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In this research we consider developing a reservoir simulator capable

of simulating complex coupled poromechanical processes on massively parallel

computers. A variety of problems arising from petroleum and environmental

engineering inherently necessitate the understanding of interactions between

fluid flow and solid mechanics. Examples in petroleum engineering include

reservoir compaction, wellbore collapse, sand production, and hydraulic frac-

turing. In environmental engineering, surface subsidence, carbon sequestra-

tion, and waste disposal are also coupled poromechanical processes. These

economically and environmentally important problems motivate the active

pursuit of robust, efficient, and accurate simulation tools for coupled porome-

chanical problems.

Three coupling approaches are currently employed in the reservoir simu-

lation community to solve the poromechanics system, namely, the fully implicit
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coupling (FIM), the explicit coupling, and the iterative coupling. The choice of

the coupling scheme significantly affects the efficiency of the simulator and the

accuracy of the solution. We adopt the fixed-stress iterative coupling scheme

to solve the coupled system due to its advantages over the other two. Unlike

the explicit coupling, the fixed-stress split has been theoretically proven to

converge to FIM for the linear poroelasticity model [90, 91]. In addition, it is

more efficient and easier to implement than FIM. Our computational results

indicate that this approach is also valid for multiphase flow.

We discretize the quasi-static linear elasticity model for geomechanics

in space using the continuous Galerkin (CG) finite element method (FEM) on

general hexahedral grids. Fluid flow models are discretized by locally mass

conservative schemes, specifically, the mixed finite element method (MFE) for

the equation of state compositional flow on Cartesian grids and the multipoint

flux mixed finite element method (MFMFE) for single phase and two-phase

flows on general hexahedral grids. While both MFE and MFMFE generate

cell-centered stencils for pressure, MFMFE has advantages in handling full

tensor permeabilities and general geometry and boundary conditions. MFMFE

also obtains accurate fluxes at cell interfaces. These characteristics enable

simulations of more practical problems.

For many reservoir simulation applications, for instance, the carbon

sequestration simulation, we need to account for thermal effects on composi-

tional flow phase behavior and solid structure stress evolution. We explicitly

couple the poromechanics equations to a simplified energy conservation equa-
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tion. A time-split scheme is used to solve heat convection and conduction

successively. For the convection equation, a higher order Godunov method is

employed to capture the sharp temperature front; for the conduction equation,

MFE is utilized.

Simulations of coupled poromechanical or thermoporomechanical pro-

cesses in field scale with high resolution usually require parallel computing

capabilities. The flow, geomechanics, and thermodynamics models are modu-

larized in the Integrated Parallel Accurate Reservoir Simulator (IPARS) which

has been developed at the Center for Subsurface Modeling at the University

of Texas at Austin. The IPARS framework handles structured (logically rect-

angular) grids and was originally designed for element-based data communi-

cation, such as pressure data in flow models. To parallelize the node-based

geomechanics model, we enhance the capabilities of the IPARS framework

for node-based data communication. Because the geomechanics linear sys-

tem is more costly to solve than those of flow and thermodynamics models,

performance of the linear solver for the geomechanics model largely dictates

the speed and scalability of the coupled simulator. We use the generalized

minimal residual (GMRES) solver with the BoomerAMG preconditioner from

the hypre library and the geometric multigrid (GMG) solver from the UG4

software toolbox to solve the geomechanics linear system [61, 77]. Addition-

ally, the multilevel k-way mesh partitioning algorithm from METIS is used to

generate high quality mesh partitioning to improve solver performance.

Numerical examples of coupled poromechanical and thermoporome-
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chanical simulations are presented to show the capabilities of the coupled sim-

ulator in solving practical problems accurately and efficiently. These examples

include a realistic carbon sequestration field case with stress-dependent perme-

ability, a synthetic thermoporoelastic reservoir simulation, two poroelasticity

simulations on highly distorted hexahedral grids, and three parallel scalability

tests on a massively parallel computer.
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ū vector of 8 3-component nodal displacements of a finite element . . . 49
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Chapter 1

Introduction

1.1 Motivation

In the petroleum industry, the coupling of reservoir flow and geome-

chanical responses poses a variety of challenges to the reservoir engineering

community. Examples of such challenges include reservoir compaction, well-

bore collapse, sand production, hydraulic fracturing, thermal fracturing, sur-

face subsidence, and the like. Historically, there are many well-known cases

with regard to these challenges. For instance, in 1918, the Goose Creek oil

field in Texas started to subside because of the extraction of gas, oil, and

sand from beneath its surface, which severely damaged the vegetation growth,

destroyed the town near the oil field, and caused the disappearance of the Gail-

lard Peninsula in subsequent years. The geology of the Goose Creek oil field

and the causes of its subsidence can be found in [104]. Also, in the early 1940’s,

the land subsidence of Wilmington oil field in California caused a bowl-shaped

area of subsidence reaching a maximum depth of 30 feet, prevented further ex-

ploitation of oil, and required considerable work for subsidence control and oil

recovery [88]. Moreover, in Belridge diatomite oil field in California, reservoir

compaction resulted in an average of 3% well failure rates as well as several

million dollars spent on replacement and repair every year in some areas [21].
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Practical problems like these cases call for accurate and efficient reservoir sim-

ulations in order to characterize reservoir properties, predict well performance,

avert operational risks, and increase hydrocarbon production.

Many applications in the petroleum industry involve the interactions

among multiphase flow, geomechanical behavior, formation fracturing, and

heat transfer. However, conventional reservoir simulations simplify the effect

of rock compaction on pore pressure as a constant rock compressibility. It can-

not explain the intricate and highly nonlinear multiphysics coupling of mul-

tiphase, multicomponent fluid flow and solid mechanics. In recent decades,

researchers and engineers have been constantly aware of the importance of

coupled geomechanics and reservoir simulations. For this reason, this research

aims at developing an accurate and efficient reservoir simulator which couples

geomechanical modeling, reservoir simulation, and thermodynamics to sim-

ulate complex coupled thermoporomechanical processes in porous media on

massively parallel computers.

The coupling of geomechanics and reservoir simulation for practical

large scale problems can be quite challenging in the sense of simulator devel-

opment and computational cost. Consequently, it is very important to choose

an efficient coupling approach. There are three major approaches for coupling

geomechanics with reservoir simulation, namely, the fully implicit coupling

(FIM), the explicit coupling, and the iterative coupling. FIM solves all of

the governing equations simultaneously and is the most accurate and stable

approach; but it requires massive computation memory and complex nonlin-
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ear and linear solvers. The explicit coupling, on the other hand, solves the

field equations sequentially. It facilitates the use of specific discretizations

and solvers for different field equations, resulting in more scalable simulations

on parallel computation platforms. But it has stability and accuracy issues.

Similar to the explicit coupling, the iterative coupling solves field equations

sequentially. But it also iterates to converge the coupled system at each time

step. Properly designed iterative coupling schemes have stability and accuracy

similar to FIM, while still enjoying the benefit of good efficiency analogous to

the explicit coupling. Considering simulator development cost, solution accu-

racy, and computation efficiency of the three approaches, the iterative cou-

pling is employed for solving poromechanics problems because high accuracy

is desired; and the explicit coupling is utilized to couple the thermal energy

balance model with the poromechanics model since temperature changes for

the problems we are interested in are relatively small.

Simulations of coupled thermoporomechanical processes in field scale

with high resolution usually require parallel computing capabilities. The flow,

geomechanics, and thermodynamics models are developed and modularized

in IPARS. The IPARS framework handles logically rectangular data and was

originally designed for element-based data communication, such as pressure

data in flow models. To parallelize the node-based geomechanics model, we

enhance the capabilities of the IPARS framework for node-based data com-

munication. Because the geomechanics linear system is much more costly to

solve than those of flow and thermodynamics models, performance of the linear
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solver for the geomechanics model largely dictates the speed and scalability

of the coupled thermoporomechanics simulator. We use the GMRES solver

with the BoomerAMG preconditioner from the hypre library and the GMG

solver from the UG4 software toolbox to solve the geomechanics linear system.

Additionally, the multilevel k-way mesh partitioning scheme from METIS is

used to produce high quality mesh partitioning to improve solver performance.

1.2 Literature Review

1.2.1 Consolidation Theory

Consolidation theories form the basis of fluid-solid coupling in porous

media. In particular, Terzaghi and Biot played an important role in the devel-

opment of consolidation theories. In 1923, Terzaghi published his classic paper

[121] in which his consolidation theory was proposed for the first time and his

effective stress principle was fully developed. The reader is referred to the En-

glish version of this paper translated by Clayton and Steinhagen [121]. This

theory was further developed in Terzaghi [122, 123] and Terzaghi and Peck

[124]. Grounded in this theory, the settlement for many types of soil can be

predicted, which propelled the development of modern soil mechanics. Also,

this theory, particularly the definition of the effective stress, has constructed

a useful conceptual framework for engineering applications. Studies and ap-

plications of Terzaghi’s consolidation theory, to name a few, can be found in

Gibson et al. [56], Taylor [120], Znidarcic and Schiffman [148], Schiffman and

Znidarcic [112], Carroll and Katsube [28], and Carillo [27].
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In spite of the significance of Terzaghi’s consolidation theory in modern

soil mechanics and other related disciplines, his theory is restricted to the one-

dimensional case and ignores the compression of pore fluid and solid grains. In

order to overcome these limitations, Biot [14] put forward his general theory

of three-dimensional consolidation in 1941 in which the compression of pore

fluid and solid grains was taken into account. In his subsequent papers, Biot

applied his theory to the calculation of settlement under a rectangular load

distribution [13], extended his theory from isotropic materials to anisotropic

cases [15] and viscoelastic anisotropic solids [17], discussed the irreversible

thermodynamics that is the basis of his theory [20], identified three kinds of

elastic waves in poroelastic media [18, 19], and furnished the general solutions

to consolidation problems [16].

Because of the interaction between geomechanics and reservoir flow,

changes in reservoir stresses greatly influence changes in permeability and

porosity, and thus lead to changes in hydrocarbon production. In order to

better predict hydrocarbon production and analyze reservoir matrix defor-

mation and stress state, consolidation theories have been widely applied in

reservoir engineering [10]. For example, Geertsma [55] introduced a unified

treatment of rock mechanics problems related to petroleum engineering. It is

in Geertsma’s paper that the term poroelasticity was coined. Many researchers

have extended Biot’s consolidation theory to couple multiphase flow models

with more general geomechanics models. For example, Li and Zienkiewicz

[78] and Gutierrez et al. [60] discussed the interaction between rock defor-
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mation and multiphase fluid flow in hydrocarbon reservoirs. Coussy [40, 41]

described a general theory of coupled thermo-flow-elastoplasticity model in

porous media. Kolditz et al. [75] developed OpenGeoSys which solves cou-

pled thermo-hydro-mechanical-chemical processes in porous media. For more

studies and applications of consolidation theories in petroleum engineering,

the reader is referred to Settari and Walters [115], Dean et al. [47], Thomas

et al. [125], Wang et al. [134], Mehrabian and Abousleiman [89], Booker and

Small [22], Cryer [42], Rice and Cleary [108], Jha and Juanes [66], Schrefler et

al. [113], Sukirman and Lewis [119], Wan [133], etc.

1.2.2 Coupling Approaches

In reservoir and environmental engineering, studies of multiscale and

multiphysics phenomena such as surface subsidence, well stability, carbon se-

questration, and hydraulic fracturing [46] require a comprehensive understand-

ing of fluid flow and the induced geomechanical responses. However, conven-

tional analyses of fluid flow usually simplify the effect of porous media defor-

mation on pore pressure as a constant rock compressibility [93]. Because the

constant rock compressibility assumption is usually only applicable to reser-

voirs with competent rock, it cannot analyze reservoirs with complex geome-

chanical behavior especially naturally fractured and stress-sensitive reservoirs

[32, 36, 37, 93, 125]. As a result, this conventional decoupled analysis of fluid

flow cannot provide enough information on solid phase strains and stresses.

To overcome this limitation, coupled analyses of fluid flow and geomechanics
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are required.

In general, three major approaches have been applied to solving coupled

flow and geomechanics problems. They are FIM, the explicit coupling, and

the iterative coupling. [72, 91, 116]. FIM solves all governing equations of fluid

flow and geomechanics simultaneously [97, 132]. It is the most stable approach,

has internal consistency, and preserves second-order convergence for nonlinear

iterations [47, 116]. Compared to the other two approaches, however, FIM has

extremely high computational cost and requires more code development efforts

[38, 47]. Applications of FIM can be found in Chin et al. [36], Gutierrez [59],

and Chin and Thomas [37]. The explicit coupling solves two sets of equations

in sequence and passes data at selected time steps in both directions between

two simulators [94]. This approach has low computational cost and is easy

to implement, but it is less accurate and needs to estimate when to update

the mechanical response [47, 93, 94]. An example of the explicit coupling can

be found in Inoue and Fontoura [65]. The iterative coupling also involves a

sequential procedure in which the coupled system is solved iteratively at each

time step and the data is passed back and forth between the simulators until

the solution converges within an acceptable tolerance [47, 93, 131, 132]. This

approach has higher computational cost than the explicit coupling, but it can

produce the same results as FIM [47, 81, 94]. For a better understanding of

merits and drawbacks of the three approaches, the reader is directed to Dean

et al. [47] where the three approaches are compared in the same program, and

Tran et al. [130] where the accuracy, adaptability, and running speed of the
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three approaches are discussed.

1.2.3 Iterative Coupling Schemes

In recent decades, the iterative coupling has gained great popularity in

the reservoir simulation community. Chin et al. [38] concluded that the iter-

ative coupling is an effective, robust approach to deal with complicated rock

compaction behavior in reservoir simulation. They pointed out that compared

to FIM, the iterative coupling has higher computational efficiency, is easier

to implement, and can utilize computing technologies and numerical methods

for the geomechanics model and the reservoir simulator separately. Tran [127]

studied the convergence of the iteratively coupled reservoir simulator and ge-

omechanics module. He developed a porosity formula to improve the efficiency

of the iterative coupling between reservoir flow and geomechanical deforma-

tion. More applications of the iterative coupling can be found in Samier and

De Gennaro [111], Tran et al. [128, 129], Mikelić and Wheeler [91], Thomas et

al. [125], etc.

There are four major iterative coupling schemes, including the drained

split, the undrained split, the fixed-strain split, and the fixed-stress split

[72, 91]. For both the drained and the undrained splits, the mechanical prob-

lem is solved first. During the mechanical problem solve, the drained split

freezes the pore pressure, whereas the undrained split freezes the fluid mass

content. Compared to the drained split, the undrained split is uncondition-

ally stable [73], and can be applied to both linear [66] and nonlinear problems
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[8, 73]. Moreover, the undrained split with a fixed number of iterations leads

to convergence for a compressible system, whereas the drained split with a

fixed number of iterations may not converge even when it is stable [73].

Unlike the drained and the undrained splits, both the fixed-strain and

the fixed-stress splits solve the flow problem first. During the flow problem

solve, the fixed-strain split fixes the rate of change of the total strain, whereas

the fixed-stress split fixes the rate of change of the total stress [74]. Based on

a stability analysis, Kim et al. [74] concluded that the fixed-strain split has

the same stability behavior as the drained split, that is, conditionally stable.

Similar to the undrained split, the fixed-stress split is also unconditionally

stable. Moreover, the fixed-stress split is convergent for incompressible systems

and is more accurate than the undrained split with a fixed number of iterations

[72, 74]. Furthermore, Mikelić and Wheeler [91] proved the convergence and

convergence rates of the undrained and the fixed-stress splits.

Because of its advantages, the fixed-stress split has been widely used

by researchers in the reservoir simulation community [47, 51, 53, 58, 70, 94, 97,

129, 131]. Using the fixed-stress split with an extended porosity correction,

for example, Kim et al. [69] modelled thermo-hydro-mechanical processes in

hydrate reservoir. Ganis et al. [52] employed the fixed-stress iterative coupling

scheme with inner iterations between reservoir and fracture flows to model

fractures in a poroelastic domain. Mikelić et al. [93] applied the fixed-stress

iterative coupling for modeling poroelasticity with fracture propagation using

a phase field approach.
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1.2.4 Mixed Finite Element Method and Multipoint Flux Mixed
Finite Element Method

The mixed finite element method (MFE) has been widely used to solve

flow and transport problems. Unlike the standard finite element method that

employs one single finite element space, MFE utilizes two different finite el-

ement spaces for two different variables [34]. Several families of mixed finite

element spaces have been introduced in the literature [23, 24, 35, 106]. The

primary advantages of MFE include local mass conservation, flux continuity,

and the ability to handle discontinuous coefficients. Russell and Wheeler [109]

used a special numerical quadrature rule on the lowest order Raviart-Thomas

(RT) element [106] to reduce the pressure-velocity system to a cell-centered

finite difference (CCFD) system for pressure which is a standard discretization

method widely employed by the reservoir simulation community. Weiser and

Wheeler [135] then showed first-order convergence for pressure and velocity of

CCFD by exploring its relation to MFE and using MFE analysis and numerical

quadrature error estimates. Phillips and Wheeler [102] coupled an MFE single

phase flow model with a CG linear elasticity model on rectangular grids and

demonstrated first-order convergence for pressure, velocity, and displacement.

There are diverse variations of MFE such as the control volume mixed fi-

nite element method (CVMFE)[26], the expanded mixed finite element method

(EMFE) [33], and the multipoint flux mixed finite element method (MFMFE)

[146]. In particular, MFMFE has been implemented for single phase and

two-phase flows on general hexahedral grids in IPARS [138, 140]. It is closely
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related to the multipoint flux approximation method (MPFA) introduced by

Aavatsmark [1]. The relation between MPFA and MFE is discussed in [2].

MPFA is a control-volume method which allows local flux elimination to gen-

erate a cell-centered pressure system [1]. The primary limitation of MPFA,

however, is that its convergence properties cannot be theoretically analyzed

due to its non-variational formulation [145].

Wheeler and Yotov developed MFMFE within the MFE variational

framework [138, 139, 146]. MFMFE utilizes specifically chosen mixed finite

element spaces and quadrature rules to locally eliminate velocity degrees of

freedom and generate a cell-centered pressure matrix [118, 146]. This pro-

cedure is similar to that in MPFA. MFMFE uses two different mixed finite

element spaces including Brezzi-Douglas-Marini (BDM) space on triangles,

quadrilaterals, and tetrahedra [146] and the enhanced Brezzi-Douglas-Durán-

Fortin (BDDF) space on hexahedra [64, 140]. Two types of quadrature rules

are introduced for MFMFE: a symmetric quadrature rule which is accurate

for smooth or h2-perturbed grids [64, 146] and a non-symmetric quadrature

rule which is accurate for distorted or h-perturbed grids [140, 144]. While

both MFE and MFMFE generate a cell-centered pressure system, MFMFE

has advantages in handling full tensor permeabilities and general geometry

and boundary conditions [139, 140, 144]. First-order convergence for pressure

and velocity has been proved for MFMFE on general quadrilaterals and hex-

ahedra [64, 140, 146]. And first-order convergence for displacement has also

been showed when the CG linear elasticity model is coupled to the MFMFE

11



flow model [144]. More details regarding MFMFE can be found in Chapter

5. Because of these advantages, MFMFE has been gaining popularity in the

reservoir simulation community [52, 93].

1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, the conver-

gence of two iterative coupling schemes is analyzed numerically. We discuss

the undrained and the fixed-stress splits for linear poroelasticity coupling and

demonstrate the convergence results for Mandels problem. In Chapter 3, we

introduce the isotropic linear elasticity model which will be coupled to differ-

ent reservoir flow models and a thermal energy balance model in subsequent

chapters. Discretization of the geomechanics model using CG FEM and the

solution procedure is discussed. In Chapter 4, we iteratively couple the geome-

chanics model to an equation of state compositional flow model on rectangular

grids. Both porosity and permeability couplings are considered. We also ex-

plicitly couple a thermal energy balance model to the poromechanics model

to account for thermal effects on compositional flow phase behavior and solid

skeleton strain and stress evolution. A time-split solution of the energy conser-

vation equation is described. Numerical examples for stress-dependent perme-

ability coupling and thermal coupling are provided. In Chapter 5, we couple

the linear elasticity model with MFMFE flow models on hexahedral grids. We

illustrate the capability of the poroelasticity model to handle general geometry

and boundary conditions by a wellbore model simulation and a reservoir simu-
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lation with a distorted hexahedral mesh. In Chapter 6, we present simulation

results to validate the parallelization of the coupled elasticity with MFE com-

positional flow and with MFMFE two-phase flow, respectively. We investigate

the scalability of linear solvers for the elasticity model. The effects of mesh

partitioning and heterogeneity of rock material properties on solver perfor-

mance are discussed. In Chapter 7, we summarize contributions and findings

from this work and recommend future research directions following this work.
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Chapter 2

Numerical Convergence Study of Iterative

Coupling Schemes for Poromechanics

2.1 Introduction

In recent decades, the iterative coupling approach has gained great

popularity in solving poromechanics problems. Settari and Mourits [115] iter-

atively coupled a reservoir flow simulator, a 3D mechanics code, and a fracture-

propagation model and showed its convergence to the fully implicit coupling.

Chin et al. [38] and Dean et al. [47] compared different coupling approaches

and pointed out that the iterative coupling is an effective, robust approach to

deal with the complicated rock compaction behavior in reservoir simulation.

Mainguy and Longuemare [86] and Tran et al. [131] derived porosity correc-

tion terms which accelerate the convergence of the iterative coupling scheme.

Gai [51], Pan [97], Ganis et al. [53], and Mikelić et al. [90] successfully ap-

plied the iterative coupling to solve coupled multiphase flow and geomechanics

simulations. Some commercial simulators, CMG for instance [131], also utilize

iterative coupling to connect their reservoir flow and geomechanics modules.

Kim et al. [73, 74] analyzed four different iterative coupling schemes

widely employed for linear poromechanics simulation. Using Von Neumann
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stability analysis for linear poroelasticity and an energy method for nonlinear

poroplasticity, they concluded that the drained and the fixed-strain splits are

only conditionally stable and their stability depends on the coupling strength

but not the time step size. They also showed that the undrained and the

fixed-stress splits are unconditionally stable. Mikelić and Wheeler [91] rigor-

ously proved the undrained and the fixed-stress iterative coupling schemes are

contraction mappings and derived their convergence rates.

In this chapter, we use Mandel’s problem as an example to numeri-

cally show the fast convergence of the undrained and the fixed-stress splits.

Mandel’s problem is a classical plane strain poroelasticity problem with an

analytical solution. The solution was first given by Mandel in [87] for incom-

pressible fluid and solid constituents. It was later extended by Abousleiman et

al. [3] to slightly compressible pore fluid and solid constituents with transverse

isotropic and homogeneous materials. It has been used by multiple authors

[51, 72, 79, 102] as a benchmark problem because of its non-monotonic pressure

dissipation curve which is a characteristic of flow and solid coupling.

2.2 Mandel’s Problem

Mandel’s problem is described by the isothermal and quasi-static Biot

system [3, 41, 87]. A rectangular 2D sample of saturated poroelastic material

of width 2a and height 2b is considered. It is loaded by a constant compressive

force applied on rigid impervious plates y = ±b. The force intensity is 2F . The

application of the load is instantaneous at t = 0+. The sample is free to drain
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laterally at x = ±a and the lateral edges are stress-free. The mathematical

description of Mandel’s problem is presented as follows.

