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In this thesis, we prove short-time existence for Ricci flow, for a class

of metrics with unbounded curvature.

Our primary motivation in investigating this class of metrics is that it

includes many final-time limits of Ricci flow singularities. Well known exam-

ples include neckpinches and degenerate neckpinches. We provide an example

of Ricci flow modifying a neighborhood of a manifold with the topological

change D1+p×Sq → Cone(Sp×Sq)→ D1+q×Sp, although we only rigorously

deal with the second part of the transformation.

We also provide forward evolution from some manifolds with ends of

infinite length and unbounded curvature, such as the submanifold given by

x2
1 +x2

2 +x2
3 = (1+x4)−2 in R4. In this example, the two ends with unbounded

curvature immediately become compact and with bounded curvature, so the

topology of the forward evolution is S3.
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Chapter 1

Introduction

1.1 Background and Setting

A time-dependent family of Riemannian metrics g(t) on a manifold M

evolves by Ricci flow if

∂tg(t) = −2 Rc[g(t)]. (1.1)

Here Rc[g(t)] is the Ricci curvature of the metric g(t). If ginit is a complete

metric with bounded curvature, then there is a solution g(t) to Ricci flow on

some time interval [0, T2) with g(0) = ginit. The results in this dissertation are

about the possibility of starting Ricci flow from a certain class of metrics, to

which the general theory does not apply.

For the reader less familiar with Ricci flow, we offer an intuitive picture.

Ricci flow behaves as a reaction-diffusion equation. The diffusion part means

that g(t) gets smoother in short time, in ways that we can make precise. Also,

the diffusion part tries to make the curvature more constant. It may not be

immediately obvious from (1.1) that this behavior exists, but essentially it

comes down to the fact that if we consider Rc as a second-order differential

operator acting on g, it is kind of elliptic. The reaction part means that regions

with large positive curvature get larger curvature. This is easier to guess from
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Figure 1.1: A bumpy sphere becoming round. The pictures of Ricci flow in
this thesis are sketches, not accurately computed drawings.

(1.1): if the Ricci curvature is positive then (1.1) tells us that g should shrink,

which makes the norm of the curvature larger.

Consider Figure 1.1. The initial metric is a bumpy sphere. The se-

quence of pictures is a series of snapshots of Ricci flow. In a short time, the

metric loses many of its bumps and becomes smoother. The curvature be-

comes closer to being constant. Meanwhile, the sphere is shrinking overall,

and the metric goes to zero everywhere at some finite time.

As another example of Ricci flow, consider Figure 1.2. The initial

manifold is topologically S3, and has a long, thin, necklike region. After a

short time, the whole manifold changes. The most drastic change is that the

necklike region shrinks because it is close to a part of R×S2, which has positive

Ricci curvature on the S2 factor. In finite time the S2 factor collapses on a

lower-dimensional set; the metric is degenerate on a closed subset of S3, and

has unbounded curvature on its complement.

In general, for any manifold (M, g(0)) with bounded curvature tensor,

the Ricci flow exists at least on some time interval [0, T2) where T2 ∈ (0,∞].

2



Figure 1.2: A three-dimensional rotationally symmetric neckpinch singularity

If T2 <∞ then 1

lim sup
t→T2

sup
p∈M
|Rm|=∞.

Refinements of this fact exist, for example one may replace Rm above with Rc

[Š05].

The driving example of this thesis is the possibility of continuing the

Ricci flow after the singularity in Figure 1.2. For simplicity, erase the “center”

points in the last snapshot of Figure 1.2. Then we are left with a smooth, but

incomplete with unbounded curvature, metric gsing on two copies of R3. Just

consider each connected component separately. There is a forward evolution

depicted in Figure 1.3. Immediately after the singular time, each connected

1 Here, |Rm|= |Rm[g(t)]|g(t) is the norm of the full curvature tensor of g(t) measured
with respect to g(t). We hope it’s always clear enough which metrics are in play.
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Figure 1.3: Forward flow from a neckpinch. Although they have high curva-
ture, the tips are smooth.

component becomes topologically S3. If we identify R3 with a punctured S3,

and set M = R3, M̄ = S3, then the forward evolution can be simplistically

described as a smooth, complete, Ricci flow (M̄, g(t)) such that in C∞loc(M),

g(t) → gsing. We also have Gromov-Hausdorff convergence of the metrics

spaces (M̄, g(t)) to (M, gsing).

1.1.1 Ricci flow without singularities

A principle pursuit in geometric analysis is finding global implications

of pointwise curvature assumptions about a Riemannian manifold. Ricci flow

has contributed much to this topic. The general hope comes from the idea that

Ricci flow should make the curvature of a metric more constant, and so it is

possible to turn an inequality on the curvature into an equality, if the Ricci flow

exists for a long time. This idea (specifically for Ricci flow) was introduced by
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Hamilton in [Ham82], where he showed that if we start Ricci flow from a metric

on a three-manifold with positive Ricci curvature then it approaches (after

some scaling) a metric of constant positive Riemannian curvature. Therefore,

a manifold which admits a metric of positive Ricci curvature also admits a

metric of constant Riemannian curvature, and so it must be a quotient of a

sphere. The same result was proven in [Ham86] in dimension four, but with

“positive Ricci curvature” replaced with “positive curvature operator” (the

standard metric on S2 × S2 has positive Ricci curvature but is not a quotient

of S4). Note that this method immediately proves the result that the manifold

is not just topologically, but also diffeomorphically, a quotient of a sphere.

Another celebrated result of this type is the resolution of the differ-

entiable quarter-pinched curvature conjecture by Brendle and Schoen [BS09]:

they show that any manifold with sectional curvature strictly between one and

four flows, under Ricci flow, to a manifold with constant sectional curvature.

(In fact, they only require that for some f : M → R+ the sectional curvature

of each plane in TpM is between f(p) and 4f(p).)

1.1.2 Ricci flow with surgery

The most widely known application of Ricci flow is the resolution of

Thurston’s geometrization conjecture by Perelman in [Per02] and [Per03]. This

application has a complication not present in the aforementioned works. The

Ricci flow exists at least up to a time when the curvature goes to infinity. In

the situations visited by [Ham82], [Ham86], and [BS09], the curvature goes

5



to infinity everywhere on the manifold, and if we correctly scale the metric

in time, it smoothly approaches a metric of constant curvature. In contrast,

in the generality needed for the geometrization conjecture, the metric forms

local singularities; i.e. the curvature goes to infinity on a strict subset of the

manifold.

Possible local singularities, like those in Figure 1.2, were correctly pre-

dicted in Section 3 of [Ham95]. These local singularities actually gave hope to

the plan of using Ricci flow to resolve the geometrization conjecture: they are

able to disconnect pieces of the manifold and perform the surgeries allowed

by the conjecture. (Here one should imagine that the two bulbs in Figure 1.2

may be replaced with arbitrarily complicated three manifolds with relatively

low curvature compared to the neck.)

For dealing with these singularities, one can use a Ricci flow with

surgery. The idea is to classify what the metric looks like in regions of high

enough curvature. While we cannot expect the curvature to be completely

diffused as in [Ham82], in regions of high curvature it is locally diffused. This

implies, also, a topological understanding of these regions. Therefore, before a

singularity as pictured in Figure 1.2, one can perform a surgery to the manifold

which allows the Ricci flow to continue.

We mention some successes of Ricci flow with surgery besides the res-

olution of the geometrization conjecture. The first was [Ham97], in which

Hamilton classified compact four-manifolds with positive isotropic curvature

and no essential incompressible space forms: every such manifold (M, g) is

6



topologically

S4, RP4, S3 × S1, S3×̃S1, (1.2)

or a connect sum thereof. The idea is to prove that every high-curvature region

is either a sphere, or one of two possible types of neck. We run Ricci flow,

cutting out necks and throwing out any piece of one of the topologies in line

(1.2), and eventually we are left with nothing. Going in reverse, we start from

some finite number of pieces, and make connected sums, eventually returning

to our original manifold.

The condition in [Ham97] that M has no essential incompressible space

form is that there is no three-dimensional submanifold N = S3/Γ of M such

that π1(N) injects into π1(M), besides the case Γ = {1} and Γ = {±1}. This is

needed to rule out the possibility of necks with topology (S3/Γ)× (−1, 1). We

cannot cut such a neck and cap it off with a smooth manifold: the procedure

results in a generalization called an orbifold. Chen, Tang, and Zhu [CTZ12]

have carried out the complete classification of four-dimensional manifolds with

positive isotropic curvature, using Ricci flow on orbifolds.

Most recently, Brendle [Bre18] defined a new curvature condition and

used Ricci flow to get topological implications in any dimension. The result is

analogous to [Ham97]: any manifold with no non-trivial incompressible space

form which satisfies the curvature condition is topologically a connected sum

of pieces of topology

Sn/∼ or Sn−1 × R/∼ .

7



Here the quotients are by isometries of the standard metrics such that the

result is compact.

Analogues of these results hold for mean curvature flow of hypersurfaces

as well. For instance [HS09] shows that a two-convex hypersurface in Rn+1 is

topologically either Sn or the connected sum of copies of Sn−1 × S1.

All of these results ([Ham97], [Bre18], [HS09]) rely on finding a condi-

tion on curvature which is preserved by the flow and rules out all but a few

singularity models. For instance, the curvature condition in [Bre18] is that the

curvature tensor at each point lies in a certain cone. The interior of this cone

includes the curvature of the standard metric on Sn−1×R, which is why neck

regions may appear. However, the standard metric on Sn−2 × R2 lies on the

boundary of the cone, and since the flow immediately moves into the interior

of the cone Sn−2 × R2 cannot occur as a singularity model. An interesting

result would be to find a preserved curvature condition which also allows for

Sn−2×R2, but also rules out other problematic singularities. In this thesis we

explore getting around a singularity modeled on Sn−2 × R2 with understand-

able topological change (see the example in section 1.3.3.) The central density

introduced in [CHI04] for dimension four suggests that, at least in dimen-

sion four, we might be able to find conditions which only allow singularities

modeled on S2 × R2, S3 × R, and S4.

8



1.1.3 Ricci flow through singularities

Construction of Ricci flow with surgery relies on some choices of pa-

rameters. Here’s a rough idea of a procedure, of course the full procedure is

more complicated. Hopefully, we can prove a structure theorem for regions

where the norm of the curvature, |Rm|, satisfies |Rm|> CRm for some large

CRm (which depends on the initial metric)- something like every neighborhood

of such high curvature will have to look cylindrical or like a small sphere. (See

e.g. Theorem 5.1 of [Ham97].) Then we wait until |Rm|, reaches 4CRm some-

where on the manifold. Cut out the region {p : |Rm|g(t)(p) > CRm} and, using

our analytical and topological understanding of that region, replace it with

a region satisfying |Rm|< 2CRm, in a way so that the manifold continues to

satisfy certain estimates.

