the hourly check-in rate for each venue 

was calculated using the following formula:  

𝐶ℎ𝑟 = (
𝑥2 − 𝑥1

𝑡2 − 𝑡1
) ∗ 60     (𝐸𝑞𝑛. 3.1) 

where 𝐶ℎ𝑟 represents the check-ins per hour, 𝑥𝑖 represents the number of check-ins from 

the two time intervals, and 𝑡𝑖 represents the time interval in minutes. 

Due to its confirmed venue locations, popularity, comprehensive functionality, 

and free application programming interface (API), Foursquare was selected as the data 

source for this dissertation. The following sections will delve further into the Foursquare 
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venue and user demographics with respect to general trends as well as the attained Austin 

dataset used within subsequent chapters of this dissertation. The Austin dataset was 

collected over the three week period that encompassed June 11 to July 2, 2012. 

Foursquare Venue Characteristics 

Within Foursquare, users can check-in to existing or create new venues. 

Foursquare has identified four types of places: public places that can be checked-in to by 

any user, sub-places that are public or private places inside another place (i.e., shops 

within a mall), private places that will only show up for people who frequently check-in 

at that location (i.e., office break rooms, personal cars), and homes, which keep the 

address private from non-friends. When a venue is created and after determining the 

place type of the venue, a category as well as subcategories can be assigned at the 

discretion of the venue creator. Foursquare has ten predetermined categories which 

include: 

1.) Arts & Entertainment – 30 defined subcategories including aquariums, 

art galleries, casinos, museums (subcategories of type), performing arts 

venues (subcategories exist), and zoos. 

2.) College & University – 23 defined subcategories including collegiate 

buildings (subcategories exist), bookstores, classrooms, laboratories, 

libraries, stadiums (subcategories of type), trade schools, and 

universities. 

3.) Events* - eight defined subcategories including conferences, 

conventions, festivals, music festivals, parades, and street fairs. 
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4.) Food – over 100 defined subcategories including American restaurants, 

bakeries, cafeterias, Chinese restaurants (subcategories by type), coffee 

shop, food trucks, juice bars, pizza places, and frozen yogurt places. 

5.) Nightlife Spots – 22 defined subcategories including bars, breweries, 

lounges, nightclubs, and sports bars. 

6.) Outdoors & Recreation – 47 defined subcategories including athletics 

and sports (subcategories by type), beaches, campgrounds, farms, 

gardens, harbors/marinas, lakes, national parks, nature preserves, 

pedestrian plazas, scenic lookouts, states and municipalities, and trails. 

7.) Professional & Other Places – 29 defined subcategories including 

buildings, community centers, convention centers, distribution centers, 

factories, governmental buildings (subcategories by type), libraries, 

medical centers (subcategories by type), offices (subcategories by type), 

parking areas, schools (subcategories by type), spiritual centers 

(subcategories by type), and warehouses. 

8.) Residences – five defined subcategories including assisted living places, 

homes, housing developments, residential buildings/apartments/condos, 

and trailer parks. 

9.) Shops & Services – over 100 defined subcategories including 

automotive shops, banks, car dealerships, clothing stores (subcategories 

by type), discount stores, EV charging stations, food and drink shops 

(subcategories by type), gyms/fitness centers (subcategories by type), 

malls, outlet stores, pawn shops, shipping stores, and storage facilities.  

10.) Travel & Transport – 30 defined subcategories including airports 

(subcategories by type), bike rentals/shares, boats or ferries, border 
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crossings, bus stations, bus stops, hotels (subcategories by type), 

intersections, light rails, RV parks, rental car locations, rest areas, roads, 

streets, subways, taxis, and train stations. 

At the time of data collection the Events category did not exist and will not be included in 

within further discussions on venues within the dissertation. The remaining nine were 

included within the dataset attained with the naming convention kept consistent with the 

exception of the “Outdoors & Recreation” category which was called “Great Outdoors” 

within the dataset.  

Since categories are user assigned and not mandatory, venues existed within the 

dataset without categorical assignment. For these venues two methods were employed to 

determine the category for the analysis. The first used a key word search on venue name 

to assign the appropriate category. The remaining venues were then explored via their 

subcategories. Those that were still unidentified, were categorized as “Unclassified” and 

were not included within the dataset for the travel demand analysis component of this 

dissertation.  

Exploration into the Austin dataset was done to understand the coverage and 

demographics that existed within. Using ArcGIS, a visual analysis was performed 

initially to determine the spatial coverage of the venues (blue) and residences (green) 

included within the study area using the latitude and longitude data collected for each 

(Figure 3.3). While this initial figure shows reasonable coverage, Figure 3.4 was created 

to provide a better pictorial representation of the density of all venues per traffic analysis 

zone (TAZ) and further demonstrated the spatial coverage and the concentration of 

check-in venues within the central business district (CBD) located in the center of the 

study area. Moreover, the graphic illustrates the existence of venues with check-ins in 

almost every TAZ within the study area with only the three highlighted TAZ without any 
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venues, further demonstrating the spatial coverage available by this data set. Further 

exploration of the type of venues in each TAZ with respect to land use will be in a 

subsequent section of this chapter, which will also address the three TAZs without 

venues. 

 
Venues      Residences 

Figure 3.3: Foursquare Venue and Residence Spatial Coverage 

 

 

Figure 3.4: Foursquare Check-in Venues Density 
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An analysis was also done to determine how the venues within the dataset were 

categorically broken down (Figure 3.5) with respect to weekday, weekend, and total 

check-ins. Some additional insights can be seen from this representation of the data. 

Professional and Other Places are more commonly affiliated with weekday check-ins 

indicating that these check-ins are likely for work purposes. Leisure related venues, 

Shops & Services and Nightlife, are more frequently checked into on weekends when 

individuals with traditional working schedules (Monday through Friday) have more 

leisure time. Finally, residential locations are more likely to be checked into during the 

week, which may relate to home activated of a significant duration occurring on the 

weekends (i.e., staying home all day). 

 

Figure 3.5: Venue Weekday and Weekend Categorical Breakdown 

To further understand the data that was attained from the data source, an analysis 

was performed to determine the number of venues and check-ins as well as the average 

number of check-ins collected for each of the Foursquare categories. Table 3.1 and 
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Figure 3.6 provide general details on the data collected. While the number of Shops & 

Service venues is the largest, this data category also is one of the more commonly 

checked into categories and has a similar percentage with respect to these check-ins. The 

most commonly checked-in venues are Food category venues, which, with the Shops & 

Services category, account for 51.3% of all check-ins within the data set. This check-in 

statistic will be examined further with respect to time to determine whether the data 

produces an unrealistic skew or if these check-ins can be attributed to pre- and post-work 

and lunchtime activities. Additionally, the low representation of residences will be further 

examined to determine its statistical impact.  

 

Category # of 

Venues 

% of 

Venues 

# of  

Check-ins 

% of 

Check-ins 

Avg.  

Check-ins 

Colleges & Universities 719 3.8% 367,866 5.5% 512 

Shops & Services 5187 27.1% 1,389,636 20.9% 268 

Food 2809 14.7% 2,021,897 30.4% 720 

Nightlife Spots 547 2.9% 669,712 10.1% 1224 

Arts & Entertainment 592 3.1% 324,249 4.9% 548 

Travel & Transport 792 4.1% 479,305 7.2% 605 

Professional & Other 

Places 
4679 24.4% 832,999 12.5% 178 

Great Outdoors 1596 8.3% 278,065 4.2% 174 

Residences 711 3.7% 182,825 2.7% 257 

Unclassified 1538 8.0% 102,692 1.5% 67 

TOTAL 19170  6,649,246  347 

Table 3.1: Foursquare Category Venue and Check-in Statistics. 
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Figure 3.6: Venue and Check-in Statistics  

To better understand the check-in and venue relationship, the average number 

check-ins per venue per category was also calculated. As shown in Table 3.1, the largest 

average number of check-ins is found within the Nightlife Spots category and the least is 

found from the Unclassified category. This low average and the low percentage of check-

ins for the Unclassified category led to its removal from the travel demand analysis 

without major compromise to the data set. With respect to average check-ins, the 

Transportation category was surprisingly large, but can be accounted for by the limited 

number of bus and rail routes within Austin, which are the common venues checked into 

for the category, and the number of users of the public transit system within Austin.  

Further analysis of the dataset was performed to get a better understanding of any 

existing categorical trends with respect to day of the week. Due to the size of the dataset, 

over 30 million data points, SPSS was used to created crosstabs for conduction of this 

analysis. Table 3.2 provides the number of categories by day of week. From this table one 

can see that during the weekdays, Tuesday is the most commonly check-in on day (noted 
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with green background coloring) for all categories with Food and Professional & Other 

categories receiving the most (noted with red background coloring). Wednesday has less 

check-in venues being checked-in than the other weekdays. For the weekend, there is 

consistency throughout the weekend shown with the exception of Great Outdoors and 

Professional having higher check-ins on Saturdays and Nightlife Spot and Residence 

having the largest number of check-ins on Sunday (noted with red background coloring). 

For the Nightlife Spot and Residence categories the Sunday Values were the highest for 

the entire dataset (noted with red background coloring) and are likely attributed to 

Saturday night activities. Figures 3.7 show pictorially each categories day of week trends.  

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Arts & 

Entertainment 
24264 31900 23927 24262 24263 24264 24264 

College & 

University 
32040 41966 31595 32040 32039 32040 32040 

Food 187776 247594 185168 187773 187775 187776 187776 

Nightlife Spot 30816 40473 30388 30815 30816 30816 186120 

Great 

Outdoors 
67800 89375 66881 67824 67803 67800 30816 

Professional & 

Other 
186120 245551 183535 186117 186120 186120 32328 

Residence 32328 42667 31879 32327 32327 32328 67800 

Shop & 

Service 
240840 317962 237494 240838 240839 240840 240840 

Travel & 

Transport 
32832 43198 32376 32831 32832 32832 32832 

Total 834816 1100686 823243 834827 834814 834816 834816 

Table 3.2: Venue Categories Checked-in to by Day of Week - Weekday. 
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Figure 3.7: Day of Week Breakdown by Category 

The data set was explored to determine if there were trends in time of day for 

check-ins occurring for during the week with a focus on weekdays since there are 
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common trends found within them (i.e., traditional working hours). Table 3.3 provides a 

percentage breakdown of check-ins by hour by weekday for all of the category types. 

Within Monday, the check-ins begin to have a noticeable increase starting during the 6 

a.m. hour, which continues until the 8 a.m. hour. During the a.m. peak hours for traffic (6 

a.m. to 9 a.m.) there are fairly consistent increases in the amount of check-ins across the 

days of the week. After this time period, the number of check-ins drops off slightly until 

the 12 p.m. lunch hour. During this time period, there is a noticeable increase that is 

consistent throughout the week with a total of 7.75% of all weekday check-ins occurring 

during this hour. The highest percentage of check-ins are during the 1 p.m. hour on 

Mondays, which may be attributed to individuals going to lunch or running errands and 

then returning to the workplace. This trend in not seen within the rest of the week days, 

and warrants further investigation. The next increase in check-in activity is found during 

the p.m. traffic peak (5 p.m. to 7 p.m.) when individuals are able to leave their 

workplaces and participate in other activities. After 8 p.m., there is a trend of lesser 

check-ins which continues until the a.m. peak period of the following day. It is of interest 

to note that Friday evening does not show an increase in check-in activity, despite the 

following day being a non-work day for many individuals. One other interesting check-in 

trend is the Tuesday 2 a.m. increase in check-ins, which will be further explored by 

examining trends in check-ins by hour and by category. Figure 3.8 provides a visual of 

the check-in trends by weekday that illustrates the increasing and decreasing percentages 

of check-ins throughout the hours of the day.  
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Hour of 
Day 

Monday Tuesday Wednesday Thursday Friday Total 

12 a.m.  1.19% 0.95% 1.27% 1.45% 1.76% 1.31% 

1 a.m.  0.71% 0.54% 0.73% 0.83% 0.96% 0.75% 

2 a.m.  0.34% 3.89% 0.82% 0.42% 0.44% 1.35% 

3 a.m.  0.12% 0.36% 0.31% 0.19% 0.32% 0.27% 

4 a.m.  0.27% 0.26% 0.37% 0.23% 0.29% 0.28% 

5  a.m.  0.87% 0.78% 0.82% 0.91% 0.66% 0.80% 

6 a.m.  2.17% 1.87% 1.95% 1.68% 1.58% 1.84% 

7 a.m.  3.96% 3.95% 3.92% 3.91% 3.55% 3.86% 

8 a.m.  5.56% 5.36% 5.84% 5.85% 4.83% 5.47% 

9 a.m.  4.91% 5.01% 5.24% 5.16% 4.72% 5.00% 

10 a.m.  4.36% 4.43% 4.27% 4.26% 4.04% 4.27% 

11 a.m.  5.29% 5.32% 5.33% 5.43% 5.58% 5.39% 

12 p.m. 7.54% 7.69% 7.84% 7.93% 7.77% 7.75% 

1 p.m. 10.00% 6.73% 7.64% 6.51% 6.69% 7.42% 

2 p.m. 5.67% 5.22% 5.70% 5.33% 5.77% 5.52% 

3 p.m. 5.11% 4.72% 4.62% 4.72% 5.30% 4.89% 

4 p.m. 5.36% 5.05% 5.01% 4.92% 5.21% 5.10% 

5 p.m. 6.48% 6.26% 6.11% 6.56% 6.58% 6.39% 

6 p.m. 7.42% 7.79% 7.74% 7.79% 6.96% 7.55% 

7 p.m. 7.11% 7.47% 7.49% 7.45% 7.16% 7.34% 

8 p.m. 6.17% 6.27% 6.04% 6.59% 6.86% 6.39% 

9 p.m. 4.21% 4.77% 5.11% 5.38% 5.36% 4.97% 

10 p.m. 3.28% 3.07% 3.40% 3.58% 4.40% 3.54% 

11 p.m. 1.92% 2.24% 2.41% 2.92% 3.22% 2.54% 

Table 3.3: Check-ins by Hour by Weekday. 
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Figure 3.8: Weekday Check-ins by Hour 

As was mentioned above, analysis into how users check-in throughout the day at 

different venue categories needs to be done to be able to provide any insight into the type 

of trips that users are making. Table 3.4 presents the percentages of check-ins per hour 

for each of the venue categories and uses a color gradation scheme of green (low) to red 

(high) to demonstrate trends. For the table, one can clearly see Professional & Other 

Places check-ins tend to be between 8 a.m. and 10 a.m., indicating the likelihood of these 

being individuals arriving at work for the day. This is also confirmed by the percentage of 

check-ins falling throughout the day within this category. The previous statement 

concerning the increase in check-in activities during the lunch hour is confirmed from the 
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examination of the Food venue check-ins by the hour, where the largest percentages of 

check-ins occur during this time. With respect to this same category, an increase in 

check-ins is also found during the traditional dinner hours. The previous statement 

concerning errands being run during the lunch hour is also confirmed by the increase in 

check-in activities in the Shops & Services categories during that time period. With 

respect to the Residences category, there is little check-in activity during the day until the 

evening hours, when individuals return home from the workplace. As expected, 

recreational activities that fall into the Arts & Entertainment, Great Outdoors, and Shops 

& Services have the largest percentage of check-ins in the evening after 5 p.m. 

Additionally, the category of Nightlife Spots sees the majority of its check-ins in the 

evening starting at 8 p.m. and continuing until 2 a.m. when bars and nightclubs close. An 

interesting trend within the Colleges & Universities is the large percentage of checking 

during the 8 a.m. hour, indicating the likelihood of these check-ins being for the start of 

the work day. The final category of Travel & Transport also reveals two trends that fall in 

line with the working commuters’ activities. For this category the largest number of 

check-ins occur during 8 a.m. and 5 and 6 p.m. These are likely user check-ins as they go 

to and from their workplaces.  
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Hour of 
Day 

Arts & 
Entertainment 

Colleges & 
Universities 

Food 
Nightlife 

Spots 
Great 

Outdoors 

Professional 
& Other 
Places 

Residences 
Shops & 
Services 

Travel & 
Transport 

Total 

12 a.m.  2.57% 0.45% 1.11% 6.43% 1.19% 0.42% 3.48% 0.55% 2.46% 1.51% 

1 a.m.  1.34% 0.20% 0.66% 3.88% 0.61% 0.24% 1.86% 0.22% 1.69% 0.86% 

2 a.m.  1.70% 1.09% 1.98% 2.64% 1.30% 0.87% 2.59% 1.06% 2.17% 1.54% 

3 a.m.  0.16% 0.13% 0.35% 0.25% 0.29% 0.20% 1.07% 0.17% 0.82% 0.31% 

4 a.m.  0.07% 0.02% 0.28% 0.12% 0.15% 0.31% 0.61% 0.29% 1.36% 0.32% 

5 a.m.  0.12% 0.20% 0.51% 0.11% 1.70% 0.59% 1.54% 1.11% 3.22% 0.91% 

6 a.m.  0.33% 0.69% 1.48% 0.17% 4.49% 2.34% 3.36% 2.12% 4.48% 2.08% 

7 a.m.  0.92% 5.67% 4.19% 0.36% 6.27% 7.79% 4.25% 2.85% 5.67% 4.31% 

8 a.m.  1.67% 12.18% 5.73% 0.54% 5.59% 13.16% 4.21% 3.73% 6.73% 6.14% 

9 a.m.  2.12% 9.31% 5.24% 0.67% 4.94% 11.83% 3.50% 4.16% 4.45% 5.62% 

10 a.m.  2.99% 7.72% 2.63% 0.62% 4.15% 8.37% 3.16% 4.47% 3.87% 4.37% 

11 a.m.  3.63% 8.39% 5.42% 1.21% 4.25% 6.96% 3.10% 5.66% 4.30% 5.19% 

12 p.m. 3.77% 8.55% 10.81% 2.51% 4.43% 7.34% 3.58% 6.89% 4.31% 6.95% 

1 p.m. 4.45% 9.28% 9.47% 2.56% 5.11% 7.63% 3.64% 7.75% 4.48% 7.05% 

2 p.m. 5.16% 6.29% 5.51% 2.07% 4.38% 6.19% 3.36% 6.64% 4.33% 5.41% 

3 p.m. 4.52% 4.82% 4.14% 2.19% 4.55% 5.21% 3.44% 6.81% 4.51% 4.93% 

4 p.m. 4.52% 4.40% 3.86% 3.43% 5.30% 4.65% 4.92% 7.41% 5.84% 5.21% 

5 p.m. 4.90% 6.00% 5.00% 5.85% 6.35% 4.65% 6.70% 8.98% 6.68% 6.37% 

6 p.m. 9.51% 5.78% 7.15% 8.42% 8.67% 3.76% 7.97% 8.82% 6.73% 7.26% 

7 p.m. 11.73% 3.12% 8.23% 9.86% 8.65% 2.78% 7.24% 7.41% 5.08% 6.93% 

8 p.m. 8.76% 2.37% 7.12% 11.09% 7.68% 1.67% 6.80% 5.94% 4.71% 5.96% 

9 p.m. 10.50% 1.70% 5.12% 11.63% 4.64% 1.20% 7.10% 3.66% 4.27% 4.68% 

10 p.m. 8.78% 1.05% 2.72% 11.79% 3.35% 1.03% 6.48% 2.10% 3.93% 3.48% 

11 p.m. 5.77% 0.58% 1.30% 11.59% 1.94% 0.84% 6.05% 1.18% 3.93% 2.62% 

Table 3.4: Weekday Venue Categories Checked-in to by Hour with Emphasis on 

Category Trends.  

Table 3.5 provides another visual for the data from Table 3.4 using the same color 

gradation along the hours to find trend in check-ins within the categories. Beginning in 

the early morning at the 6 a.m. and 7 a.m. hours there is a trend of checking-in at Great 

Outdoors venue categories. This is followed by trend of checking into Professional & 

Other Places as well as College & Universities, which may indicate individuals wanting 

to perform outdoor activities (i.e., walking, running) before starting their work day. 
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Moving through the day another trend is found during the 12 p.m. hour, where again 

there are significant check-ins at Food venues. During the 1 p.m. hour there are trends 

toward venues within the Colleges & Universities and Food categories being checked-

into. This may relate to an extended lunch hour (Food) and individuals returning to 

campuses for class or work (Colleges & Universities). Afternoon activities, if not at 

work, were likely to be in the Shops and Services category between 2 p.m. and 5 p.m. 

From 6 p.m. to 8 p.m. there are trends of checking-into Arts & Entertainment venues, 

which is expected since movies and theater performances often begin during the 7 p.m. 

time period. At the 8 p.m. hour the largest category for check-ins is in the Nightlife Spots 

category, which continues throughout the evening until the bars and restaurants close at 2 

a.m. It is interesting to note that there is another high percentage of venues checked-into 

during 9 p.m. for the Arts & Entertainment category which relates to typical second 

showings at movie theaters and at other performance venues. Additionally, at the 2 a.m. 

hour there is a visible trend of increased check-ins for Residences that may relate to 

individuals returning home from their evening out. 
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Hour of 
Day 

Arts & 
Entertainment 

Colleges & 
Universities 

Food 
Nightlife 

Spots 
Great 

Outdoors 

Professional 
& Other 
Places 

Residences 
Shops 

& 
Services 

Travel & 
Transport 

12 a.m.  2.57% 0.45% 1.11% 6.43% 1.19% 0.42% 3.48% 0.55% 2.46% 

1 a.m.  1.34% 0.20% 0.66% 3.88% 0.61% 0.24% 1.86% 0.22% 1.69% 

2 a.m.  1.70% 1.09% 1.98% 2.64% 1.30% 0.87% 2.59% 1.06% 2.17% 

3 a.m.  0.16% 0.13% 0.35% 0.25% 0.29% 0.20% 1.07% 0.17% 0.82% 

4 a.m.  0.07% 0.02% 0.28% 0.12% 0.15% 0.31% 0.61% 0.29% 1.36% 

5 a.m.  0.12% 0.20% 0.51% 0.11% 1.70% 0.59% 1.54% 1.11% 3.22% 

6 a.m.  0.33% 0.69% 1.48% 0.17% 4.49% 2.34% 3.36% 2.12% 4.48% 

7 a.m.  0.92% 5.67% 4.19% 0.36% 6.27% 7.79% 4.25% 2.85% 5.67% 

8 a.m.  1.67% 12.18% 5.73% 0.54% 5.59% 13.16% 4.21% 3.73% 6.73% 

9 a.m.  2.12% 9.31% 5.24% 0.67% 4.94% 11.83% 3.50% 4.16% 4.45% 

10 a.m.  2.99% 7.72% 2.63% 0.62% 4.15% 8.37% 3.16% 4.47% 3.87% 

11 a.m.  3.63% 8.39% 5.42% 1.21% 4.25% 6.96% 3.10% 5.66% 4.30% 

12 p.m. 3.77% 8.55% 10.81% 2.51% 4.43% 7.34% 3.58% 6.89% 4.31% 

1 p.m. 4.45% 9.28% 9.47% 2.56% 5.11% 7.63% 3.64% 7.75% 4.48% 

2 p.m. 5.16% 6.29% 5.51% 2.07% 4.38% 6.19% 3.36% 6.64% 4.33% 

3 p.m. 4.52% 4.82% 4.14% 2.19% 4.55% 5.21% 3.44% 6.81% 4.51% 

4 p.m. 4.52% 4.40% 3.86% 3.43% 5.30% 4.65% 4.92% 7.41% 5.84% 

5 p.m. 4.90% 6.00% 5.00% 5.85% 6.35% 4.65% 6.70% 8.98% 6.68% 

6 p.m. 9.51% 5.78% 7.15% 8.42% 8.67% 3.76% 7.97% 8.82% 6.73% 

7 p.m. 11.73% 3.12% 8.23% 9.86% 8.65% 2.78% 7.24% 7.41% 5.08% 

8 p.m. 8.76% 2.37% 7.12% 11.09% 7.68% 1.67% 6.80% 5.94% 4.71% 

9 p.m. 10.50% 1.70% 5.12% 11.63% 4.64% 1.20% 7.10% 3.66% 4.27% 

10 p.m. 8.78% 1.05% 2.72% 11.79% 3.35% 1.03% 6.48% 2.10% 3.93% 

11 p.m. 5.77% 0.58% 1.30% 11.59% 1.94% 0.84% 6.05% 1.18% 3.93% 

Table 3.5: Weekday Venue Categories Checked-in to by Hour with Emphasis on Hourly 

Trends. 