Fluid Mass Conservation Equation:

∂t
( m
ρf,0

)
+∇ · vD = 0 (2.1)

m = m0 + ρf,0α∇ · u +
ρf,0
M

(p− p0) (2.2)

Force Equilibrium Equation:

−∇ · σ = 0 (2.3)

Darcy’s Law:

vD = −k

µ
∇p (2.4)

Effective Stress Relation:

σ =
E

1 + ν
e(u) +

Eν

(1 + ν)(1− 2ν)
(∇ · u)I− α(p− p0)I (2.5)

Equations (2.1)–(2.5) are defined on domain Ω = (−a, a)× (−b, b) for t > 0.

Boundary Conditions:

p = 0 and σn1 = 0 on x = ±a, (2.6)

vD2 = 0, σ12 = 0,

∫ a

−a
σ22 dx = −2F

and u2 = an unknown constant on y = ±b. (2.7)
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Initial Conditions:

p|t=0 = 0; m|t=0 = m0; u|t=0 = 0 (2.8)

In the above equations, u is the solid skeleton displacement vector; p is fluid

pressure; σ is Cauchy (total) stress tensor; e(u) is the linearized strain tensor;

I is the second-order identity tensor; k is the magnitude of an isotropic per-

meability tensor; vD is Darcy’s velocity; α is Biot’s coefficient; 2F is the force

intensity; µ is the fluid viscosity; M is Biot’s modulus; ν is Poisson’s ratio; E is

Young’s modulus; m is fluid mass per bulk volume; ρf,0 is the reference state

fluid density. Note that equation 2.2 is only valid for isothermal condition.

Thermal effects on solid skeleton deformation and reservoir porosity change

will be discussed in Chapter 3 and Chapter 4.

For the simplicity of numerical implementation and without losing the

generality of our contraction estimates, we replace the impervious rigid plate

condition (2.7) with

vD2 = 0, σ12 = 0, and u2 = U2(±b, t) on y = ±b. (2.9)

where U2(±b, t) is the value of the closed form solution to Mandel’s problem

at y = ±b [3, 41].
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We introduce the functional spaces on Ω

VT = {z ∈ C(0, T ]×H1(Ω)3 | z2 = 0 on y = ±b;

and ∂te(z) ∈ L2(Ω)9} (2.10)

WT = {r ∈ H1(Ω× (0, T )) | r ∈ C([0, T ];H1(Ω))

and r = 0 on x = ±a}. (2.11)

Multiplication of equations (2.1)-(2.5) by test functions, allows us to write the

virtual work formulation∫
Ω

(
E

1 + ν
e(u) : e(w) +

Eν

(1 + ν)(1− 2ν)
∇ · u∇ ·w

−α(p− p0)∇ ·w
)
dxdy = 0, ∀w ∈ VT , (2.12)

d

dt

∫
Ω

(
p

M
+ α∇ · u

)
g dxdy +

∫
Ω

k

µ
∇p∇g dxdy = 0,

∀g ∈ WT . (2.13)

p|t=0 = 0 and u|t=0 = 0 in Ω. (2.14)

2.3 Undrained Split Iterative Method for Mandel’s Prob-
lem

The undrained split iterative method consists in imposing constant fluid

mass during the structure deformation. Following [72], this means that we will

calculate two pressures: pn+1/2 at the half-time step and then pn+1. It should

be pointed out that here n denotes the iteration number, not the time step
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number. We set

mn+1/2 = mn =⇒

pn+1/2 = pn − αM div (un+1/2 − un). (2.15)

Then, using equations (2.1)–(2.5) our iterative process reads as follows

−∇ ·
(

E

1 + ν
e(un+1) + (

Eν

(1 + ν)(1− 2ν)
+Mα2)∇ · (un+1)I

)
= −∇

(
α(pn − p0) +Mα2∇ · un

)
(2.16)

1

M
∂tp

n+1 − k

µ
∆pn+1 = −α∇ · ∂tun+1 (2.17)

With initial and boundary conditions:

pn+1|t=0 = 0 and un+1|t=0 = 0 on Ω, (2.18)

pn+1 = 0 and e12(un+1) = 0 on x = ±a, (2.19)

E

1 + ν

∂un+1
1

∂x
+ (

Eν

(1 + ν)(1− 2ν)
+Mα2)∇ · un+1

= α(pn − p0) +Mα2∇ · un on x = ±a, (2.20)

∂pn+1

∂y
= 0, e12(un+1) = 0 and un+1

2 = U2(±b, t) on y = ±b. (2.21)

Following the approach from [91], we introduce the invariant distance (the

metrics) dud, given by

d2
ud

(
(u, p), 0

)
=

k

µM
max

0≤t≤T
||∇p(t)||2L2(Ω)

+
2Eα2

Eν/(1− 2ν) +Mα2(1 + ν)
||e(∂τu)||2L2(Ω×(0,T ))3

+α|| div ∂τu||2L2(Ω×(0,T ))

+|| ∂τ (
1

M
p+ α div u)︸ ︷︷ ︸
∂tm/ρf,0

||2L2(Ω×(0,T )). (2.22)
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The distance is defined on the space Qud :

Qud = {(A, B) ∈ VT ×WT |A|t=0 = 0;B|t=0 = 0 }. (2.23)

We have

dud

(
(un+1, pn+1)− (un, pn)

)
≤ γuddud

(
(un, pn)− (un−1, pn−1)

)
(2.24)

with γud =
Mα2

Eν/(1 + ν)(1− 2ν) +Mα2
< 1 . We see that the operator Sud ,

defined as

Sud(un, pn) = (un+1, pn+1) (2.25)

is a contraction mapping on Qud. By the contraction mapping principle, it

has a unique fixed point in Qud. This proves the convergence of the undrained

split iterative method.

2.4 Fixed-stress Split Iterative Method for Mandel’s
Problem

The fixed-stress split iterative method consists in imposing constant

mean total stress. This means that the σv = σv,0 + K∗dr div u − α(p − p0)

is kept constant at half-time step where σv is the mean total stress. K∗dr is a

generalized drained bulk modulus of the solid matrix under different boundary

conditions. Chen et al. [32] gives K∗dr for uniaxial, biaxial, and triaxial strain

conditions. Assume K∗dr = α2

β
, mathematically we can choose K∗dr to achieve

an optimal convergence rate for the fixed-stress iterative coupling. We should

point out that the choice of the optimal K∗dr depends on the definition of the
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distance in the solution space. The iterative process reads as follows

σn+1/2
v = σnv =⇒

div un+1/2 = div un +
α

K∗dr
(pn+1/2 − pn) (2.26)

(
1

M
+ β

)
∂tp

n+1 − k

µ
∆pn+1 = −β

α
∂tσ

n
v

= −α div ∂tu
n + β∂tp

n; (2.27)

div { E

1 + ν
e(un+1) +

Eν

(1 + ν)(1− 2ν)
(∇ · un+1)I} = α∇pn+1; (2.28)

With initial and boundary conditions:

pn+1|t=0 = 0 and e12(un+1) = 0 on Ω; (2.29)

pn+1 = 0 and e12(un+1) = 0 on x = ±a, (2.30)

E

1 + ν

∂un+1
1

∂x
+

Eν

(1 + ν)(1− 2ν)
∇ · un+1

−α(pn+1 − p0) = 0 on x = ±a, (2.31)

∂pn+1

∂y
= 0, e12(un+1) = 0

and un+1
2 = U2(±b, t) on y = ±b; (2.32)

Again, following the approach from [93], we introduce the invariant distance

(the metrics) dfs , given by

d2
fs

(
(u, p), 0

)
=

k

µ

α2

1
M

+ β
max

0≤t≤T
||∇p(t)||2L2(Ω)

+
4E2ν

(1 + ν)2(1− 2ν)
||e(∂tu)||2L2(Ω×(0,T ))3

+|| ∂t(−αp+K∗dr div u)︸ ︷︷ ︸
∂tσv

||2L2(Ω×(0,T )) (2.33)
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The distance is defined on the space Qfs :

Qfs = {(A, B) ∈ VT ×WT |A|t=0 = 0;B|t=0 = 0 }. (2.34)

We have

dfs

(
(un+1, pn+1)− (un, pn)

)
≤ γfsdfs

(
(un, pn)− (un−1, pn−1)

)
(2.35)

With the distance (2.33), the optimal K∗dr from our derivation is K∗dr =

2Eν

(1 + ν)(1− 2ν)
, or β =

α2(1 + ν)(1− 2ν)

2Eν
. Hence Sfs , defined as

Sfs(un, pn) = (un+1, pn+1) (2.36)

is a contraction mapping on Qfs, and by the contraction mapping prin-

ciple, it has a unique fixed point in Qfs. This proves the convergence of

the fixed-stress split iterative method. And now the contraction factor is

γfs =
α2M

α2M + 2Eν
(1+ν)(1−2ν)

< 1 .

It is obvious that γfs < γud, which means the fixed-stress split has a

higher convergence rate than the undrained split. Actually, if we drop the

elastic energy term

4E2ν

(1 + ν)2(1− 2ν)
||e(∂tu)||2L2(Ω×(0,T ))3

in (2.33) to define a weaker distance, following the procedure in [93], we can

show that now the optimal K∗dr =
2E(1− ν)

(1− 2ν)(1 + ν)
, or β =

α2(1− 2ν)(1 + ν)

2E(1− ν)
.

And the contraction factor under the weaker distance is

γfs =
α2M

α2M + 2E(1−ν)
(1−2ν)(1+ν)

< 1
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In the following chapters we will also see that we can couple this mechan-

ics module to existing flow simulators without introducing any new terms

into flow equations. Therefore it is preferable to develop iteratively coupled

poromechanics simulators using the fixed-stress split.

2.5 Numerical Results for Mandel’s Problem

We will show converged results from the undrained split and the fixed-

stress split for the Mandel’s problem. Figure 2.1 illustrates the configuration

of the Mandel’s problem. From the symmetry of the problem, only a quarter

rectangle ((x, y) ∈ (0, a)× (0, b)) is modeled in the simulation (Figure 2.2).

An iteratively coupled 3D single phase flow with linear elasticity model in

IPARS is used to simulate the 2D problem. Therefore a plane strain condition

(e33 = 0) is enforced in the simulation. For the quarter rectangle domain, we

have the following boundary conditions:

2F

2F

X

Y

Figure 2.1: Mandel’s problem full domain

23



2F

X

Y

0yu

0xu

2F

Figure 2.2: Mandel’s problem quarter domain

p = 0 and σn1 = 0 on x = +a, (2.37)

vD2 = 0, σ12 = 0, u2 = U2(b, t) on y = b, (2.38)

vD1 = 0, u1 = 0, σ12 = 0 on x = 0, (2.39)

vD2 = 0, u2 = 0, σ12 = 0 on y = 0. (2.40)

Abousleiman et al. [3] presents an analytical solution for the pore pressure,

displacements, and stresses for the Mandel’s problem with transverse isotropic

material and compressible pore fluid and solid constituents. For an isotropic

material, a simplified analytical solution is shown in [102]. Based on the

analytical solution, an instantaneous pressure rise and deformation response
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should be observed upon the exertion of the compressive load 2F [51]:

∆p(x, y, 0+) = FB(1 + νu)/3a (2.41)

u1(a, y, 0+) = Fνu/2G (2.42)

u2(x, b, 0+) = −Fb(1− νu)/2Ga (2.43)

where B is the Skempton pore pressure coefficient, defined as

B = 1− φKdr(Ks −Kf )

Kf (Ks −Kdr) + φKdr(Ks −Kf )

and νu is the undrained Poisson’s ratio:

νu =
3ν +B(1− 2ν)(1−Kdr/Ks)

3−B(1− 2ν)(1−Kdr/Ks)

G is the shear modulus. Ks and Kf denote the bulk modulus of solid con-

stituent and fluid, respectively. Another parameter in the analytical solution

of Mandel’s problem is the diffusivity coefficient c :

c =
2kB2G(1− ν)(1 + νu)

2

9µ(1− νu)(νu − ν)

Input parameters for Mandel’s problem are listed in Table 2.1. The

solid constituent is assumed to be incompressible (α = 1.0) while the fluid is

slightly compressible. The coupling strength τc = α2M
Kdr

is 5.0 in our simulation,

which is considered as a strong coupling strength in [72]. Our contraction

estimates show that the coupling strength controls the convergence rates for

both the undrained and the fixed-stress iterative coupling schemes. As the

coupling strength increases, convergence rates decrease. Also, for the choice of
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SYMBOL QUANTITY VALUE
a dimension in x 100 m
b dimension in y 10 m
E Young’s modulus 5.94× 109 Pa
F force intensity 5.94× 108 Pa/m
ν Poisson’s ratio 0.2
cf fluid compressibility 3.03× 10−10 /Pa
α Biot’s constant 1.0
k permeability 100 md
φ initial porosity 0.2
µ fluid viscosity 1.0 cp
∆x grid spacing in x 2.5 m
∆y grid spacing in y 0.25 m
∆t time step size 10 s
tT total simulation time 50000 s
B Skempton coefficient 0.83333
νu undrained Poisson’s ratio 0.44
M Biot’s modulus 1.65× 1010 Pa
c diffusivity coefficient 0.465 m2s−1

Table 2.1: Input parameters for Mandel’s problem

input parameters herein, we calculate that γud = 0.9302 and γfs = 0.8696. We

expect the fixed-stress splitting to converge faster than the undrained splitting.

We show that numerical solutions from both the undrained and the

fixed-stress splits converge to the analytical solution from t = 0+ in Figures

2.3 and 2.4. Curves of the same color in Figures 2.3 and 2.4 are for the same

time step. Both iterative coupling schemes are able to catch Mandel-Cryer

effect which is a well-known feature of the coupled model (the pressure decay

is not monotonic). For the undrained split, the convergence criteria for the

iterative coupling are∥∥∥∥ 1

M

(
pn+1 − pn+1/2

)
/φ∗,n+1

∥∥∥∥
∞
< TOL1

‖Rn+2
mech‖∞ < TOL2 (2.44)
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where φ∗ = m/ρf,0 is the reservoir porosity and Rn+2
mech is the residual of the

force equilibrium equation using pn+1 and un+1. For the fixed-stress split, the

convergence criteria for the iterative coupling are

∥∥(α∇ · un+1 − βpn+1
)
/φ∗,n+1

∥∥
∞ < TOL1∥∥Rn+2

flow

∥∥
∞ < TOL2 (2.45)

where Rn+2
flow is the residual of the flow volume conservation equation using

pn+1 and un+1. In order to match the analytical solution accurately, we set

tolerances TOL1 = 1.0× 10−6 and TOL2 = 1.0× 10−9 for both iterative cou-

pling schemes. Figure 2.5 shows the number of iterations of the two splitting

schemes for given tolerances at each time step. Due to the discontinuity (lack

of regularity) of the solution at t = 0+, the undrained split takes 35 iterations

to converge at the first time step whereas the fixed-stress split only takes 5

iterations. The number of iterations of the fixed-stress split decreases to 2

within 10 time steps. As a comparison, the undrained split takes more than

5 iterations for the first 1570 time steps. Since the convergence criteria are

not exactly the same for the undrained and the fixed-stress splits, we need

to investigate whether the undrained split takes more iterations to converge

because its convergence tolerances are tighter. To this end, we set the max-

imum number of iterations to 5 and compare the numerical results from the

two iterative coupling schemes in Figures 2.6–2.7. Figure 2.8 shows the num-

ber of iterations of the two splitting schemes when the maximum number of

iterations is set to 5. It is clear that for t=10s, the undrained split solution
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does not converge within 5 iterations. For t=50s, the pressure solution from

the undrained split is not accurate either. The horizontal displacement u1 (or

ux) at y=b from the undrained split within 5 iterations matches the analytical

solution quite well except for t=10s and x/a ≥ 0.9. The reason is that the

exact vertical displacement u2 (or uy) at y=b is prescribed as the Dirichlet

boundary condition. The choice of the displacement boundary condition also

prevents the error of the undrained split pressure solution from propagating

as time proceeds. Note that the fixed-stress split solution converges to the an-

alytical solution within 5 iterations for all time steps. This result confirms our

theoretical proof that the fixed-stress split converges faster than the undrained

split when the appropriate K∗dr is selected.
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Figure 2.3: Pressure matching result for Mandel’s problem
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stress schemes
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Chapter 3

Elasticity Model and Finite Element

Formulation

3.1 Introduction

In this chapter, we present the mathematical description of the linear

elasticity model and its finite element formulation. Since Biot [13, 14] first

introduced his three-dimensional consolidation theory for poroelastic media,

many simulators have been developed for coupling between elasticity model

with single phase flow [79, 114, 115], multiphase flow [51, 78, 133], and more

recently compositional flow [53, 97]. Some authors also consider thermal effects

on the poroelasticity model, which is also called thermoporoelasticity coupling

[40, 75, 79].

The finite element method was introduced in 1950’s as a natural ex-

tension of matrix structural analysis. Over the years, it has gained popu-

larity in solving partial differential equations especially in solid mechanics

[34, 44, 63, 147]. Most of the existing poromechanics simulators, both from

academia and industry, discretize the geomechanics model using the con-

tinuous Galerkin (CG) finite element method (FEM) where both test and

trial functions defined on the finite element space are continuous functions
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[36, 46, 51, 53, 75, 79, 97, 125, 131, 133]. In this work we couple CG for linear

elasticity with MFE for compositional flow in Chapter 4 and with MFMFE

for single and two-phase flow in Chapter 5. Phillips and Wheeler [102, 103]

proved the convergence of CG and MFE coupling for the linear poroelastic-

ity model; Wheeler et al. [144] proved the convergence of CG and MFMFE

coupling for the same linear poroelasticity model.

3.2 Mathematical Model

The linear elasticity model used in the coupled poromechanics and/or

thermoporomechanics model is derived using Newton’s second law with the

concept of effective stress [14, 121]. When Newton’s second law is applied to

the deformation of the solid matrix of porous media, the following assumptions

are made [51, 79]:

1. The solid and fluid phase(s) are over-lapping materials, so the macro-

scopic continuous description of the fluid flow and the solid deformation

applies.

2. The solid matrix deformation is assumed to be very small. This is a

valid assumption for many problems of practical interests in reservoir en-

gineering, civil engineering, and environmental engineering. As a result,

Lagrangian and Eulerian descriptions of the strain tensor are identical.

We adopt the Eulerian description of the strain tensor, the Cauchy strain

tensor, in subsequent sections.
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3. The velocity of the solid matrix is orders of magnitude slower compared

to that of the fluid flow. Therefore, the acceleration term for the solid

matrix in the force equilibrium equation can be neglected, which results

in a simplified quasi-static force equilibrium equation balancing the in-

ternal force of the porous material and the external load exerted on it.

4. The isotropic linear elastic stress-strain constitutive equation is assumed.

Two material constants, namely, Young’s modulus E and Poisson’s ratio

ν, completely determine the stiffness tensor.

5. The shear stress exerted on the solid matrix by pore fluid pressure is

neglected. In other words, pore fluid pressure only contributes to the

normal component of the total stress tensor.

6. Temperature changes induce normal strain, and thermal strain is as-

sumed to be linear isotropic, which means that the thermal strain tensor

can be depicted with one constant thermal expansion coefficient.

7. No chemical reactions happen between the solid skeleton and the satu-

rating fluids so the strength of the solid matrix does not change.

Consider a body of porous medium occupying a domain Ω in the three-

dimensional space whose boundary ∂Ω = Γ can be decomposed into two parts:

Γ = Γ̄u
⋃

Γ̄t, Γu
⋂

Γt = ∅, Γu 6= ∅ (3.1)

The complementary boundaries Γu and Γt are Dirichlet and Neumann bound-

aries, respectively.

36



yz

x

��
��
��
��
�
�
�
�

Γu
Γt

Figure 3.1: Dirichelet and Neumann boundaries for elasticity problem

In the domain Ω, the deformation of solid skeleton (solid matrix) of the

porous medium is governed by:

Force Equilibrium Equation:

−∇ · σ = f (3.2)

where σ is the total (Cauchy) stress tensor whose definition will be given later,

and f is a vector consisting of the body force per unit volume of the solid skele-

ton and the saturating pore fluids. We should point out here that a consistent

set of units is assumed for every equation presented in this dissertation, and

we adopt the convention that tensile stresses and strains are positive.

Cauchy Strain Tensor:

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (3.3)

where εij is Cauchy (total) strain tensor, and u is the displacement vector.
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Hooke’s Law:

σeij =
Eν

(1 + ν)(1− 2ν)
εekkδij +

E

1 + ν
εeij (3.4)

In equation 3.4, δij is the Kronecker delta and the repeated subscript implies

summation over the number of dimensions of the space. We adopt this Einstein

notation for implied summation unless otherwise noted. εeij is the infinitestimal

mechanical elastic strain tensor induced by the effective stress tensor σeij .

εev = εekk = εe11 + εe22 + εe33 is the mechanical volumetric strain. For general

linear elastic materials, σe = C : εe where C is a fourth-order stiffness tensor

with 21 independent components [63] and A : B = AijBij represents the

double-dot contraction operation between two tensors A and B. With the

isotropic material assumption, the elastic symmetries reduce the number of

independent components of C to two. Equation 3.4 can also be expressed in

terms of Lamé’s parameters λ and G:

σeij = λεekkδij + 2Gεeij (3.5)

with λ = Eν
(1+ν)(1−2ν)

, Lamé’s first parameter, and G = E
2(1+ν)

, Lamé’s second

parameter or shear modulus.

Summation of equation 3.5 over the three normal components gives:

σev =
(3λ+ 2G)

3
εekk (3.6)

where σev = 1/3(σe11 + σe22 + σe33) is the mean effective stress. Substituting

equation 3.6 into 3.5 we get:

εeij =
1

2G
σeij −

λ

2G

3

3λ+ 2G
σevδij (3.7)
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In Chapter 4, we will consider the coupled thermoporoelasticity prob-

lem. When thermal effects are accounted, a temperature change will give rise

to normal strains called the thermal strain [114, 115], denoted as εTij :

εTii = αTii(T − T0) (3.8)

Note that εTii denotes the normal component of εTij thus no summation is im-

plied. T is the current temperature and T0 is the reference temperature. αTii

is solid matrix thermal expansion coefficient for thermal strain component εTii.