This procedure works if CRm is chosen large enough depending on the

initial metric. If we choose CRm larger, then we cut out smaller regions. The

natural question is whether we can get rid of the parameter CRm by sending it

to infinity. Can we construct a Ricci flow through the singularity, which exists

as a smooth manifold up to the singular time, is some sort of singular object

at the singular time, and after the singular time is instantaneously a smooth,

complete, manifold? This question has been answered affirmatively in various

cases, and we give an overview here.

The first constructions of Ricci flow through singularities were done in

the case of singly warped products of spheres over intervals. (Equivalently,

a Riemannian n−manifold with a cohomogeneity-one SO(n) symmetry.) In

9



[AK04] and [AK07] Angenent and Knopf gave a lot of information about the

asymptotics of singly warped products undergoing standard neckpinches. In

particular, they found an approximation for the final-time metric, i.e. the

shape of the bottom picture in Figure 1.2. In [ACK12], Angenent, Caputo

and Knopf constructed forward evolutions from these singly warped product

metrics. The approach is to construct mollified metrics with bounded cur-

vature, and prove uniform short-time existence for the Ricci flow from the

mollified metrics. Then we can construct a flow as a limit of the mollified

flows. Together with the evolution before the singularity, these provided the

first example of Ricci flow through a singularity.2

Another example of a singularity on a singly warped product is the de-

generate neckpinch. These unstable examples were constructed by Angenent,

Isenberg, and Knopf in [AIK15]. In [Car16], the author constructed a forward-

evolution from the singularity.

As mentioned, Perelman carried out the program of Ricci flow with

surgeries in dimension three. In [KL14], Kleiner and Lott successfully took

a limit of the surgery parameters and constructed an object called a singular

Ricci flow. Roughly, space-time is packed into one manifold which is smooth

everywhere. The approach taken is that the singular points (e.g. the center of

a neckpinch, at the singular time) do not belong to the space-time manifold.

2Really, [FIK03] previously provided examples of Ricci flow through a singular metric, by
constructing self-similar shrinking solutions that shrink to a singular metric, and self-similar
expanding solutions which come out of the same singular metric. It would be more proper
to say this was the first example of non-self-similar Ricci flow through a singularity.

10



Instead, the space-time manifold is smooth and satisfies Ricci flow everywhere.

It is not complete, but the Cauchy sequences without limit have curvature

going to infinity. The work [KL14] also proves many structural properties of

singular Ricci flows.

This is satisfying as a Ricci flow that makes no arbitrary choices (of

surgery parameter). Even more so because of work by Bamler and Kleiner

[BK17] showing the uniqueness of the singular flows. This implies in particular

that the limit of Ricci flow with surgery, as we take the parameters to their

limit, is independent of subsequence. The work in proving uniqueness also has

application to the stability of singular Ricci flows.

The introductions of both [KL14] and [BK17] are both in-depth and

readable. We mention here the “boundary condition” taken in [BK17], since

it is relevant to the study of Ricci flow through singularities as a whole. (Gen-

erally, as with PDE in euclidean space, we should not expect uniqueness with-

out some extra condition.) An important breakthrough of Perelman was a

structure theorem for regions of high curvature in a smooth three-dimensional

Ricci flow, called the ε−canonical neighborhood theorem (Theorem 12.1 of

[Per02]). This says that every point with high enough curvature has a space-

time neighborhood where it is close to a κ−solution. A κ−solution is a com-

plete Ricci flow (M, g(t)) for t ∈ (−∞, 0] which has nonnegative curvature and

is κ−noncollapsed on all scales3. Without any boundary condition, we should

3κ−noncollapsed means for any r > 0 and any (p, t) ∈ M × (−∞, 0] with |Rmg(t)|(p) <
r−2, the volume of the ball of radius r around p is at least κrd where d = dim(M).

11



expect wild solutions of Ricci flow coming out of singularities. In [BK17],

Bamler and Kleiner assume that the solution satisfies the ε−canonical neigh-

borhood assumption; this gives a sort of asymptotic boundary condition near

all singular points which is sufficient for uniqueness.

All of these constructions rely on a classification of the nature of sin-

gularities and high curvature regions of the flow. The ε−canonical neighbor-

hood theorem does not directly generalize to higher dimensions, and relies

on pinching estimates which come from the possible algebraic properties of

the curvature tensor. Theorem 5.2 of [Bre18] gives a generalization to higher

dimensions in a case where the possible curvature tensors are restricted.

1.2 Results

1.2.1 Intuitive Overview

Let us give an overview of results, before stating conditions precisely.

Our main theorem below will require some different conditions than what we

state in this intuitive introduction.

We prove existence of Ricci flow starting from a class of singular initial

metrics. Let q ≥ 2, and let (Sq, gSq) be a metric on Sq with constant sectional

curvature 1, and let I = (0,∞). As a first example, consider the metric on

I × Sq given by

dx2 + φ(x)2gSq (1.3)

where the function φ : I → R+ satisfies φ(x) = o(x) as s ↘ 0. Make the

12



metric well behaved as x → ∞, say φ is strictly positive and C∞ for x > 1.

This is a warped product metric, with an incomplete end at x = 0 where the

metric has a cusp and the curvature goes to infinity.

Identify (0,∞) × Sq with R1+q \ {0} and consider these metrics as

metrics on R1+q \ {0}. We prove the existence of a smooth, complete, Ricci

flow on R1+q, for t ∈ (0, T∗). As t↘ 0, the Ricci flow limits to the metric (1.3)

on R1+q \ {0} (smoothly on compact sets).

As a first generalization, let p ≥ 1 and consider a metric on I×Sq×Sp

of the form

dx2 + φ(x)2gSq + ψ(x)2gSp

Assume that ψ/φ→∞ as x↘ 0. Consequently, the gSq factor has the largest

curvature near x = 0. Intuitively, these metrics have a p dimensional set of

points on cusps. We construct a forward evolution with topology R1+q × Sp.

Even if ψ goes to zero at s = 0, for t > 0 the size of the Sp factor is strictly

positive everywhere.

In this example we may replace (Sp, gSp) with any Einstein manifold,

with any sign on the scalar curvature. The curvature of the Sp factor plays a

small role, because the Sp factor is relatively large in size compared to the Sq

factor. (Our full result actually allows the initial size of the Sp factor to be on

the same order but slightly larger than the initial size of the Sq factor.)

Here is another interesting generalization we make. Change the interval

I to be I = (−∞,∞). Assume that for some β > 0, φ = o(|x|−β) as x↘ −∞.

13



Now the metric dx2 + φ(x)2gSq has a complete, noncompact end at x = −∞

where the curvature goes to infinity. Again, we construct a Ricci flow on

R1+q, with bounded curvature for t > 0, which limits to the initial metric on

R1+q \ {0} as t ↘ 0. So, the infinite-length cusp at the left end compactifies.

To our knowledge this is the first example of this type of behavior in Ricci

flow in dimension larger than two. Topping [Top11] constructed similar (and

more general) examples in two dimensions, but the situation is quite different

analytically in two dimensions because gS1 has zero curvature.

Finally, we have a short-time stability result for these warped-product

forward evolutions, which allows us to remove the global symmetry assump-

tions. Consider any manifold (M, g), which has a neighborhood U outside of

which the curvature is bounded, and a diffeomorphism Φ : U → (0, L) × Sq.

If Φ is close enough to being an isometry to a neighborhood of the left end of

the warped product metrics described above, then we have a forward evolu-

tion from (M, g) which stays close to the forward evolution from the warped

product metric.

1.2.2 Precise statements

To state our theorem precisely, we define the class of warped-product

metrics from which we may flow. We will call them “model pinches”. It is

useful in the description to change coordinates. The metrics will be doubly-

warped products of the form

gmp = dx2 + φ(x)2gSq + ψ(x)2gF

14



where φ is an increasing function of x. Therefore u = φ2 is invertible and we

may write

gmp =
du2

uV0(u)
+ ugSq +W0(u)gF

where

V0(u(x)) =
|∇u|2(x)

u(x)
, W0(u(x)) = ψ(x)2.

Here V0 is normalized so it is invariant under scaling the metric. We have

u ∈ (0, umax) for some umax ∈ (0,∞]. For simplicity let’s just say umax = ∞,

since we remove this assumption in our second theorem4. The distance between

the sets {u = u1} and {u = u2} is given by
∫ u2
u1

1√
uV0(u)

du, so the compactness

of the end where u↘ 0 is hidden in the integrability of 1√
uV0(u)

near 0.

Generally, we use v = u−1|∇u|2 and w = ψ2 to refer to the correspond-

ing functions on some generic doubly warped product. We use capital V and

W to refer to specific functions considered as functions of u.

In the definition below, q ≥ 2, gSq is the metric of constant sectional

curvature 1 on Sq, µ = 2(q − 1) so that 2 RcgSq = µgSq , and (F, gF ) is an

Einstein manifold with 2 RcgF = µFgF . Finally, I = (0,∞).

Definition 1.2.1. Let V0 : I → R+ and W0 : I → R+ be smooth functions.

We call the metric gmp on I × Sq × F given by

gmp =
du2

uV0(u)
+ ugSq +W0(u)gF

a model pinch if the following conditions hold.

4Most of the global assumptions, like φ increasing everywhere, can be removed.
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(MP1) For any u1 > 0, the curvature of gmp is bounded on the set {u > u1},

and w is strictly positive on that set.

(MP2) As u↘ 0, V0(u)↘ 0.

(MP3) If µF > 0 then for some c > 0, W0(u) ≥ (1 + c)µF
µ
u.

(MP4) For some C > 0 and for k = 1, 2, 3, 4, 5:

∣∣∣V0
[k]
∣∣∣+
∣∣∣W0

[k]
∣∣∣ ≤ C.

Here F [k] = 1
F
uk∂kuF .

One implication that helps interpret some of these conditions is the

following. At any point, we can write the curvature Rmgmp of gmp as

Rmgmp = uRmSq +wRmF + Rmwarp (1.4)

where RmSq is the curvature tensor of (Sq, gSq), RmF is the curvature tensor

of (F, gF ), and the tensor Rmwarp is defined by (1.4). Condition (MP4) im-

plies (after some calculation) Rmwarp satisfies |Rmwarp|gmp≤ Cu−1v (for some

bigger C). Note that |uRmSq |gSq= Cqu
−1 � Cu−1v by (MP2). Therefore

the curvature at u = u] is approximately the curvature of the product met-

ric ds2 + u]gSq + W0(u])gF . Furthermore, this relationship holds for some

derivatives as well: for k = 1, 2, 3,

u1+2/k|∇k Rmgmp |≤ Cv1+2/k.

We’ve written this so that the left hand side is invariant under scaling gmp.
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Our main theorem constructs a forward evolution from model pinches.

In the statement of the theorem we identify M := I × Sq × F with (R1+q \

{0}) × F , and we let M̄ = R1+q × F . Lemmas 2.2.2 and 2.3.2 give us extra

information about the forward evolution. For now, just know that this gives

us a full description of the asymptotic shape of the Ricci flow; we give an

overview and corollaries in Section 1.4.

Theorem 1.2.2. Let gmp be a model pinch. There is a Ricci flow gwp(t) on

M̄ and for some time interval t ∈ (0, T2), such that as t↘ 0, gwp(t)↘ gmp in

C∞loc(M). There are choices of the parameters of Definitions 2.2.1 and 2.3.1

such that gmp is controlled in the productish region and in the tip region.