Further exploration was done to examine the combination of day of the week, 

category, and hour to look for additional trends within the data set. Examination of the 

dataset was done using the time groups identified below for each day of the week 

(Monday through Friday) and used the categories listed after each time group, which 

were selected based on the trends seen in Tables 3.4 and 3.5 above: 
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1.) AM Peak (6 a.m. to 9 a.m.) – Colleges & Universities, Great Outdoors, 

Professional & Other Places, and Travel & Transport 

2.) Mid-Morning (10 a.m. to 11 p.m. ) – Colleges & Universities, Food, 

Professional & Other Places, and Shops & Services 

3.) Lunch Hour (12 p.m. to 1 p.m. ) – Colleges & Universities, Food, 

Professional & Other Places, and Shops & Services 

4.) Mid-Afternoon (2 p.m. to 4 p.m. ) – Colleges & Universities, Professional 

& Other Places, and Shops & Services  

5.) PM Peak (5 p.m. to 7 p.m. ) – Arts & Entertainment, Food, Great 

Outdoors, Nightlife Spots, Residences, Shops & Services, and Travel & 

Transport  

6.) Evening (8 p.m. to 10 p.m. ) – Arts & Entertainment, Food, Great 

Outdoors, Nightlife Spots, Residences, and Shops & Services 

7.) Late Night (11 p.m. to 5 a.m.) – Nightlife Spots, and Residences 

To do this, ArcGIS was used to map venue check-in data (venue GPS location and 

number of check-ins) to the study area of Austin, TX. The ArcGIS symbology features 

were then employed to provide meaningful visualization to each categorical venue map 

and to be able to visual examine special changes in check-in locations throughout the 

day. The GIS analysis also examined the number of check-ins per hour based on the size 

of the circles, not just the number of venues being checked-into in an hour. In addition, 

venues with the largest amounts of check-ins during the analysis periods were identified 

for each category. 

Starting with the A.M. Peak for analysis, the first category that was examined was 

the Colleges and Universities. Figure 3.9 shows the trend of Wednesdays and Thursdays 

having greater check-in intensity in the University of Texas (UT) area than the other 
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days. For the Mid Morning time period, there is consistency throughout the time period 

and throughout the weekdays with lesser intensity found in the UT area than other time 

periods. For the Lunch and Mid Afternoon time periods, check-ins were similar to the 

Mid Morning time period with consistency seen throughout the week (see Appendix A 

for graphics). Figure 3.10 shows the changes in number of venues with various check-in 

amounts throughout the time periods. The majority of single check-ins occur during the 

A.M. Peak at over 900 unique venues, which are individuals checking-in for work or 

classes. Table 3.6 shows the venues with the most check-ins for each of the time periods 

all which occur within the UT area. It is interesting to note that few locations have 

multiple check-ins, and those that do are affiliated with UT. 
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Figure 3.9: A.M. Peak Colleges & Universities Venue Check-ins 

  

Figure 3.10: Colleges & Universities Number of Venue by Check-in Amount 
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Time Period 
No. of 

Check-ins 
No. of 

Venues 
Venue Name 

Day(s) of 
Week 

AM Peak 6 4 The University of Texas at Austin 
Monday, 
Thursday 

Mid Morning 5 1 Student Activity Center (SAC) Monday 

Lunch 8 1 Hogg Memorial Auditorium (HMA) Monday 

Mid Afternoon 5 1 University Teaching Center (UTC) Thursday 

Table 3.6: Colleges & Universities Venues with the Most Check-ins. 

The next category identified for analysis was the Professional & Other Places. 

Figure 3.11 shows the A.M. Peak trends for the weekdays. Based on this graphic, there is 

good special coverage with respect to the category type with the expected concentration 

of venues and check-ins in the central business district (CBD), which is located in the 

middle of each graphic. The graphic also shows a trend for higher intensity of check-ins 

in the CBD on Wednesdays and Fridays. This pattern is seen in the other time periods of 

Mid Morning and Lunch (see Appendix A for graphics for other analyzed time periods). 

The Lunch time period was noted to have more intensity with respect to check-ins at 

venues throughout the analysis area and higher intensity was noted for the time period on 

Tuesdays as well. The Mid Afternoon time period showed lesser intensity throughout the 

week with the exception of Tuesdays, which showed similar intensity as the Lunch time 

period. Figure 3.12 shows the changes in number of venues with various check-in 

amounts throughout the analyzed time periods. Similar to the Colleges & Universities 

category, the majority of single check-ins occur during the A.M. Peak at over 4000 

unique venues. It is of interest to note that there is a jump in the Mid Afternoon single 

venue check-ins for all of the weekdays, which may be workers returning to their place of 

employment after going out to lunch. Table 3.7 shows the venues with the most check-ins 

for each of the time periods all of which occur on Mondays.  
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Figure 3.11: A.M. Peak Professional & Other Places Venue Check-ins 
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Figure 3.12: Professional & Other Places Number of Venue by Check-in Amount 

Time Period 
No. of 

Check-ins 
No. of 

Venues 
Venue Name 

Day of 
Week 

AM Peak 10 1 Austin Convention Center Monday 

 
10 1 Texas State Capitol Monday 

Mid Morning 29 1 Texas State Capitol Monday 

Lunch 77 1 Texas State Capitol Monday 

Mid Afternoon 44 1 Texas State Capitol Monday 

Table 3.7: Professional & Other Places Venues with the Most Check-ins. 
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The examination of the Great Outdoors category revealed a wide range of venues 

check-into throughout the study area. For the A.M. Peak, the check-ins were consistent 

throughout the weekdays with concentrations near the CBD where there are a lot of parks 

and a trail that circles the Lady Bird and Town Lake areas. Figure 3.13 shows the P.M. 

Peak for the Great Outdoors category. This graphic shows the more intense check-ins 

along the trail and park locations compared to the A.M. Peak, with a noticeable increase 

on Wednesdays. The Evening time period shows similar trends as the P.M. Peak time 

period with higher intensity shown of Fridays for the trail and park locations. Appendix 

A contains the graphics for the A.M. Peak and Evening time periods. Figure 3.14 shows 

the changes in number of venues with various check-in amounts throughout the analyzed 

time periods. The majority of single check-ins occur during the P.M. Peak with 1170 

unique venues. It is of interest to note that the number of A.M. Peak single check-in 

venues is 1131. As was seen with the previous category, there are limited locations with 

multiple check-ins during any of the time periods analyzed for the Great Outdoors 

category. However, there are some single venue locations that have a significant number 

of checks and the venues with the most check-ins are shown in Table 3.8. From this table, 

Wednesdays see a significant number of check-ins in the Zilker Park area indicating the 

areas popularity with Foursquare users. 
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Figure 3.13: P.M. Peak Great Outdoors Venue Check-ins 
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Figure 3.14: Great Outdoors Number of Venue by Check-in Amount 

Time Period 
No. of 

Check-ins 
No. of 

Venues 
Venue Name 

Day of 
Week 

AM Peak 5 1 Lady Bird Lake Trail Tuesday 

 
5 1 Lady Bird Lake Trail Tuesday 

PM Peak 67 1 Zilker Park Wednesday 

Evening 78 1 Zilker Park Wednesday 

Table 3.8: Great Outdoors Venues with the Most Check-ins. 

The Travel & Transport category revealed trends in checking-in at the airport 

throughout the weekdays and time periods examined (AM and P.M. Peaks). For the P.M. 
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Peak, Figure 3.15 illustrates the airport, which is located in the lower right area of the 

study area, check-in trend as well as the increased intensity of check-ins on Fridays. 

Mondays also see an increase in the number of venues checked-into compared to the 

other days of the week for the time period. For the A.M. and P.M. Peaks there are 

consistent check-ins within the CBD area, although there are less check-in intensity for 

the A.M. Peak time period (Appendix A). Figure 3.16 shows the changes in number of 

venues with various check-in amounts between the A.M. and P.M. Peak periods. The 

majority of single check-ins occur during the A.M. Peak with 800 unique venues. It is of 

interest to note that the locations with two check-ins have a consistent number of venues 

during the two time periods. From Table 3.9 the largest number of check-ins are 

consistently found at the airport but on two different days: Tuesdays for the A.M. Peak 

and Thursdays for the P.M. Peak. This trend may be related to business travelers 

departing on Tuesdays and then returning on Thursdays. 
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Figure 3.15: P.M. Peak Travel & Transport Venue Check-ins 

Monday Tuesday Wednesday 

Thursday Friday 

Number of Check-ins 

Legend

Travel_Checkins_Wkdy_1

2, 1, 11

1

2 - 5

6 - 17

18 - 44

45 +

2, 2, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 1, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 2, 2

1

2 - 5

6 - 17

18 - 44

45 +

2, 3, 3

1

2 - 5

6 - 17

18 - 44

45 +

2, 4, 4

1

2 - 5

6 - 17

18 - 44

45 +

2, 0, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 1, 2

1

2 - 5

6 - 17

18 - 44

45 +

2, 0, 2

1

2 - 5

6 - 17

18 - 44

45 +

2, 1, 3

1

2 - 5

6 - 17

18 - 44

45 +

2, 4, 11

1

2 - 5

6 - 17

18 - 44

45 +

2, 2, 5

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 22

1

2 - 5

6 - 17

18 - 44

45 +

2, 0, 4

1

2 - 5

6 - 17

18 - 44

45 +

2, 4, 8

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 24

1

2 - 5

6 - 17

18 - 44

45 +

2, 23, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 1, 7

1

2 - 5

6 - 17

18 - 44

45 +

2, 23, 2

1

2 - 5

6 - 17

18 - 44

45 +

2, 23, 5

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 18

1

2 - 5

6 - 17

18 - 44

45 +

2, 23, 7

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 0, 10

1

2 - 5

6 - 17

18 - 44

45 +

2, 4, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 2

1

2 - 5

6 - 17

18 - 44

45 +

2, 1, 10

1

2 - 5

6 - 17

18 - 44

45 +

2, 3, 1

1

2 - 5

6 - 17

18 - 44

45 +

2, 5, 3

1

2 - 5

6 - 17

18 - 44

45 +



 

 81 

  

Figure 3.16: Travel & Transport Number of Venue by Check-in Amount 

Time 
Period 

No. of 
Check-ins 

No. of 
Venues 

Venue Name 
Day of 
Week 

AM Peak 27 1 Austin Bergstrom International Airport Tuesday 

PM Peak 38 1 Austin Bergstrom International Airport Thursday 

Table 3.9: Travel & Transport Venues with the Most Check-ins. 

The Food category venues were next examined for the Mid Morning, Lunch, P.M. 

Peak, and Evening time periods. The Lunch time period, shown in Figure 3.17, displays 

trends that are seen throughout the time periods. There are numerous venues found within 

the CBD and throughout the study area. Greater intensities are apparent on Tuesdays, 

Wednesdays, and Fridays. For the Mid Morning time period, the Lunch trends are seen, 

but to a lesser degree with respect to the number of venues checked-into. The P.M. Peak 

and Evening time periods are similar to the Lunch time period with some area having a 

greater number of check-ins. Appendix A provides the graphics for the Mid Morning, 
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P.M. Peak, and Evening time periods for the Food category. Figure 3.18 demonstrates 

how closely the number of single check-ins are for the Lunch and P.M. Peak time 

periods, 5645 for Lunch and 5771 for P.M. Peak. This close relationship is shown for 

venues with multiple check-ins as well. With respect to the venues with the most check-

ins for each time period, Table 3.10 shows a skew within the dataset towards a single 

location, Chi\Lantro BBQ, for a single day of the week. The high count of check-ins, 

3089, may be due to a promotion, a glitch in the system, or individuals checking-in 

multiple times.  

 

Figure 3.17: Lunch Food Venue Check-ins 
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Figure 3.18: Food Number of Venue by Check-in Amount 

Time Period 
No. of 

Check-ins 
No. of 

Venues 
Venue Name 

Day of 
Week 

Mid Morning 

5 1 Franklin Barbecue Friday 

5 1 Hopdoddy Burger Bar Tuesday 

5 1 Moonshine Patio Bar & Grill Friday 

Lunch 191 1 Whole Foods Bakery Monday 

PM Peak 3089 1 Chi\Lantro BBQ Monday 

Evening 27 1 Stubb\s Bar-B-Q Tuesday 

Table 3.10: Food Venues with the Most Check-ins. 

For the next chronological category, the Shops & Services were analyzed for the 

Mid Morning, Lunch, Mid Afternoon, P.M. Peak, and Evening time periods. The Lunch 

time period is shown in Figure 3.19 (all other graphics can be found in Appendix A) and 
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clearly depicts trends that exist within the weekdays. For this time period, higher 

intensity check-ins are seen on Tuesdays, Thursdays, and Fridays especially in the CBD 

area. Compared to the Mid Morning time period, there are more venues that are checked-

into during the Lunch period, which may correlate to errands being run during this time 

period. For the Mid Morning time period, there are noticeable fewer venues checked-into 

with less intensity seen throughout the week. For this time period, Tuesdays see the least 

intensity of check-ins while the other days have similar intensity patterns. The Mid 

Afternoon has similar trends that were seen in the Lunch time period with the exception 

of the higher intensity on Wednesdays especially in the CBD area. For the P.M. Peak the 

check-in trends are similar to the Lunch and Mid Afternoon trends, while the Evening 

time period shows a lessening of check-ins across the board but still includes the higher 

intensity of check-ins on Tuesday, Wednesday, Thursday, and Friday in various areas. 

Examining the trends in number of venues checked-into based on differing check-in 

amounts, Figure 3.20 presents the increase in single check-ins that occurs throughout the 

day with a drop off during the evening, which follows the expectation of many 

individuals doing shopping activities after working hours. It is of interest to note that 

there are more multiple (two through six) check-ins to single venues during the P.M. 

Peak, which includes locations such as gyms and grocery stores. Areas with the largest 

number of check-ins include a variety of locations (Table 3.11) and are spread throughout 

the weekdays.  
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Figure 3.19: Lunch Shops & Services Venue Check-ins 
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Figure 3.20: Shops & Services Number of Venue by Check-in Amount 

Time Period 
No. of 

Check-ins 
No. of 

Venues 
Venue Name 

Day of 
Week 

Mid Morning 7 1 Tears of Joy Hot Sauce Shop Monday 

 
7 1 Whole Foods Market Thursday 

Lunch 12 1 Whole Foods Market Tuesday 

 
12 1 Whole Foods Market Thursday 

Mid Afternoon 22 1 Chevron Wednesday 

PM Peak 12 1 Barton Creek Square Mall Friday 

Evening 34 1 Waterloo Records Tuesday 

Table 3.11: Shops & Services Venues with the Most Check-ins. 

Art & Entertainment venues are prominent in the P.M. Peak, and Evening time 

periods. Examining the P.M. Peak (Figure 3.21) time period first, the CBD has high 
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number of check-ins in both number of venues and intensity, understandably. Of interest 

to note, the Alamo Drafthouse, a local movie theater that is located in the lower left of the 

graphic, has high intensity during each day of the week except for Tuesdays. This trend is 

also visible in the Evening time period graphics (Appendix A) indicating Tuesdays are 

potentially not popular days for watching movies by Foursquare users. Figure 3.22 

provides additional insight into check-in trend within the Arts & Entertainment category. 

There is an increase in single check-ins at venues from the P.M. Peak to the Evening time 

periods from to 513 to 563 venues. The venues with the largest number of check-ins 

within the Arts & Entertainment category include the previously mentioned Alamo 

Drafthouse for the P.M. Peak on Fridays and the Long Center for Performing Arts for the 

Evening time period on Wednesdays (Table 3. 12). The Long Center’s check-ins likely 

relate to a specific performance or event being held at the venue. 
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Figure 3.21: P.M. Peak Art & Entertainment Venue Check-ins 
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Figure 3.22: Art & Entertainment Number of Venue by Check-in Amount 

Time 
Period 

No. of 
Check-ins 

No. of 
Venues 

Venue Name 
Day of 
Week 

PM Peak 18 1 Alamo Drafthouse Cinema @ Slaughter Lane Friday 

Evening 29 1 Long Center for the Performing Arts Wednesday 

Table 3.12: Art & Entertainment Venues with the Most Check-ins. 

For the Nightlife Spots category, there are significant number of check-ins that 

occur within the CBD area where there are many bars and clubs located throughout the 

downtown. Figure 3.23 shows the trends in check-ins during the Evening time period, 

where Monday is has the least intensity of the weekdays. This trend is also seen in the 

P.M. Peak time period (Appendix A). For the Late Night time period, the trends are 

similar to the Evening time period just with a lesser number of venues. The largest 
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number of single check-in venues is found during the Evening time period with around 

1500 venues (Figure 3.24, Table 3.13). This time period also has the most number of two 

check-ins per venue with 600 venues falling into this category.  

 

Figure 3.23: Evening Nightlife Spots Venue Check-ins 
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Figure 3.24: Nightlife Spots Number of Venue by Check-in Amount 

Time 
Period 

No. of 
Check-ins 

No. of 
Venues 

Venue Name 
Day of 
Week 

PM Peak 13 1 The Palm Door Tuesday 

Evening 17 1 Maggie Mae’s Monday 

Late Night 12 1 Barbarella Wednesday 

Table 3.13: Nightlife Spots Venues with the Most Check-ins. 

The final category is the Residences category which was analyzed for the P.M. 

Peak, Evening, and Late Night time periods. Figure 3.25 provides a visual for the P.M. 

Peak time period, which has similar trends to the other time periods. From this graphic, 

the spatial distribution of residences throughout the study area can be seen. Additionally, 

the graphic shows some residences being checked-into consistently throughout the week, 
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which likely indicates that these check-ins are by individuals that reside in the location 

and are not visitors. For the Evening and Late Night time periods (Appendix A), check-

ins follow similar trends to the P.M. Peak time period with a perceptible lessening of 

check-ins during the Late Night time period. The intensity of check-ins for residences 

only ranges from one to four check-ins per hour (Figure 3.26, Table 3.14) and likely 

relates to the number of individuals in the households that are over 13 and are Foursquare 

users.  

 

Figure 3.25: P.M. Peak Residence Venue Check-ins 
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Figure 3.26: Residence Number of Venue by Check-in Amount 

Time 
Period 

No. of 
Check-ins 

No. of 
Venues 

Venue Name 
Day of 
Week 

PM Peak 4 1 Circle C Ranch Tuesday 

Evening 4 1 
Berkshire South 
Congress 

Tuesday 

 
4 1 Circle C Ranch Wednesday 

Late Night 4 1 Barton’s Mill Thursday 

 

4 1 Stassney Woods Wednesday 

 

4 1 Onion Creek Lux Apts Tuesday 

Table 3.14: Residence Venues with the Most Check-ins. 

Foursquare User Demographics 

As noted above, Foursquare has over 55 million users throughout the world that 

have used the app at least once. Using comparative worldwide demographics for 

Foursquare (Chappell 2013), the case study area of Austin, TX (USCB, 2013, 

CLRSearch, 2012), and the US (Howden, 2011), the Foursquare data source was 

examined to determine if there were any notable limitations or biases. Figure 3.27 

provides a visual examination of the comparison of age, gender, household income, and 

education. Based on this examination, the following characteristics were noted: 
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1.) The data source has a notable under representation from individuals under 

17, which can be attributed to the minimum age of 13 restriction imposed 

by Foursquare. This is not necessarily a considerable limitation since these 

younger individuals are often passengers within the commuting public’s 

vehicles (i.e., parents). 

2.) Approximately 80% of the app users are between the age of 25 and 54, 

which indicates a skew toward this demographic that is not seen either in 

the Austin, TX nor US demographics. This may not be problematic, since 

the age range covers a majority of the working public, which is the focus 

of commuter’s studies (Labor Force 2014). 

3.) There is an over representation of females (65%) within the demographics 

of Foursquare, which may impact the value of the data.  

4.) Over representation exists for household incomes of $25,000 to $74,999; 

this may partially be explained by the age demographic over 

representation within this category and with the “Some College” over 

representation that may limit income potential. 

5.) While slight under representation exists for the $0 to $24,999, $100,000 to 

$149,999, and $150,000 or more categories, the latter two could be 

attributed to the similar under representation seen in the age 

demographics. Logically, this range of salary is traditionally experienced 

by individuals that are in the later stages of their career, who may be slow 

adopters to newer technologies and trends. The earlier category is more 

concerning, since it could speak to lower income individual’s limited 

access to the technologies needed for the app (i.e., smartphones). 

However, recent research conducted by the Pew Research Internet Project 
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(Smith 2014) indicated that this barrier is being overcome in the US with 

approximately 50% of adults owning a smartphone, Table 3.15.  

6.) Finally, the education demographic has a significant over representation 

within the “Some College” category. The statistics may relate to the 

income skew. 