With the assumption that the thermal strain is linear isotropic, we have:

εTii = αT (T − T0) (3.9)

and αT is a constant (which can vary spatially for heterogeneous porous media

like E and ν, or λ and G) solid skeleton thermal expansion coefficient. The

total strain tensor εij given in equation 3.3 is defined as:

εij = εeij + εTij (3.10)

Therefore the total volumetric strain εv is:

εv = εev + 3αT (T − T0) (3.11)

Use equations 3.7, 3.9, 3.6, and 3.11 in equation 3.10, we obtain:

εij = εeij + εTij

=
1

2G
σeij −

λ

2G

3

3λ+ 2G
σevδij + αT (T − T0)δij

=
1

2G
σeij −

λ

2G
εevδij + αT (T − T0)δij

=
1

2G
σeij −

λ

2G

(
εv − 3αT (T − T0)

)
+ αT (T − T0)δij (3.12)
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Equation 3.12 gives the relation among the effective stress tensor σeij,

the total strain tensor εij, and the thermal strain tensor εTij as:

σeij = λεvδij + 2Gεij − (3λ+ 2G)αT (T − T0)δij (3.13)

In the coupled flow and geomechanics model, the total stress tensor σij

in equation 3.2 consists of effective stress (which induces the mechanical strain

εeij) and pore pressure normal stress [14, 121], which is:

Total Stress Tensor

σij = σ0
ij + λεvδij + 2Gεij − (3λ+ 2G)αT (T − T0)δij︸ ︷︷ ︸

effective stress

−α(p− p0)δij (3.14)

σ0
ij is the initial (in-situ) stress in the solid matrix of the porous media. The

deformation of the solid skeleton of the porous media is thus coupled to the

thermal energy balance equation through the term T and to the fluid flow

equation through the term p. For single phase flow, p is pore fluid pressure,

whereas for multiphase flow, p can be the pressure of a reference phase (usually

the wetting phase) or a saturation weighted pressure. It is clear from equation

3.14 that the fluid flow in the pore space induces the deformation of the solid

matrix through changing the effective stress state. It should be pointed out

that since we solve the flow, geomechanics, and thermal energy balance equa-

tions in sequence, T and p are known quantities when we solve the equation

3.2 and they are treated as external loads and moved to the right-hand side

(RHS) of equation 3.2.
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The mathematical model of the quasi-static linear elastic force equilib-

rium equation is completed with the initial and boundary conditions.

Initial Condition:

σ|t=0 = σ0 (3.15)

Boundary Condition:

u = uD on Γu; σn = τ on Γt. (3.16)

where uD is the prescribed displacement boundary condition, τ is the pre-

scribed traction boundary condition, and n is the unit outward normal vector

of Γt.

3.3 Finite Element Formulation

By substituting equations 3.14 and 3.3 into 3.2, the equilibrium equa-

tion 3.2 can be formulated using displacement u as the primary unknown.

More specifically, equation 3.2 becomes:

−∇ · σ(u) = f (3.17)

In this section, we will follow the standard finite element procedure

[50, 63, 99] to discretize the quasi-static equilibrium equation 3.17.
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3.3.1 Galerkin Weak Formulation

Multiplying equation 3.17 with an arbitrary vector-valued function a

and integrating over the domain Ω, we have:

−
∫

Ω

a · (∇ · σ)dΩ =

∫
Ω

f · adΩ (3.18)

Use the identity equation

∇ · (σa) = a · (∇ · σ) +∇a : σ (3.19)

and the divergence theorem (also note that σ is a symmetric tensor)∫
Ω

∇ · (σa)dΩ =

∫
Ω

∇ · (aσ)dΩ

=

∫
Γ

a · (σn)dΓ (3.20)

equation 3.18 becomes∫
Ω

∇a : σdΩ =

∫
Ω

f · adΩ +

∫
Γt

a · τdΓ (3.21)

In the derivation of equation 3.21 we use the Neumann boundary condition in

equation 3.16 and assume that a = 0 on Γu.

We further notice that the contraction of a skew-symmetric tensor and

a symmetric tensor is always zero, therefore∫
Ω

∇a : σ(u)dΩ =

∫
Ω

1

2

(
∇a + (∇a)T

)
: σ(u) +

1

2

(
∇a− (∇a)T

)
: σ(u)dΩ

=

∫
Ω

1

2

(
∇a + (∇a)T

)
: σ(u)dΩ

=

∫
Ω

ε(a) : σ(u)dΩ (3.22)
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where (·)T is the transpose of a tensor.

The Galerkin weak formulation of equation 3.17 then reads:

Find u ∈ U , such that for ∀a ∈ V∫
Ω

ε(a) : σ(u)dΩ =

∫
Ω

f · adΩ +

∫
Γt

a · τdΓ (3.23)

where U is the trial space and V is the test space:

U := {u ∈ H1(Ω) | u = uD on Γu} (3.24)

V := {a ∈ H1(Ω) | a = 0 on Γu} (3.25)

and H1(Ω) is Hilbert space on Ω:

H1(Ω) := { ∂a

∂xi
∈ L2(Ω)3} (3.26)

Equation 3.23 essentially states the principle of virtual work: for a

body originally in equilibrium, the work done by external forces over a virtual

displacement a (the RHS of equation 3.28) is balanced by the work done by

internal stress over the virtual strain ε(a) induced by the virtual displacement

a (the left-hand side of equation 3.23).

3.3.2 Galerkin Approximation Formulation

The trial space U and the test space V are infinite dimensional function

spaces. In order to find a numerical (approximate) solution to equation 3.17

with the boundary conditions 3.16, we need to define a finite dimensional space

where the approximate solution uh lives in. Let Th be a finite element partition

43



of the domain Ω consisting of hexahedrons ΩE
i , such that:

Th :=
⋃
i

ΩE
i ≈ Ω (3.27)

where h = maxi diam(ΩE
i ) [64].

The Galerkin approximation formulation of equation 3.23 is defined as:

Find uh ∈ Uh, such that for ∀ah ∈ Vh∫
Th
ε(ah) : σ(uh)dTh =

∫
Th

f · ahdTh +

∫
Γ̄t

ah · τ hdΓ̄ (3.28)

where ah is the test function on the finite element space Vh, Γ̄t is Neumann

boundary of Th, τ h is the approximate Neumann boundary condition on Γ̄t, Uh

is the trial function space and Vh is the test function space on Th, respectively.

Uh := {uh ∈ H1(Th) | uh = ūD on Γ̄u} (3.29)

Vh := {ah ∈ H1(Th) | ah = 0 on Γ̄u} (3.30)

Likewise, Γ̄u is Dirichlet boundary of Th and ūD is the approximate Dirichlet

boundary condition prescribed on Γ̄u.

3.3.3 Finite Element Integration

Since Uh and Vh are finite dimensional, any function in Uh (or Vh) can

be represented using a complete set of basis functions in Uh (or Vh). For

example,

uh =
nnode∑
i=1

uiψi +
ndbc∑
j=1

ujDψ
j
D (3.31)
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The degrees of freedom ui, i = 1, 2, · · · , nnode and the basis functions

ψi, i = 1, 2, · · · , nnode are associated with vertices i of finite elements in

Th whose location vector is denoted as ri . Note that nnode is the total num-

ber of vertices in Th\Γ̄D, whereas ndbc is the total number of vertices on Γ̄D

and ujD is prescribed Dirichlet boundary condition. ψjD is basis function asso-

ciated with vertex on Dirichlet boundary Γ̄D. It is clear from equation 3.31

that

Vh = Uh\span(ψjD, j = 1, 2, · · · , ndbc) (3.32)

We choose Uh and Vh to be piecewise tri-linear function space in R3 and the

basis function satisfies:

ψi(rj) = δij (3.33)

We should point out that in practical implementation of the finite ele-

ment method for equation 3.23, usually ψjD is also used as basis function for

test function ah. After assembling the global stiffness matrix KG , the three

rows of coefficients in KG resulted from testing equation 3.23 with ψjD are

modified with unity in the diagonal and zero in the off-diagonal terms to make

KG a positive-definite matrix. Terms in KG related to the interactions be-

tween ujDψ
j
D and ψi are moved to the RHS of the global linear system because

ujD are known boundary conditions. Therefore, in integrating the equation

3.23, the test function space Vh is first set to Uh, and then KG and RHS of

the global linear system are modified to enforce Dirichlet boundary conditions

and eliminate extra equations resulted from ψjD being used as bases for test

function ah.
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In the finite element implementation, the integration of equation 3.23

over Th is divided into integrations over its elements ΩE
i , namely:∫

Th
ε(ah) : σ(uh)dTh =

∫
Th

f · ahdTh +

∫
Γ̄t

ah · τ hdΓ̄ =⇒

∑
i

(∫
ΩEi

ε(ah) : σ(uh)dΩE
i

)
=
∑
i

(∫
ΩEi

f · ahdΩE
i

)

+
∑
i

(∫
∂ΩEi

⋂
Γ̄t

ah · τ hd∂ΩE
i +

∫
∂ΩEi \Γ̄t

ah · (σn)d∂ΩE
i

)
(3.34)

Since Uh and Vh are continuous function spaces, the third term in the RHS of

equation 3.34 vanishes when summed over Th:∑
i

( ∫
∂ΩEi \Γ̄t

ah · (σn)d∂ΩE
i

)
= 0 (3.35)

therefore we omit it when performing element integration in equation 3.34.

We use 8-node hexahedrons in R3 to partition the domain Ω. This

choice is consistent with the finite element partitions adopted by the flow

models to which the geomechanics model is coupled. More specifically, the

MFE compositional flow model uses 8-node rectangular finite elements and

the MFMFE flow models use 8-node general hexahedral finite elements. The

Uh and Vh used here are piecewise tri-linear function spaces. The integration

of equation 3.34 is performed over a reference element ΩÊ which is a unit cube

in the reference coordinate (ξ, η, ζ). The isoparametric finite element mapping

FE : r̂ 7−→ r is defined as:

r =
8∑
i=1

N̂i(r̂)rji (3.36)
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where r̂ = (ξ, η, ζ)T is the location vector in the reference space with r̂ ∈ [0, 1]3,

rji is the location vector of vertex i of the finite element ΩE
j , N̂i is the shape

function associated with vertex i in the reference cube whose definition is given

in equation 3.37. For the simplicity of representation, we drop the superscript

j in the following development, implying that the mapping is between the

reference cube and a current finite element ΩE
j in Th. Figure 3.2 illustrates the

mapping FE from a unit cube in (ξ, η, ζ) coordinate to the finite element ΩE
j

in (x, y, z) coordinate.
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Figure 3.2: Finite element mapping between reference space and physical space
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N̂1 = (1− ξ)(1− η)(1− ζ)

N̂2 = ξ(1− η)(1− ζ)

N̂3 = ξη(1− ζ)

N̂4 = (1− ξ)η(1− ζ)

N̂5 = (1− ξ)(1− η)ζ

N̂6 = ξ(1− η)ζ

N̂7 = ξηζ

N̂8 = (1− ξ)ηζ (3.37)

Note that N̂i is tri-linear within ΩÊ and N̂i(r̂j) = δij where r̂j is the location

vector of vertex j of the reference cube ΩÊ. The Jacobian matrix DFE of the

mapping FE is defined as:

DFE(r̂) =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (3.38)

and its determinant is denoted by JE = det(DFE) .

Since FE is isoparametric mapping, within a finite element ΩE in Th,

uh and ah can be represented as follows:

uh(r̂) =
8∑
j=1

N̂j(r̂)uj (3.39)

ah(r̂) =
8∑
j=1

N̂j(r̂)aj (3.40)
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Equations 3.39 and 3.40 can be written in vector form:

uh =
(
N̂1I N̂2I · · · N̂8I

) (
u1 u2 · · · u8

)T
= N ū (3.41)

ah =
(
N̂1I N̂2I · · · N̂8I

) (
a1 a2 · · · a8

)T
= N ā (3.42)

I is the second-order identity tensor in R3, N is the 3 × 24 interpolation

matrix consisting of 8 3 × 3 blocks, ū is a 24 × 1 vector consisting of 8 3-

component nodal displacements (displacement degree of freedom or Dirichlet

boundary data), and ā is a 24 × 1 vector consisting of 8 3-component nodal

values of the test function. With equations 3.41, 3.42, the definition of Cauchy

strain tensor 3.3, the linear elastic stress-strain constitutive equation 3.5, and

adopting Voigt notation [63], the total strain tensor εij and the associated

stress tensor σe+Ti j (including effective stress and thermal stress) can also be

represented in vector form:

ε(r̂) = B(r̂)ū (3.43)

σe+T (r̂) = Deε(r̂) = DeB(r̂)ū (3.44)

Note that ε denotes both tensor and vector forms of Cauchy strain tensor,

and σe+T denotes both tensor and vector forms of the associated stress tensor.

The vector forms of ε and σe+T , the strain interpolation matrix B , and the
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elastic constitutive matrix De are given as follows:

ε =


ε11

ε22

ε33

γ12

γ23

γ13

 =


ε11

ε22

ε33

2ε12

2ε23

2ε13

 (3.45)

where γij, i 6= j is engineering shear strain.

σe+T =



σe+T11

σe+T22

σe+T33

σe+T12

σe+T23

σe+T13

 (3.46)

B(r̂) =
(

B1(r̂) B2(r̂) · · · B8(r̂)
)

(3.47)

and Bj is a 6 × 3 strain interpolation matrix associated with vertex j in a

finite element ΩE
i .

Bj(r̂) =



∂N̂j(r̂)

∂x
0

0
∂N̂j(r̂)

∂y
0

0 0
∂N̂j(r̂)

∂z
∂N̂j(r̂)

∂y

∂N̂j(r̂)

∂x
0

0
∂N̂j(r̂)

∂z

∂N̂j(r̂)

∂y
∂N̂j(r̂)

∂z
0

∂N̂j(r̂)

∂x


(3.48)

De =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (3.49)

50



The vector form of total stress σij in equation 3.14 reads:

σ(r̂) = σ0 + σe+T (r̂)− (3λ+ 2µ)αT (T − T0)I− α(p− p0)I

= σ0 +DeB(r̂)ū− (3λ+ 2µ)αT (T − T0)I− α(p− p0)I (3.50)

I in equation 3.50 denotes the vector form of the second-order identity tensor:

I =


1
1
1
0
0
0

 (3.51)

Note that in the calculation of Bi in equation 3.48, ∂N̂i(r̂)
∂xj

is required.

Using the chain rule,

∂N̂i

∂ξ
=

∂N̂i

∂x

∂x

∂ξ
+
∂N̂i

∂y

∂y

∂ξ
+
∂N̂i

∂z

∂z

∂ξ

∂N̂i

∂η
=

∂N̂i

∂x

∂x

∂η
+
∂N̂i

∂y

∂y

∂η
+
∂N̂i

∂z

∂z

∂η

∂N̂i

∂ζ
=

∂N̂i

∂x

∂x

∂ζ
+
∂N̂i

∂y

∂y

∂ζ
+
∂N̂i

∂z

∂z

∂ζ
(3.52)

Write equation 3.52 in matrix form
∂N̂i
∂ξ
∂N̂i
∂η
∂N̂i
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




∂N̂i
∂x
∂N̂i
∂y
∂N̂i
∂z

 (3.53)

or 
∂N̂i
∂ξ
∂N̂i
∂η
∂N̂i
∂ζ

 = DF T
E


∂N̂i
∂x
∂N̂i
∂y
∂N̂i
∂z

 (3.54)
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Therefore 
∂N̂i
∂x
∂N̂i
∂y
∂N̂i
∂z

 = (DF T
E )−1


∂N̂i
∂ξ
∂N̂i
∂η
∂N̂i
∂ζ

 (3.55)

And Bi can be explicitly expressed and calculated as Bi(r̂).

Substituting equations 3.41, 3.42, 3.43, 3.44, 3.47, 3.49, 3.50 into 3.34

to integrate over the reference unit cube ΩÊ, and after some manipulations,

we have:

āT
(∫

ΩÊ
BTDeBJEdΩÊ

)
ū = āT

∫
ΩÊ
N T fJEdΩÊ

+āT
∫

ΩÊ

(
(3λ+ 2G)αT (T − T0) + α(p− p0)

)
BT IJEdΩÊ

−āT
∫

ΩÊ
BTσ0JEdΩÊ

+āT
∫
∂ΩÊ

⋂
DF−1

E (Γ̄t)
N Tτ hJed∂ΩÊ (3.56)

It should be pointed out that for the last term in the RHS of equation 3.56, Je

is the determinant of Jacobian of a finite element mapping from a boundary

face of ΩÊ to a boundary face of ΩE in Th.

Since the test function ah is arbitrary, āT is arbitrary, which means(∫
ΩÊ
BTDeBJEdΩÊ

)
ū =

∫
ΩÊ
N T fJEdΩÊ

+

∫
ΩÊ

(
(3λ+ 2G)αT (T − T0) + α(p− p0)

)
BT IJEdΩÊ

−
∫

ΩÊ
BTσ0JEdΩÊ

+

∫
∂ΩÊ

⋂
DF−1

E (Γ̄t)
N Tτ hJed∂ΩÊ (3.57)
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always holds.

The volume and face integrations in equation 3.57 are approximated

using Gaussian quadrature rule, namely∫
ΩÊ
F (r̄)dΩÊ ≈

vqpt∑
i=1

wvi F (r̄vi ) (3.58)

∫
∂ΩÊ

F (r̄)d∂ΩÊ ≈
fqpt∑
i=1

wfi F (r̄fi ) (3.59)

where vgpt is the total number of Gaussian quadrature points for volume

integration and fgpt is the total number of Gaussian quadrature points for face

integration. r̄vi is the location vector in ΩĒ for Gaussian point i for volume

integration, wvi is the associated weight; r̄fi is the location vector in ΩĒ for

Gaussian point i for face integration, wfi is the associated weight. We use the

tensor product of a one-dimensional two-point Gaussian quadrature rule for

the two-dimensional and the three-dimensional integration. For example, in
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the three-dimensional case,

r̄v1 =

(
1

2

(
1−
√

3

3

)
,
1

2

(
1−
√

3

3

)
,
1

2

(
1−
√

3

3

))T

r̄v2 =

(
1

2

(
1 +

√
3

3

)
,
1

2

(
1−
√

3

3

)
,
1

2

(
1−
√

3

3

))T

r̄v3 =

(
1

2

(
1 +

√
3

3

)
,
1

2

(
1 +

√
3

3

)
,
1

2

(
1−
√

3

3

))T

r̄v4 =

(
1

2

(
1−
√

3

3

)
,
1

2

(
1 +

√
3

3

)
,
1

2

(
1−
√

3

3

))T

r̄v5 =

(
1

2

(
1−
√

3

3

)
,
1

2

(
1−
√

3

3

)
,
1

2

(
1 +

√
3

3

))T

r̄v6 =

(
1

2

(
1 +

√
3

3

)
,
1

2

(
1−
√

3

3

)
,
1

2

(
1 +

√
3

3

))T

r̄v7 =

(
1

2

(
1 +

√
3

3

)
,
1

2

(
1 +

√
3

3

)
,
1

2

(
1 +

√
3

3

))T

r̄v8 =

(
1

2

(
1−
√

3

3

)
,
1

2

(
1 +

√
3

3

)
,
1

2

(
1 +

√
3

3

))T

(3.60)

with wvi = 1
8
, for i = 1, 8.

After applying the Gaussian quadrature rule to equation 3.57, we obtain

a local linear system for ΩE in Th

Keū = f e (3.61)

with Ke a 24 × 24 local stiffness matrix and f e a 24 × 1 local load vector

which includes thermal stress and fluid pore pressure contributions. Summa-

tion of equation 3.57 over Th gives rise to the global linear system for the linear
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elasticity equation:

KGūG = FG (3.62)

where ūG is the global displacement degree of freedom vector and FG is the

global load vector. As mentioned before, KG and FG have to be modified

to account for prescribed Dirichlet boundary conditions. The resulting global

stiffness matrix KG is symmetric positive definite (SPD). The global linear

system 3.62 can be solved by different linear solvers.
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Chapter 4

Geomechanics Coupled with Compositional

Flow

4.1 Introduction

For many real world applications like CO2 flooding as a means of en-

hanced oil recovery technique [30] or CO2 injection into saline aquifers as

a way of carbon sequestration [48, 76, 126], the fluid flow concerned is not

only multiphase but also multi-component, and its properties depend on its

compositions. To account for these physics in history matching or forward

predictions, a compositional flow simulator is usually required [4, 39, 95].

Reservoir geomechanical responses associated with these flow processes

are often not negligible. For example, surface uplift has been detected and mea-

sured by satellite based interferometric synthetic aperture radar (InSAR) for

the In Salah gas project in Algeria which was the world’s first industrial scale

CO2 storage project [110]. This ground surface subsidence/uplift information

has been used for estimating rock material properties [107]. For stress sensitive

reservoirs [48, 105], permeability changes induced by solid matrix deformation

can significantly affect well productivity. To study the complicated interplays

between the multi-component multiphase flow and the reservoir solid skele-
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ton, the geomechanics model presented in Chapter 3 is iteratively coupled to

the EOS compositional flow model in IPARS. Both porosity and permeability

couplings are considered. The iteratively coupled poroelasticity model is then

explicitly coupled to a thermal energy balance model to account for thermal

effects on reservoir deformation and fluid motion.

4.2 Compositional Flow Model

Several assumptions have been made for the compositional flow model

implemented in IPARS [76, 126]:

1. Three phases are considered, namely, an aqueous (water) phase, a non-

aqueous liquid phase, and a gaseous phase.

2. No mass transfer between the aqueous phase and the other two phases;

hydrocarbon components can transfer between non-aqueous liquid phase

and the gas phase.

3. Fluid flow is described by Darcy’s law.

4. The principal directions of the permeability tensor are aligned with the

coordinate directions, therefore the permeability tensor is diagonal.

5. No-flow boundary conditions are assumed for all of the reservoir bound-

aries.

6. Well is treated as sink/source terms by Peaceman well model [100].
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7. Reservoir solid skeleton deformation is governed by an isotropic linear

elasticity model.

4.2.1 Porosity Coupling with Geomechanics Model

In conventional compositional flow simulators which are not coupled to

a geomechanics model, reservoir bulk volume (volume of solid skeleton) for each

grid block or element in the mesh is assumed to be constant, i.e. Vb(t) = V 0
b

for each grid block, where Vb(t) is the bulk volume at the reservoir time t and

V 0
b is the initial (reference) bulk volume. As a result, the porosity term in

the flow mass conservation equation is referred to as reservoir porosity [114].

However, when reservoir solid skeleton deformation is considered, the bulk

volume varies and the porosity term in the flow equation is the true porosity

through which the mass conservation equations for flow and solid skeleton

are connected. In this section, we follow a procedure similar to the approach

described by Gai [51] and Chen et al. [32] to derive the porosity coupling term

for the compositional flow model equation. The stress-dependent permeability

coupling will be presented in Section 4.3.

When the compositional flow and solid matrix deformation are coupled,

the mass conservation equations for flow and solid phase read:

∂φNi

∂t
+∇ ·

∑
j

(
ρjξ

j
iSjφvfj

)
= qi (4.1)

∂(1− φ)ρs
∂t

+∇ · ((1− φ)ρsvs) = 0 (4.2)

Equation 4.1 is the molar mass conservation equation for fluid compo-
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nent i and equation 4.2 is the solid phase mass conservation law. Superscript or

subscript j denotes fluid phase (j = w is aqueous phase, j = l is non-aqueous

liquid phase, and j = g is non-aquesous gas phase); subscript i denotes com-

ponent (i=1, · · · , Nc+1. Here i=1 is water component, Nc is the total number

of non-aqueous components). φ is the true porosity which is defined as the

ratio of pore volume to bulk volume in deformed porous media, i.e. φ = Vp/Vb

where Vp is the pore volume. Ni is the component molar concentration, ρj

is the phase molar density, ξji is the molar fraction of component i in phase

j, Sj is the phase saturation, vfj is the interstitial velocity of fluid phase j

in Eulerian coordinate, qi is the component source/sink term, ρs is the solid

phase mass density , and vs is the solid phase velocity in Eulerian coordinate.