The next theorem removes the global part of the model pinch assump-

tion. For this, we need some additional assumptions on the factor F . Let

ΛF = supp∈F maxh∈Sym2(TpF ),|h|=1(RmgF )abcdh
achbd. (For example, if F has

dimension p and constant sectional curvature k then ΛF = k(p − 1)). In

particular, 2ΛSq = µ.

Definition 1.2.3. We call a model pinch F -reasonable if

(MR1) W0(u)
u
≥ ΛF

ΛSq

(MR2) If µF = 0 then W0(u)
uV0(u)

→∞ as u↘ 0.

Since V0(u) goes to zero as u ↘ 0, the second assumption (MR2) is

automatic vacuous unless ΛF = µF = 0.
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Theorem 1.2.4. Let gmp be an F -reasonable model pinch. There is an ε0

depending on gmp with the following property.

Let (Mn, g) be a (possibly non-complete) Riemannian manifold. Let

U ⊂ M be open, and assume that (M \ U, g) is a complete compact manifold

with boundary, satisfying

sup
p∈M\U

|Rm|< C.

Suppose that u1 > 0 and Φ : U → (0, u1) × Sq × F is a diffeomorphism such

that

|g − Φ∗gmp|≤ ε0Φ∗(V0) = ε0V0 ◦ Φ

and

5∑

i=1

(Φ∗u0)i/2
∣∣∣
(
∇Φ∗gmp

)i
g
∣∣∣ ≤ C.

Let M̄ ⊃ M be the differential manifold obtained by replacing U ∼

(L,L′)× Sq × F with Ū ∼ D1+q × F . For some T∗ > 0, there is a Ricci flow

g(t), t ∈ [0, T∗) on M̄ such that g(t)→ g on M as t↘ 0.

Of course both of these theorems also hold when the factor F is not

there. (To be fancy, they hold for dim(F ) = 0.) We mention two further

extensions to the above theorems which are immediate; the only extra difficulty

is in writing down notation. First, we may consider extra Einstein manifolds

(F (i), gF (i)) and put extra warped product factors on gwp which satisfy the
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same assumptions. Second, in Theorem 1.2.4, we may consider a manifold

with multiple disjoint neighborhoods U (i), each of which is close enough to

being a model pinch.

1.3 Pinches that arise as final-time limits of Ricci flow

Our initial motivation for this project was to investigate the contin-

uation of Ricci flow after certain finite-time singularities. Here we list some

examples of smooth Ricci flows which have a model pinch has final-time limits.

1.3.1 The standard neckpinch

In [AK07], Angenent and Knopf considered neckpinches occuring on

singly warped products over an interval. They proved that the warping func-

tion of the final-time limit of a neckpinch satisfies the asymptotics φ(x) =
√
u(x) ∼ x

|log x| , or V0 ∼ 4
log u

, near the singular end. In [ACK12], which was

the main inspiration for our first theorem, Angenent, Caputo, and Knopf con-

structed Ricci flows emerging from any metric with that asymptotic profile.

1.3.2 Degenerate neckpinches

Another singularity that may arise in the category of warped products

of spheres over an interval is the degenerate neckpinch. In this case, An-

genent, Isenberg, and Knopf showed in [AIK15] that the final-time limit has

the asymptotics φ(s) ∼ sβk where βk = s
2

2k+1 , k ∈ N \ {0}. In [Car16] the

author constructed flows emerging from metrics with these asymptotic profiles.
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φ =
√
u

ψ =
√
w

φ =
√
u

ψ =
√
w

Figure 1.4: Top: the singularity described in Section 1.3.3. Bottom: the
singularity described in Section 1.3.4. The pictures depict the manifold, from
left to right, before, during, and after the singular time. On each row, the
rectangle in the middle picture shows a neighborhood which is a part of a
model pinch. (In the second row, there are actually two model pinches: to
the left and to the right). In each picture the horizontal axis is the arclength
from the left side. The dashed lines in the lower-right figure indicate that the
manifold has two connected components.

1.3.3 Generalized cylinder singularities

For a third example of a singularity, consider the doubly-warped prod-

uct depicted in the top row of Figure 1.4. A more stylized picture of a neighbor-

hood of the singularity is Figure 1.5. The metric is a doubly warped product

over an interval, with (F, gF ) = (Sp, gSp), and the singularity occurs at the

left endpoint of the interval. Before the singular time, the metric satisfies the

following boundary conditions at the left endpoint:

φ > 0, ∂sφ = 0, ψ = 0, ∂sψ = 0.

Here s is the distance from the left endpoint. A neighborhood of the left

endpoint has topology Sq × D1+p before the singular time. For the initial

20



metric, the size of the Sq factor has a deep minimum at the center of the

D1+p.

As time goes on, the Sq factor shrinks drastically, and the metric en-

counters a singularity which can be rescaled to a generalized cylinder Sq×R1+p.

Without rescaling, at the singular time the metric takes on the topology of the

cone over Sq × Sp (but is not asymptotically a metric cone). This singularity

has not been rigorously constructed, but we provide a formal argument in Ap-

pendix C. We claim that the singular pinched metric should have asymptotics

φ ∼ s

log s
, ψ ∼ s. (1.5)

This is an unsurprising result. The factor corresponding to the Sq behaves

similarly to a standard neckpinch. The 1 + p dimensional part of the metric,

dx2 +ψ2gSp , is close to being a flat D1+p, which corresponds to ψ = x exactly.

The flat metric is stable enough that the perturbation from the pinching factor

does not affect it too much.

In the forward evolution of metrics with asymptotics (1.5), which we

investigate here, the size of the Sp factor expands and the neighborhood takes

on the topology D1+q × Sp.

1.3.4 Submanifolds of neckpinches

We can also consider a doubly-warped product over an interval where

φ has a neck somewhere in the interior of the interval. Then we can force

a singularity to occur in the interior of the interval modeled on R1+p × Sq.
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Figure 1.5: A Ricci flow through a model pinch with q = 2 and (F, gF ) =
(S1, gS1). The initial picture is a neighborhood with topology S2 ×D1+1, the
middle picture has topology of the cone over S1 × S2, and last picture has
topology D1+2 × S1.

Here there is an Sp worth of singular points. While the previous example was

also modeled on R1+p×Sq, this one will have different asymptotics before the

singularity because φ it is constant in p directions. Rather than seeing the

operator ∆Rp+1 acting on rotationally symmetric functions in Section C.2.1,

we will see ∆R with p negligible directions.

This type of singularity should be stable in the class of doubly warped

products; perturbations leave φ with a neck near x = 0. However, it should

not be stable in the full class of riemannian metrics. It is not even stable in

the class of singly warped products

gB + φ(b)2gSq

where B = R× Sp and the original metric has gB = dx2 + ψ(x)2gSp . Indeed,

if we allow φ to also depend on the Sp factor and perturb it so it has a strict

local minimum at some point on that factor, we should approach a singularity
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at a single point on the Sp factor.

1.3.5 Scarred neckpinches

Here is an example which leads to a metric which is not quite a model

pinch. Consider a standard singly warped neckpinch with spheres of dimension

Sq: the initial metric is of the form dx2+u(x)gSq and the metric at the singular

time is a model pinch. This has a forward evolution, which recovers with a

smooth (but highly curved) disc of dimension 1 + q at the tip. So, we have a

Ricci flow of a singly warped product, at least on an open subset of [−1, 1]×Sq,

for times t ∈ [T1, T2], T1 < 0 < T2.

Now, the Ricci flow of warped products with Einstein fibers does not

care about the Riemannian curvature tensor of the fiber metric, it only cares

about the Ricci curvature. In other words: suppose we have a Ricci flow on

B × F of the form

gB(t) + u(t)gF1

(where for each t, u(t) : B → R+) and RcgF1 = µgF1 . Suppose (F2, gF2) is

another Einstein manifold with RcgF2 = µgF2 . Then

gB(t) + u(t)gF2

is also a Ricci flow.

Therefore, in the Ricci flow through a standard neckpinch, we can swap

out gSq with any Einstein manifold (F q
2 , gF2) of our choosing, provided it has
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the same scalar curvature as gSq . The resulting object satisfies Ricci flow

wherever u > 0, but is not a manifold for t > 0. Around the new points at the

tip, the result has the topology of the cone over F2. The forward evolution

has a scar as a result of its surgery.

A special case of this situation is when gF2 is the round metric on

F2 = Sq/Γ for some group Γ. This case is important because it clearly cannot

be ruled out by a pointwise curvature condition, and so it is relevant to the

situations described in Section 1.1.2. The resulting object after the singularity

is an orbifold. As we mentioned in Section 1.1.2, this was dealt with in four-

dimensions in [CTZ12].

Of relevance to us is the case q = 2k and F2 = Sk×Sk (or, q = k1 + k2

with the correct scaling of two sphere factors). In this case, the metric at the

singular time has the form 5

g = dx2 + u(x)gSk + u(x)gSk .

It satisfies all of the conditions of a model pinch except for (MP3), since u = w

and µF = µ. Since Sk × Sk is unstable under Ricci flow (we can perturb the

size of one of the factors) we thought perhaps there could be two alternative

forward evolutions where either of the factors becomes positive after tlahe

singular time. We now believe that this is not possible, see Section 1.5.3.

5 As you may have noticed, we are always lazy with writing the lifts of metrics and
tensors etc. This is a place where it looks funny, because u(x)gSk = u(x)gSk . What we
mean is: one of the gSk is the lift of the standard gSk under the map R × Sk × Sk to the
second factor, and the other is the lift of the standard gSk under the map R × Sk × Sk to
the third factor. Et cetera.
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1.4 Shape of the forward evolution

In this section we describe various properties of the forward evolution

g(t) of a model pinch. As time goes on, the metric continues to be a doubly

warped product:

g(t) = a(x, t)dx2 + u(x, t)gSq + w(x, t)gF .

Furthermore, we prove that u continues to be increasing in x. Therefore we

may write w and v = u−1|∇u|2 as functions of u, and

g(t) =
du2

uv
+ ugSq + wgF .

An advantage of this description is that it is diffeomorphism invariant. It is

good to also keep in mind that the function v is invariant under scaling the

metric.

For our initial metric, the derivatives of u and w are relatively small.

Therefore (after investigating the curvature of warped products) we see that

−2 Rc(X, Y ) ≈ −2(q − 1)u−1 (ugSq)− µFw−1 (wgF ) = −µgSq − µFgF .(1.6)

Forward in time, this approximation continues to hold for a short time,

while the derivatives of u and w continue to be small. We call the region where

v = u−1|∇u|2 continues to be small the “productish” region. Let ν(t) = V0(µt).

The productish region is the set

{
(x, t) :

u(x, t)

tν(t)
≥ σ∗ and u < u∗

}
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for some sufficiently large σ∗. In this region, we have v ≤ ε; by choosing σ∗

large and u∗ small we can force ε as small as we wish.