 

   

Figure 3.27:  Comparative Demographics 

Income Level 

(per year) 

Ownership of Adults - 

Smartphone 

Less than $30,000 47% 

$30,000 - $49,999 53% 

$50,000 - $74,999 61% 

$75,000+ 81% 

Table 3.15: US Adult Smartphone Ownership by Income Level 
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Recently Brandon Gaille (2015) provided additional user facts concerning 

Foursquare including the popularity of the site in the US where the site is used 

numerically more often than any other country with 60% of all check-ins occurring in the 

US. This article noted that the highest per capita population usage was found in 

Venezuela, Singapore, Azerbaijan, and Belgium, respectively. Gaille noted that the 

average Foursquare users was likely male (60%), between the age of 18-29 (40%), have 

some to no college (83%), and make less than $50,000 per year (49%). These statistics 

vary from the data on Foursquare provided above, but could be attributed to the 

difference in years for the data, 2012 versus 2014. Other notable demographic statistics 

include: 

1.) 13.2% adult Hispanics log onto Foursquare regularly. 

2.) Only 2.8% Caucasians log into the site at least once per day. 

3.) African-Americans are three times as likely to use Foursquare daily 

compared to Caucasians. 

4.) Men are more likely to use Foursquare for checking-in at travel locations. 

5.) Women are more likely to check-in at educational locations. 

6.) 34% of the check-ins at beauty shops are by males. 

7.) Approximately 4% of users will check-in to their own residence. 

These trends were noted to possibly be from the site’s worldwide influences, but also 

could be related to “an ethnic family-based element.” This trend implies that the data 

source could be useful in targeting specific demographics. The study also asked how 

often Foursquare users checked –in at venues finding that 87% did so at least once a day.  

Since the Austin Foursquare dataset does not have any user details, comparison to 

the Capital Area Metropolitan Planning (CAMPO) Travel Demand Model (TDM) 

population will require some assumptions. The first is that the individuals checking-in to 
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residential locations live there and are not visitors. The second is that each check-in 

relates to a single individual that acts as the head of household. Most of the residential 

locations included within the analysis are apartment or condo buildings, which house 

many individuals in one location, and complicates the analysis without these 

assumptions. 

ArcGIS was again employed to create a relationship between the residential 

check-in data and the TAZ’s demographical information from the 2005 to 2035 Plan 

Amendment 1110 and the 2010 TAZwDems shapefiles. The 2005 to 2035 Plan 

Amendment 1110 file contains information on estimated population and employment for 

CAMPO. The data includes information on total TAZ population for a specified year 

(POPXX), number of households for a year (HHXX), and the average household size 

(HHSIZEXX). The 2010 TAZwDems file contains information on TAZ population for 

2010 (POP10), the median income for the TAZ (MedInc10), and the total employment 

for the TAZ (TotEmp10). Based on this joining, the following are some demographics on 

the individuals within the dataset:  

Number of Unique Residential Venues – 170 

Number of Check-ins – 3094  

Average HHSize – 2.23  

Mean Household Income (2010) - $52,539.06 

The CAMPO dataset had the following related demographics: 

Number of Households– 559,423 

Average HHSize – 2.61 

Median Household Income (2005) - $53,627 

From the above details, the joined Foursquare dataset is slightly less in average house 

hold size and household income.  
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Table 3.16 provides a breakdown of income categories found from the joined 

Foursquare datasets and for the CAMPO dataset. While there is an over representation in 

the income categories of $20,000 to $35,000, $35,000 to $50,000, and $50,000 to 

$75,000, this may be due to the CAMPO data being reflective of the entire region and not 

just the study area. Additionally, the fact that most of the residential data is for 

apartments and condos and not houses could explain the under representation of the 

$75,000 + category. It is also a limitation of the dataset that the lower income category 

was significantly under represented. Finally, the Foursquare dataset is additionally 

limited by the lack of age, gender, and employment details, which would need to be 

addressed before the dataset could be used for planning purposes to ensure the data has 

biases that could be accounted for. 

 

 Foursquare CAMPO (2005) 

Income Groups Number Percentage Number Percentage 

$0 to $20,000 139 4.49% 83785 14.98% 

$20,000 to $35,000 726 23.46% 91857 16.42% 

$$35,000 to $50,000 764 24.69% 89776 16.05% 

$50,000 to $75,000 906 29.28% 120063 21.46% 

$75,000 + 559 18.07% 175983 31.46% 

Table 3.16: Foursquare Dataset Income Breakdown Comparison 

Foursquare and Land Use  

The final data analysis component examined the Foursquare dataset with respect 

to land uses for the study region. For this analysis, the 2010 Land Use shapefiles from the 

City of Austin were used to examine the land use composition of each TAZ. Within the 

2010 Land Use files, there are 39 different codes used to describe each parcel within a 

TAZ. Each of these 39 codes was assigned to the Foursquare category when possible. 

This effort resulted in 22 codes that were assigned to the Commercial (Shops & Services) 
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Education (Colleges & Universities), Outdoor (Great Outdoors), Professional 

(Professional & Other Services), and Travel (Travel & Transport). For each of the 520 

TAZs within the study area, the land uses were categorized into their relevant category 

and a total for each category was determined as well as a percentage. This effort was also 

done for the venues within each TAZ. Since the parcel level land use data has higher 

counts for each category, the percentages were compared between the two data sources to 

determine if there were significant areas of missing land uses from the Foursquare 

dataset. If the difference between percentages were found to be within 10%, the 

representation was considered acceptable. Table 3.17 shows the categorical breakdown 

with respect to the number of TAZs (and overall percentages) that had representative land 

uses from the Foursquare venues data. Based on the data in the table, only the 

Outdoor/Great Outdoors and Travel/Travel & Transport categories had a significant 

number of TAZs with representative land use venues. All other categories had less than 

50% representation, indicating a potential limitation of the dataset. An examination to 

determine if any TAZs had all categories fall within the 10% cutoff was also conducted. 

Figure 3.28 provides a visual depiction of the location of the 51 (9.81%) TAZs that met 

this criteria and demonstrates that these TAZs are scattered throughout the study area. 

Finally, the Foursquare dataset has no mining categories represented, which is a land use 

category represented within the 2010 Land Use file. However, mining land use only 

existed in 18 of the 520 TAZs and was not considered critical for the datasets usage. 
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Land Use Category 
No. of TAZs  
within 10% 

% of TAZs 

Commercial/Shops & Services 191 36.73% 

Education/Colleges & Universities 185 35.58% 

Outdoor/Great Outdoors 443 85.19% 

Professional/Professional & Other Services 213 40.96% 

Travel/Travel & Transport 426 81.92% 

Table 3.17: Land Use Comparison Data  

 

Figure 3.28:  TAZs with Good Land Use Representation in Foursquare Data 

CONCLUDING STATEMENTS 

The above examination of the Foursquare dataset explored the types of check-ins 

with respect to time of day and day of week for each category type. This analysis 

presented the areas where the dataset showed strength and where there were limitations. 

Legend
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Additional analysis was performed to determine user demographics through the addition 

of a secondary data source. Finally, the data was compared to existing land use data to 

determine how representative the data sample was for the overall study area. Based on 

this final analysis, the sample fell short in the majority of categories and TAZs 

throughout the study area.  

The need for external data sources indicates that the Foursquare data could only 

act as supplementary data to data collected by traditional household surveys or 

technology-based methods. Due to the data’s relative richness with respect to venues, the 

data source should be able to be used for activity-based planning, especially if the data 

came from a data vendor and thus would have user identification affiliated with each 

check-in allowing for user tracking. Additional concluding remarks will be provided 

within the Conclusion chapter of this dissertation. 
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Chapter 4:  Methodology 

This chapter will present the methodology used to investigate how location-based 

social networking data can be used for transportation demand planning. The chapter 

builds upon the discussions included within the literature review and presents the novel 

approach of using many-to-many modeling, specifically the peer-to-peer model, for 

transportation planning. This chapter begins by presenting details on the mathematical 

components of the peer-to-peer model. It then presents details on the doubly-constrained 

gravity model, and the friction functions used within the exploration of both models. The 

final sections discuss the calibration and validation methods used for the models.  

ORIGIN-DESTINATION MODELING 

Within this section, a detailed explanation of how the location-based social 

networking (LBSN) data, discussed in depth in the previous chapter, will be used in 

conjunction with the two different proposed models. The first component will describe 

the trip generation modeling using LBSN data as well as the data preparation processes 

undertaken. The second component will present the two trip distribution modeling 

methodologies that will be examined: the novel peer-to-peer modeling and the doubly-

constrained gravity model. This second component will include details on the multiple 

friction functions that will be used within the analysis when comparing the two models to 

each other and the existing CAMPO model.  

Trip Generation Using Location-based Social Networking Data 

Previous chapters discussed the location-based social networking and, 

specifically, Foursquare data from both a general and Austin, TX view point. In this 

section the methodology used to transform check-ins into productions and attractions for 

the creation of the origin-destination matrix estimation is described.  
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Foursquare Data Collection  

As discussed in the previous chapters, Foursquare was selected for use due to its 

confirmed vendor locations and good spatiotemporal coverage. Data collection was 

begun by first identifying venues within the study area of Austin and then running a 

trolling algorithm that created a snapshot of the total number of check-ins and unique 

users for each venue. These snapshots were done at intervals of 45-50 minutes and were 

used to create an hourly rate through the following calculation:   

𝐶ℎ𝑟 = (
𝑥2 − 𝑥1

𝑡2 − 𝑡1
) ∗ 60  (𝐸𝑞𝑛. 4.1) 

Where  

 𝐶ℎ𝑟 is the check-in rate per hour; 

 𝑥𝑖 is the number of check-ins collected between the two time intervals; 

 𝑡𝑖 is the time in minutes for each of the time intervals. 

Additionally, the method collected each venues unique ID, name, category, and GPS 

coordinates. The trolling algorithm collected data 24 hours a day for a three week period, 

resulting in over 6 million check-ins. 

Using the nine first tier categories for venue, categories assigned to venues within 

the dataset were confirmed and for those venues without an assigned category, a keyword 

search was performed assigning an appropriate category when possible. Table 4.1 

provides a list of the first tier categories and the number of second tier categories within 

each that are currently available for venue identification; it should be noted that the 

Events category was not an option at the time of the data collection. Venues where no 

category could be assigned or confirmed were removed from the study. The number of 

venues that fell into this group totaled 1538 which corresponds to 8% of all of the venues 

within the study, but only represented 103,692 check-ins representing 1.5% of all checks. 
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After the removal of the non-categorized venues, the remaining venues were assigned to 

CAMPO TAZs through a GIS mapping technique that uses the shapefile for the CAMPO 

TAZs and the GPS coordinates for each venue. 

First Tier Number of Second Tier 

Arts & Entertainment 30 

College & University 13 

Event* 8 

Food 120 

Nightlife Spot 22 

Outdoors & Recreation 47 

Professional & Other Places 29 

Residence 5 

Shop & Service 123 

Travel & Transport 30 

Table 4.1: Foursquare Categories for Classification.  

*New category not included in original data collection. 

Trip Generation Model Methodology 

To determine the trip distributions, the previous check-in Foursquare data was 

separated into weekday and weekend check-ins and the Foursquare weekday check-in 

dataset was then aggregated to the TAZ level resulting in a total number of check-ins per 

TAZ per category. The categories used were the nine first tier categories and the 

“unknown” category resulting in a 10x1462 matrix called “weekday”. It is important to 

note that the length of this matrix is based on the 1462 TAZs within the CAMPO region. 

Using this “weekday” matrix, MATLAB code was run to create a check-in matrix, called 

“checkins,” that contained only the data for the 520 TAZs that are included within the 

study area. The code for this effort is provided in Appendix B. 
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After creating the “checkins” matrix, the data was further manipulated to create 

the productions and attractions for each TAZ. This was done within the coding by 

referencing each row of the weekend matrix to its corresponding category:  

 Row 1 = Professional Locations 

 Row 2 = Shops & Services 

 Row 3 = Colleges & Universities  

 Row 4 = Residences 

 Row 5 = Travel & Transport 

 Row 6 = Arts & Entertainment 

 Row 7 = Food 

 Row 8 = Nightlife Spots 

 Row 9 = Outdoors & Recreation 

The tenth row was comprised of the unknown venue check-ins and was not included 

within this study per the previous discussion. Productions were then calculated using the 

following formula:  

𝑂𝑖 = 𝛾 ∗ 𝑥𝑖    (𝐸𝑞𝑛. 4.2) 

Where  

 𝑂𝑖 is the productions from TAZ i 

 𝑥𝑖 is the total check-ins within TAZ i, and is found using the following 

formula: 

𝑥𝑖 = ∑ (𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 + 𝑆ℎ𝑜𝑝𝑠 + 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑖𝑒𝑠 + 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 +𝑖

𝑇𝑟𝑎𝑣𝑒𝑙𝑠𝑝𝑜𝑡𝑠 + 𝐸𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 + 𝐹𝑜𝑜𝑑 + 𝑁𝑖𝑔ℎ𝑡𝑙𝑖𝑓𝑒 +

𝑂𝑢𝑡𝑑𝑜𝑜𝑟)         (𝐸𝑞𝑛. 4.3)  
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 𝛾 is the adjustment factor used to suitably scale the trip productions to the 

Foursquare check-ins. 

The attractions were calculated using the check-in data and the following formula: 

𝐷𝑗 =  (𝜀 ∗ 𝑥𝑖) +
𝑥𝑖

𝜂

∑ 𝑥𝑖
𝜂

𝑖
∑ (𝛾 − 𝜀)𝑥𝑖

𝑖
   (𝐸𝑞𝑛. 4.4) 

Where  

 𝐷𝑗  is the attractions to TAZ j 

 𝑥𝑖 is as defined above 

 𝜀 is the adjustment factor used to scale the trip attractions to the 

Foursquare check-ins 

 𝛾 is as defined above 

 𝜂 is the weighting factor assigned to the total check-ins within the residual 

term that guarantees the total productions equal the total attractions via the 

following formula: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =
𝑥𝑖

𝜂

∑ 𝑥𝑖
𝜂

𝑖
   (𝐸𝑞𝑛. 4.5) 

For the Austin Foursquare data, the adjustments and weighting factors described above 

were found using a genetic optimization algorithm in the 2014 Jin et al. study and are 

provided in Table 4.2 below. The genetic optimization algorithm will be discussed in 

more detail in a subsequent section of this chapter. 

 

Factor Numerical Value 

𝛾 1.14301 

𝜀 0.66967 

𝜂 0.21198 

Table 4.2: Trip Generation Factors.  
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Trip Distribution Using Location-based Social Networking Data 

Past efforts have considered two variations of gravity models to determine the 

origin-destination (O-D) model from location-based social networking data. The 2011 

study by F. Yang et al. (2014) and the 2013 study by Jin et al. used a singly- constrained 

version of the gravity model. These efforts provided proof of concept and were followed 

by the efforts of 2014 Jin et al. and thesis by this author (2013), which explored the 

doubly-constrained gravity model.  

This section will use the previously described trip generation data to create origin-

destination matrices using two different methodologies: the doubly-constrained gravity 

model and novel peer-to-peer model. First, the doubly-constrained model will be 

presented as will the two-regime friction function exploration. This friction function 

exploration is done to determine how sensitive the doubly-constrained model is to the 

varying functions and for comparison purposes with respect to the newly proposed peer-

to-peer model and the existing CAMPO model. The newly proposed peer-to-peer model 

will then be presented and explored with respect to the friction functions. 

Friction Functions 

The first step in the trip distribution process is to determine and calculate the 

friction function for the study area. The friction function describes the travel impedance 

from the current TAZ to each destination TAZ and for travel within itself. To begin this 

process, centroid GPS coordinates for each TAZ were used in the calculations for the 

Manhattan distances between TAZs using the following equation: 

𝑑𝑖𝑗 = (|𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 − 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑗| + |𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 − 𝑙𝑜𝑔𝑖𝑡𝑢𝑑𝑒𝑗|) ∗ 100 (𝐸𝑞𝑛. 4.6) 

Where  

 𝑑𝑖𝑗 is the distance between two TAZs in miles 
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 𝑖 and 𝑗 represent the starting and ending TAZ respectively. 

The resulting i x j matrix values do not account for the intrazonal travel and additional 

manipulation is needed. To create these values, an identity matrix, eye, was created of 

size i x j, which was then used in the following formula: 

𝑡𝑟𝑖𝑝𝑑𝑖𝑠𝑡𝑖𝑗 = 𝑑𝑖𝑗 + (5 ∗ 𝑒𝑦𝑒)  (𝐸𝑞𝑛. 4.7) 

The use of a value of five was selected to accommodate the travel within each TAZ. 

The study by Jin et al. (2013) found that a two-regime friction function accounted 

for the differentiation between short and long distance trip trends as found within the 

CAMPO data. This study examined the linear, negative exponential, and gamma 

functions (Equations 4.8 through 4.10) for use with in the two-regime function (Equation 

4.11) in the same was the Yang et al. study did.  

Linear:  𝐹𝑖𝑗 = 𝛿 + 𝜃(𝑑𝑖𝑗)     (𝐸𝑞𝑛. 4.8)  

Negative exponential:  𝐹𝑖𝑗 = 𝛿𝑒−𝜃(𝑑𝑖𝑗)     (𝐸𝑞𝑛. 4.9)  

Gamma:  𝐹𝑖𝑗 = 𝛿(𝑑𝑖𝑗
−𝜃)𝑒−𝜆(𝑑𝑖𝑗)     (𝐸𝑞𝑛. 4.10)  

Two-regime friction function: 

 𝐹𝑖𝑗(𝑑𝑖𝑗) = 𝐹𝑖𝑗
(𝑠)(𝑑𝑖𝑗)𝐼𝑑𝑖𝑗≤𝑇𝑑

+ 𝐹𝑖𝑗
(𝑙)(𝑑𝑖𝑗)𝐼𝑑𝑖𝑗>𝑇𝑑

     (𝐸𝑞𝑛. 4.11) 

Where  

 𝛿 is the positive scaling factor controlling the overall range of function 

values 

 𝜃 is the positive or negative constant value which affects the distribution 

of shorter trips 
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 𝜆 is the parameter of friction relating to the efficiency of the transportation 

system between two locations, is always negative, and can impacts the 

distribution of longer trips 

 𝑑𝑖𝑗 is as defined above  

 𝐼𝑑𝑖𝑗≤𝑇𝑑
 and 𝐼𝑑𝑖𝑗>𝑇𝑑

are indicator functions for a logic clause that gives a 

value of 1 when true and 0 otherwise 

 the superscripts s and l indicate short-distance and long-distance trip 

regime,  respectively 

 𝑇𝑑 is the threshold to determine the regime.  

While, only one combination formula was used within the singly- and doubly-

constrained comparison study by Jin et al. (2014), this effort examines all possible 

combinations with respect to the doubly-constrained model in an effort to better 

understand where each model excels and where there are deficiencies. Equations 4.12 

through 4.20 show the two-regime friction function formula combinations that result in 

the nine variations that are examined within this dissertation. 

Linear-Linear:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿 + 𝜃(𝑑𝑖𝑗)   𝑑𝑖𝑗 ≤ 𝜙

  𝛿1 + 𝜃1(𝑑𝑖𝑗)    𝑑𝑖𝑗 > 𝜙  
     (𝐸𝑞𝑛. 4.12) 

Linear-Negative Exponential:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿 + 𝜃(𝑑𝑖𝑗)   𝑑𝑖𝑗 ≤ 𝜙

𝛿1𝑒−𝜃1(𝑑𝑖𝑗)       𝑑𝑖𝑗 > 𝜙  
     (𝐸𝑞𝑛. 4.13) 

Linear-Gamma: 𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿 + 𝜃(𝑑𝑖𝑗)     𝑑𝑖𝑗 ≤ 𝜙

𝛿1 (𝑑𝑖𝑗
−𝜃1) 𝑒−𝜆1(𝑑𝑖𝑗)   𝑑𝑖𝑗 > 𝜙  

     (𝐸𝑞𝑛. 4.14) 

Negative Exponential-Linear:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿𝑒−𝜃(𝑑𝑖𝑗)    𝑑𝑖𝑗 ≤ 𝜙

𝛿1 + 𝜃1(𝑑𝑖𝑗)   𝑑𝑖𝑗 > 𝜙  
     (𝐸𝑞𝑛. 4.15) 

Negative Exponential-Negative Exponential:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿𝑒−𝜃(𝑑𝑖𝑗)   𝑑𝑖𝑗 ≤ 𝜙

𝛿1𝑒−𝜃1(𝑑𝑖𝑗)    𝑑𝑖𝑗 > 𝜙  
     (𝐸𝑞𝑛. 4.16) 
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Negative Exponential-Gamma:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿𝑒−𝜃(𝑑𝑖𝑗)         𝑑𝑖𝑗 ≤ 𝜙

𝛿1 (𝑑𝑖𝑗
−𝜃1) 𝑒−𝜆1(𝑑𝑖𝑗)   𝑑𝑖𝑗 > 𝜙 

     (𝐸𝑞𝑛. 4.17) 

Gamma-Linear:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿(𝑑𝑖𝑗

−𝜃)𝑒−𝜆(𝑑𝑖𝑗)   𝑑𝑖𝑗 ≤ 𝜙

𝛿1 + 𝜃1(𝑑𝑖𝑗)        𝑑𝑖𝑗 > 𝜙 
     (𝐸𝑞𝑛. 4.18) 

Gamma-Negative Exponential:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿(𝑑𝑖𝑗

−𝜃)𝑒−𝜆(𝑑𝑖𝑗)  𝑑𝑖𝑗 ≤ 𝜙

𝛿1𝑒−𝜃1(𝑑𝑖𝑗)           𝑑𝑖𝑗 > 𝜙 
     (𝐸𝑞𝑛. 4.19) 

Gamma-Gamma:  𝐹𝑖𝑗(𝑑𝑖𝑗) = {
𝛿(𝑑𝑖𝑗

−𝜃)𝑒−𝜆(𝑑𝑖𝑗)   𝑑𝑖𝑗 ≤ 𝜙

𝛿1 (𝑑𝑖𝑗
−𝜃1) 𝑒−𝜆1(𝑑𝑖𝑗)    𝑑𝑖𝑗 > 𝜙 

     (𝐸𝑞𝑛. 4.20) 

Where 

 𝜙 represents the cut off value that differentiates a short distance trip from 

a long distance trip and will be found using a genetic algorithm 

As with all of the factors used within this dissertation, the friction function equation 

factors,  𝛿, 𝛿1, 𝜃, 𝜃1, 𝜆, and 𝜆1, will also be found using a genetic algorithm. A sample of 

the two-regime friction function MATLAB coding can be found in Appendix B. 