The phase Darcy velocity vDj , defined as phase superficial velocity relative to

the moving solid skeleton, is connected to vfj and vs as:

vDj = φSj(vfj − vs) (4.3)

Meanwhile, Darcy’s law gives:

vDj = −krj
µj

K(∇pj − ρjg) (4.4)

where krj is the phase relative permeability, µj is the phase viscosity, K is the

absolute permeability tensor, and g is the gravitational acceleration vector.

From equation 4.3, vfj can be expressed as:

φSjvfj = vDj + φSjvs (4.5)
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Substituting equation 4.5 into 4.1 we have:

∂φNi

∂t
+∇ ·

∑
j

(ρjξ
j
iv

D
j ) +∇ ·

∑
j

(ρjξ
j
iSjφvs) = qi (4.6)

Note that by the definition of component molar density,
∑

j(ρjξ
j
iSj) = Ni,

therefore equation 4.6 can be rewritten as:

∂φNi

∂t
+∇ ·

∑
j

(ρjξ
j
iv

D
j ) +∇ · (φNivs) = qi (4.7)

∂φNi

∂t
+∇ ·

∑
j

(ρjξ
j
iv

D
j ) + vs · ∇(φNi) + φNi∇ · vs = qi (4.8)

Using the material time derivative relation

d(·)
dt

=
∂(·)
∂t

+ vs · ∇(·) (4.9)

equation 4.8 can be rearranged to:

d(φNi)

dt
+∇ ·

∑
α

(ραξ
α
i vDα ) + φNi∇ · vs = qi (4.10)

Similarly, equation 4.2 can be written with material time derivative as:

d(1− φ)ρs
dt

+ (1− φ)ρs∇ · vs = 0 (4.11)

Or

∇ · vs = − 1

(1− φ)ρs

d(1− φ)ρs
dt

(4.12)

In equation 4.12, 1− φ = Vs/Vb where Vs = Vb − Vp is the solid grain volume.

Note that solid grain mass is conserved in a deformable porous media, i.e.
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ρsVs = constant. Use this relation in equation 4.12 we have:

∇ · vs = − Vb
ρsVs

d

dt

(
ρsVs
Vb

)
= −Vb

d

dt

(
1

Vb

)
=

1

Vb

dVb
dt

=
dεv
dt

(4.13)

where εv = tr(ε) is the volumetric strain. Combining equations 4.13 and 4.10,

and adding and subtracting εv
d(φNi)
dt

in the LHS of equation 4.10, it becomes:

d (φ(1 + εv)Ni)

dt
+∇ ·

∑
j

(ρjξ
j
iv

D
j )− εv

d(φNi)

dt
= qi (4.14)

Assuming small and quasi-static deformation for the linear poroelasticity model,

i.e. εv � 1 and vs � 1, we note that εv
d(φNi)
dt

� d(φ(1+εv)Ni)
dt

and vs ·

∇ (φ(1 + εv)Ni) � ∂(φ(1+εv)Ni)
∂t

. Thus equation 4.14 can be written in a form

analogous to a decoupled fluid flow equation by neglecting the terms εv
d(φNi)
dt

and vs · ∇ (φ(1 + εv)Ni):

∂ (φ(1 + εv)Ni)

∂t
+∇ ·

∑
j

(ρjξ
j
iv

D
j ) = qi (4.15)

The reservoir geomechanical deformation influences the coupled compositional

flow model through the term φ(1+εv). Using the approximate relation for the

relative change of true porosity in a deformable porous media [31, 51, 54], we

have

dφ

φ
=

(
1

φ
(

1

Kdr

− 1

Ks

)− 1

Kdr

)
(dσv + dp) (4.16)
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where Kdr = 3λ+2G
3

is the drained bulk modulus of solid skeleton, Ks is the

solid grain modulus, σv is the mean total stress defined in equatinon 3.14.

Multiplying both sides of equation 4.16 by phi and integrating it from reference

state to current state yields [51, 114]∫
dφ =

∫ ((
1

Kdr

− 1

Ks

)
− φ

Kdr

)
d(σv + p)∫

dφ ≈
((

1

Kdr

− 1

Ks

)
− φ0

Kdr

)∫
d(σv + p) (4.17)

φ = φ0 +

(
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
)

(4.18)

In deriving equation 4.18, the assumption that the solid matrix deformation

is linear elastic is used so Kdr and Ks are constants; and small deformation

is assumed therefore φ in the RHS of equation 4.17 is approximated by φ0 for

integration. Therefore

φ(1 + εv) =

(
φ0 +

(
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
))

(1 + εv) (4.19)

Under the small deformation assumption(
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
)

= O(εv) = o(1) (4.20)

and (
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
)
εv = O

(
ε2
v

)
(4.21)

The total stress equation 3.14 gives

σv − σ0
v =

3λ+ 2G

3
εv − (3λ+ 2G)αT (T − T0)− α(p− p0) (4.22)
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By neglecting the O (ε2
v) term in equation 4.19, and using 4.22, 4.19 becomes

φ(1 + εv) ≈ φ0 + φ0εv +

(
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
)

= φ0 +
φ0

Kdr

(
(σv − σ0

v) + α(p− p0) + 3Kdrα
T (T − T0)

)
+

(
1− φ0

Kdr

− 1

Ks

)(
(σv − σ0

v) + (p− p0)
)

= φ0 +

(
1

Kdr

− 1

Ks

)
(σv − σ0

v)

+

(
1

Kdr

− 1 + φ0

Ks

)
(p− p0) + 3φ0α

T (T − T0) (4.23)

By recognizing the definition of Biot’s coefficient α [41]

α = 1− Kdr

Ks

(4.24)

equation 4.23 can also be written in terms of εv, p, and T [114, 115]

φ(1 + εv) ≈ φ0 + φ0εv

+

(
1− φ0

Kdr

− 1

Ks

)(
Kdrεv +

Kdr

Ks

(p− p0)− 3Kdrα
T (T − T0)

)
= φ0 + αεv +

α− φ0

Ks

(p− p0) + 3(φ0 − α)αT (T − T0)

= φ0 + αεv +
1

N
(p− p0) + 3(φ0 − α)αT (T − T0) (4.25)

Here N is the modulus relating the pore pressure p linearly to the porosity

variation when the volumetric strain εv and the temperature variation are zero

[41]

1

N
=

(1− α)(α− φ0)

Kdr

=
α− φ0

Ks

(4.26)

63



By definition of the true porosity φ and the volumetric strain εv

φ(1 + εv) =
Vp
Vb

(
1 +

Vb − V 0
b

V 0
b

)
=

Vp
V 0
b

(4.27)

It is clear from equation 4.27 that φ(1 + εv) is the reservoir porosity for de-

formable reservoir bulk volume [114, 115]. Define φ∗ as the reservoir porosity

in coupled poromechanics/thermoporomechanics model

φ∗ = φ(1 + εv)

= φ0 + αεv +
1

N
(p− p0) + 3(φ0 − α)αT (T − T0) (4.28)

Different from the reservoir porosity in conventional compositional flow model

which assumes the form

φ∗ = φ0 (1 + cr(p− p0)) (4.29)

where cr is the constant rock compressibility, the reservoir porosity for coupled

compositional flow, geomechanics,and thermal models is a function of pore

pressure p, solid matrix volumetric strain εv, and temperature T .

4.2.2 Coupled Compositional Flow Model Equations

The coupled compositional flow model equations consist of Nc+1 com-

ponent molar mass conservation equations, Darcy’s law for 3 phase velocities,

and a set of constitutive equations relating fluid properties to state variables

(p, T,Ni).
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Coupled Mass Conservation Equation:

∂(φ∗Ni)

∂t
+∇ ·

∑
j

(ρjξ
j
iv

D
j ) = qi (4.30)

Volume Constraint: ∑
j

Sj = 1 (4.31)

Thermodynamic Equilibrium Equation:

f li = f gi for i = 1, 2, · · · , Nc (4.32)

Darcy’s Law:

vDj = −krj
µj

K(∇pj − ρjg) (4.33)

Constitutive Equations:

φ∗ = φ0 + αεv +
1

N
(p− p0) + 3(φ0 − α)αT (T − T0) (4.34)

ξji = ξji (p, T,Ni) (4.35)

Sj = Sj(p, T,Ni, ξ
j
i ) (4.36)

pj = p+ pcj(Sj) (4.37)

µj = µj(p, T, ξ
j
i ) (4.38)

ρj = ρj(p, T, ξ
j
i ) (4.39)

krj = krj(Sj) (4.40)

f ji = Φj
iξ
j
i p (4.41)

Φj
i = Φj

i (p, T, ξ
j
i , Ni) (4.42)
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In constitutive equations 4.34–4.42, pcj is the phase capillary pressure, f ji is

the fugacity of component i in phase j, and Φj
i is the fugacity coefficient

of component i in phase j. The component phase molar fraction ξji can be

obtained by flash calculation given (p, T,Ni). In IPARS, the cubic Peng-

Robinson equation of state [101, 126] is employed for flash calculation. Phase

viscosity µj is calculated using Lohrenz-Bray-Clark correlation [80].

4.2.3 Fixed-Stress Iterative Coupling

The coupled compositional flow and linear elasticity model (equations

4.30–4.42, 3.2, 3.3, and 3.14) represent a set of equations with unknown refer-

ence pore pressure p, component molar concentrations Ni, solid phase displace-

ment vector u, and temperature T when thermal energy balance equation is

also coupled. Since this poroelasticity/thermoporoelasticity system is compu-

tationally very expensive to solve implicitly [47, 51, 97, 114, 115, 126, 131] and

we would like to make minimum changes to the existing compositional flow

and thermal energy balance models in IPARS [126], we employ the fixed stress

iterative coupling scheme introduced in Chapter 2 to couple the compositional

flow and geomechanics models. The coupling of the poroelasticity model to

the thermal energy balance model will be presented in Section 4.4.

The fixed-stress split solves the compositional flow equation first with

the assumption that the mean total stress of the solid skeleton is fixed. It then

solves the linear elasticity equation using the updated pressure solution as an

external load. The procedure is iterated until the coupled system converges at
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each time step.

The compositional flow model in IPARS is solved by an iterative im-

plicit pressure explicit concentration (IMPEC) algorithm [45, 95, 126]. The

model equations are discretized in space using MFE on the lowest order Raviart-

Thomas element (RT0), the rectangular element, and in time using backward

Euler scheme. The mass conservation equation 4.30 gives

∂φNi

∂t
= −∇ ·

∑
j

(ρjξ
j
iv

D
j ) + qi (4.43)

The time derivative on LHS of equation 4.43 is approximated by backward

Euler scheme as

∂(φ∗Ni)

∂t
=

1

∆t
(φ∗,m+1,k+1Nm+1,k+1

i − φ∗,nNn
i )

≈ 1

∆t

(
φ∗,m+1,kNm+1,k

i +Nm+1,k
i δφ∗,m+1,k+1

)
+

1

∆t

(
φ∗,m+1,kδNm+1,k+1

i − φnNn
i

)
(4.44)

where n denotes nth time level, m denotes mth level coupled flow and geome-

chanics iteration, k denotes kth flow nonlinear (Newton) iteration at (n+ 1)th

time step and (m+ 1)th poroelasticity iteration, and δ(·)k+1 = (·)k+1− (·)k de-

notes (k + 1)th Newton iteration solution at (n+ 1)th time step and (m+ 1)th

poroelasticity iteration. The IMPEC scheme treats all variables on RHS of

equation 4.43 explicitly using kth iteration values at (n+1)th step and (m+1)th

poroelasticity iteration except that the reference pressure term p uses pk+1.

Note that equation 4.28 leads to

δφ∗,k+1 = αδεk+1
v +

1

N
δpk+1 + 3(φ0 − α)αT δT k+1 (4.45)
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and equation 4.22 yields

δσk+1
v = Kdrδε

k+1
v − αδpk+1 − 3Kdrα

T δT k+1 (4.46)

Because the thermal energy balance equation is explicitly coupled to the

compositional flow and geomechanics model at the end of each time step

(see Section 4.4), during Newton iterations for the compositional flow model,

δT k+1 = 0. Furthermore, the fixed-stress assumption implies

δσk+1
v = Kdrδε

k+1
v − αδpk+1 = 0 (4.47)

δεk+1
v =

α

Kdr

δpk+1 (4.48)

Therefore

δφ∗,k+1 = αδεk+1
v +

1

N
δpk+1 + 3(φ0 − α)αT δT k+1

≈
(
α2

Kdr

+
1

N

)
δpk+1 (4.49)

With equations 4.44 and 4.49, 4.43 is decoupled from solid skeleton deforma-

tion and the compositional flow model can be solved independently. It should

be emphasized that only the rock compressibility cr = 1
φ∗,k

δφ∗,k+1

δpk+1 in the compo-

sitional flow simulator needs to be changed when the geomechanics coupling

is considered. This demonstrates the advantage of the fixed-stress iterative

coupling scheme in extending the capability of the existing flow simulators to

study coupled poromechanics problems by adding a geomechanics module.

By appealing to Newton-Raphson method [126], the component molar

mass balance equation 4.43 leads to

δNk+1
i = F(δpk+1) (4.50)
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and the thermodynamic equilibrium equation 4.32 yields

δ lnKk+1
i = G(δpk+1, δNk+1

i ) (4.51)

where Ki is the K-value of component i defined by

Ki =
ξgi
ξli

(4.52)

Taylor expansion of the volume constraint equation 4.31 to the first order

terms gives

∂ST
∂p

δpk+1 +
∑
i

∂ST
∂Ni

δNk+1
i +

∑
i

∂ST
∂ lnKi

δ lnKk+1
i = 1− SkT (4.53)

Here ST =
∑

j Sj is the total saturation of all fluid phases. Substituting

equations 4.50 and 4.51 into 4.53, a linear system for δk+1 can be formed

Aδpk+1 = b (4.54)

and δpk+1 can be solved using a variety of iterative solvers, e.g. Generalized

Minimal Residue (GMRES), Biconjugate Gradient Stabilized (BCGS), and

Multigrid solvers implemented in IPARS with different preconditioners to ac-

celerate the convergence. Following that, δφ∗,k+1 and δNk+1
i are updated using

equations 4.49 and 4.50, respectively. To preserve mass balance, instead of up-

dating Nk+1
i = Nk

i + δNk+1
i , we update the component molar concentration

explicitly [126]

Nk+1
i =

1

φ∗,k+1
(φ∗,kNk

i +Nk
i δφ

∗,k+1 + φ∗,kδNk+1
i ) (4.55)
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Then ξji , Sj, etc, are obtained from flash calculation and mixing rule and the

volume constraint equation 4.31 is checked to determine whether to continue

pressure iterations 4.54.

After the solution of the compositional flow model converges, pm+1,k+1

is substituted into equation 3.17 as pressure load term. If the thermal effect is

considered, T n from the last time step is also used in 3.17 as an external load.

The linear equation 3.17 can be solved using CG as described in Section 3.3.3

for um+1. With um+1 and pm+1, the exact reservoir porosity φ∗,m+1
mech is formed

from equation 4.28

φ∗,m+1
mech = φ∗,mmech + δφ∗,m+1

mech

= φ∗,mmech +
1

N
δpm+1 + α∇ · δεm+1

v (4.56)

In equation 4.56, δpm+1 =
∑

k δp
m+1,k is the total pressure changes over mul-

tiple Newton iterations for the compositional model. On the other hand, the

reservoir porosity calculated in the compositional flow model assuming the

form

φ∗,m+1 = φ∗,m + δφ∗,m+1
flow

= φ∗,m +

(
1

N
+

α2

Kdr

)∑
k

δpm+1,k (4.57)

The fixed stress assumption in compositional flow update is justified if

∥∥φ∗,m+1
mech − φ

∗,m+1
∥∥
L∞

=

∥∥∥∥αδεm+1
v − α2δpm+1

Kdr

∥∥∥∥
L∞

=

∥∥∥∥ α

Kdr

δσm+1
v

∥∥∥∥
L∞

< TOL (4.58)
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However, checking equation 4.58 as the convergence criterion for the coupled

poroelasticity model may result in over-solving or under-solving the coupled

system, depending on the choice of the tolerance TOL. Instead, we feed the

exact reservoir porosity φ∗,m+1
mech to the compositional flow simulator, form a

new residue for the pressure equation 4.54, and check the convergence of the

flow equation. The convergence of the compositional flow equation with the

exact reservoir porosity φ∗,m+1
mech is equivalent to the convergence of the coupled

compositional flow and geomechanics model.

In Figure 4.1 we provide a flow diagram that illustrates the fixed-stress

iterative coupling procedure for porosity coupling between the compositional

flow and linear elasticity models.

Start a new time step n + 1

?
Start a new coupling iteration m + 1

?
Solve compositional flow model for δpm+1, update

δφ∗,m+1 = ( 1
N

+ α2

Kdr
)δpm+1

?
Solve mechanics for δum+1 using pm+1 = pm + δpm+1,

update δφ
∗,m+1
mech

= 1
N
δpm+1 + αδεm+1

v

?

�
��

��

HH
HHH

��
���

H
HH

HH∥∥∥Rm+2
p

∥∥∥
L2

< TOL
Yes No

-

�

Figure 4.1: Fixed-stress split for porosity coupling procedure
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4.2.4 Numerical Example

The iteratively coupled IMPEC MFE compositional flow and CG linear

elasticity model in IPARS has been tested against an in-house fully implicit

poromechanics simulator from a major oil company. For the test case of multi-

phase and multi-component flow coupled with linear elasticity, the iteratively

coupled solutions match their fully implicit counterparts excellently. However,

due to the proprietary concerns, the comparison results can not be published

here.

In this section, we present a single well CO2 injection example to

demonstrate the fast convergence of the iteratively coupled compositional flow

and linear elasticity model. Table 4.1 elaborates the input parameters and

the computational complexity of the problem and Figure 4.2 shows the model

mesh. For the compositional flow problem, no-flow boundary conditions are

applied on all of the boundary faces; for the geomechanics problem, zero nor-

mal displacement and zero shear traction are specified on all of the boundary

faces except that on the top surface, a compressive traction is prescribed in

the normal direction. An injection well is drilled at the center of the reservoir

and is only completed at the bottom of the reservoir. Figure 4.3–4.6 are the

computed solutions at 3.0 day for pressure, CO2 concentration, x-displacement

(vertical), and y-displacement, respectively. Solid lines in Figure 4.3–4.6 in-

dicate the grid partitioning for 64 processes. Note that Figure 4.3 and 4.4

are bottom view whereas Figure 4.5 and 4.6 are top view. The unit for the

displacements is inch throughout this dissertation.
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Figure 4.7 shows the number of iterations at each time step for the

coupled model, given a flow Newton iteration tolerance of TOL2 = 1.0 ×

10−5. For the highly nonlinear carbon sequestration problem, the fixed-stress

split only requires 1 or 2 iteration(s) to converge to the coupled solution,

demonstrating the efficiency of the fixed-stress iterative coupling scheme in

solving coupled poromechanics system.

Figure 4.2: Single well CO2 injection model mesh

4.3 Stress-dependent Permeability

In stress-sensitive or naturally fractured reservoirs, the permeability

dependency on reservoir stress state can play an important role in regulating

fluid flow motions and well productivity changes. Chin et al. [36] and Ragha-

van and Chin [105] did extensive studies on stress-dependent permeabilities

and their implications on well productivity changes. We implement the three

stress-dependent permeability models studied in [105] in IPARS.
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SYMBOL QUANTITY VALUE
XL dimension in x 100 ft
YL dimension in y 3500 ft
ZL dimension in z 3500 ft
Nx number of grid in x 6
Ny, Nz # grid in y, z 192
Nc # component 2 (Brine, CO2)
kyy, kzz horizontal permeability 50 md
kxx vertical permeability 5 md
φ0 initial porosity 0.3
ρ1 brine density at p=0 62.4 lbm/ft

3

µ1 brine viscosity 0.7 cp
cf brine compressibility 3.3× 10−6 /psi
N1,0 initial brine concentration 1.0
p0 initial pressure hydrostatic
Q2 CO2 injection rate 3000 mscf/day
ρs rock density 165 lbm/ft

3

E Young’s modulus 1.0× 105 psi
ν Poisson’s ratio 0.3
α Biot’s constant 1.0
σxx stress on top surface -5200 psi
DoFflow Number of pressure unknowns 221184
DoFmech Number of displacement unknowns 782229

Table 4.1: Parameters for single well CO2 injection example

Figure 4.3: CO2 injection case: pres-
sure at 3.0 days

Figure 4.4: CO2 injection case: CO2

concentration at 3.0 days
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Figure 4.5: CO2 injection case: x-
displacement at 3.0 days

Figure 4.6: CO2 injection case: y-
displacement at 3.0 days
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Figure 4.7: CO2 injection case: number of iterations at each time step
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ki = ki,0e
b(σev−σev,0) (4.59)

ki = ki,0
1.0 +mσev

1.0 +mσev,0
(4.60)

ki = ki,0(φ∗/φ∗0)n (4.61)

In equations 4.59–4.61, ki is the magnitude of a component of a diagonal per-

meability tensor, ki,0 is the corresponding reference value. σev is the mean

effective stress defined in 3.13, σev,0 is the reference mean effective stress. φ∗

and φ∗0 are reservoir porosity and reference reservoir porosity, respectively. b,

m, and n are material constants of reservoir rock and can be experimentally

determined. In our iteratively coupled poroelasticity simulator, reservoir per-

meability is updated after the linear elasticity equation 3.17 is solved and the

exact reservoir porosity 4.28 is calculated. Transmissibilities for reservoir grid

blocks and well element permeabilities are updated accordingly for the next

compositional flow solve. Figure 4.8 is the flow chart for both porosity and

permeability coupling between the flow and geomechanics models.

4.3.1 Numerical Examples

4.3.1.1 Single Well Drainage Problem

The first numerical example is a single well drainage problem presented

in [105]. Figure 4.9 shows the schematic of the model problem. It is a single

phase, two-dimensional problem with constant bottom-hole pressure (BHP)

in the wellbore and constant external pressure boundary condition pe at the
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Figure 4.8: Porosity and permeability coupling procedure

drainage radius re. We model this 2D problem in IPARS as a 3D one. Because

of the symmetry, only one quarter of the circular reservoir is simulated. Figure

4.10 is the model grid set up in IPARS. We use multiple constant BHP injection

wells located at the external boundary to approximate the constant external

pressure boundary condition pe. For the geomechanics problem, an overburden

(compressive) stress of 7000 psi is prescribed on top of the reservoir. All the

other boundary faces have zero normal displacement and zero shear traction

boundary conditions.

Based on extensive numerical simulations, Raghavan and Chin [105]

concluded that the well productivity reduction as a result of reservoir perme-

ability changes due to solid skeleton deformation can be quantified as a skin
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re=640 ft

pw

rw=0.3 ft
σob= 7000 psi

pe = 7000 psi

Wellbore

Figure 4.9: Schematic of single well drainage problem
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7000 psiob 

7000 psiep 

Figure 4.10: Grid of single well drainage problem in IPARS

78



factor s

q

qid
=

ln(re/rw)

ln(re/rw) + s
(4.62)

where rw is the wellbore radius, q is the steady state oil production rate, and

qid is the ideal (without stress-dependent permeability) steady state oil pro-

duction rate. This skin factor is affected by rock mechanical properties such as

Poisson’s ratio, operation conditions such as the BHP for the production well,

and the parameter of the stress-dependent permeability model for different

rock types. For example, for the stress-dependent permeability model 4.59,

they obtained a relation for the skin factor by curve-fitting the data from their

numerical experiments

s/ ln(re/rw) = 0.15278 · b · (pe − pw) · (2 + ν)/(1 + ν) (4.63)

In equation 4.63, pw is the BHP of the production well. We ran six numeri-

cal simulations using the model grid in Figure 4.10 and the stress-dependent

permeability model 4.59 with different b, production well BHP, and Poisson’s

ratio. Table 4.2 lists the input parameters common to the six numerical simu-

lations. Note that permeability tensor is assumed to be isotropic for this case

and its reference magnitude k0 is given at a reference effective mean stress

state σev,0. Since a geomechanics model initialization step at the beginning of

the simulation typically generates non-zero initial mean effective stress, the

magnitude of the permeability k is usually not equal to k0 at the beginning of

the simulation.