In the productish region, we get the approximations

v ≈ Vprish :=
u+ µt

u
V0 (u+ µt) (1.7)

w ≈ Wprish := W0 (u+ µt)− µF t. (1.8)

Note that these approximations would be exact if the approximation (1.6) were

exact and hence u(x, t) = u(x, 0)− µt, w(x, t) = w(x, 0)− µF t, and

v(x, t) =
|∇u(x, t)|2
u(x, t)

=
|∇u(x, 0)|2
u(x, 0)

u(x, 0)

u(x, t)
= V0(u+ µt)

u+ µt

u
.

In Section 2.2.4 we give some corollaries of our control in the productish

region.

Now we come to a crucial juncture in the calculation of our approximate

solution. We claim that the approximations (1.7) and (1.8) work for u(x, t) ≥

tν(t)- in particular they work for u � t. To understand the approximations

for small u, write

ν(t) = V0(µt), V̂0(u/t, t) =
V0(µt(1 + µ−1u/t))

ν(t)
,

ω(t) = W0(µt), Ŵ0(u/t, t) =
W0(µt(1 + µ−1u/t))

ω(t)
.

Using our assumptions on V0 and W0, particularly (MP4), we can prove

V̂0(u/t, t) ≈ 1 + µ−1(u/t)ν [1](t) and Ŵ0(u/t) ≈ 1 + µ−1(u/t)ω[1](t). Then
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our approximations say

v ≈ µσ−1(1 + µ−1(1 + ν [1](t))ν(t)σ) (1.9)

w ≈ ω(t)(1 + µ−1ω[1](t)ν(t)σ)− µF t (1.10)

where σ = u/(tν(t)).

If the left end of the manifold is to be smooth and compact, v cannot be

small up to u = 0. In fact, v = 4 is a necessary condition at the left endpoint.

At the left end, on the factor I×Sq, we glue in a steady Bryant soliton of size

≈ tν(t) =: α(t). This is a metric on R1+q that moves only by diffeomorphisms

under Ricci flow. We call the region where σ stays bounded, where we see

the Bryant soliton, the “tip region”. The asymptotics of the Bryant soliton

as u → ∞ match with the term µσ−1 in (1.9). That we see a steady soliton

is in accordance with the fact that we are scaling at a rate faster than t: as a

general principle, if we scaled at rate t we would expect an expanding soliton,

whereas if we scale at a faster rate we find a steady soliton.

For the factor F , the warping function is approximately constant. There-

fore we expect to be able to attach a large F factor to our Bryant soliton. The

approximate size of the unrescaled F factor is ω(t) − µF t = W (µt) − µF t.

Taking for simplicity the case µF 6= 0, our assumptions imply that ω − µF t &

t � tν(t). Therefore when we scale by tν(t) the size of this factor goes to

infinity, and around any point it approaches a Euclidean factor.

Thus, the zeroth order approximation of the metric near the tip (in

other words, the expected limit of the rescaled metric as t↘ 0) is (Bryant Soliton)×
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(Euclidean metric). We can get this approximation in a region of the form

{
(x, t) : σ < ν−1/2

}
.

As t↘ 0 (so ν ↘ 0) this region covers the whole Bryant soliton.

We also need to find the first order approximation near the tip. The

perturbation has size ≈ ν. The equation we get in space is

(Linearization of Ricci Flow)[g1] = g0,

where g0 and g1 represent the zeroth and first order approximations. This gives

us an equation to solve for g1. Of interest is that on the F factor, the solution

coincides with the soliton potential, times gF . Our first order approximation

matches with all of the terms in (1.9), (1.10).

1.5 Sharpness and further questions

1.5.1 Regularity conditions (MP4)

The regularity condition is not too strong, in particular some of the

assumptions should be implied if we assume that enough derivatives exist and

are monotone. For example, if W0 can be written as a power of u times

something monotonic that grows or dies slower than a power, then W0
[1] is

finite. Note that an implication of |W0
[1]|+|W0

[2]|< C is that W0(ru)
W0(u)

can be

bounded for small r, independently of u. In particular, W0(u) = eu
−1

and

W0(u) = e−u
−1

both do not satisfy our assumptions. We cannot offer any

guess as to whether our results hold for these functions.
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As an example of a more wild profile for W0, consider W0(u) = 2 +

sin(log(u)). Note that if the initial metric has bounded length near u = 0,

then this may appear quite nasty. The curvature of the gF factor of the metric

is rapidly oscillating between positive and negative extremes, but the curvature

of the gSq factor will be dominant. Around any point where u = u], rescaling

by u] we will see a product metric on a long (size ≈ 1/V0(u])) scale.

We can think of the conditions on V0 in the same way, but it may be

more reasonable to look at examples in terms of the arclength coordinate. So,

consider the I × Sq part of the metric written as

dx2 + u(x)2gSq , x ∈ (L0,∞), L0 = 0 or L0 −∞.

The condition that u∂uV0(u)
V0(u)

< C actually says, in a sense, that u must be

small enough in terms of x. (Written in terms of x, this condition will involve

the functional inverse of u.) The following functions satisfy the regularity

conditions on V :

• L0 = 0 and u(x) = xp|log(x)|q, where p > 2 and q ∈ R, or p = 2 and

q < 0.

• L0 = −∞ and u(x) = |x|−plog(|x|)q, where p > 0 and q ∈ R.

• If we write u(x) = exp(−f) where f → ∞ as x ↘ L, then the condi-

tion that |V0
[1]|< C is equivalent to (1/f ′)′ < C. For example, u(x) =

exp(−1/x), L0 = 0 or u(x) = exp(x), L0 = −∞ are both valid model

pinches.
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It is possible to drop the requirement that k goes to 5 to k going to

2+α in the Hölder sense. As is typical, the regularity theorems we apply (and

Taylor’s theorem) require a bit more than integer regularity. We are lazy and

just drop an integer each application. The same applies in Theorem 1.2.4.

1.5.2 The profile φ(x) = log(|x|)−1

Our results do not provide a forward evolution from the initial metric

with I = (−∞,∞), and u(x) ∼ log(|x|)−2 at x = −∞. Note in that case

v = u−1|∇u|2= 4 log(|x|)−4x−2

so V0(u) = u2 exp(−2/u). Then V0
[1] = 2u−1 + 2, which violates condition

(MP4).

We conjecture that there is no forward evolution from this profile. Here

is a possible reason. For any r > 0, the region which looks approximately like

a skinny cylinder of radius r is quite long in comparison to r. More precisely,

fixing ε there is a Cε > 1 such that for any r we have the following. The region

where the radius φ is within a factor of (1± ε) of r has length (Bε)
1/r2 , which

is very large for small r. The Bryant soliton outside of this initial region does

not have enough time to come save it from collapsing before time t ≈ r2. See

Figure 1.6.

1.5.3 The conditions on the size of W0 (MP3)

The condition (MP3) is vacuous if µF ≤ 0. For simplicity say µF = µ.
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Figure 1.6: The graph of 1/|log x|. There is no salvation in sight for such a
long cylindrical region.

We believe that it is possible to relax the condition (MP3) and still

have a forward evolution with the same asymptotics. Let’s rapidly go through

a calculation. Suppose W0(u) = (1 + H0(u))u, where H0(u) ↘ 0 (violating

(MP3)). Calculating from (1.8), in the productish region where u > Ctν(t),

w ≈ (1 +H0(u+ µt))(u+ µt)− µt

= u+H0(u+ µt)(u+ µt).

If we write η(t) = H0(µt) then for points where Ctν(t) < u� t we have (recall

σ := u
tν(t)

):

w

tν(t)
≈ σ + µ

η(t)

ν(t)
. (1.11)

First consider the case H0(u)� V0(u) (i.e. η(t)� ν(t)). Then scaling

w in the same way we scale u sends it to infinity, and w is approximately a

constant. I expect this case to behave similarly to the case that is rigorously

dealt with in this thesis. The major road block in dealing with it, for us, is
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reproving Lemma 2.3.5 which controls the derivative of w and therefore con-

trols the level of interaction between the evolution of v and w. Unfortunately

our method gives us no more wiggle room in this lemma.

To continue with our speculation, consider the case when H0(u) =

c0V0(u). Then in (1.11) we find

w

tν(t)
= σ + c0µ.

We still would have the approximation (1.9) for v. This gives us the asymp-

totics for an Ivey soliton [Ive94], which is a complete soliton on R1+q×F of the

form dx2 + usol(x)gSq + wsol(x)gF . (The function u(x) goes to zero at x = 0,

and w(x) stays positive.) So, in this case I expect to see the Ivey soliton in

the rescaled limit at the tip. This case should be more difficult, because the

system is more strongly coupled.

In the case when H0(u) � V0(u), I do not expect a smooth forward

evolution, but there may be a forward evolution with bounded Ricci curvature

everywhere. In this forward evolution we glue in a Bryant of dimension 1 +

(q + dim(F )), but with the sphere fibers Sq+dim(F ) replaced with the Einstein

manifold Sq × F . Indeed, the case H0(u) = 0 is the situation discussed in

Section 1.3.5.

The reason I do not expect a smooth forward evolution is the following:

consider H0(u) = εV0(u). Then, we are in the case when we expect the Ivey

soliton. The exact asymptotics of the Ivey soliton we get are determined by

ε, and as ε ↘ 0, this family of Ivey solitons approaches the Bryant soliton
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with Sq+dim(F ) replaced with Sq × F . Therefore, even trying to approximate

the singular initial metric with smooth ones should lead us to the nonsmooth

case.

1.5.4 The F -reasonable assumption

These conditions were an annoying thing to organize.

First, something like (MR1) is expected: if we allow perturbations

which are not warped products, then we end up dealing with the full curvature

of the metric, and we have to control it somehow.

Now, why do we have to make the annoying assumption (MR2) when

µF = 0? Consider the zeroth order approximation in the tip region, w ≈

W0(µt)−µF t. Note if µF > 0 then by our assumption (MP3), W0(µt)−µF t ≥

cµF t. If µF < 0 then W0(µt) − µF t ≥ µF t automatically. However, if µF = 0

we don’t have a lower bound on w/t.

This makes the case

µF = 0, RmgF 6≡ 0, W0(u) = o(uV0(u))

interestingly annoying. In this case, the dominant sectional curvatures are

those of the F factor, but they have an extreme cancellation in the Ricci flow

and they are not in charge of the evolution. The rescaled metrics 1
α(t)

g(t)

actually do not converge at the tip to a Bryant soliton with a euclidean factor

attached. Instead, the Ricci-flat factor collapses as t ↘ 0, even with the

rescaling.
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We need the assumption (MR2) because we use the convergence to a

Bryant Soliton in the proof of the asymmetric case (Theorem 1.2.4).

1.5.5 The closeness required in the asymmetric case

Our condition for Theorem 1.2.4 is that the distance between the asym-

metric metric and the model pinch goes to zero near the tip at least as fast

as a specific rate (εV0(u)). (To understand this result it is good to note that

the quantity |g − Φ∗gmp| is scale-invariant.) There is a sense in which this

is probably not optimal. Our proof technique yields more than is stated in

Theorem 1.2.4: it says that g(t) actually stays close to the forward evolution

from gmp. We make no attempt to update the approximate model pinch.