Doubly-Constrained Gravity Travel Demand Model  

As noted above, previous efforts in the area of location-based social networking 

and transportation planning have considered the singly- and doubly-constrained gravity 

models for origin-destination matrix estimation. With respect to the doubly-constrained 

gravity model, previous work examined the doubly-constrained gravity model with only 

one version of the two-regime friction functions (Jin et al. 2014, Cebelak 2013). Within 

this dissertation, the previous work will be expanded to examine the doubly-constrained 

gravity model with respect to the nine variations of friction functions as identified in the 

previous work of Jin et al. 2013. An origin-destination matrix will be created and used for 

comparison using each of these friction functions. 
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As discussed in the literature review chapter, the doubly-constrained gravity 

model is based off of the Newtonian gravitational law and formula, and builds off of the 

singly-constrained gravity model. Equation 4.21 through 4.23 provides the mathematical 

formulations for the doubly-constrained model, which incorporates balancing factors for 

the productions and attractions defined by 𝛽𝑖 and 𝛼𝑗 respectively. 

Doubly-Constrained Modeling:  

𝑇𝑖𝑗 =  𝛽𝑖 ∗ 𝑂𝑖 ∗ 𝛼𝑗 ∗ 𝐷𝑗 ∗ 𝑓(𝑐𝑖𝑗)  (𝐸𝑞𝑛. 4.21) 

𝛽𝑖 =
1

∑ 𝛼𝑗 ∗ 𝐴𝑗 ∗ 𝑓(𝑐𝑖𝑗)𝑗

   (𝐸𝑞𝑛. 4.22) 

𝛼𝑗 =
1

∑ 𝛽𝑖 ∗ 𝑃𝑖 ∗ 𝑓(𝑐𝑖𝑗)𝑖

   (𝐸𝑞𝑛. 4.23) 

Where 

 𝑂𝑖 is as defined above 

  𝐷𝑗  is as defined above,  

 𝛽𝑖 is the balancing factor for the productions, 𝑂𝑖 

 𝛼𝑗 is the balancing factor for the attractions, 𝐷𝑗  

 𝑓(𝑐𝑖𝑗) is the friction function used as described in the previous section 

Balancing factors 𝛽𝑖 and 𝛼𝑗 are found using an iterative process that uses the 

following steps: 

1. Using values of one for 𝛽𝑖 and 𝛼𝑗, and initial 𝑇𝑖𝑗 matrix is found. 

2. An initial current difference is set to zero, an initial previous difference is 

set to one, and the step count is set to zero. 
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3. The absolute difference between the previous and current differences is 

calculated and while this value is greater than the set threshold and the 

step count is less than or equal to 20, steps 4 through 10 are repeated. 

4. The total productions and attractions are calculated from the initial 𝑇𝑖𝑗 

matrix. 

5. The current 𝛽𝑖 and 𝛼𝑗 are renamed as previous 𝛽𝑖 and previous 𝛼𝑗, 

respectively. 

6. A new 𝛽𝑖 and 𝛼𝑗 is calculated using the created total production and 

attraction values created in step 4 and the Equations 4.22 and 4.23 from 

above. 

7. Using the 𝛽𝑖 and 𝛼𝑗 created in step 5, a new 𝑇𝑖𝑗 matrix is created using 

Equation 4.21. 

8. The current difference is then set to the previous distance and a new 

current difference is calculated using the following formula: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥 (
𝑚𝑎𝑥| 𝛼𝑗 − 𝑝𝑟𝑒𝑣 𝛼𝑗|

𝑚𝑎𝑥| 𝛽𝑖 − 𝑝𝑟𝑒𝑣 𝛽𝑖|
) (𝐸𝑞𝑛. 4.24) 

9. The step count is increased by one. 

10. Return to step 3 until the threshold is met and a final 𝑇𝑖𝑗 matrix is created. 

After the final 𝑇𝑖𝑗 matrix for each of the study friction functions is created additional 

model calibration is still needed and will be discussed in the section that follows the peer-

to-peer modeling discussion. Sample code for the doubly-constrained model can be found 

in Appendix B. 
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Peer-to-Peer Travel Demand Model  

As mentioned in the literature review section, peer-to-peer (P2P) modeling can be 

categorized as structured, unstructured, as well as hybrid networks. Structured overlay 

networks have a protocol that enables the any node to search the network with efficiency 

for a resource, commonly through an implemented distributed hash table (DHT). DHT 

assigns ownership of each resource to a particular peer that can then search for the 

resources within the network using the hash table (Ranjan, Harwood, and Buyya 2008). 

The hash table is comprised of hash functions that are used to compute an index into an 

array of buckets from which the correct value can be found (Hash Table 2014), Figure 

4.1. According to Naor and Wieder (2007) this layout structure gives the network its 

efficiency, but requires that every node must maintain a list of neighbors that satisfy 

specific criteria thus making them less robust for networks with numerous nodes entering 

and leaving the network (Li, Liu, and Vasilakos 2009).  

 

 

 Figure 4.1: Example of a DHT Overlay 

While structured networks have a specific layout/structure for their networks, 

unstructured networks do not enforce any particular structure on the overlay network but 

rather from forming random connections between nodes (Filali et al. 2011). These 

networks are easy to build and allow for optimization to occur locally for different 
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regions of the overlay (Chervenak and Bharathi 2008). Within this structure all peer have 

the same role leading to the more robust nature of the network with respect to numerous 

nodes entering and leaving the network (Jin and Chan 2010). One of the limitations to the 

unstructured networks is the need to query throughout the entire network for a particular 

resource leading to high traffic within the network and may not lead to the resolution of 

all search queries.  

For hybrid networks, a combination of P2P and client-server models exist often 

with a central server that aids peers in finding one another (Darlagiannis 2005). These 

models often have better performance than traditional pure structured or unstructured 

networks due to the need for a centralized system for certain functions (i.e., searches) 

(Yang and Garcia-Molina 2001). 

The formulation of the P2P demand estimation model uses the study by Xu et al. 

(2014) as its basis. In the study by Xu et al., the authors define individual users of the 

computer network as peers with the traffic generated due to uploading and downloading 

in a structured network. The authors define different types of peers based on user 

behavior within their study: 

 Seeds – peers that only upload data, 

 Free-riders – peers that only download data, and 

 Leechers – peers that upload and download data, and have a preference 

toward those peers that have uploaded to them previously. 

For this study, we consider venues as peers, uploading rates as attraction rates, 

downloading rates as production rates, and leechers as the user behavior type. 

P2P systems can have tremendous numbers of peers leading to the need for 

aggregation. The aggregated P2P traffic matrices model formulation within the Xu et al. 

study is given in Equation 4.25: 
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𝑋𝑖𝑗(𝑡) = 𝐾
𝜇𝑖(𝑡)𝜇𝑗(𝑡)

(𝑑𝑖𝑗)
𝑠 𝑈𝑖(𝑡)𝑇𝑗(𝑡)     (𝐸𝑞𝑛. 4.25) 

Where 

 𝑋𝑖𝑗 is the computer traffic between peer node i and peer node j during time 

interval t 

 𝐾 is constant used to adjust the estimation scale 

 𝜇𝑛(𝑡) is the population ratio with n representing the peer node 

 𝑑𝑖𝑗 is the network distance between peer node i and peer node j 

 s is the weighting factor assigned to the network distance 

 𝑈𝑖(𝑡) is the total uploading volume of the P2P traffic within zone i 

 𝑇𝑖(𝑡) is the total downloading volume of P2P traffic within zone j  

 𝜇𝑛(𝑡) is the population ratio and can be found using the following 

equation: 

𝜇𝑖(𝑡) =
|ℎ𝑖

𝑘|

𝑁
     (𝐸𝑞𝑛. 4.26) 

Where 

 ℎ𝑖
𝑘 is population of peers in the aggregated cluster k  

 N is the total number of peers within the system 

In terms of transportation planning, the above equations can be rewritten into 

terms of origin-destination matrix variables as follows: 

Peer-to-Peer Modeling:  

𝑇𝑖𝑗(𝑡) = 𝐾
𝜇𝑖(𝑡)𝜇𝑗(𝑡)

(𝑑𝑖𝑗)
𝑠 𝐷𝑖(𝑡)𝑂𝑗(𝑡)     (𝐸𝑞𝑛. 4.27) 

Where 
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 𝑇𝑖𝑗(𝑡) is equivalent to the 𝑋𝑖𝑗(𝑡) term representing the movement between 

aggregated peer node i (in this analysis TAZ i) and aggregated peer node j 

(TAZ j) during time t.  

 𝐷𝑖(𝑡) is equivalent to the 𝑈𝑖(𝑡) representing the attractions to TAZ i and 

will be calculated as shown in Equation 4.4 

 𝑂𝑗(𝑡) is equivalent to 𝑇𝑗(𝑡) representing the productions from TAZ j and 

will be calculate as shown in Equation 4.2 

 𝑑𝑖𝑗 is the two-regime friction function as described in the previous section 

 K is the estimation scale constant used to calibrate the model and is found 

through the genetic algorithm  

 s  is the distance weighting factor, which is applied to the friction function 

and is found through the genetic algorithm 

 𝜇𝑛(𝑡) is the population ratio that creates a relationship between the 

number of venues within each TAZ to the total number of venues within 

the study area 

While this analysis will not account for time, it is worth noting that this model does have 

the capabilities to account for the time feature making a dynamic origin-destination 

model vary computationally comprehensible. 

Compared to the doubly-constrained gravity model, the P2P model methodology 

is significantly less cumbersome. The steps undertaken for this model are as follows: 

1. The venue populations ratios are created using the following formula: 

𝜇𝑛(𝑡)  =
 𝑇𝐴𝑍𝑛 𝑣𝑒𝑛𝑢𝑒𝑠 

∑ 𝑇𝐴𝑍𝑛 𝑣𝑒𝑛𝑢𝑒𝑠𝑛
1

     (𝐸𝑞𝑛. 4.28) 
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2. A venue population ratio matrix, “venues,” is created to account for the 

𝜇𝑖(𝑡) ∗ 𝜇𝑗(𝑡) component of the P2P equation for all TAZ to TAZ trips and 

uses the following equation for intra-zonal trips: 

𝜇𝑖𝑖(𝑡)  = (
 𝑇𝐴𝑍𝑖  𝑣𝑒𝑛𝑢𝑒𝑠 

∑ 𝑇𝐴𝑍𝑛 𝑣𝑒𝑛𝑢𝑒𝑠𝑛
1

) ∗ (
𝑇𝐴𝑍𝑖  𝑣𝑒𝑛𝑢𝑒𝑠 − 1

∑ 𝑇𝐴𝑍𝑛 𝑣𝑒𝑛𝑢𝑒𝑠𝑛
1

)    (𝐸𝑞𝑛. 4.29) 

3. This venue matrix is multiplied by the K factor to create a new venue 

matrix 

4. The two-regime friction function is raised to the s distance weight factor to 

create a new friction matrix. 

5. The  venue matrix from step 3 is then divided by the friction function from 

step 4  

6. An initial 𝑇𝑖𝑗 matrix is then found by multiplying the resulting step 5 

matrix by the productions and attractions calculated within the trip 

generation process. 

After the initial 𝑇𝑖𝑗 matrix from step 6 for each of the study friction functions is created 

additional model calibration is still needed and will be discussed in the section that 

follows. Sample code for the P2P model can be found in Appendix B. 

MODEL CALIBRATION  

The previous sections described the methodology employed to create the trip 

generations and distributions often referencing the use of a genetic algorithm for the 

determination of various factors used within the calculations. This section will describe 

the genetic algorithm that was engaged for the calibration of each model. 
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Genetic Algorithms 

Genetic algorithms are an optimization strategy that mimics biological evolution 

principles through the repeated modification of a population of individual points using 

rules modeled on gene combinations used in reproduction (MATLAB 2015). In general, 

the algorithm selects random “individuals” from a current population of candidate 

solutions to be used as “parents” for the next generations “children.” Between two 

generations “individuals” are allowed to “mutate” via the addition of a random vector 

from a Gaussian distribution. The process is iterative and evaluates the fitness of every 

individual within the population after each mutation. This process of random “individual” 

selection and “mutation” is repeated and the population “evolves” toward an optimal 

solution, which is “attained” either by exceeding the fitness threshold or by maximizing 

the number of generations.  

This optimization strategy was selected for the improved chances of finding a 

global solution due to the algorithm’s random nature. One of the limitations of the 

algorithm is its computational inefficiencies; however, the algorithms are extremely 

flexible (Charypar and Nagel 2005), thus their selection for use within this dissertation. 

Table 4.3 provides a comparison between the classic and genetic algorithms noting the 

differences between them. 

 

Genetic Algorithm Classic Algorithm 

Generation of a population of points 

for each iteration with the best point 

within the population approaching an 

optimal solution. 

Generation of a single point for each 

iteration with the sequence of points 

approaching an optimal solution 

Next population is selected by 

computation using random number 

generators. 

Next point in sequence is selected via 

a deterministic computation. 

Table 4.3: Algorithm Comparison (MATLAB, 2013). 
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MATLAB has a built-in tool for optimization that includes a genetic algorithm. 

This genetic algorithm has the following syntax: 

[𝑥 𝑓𝑣𝑎𝑙] =  𝑔𝑎(@𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛, 𝑛𝑣𝑎𝑟𝑠, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

Where  

 @𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛 references the fitness function to be evaluated 

 𝑛𝑣𝑎𝑟𝑠 is the number of independent variables for the fitness function 

 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 contains the options that are customizable for the genetic 

algorithm 

 𝑥 is point at which the final value is attained 

 𝑓𝑣𝑎𝑙 is the final value of the fitness function 

Further details with respect to the particulars of this analysis will be provided after the 

brief general discussion on how the algorithm works with in MATLAB.  

The steps that MATLAB’s algorithm undertakes are: 

1. An initial random population is created 

2. Each member of the population is scored via its fitness value 

3. The raw fitness scores are scaled to a more usable range of values 

4. “Parent” members are selected based on fitness 

5. Identification of “elite” individuals is done based on low fitness values 

and these individuals are passed on to the next population 

6. “Children” are produced from the “Parents” from step 4 via a mutation of 

a single parent or by crossover, which is the combining of the vector 

entries of a pair of “parents” 

7. A new sequence of populations is created by replacement of the current 

population with the “children,” “elite,” and “parents” 
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For the selection of “parents,” the default option, which is used for this dissertation, is the 

stochastic uniform. This method lays out a line where each parent corresponds to a 

section of the line that is proportional to its scaled value. The algorithm uses a uniform 

random number less than the step size to begin the process that moves along this line in 

equally sized steps allocating a parent from each section that is landed on. For the 

crossover process, a default crossover function randomly selects an entry, or, in terms of 

biology, a “gene” from the same location from one of the “parents” and assigns it to the 

same location for the “child.” For the mutation process, a random vector from a Gaussian 

distribution is added to the “parent.”  For a genetic algorithm to be effective, both 

crossover and mutations are needed. The crossover function extracts the “best genes” 

from the “parents” to potentially create “superior children,” while the mutation function 

adds diversity to the population and increases the likelihood that better fitness values will 

be attained from the new population. 

Within the MATLAB genetic algorithm, there are a number of options that can be 

defined by the user. Figure 4.2 shows the default values used within the code. Within this 

analysis, the number of generations and the termination tolerance value were adjusted 

from the default values. This was done to assist in the algorithm’s ability to converge in a 

reasonable amount of time without compromising the resulting optimized values. The 

number of generations was set to 100 and the termination tolerance was set to 1.000e-03. 

The code used to make this change can be found in Appendix B. 
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 Figure 4.2: MATLAB Genetic Algorithm Default Options 

For this analysis, the genetic algorithm syntax used was: 

[𝑝𝑎𝑟𝑎𝑚𝑠, 𝑓𝑎𝑣, 𝑒𝑥𝑖𝑡𝑓𝑙𝑎𝑔, 𝑜𝑢𝑡𝑝𝑢𝑡]

= 𝑔𝑎(@(𝑥)𝑒𝑣𝑎(𝑥, 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑠,′ 𝐶𝑅′, 𝑡𝑜𝑡𝑎𝑙𝑂𝐷, 𝑡𝑟𝑖𝑝𝑑𝑖𝑠𝑡, 𝑛, 𝑎𝑙𝑔, 𝑣𝑒𝑛𝑢𝑒𝑠),

𝑛𝑉𝑎𝑟𝑠, [ ], [ ], [ ], [ ], 𝑙𝑜𝑤𝑒𝑟𝐵𝑑𝑆, 𝑢𝑝𝑝𝑒𝑟𝐵𝑑𝑠) 
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Where  

 @(𝑥)𝑒𝑣𝑎(𝑥, 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑠,′ 𝐶𝑅′, 𝑡𝑜𝑡𝑎𝑙𝑂𝐷, 𝑡𝑟𝑖𝑝𝑑𝑖𝑠𝑡, 𝑛, 𝑎𝑙𝑔, 𝑣𝑒𝑛𝑢𝑒𝑠) is the 

fitness function which references a function that will be discussed further 

below. The requirement for the fitness function is that it should be able to 

accept a row vector of length 𝑛𝑣𝑎𝑟𝑠 and return a scalar value. 

 𝑛𝑉𝑎𝑟𝑠 is the number of variables to be analyzed and uses positive integers 

 [ ], [ ], [ ], [ ] are indicators that no linear inequalities exist for the 

following characteristics, respectively: 

 𝐴 is a matrix for linear inequalities with the constraint of the form 

𝐴 ∗ 𝑥 ≤ 𝑏 

 𝑏 is a vector for linear inequalities with the constraint of the form 

𝐴 ∗ 𝑥 ≤ 𝑏 

 𝐴𝑒𝑞 is a matrix for linear inequalities with the constraint of the 

form 𝐴𝑒𝑞 ∗ 𝑥 ≤ 𝑏𝑒𝑞 

 𝑏𝑒𝑞 is a matrix for linear inequalities with the constraint of the 

form 𝐴𝑒𝑞 ∗ 𝑥 ≤ 𝑏𝑒𝑞 

 𝑙𝑜𝑤𝑒𝑟𝐵𝑑𝑆 is the vector of lower bounds that the genetic algorithm 

enforces to ensure the iterations stay above. If no lower bound exists, this 

value can be set to -Infinity 

 𝑢𝑝𝑝𝑒𝑟𝐵𝑑𝑠 is the vector of upper bounds that the genetic algorithm 

enforces to ensure the iterations stay above. If no upper bound exists, this 

value can be set to Infinity 

 [𝑝𝑎𝑟𝑎𝑚𝑠, 𝑓𝑎𝑣, 𝑒𝑥𝑖𝑡𝑓𝑙𝑎𝑔, 𝑜𝑢𝑡𝑝𝑢𝑡] are the results from the genetic 

algorithm and are described as follows: 
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 𝑝𝑎𝑟𝑎𝑚𝑠 is a vector of best points, or solutions, as located by the 

genetic algorithm during its iterations based on the conditions set. 

This vector’s length is customizable by the user and is defined by 

𝑥 in the above equation. 

 𝑓𝑎𝑣 returns the fitness function evaluated for the 𝑝𝑎𝑟𝑎𝑚𝑠. 

 𝑒𝑥𝑖𝑡𝑓𝑙𝑎𝑔 returns an integer that relates to the reason why the 

algorithm was terminated. These values and meanings are 

presented in Table 4.4. 

 𝑜𝑢𝑡𝑝𝑢𝑡 returns details about the algorithm’s performance and 

contains the following fields: 

 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑡𝑦𝑝𝑒- a string that describes the type of problem as 

one of the following: unconstrained, bound constraints, 

linear constraints, nonlinear constraints, or integer 

constraints. 

 𝑟𝑛𝑔𝑠𝑡𝑎𝑡𝑒- the state of the random number generator just 

prior to the start of the algorithm. These values can be used 

for reproduction of the outputs from the algorithm. 

 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 – the number of generations computed within 

the algorithm’s run. 

 𝑓𝑢𝑛𝑐𝑐𝑜𝑢𝑛𝑡 – the number of evaluations of the fitness 

function. 

 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 – the reason for algorithm termination. 

 𝑚𝑎𝑥𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 – the maximum constraint violation, if any 

exist. 

Typical results for a run of the genetic algorithm are as follows: 
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params = 

   1.0e+03 * 

    0.0005    0.0046    0.0100    0.0000    0.0099    0.0146    

0.0095    0.0000    5.1171    0.4525    0.0001 

fav = 

   -0.4505 

exitflag = 

     1 

output =  

      problemtype: 'boundconstraints' 

      rngstate: [1x1 struct] 

      generations: 61 

      funccount: 12400 

      message: 'Optimization terminated: average change in the 

fitness value less than options.TolFun.' 

      maxconstraint: 0 
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Exit Flag Meaning 

1 Average cumulative change in value of the fitness function 

𝑜𝑣𝑒𝑟𝑆𝑡𝑎𝑙𝑙𝐺𝑒𝑛𝐿𝑖𝑚𝑖𝑡 generations is less than 𝑇𝑜𝑙𝐹𝑢𝑛, and the constraint 

violation is less than 𝑇𝑜𝑙𝐶𝑜𝑛. 

2 Fitness limit reached and the constraint violation is less than 𝑇𝑜𝑙𝐶𝑜𝑛. 

3 Value of the fitness function did not change 

in 𝑆𝑡𝑎𝑙𝑙𝐺𝑒𝑛𝐿𝑖𝑚𝑖𝑡 generations and the constraint violation is less 

than 𝑇𝑜𝑙𝐶𝑜𝑛. 

4 Magnitude of step smaller than machine precision and the constraint 

violation is less than 𝑇𝑜𝑙𝐶𝑜𝑛. 

5 Minimum fitness limit reached and the constraint violation is less 

than 𝑇𝑜𝑙𝐶𝑜𝑛. 

0 Maximum number of generations exceeded. 

-1 Optimization terminated by an output function or plot function. 

-2 No feasible point found. 

-4 Stall time limit exceeded. 

-5 Time limit exceeded. 

Table 4.4: Exit Flags and Meanings from MATLAB Genetic Algorithm (MATLAB, 

2015).  

For the fitness function used in our analysis, code was written that had flexibility 

to use many different evaluation methods which the user can define. The code uses the 

genetic algorithms outputs for 𝑥 as well as the previously defined variables of “checkins,” 

and “venues.” The other variables referenced, “totalOD,” “n,” and “alg,” are defined as 

follows: 

 “totalOD” refers to the OD matrix of the comparison model that 

encompasses all of the trip types to be analyzed. 

 “n” is a scalar value that is defined by the length of the “totalOD” matrix. 
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 “alg” refers to the algorithm model type (i.e., doubly-constrained gravity, 

peer-to-peer) being analyzed. 

Within the function, the customizable component is found within the apostrophes. For the 

purpose of this dissertation a coincidence ratio (CR) is used. The CR determines how 

“closely” the proposed model matches the comparison model using the following 

equation which measures the area that “coincides” between the matrices that are used 

within the comparison (Martin 1998). 