79



SYMBOL QUANTITY VALUE
re drainage radius 640 ft
rw wellbore radius 0.3 ft
H reservoir thickness 40 ft
NX number of grids in x 10
NY , NZ number of grids in y, z 20
k0 reference permeability 60 md
σev,0 reference effective mean stress 0 psi

φ0 initial porosity 0.2
µ oil viscosity 3.7 cp
pe pressure boundary condition 7000 psi
E Young’s modulus 1.0× 107 psi
α Biot’s constant 1.0
σob compressive overburden stress 7000 psi

Table 4.2: Common parameters for single well drainage problem

Case No. b, 1/psi BHP, psi Poisson’s Ratio
1 1.E-4 3000 0.3
2 5.E-4 1000 0.3
3 5.E-4 3000 0.3
4 5.E-4 5000 0.3
5 1.E-3 3000 0.1
6 1.E-4 3000 0.3

Table 4.3: Test matrix for single well drainage problem

Table 4.3 gives the different parameters for the six simulations we ran.

Each case has a different combination of b, BHP, and Poisson’s ratio.

We report our simulation results in Figure 4.11. Linear fit between

s/ ln(re/rw) and b(pe − pw)(2 + nu)/(1 − ν) from the six experiments gives

a slope of 0.159 with R2 = 0.973. Our result matches Raghavan and Chin’s

(equation 4.63) reasonably. The difference could result from two factors:

1. We use Peaceman’s well model whereas Raghavan and Chin used an

explicit well model; they also applied pw as traction boundary condition
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at the wellbore for the geomechanics model.

2. We use rectangular grid blocks to approximate the circular reservoir;

constant BHP injection wells are employed to approximate the pressure

boundary condition at the drainage radius; boundary condition for ge-

omechanics model at the drainage radius is also an approximation of

what Raghavan and Chin prescribed in their 2D model.

Figure 4.11: Well productivity reduction in single well drainage problem

Figures 4.12 and 4.13 are the x-displacement (vertical displacement)

field and the x-permeability field at the steady state for test case 6, respec-

tively. The boundary effect can be clearly seen from the two figures. The

permeability reduction from the reference value 60 md is significant because of

the exponential relation 4.59 and the fact that the initial mean effective stress

is not zero.
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Figure 4.12: Steady state x-
displacement for single well drainage
problem

Figure 4.13: Steady state x-
permeability for single well drainage
problem

4.3.1.2 Cranfield CO2 Sequestration Simulation

The second numerical example is a field scale CO2 sequestration sim-

ulation. A depleted sandstone oil reservoir, the Cranfield in Natchez, Missis-

sippi [76, 85], was chosen for the pilot CO2 sequestration project. Kong et

al. [48, 76] did a detailed study using IPARS compositional flow model on

matching the pressure history of a CO2 injection well monitored by the Texas

Bureau of Economic Geology (BEG). He obtained a good pressure history

match for the initial phase of the CO2 injection. However, the pressure curve

from the simulation deviated from the field data when the injection well rate

abruptly increased. Kong [48, 76] hypothesized that the formation around the

injection well was fractured due to the sudden injection rate increase, leading

to a lower injection well BHP compared to the simulation result. By adding

a high permeability high porosity channel to mimic a fracture initialized from
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the injection well, he matched the pressure history when the injection rate is

high.

In this study, we simulate the CO2 sequestration process using the cou-

pled compositional flow and linear elasticity simulator with stress-dependent

permeability developed in this work. Because no information of rock mechan-

ical properties and mechanical boundary conditions is available to us at this

point and the linear poroelasticity model aforementioned cannot model frac-

ture initialization and propagation, the main objective of this numerical study

is not to history match the pressure curve. Instead, we are more interested

in seeing how the porosity and permeability changes induced by the (elastic)

solid skeleton deformation can affect the reservoir flow field.

Some of the Cranfield simulation model parameters are listed in Table

4.4. CO2 and brine PVT data, the capillary pressure curve, and relative

permeability curves for the Cranfield sandstone formation can be found in

Kong [76]. As the first step attempting to account for the geomechanical effect

in the numerical model, we use a homogeneous Young’s modulus E = 1.45×106

psi and Poisson’s ratio ν = 0.3 for the sandstone. For the elasticity problem,

a compressive overburden stress of 10200 psi is prescribed on the top surface

of the reservoir; all other boundary surfaces assume zero normal displacement

and zero shear stress boundary conditions.

As mentioned in Kong [76], one injection well (CFU 31-F1) and two

observation wells (CFU 31-F2 and CFU 31-F3) are located in the detailed area

of study (DAS). The computational domain is larger than the DAS. There are
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SYMBOL QUANTITY VALUE
tT total simulation time 595 days
LX reservoir dimension in x 80 ft
LY reservoir dimension in y 9400 ft
LZ reservoir dimension in z 8800 ft
NX number of grids in x 20
NY number of grids in y 188
NZ number of grids in z 176
d depth of reservoir top surface 9901 ft
T reservoir temperature 257 ◦F
p0 initial pressure 4653.575 psi
s brine salinity 150000 ppm
S0
s initial brine saturation 1.0
Nc number of non-aqueous components 2: CO2, brine
cr rock compressibility in decoupled flow simulation 5.0 ×10−6

E Young’s modulus 1.45 ×106 psi
ν Poisson’s ratio 0.3
α Biot’s constant 1.0
σob compressive overburden stress 10200 psi
DoFflow Number of pressure unknowns 661760
DoFmech Number of displacement unknowns 2107539

Table 4.4: Cranfield model parameters
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another four CO2 injection wells for enhanced oil recovery (EOR) included in

the computational domain, but they are far away from the DAS. Seven con-

stant BHP production wells are employed to approximate pressure boundary

conditions. CFU 31-F1 is a rate-specified well which starts to inject CO2 at

day 193. Figure 4.14 illustrates the injection rate schedule for well CFU 31-F1.
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Figure 4.14: Injection well CFU 31-F1 rate schedule

We have run different simulations to compare the BHP history of the

injection well CFU 31-F1 between simulation results and field measurement

data [76]. All simulations were run with 128 processes. A decoupled composi-

tional flow simulation and a coupled poroelasticity simulation without stress-

dependent permeability serve as the base cases. Note that in Figures 4.15–4.17,
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the connected red circles are field BHP monitoring data. Figure 4.15 shows the

pressure history from a simulation with stress-dependent permeability model

equation 4.59 and b = 1.0× 10−3 1/psi. For a coupled compositional flow and

elasticity simulation without permeability coupling, the BHP curve is consis-

tently higher than that from a decoupled flow simulation. This is reasonable

because the reservoir is undergoing compaction and the porosity reduction re-

sults in an increase in the BHP of a rate-specified injector. On the other hand,

the permeability enhancement due to an increase in mean effective stress or

reservoir porosity tends to lower the BHP of a rate-specified injector. The sim-

ulation with type I stress-dependent permeability generates the lowest BHP

curve in Figure 4.15 which matches the field data satisfactorily when the in-

jector reaches the highest rate (13000 mscf/day in Figure 4.14). But unlike

the decoupled flow simulation, it does not match the field BHP data for the

initial phase of the injection.

Figure 4.16 shows the pressure history from a simulation with stress-

dependent permeability model equation 4.60 and m = 1.0 × 10−4 1/psi. The

pressure curve is very close to the one from decoupled flow simulation. This

implies that the pressure increase induced by reservoir compaction is offset by

the pressure decrease as a result of permeability enhancement.

For a simulation with stress-dependent permeability model equation

4.61 and n = 10, the pressure history is very close to the one from poroelasticity

coupling without stress-dependent permeability (see Figure 4.17). The reason

is that the compaction induced pressure increase is the dominant effect in this
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Figure 4.15: CFU 31-F1 pressure history comparison: Type I stress-dependent
permeability
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Figure 4.16: CFU 31-F1 pressure history comparison: Type II stress-
dependent permeability
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scenario.
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Figure 4.17: CFU 31-F1 pressure history comparison: Type III stress-
dependent permeability

Figures 4.18, 4.19, 4.20, and 4.21 show the mean effective stress and

y-permeability fields at 0.1 days and 595 days with Type I stress-dependent

permeability model, respectively. It is clear that the reservoir mean effective

stress increases (tensile stress is positive) due to the CO2 injection, and so does

the reservoir permeability. The exponential stress-dependent permeability re-

lation 4.59 leads to the highest permeability enhancement among the three

equations 4.59–4.61 and it lowers the BHP of the rate-specified injector the
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most.

Figure 4.18: Mean effective stress at
0.1 days for Type I rock

Figure 4.19: Mean effective stress at
595 days for Type I rock

Figure 4.20: Y-permeability at 0.1
days for Type I rock

Figure 4.21: Y-permeability at 595
days for Type I rock

4.4 Coupling of Thermoporoelasticity Model

4.4.1 Thermal Energy Balance Model

Thomas [126] implemented a simplified thermal energy balance model

[41, 79, 126] in IPARS and explicitly coupled it to the compositional flow model.
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In his model fluid flow and solid skeleton mechanical work, phase transition

heat, and chemical reaction heat are ignored. This explicitly coupled com-

positional flow and thermal energy balance model is suitable for simulating

subsurface processes like CO2 sequestration and hot water injection where

temperature changes accounted are relatively small [126]. In this section, we

explicitly couple the same thermal energy balance model in [126] to the itera-

tively coupled compositional flow and linear elasticity model developed in this

work.

∂Cv,resT

∂t
+∇ ·

(∑
j

ρjCpjTvDj − λT∇T

)
= qH (4.64)

Equation 4.64 is the thermal energy balance model equation. Temper-

ature T is the primary unknown, Cv,res is the effective isochoric specific heat

capacity defined as

Cv,res = (1− φ∗)ρsCvs + φ∗
∑
j

ρjSjCvj (4.65)

Cvs is the isochoric mass specific heat capacity of solid phase, Cpj is the isobaric

molar specific heat capacity of fluid phase j, Cvj is the isochoric molar specific

heat capacity of fluid phase j, λT is the effective reservoir thermal conductivity,

and qH is the heat source/sink term given by

qH =
∑
j

CpjqjTsrc (4.66)

where Tsrc is the temperature of the injected fluid or at the production well

and qj is the molar injection or production rate per unit volume of phase j.
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The thermal energy balance equation 4.64 is solved by a time-split

scheme [43, 126] which solves heat convection and conduction successively.

Several temperature steps can be nested in a compositional flow step, i.e.

[tl, tl+1] ∈ [tn, tn+1]. To solve for T l+1, the heat convection equation

∂Cv,resT

∂t
+∇ ·

(∑
j

ρjCpjTvDj

)
= qH (4.67)

is first tested against an arbitrary piecewise constant function w and integrated

over Th, which gives

∑
E

∂

∂t

∫
ΩE

Cv,resTdΩE +
∑
E

∫
ΩE

(
∇ ·

(∑
j

ρjCpjTvDj

))
wdΩE

=
∑
E

∫
ΩE

qHwdΩE (4.68)

Integration by parts and using divergence theorem and observing that ∇w = 0

in each ΩE because w is an arbitrary piecewise constant, equation 4.68 can be

rewritten as

∑
E

∂

∂t

∫
ΩE

Cv,resTdΩE +
∑
E

∫
∂ΩE

(∑
j

ρjCpjTvDj · n

)
d∂ΩE

=
∑
E

∫
ΩE

qHdΩE (4.69)

On each finite element ΩE, approximating the time derivative by finite differ-

ence leads to [126]

H̄E = H l
E −∆tl+1

∫
ΩE

∑
j

(CpjT )l,HG ρ
l+1/2,HG
j v

D,l+1/2
j · nd∂ΩE

+ ∆tl+1

∫
ΩE

q
l+1/2
H dΩE (4.70)
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where HE =
∫

ΩE
Cv,resTdΩE is the total thermal energy in ΩE, H̄E is the

intermediate value for H l+1
E obtained from the convection step,

(CpjT )l,HG ρ
l+1/2,HG
j v

D,l+1/2
j · n

is the numerical flux approximation obtained from the higher-order Godunov

scheme, and ∆tl+1 = tl+1 − tl. Following the heat convection solve, the heat

conduction step solves

H l+1
E −∆tl+1

∫
∂ΩE

λT∇T l+1 · nd∂ΩE = ∆tl+1H̄E (4.71)

Equation 4.71 is discretized by MFE on RT0 element in space, the same one

used for solving the compositional flow pressure equation in Section 4.2. Back-

ward Euler scheme is used for implicit time stepping.

The procedure for solving the thermal energy balance equation is re-

peated until T n+1 is obtained. The updated temperature solution T n+1 is then

used for coupled compositional flow and geomechanics calculation for tn+2, the

next time step. More specifically, flash and fluid property calculation for tn+2

is based on T n+1 in compositional flow model; for the linear elasticity model to

solve un+2, T n+1 is applied as an external load through the total stress relation

in equation 3.14. Note that because of the explicit coupling between the ther-

mal energy model and the poroelasticity model, T is kept constant during the

fixed-stress iterative coupling update between the compositional flow and the

elasticity models. Figure 4.22 illustrates the procedure of the iterative-explicit

coupling between the compositional flow, linear elasticity, and thermal energy

balance models in IPARS.
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Figure 4.22: Thermoporoelasticity coupling procedure

4.4.2 Numerical Example

In this section we present a synthetic case of a thermoporoelastic pro-

cess to illustrate the thermal effect on the reservoir skeleton deformation. The

model is a quarter of a 5-spot injection-production problem, with the injector

continuously injecting cold water into a hot water aquifer. The problem is

set up in this way to study the competition between the compression and the

dilation of the reservoir matrix due to the cooling effect of the injected cold

water and the pressure load from the injection, respectively. No-flow and zero

heat loss boundary conditions are assumed for compositional flow and thermal

energy balance models, respectively. A compressive overburden stress of 8500

psi is prescribed on the top surface for the geomechanics model. Zero normal

displacement and zero shear traction boundary conditions are enforced on all

other surfaces. Parameters for the numerical model are summarized in Table
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SYMBOL QUANTITY VALUE
tT total simulation time 1000.1 days
LX reservoir dimension in x 100 ft
LY reservoir dimension in y 3500 ft
LZ reservoir dimension in z 3500 ft
NX number of grids in x 6 (2× 10, 2× 15, 2× 25)
NY number of grids in y 35
NZ number of grids in z 35
d depth of reservoir top surface 8225 ft
T initial reservoir temperature 160 ◦F
p0 initial pressure 4000.0 psi
k permeability in x,y, and z directions 1000 md
φ0 initial porosity 0.38
E Young’s modulus 1.45 ×106 psi
ν Poisson’s ratio 0.28
ρs rock mass density 2.65 g/cm3

Cv,s rock isochoric specific heat capacity 0.2 BTU/LB-◦F
α Biot’s constant 1.0
σob compressive overburden stress 8500 psi
αT solid skeleton thermal expansion coefficient 1.667× 10−5 1/◦F
Qinj constant water injection rate 10000 BBL/day
Tsrc temperature of the injected water 60 ◦F
Qprod constant water production rate 8000 BBL/day

Table 4.5: Parameters for cold water injection case

4.5.

Results from three simulations, one with isothermal condition, one with

higher-order Godunov for heat convection, and one with first-order Godunov

for heat convection, are compared. Heat conduction is ignored in all of the

three cases. Figures 4.23–4.26 are vertical displacement fields at 0.1 day and

1000.1 day for the isothermal case and the thermal case with higher-order

Godunov method, respectively. At 0.1 day, the vertical displacement fields

from the two simulations are almost identical (Figures 4.23–4.24), whereas at

1000.1 day, they differ from each other (Figures 4.25–4.26). For the isothermal
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case, the near uniform vertical displacement at the top surface at 1000.1 day

indicates that the vertical displacement of the reservoir is mostly driven by

the overburden compressive stress but not the pressure gradient inside the

reservoir. This is verified in Figures 4.27 and 4.28 that the pressure gradients

at 1000.1 day are small for both cases, due to the high permeability (1000

md) in the reservoir. Larger vertical displacement (subsidence) around the

injection well at 1000.1 day in Figure 4.26 is caused by the injected cold water

which cools the solid skeleton and induces compressive thermal strain. The

dominance of the thermal effect in inducing reservoir deformation is evident

by comparing the displacement and the temperature fields at 1000.1 day in

Figures 4.26 and 4.29.

Figure 4.23: X-displacement at 0.1
days for isothermal case

Figure 4.24: X-displacement at 0.1
days for thermal case with higher-
order Godunov method

The advantage of using the higher-order Godunov method over the
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Figure 4.25: X-displacement at
1000.1 days for isothermal case

Figure 4.26: X-displacement at
1000.1 days for thermal case with
higher-order Godunov method

Figure 4.27: Pressure at 1000.1 days
for isothermal case

Figure 4.28: Pressure at 1000.1 days
for thermal case with higher-order
Godunov method
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Figure 4.29: Temperature field at 1000.1 days for thermal case with higher-
order Godunov method

first-order Godunov method to capture the sharp temperature front is illus-

trated in Figures 4.30 and 4.31. With the higher-order Godunov method, the

temperature front is less smeared (diffused) than its counterpart from the first-

order Godunov method. It should also be pointed out that the cell-centered

temperature field is first interpolated to a node-based temperature field and

then visualized. Therefore an artificial diffusive zone about the size of a grid

cell is seen for the simulation with the higher-order Godunov method.

It is worthwhile to point out that the thermal energy balance model

using Godunov methods for heat convection does not work well in multiphase

flow scenarios where the concentration/saturation is solved by MFE on rect-

angular elements with a special quadrature rule, or equivalently, the CCFD

method. In other words, solving the flow of mass (concentration/saturation)
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Figure 4.30: Temperature at 1000.1
days with first-order Godunov
method

Figure 4.31: Temperature at 1000.1
days with higher-order Godunov
method

using CCFD and the flow of thermal energy (temperature) using Godunov

methods may yield non-physical numerical solutions. To see this clearly, we

reran the thermoporoelasticity case assuming that the reservoir is initially sat-

urated with 100% oil and from t = 0+ cold water is injected into the reservoir.

Ten thermal steps are taken within each flow step. The total fluid rate of the

production well is 8000 BBL/day. All other parameters are the same as those

in Table 4.5.

Figures 4.32–4.33 show water saturation and temperature profiles at

1000.1 days from the simulation with the first-order Godunov method for

heat convection. The saturation front is smeared over a large domain. In

the zone with the smeared saturation front, the fluid temperature is above

160 ◦F which is non-physical. Figures 4.34–4.35 are water saturation and
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temperature profiles at 1000.1 days from the simulation with a higher-order

Godunov method for heat convection. The fluid temperature in the zone of

the smeared saturation front is also above 160 ◦F. The maximum temperature

is about 173 ◦F for the simulation with a higher-order Godunov method, which

is higher than the maximum temperature of about 168 ◦F from the simulation

with the first-order Godunov method. The fact that both first-order Godunov

and higher-order Godunov methods for heat convection produce non-physical

temperature in the zone with the smeared saturation front indicates that we

need also use Godunov methods to solve the concentration/saturation equation

when the thermal energy balance model is coupled to multiphase flows.

Figure 4.32: Water saturation at
1000.1 days with first-order Godunov
method

Figure 4.33: Two-phase temperature
at 1000.1 days with first-order Go-
dunov method
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Figure 4.34: Water saturation at
1000.1 days with higher-order Go-
dunov method

Figure 4.35: Two-phase temperature
at 1000.1 days with higher-order Go-
dunov method

4.5 Geomechanics Coupled with DOECO2

In this section, we discuss the coupling of the linear elasticity model

with DOECO2, a compositional gas reservoir simulator developed at the De-

partment of Petroleum and Geosystems Engineering at the University of Texas

at Austin. DOECO2 is an isothermal compositional simulator for miscible gas

flooding [30, 96]. It is based on the Acs compositional flow formulation [4]

which is a non-iterative implicit pressure explicit saturation (IMPES) type

formulation. DOECO2 is capable of three-phase (a non-aqueous gas phase

and two non-aqueous liquid phases) flash calculation [30]. It includes general

three-phase relative permeability models with hysteresis [12] and two foam

models for foam flooding simulation [11]. We add the linear elasticity model

presented in Chapter 3 (without the thermal effect) as a module to DOECO2
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to account for geomechanical effects in EOR or CO2 sequestration processes.

Define N̄i = Vbφ
∑

j ρjSjξ
j
i as the total number of moles for component

i in a grid block/element. Multiplying the component molar mass conservation

equation 4.15 by the reference bulk volume V 0
b and noticing Vb = V 0

b (1 + εv)

yields the component mass conservation equation in the coupled poroelasticity

model used by DOECO2

∂N̄i

∂t
+ V 0

b ∇ ·
∑
j

(ρjξ
j
iv

D
j ) = V 0

b qi (4.72)

As mentioned before, DOECO2 uses the non-iterative IMPES type Acs

formulation to solve the compositional flow equation. Following the procedure

outlined by Chang [30], we can derive a single pressure equation from the Nc+1

mass conservation equations by assuming that the pore volume is always fully

saturated by fluids, i.e.

Vt(p, N̄1, · · · , N̄Nc+1) = Vp(p) (4.73)

where Vt is the total fluid volume and Vp is the pore volume at the deformed

configuration. Defining V̄ti =
(
∂Vt
∂N̄i

)
p,N̄k(k 6=i)

, differentiating equation 4.73 with

respect to time gives(
∂Vt
∂p

)
N̄i

(
∂p

∂t

)
+
∑
i

V̄ti

(
∂N̄i

∂t

)
=
∂Vp
∂t

(4.74)

Then the pressure equation can be obtained by substituting equation 4.72 into
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4.74 and using pj = p+ pcj

∂Vp
∂t
− ∂Vt

∂p

∂p

∂t
− V 0

b

∑
i

V̄ti∇ ·
∑
j

K
krj
µj
ρjξ

j
i∇p

= V 0
b

∑
i

V̄ti∇ ·
∑
j

K
krj
µj
ρjξ

j
i (∇pcj − ρjg) + V 0

b

∑
i

V̄tiqi (4.75)

DOECO2 solves the pressure equation 4.75 by treating pressure related terms

in the LHS of 4.75 implicitly and saturation related terms in the LHS of 4.75

explicitly [30]. All terms except the source/sink terms in the RHS of 4.75 are

treated explicitly. The solution of the pressure equation 4.75 is non-iterative

which means 4.75 is solved only once at each time step. The volume error

from nth time step is supplied as a source/sink term in the RHS of 4.75 for

(n+ 1)th time step. In other words, the volume error from 4.75 is corrected at

the next time step. Due to the non-iterative solution procedure, smaller time

steps are usually required by the Acs formulation to produce similarly accurate

solutions compared to the iterative IMPES or IMPEC formulations. We adopt

the fixed-stress split to solve the compositional flow and linear elasticity models

in DOECO2 sequentially, but not iteratively. Since

Vp = V 0
b φ
∗ = V 0

b

(
φ0 + αεv +

1

N
p

)
, (4.76)

with the fixed-stress assumption 4.47, the pressure equation 4.75 can be written
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as (
V 0
p

(
1

Nφ0
+

3α2

φ0(3λ+ 2G)

)
− ∂Vt

∂p

)n
∂pn+1

∂t

−V 0
b

(∑
i

V̄ti∇ ·
∑
j

K
krj
µj
ρjξ

j
i

)n

∇pn+1

= V 0
b

(∑
i

V̄ti∇ ·
∑
j

K
krj
µj
ρjξ

j
i

)n (
∇pncj − ρnj g

)
+V 0

b

∑
i

V̄ n
ti q

n+1
i − V 0

b

3α

3λ+ 2G

∂σv
n

∂t
(4.77)

Equation 4.77 does not depend on the displacement solution un+1 so pn+1 is

solved. Subsequently the linear elasticity model (equations 3.2, 3.3, and 3.14

for the isothermal condition) is solved for un+1 using pn+1. The volume error

results from the fixed-stress assumption is

V 0
b

(
φ∗,n+1
mech − φ

∗,n+1
)

= V 0
b

α

Kdr

δσn+1
v (4.78)

and it is corrected at (n+ 2)th time step.