Another theorem that we can compare Theorem 1.2.4 to is Theorem 1.1

of [GS16], and specifically equation (1.1). That theorem constructs forward

evolution from metrics close to having conical singularities. There, gc is a cone

and the requirement (1.1) is that near the singularity the singular metric g

satisfies |g − Φ∗gc|= o(1) as we approach the singularity. This seems stronger

than our theorem, because it makes no assumption on the rate at which it

approaches the singularity. On the other hand, the case of a cone (which our

theorem does not handle) is the case when V0 is constant, so perhaps our

condition is not dissimilar.
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1.6 Reaction-diffusion equations

We compare our results to results on reaction diffusion equations:

w = awp (1.12)

Here is the heat operator = ∂t−∆w, and we are considering w : Rn → R≥0.

The laplacian is the standard euclidean one.

The mathematical interest of such equations revolves around the fact

that smooth solutions typically encounter singularities in finite time. By a

singularity, we mean a time T for which supxw(x, t)↗∞ as t↗ T (if a > 0)

or infxw(x, t) ↘ 0 as t ↘ T (if a < 0). For example, if the equation (1.12)

is given constant initial data, it reduces to an ordinary differential equation.

This can be explicitly solved and has a finite time singularity which occurs in

all of space at once.

If the initial value of w is strictly positive, then we can apply standard

parabolic theory to conclude that there is a smooth solution w, which will

exist up to some time when w is no longer strictly positive. (The basic idea

is: as long as w is positive, we can consider (1.12) as a linear equation with

a coefficient that happens to depends on w, but is bounded.) However, we

should expect that w may hit zero at some finite time- we call this a singular-

ity. Indeed, if w is initially bounded a singularity must occur: the maximum

principle tells us that the maximum of w decreases at least as fast as the

corresponding ODE for constant solutions. The central goals are to under-

stand what the singularities look like, and whether there is a solution which
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continues past the singularity.

Next we make the observation that the nature of the singularity is not

obvious. Rewrite the equation (1.12) for clarity:

∂tw = ∆w − |a|wp

the term |a|wp is the “reaction” term and the term with the laplacian is the

“diffusion” term. Consider the equation with only the reaction term:

∂tw(x, t) = |a|wp(x, t).

If p < 0, then the smaller w is, the faster it decreases. Thus, the evolution

makes local minima more pronounced. On the other hand, the diffusion term

∆u causes the solution to become more constant. This means there is a fight

between the reaction term and the diffusion term, and it’s not immediately

clear, for example, whether w will typically go to zero at one location or in an

interval. In fact, the possible qualitative descriptions of singularities depend

heavily on both p and the dimension.

1.6.1 Comparing to warped-product Ricci flow

Let us make an observation about (1.12). If we set u = w1−p then u

satisfies, for some constant a′ > 0 depending on a and p,

u = a′
(
−1 +

p

1− pu
−1|∇u|2

)
(1.13)

This works for both p < 1 and p > 1, so specifying the exponent p in (1.12) is

equivalent to specifying the coefficient p
p−1

on u−1|∇u|2 in 1.13. An advantage
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of 1.13 is that performing scaling is computationally easier: it is easy to check

that we can scale space like α, and both u and t by α2, and arrive at the same

equation.

Thinking about this transformation in the opposite direction, one makes

the following observation. If one encounters an equation like (1.13), or any

equation like

f = af r + bf−1|∇f |2

the equation can be put into the form (1.12) with a power p depending on

both r and b/a. Therefore one must be careful when guessing the qualitative

properties of solutions, as they depend on the exact coefficient b.

Now, consider the Ricci flow of a metric of the form g = gB + ugSq

where u : B × [0, T )→ R+. Under Ricci flow, u satisfies ((B.3))

gBu = −µ+ 1
4
(µ− 2)u−1|∇u|2. (1.14)

So u is the choice of function which puts the evolution in the form (1.13).

(V ol := uq/2 is the choice of function which puts the evolution in the form

(1.12).) It is hard to come up with a good comparison to reaction-diffusion

equations, because ∆gB is changing in time and coupled with u. Furthermore,

if we chose to consider g instead of gB , we change the coefficient on u−1|∇u|2.

We have found that in our situation the results match closest to the case (1.13)

with p/(1− p) > 0, i.e., p ∈ (0, 1). To emphasize again that this metaphor is

not perfect, note if q = 2 then µ = 2 and the right hand side of (1.14) is −2.
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1.6.2 Singularity recovery

In [GV97], Galaktionov and Vazquez constructed solutions to (1.12)

which continue past singularities. The solution may take values ∞ or 0 on

some set. Sometimes, the solution is even constantly infinite or constantly 0

right after the singular time, even if the singularity doesn’t occur everywhere.

However, they prove that in some cases, the continuation is non-trivial. The

construction uses tools from semigroup theory, and relies on comparison for

the heat operator is that is not directly applicable here.

Consider the case n = 1 and p ∈ (−1, 1), Galaktionov and Vazquez

show, in some cases, a nontrivial continuation. At the singular time, the

function gets a zero set which starts expanding. At the edge of the zero-set,

the solution looks like a scaled-down version of a traveling wave- a solution to

(1.12) which moves by translation only. In the metaphor with warped-product

Ricci flow, this traveling-wave plays the role of the Bryant soliton.

1.7 Related Work

1.7.1 Short-time existence results for Ricci flow

We have mentioned [ACK12], which constructed forward evolutions

from some specific model pinches on singly warped products and was the

original motivation for the current thesis. Recent work that is very close in

spirit to ours is [Der16] and [GS16]. In [Der16], Deruelle showed that for
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any cone with positive curvature 6 , there is an expanding Ricci soliton which

limits, backwards in time, to the cone. This can be considered as Ricci flow

starting from the singular conical space. In [GS16], Gianniotis and Schulze

allow us to start Ricci flow from any manifold which has singularities modeled

on some of these cones, similarly to our Theorem 1.2.4.

Another work that deals with forward evolution from singular metrics

is [ACF15]. First, Alexakis, Chen, and Fournodavlos prove that there is a

singular steady Ricci soliton of the form

dx2 + φ(x)2gSq

where φ(x) ∼ x1/
√
q at 0 and q ≥ 2. Furthermore, they show stability of the

soliton, so that if dx2 + φ̃(x)2gSq is a metric with φ̃(x) close enough to φ(x), it

has a forward evolution which stays close to the soliton. The metric becomes

a smooth manifold with boundary, with the boundary growing as time goes

on.

Let’s summarize the results for metrics of the form dx2+φ(x)gSq , q ≥ 2,

ignoring requirements on derivatives of φ. The case φ(x) ∼ x is the case when

the metric is smooth. The case φ(x) ∼ ax for a < 1 is covered by [GS16]. The

case φ(x) . ax for all a < 1 is covered here. For φ & x, we just have [ACF15]

which deals with φ ∼ x1/
√
q.

The first result on existence for Ricci flow was Hamilton’s original paper

[Ham82]. There, short-time existence for complete compact manifolds was

6 i.e. a metric dx2 + x2gX , where Rm[gX ] ≥ 1.
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proven using the Nash-Moser inverse function theorem. A more complicated

argument than is standard was needed because the equation, considered locally

in coordinates, is not strictly parabolic. In [DeT83], DeTurck used a method

now known as the DeTurck trick to turn the equation into a strictly parabolic

one, yielding a shorter proof. DeTurck had previously done similar work on

the local prescribed Ricci problem, i.e. the elliptic version of the problem

[DeT81]. We deal more with the DeTurck trick in Section 3.1.1.

In [Shi89], Shi proved existence for (possibly noncompact) complete

manifolds with bounded curvature. Shi solves the Dirichlect problem on com-

pact sets (using DeTurck’s trick) and takes a limit. Furthermore, he gave

local derivative estimates- analogues of those generally available for parabolic

equations- which are widely used. A nontrivial consequence of the result is

that any metric with bounded curvature has a comparable metric with all co-

variant derivatives of the curvature bounded (where the bounds involved only

depend on the dimension and the initial bound on the curvature). The new

metric is found by running Ricci flow for a short time from the initial metric

with bounded curvature.

As it is here, existence for Ricci flow from a class of metrics is usually

tied to a uniform bound on existence time for some “approximating” class.

Supposing we can show uniform short-time existence and estimates for a class

of Riemannian manifolds, then any manifold which lies in the “boundary” of

that class should have a Ricci flow obtained by taking the limit of Ricci flows

in that class.
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In [Sim02], Simon provides an evolution of C0 metrics by Ricci cur-

vature. The requirement is that the C0 metric has bounded curvature (in

that it is the limit of metrics with bounded curvature). This has topological

implications, for example, such a space must topologically be a manifold.

There has been success for showing existence of Ricci flow assuming

just a lower bound on (some flavor of) curvature. The lower bound may be

non-negative curvature, almost non-negative curvature 7, or just the existence

of some (possibly negative) lower bound. The metrics which we deal with in

this thesis and are relevant to recovery from singularities satisfy

Rm ≥ −f(|Rm|)|Rm| (1.15)

where f : R+ → R+ is some function satisfying f(x) → 0 as x → ∞. (Hence

they have positive scalar curvature, although they do not have positive Ricci

curvature.) We don’t know of any work that deals with just the assumption

(1.15). Furthermore, we can make model pinches (unrelated to recovery from

singularites) which have no such bound (for example, by taking µF < 0 and

making w � u).

In [Sim09], Simon shows that one can flow a three-dimensional met-

ric space with an upper bound on diameter, lower bound on the volume of

balls, and nonnegative curvature. This has topological implications for 3-

manifolds with nearly nonnegative curvature. [Sim12] starts the flow from

7 E.g., the curvature is larger than −ε0 where ε0 depends on the dimension and a lower
bound on the volume of balls of radius 1. In some places in the literature almost non-negative
is taken to mean (1.15), but that is not the case in the works cited here.
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an arbitrary 3-manifold with only a (possibly negative) lower bound on Ricci

curvature, assuming also a very mild condition on the curvature growth at

infinity. Cabezas-Rivas and Wilking [CRW11] show short-time existence as-

suming non-negative complex sectional curvature. They use the fact that such

manifolds have an exhaustion by compact convex sets, and they cosntruct a

Ricci flow on the compact sets. Xu [Xu13] shows short-time existence assum-

ing just a lower bound on Ricci curvature, and an integral estimate on the full

curvature tensor in balls.

Bamler, Cabezas-Rivas, and Wilking [BCRW17] deal with Riemannian

manifolds with a variety of almost-nonnegative curvature assumptions, includ-

ing almost non-negative curvature operator and almost non-negative complex

sectional curvature. They show that the almost non-negativity is preserved for

a short time, with estimates only depending on the lower bound on curvature

and the lower bound on the volume of balls. They also provide existence for

non-compact manifolds with no upper bound on curvature (by taking limits of

Ricci flows on an exhaustion by open sets). In particular [BCRW17] gives an

alternative route to dealing with some of the conical singularities in [GS16].