𝐶𝑅 =
∑ 𝑚𝑖𝑛(𝑝𝑖

𝑀, 𝑝𝑖
𝑂)𝑖

∑ 𝑚𝑎𝑥(𝑝𝑖
𝑀, 𝑝𝑖

𝑂)𝑖

   (𝐸𝑞𝑛. 4.30) 

Where 

 𝑝𝑖
𝑀 represents the percentage of trips within the interval i in the predicted 

trips from the check-in data 

 𝑝𝑖
𝑂 represents the percentage of trips within the interval i in the survey 

trips from the comparison dataset.  

The value for the CR ranges from zero, when the distributions are completely different, 

and one, when the distributions are exactly the same. The goal for genetic algorithm is to 

satisfy the fitness function by finding the values for the variables that result in a model 

with a CR as close to one as possible by minimizing the mean absolute error (MAE). The 

code for this model calibration method can be found in Appendix B. 

Model Scaling 

Once each model calculates a final 𝑇𝑖𝑗 matrix the following equations: are used to 

additionally calibrate the model: 

𝑇𝑜𝑡𝑎𝑙𝑂𝐷𝑖𝑗 =  ∑ 𝑀𝑃𝑂 𝑇𝑟𝑖𝑝𝑠   (𝐸𝑞𝑛. 4.31) 
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𝑀𝑃𝑂_𝑆𝑢𝑚 =  ∑ ∑ 𝑇𝑜𝑡𝑎𝑙𝑂𝐷𝑖𝑗

𝑖

 

𝑗

  (𝐸𝑞𝑛. 4.32) 

𝑇_𝑚𝑜𝑑𝑒𝑙 =  
𝑇𝑖𝑗

(∑ ∑ 𝑇𝑖𝑗𝑖  𝑗 ) ∗ 𝑀𝑃𝑂𝑆𝑢𝑚

  (𝐸𝑞𝑛. 4.33) 

Where 

 MPO Trips are all of the trip purposes for each TAZ that are desired for 

inclusion within the study. These may be home based work, home based 

non-work, or any other purpose defined by the MPO. 

 𝑇𝑖𝑗 is the origin-destination matrix calculated from the previous steps. 

This process is done to scale the calculated 𝑇_𝑚𝑜𝑑𝑒𝑙 to the MPO’s origin-destination 

values for better comparison purposes. After this scaling is done, additional checks are 

performed on the 𝑇_𝑚𝑜𝑑𝑒𝑙 matrix to adjust for any bias from high frequency values and 

for extreme values using the following equations: 

High Frequency Value Check:  

1. Using the calculated model’s 𝑇𝑖𝑗 any values that are larger than or equal to 

the lower bound threshold as found by the genetic algorithm are included 

in the adjustment. 

2. Values are then adjusted using an adjustment factor, adjMid, which is 

found via the genetic algorithm, by means of the following formula: 

𝑇_𝑀𝑜𝑑𝑒𝑙 =  𝑎𝑑𝑗𝑀𝑖𝑑 ∗ 𝑇_𝑀𝑜𝑑𝑒𝑙ℎ𝑖𝑔ℎ𝐼𝑑𝑥  (𝐸𝑞𝑛. 4.34) 

Extreme Value Check:  

1. Using the calculated model’s 𝑇𝑖𝑗 any values that are larger than the upper 

bound threshold, found by the genetic algorithm, are selected for 

inclusion.  
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2. The total difference between the model’s original 𝑇𝑖𝑗 and the T_Model 

from the high frequency check is calculated using the following formula: 

𝑇𝑜𝑡𝑎𝑙_𝑑𝑖𝑓𝑓 =  ∑ ∑(𝑜𝑟𝑔𝑇𝑀𝑜𝑑𝑒𝑙
− 𝑇𝑀𝑜𝑑𝑒𝑙)  

𝑖𝑗

(𝐸𝑞𝑛. 4.35) 

3. The total difference is then redistributed to the matrix using the following 

formula: 

𝑇_𝑀𝑜𝑑𝑒𝑙

=  𝑇_𝑀𝑜𝑑𝑒𝑙

+ (𝑇𝑜𝑡𝑎𝑙𝑑𝑖𝑓𝑓 ∗ (𝑇𝑀𝑜𝑑𝑒𝑙

(
𝜂

∑ ∑ (𝑇𝑀𝑜𝑑𝑒𝑙
𝜂)𝑖𝑗

⁄ )
)) (𝐸𝑞𝑛. 4.36) 

MODEL VALIDATION 

To be able to determine how each of the proposed models performs, an origin-

destination matrix will be created from the proposed models and a comparison to the 

local origin-destination matrix will be performed to determine how “closely” the 

proposed model matches. This “closeness” will be analyzed using the coincidence ratio 

described above. In addition to the coincidence ratio, the mean error (ME), the mean 

absolute error (MAE), the frequency ratio (FR), and the swap ratio will be used determine 

the validity of each model’s origin-destination matrix within the analysis as compared to 

the MPO model.  

The ME is a measure that indicates if the model is biased in a positive or negative 

manner with respect to the following calculation: 

𝑀𝐸 =  
∑ 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑖𝑝𝑠𝑖 − 𝑀𝑃𝑂𝑇𝑟𝑖𝑝𝑠𝑖

𝑁
𝑖=1

𝑁
     (𝐸𝑞𝑛. 4.37) 
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Where 

 𝑁 is the total number of origin-destination pairs 

 𝑀𝑃𝑂𝑇𝑟𝑖𝑝𝑠𝑖 is the number of trips for the origin-destination pair from the 

comparison dataset, which is a 1xN matrix 

 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑖𝑝𝑠𝑖 is the number of trips for each origin-destination pair from 

model matrix, which is a 1xN matrix 

The MAE is a method used to determine how close a prediction comes to actual 

outcomes through the examination of the average magnitude of errors within the 

prediction. The result is a linear value ranging from zero to infinity that relates to the 

error that is expected from the prediction. One benefit from this method is the limited 

sensitivity to occasional very large error. The calculation for MAE is done using the 

following equation: 

𝑀𝐴𝐸 =  
∑ |𝑀𝑃𝑂𝑇𝑟𝑖𝑝𝑠𝑖 − 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑖𝑝𝑠𝑖|

𝑁
𝑖=1

𝑁
     (𝐸𝑞𝑛. 4.38) 

The frequency ratio (FR) compares the relative frequency of each trip value 

between the comparison data and the model data for each origin-destination pair. The 

relative frequencies are found by categorizing the number of trips into bins of 50 trip 

intervals and then turning these frequencies into a ratio to the total amount of trips from 

the dataset. The frequency ratio is then found using the following formula: 

𝐹𝑅 =  
∑  𝑚𝑖𝑛(𝑇𝑟𝑢𝑅𝑒𝑙𝐹𝑟𝑒𝑞, 𝑀𝑜𝑑𝑒𝑙𝑅𝑒𝑙𝐹𝑟𝑒𝑞)𝑚

𝑖=1

∑ 𝑚𝑎𝑥(𝑇𝑟𝑢𝑅𝑒𝑙𝐹𝑟𝑒𝑞 , 𝑀𝑜𝑑𝑒𝑙𝑅𝑒𝑙𝐹𝑟𝑒𝑞)𝑚
𝑖=1

     (𝐸𝑞𝑛. 4.39) 

Where 

 𝑇𝑟𝑢𝑅𝑒𝑙𝐹𝑟𝑒𝑞 is the relative frequency for the comparison dataset trip value 

and is a 1 x 𝑚 matrix 
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 𝑀𝑜𝑑𝑒𝑙𝑅𝑒𝑙𝐹𝑟𝑒𝑞 is the relative frequency for the model dataset trip value and 

is a 1 x 𝑚 matrix 

 𝑚 is the number of bins used within the histogram calculation 

With respect to the swap ratio, an absolute valued vector is found with respect to 

the two comparison points for each value within the compared matrices. The mean value 

of these vectors is the resulting swap ratio value, which gives a relative distance between 

the predicted trips and the comparison dataset’s trips (Equation 4.40). For the swap ratio, 

new 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑖𝑝𝑠𝑖 and 𝑀𝑃𝑂𝑇𝑟𝑖𝑝𝑠𝑖 matrices are created that remove any zeros within the 

matrix to ensure a value is attained for the ratio. Code used for the calculation of ME, 

MAE, FR, and swap ratio can be found in Appendix B. 

𝑠𝑤𝑎𝑝 𝑟𝑎𝑡𝑖𝑜 =  
∑ |(tan−1 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑖𝑝𝑠𝑖

𝑀𝑃𝑂𝑇𝑟𝑖𝑝𝑠𝑖
) ∗ (

180
𝜋 )|𝑁

𝑖=1

𝑁
     (𝐸𝑞𝑛. 4.40) 

In addition to the above calculations, the examination of trip length distribution 

and cumulative trip length distribution are done to compare how each model performs 

with respect to the comparison data. Trip lengths for the models as well as the 

comparison dataset are calculated by adding up the total number of trips that occur within 

each interval of 100 between zero and 3,000 miles. A calculation is then performed to 

turn these totals into percent values. The cumulative percentages of trips for each interval 

are than calculated for the model and comparative datasets. These calculations result in a 

graphical depiction for each model that shows where there is consistency with respect to 

general curvature, and where over and under estimation exists with respect to trip lengths. 

The graphic will demonstrate where further adjustments to the models may be needed. 

Figure 4.3 provides a sample of this graphic. The MATLAB code for this is analysis is 

provided in Appendix B. 
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(a) Singly-Constrained Model Trip Length 

Frequency Results    

 (b) Doubly-Constrained Model Trip Length 

Frequency Results

 Figure 4.3: Sample Trip Length Distribution Comparison (Jin et al. 2014) 

For each model the productions and attractions for each TAZ will be compared to 

the productions and attractions for the comparison dataset. This is done by mapping the 

production to the TAZ using ArcGIS’s join feature. For consistency purposes, the 

gradient color scheme used to differentiate the range of productions and attraction values 

will be kept constant for all of the models. This graphical representation, see Figure 4.4 

for sample, will visually demonstrate where there are inconsistencies in how the proposed 

methods calculate productions and attractions, as well as where the method excels. 

Consequently, this will reveal where there may be an overabundance or lack of check-in 

data. 
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CAMPO Model    Singly-Constrained Model  Doubly-Constrained Model

 

 Figure 4.4: Sample Production Comparisons (Jin et al. 2014) 

The final method used to validate each model’s capabilities uses an origin-

destination flow pattern intensity graphic. This graphic, Figure 4.5 provides a sample, is 

created using the following formula for each model and for the comparison dataset:  

𝐼𝑖𝑗 = 𝑙𝑜𝑔10 (
𝑇𝑖𝑗

∑ ∑ 𝑇𝑖𝑗𝑗𝑖
)     (𝐸𝑞𝑛. 4.41) 

Where 

 𝐼𝑖𝑗 is the intensity of travel to TAZ  

 𝑇𝑖𝑗 are the number of trips per TAZ from either the model or the 

comparison dataset, depending on which is being analyzed 

 Higher origin-destination flows are shown via the darker coloring, while lesser 

flows are shown in the lighter coloring. The graphics allow for a visual analysis on how 

closely the variations in colors and the striations from the model graphic match the 

comparison data graphic. The more similar these colors and striations are, the better the 

fit of the model to the comparison data. In addition to the model and comparison intensity 

graphic, an intensity MAE matrix is created that visually shows TAZ by TAZ error 
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magnitude. A log of the histogram trip frequency values are also provided for the study 

area to demonstrate where there is over or underestimation with respect to amount of 

travel for various distances pictorially. Appendix B provides a sample of the code used 

for the creation of these analysis graphics. 

 

 

Figure 4.5: Sample OD Flow Pattern, MAE, Trip Frequency Intensity Graphic (Jin et al. 

2014) 
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CONCLUDING STATEMENTS 

This chapter presents the two methodologies used for an in-depth analysis of the 

use of location-based social networking data for the creation of origin-destination matrix. 

The two models presented, doubly-constrained gravity and peer-to-peer, used a two-

regime friction function that was comprised of three different equations for a total of nine 

different functions. Each model was optimized using a genetic algorithm. Chapter 5 will 

present a case study using the methodologies described in this chapter and present the 

results of the analyses performed. 
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Chapter 5:  Case Study 

In order to determine the effectiveness of the proposed Peer-to-Peer modeling 

approach in conjunction with the use of location-based social networking, a case study 

using Austin, TX as a study area was performed. In this chapter, the study area will be 

described and the existing local model by the metropolitan planning organization (MPO) 

will be explained. The results of the methodologies used in Chapter 4 will be presented 

and a comparison to the CAMPO model will be done. Finally, the resulting peer-to-peer, 

doubly-constrained gravity, and CAMPO models will be presented with discussion on the 

strengths and weaknesses of each model. 

STUDY AREA 

In alignment with previous research efforts into the use of location-based social 

networking data for transportation planning (Jin et al. 2013, Cebelak 2013, Cebelak 2014, 

Jin et al. 2014), this dissertation uses Austin, TX as the location for analysis. Austin 

functions as the capital of the state of Texas and is part of the Austin-Round Rock 

Metropolitan Statistical Area (MSA), which is comprised of the five counties of 

Williamson, Travis, Hays, Bastrop, and Caldwell. According to the City of Austin 

website, as of April 1, 2015 the Austin-Round Rock MSA has a population of 1,990,593 

and a land area of 4,285.70 mi2 and the City of Austin has a population of 900,701 and a 

land area of 322.48 mi2, the majority of which resides within Travis County (see Figure 

5.1). In addition to its role as the capital, Austin is home to the University of Texas at 

Austin, the location for many Fortune 500 companies’ headquarters and offices, 

examples of which include Dell, Whole Foods Market, and Advanced Micro Devices Inc. 

(CNN Money 2013), and is known as “The Live Music Capital of the World” playing 

host to more than 250 music venues and festivals each year which bring over 19 million 

visitors to the city annually (Austin Chamber 2013). 
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 Figure 5.1: 2013 Austin-Round Rock MSA Map (City of Austin 2015) 

Capital Area Metropolitan Planning Organization (CAMPO)  

  The metropolitan planning organization that the City of Austin is a part of is the 

Capital Area Metropolitan Planning Organization (CAMPO), which includes the counties 

within the Austin-Round Rock MSA as well as Burnet County. CAMPO is the 

coordinating body for the regional transportation planning efforts with the counties, the 

cities, the Capital Metropolitan Transportation Authority, the Capital Area Rural 

Transportation System, the Lone Star Rail, the Central Texas Regional Mobility 

Authority, and the Texas Department of Transportation (CAMPO 2015). As part of its 
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responsibilities, CAMPO produces the Long-Range Transportation Plan, the most recent 

of which is the 2005 version. This latest version of the Long-Range plan uses 2005 base 

year data, which was recalibrated and validated according to the CAMPO Urban 

Transportation Study: 2005 Base Year Travel Demand Model Calibration and Validation 

for Updating the 2035 Long Range Plan document.  

For the 2005 CAMPO Travel Demand Model (TDM), a total of 1,413 traffic 

analysis zones (TAZs) make up the regional plan. Of the 1,413 regional TAZs, the 520 

that exist within the City of Austin area will be included in the case study analysis 

(Figure 5.2). The model defines a total of 17 trip purposes that include four external trip 

purposes and the commercial truck/taxi vehicle trips, which will not be included within 

the analysis. The remaining 12 person trip purposes are as follows: 

1. Home Based Work Direct (HBW-Direct) 

2. Home Based Work Strategic (HBW-Strategic) 

3. Home Based Work Complex (HBW-Complex) 

4. Home Based Non-work Retail (HBNW-R) 

5. Home Based Non-work Other (HBNW-O) 

6. Home Based Non-work Primary Education (HBNW-E1) 

7. Home Based Non-work University/College (HBNW-E2) 

8. Home Based Non-work UT-Austin Education (HBNW- UT) 

9. HBNW/NHB (Non-work) Airport (NW-Airport) 

10. Non-home Based Work-related (NHB-W) 

11. Non-home Based Other (NHB-O) 

12. Non-home Based External Commuter/Visitor Vehicle Trips (NHB-Exlo) 

CAMPO defines Home Based Work trips into three different categories to 

provide additional insight for mode choice decisions. However, the analysis presented 
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within this Chapter will not differential between these categories and will group these 

trips into a single Home Based Work (HBW) category. Additionally, the two non-

University of Texas (UT) educational categories are not included within the analysis. The 

rational for doing this is that the data collected occurred during the summer (June 11 

through July 2) and there is little commuting traffic to these locations. Since UT is one of 

ten companies that employ over 6,000 (Austin Chamber 2015) the Home Based Non-

work UT trips will be included in the study. These changes result in the following defined 

trip purposes: 

1. Home Based Work (HBW) 

2. Home Based Non-work Retail (HBNW-R) 

3. Home Based Non-work Other (HBNW-O) 

4. Home Based Non-work UT-Austin Education (HBNW- UT) 

5. HBNW/NHB (Non-work) Airport (NW-Airport) 

6. Non-home Based Work-related (NHB-W) 

7. Non-home Based Other (NHB-O) 

8. Non-home Based External (NHB-E) 
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9.  

 Figure 5.2: City of Austin TAZs (City of Austin 2015) 

The data used for the TDM came from travel surveys that were conducted during 

2005 and 2006. This data included individual surveys that were made up of 1,500 

household samples that were selected based on household income and size (CAMPO 

2010). Each household was asked to complete a travel diary, which was used to develop 

household trip production rates, trip length frequency distributions, and other salient data. 

From this data trip production and attraction rates were created based on household 

characteristics (i.e., income level, workers within the household) and the trip types 

described above. CAMPO utilizes a scaling effort for attractions to ensure agreement 

with the productions. Additionally, TAZs are assigned area types based on TAZ 

population and employment densities. The categories for area type include the following: 

central business district (CBD), urban intense (UrbInt), urban residential (UrbRes), 

suburban residential (SubUrbRes), and rural (Rural). 

Legend

Study TAZs

CAMPO 2010 TAZs
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For trip distributions, CAMPO uses the atomistic trip distribution model, which is 

a triply-constrained gravity model and was described in detail within the literature review 

chapter of this dissertation. This method allocates intrazonal trips by utilizing radius data 

for each TAZ and trip length frequency distributions from the travel surveys. Trip length 

frequency model calculations use a gamma function that is fit to the average trip length in 

minutes, maximum allowable network separation in minutes, and trip purpose identifies. 

Bias factors can be applied within the modeling as needed and are used to address school 

district boundaries than may exist outside the CAMPO region where more trips were 

going out of the boundary than was appropriate. The model used for trip distributions 

includes a speed feedback loop that uses the method of successive averages using either 

the 24 hour highway trip table, the total misplaced flow of the 24 hour highway trip table, 

or statistics of the 24 hour assigned link flow table. 

ANALYSIS OF PROPOSED METHODOLOGY 

To be able to determine how the proposed models perform, the 2005 CAMPO 

Urban Transportation Study’s TDM will be used and will be reduced to include only the 

520 City of Austin TAZs and the respective 2005 Person Trip Table for the origin-

destination matrix. To do this the CAMPO data was manipulated by creating a text file 

that contained only the TAZs to be included within the analysis. This file and the 2005 

Person Trip Table text file was used within MATLAB to assign the trips to each of the 

eight trip categories defined above resulting in a 520x520 matrix. The code used for this 

effort can be found in the master’s thesis by this author (Cebelak 2013). 

It is important to note here that while the CAMPO model is used for comparison 

in this dissertation, it does not imply that the model is “ground truth.”  The CAMPO 

model uses survey data, which studies have shown have significant under-reporting 

(Bricka 2010, Srinivasan et al. 2006), concerns about data quality and completeness 
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(Bricka 2010, Srinivasan et al. 2005), and trust limitations (i.e., only valid if survey 

variables and stated preferences have not changed) (Devillaine, Munizaga, and Trépanier 

2012). However, since this model is the accepted model used for the metropolitan areas 

planning, it has been deemed acceptable for comparison purposes. Additionally, it should 

be noted that the data used within the CAMPO model comes from a 2005 survey, while 

the Foursquare dataset comes from 2012. This is especially important since the growth 

rate of the city of Austin’s population has been increasing since the 2005 survey with a 

growth of 16.4% between the two study years (Table 5.1). 

Year Population 

Annualized 

Growth Rate 

2000 656,562 - 

2001 669,693 2.00% 

2002 680,899 1.70% 

2003 687,708 1.00% 

2004 692,102 0.60% 

2005 700,407 1.20% 

2006 718,912 2.60% 

2007 735,088 2.30% 

2008 750,525 2.10% 

2009 774,037 3.10% 

2010 790,390 2.10% 

2011 812,025 2.70% 

2012 824,205 1.50% 

2013 842,750 2.30% 

2014 865,504 2.70% 

Table 5.1: City of Austin’s Growth Rates Since 2000 (Demographic Data 2015). 

Each of the validation methods discussed in Chapter 4 will be used within this 

section to analyze the results from each of the 18 models. These include the coincidence 

ratio (CR), the mean error (ME), the mean absolute error (MAE), the frequency ratio 
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(FR), the swap ratio, the trip length distributions, the productions and attraction rates, as 

well as the intensity analysis efforts. 

RESULTS AND DISCUSSION 

This section will present the results for each of the 18 models included in the 

study: nine doubly-constrained gravity models and nine peer-to-peer models. The base 

models, doubly-constrained and peer-to-peer, will be compared independently and will 

identify “best” performing models using the criteria identified above and described in 

detail in Chapter 4. These “best” performing models will then be compared to one 

another to further examine the base models strengths and weaknesses. 

Doubly-Constrained Gravity Model Results  

Using the methodology described in the previous chapter, each friction function 

model was run using a genetic algorithm. The resulting nine doubly-constrained models 

will be discussed in this section with respect to the criteria from the previous chapter. For 

comparison against the peer-to-peer model, the “best” doubly-constrained model or 

models will be used. The qualification for “best” model(s) will be based on the model(s) 

that performs highest with respect to the criteria from the previous chapter. 