4.5.1 Numerical Examples

The first numerical example is a single well production problem. It is

used to verify the coupled poroelasticity model in DOECO2 by comparing the

simulation results with IPARS and CMG GEM [82]. The reservoir is square

and saturated with single phase C10. One BHP specified production well is

drilled through the center of the reservoir. The compositional flow model

adopts no-flow boundary conditions on all of the six boundary faces. For

the linear elasticity model, zero normal displacement and zero shear traction

104



SYMBOL QUANTITY VALUE
XL dimension in x 1680 ft
YL dimension in y 1680 ft
ZL dimension in z 60 ft
DX grid size in x 80 ft
DY grid size in y 80 ft
DZ grid size in z 20 ft
Nc number of hydrocarbon component 1: C10

kxx permeability in x 10 md
kyy permeability in y 10 md
kzz permeability in z 10 md
φ0 initial porosity 0.2
cr (decoupled flow model) formation compressibility 3.0×10−6 1/psi
p0 initial pressure 1500 psi
Nw number of well 1: production well
rw well radius 1 ft
BHP BHP of production well 1200 psi
E Young’s modulus 1.0× 106 psi
ν Poisson’s ratio 0.3
α Biot’s constant 1.0
ρs rock density 165 lbm/ft

3

Dtop depth of reservoir top surface 0 ft
tT total simulation time 500 days

Table 4.6: Parameters for single well production example

boundary conditions are applied on all of the four lateral boundary faces and

the bottom boundary face. Zero shear traction and a compressive normal

stress of 13.88 psi are applied on the top boundary face of the reservoir. Model

parameters for the single well production problem are summarized in Table

4.6. For the comparison between DOECO2 and IPARS, the oil phase viscosity

is calculated in the programs using the Lohrenz-Bray-Clark correlation [80];

for the comparison between DOECO2 and CMG GEM, the oil phase viscosity

is set to a constant µ = 4.3492 cp. Note that in DOECO2, z-direction is the

vertical direction.
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Figures 4.36 and 4.37 are the comparison results of oil production rates

between DOECO2 and IPARS, and between DOECO2 and CMG GEM, re-

spectively. We see that for the decoupled compositional flow problem, the

oil production rate curve from DOECO2 matches its counterparts from both

IPARS and CMG GEM. When the geomechanics coupling is considered, the

oil production rate curve from DOECO2 still matches the IPARS result very

well because the same linearized reservoir porosity expression 4.28 (with the

isothermal condition) is used in these two simulators. However, the oil produc-

tion rate curves from DOECO2 and CMG GEM do not match each other when

geomechanical effects are accounted. The reason is that CMG GEM uses a

different reservoir porosity formula [82, 131]. With the isothermal assumption,

it is written as

φ∗,m+1 = φ∗,m + (c0 + c1a1)(pm+1 − pm) (4.79)

where

c0 =
1

V 0
b

(
dVp
dp

+
Vbα

Kdr

dσv
dp

)
(4.80)

c1 = − Vb
V 0
b

α

Kdr

(4.81)

a1 = factor

{
2

9

E

(1− ν)

α

Kdr

}
(4.82)

The second example is a field scale CO2 flooding EOR simulation. The

reservoir is of size 39600 ft × 4150 ft × 12.32 ft. Eight non-aqueous com-

ponents exist in the reservoir. Twenty two wells are drilled to simulate five

horizontal wells, out of which three are injection wells and two are production
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Figure 4.36: Oil production rate comparison between DOECO2 and IPARS

Figure 4.37: Oil production rate comparison between DOECO2 and CMG
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SYMBOL QUANTITY VALUE
XL dimension in x 39600 ft
YL dimension in y 4150 ft
ZL dimension in z 12.32 ft
DX grid size in x 200 ft
DY grid size in y 50 ft
DZ grid size in z 2×2.04 ft, 2×4.12 ft
Nc # non-aqueous components 8: CO2, N2O1, C2+, C4+, C7+, C10+, C14+, C20+

Nw # horizontal wells 5: 3 injection wells and 2 production wells
φ0 initial porosity 0.2
E Young’s modulus 1.0× 106 psi
ν Poisson’s ratio 0.3
α Biot’s constant 1.0
ρs rock density 165 lbm/ft

3

Dtop depth of reservoir top surface about 6000 ft
tT total simulation time 1825 days

Table 4.7: Parameters for CO2 flooding EOR simulation

wells. No-flow boundary conditions are prescribed on all of the six boundary

faces for the compositional flow model. Zero shear traction and a compressive

normal stress of 6500 psi are applied on the top boundary face of the reser-

voir. All the other five boundary faces have zero normal displacement and

zero shear traction boundary conditions for the linear elasticity model. Table

4.7 lists model parameters for the CO2 flooding EOR simulation.

Figures 4.38–4.41 show the profiles of pressure, CO2 concentration, and

effective horizontal stresses σexx and σeyy at 1825 days, respectively. Comparing

the pressure profile with the effective horizontal stresses profiles, it is clear

that the rock surrounding the injection wells is experiencing tensile effective

stresses whereas the rock surrounding the production wells is experiencing

compressive effective stresses. The magnitude of the tensile effective stresses

can be employed to indicate where is most likely the zone a fracture is going
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to initiate. Figures 4.42 and 4.43 compare the gas and oil production rates

with and without geomechanics coupling for Well 22 which is a section of the

horizontal production well in the upper right part of the reservoir in Figure

4.38. With the geomechanics coupling, the compaction-driven productivity

enhancement is significant for the gas phase but not for the oil phase.

Figure 4.38: CO2 flooding EOR sim-
ulation: pressure at 1825 days

Figure 4.39: CO2 flooding EOR sim-
ulation: CO2 concentration at 1825
days
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Figure 4.40: CO2 flooding EOR sim-
ulation: σexx at 1825 days

Figure 4.41: CO2 flooding EOR sim-
ulation: σeyy at 1825 days

Figure 4.42: CO2 flooding EOR simulation: gas production rate for Well 22
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Figure 4.43: CO2 flooding EOR simulation: oil production rate for Well 22
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Chapter 5

Geomechanics Coupled with Multipoint Flux

Mixed Finite Element Flow Model

5.1 Introduction

Wheeler and Yotov [145, 146] introduced the multipoint flux mixed fi-

nite element method (MFMFE) for solving second order elliptic Darcy flow

problems on quadrilateral and simplicial grids in 2006. The development of

MFMFE was motivated by the multipoint flux approximation method (MPFA)

[1] in which the sub-edge fluxes are eliminated to form a cell-centered pressure

system. Using the lowest order Brezzi-Douglas-Marini (BDM) [24] approxi-

mating space and a special symmetric quadrature rule, MFMFE also elimi-

nates the sub-edge velocities and generates a symmetric and positive definite

(SPD) cell-centered pressure system. Under the variational MFE framework,

Wheeler and Yotov [146] also proved first order convergence for pressure and

velocity using MFMFE.

Following their work, Ingram et al. [64] extended MFMFE to h2-

perturbed hexahedral elements by employing an enhanced lowest order Brezzi-

Douglas-Durán-Fortin (BDDF) approximating space with a similar symmetric

quadrature rule in [146] and provided a-priori error estimates of first order
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convergence for pressure and velocity. A special non-symmetric quadrature

rule was then developed by Wheeler et al. [142] for MFMFE to be applicable

to general distorted hexahedra and quadrilaterals and first order convergence

of pressure and velocity was also obtained. Furthermore, Wheeler et al. [144]

theoretically showed first order convergence in space and time for pressure,

velocity, and displacement for a coupled MFMFE flow with CG linear elastic-

ity model on distorted quadrilaterals and hexahedra and provided numerical

verifications on quadrilateral grids.

MFMFE has several appealing merits for modeling fluid flow in porous

media. As an MFE method, MFMFE is locally mass conservative. It can han-

dle full permeability tensors which is desirable because in practical problems

the principal directions of permeability tensors are not always aligned with

the coordinate axes. Discontinuous permeabilities can be well treated due to

the harmonic averaging of the permeability coefficient in the formulation. The

flexibility of MFMFE in handling general distorted hexahedra and boundary

conditions make it suitable for modeling realistic reservoirs with complex ge-

ometry and faults. Moreover, MFMFE reduces the mixed formulation to a

cell-centered pressure system which is easier to solve than the saddle-point

type pressure-velocity system. Since the introduction of the MFMFE method,

it has been applied to solving single phase slightly compressible flow and two-

phase oil-water flow [137, 138] and has been coupled with CG linear elastic-

ity on general hexahedral grids in IPARS [90]. Fracture flow models using

mimetic finite difference (MFD) [5] and MFMFE [117] have been coupled to
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the MFMFE reservoir flow model by adding extra velocity degree of freedom

on the internal cell interfaces.

In this chapter we briefly introduce the MFMFE formulation for a

steady Darcy flow model equation and apply it to solve the two-phase oil-

water model [137, 138, 142]. The coupling of MFMFE flow model to the linear

elasticity model presented in Chapter 3 is discussed. Numerical examples il-

lustrating the poroelasticity model on distorted hexahedral grids are provided.

5.2 Multipoint Flux Mixed Finite Element Method

In this section we summarize the key ingredients of the MFMFE method

developed by Wheeler and Yotov [146], Ingram et al. [64], and Wheeler et al.

[142, 144]. Our focus is the MFMFE method on distorted hexahedra which

is coupled to the CG linear elasticity model for three-dimensional reservoir

simulation.

Consider the same domain Ω as defined in Chapter 3. For the flow

problem, the boundary ∂Ω = Γ is decomposed into two parts:

Γ = Γ̄D
⋃

Γ̄N , ΓD
⋂

ΓN = ∅, ΓD 6= ∅ (5.1)

The model equations consist of Darcy’s law, mass conservation equation

for steady state and incompressible fluid flow, and boundary conditions:
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Model Equation:

vD = −K (∇p− ρg) in Ω, (5.2)

∇ · vD = q in Ω, (5.3)

p = pD on ΓD, (5.4)

vD · n = 0 on ΓN . (5.5)

where K can be a symmetric full tensor, pD is the prescribed pressure boundary

condition, and ρ is fluid mass density.

The weak formulation of the model problem reads: find vD ∈ H(div; Ω)

and p ∈ L2(Ω) such that

(K−1vD,v)− (p,∇ · v) = (ρg,v) (5.6)

(∇ · vD, w) = (q, w) (5.7)

hold for ∀v ∈ H(div; Ω) and v = 0 on ΓN , and ∀w ∈ L2(Ω), where

H(div; Ω) =
{
v ∈ (L2(Ω))3 : ∇ · v ∈ L2(G)

}
(5.8)

and (·, ·) represents the L2 inner product. The divergence theorem is used in

the derivation of equation 5.6.

Mixed Finite Element Space:

We assume the finite element partition of domain Ω is also Th, the same one

for the linear elasticity model in Chapter 3. For each finite element E ∈ Th,

the same trilinear finite element mapping FE defined in Chapter 3 is used to
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map a unit cube Ê in the reference space to the physical element E. By the

definition of the mapping FE, a relation between the face unit outward normals

for the physical element and the reference element can be obtained [64, 142]

ni =
1

Jei
JE(DF−1

E )T n̂i, Jei = |JE(DF−1
E )T n̂i| (5.9)

where ni is the unit outward normal for face ei ⊂ E and n̂i is the unit outward

normal for êi ⊂ Ê. Note that ·̂ denotes a quantity in the reference space. On

the reference cube Ê, the velocity space V̂(Ê) and the pressure space Ŵ (Ê)

are defined as [64]

V̂(Ê) = BDDF1(Ê) + r2curl(0, 0, ξ2ζ)T + r3curl(0, 0, ξ2ηζ)T

+s2curl(ξη2, 0, 0)T + s3curl(ξη2ζ, 0, 0)T

+t2curl(0, ηζ2, 0)T + t3curl(0, ξηζ2, 0)T ,

Ŵ (Ê) = P0(Ê). (5.10)

And the BDDF1 space on Ê is given by [23]

BDDF1(Ê) = (P1(Ê))3 + r0curl(0, 0, ξηζ)T + r1curl(0, 0, ξη2)T

+s0curl(ξηζ, 0, 0)T + s1curl(ηζ2, 0, 0)T

+t0curl(0, ξηζ, 0)T + t1curl(0, ξ2ζ, 0)T . (5.11)

In 5.10 and 5.11, (Pn(Ê))3 is the space of three-dimensional polynomials of

degree ≤ n on Ê, and rj, sj, and tj for j = 0, 1, 2, 3 are real constants.

curlâ = ∇̂ × â. From the identity

∇̂ · ∇̂ × â = 0 (5.12)
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we have

∇̂ · V̂(Ê) = ∇̂ · (P1(Ê))3 = P0(Ê) = Ŵ (Ê) (5.13)

The dimension of the enhanced BDDF1 space in equation 5.10 is 24. A hex-

ahedron (or the unit cube in the reference space) has six faces and each face

has four vertices. Normal flux at each vertex of each face in Ê is chosen to be

the degree of freedom of the velocity function in V̂(Ê). See Figure 5.1 for a

schematic of the velocity shape functions associated with each vertex in the

unit cube Ê and the physical element E. v̂ij is the velocity shape function

associated with vertex r̂i and in the direction of n̂j. Note that by definition

v̂ij(r̂i) = n̂j for i = 1, · · · , 8 and j=1,2,3 and v̂ij(r̂k) = 0 for i 6= k (5.14)

FE

ξ

η

ζ

x

y

z

v21

v61

v63

v53

v71

v73

v72

v83

v42
v82
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Figure 5.1: Velocity shape functions on a hexahedron
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Velocity on a physical element is defined via the Piola transformation:

v↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , (5.15)

and pressure is defined by

w ↔ ŵ : w = ŵ ◦ F−1
E . (5.16)

where F−1
E is the inverse mapping of FE. Several important relations derived

from the definition of the transformation and the finite element mapping FE

are:

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê (5.17)

〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê (5.18)

v · ne =
1

Je
v̂ · n̂ê ◦ F−1

E (x) (5.19)

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x) (5.20)

In equation 5.18, 〈·, ·〉 is the L2 inner product on a face of either the physical

or the reference element.

The finite element spaces Vh and Wh on physical domain Th are given

by

Vh =
{

v ∈ H(div; Ω) : v|E ↔ v̂, v̂ ∈ V̂(Ê), ∀E ∈ Th
}

Wh =
{
w ∈ L2(Ω) : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈ Th

} (5.21)

The mixed finite element formulation of the model equations 5.2–5.50

reads: find vDh ∈ Vh and ph ∈ Wh such that

(K−1vDh ,v)Q − (ph,∇ · v) = (ρg,v) (5.22)

(∇ · vDh , w) = (q, w) (5.23)
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hold for ∀v ∈ Vh and v = 0 on ΓN , and ∀w ∈ Wh. The choice of the

quadrature rule (K−1vDh ,v)Q is a key element in the design of the MFMFE

method.

Quadrature Rule

For ∀a, v ∈ Vh, the global quadrature rule is defined as

(K−1a,v)Q ≡
∑
E∈Th

(K−1a,v)Q,E (5.24)

Using Piola transformation in equation 5.15, the integration on the physical

element E can be transformed to an integration on the reference element Ê

[142]

(K−1a,v)Q,E =

(
1

JE
DF T

EK−1(FE(x̂))DFEâ, v̂

)
Ê

≡ (MEâ, v̂)Q̂,Ê (5.25)

where

ME(x̂) =
1

JE(x̂)
DF T

E (x̂)K−1(FE(x̂))DFE(x̂) (5.26)

is a symmetric matrix and equation 5.25 is called the symmetric quadrature

rule which is accurate for h2-perturbed hexahedra [64]. In their later paper

[142], Wheeler et al. introduced a non-symmetric quadrature rule for ac-

curate pressure and velocity approximation on distorted hexahedra. In the

non-symmetric formulation, ME is replaced by [142]

M̃E(x̂) =
1

JE(x̂)
DF T

E (r̂c,Ê)K
−1

E DFE(x̂) (5.27)

where DF T
E is evaluated at r̂c,Ê, the center of mass of Ê, and K is the mean of

K on physical element E. Generally M̃E(x̂) is a non-symmetric matrix unless
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DFE is constant over Ê. Trapezoidal rule is employed to calculate (MEâ, v̂)Q̂,Ê

or (M̃Eâ, v̂)Q̂,Ê. Let ME denote either ME or M̃E, the trapezoidal quadra-

ture rule reads

(MEâ, v̂)Q̂,Ê =
1

8

8∑
i=1

ME(r̂i)â(r̂i) · v̂(r̂i) (5.28)

From equations 5.14 and 5.28, it is clear that for velocity shape function v̂ij

and v̂kl

(MEv̂ij, v̂kl)Q̂,Ê =
1

8
Mlj

E(r̂i) if i = k

(MEv̂ij, v̂kl)Q̂,Ê = 0 if i 6= k (5.29)

where Mlj
E is the lth row, jth column component of the matrix ME.

Cell-Centered Stencil for Pressure

Because the velocity degrees of freedom are defined at grid vertices in Th and

the quadrature rule 5.24, 5.28, and 5.29 localizes the interactions between the

velocity degrees of freedom to the vertex they are associated, the MFMFE

formulation 5.22–5.23 leads to a cell-centered pressure system [64, 142]. To see

this more clearly, consider the case that the velocity test functions in equation

5.22 are the velocity basis functions associated with a general vertex (the solid

black dot in Figure 5.2) in Th.

Assume eight hexahedra share the vertex of interest. Twelve velocity

basis functions are associated with the vertex on twelve cell interfaces (see

Figures 5.3–5.5). For better presentation, the velocity basis functions are
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plotted away from the vertex. Note that v1, v2, · · · , v12 are velocity basis

functions in the physical space.

The unknown velocity function vDh can be expressed as

vDh =
nvel∑
i=1

vDhivi (5.30)

and the unknown pressure function ph as

ph =

npres∑
i=1

phiwi (5.31)

where nvel is the total number of velocity degrees of freedom and npres is the

total number of pressure degrees of freedom. Taking v = v1 in equation 5.22,

and using the quadrature rule 5.24, 5.25, 5.28, and 5.29, we obtain

(K−1vDh ,v1)Q

=
∑
E

(K−1vDh ,v1)E,Q

= (K−1vDh ,v1)E1,Q + (K−1vDh ,v1)E2,Q

= vDh1(ME1v̂1, v̂1)Q̂,Ê + vDh5(ME1v̂5, v̂1)Q̂,Ê + vDh9(ME1v̂9, v̂1)Q̂,Ê

+vDh1(ME2v̂1, v̂1)Q̂,Ê + vDh6(ME1v̂6, v̂1)Q̂,Ê + vDh10(ME1v̂10, v̂1)Q̂,Ê

=
1

8
|e1|
(
|e1|M11

E1
vDh1 + |e5|M12

E1
vDh5 + |e9|M13

E1
vDh9

)
+

1

8
|e1|
(
|e1|M11

E2
vDh1 + |e6|M12

E2
vDh6 + |e10|M13

E2
vDh10

)
(5.32)
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(ph,∇ · v1)

=
∑
E

(ph,∇ · v1)E

= (ph,∇ · v1)E1 + (ph,∇ · v1)E2

= 〈v1 · n, 1〉e1ph1 + 〈v1 · n, 1〉e2ph2

= 〈v̂1 · n̂e1 , 1〉ê1ph1 − 〈v̂1 · n̂e2 , 1〉ê2ph2

=
1

4
|e1|(ph1 − ph2) (5.33)

(ρg,v1)

=
∑
E

(ρg,v1)E

= (ρg,v1)E1 + (ρg,v1)E2

=

(
ρg,

1

JE1

DFE1JE1v̂1

)
Ê

+

(
ρg,

1

JE2

DFE2JE2v̂1

)
Ê

=
1

8
ρE1DF

T
E1

g · v̂1 +
1

8
ρE2DF

T
E2

g · v̂1 (5.34)

Note that vi is a unit vector in the physical space. But from equation 5.19,

v̂i is not a unit vector and its length is Je = |ei| which is the area of the face

i. Mjk
Ei

and DF T
Ei

are evaluated at the vertex of interest in Ei. And in the

derivation of equation 5.33, the trapezoidal rule is used for face integration. It

is exact because v̂i · n̂ei is bilinear on each cell face.