In a different flavor, in [Top10] Topping created Ricci flows where the

initial metric is an incomplete surface, and the flow instantanteously becomes

complete with the same topology. As an example, a plane with a point removed

instantaneously devolops a cusp of infinite length. By now, Topping and others

have deveoloped a strong well-posedness theory for instantaneously complete

Ricci flow in dimension two. Any surface, possibly incomplete and possibly
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with unbounded curvature, has a unique forward flow which is instantaneously

complete [GT11], [Top15].

Topping also constructed, in [Top11], a two-dimensional Ricci flow on

R2 for t ∈ (0, T2), called a contracting cusp. The metric is smooth and com-

plete, but on R2 \ {0}, as t↘ 0 the metric limits to a metric with an infinite-

length cusp. (In fact, the construction in [Top11] is more general than stated

here.) Therefore, from the infinite-length cusp, there are two reasonable for-

ward evolutions. One is the unique complete forward evolution on the same

topology, and the other is the topology-changing evolution which compacti-

fies the cusp. The results in this thesis include similar contracting cusp flows

in higher dimensions, e.g. a metric R3 which limits to a cusp on R3 \ {0}.

I suspect that in dimensions higher than two, there is no complete forward

evolution from a cusp on the same topology.

1.7.2 Warped Products and Ricci Flow

Singly and doubly warped products are important sources of examples

in riemannian geometry and Ricci flow. The metrics are on the topology

M = Bm×N q, for some manifold B which we call the base. The metrics have

the form

g = gB + φ2(b)gN ,

where gB is a metric on B, gN is a metric on N , and φ : B → R+. We use N for

the fiber manifold here because it doesn’t necessarily represent either the Sq
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factor or the F factor in our model pinches. However, we need to assume that

gN is an Einstein manifold: 2 Rc[gN ] = µNgN . If we don’t assume this then

the metric ceases to be a warped product under Ricci flow: even pretending

that the Ricci tensor on each fiber is just the Ricci tensor of gN , the fibers

would perform Ricci flow at different rates and therefore cease to be scalings

of each other.

The equation for Ricci flow on a warped product becomes, with q =

dim(N),

∂tg = −2 Rc[gB] + 2qφ−1∇∇φ

∂tφ = ∆Bφ− 1
2
µN(1− |∇φ|2)

In this thesis we are mostly concerned with doubly warped products

over intervals, i.e. metrics of the form

a(x)dx2 + φ2(x)gSq + ψ2(x)gF , x ∈ I.

These are singly warped products in two ways: with base I × Sq and fiber F

or with base I × F and fiber Sq. Both points of view have been useful for our

intuition. A big simplification for a doubly warped product over an interval is

that the hessian of a function of x is much simpler than that of a function of

a general base.

Many Einstein manifolds and Ricci solitons are doubly-warped prod-

ucts. See for example [Böh98], [LPP04] in the Einstein case and [Bry], [Ive94]
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for Ricci solitons. A similar class of metrics which leads to many exam-

ples is cohomogeneity-one metrics [Cao96], [FIK03], [B9̈9], [DW09], [DHW11],

[DW11], [BDGW15], [Sto15], [Win17], [App17]. There has also been a lot of

work classifying Einstein manifolds or Ricci solitons which are singly-warped

products over higher-dimensional bases, see [KK03], [CSW11], [PW10], [HPW12],

[MZ15].

Furthermore, as we have mentioned warped products over intervals

give many examples of singularity formation in Ricci flow, with many types

of singularities. We have mentioned [Sim00], [AK04], [AK07], [AIK15]. Other

examples on cohomogeneity-one metrics are [IKŠ16], [IKŠ17]. In [LŠ14], Lott

and Šešum give a long-time result for Ricci flow with flat fibers over two-

dimensional manifolds, a similar result is [Mar17].
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Chapter 2

Forward flow from symmetric metrics

2.1 Overview of the proof and tools

Before anything, I want to make the reader aware of Appendix D, which

starts on page 208, and densely lists a lot of the notation we use. I hope it is

of use.

In this chapter we prove Theorem 1.2.2. We construct the forward

evolution g(t) as a limit of mollified flows. This is completed in Section 2.4.

As we mentioned in Section 1.4, the forward evolution has two regions:

the productish region where the metric continues to look like a product (as

the initial metric does) and the tip region where we glue in a steady soliton.

Really, there is a third region, the “outer” region, which is the complement

of these two. Since the initial metric is assumed to be smooth in the outer

region, it is not a burden to control the metric there.

Appendix A proves generic estimates for the type of PDE encountered

in the productish region. The results of Appendix A are used in Section 2.2

and also much later in Section 3.3.3. Results in Sections 2.2 and 2.3 will

control our mollified flows in the productish and tip regions, respectively. For

a pleasant reading, we recommend skipping the internals of Appendix A, and
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Tip

Productish

Smooth

t

u

u ∼ tν(t) u ∼ tν(t)1/2

Figure 2.1: Map of the tip, productish, and outer regions

Sections 2.2 and 2.3 at first. Hopefully our overview here and summarizing

remarks in Section 2.4 suffice.

In each region, we find an approximate solution. The main lemma of

Section 2.2 is Lemma 2.2.2. This lemma assumes:

• A Ricci flow is close to our approximate solution in the productish region

at its initial time.

• The Ricci flow satisfies a priori control around the left boundary of the

productish region, which is strictly within tip region.

• The Ricci flow satisfies a priori control around the right boundary of the

productish region, which is strictly within the outer region.

and implies control within the productish region. Similarly, the main Lemma

of Section 2.3 is Lemma 2.3.2. This lemma assumes:

47



• A Ricci flow is close to our approximate solution in the tip region at its

initial time.

• The Ricci flow satisfies a priori control around the right boundary of the

tip region, which is strictly within the productish region.

and implies control within the tip region.

The control that we get in both cases is of the form V − < v < V + and

W− < w < W+, where v = u−1|∇u|2 and w are the functions associated to

the evolving warped product metric a(x, t)dx2 +u(x, t)gSq +w(x, t)gF , and V ±

and W± are functions of u.

In Section 2.4.1, we remove some of the a priori assumptions of Lemmas

2.2.2 and 2.3.2. We show that, if the time is small enough, a metric satisfying

the conclusion of Lemma 2.3.2 satisfies the a priori estimate at the left edge of

the productish region which is required to apply Lemma 2.2.2, Also, a metric

satisfying the conclusion of Lemma 2.2.2 satisfies the a priori estimate at the

right edge of the tip region which is required to apply Lemma 2.3.2. It might

seem like we are stuck with a circular argument, but we can get around it.

We go through the motions here, since it’s a type of argument we use often.

Assuming we have the required bounds at an initial time T1, consider the

maximal interval [T1, T2) such that the conclusions of Lemmas 2.2.2 and 2.3.2

hold. By continuity T2 > T1 (since we have a bit of room in the estimates at the

beginning) and at time T2 the conclusions hold with some strict inequalities

replaced by non-strict ones. These non-strict ones are enough to show the
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a priori estimates required; so we would get a contradiction if T2 was small

enough for us to apply our lemmas.

In Section 2.4.2, for m > 0 we define mollified initial metrics g
(m)
init which

satisfy the initial assumptions of Lemmas 2.3.2 and 2.2.2. These mollified

initial metrics agree with the metric gmp on the set {u > m}. They have

bounded curvature, so there is a Ricci flow g(m)(t) starting from g
(m)
init for some

time T
(m)
exist which we would like to show is bounded from below independently

of m.

In Section 2.4.3 we control the curvature of the mollified initial metrics,

first in the outer region. This control allows us to prove the final a priori

estimates required by Lemma 2.2.2 at the right-hand side of the productish

region. Therefore the forward evolution of our mollified metrics satisfies the

conclusions of Lemmas 2.2.2 and 2.3.2. These conclusions also imply that the

forward evolution has bounded curvature in the productish and tip regions as

well, so we get a lower bound on the existence time.

Lemma 2.4.11 proves Theorem 1.2.2 by constructing a (subsequential)

limit of the Ricci flows from g
(m)
init .

2.1.1 Equations

Under Ricci flow, u evolves by

Bu = −µ+ 1
4
(µ− 2)v.
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Equivalently,

Mu = −µ− v.

The function w which controls the size of gF evolves by

Mw = −µF − y = −µF − w−1|∇w|2.

We use this point of view to find the approximate solutions in the productish

region. For an exposition of these equations for Ricci flow on warped products,

see Section B.1.

For finer control, we need the evolution of v and w as functions of u.

These are derived in Sections B.2.1 and B.2.2. We have

∂t;uv = uv∂2
uv − 1

2
u(∂uv)2 (2.1)

+ µ
(
1− 1

4
v
)
u−1v + µ∂uv

− 2(κ2)v,

where κ2 = 1
4
(dim(F ))w−2u2v2(∂uw)2, and

∂t;uw − uv∂2
uw = −µF − y + µ∂uw − µ/2v∂uw. (2.2)

2.1.2 The Maximum Principle

The maximum principle is a basic tool in the study of elliptic and

parabolic PDE. It lets us control solutions to a PDE by functions, called

supersolutions and subsolutions, which oversolve and undersolve the equation.

Some of the points in this section might be interesting even if you knew that.
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Here’s the most basic statement in the parabolic case. We consider

the domain (x, t) ∈ [a, b] × [0, T ], for some a, b ∈ R. We have a function

v : [a, b]× [0, T ]→ R. A simple example of a parabolic equation is (∂t−∂2
x)v =

F (v, ∂xv), for some function F : R → R. Suppose that v is a solution to

this equation, and v+ satisfies (∂t − ∂2
x)v

+ > F (v+, ∂xv
+) (so v+ is a “strict

supersolution” to this equation). Furthermore, suppose v > v+ at time 0, and

for all times v ≥ v+ on the boundary of (a, b). Then v > v+ everywhere in

(0, T )× (a, b).

To prove this, consider a first time t0 when v = v+ doesn’t hold on the

entire interval, and any location x0 in (a, b) where v = v+. A contradiction

follows from

∂tv ≥ ∂tv
+, v = v+, ∂xv = ∂xv

+, ∂2
xv ≤ ∂2

xv
+.

The generalization to the case v : M → R for a smooth manifold M

is immediate. In this case ∂2
x is replaced with some elliptic operator. For

instance, we think in this way when dealing with our equations in the tip

region, because there the left endpoint where u = 0 is a fake endpoint: it

can be considered as in the interior of the completion of the warped product

manifold. Other important generalizations deal with the case when we only

know (∂t− ∂2
x)v

+ ≥ F (v, ∂xv) instead of a strict inequality, but we won’t need

that here.

What we would like to talk about here is dealing with v : M → R2 and

other systems. In our situation this bold face v encapsulates the two evolving
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functions v and w. In such a general situation we have to be more careful with

what we mean by our inequalities. In our case, we need nothing fancy and

v < v+ just means that it is true componentwise, so v < v+ and w < w+.