Coincidence Ratio Analysis  

The previous chapter defined the methodology used for the creation of the 

coincidence ratio (CR), which compares the doubly-constrained model to the CAMPO 

model, and determines how “closely” the doubly-constrained model trip distributions 

comes to the CAMPO trip distributions. Table 5.2 provides the CR values attained for 

each of the nine models. The table shows that the models are not sensitive to which 

version of friction function (linear, negative exponential, or gamma) is used for the short 

trips, but that they are sensitive to the friction function used for long trips. The negative 
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exponential and gamma functions perform significantly better than the linear for the long 

trips. The best performing two-regime friction functions are as follows:  

1.) Linear - Negative exponential (0.9576) 

2.) Gamma - Negative exponential (0.9449) 

3.) Negative exponential - Negative exponential (0.9283) 

Doubly-Constrained 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 0.4390 0.9576 0.7413 

Neg. Exp. 0.4389 0.9283 0.8132 

Gamma 0.4961 0.9449 0.8089 

Table 5.2: Resulting Coincidence Ratio for Doubly-Constrained Gravity Models 

Mean Error Analysis 

The mean error was calculated for each of the nine models and the results are 

shown in Table 5.3. While the values range between positive and negative, all are very 

small in magnitude indicating little bias exists with respect to the origin-destination 

matrix creation. The friction-functions that would be considered “best” performers would 

be the following: 

1.) Gamma - Linear (-1.0225E-14) 

2.) Negative exponential - Negative exponential (-1.9623E-14) 

3.) Linear - Linear (-2.0396E-14) 
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Doubly-Constrained 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear -2.0396E-14 2.8361E-14 -9.8484E-14 

Neg. Exp. 6.0113E-14 -1.9623E-14 -1.4100E-13 

Gamma -1.0225E-14 -6.8777E-14 -6.5548E-14 

Table 5.3: Resulting Mean Error for Doubly-Constrained Gravity Models 

Mean Absolute Error Analysis 

With respect to the MAE, the doubly-constrained methods were fairly consistent 

in the error calculations. Once again the models with negative exponential calculations 

for the long trips performed the best (Table 5.4), with the following ranked order: 

1.) Linear - Negative exponential (9.9869) 

2.) Gamma - Negative exponential (10.1379) 

3.) Negative exponential - Negative exponential (10.5308) 

Doubly-Constrained 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 13.1033 9.9869 12.4889 

Neg. Exp. 13.0792 10.5308 10.8799 

Gamma 13.0517 10.1379 10.7182 

Table 5.4: Resulting Mean Absolute Error for Doubly-Constrained Gravity Models 

Frequency Ratio Analysis 

A comparison for each model examined the frequency of trips created with 

respect to the CAMPO model, which ranged from 0 to 6000. Trip frequencies were 

grouped into intervals of 50 for comparison and the results of the FR analysis are shown 

in Table 5.5. The models that had the closest values to one for their FR are as follows: 
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1.) Gamma - Gamma (0.9619) 

2.) Gamma - Negative exponential (0.9588) 

3.) Negative exponential - Gamma (0.9587) 

Doubly-Constrained 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 0.9362 0.9565 0.9371 

Neg. Exp. 0.9277 0.9287 0.9587 

Gamma 0.9477 0.9588 0.9619 

Table 5.5: Resulting Frequency Ratio for Doubly-Constrained Gravity Models 

Swap Ratio Analysis 

For the swap ratio analysis, the comparison resulted in similar trends as the MAE 

analysis. The values with the lowest swap ratio are seen when the negative exponential is 

used for the long trip component of the two-regime friction function (Table 5.6). The best 

performing models are as follows: 

1.) Negative exponential - Negative exponential (26.5310) 

2.) Linear - Negative exponential (26.7881) 

3.) Gamma - Negative exponential (27.4977) 

Doubly-Constrained 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 29.6414 26.7881 29.3637 

Neg. 

Exp. 
29.7019 26.5310 28.5341 

Gamma 28.6112 27.4977 28.3214 

Table 5.6: Resulting Swap Ratio for Doubly-Constrained Gravity Models 
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Trip Length Distribution Analysis 

A graphical representation of trip length distributions was created in MATLAB 

for each of the nine models (Figures 5.3 to 5.11). Examining the graphics reveals that the 

models with the linear friction function used for the long trips have similar significant 

over and under estimation in trip length estimation (Figures 5.3, 5.6, and 5.9). When the 

gamma friction function was used for the long trips, the over and under estimation was 

less significant than was seen with the linear friction function (Figures 5.5, 5.8, and 5.11). 

The models with the closest trip length distributions are the models that use the negative 

exponential for the long trip component two-regime friction function (Figures 5.4, 5.7, 

and 5.10) with the following ranking order based on a visual analysis: 

1.) Gamma - Negative exponential  

2.) Linear - Negative exponential  

3.) Negative exponential - Negative exponential 

 

Figure 5.3: Trip Length Distributions for Linear-Linear Doubly-Constrained Gravity 

Model 
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Figure 5.4: Trip Length Distributions for Linear-Negative Exponential Doubly-

Constrained Gravity Model 

 

Figure 5.5: Trip Length Distributions for Linear-Gamma Doubly-Constrained Gravity 

Model 
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Figure 5.6: Trip Length Distributions for Negative Exponential-Linear Doubly-

Constrained Gravity Model 

 

Figure 5.7: Trip Length Distributions for Negative Exponential-Negative Exponential 

Doubly-Constrained Gravity Model 
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Figure 5.8: Trip Length Distributions for Negative Exponential-Gamma Doubly-

Constrained Gravity Model 

 

Figure 5.9: Trip Length Distributions for Gamma-Linear Doubly-Constrained Gravity 

Model 
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Figure 5.10: Trip Length Distributions for Gamma-Negative Exponential Doubly-

Constrained Gravity Model 

 

Figure 5.11: Trip Length Distributions for Gamma-Gamma Doubly-Constrained Gravity 

Model 
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Production and Attraction Analysis 

Digging into the trip generations with respect to productions and attractions 

reveals additional insight into each models capabilities in matching the CAMPO model. 

Figures were created in ArcGIS that illustrated the number of trip productions and 

attractions for each TAZ as created by each model. Each figure created uses the same 

color gradation break down to aid in the ability of comparison. This color gradation was 

limited to ten color variations to assist in the ease of interpretation and provides emphasis 

on lower trip production and attraction value differentiation. 

Figure 5.12 shows how the productions generated by the CAMPO model. Figure 

5.13 provides the productions generated by each of the proposed doubly-constrained 

gravity models. To better analyze how each model’s productions rate with respect to the 

comparison CAMPO model, the color denotation for each TAZ in each model was 

compared to the corresponding TAZ in the CAMPO model. If the color for the model 

TAZ is the same as the color for the CAMPO TAZ, a value of “Y” is given. If the color 

in the model TAZ is within one shade darker or lighter, a value of “C” is given. If the 

color in the model TAZ does not meet any of these criteria, a value of “N” is given. To 

determine which model(s) have the most TAZ with the same shade, “Y,” or close shade, 

“C,” the total number of “Y” and “C” matches were calculated and then reported as a 

percent of the total number of TAZs. Table 5.7 provides a breakdown of these statistics 

for the productions for each doubly-constrained model. Examining the models, it was 

determined that the models that had the most TAZs with the same categorization, “Y,” of 

productions were as follows: 

1.) Negative exponential - Negative exponential 

2.) Linear - Negative exponential 

3.) Gamma - Linear 
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With respect to the models with the most similar categorization, “Y” and “C,” the 

models that ranked the highest were: 

1.) Gamma - Linear 

2.) Negative exponential - Negative exponential 

3.) Linear - Negative exponential 

 

Figure 5.12: Trip Productions for the CAMPO Model 
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Figure 5.13: Trip Productions for the Proposed Doubly-Constrained Gravity Models 
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Linear- 

Linear 

Linear- 

Neg. Exp. 

Linear- 

Gamma 

 # % # % # % 

Y 76 14.62 104 20.00 82 15.77 

C 112 21.54 120 23.08 100 19.23 

N 332 63.85 296 56.92 338 65.00 

Y+C 188 36.15 224 43.08 182 35.00 

 

 
Neg. Exp.-

Linear 

Neg. Exp.-  

Neg. Exp. 

Neg. Exp.-

Gamma 

 # % # % # % 

Y 78 15.00 110 21.15 78 15.00 

C 103 19.81 116 22.31 99 19.04 

N 339 65.19 294 56.54 343 65.96 

Y+C 181 34.81 226 43.46 177 34.04 

 

 
Gamma- 

Linear 

Gamma- 

Neg. Exp. 

Gamma- 

Gamma 

 # % # % # % 

Y 95 18.27 91 17.50 82 15.77 

C 153 29.42 106 20.38 93 17.88 

N 272 52.31 323 62.12 345 66.35 

Y+C 248 47.69 197 37.88 175 33.65 

Table 5.7: TAZ Production Rate Graphical Similarity Statistics Doubly-Constrained 

Gravity Models 

Following the steps described previously, the trip attractions were examined. 

Figure 5.14 shows how the attractions generated by the CAMPO model are distributed. 

Figure 5.15 provides the attractions generated by each of the proposed doubly-

constrained gravity models. Table 5.8 provides a breakdown of these statistics for the 

productions for each doubly-constrained model. Examining the nine doubly-constrained 

gravity models, it was determined that the models with the most TAZs with the same 

categorization, “Y,” of attractions were as follows: 

1.) Gamma - Linear 
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2.) Negative exponential - Negative exponential 

3.) Linear - Negative exponential 

With respect to the models with the most similar categorization, “Y” and “C,” the 

models that ranked the highest were: 

1.) Gamma - Linear 

2.) Linear - Linear 

3.) Negative exponential - Negative exponential 

 

Figure 5.14: Trip Attractions for the CAMPO Model 
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Figure 5.15: Trip Attractions for the Proposed Doubly-Constrained Gravity Models 
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Linear- 

Linear 

Linear- 

Neg. Exp. 

Linear- 

Gamma 

 # % # % # % 

Y 209 40.19 223 42.88 57 10.96 

C 124 23.85 100 19.23 69 13.27 

N 187 35.96 197 37.88 394 75.77 

Y+C 333 64.04 323 62.12 126 24.23 

 

 
Neg. Exp.-

Linear 

Neg. Exp.-  

Neg. Exp. 

Neg. Exp.-

Gamma 

 # % # % # % 

Y 192 36.92 229 44.04 131 25.19 

C 131 25.19 103 19.81 118 22.69 

N 197 37.88 188 36.15 271 52.12 

Y+C 323 62.12 332 63.85 239 47.88 

 

 
Gamma- 

Linear 

Gamma- 

Neg. Exp. 

Gamma- 

Gamma 

 # % # % # % 

Y 265 50.96 170 32.69 162 31.15 

C 90 17.31 117 22.50 106 20.38 

N 165 31.73 233 44.81 252 48.46 

Y+C 355 68.27 287 55.19 268 51.54 

Y+C 355 68.27 287 55.19 268 51.54 

Table 5.8: TAZ Attraction Rate Graphical Similarity Statistics Doubly-Constrained 

Gravity Models 

Intensity Analysis 

The intensity analysis described in Chapter 4 was performed on each of the nine 

doubly-constrained gravity models with the resulting graphics shown in Figures 5.16 

through 5.24. For these graphics, the lighter striations show the areas of high flow 

between origin-destination TAZ pairs for the doubly-constrained model as well as the 

CAMPO model. In addition to the origin-destination intensity analysis, an intensity MAE 

analysis and an origin-destination trip frequency analysis was performed. The MAE 



 

 158 

analysis shows the error magnitude from the proposed model, while the origin-destination 

trip frequency analysis shows where over and under estimation occurs within the 

proposed model. Through visual analysis, the following observations can be made: 

1.) The models that used the linear component for long trips did not show 

similar flow rates for intrazonal trips compared to the CAMPO model. 

This was confirmed with the lighter color along the 45° line within the 

MAE intensity graphics for these models, which indicate a larger error. 

2.) The models with the negative exponential long trips showed better 

intrazonal trip calculations and had color striations that better matched the 

CAMPO model. The MAE intensity graphic confirmed this with the 

presence of dark shading throughout the graphics.  

3.) The models with the gamma long trips showed over calculation for the 

intrazonal trips, which was confirmed by the MAE intensity graphic that 

shows a pronounced 45° line. 

4.) The best preforming model with respect to MAE intensity was the linear-

negative exponential model (Figure 5.17). 

5.) Examination of the OD trip frequency graphics for all of the models 

showed each models ability to closely represent the frequencies for lower 

values, but many had over or under estimation for higher frequencies.  

6.) The model that best performed with respect to OD trip frequencies was the 

linear-negative exponential model (Figure 5.17), although there was 

significant over estimation for the tail of the curve. 
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Figure 5.16: Intensity Diagrams for Linear-Linear Doubly-Constrained Gravity Model 

 

Figure 5.17: Intensity Diagrams for Linear-Negative Exponential Doubly-Constrained 

Gravity Model 
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Figure 5.18: Intensity Diagrams for Linear-Gamma Doubly-Constrained Gravity Model 

 

Figure 5.19: Intensity Diagrams for Negative Exponential-Linear Doubly-Constrained 

Gravity Model 
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Figure 5.20: Intensity Diagrams for Negative Exponential-Negative Exponential Doubly-

Constrained Gravity Model 

 

Figure 5.21: Intensity Diagrams for Negative Exponential-Gamma Doubly-Constrained 

Gravity Model 
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Figure 5.22: Intensity Diagrams for Gamma-Linear Doubly-Constrained Gravity Model 

 

Figure 5.23: Intensity Diagrams for Gamma-Negative Exponential Doubly-Constrained 

Gravity Model 
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Figure 5.24: Intensity Diagrams for Gamma-Gamma Doubly-Constrained Gravity Model 

Selection of “Best” Models 

Based on the nine measurable criteria (CR, ME, MAE, FR, Swap Ratio, 

Production similarity – both versions, and Attraction similarity– both versions) used for 

analyzing the nine doubly-constrained models, a simple non-weighted rating system was 

used to determine which model or models performed the “best.”  Based on the average 

value for the nine criteria, the following models were found to be “best” performers and 

will be used for comparison with the peer-to-peer models: 

1.) Linear - Negative exponential, Negative exponential - Negative 

exponential (tied for best) 

2.) Gamma - Linear 

3.) Gamma - Negative exponential 
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Peer-to-Peer Model Results 

The peer-to-peer models have been analyzed using the methodology described in 

the previous chapter and shown above for the doubly-constrained gravity models. The 

nine peer-to-peer models will be discussed in this section to determine the “best” versions 

of the model that will be used for comparison to the doubly-constrained models. 

Coincidence Ratio Analysis  

As described in the doubly-constrained gravity component of this chapter, a 

coincidence ratio (CR) analysis of how “closely” the peer-to-peer models trip 

distributions came to matching the CAMPO trip distributions was done. Table 5.9 

provides the CR values for each of the nine models. Similar to the doubly-constrained 

models, the table shows the limited sensitivity of the models to the short trip distance 

friction function used and higher sensitivity toward the long trip distance friction 

functions used. Models that have the linear long trip function performed significantly 

better than the other models with the best performing models as follows: 

1.) Linear - Linear (0.9772) 

2.) Gamma - Linear (0.9608) 

3.) Negative exponential - Linear (0.8997) 

Peer-to-Peer 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 0.9772 0.4613 0.4622 

Neg. Exp. 0.8997 0.4765 0.5102 

Gamma 0.9608 0.4904 0.5102 

Table 5.9: Resulting Coincidence Ratio for Peer-to-Peer Models 
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Mean Error Analysis 

Table 5.10 provides the mean error as calculated for each of the nine peer-to-peer 

models. While the values range between positive and negative, all are extremely small in 

magnitude indicating minimal bias exists with respect to the origin-destination matrix 

creation. The “best” performers are the following models: 

1.) Negative exponential - Linear (6.5656E-15) 

2.) Linear - Linear (1.7006E-14) 

3.) Gamma - Negative exponential (3.7564E-14) 

Peer-to-Peer 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 1.7006E-14 5.3547E-14 -7.8518E-14 

Neg. Exp. 6.5656E-15 -4.0026E-14 -7.8087E-14 

Gamma 9.3425E-14 3.7564E-14 6.8131E-14 

Table 5.10: Resulting Mean Error for Peer-to-Peer Models 

Mean Absolute Error Analysis 

With respect to the MAE, the models that had the lowest error were those that 

used the linear long trip component (Table 5.11). The models that used the negative and 

gamma long trip components had similar errors that were noticeably larger than the linear 

long trip models. The following provides the ranking order for the linear long trip 

models:  

1.) Negative exponential - Linear (9.3329) 

2.) Gamma - Linear (9.5713) 

3.) Linear - Linear (9.5806) 
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Peer-to-Peer 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 9.5806 12.2691 12.3202 

Neg. Exp. 9.3329 12.7081 12.0454 

Gamma 9.5713 12.4273 12.0607 

Table 5.11: Resulting Mean Absolute Error for Peer-to-Peer Models 

Frequency Ratio Analysis 

Comparing the frequency of trips created by the proposed models to those from 

the CAMPO model was done to determine the method’s abilities (Table 5.12). While all 

models appear to be in the 90% or greater rating, the models within the linear long trip 

grouping performed noticeably better than the other models. The following models are 

noted as the “best” performers:  

1.) Negative exponential - Linear (0.9720) 

2.) Gamma - Linear (0.9715) 

3.) Linear - Linear (0.9695) 

Peer-to-Peer 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s Linear 0.9695 0.9284 0.9251 

Neg. Exp. 0.9720 0.9012 0.9044 

Gamma 0.9715 0.9217 0.9044 

Table 5.12: Resulting Frequency Ratio for Peer-to-Peer Models 

Swap Ratio Analysis 

For the swap ratio analysis, the comparison resulted in similar trends as the MAE 

analysis. The models with the linear function for long trips had the lowest values (Table 
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5.13). The models with the negative exponential and gamma function for long trips were 

markedly worse performers, with the negative exponential-negative exponential model 

preforming the worst. The best performing models are ranked as follows: 

1.) Negative exponential - Linear (27.2053) 

2.) Linear - Gamma (27.3535) 

3.) Linear - Linear (27.4773) 

Peer-to-Peer 

    Long Trips 

    Linear Neg. Exp. Gamma 

S
h
o
rt

 T
ri

p
s 

Linear 27.4773 28.9969 28.9246 

Neg. Exp. 27.2053 30.0939 29.8166 

Gamma 27.3535 28.8518 29.8148 

Table 5.13: Resulting Swap Ratio for Peer-to-Peer Models 

Trip Length Distribution Analysis 

As was done for the doubly-constrained models, a graphical representation of trip 

length distributions was created in MATLAB for each of the nine peer-to-peer models 

(Figures 5.25 to 5.33). Examining the graphics reveals that the models with the linear 

friction function used for the long trips have the closest trip length distribution (Figures 

5.25, 5.28, and 5.31). The models with the negative exponential and gamma friction 

functions for the long trips show significant under estimation for shorter distance trips 

and significant over estimation for longer distance trips. The “best” performing models 

are ranked as follows:  

1.) Negative exponential - Linear  

2.) Linear - Linear  

3.) Gamma – Linear 
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Figure 5.25: Trip Length Distributions for Linear-Linear Peer-to-Peer Model 

 

Figure 5.26: Trip Length Distributions for Linear-Negative Exponential Peer-to-Peer 

Model 
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Figure 5.27: Trip Length Distributions for Linear-Gamma Peer-to-Peer Model 

 

Figure 5.28: Trip Length Distributions for Negative Exponential-Linear Peer-to-Peer 

Model 
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Figure 5.29: Trip Length Distributions for Negative Exponential-Negative Exponential 

Peer-to-Peer Model 

 

Figure 5.30: Trip Length Distributions for Negative Exponential-Gamma Peer-to-Peer 

Model 
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Figure 5.31: Trip Length Distributions for Gamma-Linear Peer-to-Peer Model 

 

Figure 5.32: Trip Length Distributions for Gamma-Negative Exponential Peer-to-Peer 

Model 



 

 172 

 

Figure 5.33: Trip Length Distributions for Gamma-Gamma Peer-to-Peer Model 

Production and Attraction Analysis 

Trip productions and attractions were examined using the same methodology as 

was done for the doubly-constrained gravity models. The ArcGIS created figures were 

created for the nine peer-to-peer models using the same color scaling as described 

previously. Figures 5.12 and 5.14 above should be used as the reference CAMPO 

production and attractions figures. 

Figure 5.34 provides the TAZ productions generated by each of the proposed 

peer-to-peer models. The same comparison effort with respect to matching, given a “Y,” 

one shade darker or lighter, “C,” and neither, “N,” was done. Table 5.14 provides the 

statistics for each of models. Based on these statistics, the models with the most TAZ 

with the most categorically the same productions, “Y,” are the following: 

1.) Linear - Gamma  

2.) Negative exponential - Linear  
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3.) Gamma - Negative exponential 

With respect to the models with the most similar categorization, “Y” and “C,” the 

models that ranked the highest were: 

1.) Negative exponential - Negative exponential, Gamma - Negative 

exponential (tied) 

2.) Linear - Gamma 
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Figure 5.34: Trip Productions for the Proposed Peer-to-Peer Models 
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Linear- 

Linear 

Linear- 

Neg. Exp. 

Linear- 

Gamma 

 # % # % # % 

Y 137 26.35 129 24.81 138 26.54 

C 106 20.38 140 26.92 126 24.23 

N 277 53.27 251 48.27 256 49.23 

Y+C 243 46.73 269 51.73 264 50.77 

 

 
Neg. Exp.-

Linear 

Neg. Exp.- 

Neg. Exp. 

Neg. Exp.-

Gamma 

 # % # % # % 

Y 139 26.73 98 18.85 102 19.62 

C 106 20.38 144 27.69 149 28.65 

N 275 52.88 278 53.46 269 51.73 

Y+C 245 47.12 242 46.54 251 48.27 

 

 
Gamma- 

Linear 

Gamma- 

Neg. Exp. 

Gamma- 

Gamma 

 # % # % # % 

Y 136 26.15 146 28.08 102 19.62 

C 108 20.77 123 23.65 148 28.46 

N 276 53.08 251 48.27 270 51.92 

Y+C 244 46.92 269 51.73 250 48.08 

Table 5.14: TAZ Production Rate Graphical Similarity Statistics Peer-to-Peer Models 

Following the steps described previously, the trip attractions were examined. 

Figure 5.35 provides the attractions generated by each of the proposed peer-to-peer 

models, while Table 5.15 provides a breakdown of these statistics for the productions. 