Further taking v = v2, v3, · · · , v12 in equation 5.22, twelve equations

relating the twelve velocity degrees of freedom associated with the vertex of

interest and the eight pressure degrees of freedom associated with the eight

cells sharing the vertex of interest can be formed and written in matrix form

AvDh,c = Bph,c + Hc (5.35)
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In equation 5.35, A is a 12 × 12 local mass matrix with Aij = (K−1vj,vi)Q,

vDh,c = (vDh1, v
D
h2, · · · , vDh12)T , B is a 12 × 8 pressure difference matrix with

Bik = (wk,∇ · vi), ph,c = (ph1, ph2, · · · , ph8)T , and Hc is a 12× 1 vector from

the density term. If a Dirichlet pressure boundary condition is prescribed on

any of the twelve cell faces intersecting at the vertex of interest, its contribution

needs to be separated from B and ph,c and accounted for in Hc. Because the

quadrature rule localizes the interactions among the velocity basis functions to

those associated with the same vertex, vDh,c can be solved from equation 5.35

vDh,c = A−1Bph,c + A−1H (5.36)

Taking w = w1, w2, · · · , wnpres in the mass balance equation 5.23 and

using the divergence theorem, we get

(∇ · vDh , wi) = (q, wi)
nvel∑
j=1

(∇ · vj, wi)vDhj = (q, wi)

nvel∑
j=1

〈vj · ne, wi〉∂EivDhj = (q, wi)Ei

nvel∑
j=1

〈v̂j · n̂ê, ŵi〉∂ÊvDhj = (q̂, ŵiJEi)Ê (5.37)

In equation 5.37, the face integration can be evaluated exactly by trapezoidal

rule as in equation 5.33. Also note that for scalar quantities, q̂ = q and

ŵi = wi. A global linear system for velocity degrees of freedom can be formed

from the integration of equation 5.23

B̃TvDh,vector = Q (5.38)
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where B̃Tij = (∇ · vj, wi), Qi = (q, wi), and

vDh,vector = (vDh1, vDh2, · · · , vDh,nvec)
T (5.39)

Substituting equation 5.36 for each vertex in Th into 5.38 and moving the

density terms and Dirichlet pressure boundary condition contributions to the

RHS yields a global linear system for cell-centered pressure degrees of freedom

B̃TA−1B̃ph,vector = Q− B̃TA−1H (5.40)

Here A is the global mass matrix with A−1
ij = (K−1vj,vi)Q. It is a block

diagonal matrix with each block A associated to a vertex in Th (see equation

5.35). The inversion of A is done by inverting the local mass matrix A at each

vertex. B̃ is the global pressure difference matrix. For the vertex in Figure 5.2,

B in equation 5.35 forms a consecutive 12-row in B̃. In the implementation of

the MFMFE method, BTA−1B is formed at each vertex and its surrounding

elements and assembled to the global pressure matrix by resorting to the map-

ping from the local element number to the global element number. H denotes

the global vector consisting of the contributions from density terms and any

prescribed Dirichlet pressure boundary condition. It should be pointed out

that in IPARS, a logical rectangular mesh is assumed. Therefore an element

can have at most 26 neighboring elements. From the structure of BTA−1B,

it is clear that a pressure degree of freedom is related to another one if their

elements share a vertex. As a result equation 5.40 leads to a 27-point stencil

for cell-centered pressure degrees of freedom in logical rectangular mesh. Also

note that with the choice of the enhanced BDDF1 mixed finite element space
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and the special quadrature rule (5.24, 5.25, 5.28, and 5.29), B̃TA−1B̃ is posi-

tive definite and no saddle-point type of velocity-pressure linear system needs

to be solved [64, 142, 146].

5.3 Geomechanics Coupled with Two-phase MFMFE
Flow Model

The derivation of the single phase and two-phase flow equations in the

coupled poroelasticity model follows the same procedure described in Chapter

4. An isothermal assumption is made in this chapter, therefore the tempera-

ture contribution in reservoir porosity 4.28 vanishes. We present the equations

for the two-phase flow [138] coupled with the linear elasticity model. Because

the single phase slightly compressible flow can be viewed as a special case

of the two-phase flow, the model equations and the solution strategy using

MFMFE are analogous to what is presented in this section for the two-phase

flow model.

Mass Conservation Equation:

∂ρjSjφ
∗

∂t
+∇ ·

(
ρjv

D
j

)
= qj (5.41)

Darcy’s Law:

vDj = −Kkrj
µj

(∇pj − ρjg) (5.42)
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Constitutive Equations:

φ∗ = φ0 + αεv +
1

N
(p− p0) (5.43)

ρj = ρ0
j(1 + cj(pj − p0)) (5.44)

po = pw + pcow(Sw) (5.45)

krj = krj(Sw) (5.46)

Sw + So = 1 (5.47)

Boundary and Initial Conditions:

pw = pD on ΓD (5.48)

Sw = SD on ΓD (5.49)

vDj · n = 0 on ΓN (5.50)

pw = p0
w at t = 0 (5.51)

Sw = S0
w at t = 0 (5.52)

In equations 5.41–5.52, subscript w denotes the water phase and o denotes

the oil phase, capillary pressure pcow is a function of water saturation Sw,

ρ0
j is reference density of phase j at reference pressure p0, and cj is fluid

compressibility of phase j. Note that water phase pressure pw and saturation

Sw are chosen as the primary unknowns for the two-phase flow model.

The linear elasticity model equations comprise the quasi-static force

equilibrium equation 3.2, strain-displacement relation 3.3, total stress relation

3.14, boundary conditions 3.16, and initial conditions 3.15. It is discretized
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by the CG method on distorted hexahedra as described in Chapter 3 and the

fluid pressure is applied as an external load. Note that under the isothermal

assumption, the thermal stress (3λ + 2G)αT (T − T0)δij in 3.14 is ignored.

The same fixed-stress iterative coupling scheme presented in Section 4.2.3 is

utilized to solve the coupled two-phase flow and linear elasticity model. The

procedure is similar to that outlined in Figure 4.1, with the compositional flow

model replaced by the two-phase flow model.

In IPARS, the two-phase oil-water flow model is solved by an iterative

implicit pressure explicit saturation (IMPES) scheme for the MFMFE method

to be applicable [117, 138]. Dividing equation 5.41 by the reference density ρ0
j

for each fluid phase j and summing up the resulting volume balance equation

for both water and oil phases leads to

∂φ∗ (ρ̄wSw + ρ̄o(1− Sw))

∂t
+∇ ·

(
ρ̄wvDw + ρ̄ov

D
o

)
= q̄w + q̄o (5.53)

where ρ̄j =
ρj
ρ0
j

is the normalized density for phase j and q̄j =
qj
ρ0
j

is the normal-

ized source/sink term for phase j . Define vDt , the total velocity, by

vDt = ρ̄wvDw + ρ̄ov
D
o (5.54)

Substituting Darcy’s law 5.42 into equation 5.54 yields

vDt = −ρ̄w
Kkrw
µw

(∇pw − ρwg)− ρ̄o
Kkro
µo

(∇pw +∇pcow − ρog)

= −K

(
ρ̄w
krw
µw

+ ρ̄o
kro
µo

)
(∇pw − ρwg)

−Kρ̄o
kro
µo

(∇pcow − (ρo − ρw)g) (5.55)
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Define the normalized total mobility λt by

λt = ρ̄w
krw
µw

+ ρ̄o
kro
µo

(5.56)

Equation 5.55 is simplified as [137]

vDt = −Kλt(∇pw − ρwg)−Kλo (∇pcow − (ρo − ρw)g) (5.57)

The IMPES scheme solves equation 5.53 by treating pw implicitly in

5.57 and other terms in 5.57 explicitly. That is

(φ∗ρ̄w)k+1Skw + (φ∗ρ̄o)
k+1(1− Skw)− (φ∗ρ̄wSw + φ∗ρ̄o(1− Sw))n

∆tn+1

= ∇ ·Kλkt

(
(∇pk+1

w − ρkwg) +
λko
λkt

(∇pkcow − (ρko − ρkw))g

)
+q̄kw + q̄ko (5.58)

where λo = ρ̄o
kro
µo

is the normalized mobility for oil phase. Expanding the

implicit terms in equation 5.58 to the first order terms in Taylor series, and

recognizing equations 5.43 and 5.44, equation 5.58 becomes

Skw

(
ρ̄kw

(
1
N

+ α2

Kdr

)
+ φ∗,kcw

)
δpk+1

∆tn+1

+
(1− Sw)k

(
ρ̄ko

(
1
N

+ α2

Kdr

)
+ φ∗,kco

)
δpk+1

∆tn+1
+∇ · δvD,k+1

t

=
(φ∗ρ̄wSw)n + (φ∗ρ̄o(1− Sw))n

∆tn+1
− (φ∗ρ̄wSw)k + (φ∗ρ̄o(1− Sw))k

∆tn+1

+q̄kw + q̄ko −∇ · v
D,k
t (5.59)

where

δvD,k+1
t = −Kλkt∇δpk+1 (5.60)
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and

vD,kt = −Kλkt (∇pkw − ρkwg)−Kλko
(
∇pkcow − (ρko − ρkw)g

)
(5.61)

Equations 5.60 and 5.61 are different from the single phase incompressible

Darcy velocity equation 5.2 due to the mobility terms and that 5.61 contains

contributions from two fluid phases. In the following we will show how the

total velocity vDt and the normalized mobility terms λt and λo in equation

5.61 are treated under the MFMFE framework [117, 138]. The treatment of

the normalized total mobility term in equation 5.60 is similar so it is omitted

here.

Let vD,kt = vD,ktw + vD,kto , where

vD,ktw = −Kλkt (∇pkw − ρkwg) (5.62)

vD,kto = −Kλko
(
∇pkcow − (ρko − ρkw)g

)
(5.63)

Multiplying equation 5.62 by K−1

λkt
yields

K−1 vD,ktw

λkt
= −(∇pkw − ρkwg) (5.64)

Similar to equation 5.30, the velocity function vD,ktw divided by λkt can be

expressed as

vD,ktw

λkt
=

nvel∑
i=1

vD,ktw,hi

λkt,hi
vi (5.65)

where vD,ktw,hi is the degree of freedom for partial velocity vD,ktw and λkt,hi is the

normalized total mobility defined at the same location as the velocity basis

function vi. Assuming c is an arbitrary internal vertex in the finite element
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partition Th (see Figures 5.2–5.5), testing equation 5.64 with v1, v2, · · · , v12

and using the quadrature rule defined in Section 5.2, we obtain

AΛ−1,k
t vD,ktw,hc = Bpkw,hc + Hk

w,c (5.66)

In equation 5.66, vD,ktw,hc = (vD,ktw,h1, v
D,k
tw,h2, · · · , v

D,k
tw,h12)T ,

pkw,hc = (pkw,h1, p
k
w,h2, · · · , pkw,h8)T , Hk

w,c is a 12× 1 vector consisting of contri-

butions from density and Dirichlet pressure boundary conditions for the water

phase, and Λ−1,k
t = (Λk

t )
−1 is a 12× 12 diagonal matrix defined by

Λk
t = diag(λkt,h1, λ

k
t,h2, · · · , λkt,h12). (5.67)

λkt,hi is the upwinded or averaged normalized total mobility on ith cell interface

intersected at vertex c. For example, if the upwinded mobility is used,

λkt,h1 =

{
λkt,E1

if vD,ktw,h1 ≥ 0

λkt,E2
if vD,ktw,h1 < 0

; (5.68)

if the averaged mobility is used,

λkt,h1 =
1

2
(λkt,E1

+ λkt,E2
). (5.69)

In equations 5.68 and 5.69, λkt,E1
and λkt,E2

are the normalized total mobilities

defined in cells E1 and E2, respectively.

From equation 5.66, vD,ktw,hc can be solved

vD,ktw,hc = Λk
tA
−1Bpkw,hc + Λk

tA
−1Hk

w,c (5.70)

Similarly, the partial velocity degrees of freedom vector vD,kto,hc associated with

vertex c can be expressed as

vD,kto,hc = Λk
oA
−1Bpkcow,hc + Λk

oA
−1Hk

ow,c (5.71)
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where

Λk
o = diag(λko,h1, λ

k
o,h2, · · · , λko,h12) (5.72)

is the 12 × 12 diagonal oil mobility matrix associated with vertex c whose

diagonal element λko,hi is the upwinded or averaged normalized oil mobility

on ith cell interface intersected at vertex c. Hk
ow,c consists of contributions

from density term (ρko − ρkw)g and Dirichlet boundary conditions for capillary

pressure pkcow.

Therefore, applying the MFMFE method on equations 5.59, 5.57, and

5.60 leads to a global linear system for δpk+1
w,h,vector

(Ck + ∆tn+1B̃TΛk
tA−1B̃)δpk+1

w,h,vector = −∆tn+1B̃TΛk
tA−1B̃pkw,h,vector

−∆tn+1B̃TΛk
oA−1B̃pkcow,h,vector + ∆tn+1Q̃k (5.73)

In equation 5.73, Ck is the matrix related to the first two terms in the LHS

of equation 5.59. Λk
t and Λk

o are the global normalized total mobility and oil

mobility matrices whose diagonal block associated with vertex c are Λk
t and Λk

o ,

respectively. Q̃k contains contributions from density terms, Dirichlet pressure

boundary conditions, source/sink terms, and volume accumulation terms from

previous (kth) Newton iteration.

After pk+1
w,h is solved, water phase saturation is updated explicitly from

the mass balance equation 5.41 for j = w

ρk+1
w Sk+1

w φ∗,k+1 − ρnwSnwφ∗,n

∆tn+1
= −∇ · ρk+1

w vD,k+1
w + qk+1

w (5.74)

Note that in the RHS of equation 5.74, terms related to Sw still uses Skw.

Several explicit saturation update steps can be nested within one pressure
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step [137]. Iterations between pressure solve and saturation update continues

until volume conservation equation 5.53 is satisfied for pk+1
w,h and Sk+1

w .

We should also point out that the inverse of the local mass matrix

A defined in equation 5.35 is needed in calculating both the pressure matrix

and the RHS of equation 5.73, updating saturation in 5.74, and checking the

volume balance equation 5.53. Instead of building A−1 every time when it

is needed, we store it for all vertices in Th in the compressed storage format

(CSR) to improve the efficiency of the MFMFE flow simulator.

5.4 Numerical Examples

5.4.1 Quarter Wellbore Model

The first numerical example in this section is a quarter wellbore model

to demonstrate that the coupled MFMFE flow and CG linear elasticity model

can handle complex geometry and realistic boundary conditions. The model

domain is a 250 ft × 250 ft × 250 ft cube with a quarter of a cylindrical

wellbore centered along an edge of the cube. The mesh contains 400000 non-

uniform hexahedra, with 160 elements in the radial direction, 50 elements in

the hoop direction, and 50 elements in the vertical direction. Fine grids are

used near the wellbore and they coarsen as their distances from the wellbore

increase. Figure 5.6 shows the model geometry in 2D with boundary con-

ditions whereas Figure 5.7 illustrates the model geometry in 3D space. The

single phase flow model is used in this example. For the flow problem, a con-

stant pressure of 800 psi is enforced on the wellbore surface while a transient
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pressure boundary condition, p(t) = 2000 − 500 · t , is prescribed on the two

boundary faces far away from the wellbore. The other four faces are no-flow

boundaries. For the geomechanics problem, zero normal displacement and

zero shear traction boundary conditions are applied on faces y=0, z=0, and

x=0. A compressive normal stress of 2400 psi is assigned for faces y=250 ft

and z=250 ft. On the face x=250 ft, a compressive normal stress of 3000 psi

is prescribed. The pressure boundary condition on the wellbore for the flow

problem is also supplied as a compressive traction boundary condition for the

geomechanics problem. Note that the traction is in the direction normal to

the wellbore surface. Therefore its direction varies along the hoop direction.

The magnitude of the traction is 800 psi. Gravity is ignored in the simulation.

Input parameters for the numerical model in IPARS are summarized in Table

5.1.

The simulation was run using 64 processes. Figures 5.8–5.15 are profiles

of pressure, x-displacement, y-displacement, and z-displacement at 0.1 days

and 2.0 days, respectively. From 0.1 days to 2.0 days, as the pressure in the

domain drops and its gradient decreases, the top surface (x=250 ft) subsides

and the top side of the wellbore experiences the largest vertical subsidence in

the domain. The evolution of horizontal displacements, i.e. y-displacement

and z-displacement, demonstrate that the domain is also compacted horizon-

tally as a result of the fluid production. The symmetry of the y-displacement

and the z-displacement is expected because the geometry and boundary con-

ditions are symmetric. Note that the unit of displacements for the linear
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SYMBOL QUANTITY VALUE
tT total simulation time 2.0 days
∆t time step size 0.1 days
XL dimension in x 250 ft
YL dimension in y 250 ft
ZL dimension in z 250 ft
rw wellbore radius 5 ft
Nx number of grids in x direction 50
Nθ number of grids in hoop direction 50
Nr number of grids in radial direction 160
kxx vertical permeability 5 md
kyy, kzz horizontal permeability 20 md
φ0 initial porosity 0.2
µw water viscosity 1.0 cp
cf water compressibility 4.0× 10−5 1/psi
p0 initial pressure 2000 psi
pw constant wellbore pressure 800 psi
pt transient pressure B.C. on y=250 ft and z=250 ft 2000-500·t psi
E Young’s modulus 2.3× 106 psi
ν Poisson’s ratio 0.18125
α Biot’s constant 0.98
σob overburden normal stress on x=250 ft -3000 psi
σh horizontal normal stress on y=250 ft and z=250 ft -2400 psi
DoFflow Number of pressure unknowns 400000
DoFmech Number of displacement unknowns 1256283

Table 5.1: Parameters for quarter wellbore model
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𝑢𝑧 = 0, 𝜎𝑧𝑥 = 0, 𝜎𝑧𝑦 = 0 

𝜎𝑦𝑦 = 2400 𝑝𝑠𝑖 

𝑢𝑦 = 0 

𝜎𝑦𝑧 = 0 

𝜎𝑦𝑥 = 0 

𝜎𝑧𝑧 = 2400 𝑝𝑠𝑖 

Figure 5.6: Quarter wellbore model geometry
in 2D and boundary conditions

Figure 5.7: Quarter wellbore
model geometry in 3D

elasticity model on hexahedra grids is foot, different from inch used for the

geomechanics model on rectangular grids in Chapter 4.

5.4.2 Coupled Hexahedral Mesh

The second numerical example is a quarter of a 5-spot injection-production

problem on a coupled mesh. The mesh is a 3D extension of the 2D mesh pre-

sented in [142]. It consists of four zones which can be seen in Figures 5.16 and

5.17. The lower right quadrant contains a smooth h2-perturbed hexahedral

mesh whereas the lower left and upper right zones comprise h-perturbed hexa-

hedral elements. The upper left quadrant has rectangular elements. The non-

symmetric quadrature rule 5.27 is employed in h-perturbed (distorted) hexahe-

dra for accurate approximation and the symmetric quadrature rule 5.26 is used
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Figure 5.8: Quarter wellbore model:
pressure at 0.1 days

Figure 5.9: Quarter wellbore model:
pressure at 2.0 days

Figure 5.10: Quarter wellbore
model: x-displacement at 0.1 days

Figure 5.11: Quarter wellbore
model: x-displacement at 2.0 days
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Figure 5.12: Quarter wellbore
model: y-displacement at 0.1 days

Figure 5.13: Quarter wellbore
model: y-displacement at 2.0 days

Figure 5.14: Quarter wellbore
model: z-displacement at 0.1 days

Figure 5.15: Quarter wellbore
model: z-displacement at 2.0 days
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in the remaining elements. The model domain is 20 ft × 1500 ft × 1500 ft

with 10 × 150 × 150 elements. Two-phase flow is assumed in this example.

Gravity and capillary pressure are ignored. The initial reservoir pressure is

400 psi with uniform water saturation equal to 0.316. A BHP specified water

injection well is drilled at y=5 ft and z=5 ft while a BHP specified production

well is located at y=1495 ft and z=1495 ft. No-flow boundary conditions are

assumed for all surfaces. Zero normal displacement and zero shear traction

boundary conditions are enforced on x=20 ft, y=0 ft, and z=0 ft. Zero trac-

tion boundary conditions are prescribed on x=0 ft, y=1500 ft, and z=1500 ft.

Table 5.2 lists model parameters for IPARS simulation together with numbers

of degrees of freedom for both flow and geomechanics models. The simulation

was run with 128 processes.

Figure 5.16: Coupled hexahedral
mesh

Figure 5.17: Coupled hexahedral
mesh: zoomed-in

Figures 5.18 and 5.19 are water saturation profile at 80.1 days, one
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SYMBOL QUANTITY VALUE
tT total simulation time 80.1 days
XL dimension in x 20 ft
YL dimension in y 1500 ft
ZL dimension in z 1500 ft
Nx number of grids in x 10
Ny number of grids in y 150
Nz number of grids in z 150
k permeability in x,y,and z 500 md
φ0 initial porosity 0.2
µw water viscosity 1.0 cp
µo oil viscosity 2.0 cp
cf water compressibility 1.0× 10−6 1/psi
co oil compressibility 1.0× 10−4 1/psi
p0 initial pressure 400 psi
S0
w initial water saturation 0.316
BHPinj water injector BHP 1000 psi
BHPprod producer BHP 100 psi
E Young’s modulus 1.0× 106 psi
ν Poisson’s ratio 0.3
α Biot’s constant 1.0
DoFflow Number of pressure unknowns 225000
DoFmech Number of displacement unknowns 752433

Table 5.2: Parameters for coupled mesh case
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with mesh visualized and one without. The evolution of pressure field (see

Figures 5.20 and 5.21) indicates the average pressure of the reservoir increases

as a result of the injection-production activity. Figures 5.22–5.27 show the

geomechanical response of the reservoir matrix to the pressure increase. The

solid skeleton expands in all three directions at the end of the simulation.

Figure 5.18: Coupled mesh case: wa-
ter saturation at 80.1 days with mesh

Figure 5.19: Coupled mesh case: wa-
ter saturation at 80.1 days

To illustrate that the MFMFE method with non-symmetric quadrature

rule produces accurate approximation on distorted hexahedra, we compare the

solution on the coupled mesh to the solution on a uniform rectangular mesh.

The rectangular mesh also has 10×150×150 elements. Each element is of size

2 ft ×10 ft ×10 ft. All other model parameters are the same. We compare the

injection well rate in Figure 5.28 and production well water/oil ratio in Figure

5.29. Comparison of y-displacement at 80.1 days between the simulation on
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Figure 5.20: Coupled mesh case: wa-
ter pressure at 0.1 days

Figure 5.21: Coupled mesh case: wa-
ter pressure at 80.1 days

Figure 5.22: Coupled mesh case: x-
displacement at 0.1 days

Figure 5.23: Coupled mesh case: x-
displacement at 80.1 days
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Figure 5.24: Coupled mesh case: y-
displacement at 0.1 days

Figure 5.25: Coupled mesh case: y-
displacement at 80.1 days

Figure 5.26: Coupled mesh case: z-
displacement at 0.1 days

Figure 5.27: Coupled mesh case: z-
displacement at 80.1 days
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coupled mesh and the simulation on rectangular mesh is given in Figures 5.30

and 5.31. These comparisons demonstrate satisfactory match between the two

simulation results.
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Figure 5.28: Injection well rate comparison between coupled mesh and rect-
angular mesh
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Figure 5.29: Production well water/oil ratio comparison between coupled mesh
and rectangular mesh
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Figure 5.30: Y-displacement at 80.1
days on coupled mesh

Figure 5.31: Y-displacement at 80.1
days on rectangular mesh
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Chapter 6

Parallel Simulation

6.1 Introduction

Simulations of coupled poromechanical or thermoporomechanical pro-

cesses in field scale with high resolution usually impose significant demands

on both computer memory and computation time. For example, a reservoir

model can consist of millions of grid cells and nodes. In the compositional

flow model, each cell requires memory for multi component and phase related

data; in the MFMFE flow model, each grid node (vertex) needs to store the

inverse of a local mass matrix which is up to 12 × 12 in size; in the linear

elasticity model, each node necessitates the storage of a displacement vector,

a stress tensor, and a strain tensor. The 27-pt stencil in MFMFE and CG

formulations also requires a large amount of memory for the linear system

storage. The challenge in computation time is a result of two factors: 1. the

high cost to solve the large linear systems for pressure, temperature, and dis-

placement, respectively; 2. the long time span of the physical processes which

can be several years for an EOR process or hundred of years for a CO2 leakage

prediction. Distributed memory parallel computing provides a means to deal

with these memory and computation time challenges.
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In this work we focus on parallelization of the coupled poroelasticity

simulator developed in Chapters 3, 4, and 5. The geomechanics, MFE com-

positional flow [45], MFMFE single and two-phase flow [138, 142], and energy

balance models [126] are developed as individual modules within the IPARS

framework [136]. The IPARS framework handles structured (logically rectan-

gular) grids and was originally designed for element-based data communication

such as pressure data in flow models. In this work, we enhance the capability

of the IPARS framework for node-based data communication to parallelize the

geomechanics model. We also parallelize the two-phase MFMFE flow model

developed in [138]. Because the linear system of the geomechanics model is

more costly to solve than those of the flow and thermodynamics models, we

are only concerned with parallel performance of linear solvers for the geome-

chanics model within the scope of this work. For our purpose of efficiently

simulating field scale problems for long time span, strong scalability of the

linear solver is important. We use the generalized minimal residual (GMRES)

solver with the BoomerAMG preconditioner from the hypre library [77] and

the geometric multigrid (GMG) solver from the UG4 software toolbox [61] to

solve the geomechanics linear system. To improve mesh partitioning quality

and solver performance, we integrate the multilevel k-way mesh partitioner

from METIS [67] into IPARS.
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6.2 Numerical Examples

All parallel simulations presented in this dissertation are performed on

the supercomputer Stampede in Texas Advanced Computing Center at The

University of Texas at Austin. Stampede has 6400 computing nodes, most of

which are configured with two 8-core Intel Xeon E5-2680 processors running

at 2.7 GHz (3.5 GHz with turbo) and one 61-core Intel Xeon Phi SE10P co-

processor running at 1.1 GHz. Each node has 32 GB host memory for the

two E5-2680 processors and an additional 8 GB memory for the coproces-

sor. Computing nodes are connected by a 56 Gb/s FDR InfiniBand network

[29]. Our simulations only utilize the 8-core E5-2680 processors but not the

coprocessors.