Now, though, dealing with gradient terms is not so easy. At a first time

when either v < v+ or w < w+ is violated, we cannot say that ∇v = ∇v+

and ∇w = ∇w+! Only one of them will be true. If our equation is of the

form (∂t−∂2
x)v = F (v,∇v) then the simple version of the maximum principle

doesn’t carry through word for word. The problem is in terms where the

gradients interact. For a simple example consider

(∂t −∆M)v = 7v + |∇w|2

(∂t −∆M)w = 13w + v(∇w)2.

(For a real example, consider (2.1) wherein κ2 is a term containing some deriva-

tives of w.) The last term in the first line causes difficulty, because v = v+

does not give us any information on |∇w|2. The last term in the second line

is not as much of a problem. If we assume that in fact we have control from

both sides, v− < v < v+ for some v± which are close together, then we can

control the v part, and when w touches w+ we learn the value of ∇w.

In our situation, we deal with all of these terms by just getting a bound

on ∇w. These bounds come from regularity, and are presented in Lemma 2.2.5

(for the productish region) and Lemma 2.3.5 (for the tip region). This step

was the largest stumbling block at each generalization of the requirements on

the function W0 for the model pinch. In fact, as mentioned in Section 1.5.3, I
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feel that it is still not optimal.

2.1.3 Regularity

Regularity theory is fundamental to the study of elliptic and parabolic

PDE. In our case, we are interested in using it to get bounds which are some-

how uniform. Of course it is quite technical, but it is extraordinarily beautiful

once one takes a step back and realizes how non-obvious yet important the

statements are. Generally, citations of regularity are dismal, and we don’t

help. As a user of regularity theory, it is usually safe to say that the result

appears somewhere in [Lie96] or [OAL95], which are 452 and 648 pages1 re-

spectively and do not contain indices for their (differing) notation. The notes

[Kry91] are easier to read but less general. The situation is especially bad for

users of parabolic regularity; everything is just a standard generalization of the

elliptic case. If the reader is lucky, the relevant case appears as an exercise.

Bamler wrote a refreshingly clean statement of the interior Schauder es-

timates he needed in [Bam14] (Section 2.5). We co-opt this statement, because

it is exactly what we need except for standard generalizations. His statement

does not allow for the time-dependence of the coefficients that we will have,

but in fact the proof carries through exactly; the time dependence enters in

the estimate on the C2m−2,2α;m−1,α norm of fi in the middle of page 424. Fur-

thermore, his statement does not allow the parabolic ball to hit the initial

time, as we will need to. Accounting for this is also standard. In the proof of

1Single-spaced, not in double-spaced wide-equation thesis format
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Lemma 2.6 of [Bam14], one may apply Exercise 9.2.5 of [Kry91] rather than

Theorem 8.11.1 of [Kry91].

2.2 Control in the productish region

We define the productish region as a region on our forward evolutions

of the form

Ωprish =

{
(u, t) : u+ µt < u∗ and σ =

u

tV0(µt)
> σ∗

}
.

We will prove that in this region, the scale-invariant form of the gradient of

u, namely v = u−1|∇u|2, is bounded by C max(σ−1, V0(u)), which we can

make as small as we like by choosing σ∗ large and u∗ small. We tested the

name “productish” across many markets, and it was overwhelmingly met with

confusion. To us, though, it is clear: the productish region is where the metric

is nearly a product. We take the further liberty of using the abbreviation

“prish” as a subscript.

All constants and definitions in this section implicitly depend on di-

mensions, gF , and the chosen functions satisfying the model pinch conditions

V0 and W0. In the productish region, we will have approximations of the form

v ≈ V :=

(
u+ µt

u

)
V0(u+ µt)

and

w ≈ W := W0(u+ µt)− µF t.
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These come directly from the calculations in Appendix A. They may be guessed

by ignoring all terms in the evolution of v or w which depend on space deriva-

tives of v or w.

More precisely, we will prove that v is between V − and V +, and w is

between W− and W+, where

V ± = (1±DV )V, W± = (1±DV )W0(u+ µt)− µF t. (2.3)

We make some definitions to state the main result of this section. We

will assume that g(t) = a(x, t)dx2 +u(x, t)gSq +w(x, t)gF is a solution to Ricci

flow on [T1, T2]. Our definitions depend on constants u∗, σ∗, and D, as well as

csafe and Creg.

Definition 2.2.1. We say that g(t) is barricaded (by the productish barriers)

2 at a point if it satisfies

V − < v < V +, W− < w < W+

at that point.

We say that g(t) is initially controlled in the productish region if at

t = T1 and for all points satisfying (1/2)σ∗T1ν(T1) < u < 2u∗ it is barricaded

and, for k = 1, 2, 3,

uk∂kuv < uk∂kuV + csafeCregDV
2, ,

uk∂kuw < uk∂kuW + csafeCregDVW..

2In this section we only say “barricaded” but in Section 2.4 we will have to refer to either
barricaded by the productish barriers, or barricaded by the tip barriers.
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We say that g(t) is barricaded at the left of the productish region if it is

barricaded for all points satisfying (1/2)σ∗tν(t) < u < σ∗tν(t) and t ∈ [T1, T2].

We say that g(t) is barricaded at the right of the productish region if

it is barricaded for all points satisfying u∗ < u < 2u∗ and t ∈ [T1, T2].

We say that g(t) is controlled in the productish region if

(P1) For all points in Ωprish, the solution is barricaded.

(P2) For all points in Ωprish, and for k = 1, 2,

uk∂kuv < uk∂kuV + CregDV
2,

uk∂kuw < uk∂kuW + CregDVW.

Lemma 2.2.2. Let csafe < csafe < 1, Creg > Creg, D > D, u∗ < u∗(D,Creg),

and σ∗ > σ∗(D,Creg). Suppose 0 < T1 < T2 < T∗ where T∗ may depend on all

other constants.

Suppose g(t) is initially controlled, and barricaded at the left and the

right, of the productish region. Then g(t) is controlled in the productish region.

In proving the conclusions of Lemma 2.2.2, we can assume that they

hold on the interval [T1, T2). This is because they are both true at the initial

time by our assumption, and if they would fail at some time, by continuity of

the functions involved there is a first time Tbad > T1 such that at least one of

them fails and the strict inequality becomes equality somewhere. Therefore the

conclusions hold on the interval [T1, Tbad). If this implies that they hold at Tbad
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as well, then we have a contradiction. This extra assumption is usually useful

for controlling terms when we don’t care about the exact constant involved,

because in any case we can choose our constants u∗, σ∗, and T∗ so that it is as

small as we want (see e.g. Lemma 2.2.5).

With this in mind, Lemma 2.2.2 will be proven by Lemmas 2.2.6 and

2.2.7 below, which show items (P1) and (P2) respectively. First, in Section

2.2.1, we inspect our approximations V and W more closely.

2.2.1 Examining our approximate solution

We are claiming that v(p, t) ≈ V (u(p, t), t) where V is the function

V(u, t) =
u+ µt

u
V0(u+ µt) =

(
1 + µ

t

u

)
V0(u+ µt) (2.4)

The effectiveness of the barriers defined in (2.3) is dependent on V staying

small. In this section, we prove Lemma 2.2.4 which tells us that V does stays

small exactly in the productish region Ωprish, and also gives another description

of V and W . The proof is elementary, but the reformulation of V is key to

how the productish region hooks up with the tip region.

We aim to understand where V stays small. An apparent scary term

in (2.4) is t/u. Defining ρ = u/t, we can write

V =
(
1 + µρ−1

)
V0(u+ µt).

If we keep in mind that our main assumption on V0 is that V0(u) = o(1, u→ 0),

then the following lemma, which says something about where V is small, is

immediately apparent.
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Lemma 2.2.3. Let ε be given. For any ρ∗ there is u∗(ρ∗, ε, V0, µ) so that

{(u, t) : u+ µt < u∗ and ρ > ρ∗} ⊂ {(u, t) : V < ε}.

The discussion is not over: V does not get large if we fix ρ and send

u+µt↘ 0, as the factor V0(u+µt) helps us. To understand this factor better,

let

ν(t) = V0(µt), V̂0(ρ, t) =
V0 (µt(1 + µ−1ρ))

V0(µt)
.

Then by definition,

V0(u+ µt) = ν(t)V̂0(ρ, t).

By a straightforward calculation with Taylor’s theorem, given in Lemma B.3.3,

V̂0(ρ, t) = 1 +
1

µ
ρν [1](t) +O(ρ2; ρ→ 0)

where for t uniformly bounded (i.e. 0 ≤ t ≤ T∗) the O(ρ2) term is uniform

in t. This calculation uses the bound on V0
[1] and V0

[2]. (The bound on V0
[2]

is needed to control a remainder bound in Taylor’s theorem.) Note that the

assumption that V0
[1](u) = u∂uV0(u)

V0(u)
is bounded is equivalent to a bound on

ν [1](t) = tν′(t)
ν(t)

.

Let σ = ρ/ν(t) = u/(tν(t)). Now we can write,

V =
(
µσ−1 + ν

)
V1(ρ, t)

= µσ−1
(
1 + (1 + ν [1])µ−1νσ +O((νσ)2)

)
. (2.5)

This makes it apparent that if we look at where σ > σ∗ for some large σ∗, V

is still small. We present Lemma 2.2.4.
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Lemma 2.2.4. Let ε be given. There is σ∗(ε) and u∗(σ∗, ε) so that

{(u, t) : u+ µt < u∗ and
u

tν(t)
> σ∗} ⊂ {(u, t) : V < ε}

Proof. (Lemma 2.2.4). First, choose σ∗ small enough, and u∗ at least small

enough, so that (σ−1 +ν(t)) < ε/100 for all u, t satisfying σ > σ∗ and u+µt <

u∗.

Next, by the expression (2.5), we can choose ρ∗, and decrease u∗, so

that for σ > σ∗ and ρ = νσ < ρ∗, we have V < ε/50.

Finally, by Lemma 2.2.3 we can chose u∗ so that V < ε for all u, t

satisfying ρ > ρ∗ and u+ µt < u∗.

We also examine the approximate solution for w, namely W = W0 ◦

U0−µF t. Recall that we assume that W0(u)/u goes to infinity as u↘ 0. This

implies that W/t goes to infinity as t ↘ 0. Similarly to how we handled V ,

we may write

W = ω(t)

(
Ŵ (ρ, t)− µF

t

ω(t)

)

where

ω(t) = W0(µt), Ŵ (ρ, t) =
W0 (µt (1 + µ−1ρ))

W0 (µt)
.

By Lemma B.3.3, we will have

Ŵ (ρ, t) = 1 +
ρ

µ
ω[1](t) +O(ρ2)
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with the big-oh uniform for small t. Now we can write, with asymptotics as

ρ↘ 0,

W = ω(t)

(
1 + µ−1ρω[1](t) +O(ρ2)− µF

t

ω(t)

)

= ω(t)

(
1 + µ−1νσω[1](t) +O((νσ)2)− µF

t

ω(t)

)
(2.6)

2.2.2 Trapping between barriers

We recall our equations. The metric g(t) satisfies Ricci flow, the warp-

ing function u satisfies

Mu = −µu+ cvv,

and if we set ŵ = w + µF t then ŵ satisfies

M ŵ = −y = − |∇ŵ|
2

ŵ − µF t
. (2.7)

We wish to apply Lemma A.1.9. To do this, we need to prove the

required bound on the Hessian of u. This will be implied by an estimate on

y = w−1|∇w|2, given below.