Examination of the nine models showed that the models with the most TAZs with the 

same categorization, “Y,” of attractions were as follows: 

1.) Gamma - Negative exponential 

2.) Negative exponential - Linear, Gamma - Linear (tied) 

With respect to the models with the most similar categorization, “Y” and “C,” the 

models that ranked the highest were: 
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1.) Linear - Gamma 

2.) Gamma - Negative exponential 

3.) Linear - Negative exponential 
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Figure 5.35: Trip Attractions for the Proposed Peer-to-Peer Models 

Legend

2010TAZ_Select

TruAtt / none

0.00000000 - 2603.00000

2603.00001 - 3374.00000

3374.00001 - 3890.00000

3890.00001 - 4394.00000

4394.00001 - 4910.00000

4910.00001 - 5514.00000

5514.00001 - 6134.00000

6134.00001 - 7432.00000

7432.00001 - 9762.00000

9762.00001 - 47017.0000

< 2603 
2603 - 3374 

Legend

2010TAZ_Select

TruAtt / none

0.00000000 - 2603.00000

2603.00001 - 3374.00000

3374.00001 - 3890.00000

3890.00001 - 4394.00000

4394.00001 - 4910.00000

4910.00001 - 5514.00000

5514.00001 - 6134.00000

6134.00001 - 7432.00000

7432.00001 - 9762.00000

9762.00001 - 47017.0000

3374 - 3890 
3890 - 4394 

Legend

2010TAZ_Select

TruAtt / none

0.00000000 - 2603.00000

2603.00001 - 3374.00000

3374.00001 - 3890.00000

3890.00001 - 4394.00000

4394.00001 - 4910.00000

4910.00001 - 5514.00000

5514.00001 - 6134.00000

6134.00001 - 7432.00000

7432.00001 - 9762.00000

9762.00001 - 47017.0000

4394 - 4910 
4910 - 5514 

Legend

2010TAZ_Select

TruAtt / none

0.00000000 - 2603.00000

2603.00001 - 3374.00000

3374.00001 - 3890.00000

3890.00001 - 4394.00000

4394.00001 - 4910.00000

4910.00001 - 5514.00000

5514.00001 - 6134.00000

6134.00001 - 7432.00000

7432.00001 - 9762.00000

9762.00001 - 47017.0000

5514 - 6134 
6134 - 7432 

Legend

2010TAZ_Select

TruAtt / none

0.00000000 - 2603.00000

2603.00001 - 3374.00000

3374.00001 - 3890.00000

3890.00001 - 4394.00000

4394.00001 - 4910.00000

4910.00001 - 5514.00000

5514.00001 - 6134.00000

6134.00001 - 7432.00000

7432.00001 - 9762.00000

9762.00001 - 47017.0000

7432 - 9762 
9762 <  

Neg. Exp.-Linear Neg. Exp.-Neg. Exp. Neg. Exp.-Gamma 

Gamma-Linear Gamma-Neg. Exp. Gamma-Gamma 

Linear-Linear Linear-Neg. Exp. Linear-Gamma 



 

 178 

 

Linear- 

Linear 

Linear- 

Neg. Exp. 

Linear- 

Gamma 

 

# % # % # % 

Y 227 43.65 223 42.88 222 42.69 

C 102 19.62 110 21.15 113 21.73 

N 191 36.73 187 35.96 185 35.58 

Y+C 329 63.27 333 64.04 335 64.42 

 

 
Neg. Exp.-

Linear 

Neg. Exp.- 

Neg. Exp. 

Neg. Exp.-

Gamma 

 # % # % # % 

Y 228 43.85 171 32.88 180 34.62 

C 100 19.23 121 23.27 126 24.23 

N 192 36.92 228 43.85 214 41.15 

Y+C 328 63.08 292 56.15 306 58.85 

 

 
Gamma- 

Linear 

Gamma- 

Neg. Exp. 

Gamma- 

Gamma 

 # % # % # % 

Y 228 43.85 233 44.81 180 34.62 

C 99 19.04 101 19.42 126 24.23 

N 193 37.12 186 35.77 214 41.15 

Y+C 327 62.88 334 64.23 306 58.85 

Table 5.15: TAZ Attraction Rate Graphical Similarity Statistics Peer-to-Peer Models 

Intensity Analysis 

Each of the peer-to-peer models was scrutinized using the intensity analysis 

described in Chapter 4 (Figures 5.36 through 5.44). These graphics show areas of higher 

flow between origin-destination TAZ pairs via the lighter striations. Similarly the MAE 

intensity analysis shows the error magnitude for the proposed model, while the origin-

destination trip frequency analysis shows where over and under estimation occurs within 

the proposed peer-to-peer models. Through visual analysis, the following observations 

can be made: 
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Each of the peer-to-peer models was scrutinized using the intensity analysis 

described in Chapter 4 (Figures 5.36 through 5.44). These graphics show areas of higher 

flow between origin-destination TAZ pairs via the lighter striations. Similarly the MAE 

intensity analysis shows the error magnitude for the proposed model, while the origin-

destination trip frequency analysis shows where over and under estimation occurs within 

the proposed peer-to-peer models. Through visual analysis, the following observations 

can be made: 

1.) The models that used the linear component for long trips showed similar 

flow rates for intrazonal trips compared to the CAMPO model. 

Additionally, the striations within these models have similar shading as is 

shown in the CAMPO model. This is confirmed by the CR values from the 

earlier analysis for these models and through the MAE intensity graphic 

which shows the presence of dark shading throughout the graphics. 

However, the presence of some lightness along the 45° intrazonal line 

indicates that errors exist within these models. 

2.) Models with the negative exponential and gamma long trip functions do 

not predict the intrazonal trips well, which is confirmed by the lighter 

coloring along the 45° line within the MAE intensity graphics, which 

indicate a larger error. 

3.) The best performing model with respect to MAE intensity was the 

negative exponential-linear model (Figure 5.39). 

4.) Examination of the OD trip frequency graphics for the linear short trip 

models (Figures 5.36, 5.37, and 5.38) showed each model’s ability to 

closely represent the frequencies for lower values. However, the model for 

the linear long trip friction function (Figure 5.36) showed slight under 
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estimation for the larger values. The other two models, negative 

exponential and gamma, had over estimation with respect to the larger 

values. 

5.) For the negative exponential and gamma short trip functions, the models 

with linear long trip functions (Figures 5.39 and 5.42) performed better 

with respect to the lower frequency values and had underestimation for the 

larger frequency values.  

6.) The gamma-negative exponential model (Figure 5.43) showed good 

estimation of lower frequencies, but had over estimation for larger values 

especially the most extreme value. 

7.) The other models showed slight under and over estimation for all of the 

frequencies. 

8.) The model that best performed with respect to OD trip frequencies was the 

linear-linear model (Figure 5.36) 
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Figure 5.36: Intensity Diagrams for Linear-Linear Peer-to-Peer Model 

 

Figure 5.37: Intensity Diagrams for Linear-Negative Exponential Peer-to-Peer Model 
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Figure 5.38: Intensity Diagrams for Linear-Gamma Peer-to-Peer Model 

 

Figure 5.39: Intensity Diagrams for Negative Exponential-Linear Peer-to-Peer Model 
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Figure 5.40: Intensity Diagrams for Negative Exponential-Negative Exponential Peer-to-

Peer Model 

 

Figure 5.41: Intensity Diagrams for Negative Exponential-Gamma Peer-to-Peer Model 
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Figure 5.42: Intensity Diagrams for Gamma-Linear Peer-to-Peer Model l 

 

Figure 5.43: Intensity Diagrams for Gamma-Negative Exponential Peer-to-Peer Model 
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Figure 5.44: Intensity Diagrams for Gamma-Gamma Peer-to-Peer Model 

Selection of “Best” Models 

As was done for the doubly-constrained gravity model selection, the nine 

measurable criteria (CR, ME, MAE, FR, Swap Ratio, Production similarity – both 

versions, and Attraction similarity– both versions) were used to determine the “best” 

peer-to-peer models via the simple non-weighted rating system. Based on the average 

value for the nine criteria, the following peer-to-peer models were found to be “best” 

performers and will be used for comparison with the doubly-constrained gravity models: 

1.) Negative exponential - Linear  

2.) Gamma - Negative exponential 

3.) Linear - Linear 

4.) Gamma - Linear 
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Best Performing Model Comparisons 

Using the previously identified doubly-constrained gravity and peer-to-peer 

models that were “best” performers, this section will compare these models to one 

another and identify the strengths and weakness of each. Using the following as the major 

areas of comparison, each estimation model will be analyzed: CR, MAE, FR, trip length 

distributions, production and attraction comparisons, and intensity analysis. 

With respect to the CR, MAE, and FR values, Table 5.16 shows the values for 

each of the “best” models and provides a comparative rank. A comparison of CR for the 

“best” models reveals that the two best performing models are the peer-to-peer linear-

linear (0.9772) and gamma-linear (0.9608). The third best performing model is the 

doubly-constrained gravity linear-negative exponential model (0.9576). An examination 

of the MAE values shows that the top three performing models are all within the peer-to-

peer group: negative exponential-linear (9.3329), gamma-linear (9.5806), and linear-

linear (9.5806). This same trend is seen in the values for FR which has the same peer-to-

peer models as the top three: negative exponential-linear (0.9720), gamma-linear 

(0.9715), and linear-linear (0.9695). 

 

Model Name CR Rank MAE Rank FR Rank 

D
o

u
b

ly
-

C
o

n
st

ra
in

e
d

 Linear - Neg. Exp. 0.9576 3 9.9869 4 0.9565 5 

Neg. Exp. - Neg. Exp. 0.9283 5 10.5308 6 0.9287 7 

Gamma - Linear 0.4961 7 13.0517 8 0.9477 6 

Gamma - Neg. Exp. 0.9449 4 10.1379 5 0.9588 4 

P
e

e
r-

to
-P

e
e

r 

Linear - Linear 0.9772 1 9.5806 3 0.9695 3 

Neg. Exp. - Linear 0.8997 6 9.3329 1 0.9720 1 

Gamma - Linear 0.9608 2 9.5713 2 0.9715 2 

Gamma - Neg. Exp. 0.4904 8 12.427 7 0.9217 8 

Table 5.16: Best Models Comparisons – CR, MAE, and FR 
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Figure 5.45 shows the trip length distributions for each of the comparison models 

and Figure 5.46 shows the cumulative trip length distributions for each of the comparison 

models. Using a visual inspection of the graphics in each figure, it appears that the top 

three performing models for the trip length distributions are from the doubly-constrained 

gravity models and are ranked as follows: gamma - negative exponential, linear - 

negative exponential, and negative exponential - negative exponential. For the cumulative 

trip length distributions, the top three models are the same three models from the doubly-

constrained gravity models but are ranked as follows: negative exponential - negative 

exponential, linear - negative exponential, and gamma - negative exponential. 
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Figure 5.45: Trip Length Distributions for Comparison Models 

Linear - Neg. Exp. Neg. Exp. - Neg. Exp. Gamma - Linear. Gamma - Neg. Exp. 

Doubly-Constrained Gravity Models 

Neg. Exp. - Linear Linear - Linear Gamma - Neg. Exp. Gamma - Linear 

Peer-to-Peer Models 
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Figure 5.46: Cumulative Trip Length Distributions for Comparison Models 

Using the trip productions and attractions graphics that were crated in ArcGIS 

previously, Table 5.17 presents the results for the productions and attractions analysis. 

The “Y” category shows the total number of TAZs that matched the exact color category 

and the “Y+C” category shows the total number of TAZs that were the same plus those 

within one shade darker or lighter. Examining first the productions, it is notable that out 

of the 520 TAZs the largest number of TAZs that any of the “best” models had that 

matched was 146 or 28.08% found from the peer-to-peer gamma-negative exponential 

Doubly-Constrained Gravity Models 

Linear - Neg. Exp. Neg. Exp. - Neg. Exp. Gamma - Linear. Gamma - Neg. Exp. 

Peer-to-Peer Models 

Linear - Linear Neg. Exp. - Linear Gamma - Linear Gamma - Neg. Exp. 
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model. With respect to the combination of matches and within one shade TAZs, the 

production results of the models were better with the highest amount of matches coming 

from the peer-to-peer gamma-negative exponential model at 269 or 51.73%. All models 

examined had better results with respect to the attractions. The highest number of TAZ 

matches was found from the doubly-constrained gravity gamma-linear model, which had 

a total of 265 or 50.96%. For the combination of matches and within one shade TAZs, the 

same doubly-constrained model had the largest number, 355 or 68.27%. The second and 

third place results are highlighted within Table 5.17. It should be noted that the peer-to-

peer gamma-negative exponential model was the best and second best model for all 

categories of productions and attractions, respectively. 

  

Productions Attractions 

 

Model Name Y Rank Y+C Rank Y Rank Y+C Rank 

D
o

u
b

ly
-

C
o

n
st

ra
in

e
d

 Linear - Neg. Exp. 104 6 224 7 223 7 323 7 

Neg. Exp. - Neg. Exp. 110 5 226 6 229 3 332 3 

Gamma - Linear 95 7 248 2 265 1 355 1 

Gamma - Neg. Exp. 91 8 197 8 170 8 287 8 

P
e

e
r-

to
-P

e
e

r 

Linear - Linear 137 3 243 5 227 6 329 4 

Neg. Exp. - Linear 139 2 245 3 228 4 328 5 

Gamma - Linear 136 4 244 4 228 4 327 6 

Gamma - Neg. Exp. 146 1 269 1 233 2 334 2 

Table 5.17: Best Models Comparisons – Productions and Attraction Matching 

A visual examination of the intensity graphics, Figure 5.47, for all of comparison 

models gives additional insight into the “best” models. Models b, c, d, and e are the 

models from the doubly-constrained gravity models and f, g, h, and i are models from the 

peer-to-peer modeling group. Model a is the CAMPO matrix that is used for comparison. 
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Examining the overall color striations, the doubly-constrained models appear to better 

predict the overall zone flows throughout the study area. The “best” performing models 

are the doubly-constrained linear-negative exponential and negative exponential-negative 

exponential models which have more similar striations throughout the matrices than the 

other comparison models. It should be noted that the peer-to-peer models do have areas 

of noticeably more pronounced consistent striations when compared to the CAMPO 

model, but the shading throughout is less consistent than the doubly-constrained models. 

This indicates further examination into the locational data characteristics where the peer-

to-peer model was more successful should be done in the future. When the examination 

of the intrazonal trips (the 45° line within the matrix) was done, the peer-to-peer models 

linear-linear, negative exponential-linear, and gamma-linear have closer coloring to the 

CAMPO model than the other matrices. This may be a function of the inclusion of venues 

in the calculation of intrazonal trips that does not exist within the doubly-constrained 

formulation. The doubly-constrained models, with the exception of the gamma-linear 

model, have some similarities to the CAMPO model with respect to intrazonal trip 

estimations, but are not as pronounced as those seen in the peer-to-peer models indicating 

a limitation to the models’ capabilities with respect to these trips. 
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Figure 5.47: OD Intensity Comparison Matrices  

The visual examination of the MAE Intensity graphics (Figure 5.48) reveals that 

all of the models have errors along the intrazonal trip line, indicating a potential need for 

improvement in the methodologies to better address these trips. For this figure the 

doubly-constrained models are models a, b, c, and d, while the peer-to-peer models are e, 

f, g, and h. Looking at the overall gradation of the figures, the doubly-constrained gravity 

b.) Linear-Neg. Exp. c.) Neg. Exp.-Neg. Exp. 

d.) Gamma-Linear e.) Gamma-Neg. Exp. 

a.) CAMPO 

f.) Linear-Linear 

g.) Neg. Exp.-Linear h.) Gamma-Linear i.) Gamma-Neg. Exp. 
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model that uses the linear-negative exponential friction function appears to perform the 

“best”. However, there are noticeable areas of larger errors present particularly along the 

intrazonal line and between the 300 and 450 TAZs. The next “best” performer was 

identified as the peer-to-peer model that uses the negative exponential-linear friction 

function. This model has fairly consistent color throughout indicating more consistency 

within the errors produced. 

 

Figure 5.48: MAE Intensity Comparison Matrices  

a.) Linear-Neg. Exp. b.) Neg. Exp.-Neg. Exp. c.) Gamma-Linear 

d.) Gamma-Neg. Exp. e.) Linear-Linear f.) Neg. Exp.-Linear 

g.) Gamma-Linear h.) Gamma-Neg. Exp. 
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A similar visual examination of the origin-destination (OD) trip frequency 

intensities (Figure 5.49) was performed as was done previously. This examination 

revealed that the doubly-constrained gravity model with the linear-negative exponential 

friction function was the closest at predicting OD trip frequencies compared to the other 

“best” models. The second and third best were found within the peer-to-peer models and 

were the linear-linear and gamma-linear, respectively. The linear-linear model was noted 

to have under estimation, while the gamma-linear model had slightly more under 

estimation than the linear-linear model. These results indicated the potential for slight 

improvements within all of the models with respect to trip frequency estimation, since 

each model showed fairly close estimation on average. 
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Figure 5.49: OD Trip Frequency Intensity Comparison  

Similar to the steps undertaken to determine the best models from the base models 

of doubly-constrained gravity and peer-to-peer, the quantifiable characteristics of CR, 

MAE, FR, production estimation matches (both versions) and attraction estimation 

matches (both versions) were used to determine trends within the “best” models. Using 

the same non-weighted average of rankings, the following conclusions were made: 

a.) Linear-Neg. Exp. b.) Neg. Exp.-Neg. Exp. c.) Gamma-Linear 

d.) Gamma-Neg. Exp. e.) Linear-Linear f.) Neg. Exp.-Linear 

h.) Gamma-Neg. Exp. g.) Gamma-Linear 



 

 196 

1.) The peer-to-peer models that used the friction functions of linear-linear, 

negative exponential-linear, and gamma-linear performed better than the 

other “best” performing models. This negative exponential-linear model 

was ranked first with an average score of 3.143. Second and third ranked 

models were the gamma-linear (3.429) and linear-linear (3.571), 

respectively. 

2.) Despite considerably low CR values, the peer-to-peer gamma-negative 

exponential and the doubly-constrained gravity gamma-linear models 

showed strength in their ability to predict productions and attraction rates 

per TAZ fairly accurately. These models also ranked in fourth (4.143) and 

fifth place (4.571), respectively.  

3.) All of the peer-to-peer models ranked higher in the average rankings than 

the doubly-constrained models. 

The visual analysis of the trip distribution and intensity graphics did not always 

support these previous conclusions. With the exception of the peer-to-peer models 

abilities to better predict OD intrazonal trip intensities, the doubly-constrained models 

appeared to be more successful in their abilities to coincide with the CAMPO model on 

average. 

CONCLUDING STATEMENTS 

The analysis done within the chapter provides some practical insight into the 

performance of the doubly-constrained gravity and peer-to-peer models capabilities 

compared to the CAMPO model. The following are the resulting themes from this 

analysis: 
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1.) Based on the results of the coincidence ratio, the doubly-constrained 

gravity model had better results with the use of the negative exponential 

friction function for the long trip component of the two-regime friction 

function.  

2.) The coincidence ratio also showed the peer-to-peer model’s strength with 

respect to the use of the linear friction function for the long trip 

component of the two-regime friction function. 

3.) The peer-to-peer modeling methodology showed strength in estimation of 

intrazonal trips. 

The noted differences between the proposed models and the CAMPO model can 

potentially be attributed to the growth in population within Austin between the two study 

years. Additionally, according to the FRED Economic Data website (2015) there has 

been an increase of approximately 150,000 employed (non-farm) individuals between the 

two study periods. These factors also can be seen in changes in land use and in the on-

going development of the city. 

Additionally, it is also worth noting that variation existed in computation time for 

each of the models. The doubly-constrained gravity model took an average of seven 

hours per run, while the peer-to-peer had only an average of two hours per run. This 

computational efficiency of the peer-to-peer model could be desirable for municipalities 

who have greater need for efficiency. 

Finally, it should be noted that CAMPO has an updated effort currently underway 

that will create trip distributions at the parcel level using survey data from 2010. Future 

efforts should look to comparing the results of this dissertations methodology against the 

result of the new CAMPO TDM model for further understanding of the proposed 

method’s capabilities. 
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Chapter 6:  Conclusion 

This dissertation effort explored the use of Location-Based Social Network 

(LLBSN) data and peer-to-peer modeling for transportation planning. Two directions of 

focus were proposed in Chapter 1:  

1. How impactful is LBSN as a data source? Does the data have the 

capabilities to accurately represent the demographics of the Austin area, 

and if not what are the limitations? Is the data capable of being a 

standalone dataset or is it better suited as a supplementary source? 

2. What are the benefits (if any) from using many-to-many, specifically peer-

to-peer, modeling with respect to origin-destination matrices?  

The previous chapters of this dissertation attempted to provide answers to these questions 

through the detailed examination of the two thrusts. This chapter will provide concluding 

remarks to summarize the dissertation efforts, what the impacts from this effort are, and 

future directions the research could go. 

LBSN AS A DATA SOURCE 

Chapter 3 provided a detailed examination of the Foursquare dataset selected for 

use. Venue characteristics were examined to better understand the data’s strengths and 

limitations. Venues were examined from the category, time of day, and day of week 

perspectives in an effort to determine if biases existed within the data and to determine 

how check-in trends related to individual travel within the study area. These efforts are a 

first attempt to illicit nuances that exist within the dataset. 

It was noted that the data included a significant number of venues in the Shops & 

Services as well as Professional & Other Places categories when compared to the other 

categories. However, the number of check-ins for these locations was overly distributed. 
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Instead, the Food and Shops & Services categories were noted as having a significant 

number of check-ins. This over representation may need to be mitigated against should a 

municipality desire to use LBSN as a data source. This could be done by providing a 

weighting system that would place emphasis on venues that would be typical commuter 

venues (i.e., professional, work).  

With respect to day of week and time of day, the examination of the data revealed 

a notable trend of check-ins on Tuesdays for weekdays for all categories of venues. For 

each category, the venue check-ins were examined for each day of the week to look for 

any unique trends. One possible reason for this is that according to a survey conducted by 

Accountemps Tuesdays are the most productive day of the week (Brooks 2015). For the 

most part, venue check-ins were found to be consistent for Monday through Sunday, with 

the noted increase on Tuesdays. There were three categories that did not follow this 

trend: the Nightlife Spots category, the Professional & Other, and Residences. The 

Nightlife Spots category had a significant increase on Sundays, while the Professional & 

Other category had a significant decrease on Sunday. For the Residence category, there 

was a notable increase for Sundays, which was surprising. The time analysis revealed the 

likelihood of check-ins occurring during peak hours throughout the weekdays. Further 

analysis examined the time periods each category was checked-into, and provided 

additional insight into trends for each category. With the exception of late night 

residential check-ins, most categories had peak check-ins at anticipate time periods (i.e., 

Professional & Other Places during the A.M. Peak). A visual analysis for location of 

check-ins was also conducted to observe the time and location for check-ins, as well as 

identification of venues with the most check-ins. These analyses provided additional 

insight into the datasets spatial-temporal coverage with respect to each category, and 

added in identifying locations with unusual or extreme check-in rates. 
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The Foursquare data was also examined from a user demographic stand point. 

This was done to identify biases within the data that may exist such as age, gender, and 

income. One major limitation from the existing dataset is the lack of individual user 

information. This is due to the methodology that was selected for data collection. 

However, purchasing data from a data distributor would allow for user information to be 

included in the data and would greatly increase the value of the data. Typically the user 

information does not use an individual’s personal identification (i.e., name), but instead 

uses a userID, an alphanumeric identifier, which could be used to track the individuals 

check-ins throughout the study period. This in turn could provide insight into check-in 

rates for users of Foursquare as well as trip chaining that may be occurring. Some 

information was able to be extrapolated from the dataset through the joining of an 

external dataset and base assumptions. This included the average household size and 

mean income, which was fairly comparable to the comparison data source. Examination 

into income groups revealed a bias toward the $20,000 to $75,000 income categories, 

which matches the comparative demographics for Foursquare as a whole. 