6.2.1 Cranfield Case

As the first numerical example, we rerun the Cranfield CO2 sequestra-

tion simulation using different numbers of processors to verify the paralleliza-

tion of the coupled compositional flow and linear elasticity model in IPARS.

The model description can be found in Section 4.3.1.2 and the input parame-

ters are listed in Table 4.4. Type I stress-dependent permeability in equation

4.59 is employed with b = 1.0 × 10−3 1/psi. Figures 6.1 and 6.2 show ex-

cellent matches of reservoir average pressure history and BHP history for the

injector CFU 31-F1 among simulations with 8, 16, 32, 64, and 128 processors.

For this example, we use the GMRES solver from the hypre library [77] with

BoomerAMG as the preconditioner to solve the elasticity linear system. The
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Number of Processes Solver Time (s) Speedup Efficiency
8 15722.875 1
16 8233.990234 0.95475429
32 4680.088867 0.839881221
64 2790.81543 0.704224061
128 1246.232422 0.7885204

Table 6.1: Speedup efficiency for Cranfield case

linear solver relative tolerance is set to 1.0 × 10−8. Figure 6.3 is the scalabil-

ity test result for the elasticity linear solver and Table 6.1 lists the numbers

for the speedup efficiency. About 79 % of ideal speedup is observed from 8

processes to 128 processes. We would like to point out that the linear solver

(biconjugate gradient stabilized solver with multigrid preconditioner) time for

the compositional flow model for the 8 processes run is 862.853 s, or 5.5% of

the elasticity linear solver time.

Figure 6.1: Average pressure history comparison for Cranfield case
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Figure 6.2: Injector CFU 31-F1 BHP history comparison for Cranfield case

Figure 6.3: Scalability test for Cranfield case
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6.2.2 Coupled Mesh Case

In the second numerical example we verify the parallelization of the

coupled two-phase MFMFE flow and linear elasticity model on general hexa-

hedral grids. We rerun the case with coupled hexahedral mesh in Section 5.4.2.

Most of the model parameters are the same as in Table 5.2, but this time we

refine the mesh to 10×300×300 and shorten the total simulation time to 10.1

days. As a result, the number of pressure degrees of freedom for the MFMFE

flow model increases to 900000 and the number of displacement degrees of free-

dom for the CG elasticity model increases to 2989833. We use the GMRES

solver with the BoomerAMG preconditioner from the hypre library [77] and a

relative tolerance of 1.0×10−8 for the elasticity linear system. Six simulations

were run using 8, 16, 32, 64, 128, and 256 processes. In Figures 6.4–6.6, we

compare the water rate for the injection well and the oil and water rates for the

production well from the six simulations. The matched results demonstrate

that the coupled two-phase MFMFE flow and CG linear elasticity simulator

runs correctly on the parallel computer. Figure 6.7 shows the scalability of

the elasticity linear solver on different numbers of processes and the numbers

of speedup efficiency are summarized in Table 6.2. The elasticity linear solver

attains about 69 % of ideal speedup from 8 processes to 256 processes on the

coupled anisotropic mesh with distorted hexahedral elements.
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Figure 6.4: Water injection rate for coupled mesh case
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Figure 6.5: Oil production rate for coupled mesh case
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Figure 6.6: Water production rate for coupled mesh case

Figure 6.7: Scalability test for coupled mesh case
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Number of Processes Solver Time (s) Speedup Efficiency
8 2623.572 1
16 1463.32 0.89644507
32 739.651 0.886760107
64 427.321 0.767447656
128 238.169 0.688474361
256 118.508 0.691823548

Table 6.2: Speedup efficiency for coupled mesh case

6.2.3 Large Scale Scalability Test

For the third example in this section, we test the scalability of elasticity

linear solvers on up to 2048 processes. We use both the GMRES solver with

the BoomerAMG preconditioner from the hypre package [77] and the GMG

solver from the UG4 toolbox [61]. The numerical model is a quarter of a 5-spot

injection-production problem. The reservoir is 100 ft× 3600 ft× 3600 ft in size

with 16×576×576 rectangular elements. The total number of pressure degrees

of freedom is 5308416 and the total number of displacement degrees of freedom

is 16979379. An injection well is placed at y=3.125 ft and z=3.125 ft but it

is shut-in during the simulation. A rate specified production well is drilled

at y=3596.875 ft and z=3596.875 ft. The reservoir fluid has six hydrocarbon

components and no-flow boundary conditions are enforced on all surfaces for

the compositional flow model. A compressive overburden stress of 4200 psi is

prescribed on the top surface of the reservoir for the geomechanics model. All

other surfaces have zero normal displacement and zero shear traction boundary

conditions. Important parameters are summarized in Table 6.3.

For the purpose of the scalability test, we only ran the simulation for
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SYMBOL QUANTITY VALUE
tT total simulation time 0.1 days
∆t time step size 0.01 days
LX reservoir dimension in x 100 ft
LY reservoir dimension in y 3600 ft
LZ reservoir dimension in z 3600 ft
NX number of grids in x 16: (4× 5, 4× 7.5, 8× 6.25) ft
NY number of grids in y 576
NZ number of grids in z 576
p0 initial pressure (4×3984.3, 4×3990.3, 8×4000) psi
kxx x-permeability (varies in x) (4×50, 4×50, 8×25) md
kyy, kzz y- and z-permeability (varies in x) (4×500, 4×50, 8×200) md
φ0 initial porosity 0.30
Nc number of hydrocarbon components 6: C1, C3, C6, C10, C15, C20

cw water compressibility 3.3× 10−6 1/psi
ρ0w water reference density 62.4 lbm/ft3

S0
w initial water saturation 0.2
ni initial hydrocarbon component concentration 0.5, 0.03, 0.07, 0.20, 0.15, 0.05
E Young’s modulus 1.0 ×105 psi
ν Poisson’s ratio 0.3
ρs rock mass density 2.65 g/cm3

α Biot’s constant 1.0
σob compressive overburden stress 4200 psi
Qprod constant production rate 12000 BBL/day
DoFflow number of pressure degrees of freedom 5308416
DoFmech number of displacement degrees of freedom 16979379

Table 6.3: Parameters for large scale scalability test case
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0.1 days with 10 time steps. The total number of elasticity linear system

solves is 22 including the initialization step. Both hypre and GMG solvers

use a relative tolerance of 1.0 × 10−8. Tables 6.4 and 6.5 show computation

time and speedup efficiencies using hypre and GMG with IPARS’s original grid

partitioning algorithm (M=1). Scalability results are also plotted in Figure

6.8. Hypre scales better than GMG when more than 128 processes are used,

but GMG takes much less absolute computation time than hypre does. The

wiggles in the scalability curves in Figure 6.8 are related to mesh partitioning.

To see this clearly, we perform additional scalability tests using element-based

(M=2) and node-based (M=3) mesh partitioning schemes by METIS. The

GMG solver is used in the additional tests. Results are presented in Tables

6.5–6.7 and Figure 6.9. Wiggles in the scalability curves are removed when

the mesh is partitioned by METIS. It indicates that METIS produces more

consistent mesh partitioning quality. For the geometry of the current prob-

lem, the element-based mesh partitioning using METIS leads to the shortest

absolute computation time and the best scalability among the three mesh par-

titioning schemes. It is noticed from the scalability curves that the speedup

efficiency deteriorates to below 50% with more than 256 processes. One reason

is that the inter-process communication overhead increases as the number of

partitions in the mesh increases. The optimal number of processes used in

parallel simulation is problem specific. We should point out that the scalabil-

ity of the elasticity linear solvers in IPARS is not optimal at present. More

investigations are required to further improve it.
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Figure 6.8: Large scale scalability test (M=1)

Figure 6.9: GMG scalability with different partitioning schemes
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Number of Processes Solver Time (s) Speedup Efficiency
16 1597.494385 1
32 1065.671875 0.749524512
64 420.8533936 0.94896133
128 446.7695923 0.446957003
256 163.1486053 0.611978257
512 145.8405914 0.342303189
1024 60.3127174 0.413857157
2048 59.0236702 0.211447794

Table 6.4: Speedup efficiency for hypre (M=1)

Number of Processes Solver Time (s) Speedup Efficiency
16 496.5845337 1
32 197.750351 1.255584456
64 184.5298615 0.672769884
128 70.9749451 0.874577171
256 56.6203117 0.548151934
512 56.7251091 0.273569622
1024 24.8560829 0.312162354
2048 22.917141 0.169286678

Table 6.5: Speedup efficiency for GMG (M=1)

Number of Processes Solver Time (s) Speedup Efficiency
16 437.4377441 1
32 252.9203949 0.864773567
64 169.7435303 0.644262764
128 85.8347549 0.637034708
256 48.4179764 0.564663397
512 30.143465 0.453495625
1024 22.362711 0.305641152
2048 25.3090801 0.135029893

Table 6.6: Speedup efficiency for GMG (M=2)
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Number of Processes Solver Time (s) Speedup Efficiency
16 464.7821045 1
32 266.0411377 0.873515481
64 186.3984222 0.623371833
128 91.956337 0.631797274
256 52.8983383 0.549145445
512 36.9891434 0.39266767
1024 25.9923859 0.27939799
2048 28.5843525 0.127031396

Table 6.7: Speedup efficiency for GMG (M=3)

To see the influences of heterogeneities of material properties on the lin-

ear solver performance, we replace the homogeneous Young’s modulus in the

numerical example (see Table 6.3) by a manufactured heterogeneous Young’s

modulus field. The heterogeneous Young’s modulus is generated by the equa-

tion

E = 1.0× 105 × 100d

d =
1

3

(∣∣∣sin( xc
360
· 2π
)∣∣∣+

∣∣∣sin( yc
360
· 2π
)∣∣∣+

∣∣∣sin( zc
10
· 2π
)∣∣∣) (6.1)

where (xc, yc, zc) are coordinates at center of mass of a grid cell in the mesh.

Figures 6.10 and 6.11 show the profile of Lame coefficient λ associated with

homogeneous and heterogeneous Young’s moduli, respectively. We run scal-

ability tests employing the hypre and the GMG solvers with element-based

mesh partitioning scheme (M=2) for the heterogeneous Young’s modulus case.

Results in Figure 6.12 and Tables 6.8–6.9 show an apparent increase in abso-

lute computation time for both hypre and GMG solvers when heterogeneous

Young’s modulus is used. Again hypre scales better than GMG especially for

large number of processes, but it is slower than GMG in absolute computation
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time.

In Figure 6.13, we compare the total number of linear iterations using

GMG for homogeneous Young’s modulus (with M=1, 2, and 3) and hetero-

geneous Young’s modulus. It is clear that the convergence rate of the linear

solver depends on the mesh partitioning quality and the heterogeneity of ma-

terial properties. Figures 6.14–6.19 illustrate pressure, x-displacement, and

oil saturation at 0.1 days for both homogeneous and heterogeneous Young’s

modulus. Results shown are from simulations with 2048 processes.

Figure 6.10: Homogeneous Lame co-
efficient λ

Figure 6.11: Heterogeneous Lame
coefficient λ
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Figure 6.12: Scalability test with heterogeneous E

Number of Processes Solver Time (s) Speedup Efficiency
16 2481.227783 1
32 1779.239868 0.69727186
64 721.418335 0.85984361
128 553.7258301 0.560121013
256 285.7250061 0.542748213
512 148.9085388 0.520711363
1024 86.5571136 0.447902922
2048 47.2770844 0.410020886

Table 6.8: Speedup efficiency for hypre with heterogeneous E

Number of Processes Solver Time (s) Speedup Efficiency
16 742.9155273 1
32 411.0117798 0.903764276
64 303.509552 0.611937518
128 148.5568085 0.625110635
256 84.3283768 0.55061205
512 52.9948502 0.438082382
1024 40.0372124 0.289931652
2048 39.1412964 0.148283989

Table 6.9: Speedup efficiency for GMG with heterogeneous E
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Figure 6.13: Total number of linear iterations using GMG

Figure 6.14: Pressure at 0.1 days
with homogeneous E

Figure 6.15: Pressure at 0.1 days
with heterogeneous E
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Figure 6.16: X-displacement at 0.1
days with homogeneous E

Figure 6.17: X-displacement at 0.1
days with heterogeneous E

Figure 6.18: Oil saturation at 0.1
days with homogeneous E

Figure 6.19: Oil saturation at 0.1
days with heterogeneous E
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work we developed a coupled poroelasticity simulator under the

IPARS framework. The quasi-static isotropic linear elasticity model was iter-

atively coupled to different flow models. We studied the interactions between

reservoir fluid flow, solid skeleton strain and stress, and heat transfer using

various numerical examples. We also parallelized the geomechanics model and

the two-phase MFMFE flow model. Scalability of linear solvers for the ge-

omechanics model was investigated. Conclusions drawn from this work are as

follows:

• We used Mandel’s problem as an example to study the convergence be-

havior of two widely-used iterative coupling schemes, the undrained split

and the fixed-stress split. While both coupling schemes yield a conver-

gent solution, the fixed-stress split converges faster than the undrained

split. These results verified the theoretical convergence proof given by

Mikelić and Wheeler [91].

• We integrated a module for a quasi-static isotropic linear elasticity model

on 8-node general hexahedra using CG discretization into IPARS. We
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considered both fluid-solid and thermal-solid couplings by treating pres-

sure and thermal loads as external loads in the elasticity model. The

GMRES solver with the BoomerAMG preconditioner from the hypre

package and the GMG solver from the UG4 toolbox are employed to

solve the linear equations for the displacement degrees of freedom.

• We derived model equations for the coupled compositional flow and lin-

ear elasticity model under a small deformation assumption. This is an

extension to Gai’s work [51] which coupled black-oil with the linear elas-

ticity model. Thermal coupling was taken into account in the derivation

of the reservoir porosity term. We chose the fixed-stress split to itera-

tively couple compositional flow and linear elasticity models because it

requires minimal modifications to the existing compositional flow model

and it converges quickly. The convergence of the iteratively coupled

compositional flow and linear elasticity model was verified by a fully

implicitly coupled poromechanics simulator.

• We considered permeability coupling between compositional flow and ge-

omechanics models. We showed the geomechanical effects of porosity and

permeability coupling on reservoir pressure field by running the Cran-

field CO2 sequestration model with geomechanics and stress-dependent

permeability. The results demonstrated that the coupled poromechanics

model is necessary for better history matching and prediction in reservoir

simulation.
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• To account for thermal effects on compositional flow phase behavior and

solid structure stress evolution, we explicitly coupled the poromechanics

model to a simplified energy conservation model developed by Thomas

[126]. A time-split scheme was used to solve heat convection and con-

duction successively. We showed that temperature variations can have

a significant effect on reservoir solid skeleton deformation. The higher

order Godunov method used to solve the heat convection equation can

well capture the sharp temperature front. We also found that for multi-

phase flow scenarios, solving the concentration/saturation equation us-

ing MFE/CCFD and the temperature equation using Godunov methods

leads to non-physical temperature solutions.

• We coupled a linear elasticity model with DOECO2 which is a compo-

sitional gas reservoir simulator to account for the geomechanical effects

in EOR and CO2 sequestration processes. The coupled poroelasticity

model was validated by comparing numerical results with IPARS. We

also tested it with a field scale CO2 flooding EOR simulation.

• We showed model equations for coupled two-phase flow with a linear

elasticity model. The single phase and two-phase flow models were dis-

cretized using MFMFE which leads to a cell-centered positive definite

pressure system. With numerical examples, we demonstrated that the

coupled MFMFE flow and linear elasticity models can handle realis-

tic geometry and boundary conditions. We also showed that for the
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same physical problem, the simulation with a distorted hexahedral mesh

matches its counterpart with a uniform rectangular (smooth) mesh. It

verified that the coupled MFMFE flow using a non-symmetric quadra-

ture rule with the CG linear elasticity model yields accurate pressure,

velocity, and displacement solutions on distorted hexahedral mesh [144].

• We enhanced the capability of the IPARS framework to handle node-

based data communication which is necessary for parallelization of the

geomechanics model. We parallelized the two-phase MFMFE flow model

in IPARS and tested it with the geomechanics model on a massively

parallel computer. Strong scalability tests of the linear solvers for the

elasticity model showed good speedup for problems with from a few mil-

lion to 17 million degrees of freedom on up to 256 processes. Scalability

deteriorates as too many processes are used and the inter-process com-

munication cost overwhelms the parallel speedup. Numerical results also

showed that the convergence rate of the linear solvers depends on the

mesh partitioning quality and the heterogeneity of material properties.

The mesh partitioning produced by METIS leads to better solver per-

formance compared to the partitioning generated by the original scheme

in IPARS. For the examples tested in this work, the GMRES solver with

the BoomerAMG preconditioner is more scalable than the GMG solver

from the UG4 toolbox. But the latter is generally much faster than the

former in absolute computation time.
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7.2 Future Work

We suggest several research directions following this work:

• Add an elastoplasticity model into IPARS and couple it with MFE com-

positional flow and MFMFE flow models. Plasticity model is needed

for simulating problems such as well damage and sand production. It is

also needed to account for compaction hysteresis effect which results in

permanent porosity and permeability reduction.

• Use Godunov methods to solve the concentration/saturation equation

in the compositional flow model to capture the concentration/saturation

front. This is necessary for the thermal energy balance model to work

in multiphase flow scenarios.

• Further investigate the scalability of linear solvers for the geomechan-

ics model. Currently the speedup efficiency of the linear solvers is not

optimal. Fine-tuning of the BoomerAMG preconditioner and the GMG

solver are necessary to achieve better performance in both absolute com-

putation time and parallel speedup efficiency.

• We have already implemented utility routines for data decomposition

and communication for a two-dimensional non-growing fracture model

in IPARS. We have successfully tested the coupled two-phase MFMFE

reservoir flow, MFMFE fracture flow, and CG linear elasticity model with

several small cases on up to 32 processes. The hypre solver is used to
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solve the geomechanics system with extra open fracture nodes. Further

tests need to be performed with large scale cases and multiple non-planar

fractures on more computing processes. Results will be published in a

future research paper.

• With the help from Dr. Nägel, adjust the coarsening scheme used in the

GMG solver from the UG4 toolbox to treat the additional open fracture

nodes in the geomechanics model when fractures exist in the reservoir.

Currently the coarsening scheme in the GMG solver for IPARS is based

on the tensor-product structure of the mesh (logically rectangular mesh).

A new coarsening strategy needs to be developed when additional open

fracture nodes break the logically rectangular structure of the mesh.

• Incorporate fracture mechanics models into IPARS for modeling hy-

draulic fracturing processes.

• Couple the elastoplasticity model with the MFMFE compositional flow

model on hexahedral grids and parallelize the MFMFE compositional

flow model.
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[61] I. Heppner, M. Lampe, A. Nägel, S. Reiter, M. Rupp, A. Vogel, and

G. Wittum. Software framework UG4: Parallel multigrid on the hermit

supercomputer. In W.E. Nägel, D.H. Kröner, and M.M. Resch, editors,

High Performance Computing in Science and Engineering ’12, pages

435–449. Springer Berlin Heidelberg, 2013.

[62] L.R. Herrmann. Elasticity equations for incompressible and nearly

incompressible materials by a variational theorem. AIAA Journal,

3(10):1896–1900, 1965.

[63] T. Hughes. The Finite Element Method. Prentice-Hall, Englewood

Cliffs, New Jersey, 1987.

[64] R. Ingram, M.F. Wheeler, and I. Yotov. A multipoint flux mixed finite

element method on hexahedra. SIAM Journal on Numerical Analysis,

48(4):1281–1312, 2010.

179



[65] N. Inoue and S.A.B. Fontoura. Explicit coupling between flow and ge-

omechanical simulators. In International Conference on Computational

Methods for Coupled Problems in Science and Engineering Proceedings,

Ischia Island, Italy, Jun. 2009.

[66] B. Jha and R. Juanes. A locally conservative finite element framework

for the simulation of coupled flow and reservoir geomechanics. Acta

Geotechnica, 2(3):139–153, 2007.

[67] G. Karypis. METIS: A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of

sparse matrices, Mar. 2003.

[68] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for ir-

regular graphs. Journal of Parallel and Distributed Computing, 48(1):96–

129, 1998.

[69] J. Kim, G.J. Moridis, D. Yang, and J. Rutqvist. Numerical studies on

two-way coupled fluid flow and geomechanics in hydrate deposits. SPE

Journal, 17(2):485–501, 2012.

[70] J. Kim, E. Sonnenthal, and J. Rutqvist. Formulation and sequential

numerical algorithms of coupled fluid/heat flow and geomechanics for

multiple porosity materials. International Journal for Numerical Meth-

ods in Engineering, 92(5):425–456, 2012.

180



[71] J. Kim, H.A. Tchelepi, and R. Juanes. Rigorous coupling of geome-

chanics and multiphase flow with strong capillarity. In SPE Reservoir

Simulation Symposium, The Woodlands, Texas, Feb. 2011.

[72] J. Kim, H.A. Tchelepi, and R. Juanes. Stability, accuracy, and efficiency

of sequential methods for coupled flow and geomechanics. SPE Journal,

16(2):249–262, 2011.

[73] J. Kim, H.A. Tchelepi, and R. Juanes. Stability and convergence of

sequential methods for coupled flow and geomechanics: Drained and

undrained splits. Computer Methods in Applied Mechanics and Engi-

neering, 200(23-24):2094–2116, 2011.

[74] J. Kim, H.A. Tchelepi, and R. Juanes. Stability and convergence of

sequential methods for coupled flow and geomechanics: Fixed-stress and

fixed-strain splits. Computer Methods in Applied Mechanics and Engi-

neering, 200(13-16):1591–1606, 2011.

[75] O. Kolditz, S. Bauer, L. Bilke, N. Böttcher, J.O. Delfs, T. Fischer, U.J.
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