Finally, the Foursquare dataset was compared to the land use data for the study 

region to determine how the venues composition within each TAZ related. Based on this 

analysis, the Foursquare data fell short in the majority of TAZs within the study area 

from the four categories examined. Additionally, it was noted that the Foursquare dataset 

does not have a category for mining, which was one of the land use categories identified.  

In addition to the above noted limitation, the current data source is limited by the 

platform change from one application to two applications that operate in particularly 

different capacities, as described in Chapter 3. This change may require an individual to 

access both platforms data in order to get the level and type of data used within this 

dissertation. Another limitation of note is the numbers and locations of check-ins are 
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heavily dependent on user’s willingness to do so. The same limitation exists with respect 

to the venues within the data source; users must chose to create them. Furthermore, the 

tendency of users to check-in to leisure and recreational type venues more than work 

related venues provides a skew in the dataset. However, this trend in the data does 

provided insights into the activities users participate in more so than other traditional data 

sources. Finally, with respect to land use, the limited overall representation of land uses 

could be problematic for examination at the parcel level, which some municipalities are 

moving toward.  

PEER-TO-PEER MODELING 

This dissertation effort provides a first attempt at using many-to-many modeling 

for transportation planning. Chapter 4 provided the methodology used and Chapter 5 

offered a case study using Austin, TX as the study area. A comparison was done between 

the doubly-constrained gravity model and the peer-to-peer model to assess the strengths 

and weaknesses of each model. Nine different friction functions were used for each 

model and the “best” performers from each base model were compared to each other 

based on multiple criteria. It was found that the doubly-constrained gravity model 

performed “best” with the friction functions that had the negative exponential formula for 

the long trip component of the two-regime friction function. For the peer-to-peer model, 

the “best” performers were the models with the linear friction function for the long trips. 

In a side by side comparison of the “best” model revealed that the peer-to-peer models 

had higher coincidence ratio values than the doubly-constrained models.  

An examination of the production and attraction rates produced by each model 

was also conducted and compared to the Capital Area Metropolitan Area’s model. While 

the results of the production and attraction rate examination is dependent on the models, 
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it also revealed areas where there were a greater number of check-ins (e.g., the airport 

TAZ), which directly impacts rates of productions and attractions. An examination of the 

origin-destination matrices from each model also revealed the peer-to-peer models 

capability to predict the intrazonal trips better than the doubly-constrained model.  

As was noted in the chapter discussion, difference between the proposed models 

and the comparison model may be from how the models are calculated, but could also be 

from the changes in the Austin population between the study dates. Austin’s added 

population resulted in increases in employment as well as changes in land use and 

increased development throughout the study region. Moreover, the comparison of a 

venue based analysis to a TAZ analysis could suffer from the modifiable area unit 

problem, which encompasses the aggregation and zoning issues that result in validity 

errors.  

When examining the computational efficiency of each model, it was found that 

the peer-to-peer methodology was significantly more efficient than the doubly-

constrained model. This is particularly important for municipalities who may not have a 

dedicated machine for running analysis. Additionally, the ability to update the model 

quickly with new data may be desired by municipalities and the speed of the peer-to-peer 

modeling would be appropriate. 

FUTURE RESEARCH   

Based on the results of the examination of the dataset and the peer-to-peer 

modeling capabilities, there are areas that should be investigated further to additionally 

validate the use of LBSN data and the many-to-many modeling. With respect to the 

LBSN data, analysis to examine in greater depths the location venues to one another 

could be done. An algorithm could be developed to determine the likelihood of travel 
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between venues based on distance and time. Having the capability to do this may user 

statistics could also be explored with respect to the dataset. This could include possible 

inferences on user income based on restaurant venues, if additional information from 

other LBSN sources like Yelp were added to the dataset. Similarly, vehicle ownership 

could be inferred from checking-into parking facilities. The current analysis of the 

Foursquare data identified user demographics that were under represented, which could 

serve as a catalyst for targeted survey that would address these biases. Having to only use 

more traditional survey methods on smaller groups would lessen the financial burden on 

municipalities.  

The fields of dynamic traffic assignment (DTA) and activity-based modeling 

should be further explored with respect to this data source type. DTA requires data that 

includes a time component, which is readily available within the dataset. Similarly, 

activity-based modeling requires data that contains time-based trips with trip purposes, 

both of which can be gleaned from the Foursquare data. The ability of the dataset to 

provide insights into special events and their impacts on transportation patterns could also 

be examined with respect to both fields. The insights potentially attained could aid a 

municipality’s ability to keep the transportation network flowing effectively and safely. 

Finally, the data set could be explored with respect to other supplemental data 

sets. The combination of Waze, a community-based traffic app that provides route details 

that consider existing traffic conditions, and Foursquare could provide additional data on 

route choices made by users, even revealing trends in routes that are have limited use or 

are avoided due to frequent traffic or incidents. The CityBikes app, which contains bike 

sharing data for select cities, could be used to with the Foursquare data to further 

understand the bike mode usage within a municipality. Ridescout, an app that provides 

information about transportation options between two locations, could be used to 
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determine modal options between venues within a municipality. Other non-transportation 

related applications could be explored for their additive impacts. For example, Groupon 

data could be mined for times and locations of usage. Along these lines, OpenTable 

provides users a platform for making reservations at restaurants and could also be used to 

determine future locations that individuals would be attending with the added benefit of 

knowing how many individuals would be doing so. Google Places would be another 

robust dataset that could be complementary to the Foursquare dataset since some venues 

could be in one dataset and not the other. However, data user agreements may limit this 

interaction since these are competitive apps. Apps like Twitter, Instagram, and Tumblr 

could be explored for additional value that could be added to the Foursquare data with 

respect to the content of each tweet and photo.  

With respect to the peer-to-peer modeling, CAMPO is currently transitioning to a 

parcel level analysis, for which the proposed model may have better matching 

characteristics based on how venues are handled within the model. Along this spectrum, 

other many-to-many models could be explored for their capabilities including the 

business-to-customer and social forces models. The peer-to-peer model could also be 

further refined to account for venue check-in trends. Users who check-into restaurants for 

lunch are not likely to check-in to another restaurant until dinner. The current model 

treats all venues within a TAZ equally, but assigning weights based on the likelihood of 

check-in to a particular category may address this.  

Due to the capability of easy data collection, dynamic origin-destination models 

could be another area for exploration. Determining the proposed model’s transferability 

and demographical differences of LBSN data collected from other municipalities of 

varying sizes could also be explored in future work. Recent work by Ziemke, Nagel, and 

Bhat explored model transferability with respect to activity-based modeling finding it 
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feasible to transfer a Dallas-Ft. Worth model to Berlin, Germany. Beyond the 

examination of transferability of the model to municipalities of various sizes, 

investigation on the modeling capabilities with respect to suburban and rural areas could 

be done. These areas may have considerable differences in traffic patterns and planning 

needs that both the data source and methodology could provide greater insights than 

current methods. Finally, there is movement within the industry toward activity-based 

modeling. The Foursquare dataset has the potential to provide an exceptionally rich 

dataset that could easily be used for activity-based planning, especially if purchased data 

is used, and imposes very little burden on the participating individuals.  

CONCLUDING STATEMENTS 

This dissertation provides novel insights about the Foursquare data collected for 

the Austin area. The data source has been shown to be robust, easy to attain, and is 

capable of providing enormously detailed spatial and temporal information for a given 

area. Based on the findings of this dissertation, the use of location-based social 

networking data for transportation planning is recommended to be as a supplemental data 

source to traditional methods or in conjunction with other social networking platforms.  

In addition to the exploration of the dataset, this dissertation examined using the 

peer-to-peer modeling methodology from the many-to-many modeling structure for 

transportation planning. This original effort demonstrated the ability of peer-to-peer 

modeling to closely approximate an existing gravity-based model used by the local 

metropolitan planning organization. Peer-to-peer models were should be have better 

capabilities in predicting intra-zonal trips, which was found to be a limitation of the 

comparable doubly-constrained gravity model. Additionally, peer-to-peer models are 

recommended when friction functions include a linear component for long trips, as they 
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were found to be superior to the doubly-constrained model. Furthermore, when time is a 

limiting factor, peer-to-peer models are computationally more efficient that the doubly-

constrained gravity models. Finally, with respect to the productions and attraction rates 

for the examined models, the peer-to-peer (with linear functioned long trips) and doubly 

constrained (with gamma functioned long trips) models provide more reasonable 

information based on where the current population and businesses are located in 

comparison to the 2005 CAMPO models. This is likely due to the dataset used within this 

examination being more current and because of the nature of check-ins occurring at 

popular locations.  
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Appendix A 

Supporting Graphics 

Supplementary graphic created within the various analysis efforts of this 

dissertation have been included within this appendix to provide further details of the data 

source exploration and on each of the examined models. 
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Appendix B 

Sample Matlab Code 

A sample of the Matlab program code required to perform the analysis of the doubly-

constrained gravity and peer-to-peer models are provided in this appendix.  

TRIP GENERATION SAMPLE CODE 

load weekday 
 

weekday = reshape(weekday(:,:),10,1462)'; 
checkin=weekday(zoneIdx,:); 
checkins=reshape(checkin,520,10)'; 
 

kp = 0.47334; 
ka = 0.66967; 
pow = 0.21198; 

  
professional=checkins(1,:); 
shops=checkins(2,:); 
universities=checkins(3,:); 
residence=checkins(4,:); 
travelspots=checkins(5,:); 
entertainment=checkins(6,:); 
food=checkins(7,:); 
nightlife=checkins(8,:); 
outdoor=checkins(9,:); 
 

inputCheckins = 

professional+residence+universities+entertainment+nightlife+shops+food+travelspots+outdoo

r; 
production=inputCheckins.*(ka+kp); 

  
attraction=inputCheckins.*ka; 
ba = inputCheckins.^pow/sum(inputCheckins.^pow)*(sum(production)-sum(attraction)); 
attraction = attraction + ba; 

TRIP DISTRIBUTION SAMPLE CODE 

Friction Function Sample Code  

load centroids 
for i=1:520 
    for j=1:520 
        distance(i,j)=(abs(lat(i)-lat(j))+abs(lng(i)-lng(j)))*100; 
    end 
end 
tripdist=distance+5.*eye(size(distance,1)); 

… 
alpha=x(1); 
beta=x(2); 
alpha1=x(3); 
beta1=x(4); 
TD = x(5); 
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friction = 

(alpha+beta.*tripdist).*(tripdist<TD)+(alpha1+beta1.*tripdist).*(tripdist>=TD);  

Doubly-Constrained Gravity Model Sample Code  

Genetic Optimization Sample Code  

function doubleGravityOpt 
load campo 
zoneIdx = csvread('tazid.txt'); 
totalOD=HBO+HBR+HBUT+HBW+NHBE+NHBO+NHBW+NWAir; 
algCells = {@dgravity1}; 
algNames = {'Doubly1'}; 

  
%%%%%%%%%%%%alpha beta alpha1 beta1 TD TUpperBd TLowBd adjMid 
lowerDBds = [1e-3  1e-3 1e-3   1e-3  5  5000     300    .1];      
upperDBds = [5     5    10     10    15 10000    1500   .8]; 

  
lowerBdsCell = {lowerDBds}; 
upperBdsCell = {upperDBds}; 

  
for a=1:1 
    alg = algCells{a}; 
    algName = algNames{a}; 
    lowerBds = lowerBdsCell{a}; 
    upperBds = upperBdsCell{a}; 

  
nVars = length(lowerBds); 
n = length(totalOD); 

  
CR=0; 
swapRatio=0; 
params=[]; 

 
options = gaoptimset('Generations', 100, 'TolFun', 1.000e-03); 
    [params,fav,exitflag,output] = 

ga(@(x)eva(x,checkins,'CR',totalOD,tripdist,n,alg),nVars,[],[],[],[],lowerBds,upperBds) 

 
[swapRatio,CR,FR,MAE,ME] = eva(params,checkins,'SwapRatio',totalOD,tripdist,n,alg) 
    display(CR) 

 
truTSum = sum(sum(totalOD)); 
predictedTrips1 = dgravity1(params,checkins,tripdist,n,truTSum); 
 

truT = reshape(totalOD,1,[]); 
algDT = reshape(predictedTrips1,1,[]); 

 
save(['res_D1_allpurpose.mat'],'params','CR','FR','ME','MAE','swapRatio','totalOD','predi

ctedTrips1'); 

  
csvwrite(['res_D1_ProAttHeatMap.csv'],[zoneIdx sum(totalOD,2) sum(predictedTrips1,2) 

sum(totalOD)' sum(predictedTrips1)']); 
 

display('optimization done.') 

  
fig1=figure(1) 
interval=100; 
totalLength=3000; 
CR = compareTripLengthDist(totalOD,predictedTrips1,tripdist,interval,totalLength) 
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saveas(fig1,'cr1.fig') 
 

end 

Doubly-Constrained Trip Distribution Sample Code  

function [Tcur]=dgravity1(x,checkins,tripdist,n,truTSum) 
TUpperBd = x(6); 
TLowBd = x(7); 
adjMid = x(8); 
alphaj=ones(1,n);  
betai=ones(1,n);  

  
prevAlphaj = zeros(1,n); 
prevBetai = zeros(1,n); 

 
AS=alphaj.*attraction;  
PS=betai.*production;  

  
Tcur=(AS'*PS).*friction;  

  
prevDif = 1; 
curDif = 0; 
stepCnt = 0; 

 
while abs(prevDif-curDif)>1e-3 && stepCnt<=20 
    Pi=sum(Tcur,2)';  
    Aj=sum(Tcur,1);  

  
    prevAlphaj = alphaj; 
    prevBetai = betai; 

     
    betai=1./((alphaj.*Aj)*friction');  
    alphaj=1./((betai.*Pi)*friction); 
    AS=alphaj.*attraction;  
    PS=betai.*production;  
    Tcur=(AS'*PS).*friction; 

  
    prevDif = curDif; 
    curDif = max(max(abs(alphaj-prevAlphaj)),max(abs(betai-prevBetai))); 
    stepCnt = stepCnt+1; 
end     

  
Tcur = Tcur/sum(sum(Tcur))*truTSum; 

  
%%Frequency Bias Adjustment%% 
%for high frequency values 
orgTcur = Tcur; 
highIdx = Tcur>=TLowBd; 
Tcur(highIdx)= adjMid*Tcur(highIdx); 
%for extreme values 
Tcur(Tcur>TUpperBd)=TUpperBd; 
%obtain difference and redistribute 
dif = sum(sum(orgTcur(highIdx)-Tcur(highIdx))); 
Tcur(~highIdx) = Tcur(~highIdx)+dif*Tcur(~highIdx).^pow/sum(sum(Tcur(~highIdx).^pow)); 

Peer-to-Peer Model Sample Code  

function [Tcur]=P2P1(x,checkins,tripdist,n,truTSum,venues) 
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load venues 

 
k = x(6);  
s = x(7);  
TUpperBd = x(8); 
TLowBd = x(9); 
adjMid = x(10); 

  
friction = friction.^s; 
delta = ones(n);  
friction1 = (delta./friction);  

  
venues = venues*k;  
friction1 = venues.*friction1;  

  
AS = attraction;  
PS = production;  

  
Tcur =(AS'*PS).*friction1;  

  
Tcur = Tcur/sum(sum(Tcur))*truTSum; 

  
%%Frequency Bias Adjustment%% 
%for high frequency values 
orgTcur = Tcur; 
highIdx = Tcur>=TLowBd; 
Tcur(highIdx)= adjMid*Tcur(highIdx); 
%for extreme values 
Tcur(Tcur>TUpperBd)=TUpperBd; 
%obtain difference and redistribute 
dif = sum(sum(orgTcur(highIdx)-Tcur(highIdx))); 
Tcur(~highIdx) = Tcur(~highIdx)+dif*Tcur(~highIdx).^pow/sum(sum(Tcur(~highIdx).^pow)); 

 

EVALUATION SAMPLE CODE 

function [z,CR,FR,MAE,ME] = eva(x,checkins,obj,totalOD,tripdist,n,alg) 
 

truTSum = sum(sum(totalOD)); 
predictedTrips = alg(x,checkins,tripdist,n,truTSum); 
 

truT = reshape(totalOD,1,[]); 
algT = reshape(predictedTrips,1,[]); 

  
            if sum(isnan(algT) | (algT)<0)>0 
                z = 999999999; 
            else 

  
switch obj 

         
    case 'CR' 
            z = -CoincidentRatio(totalOD,predictedTrips,tripdist); 
 

    case 'SwapRatio' 
            z = swapRatio(truT,algT); 
 

    otherwise 
            MAE = mean(reshape(abs(truT-algT),1,[]));             
            z = MAE;             
end 
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            end 

 
MAE = mean(reshape(abs(truT-algT),1,[])); 
ME = mean(reshape(algT-truT,1,[])); 
CR = CoincidentRatio(totalOD,predictedTrips,tripdist); 
SR = swapRatio(truT,algT); 
FR = frequencyRatio(truT,algT,ceil(max(max(truT))/1000)*1000); 
 

 

function fr = frequencyRatio(truOD,algOD,ub) 
    bin = 0:50:ub; 
    truHist = hist(reshape(truOD,1,[]),bin); 
    algHist = hist(reshape(algOD,1,[]),bin); 
    truPercent=truHist./sum(truHist); 
    algPercent=algHist./sum(algHist); 
    fr=sum(min(truPercent,algPercent))/sum(max(truPercent,algPercent)); 
end 

  
function cr = CoincidentRatio(trips,predictedTrips,tripdist) 
    interval=100; 
    totalLength=3000; 
    m=0:interval:totalLength; 

  
    y1=zeros(length(m),1); 
    y2=zeros(length(m),1); 

  
    for k=0:interval:totalLength 
      y1(k/interval+1)=y1(k/interval+1)+sum(sum(trips(tripdist>=k & 

tripdist<k+interval))); 
      y2(k/interval+1)=y2(k/interval+1)+sum(sum(predictedTrips(tripdist>=k & 

tripdist<k+interval))); 
    end 

  
    tripsPercent=y1./sum(y1); 
    predictedTripsPercent=y2./sum(y2); 

  
   

cr=sum(min(tripsPercent,predictedTripsPercent))/sum(max(tripsPercent,predictedTripsPercen

t)); 
 

end 
 

end 
 

 

 

function sr = swapRatio(x,y) 
x=reshape(x,1,[]); 
y=reshape(y,1,[]); 

  
nonzeroX = x(x>0 | y>0); 
nonzeroY = y(x>0 | y>0); 
 

srVector = abs(atan2(nonzeroY,nonzeroX)/pi*180-45); 
 

sr = mean(srVector); 

 

end 

Trip Length Comparison Sample Code  

function [CR]=compareTripLengthDist(trips,predictedTrips,tripdist,interval,totalLength) 
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m=0:interval:totalLength; 

  
y1=zeros(length(m),1); 
y2=zeros(length(m),1); 

  
for k=0:interval:totalLength 
    for i=1:size(trips,1) 
        for j=1:size(trips,1) 
            if tripdist(i,j)>=k && tripdist(i,j)<=k+interval && i~=j 
                y1(k/interval+1)=y1(k/interval+1)+trips(i,j); 
                y2(k/interval+1)=y2(k/interval+1)+predictedTrips(i,j); 
            end 
        end 
    end 
end 

  
tripsPercent=y1./sum(y1); 
predictedTripsPercent=y2./sum(y2); 

  
tripsPercentCum=zeros(length(tripsPercent),1); 
predictedTripsPercentCum=zeros(length(predictedTripsPercent),1); 

  
for mm=1:length(y1) 
    for nn=1:mm 
       tripsPercentCum(mm)=tripsPercentCum(mm)+tripsPercent(nn);  
       

predictedTripsPercentCum(mm)=predictedTripsPercentCum(mm)+predictedTripsPercent(nn);  
    end 
end 
subplot(1,2,1) 
CR=sum(min(tripsPercent,predictedTripsPercent))/sum(max(tripsPercent,predictedTripsPercen

t)); 
plot(m,tripsPercent,'o',m,predictedTripsPercent,'*') 
xlabel('Trip Length (mile)') 
ylabel('Percentage') 
set(gca,'XTickLabel',str2double(get(gca,'XTickLabel'))/100); 
hleg1 = legend('Survey Trips','Predicted Trips'); 
title('(a)Trip Length Distribution'); 

  
subplot(1,2,2) 
plot(m, tripsPercentCum,'o',m,predictedTripsPercentCum,'*') 
xlabel('Trip Length (mile)') 
ylabel('Percentage') 
axis([0 3000 0 1]); 
set(gca,'XTickLabel',str2double(get(gca,'XTickLabel'))/100); 
hleg1 = legend('Survey Trips','Predicted Trips'); 
title('(b)Cumulative Trip Length Distribution'); 

 

Intensity Diagram Sample Code  

function colorDiagram 
 

load res_P1_allpurpose 
close all 

  
fig=figure 
drawTruOD = log10(totalOD); 
drawTruOD(drawTruOD<0) = 0; 
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drawAlgOD = log10(predictedTripsP2P_1); 
drawAlgOD(drawAlgOD<0) = 0; 

 
sumLog10Tru = sum(sum(log10(totalOD))) 
sumLog10Alg = sum(sum(log10(predictedTripsP2P_1))) 
hold on 
subplot(221) 
colormap; 
pcolor(drawTruOD); 
xlabel('Destination Zone') 
ylabel('Origin Zone') 
title('CAMPO OD Matrix (Log10)') 
axis square 
shading flat 

  
subplot(222) 
pcolor(drawAlgOD) 
xlabel('Destination Zone') 
ylabel('Origin Zone') 
title('Foursquare OD Matrix (Log10)') 
axis square 
shading flat 

  
subplot(223) 
pcolor(log10(abs(totalOD-predictedTripsP2P_1))) 
xlabel('Destination Zone') 
ylabel('Origin Zone') 
title('OD MAE Matrix (Log10)') 
axis square 
shading flat 
caxis([0 6]) 
colorbar 
hold off 
saveas(fig,'ODCompare_P1.fig') 

  
subplot(224) 
hold on 
[truHist,truC]=hist(reshape(totalOD,1,[]),100); 
[algHist,algC] = hist(reshape(predictedTripsP2P_1(drawAlgOD<6000),1,[]),100); 
plot(truC,log10(truHist),'-*g',algC,log10(algHist),'-^k') 
legend('CAMPO','Foursquare') 

  
xlabel('OD Trip Frequency') 
ylabel('Number of OD Pairs (Log10)') 
hold off 
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