Lemma 2.2.5. Suppose we are in the setting of Lemma 2.2.2. Assume ad-

ditionally that items (P1) and (P2) hold on [T1, T2). If σ∗ > σ∗(D,Creg) and

u∗ < u∗(D,Creg) then

uy

vw
< Cybnd

in Ωprish, where Cybnd only depends on the initial data.
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Proof. Note that

uy

vw
=
u2|∇w|2
|∇u|2w2

=

(
u∂uw

w

)2

So by item (P2),

uy

vw
≤
(
u∂uW

w
+ CregDV

W

w

)2

. (2.8)

By Lemma 2.2.4 we can decrease u∗ and increase σ∗ so that CregDV < 1 and

W
W−

< 2. Then since w is between its barriers, we can bound w in (2.8) in

terms of W .

uy

vw
≤ 4

(
u∂uW

W
+ 1

)2

= 4

(
u∂uW0(u+ µt)

W0(u+ µt)− µF t
+ 1

)2

= 4

(
W0(u+ µt)

W0(u+ µt)− µF t
W0

[1](u+ µt) + 1

)2

. (2.9)

By the assumption (MP3) on W0,

W0(u+ µt)

W0(u+ µt)− µF t
=

1

1− µF t
W0(u+µt)

≤ 1

1− µF t

(1+c)
µF
µ
u+(1+c)µF t

≤ 1

1− 1
1+c

Therefore (2.9) is bounded by a constant depending only on the initial data,

using also our assumption (MP4) that W
[1]
0 = u∂uW0

W0
is bounded.

Now we are in the position to prove that (P1) continues to hold.
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Lemma 2.2.6. Suppose we are in the setting of Lemma 2.2.2, and items (P1)

and (P2) holds on [T1, T2).

If D > D, u∗ < u∗(D,Creg), σ∗ > σ∗(D,Creg), T∗ < T ∗(D, u∗, σ∗) then

(P2) holds at t = T2.

Proof. Lemma A.1.9 proves the statement for v, assuming a bound on |∇∇u|2.

For a metric of the form given, the hessian of a function f which depends only

on x satisfies

|∇∇f |2 = 1
4
|∇f |−4〈∇|∇f |2,∇f〉2 + |∇f |2|A|2

where |A|2 is the norm-squared of the second fundamental form of the level

sets, namely

|A|2= 1
4
qu−1v + 1

4
dim(F )w−1y.

Therefore we find,

|∇∇u|2 ≤ C
(
|∇u|−4|∇|∇u|2||∇u|2+u−1v|∇u|2+w−1y|∇u|2

)

= C
(
u−1v−1|∇(uv)|2+v2 + w−1yuv

)

≤ C
(
uv−1|∇v|2+

(
1 +

u

v

y

w

)
v2
)

Since we have u
v
y
w
≤ Cybnd from Lemma 2.2.5, the Hessian bound necessary in

Lemma A.1.9 is taken care of.

Now, we can write (2.7) as,

M ŵ = − uy
vŵ

(u−1vŵ) = −ŵ − µF t
ŵ

uy

vw
(u−1vŵ)
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We can bound the factor uy
vw

by Cybnd. Furthermore we can bound ŵ−µF t
ŵ

using

(MP3) as in the proof of Lemma 2.2.5. So,

| M ŵ| ≤ CCybnd(u
−1vŵ)

Lemma A.1.7 tells us that by choosing D large enough, we will have that

(1±DV )W0(u+ µt) are sub- and supersolutions to this equation.

2.2.3 Regularity

Lemma 2.2.7. Suppose we are in the setting of Lemma 2.2.2. We can choose

csafe, Creg, u∗, and T ∗ such that if (P1) holds for t ∈ [T1, T2) then (P2) holds

for t ∈ [T1, T2].

Proof. We prove this theorem by applying parabolic regularity to the equations

solved by v and w in terms of u. From (2.1) and (2.2), we have the equations

∂t;uv − µ∂uv − µu−1v = (uv) ∂2
uv − 1

2
u (∂uv)2

+ a1v∂uv + a2u
−1v2 + a3

(vu
w

)2

(∂uw)2

and

∂t;uw − µ∂uw = (uv) ∂2
uw − µF + b1v∂uw + b2

(vu
w

)
(∂uw)2 ,

where a1, a2, a3 and b1, b2 are constants.

We let z = u+µt, v̂ = z−1uv, and similarly V̂ = z−1uV = V0(z). Also,
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let ŵ = w + µF t, and similarly Ŵ = W + µF t = W0(z). Calculate,

v = u−1zv̂,

∂uv = −µtu−2v̂ + u−1z∂zv̂

∂2
uv = 2µtu−3v̂ − 2µtu−2∂zv̂ + u−1z∂2

z v̂

∂uŵ = ∂zŵ, ∂2
uŵ = ∂2

z ŵ.

Also note that

∂t;uv − µ∂uv − µu−1v = u−1z∂t;zv̂

and

∂t;uw − µ∂uw + µF = ∂t;zŵ.

Therefore,

(u−1z)∂t;zv̂ = (zv̂)
(
u−1z∂2

z v̂ + 2µtu−3v̂ − 2µtu−2∂zv̂
)

− 1
2
u
(
−µtu−2v̂ + u−1z∂zv̂

)2

+ a1(u−1zv̂)(−µtu−2v̂ + u−1z∂zv̂)

+ a2u
−1(u−1zv̂)2 + a3

(vu
w

)2

(∂uŵ)2

which simplifies to, for some constants c1, c2, c3, c4,

(u−1z)∂t;zv̂ = (zv̂)u−1z∂2
z v̂

+ c1tu
−3(zv̂)v̂ + c2tu

−2(zv̂)∂zv̂

+ c3u
−1z2(∂zv̂)2 + c4

(vu
w

)2

(∂uŵ)2
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and then, multiplying by uz−1,

∂t;zv̂ = zv̂∂2
z v̂

+ c1tu
−2v̂2 + c2tu

−1v̂∂zv̂

+ c3z(∂zv̂)2 + c4uz
−1
(vu
w

)2

(∂uŵ)2

We also derive the evolution for ŵ:

∂t;wŵ = (zv̂)∂2
z ŵ + b1(u−1zv̂)∂zŵ + b2

(
zv̂

w

)
(∂zŵ)2 .

Now, let u1, t1 be any point in the productish region, let z1 = u1 + µt1,

v̂1 = v̂(u1, t1), and ŵ1 = ŵ(u1, t1). Divide through in both equations by z1v̂1.

Also divide the equation for v̂ by V̂1 = V̂ (u1, t1) = V0(z1) and the equation for

ŵ by Ŵ1 = Ŵ (u1, t1) = W0(z1).

1

z1V̂1

∂t;z

(
v̂

V̂1

)
=

[
zv̂

z1V̂1

]
∂2
z v̂

+ c1

[
t

z1

v̂

V̂1

u2
1

u2

]
u−2

1

(
v̂

V̂1

)
+ c2

[
t

z1

v̂

V̂1

u1

u

]
u−1

1 ∂z

(
v̂

V̂1

)

+ c3

[
z

z1

](
∂z

(
v̂

V̂1

))2

+ c4

[
v

v1

u2

zz1

w2
1

w2

v

v1

](
∂u

(
w

w1

))2

1

z1V̂1

∂t;z

(
ŵ

Ŵ1

)
=

[
zv̂

z1V̂1

]
∂2
z

(
ŵ

Ŵ1

)

+ b1

[
zv̂

z1V̂1

]
u−1∂z

(
ŵ

Ŵ1

)
+ b2

[
z

z1

v̂

V̂1

ŵ

w

ŵ

Ŵ1

](
∂z

(
ŵ

Ŵ1

))2

We will apply interior parabolic regularity to these equations, in the region

Ξ = {(z, t) : (z, t) ∈ [z1 − δu1, z1 + δu1]× [t1 −max(T1, t1 − δz−1
1 v−1

1 u2
1), t1], }
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which is a parabolic ball around (z1, t1) of radius δu1, if we were to scale time

to t̂ = z1V̂1t. We choose δ < 1
2
, so that this parabolic ball lies in the region

Ω′prish from Lemma 2.2.2. We have written the equation so that the factors in

square brackets are smooth functions of u, t, v̂

V̂1
, and ŵ

Ŵ1
in this parabolic ball-

this requires the knowledge that v and w are trapped between our barriers, so

for example w
w1

is not too far from 1 within Ξ. The important thing about this

smoothness is that we have bounds on relevant quantities (e.g., the C3 norm

of the functions) are not dependent on u1 or t1.

In [Bam14], Bamler wrote a cleanly-stated regularity theorem for non-

linear systems taking this form. See the discussion in Section 2.1.3.

All in all, we can apply regularity to bound the z derivatives of the

functions v̂

V̂1
− V̂

V̂1
and ŵ

Ŵ1
− Ŵ

Ŵ1
. Our barriers tell us that the C0 norm for both

of these, in Ξ, is bounded by CDV (u1, t1), where C depends on on the initial

functions only. This implies, for some bigger constant C we have,
∣∣∣∣∣u1∂z

(
v̂ − V̂
V̂1

)∣∣∣∣∣+

∣∣∣∣∣u
2
1∂

2
z

(
v̂ − V̂
V̂1

)∣∣∣∣∣

+

∣∣∣∣∣u1∂z

(
ŵ − Ŵ
Ŵ1

)∣∣∣∣∣+

∣∣∣∣∣u
2
1∂

2
z

(
ŵ − Ŵ
Ŵ1

)∣∣∣∣∣ ≤ CDV (u1, t1),

for all points in Ξ- in particular for u = u1, t = t1. The point (u1, t1) was not

special, so we have this inequality at all points in the productish region.

Now we convert this back to a statement in terms of u. Just using the
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definition of the quantities, calculate

u

V
|∂u(v − V )| = u

V
|∂u
(
u+ µt

u
(v̂ − V̂ )

)
|

≤ u

V
µtu−2|v̂ − V̂ |+ u

V
|∂u(v̂ − V̂ )|

= µ
u−1t

V
|v̂ − V̂ |+ u

V
|∂u(v̂ − V̂ )|

= µ
z−1t

V
|v − V |+u

z

u

V̂
|∂u(v̂ − V̂ )|.

Now using our barriers for the first term, and using the bound for regularity

on the second term, as well as t
z
≤ 1 and u

z
< 1,

u

V
|∂u(v − V )| ≤ CDV

Performing similar calculations, we can make the bounds

u2

V
|∂2
u(v − V )|+ u

W
|∂u(w −W )|+u2

W
|∂2
u(w −W )| ≤ CDV

2.2.4 Corollaries of control

The following corollaries state some precise results which hold for a

metric satisfying the conclusions of Lemma 2.2.2. The corollaries above are

just a matter of checking various derivatives and bounds. For Corollary 2.2.9

one can use the calculations of the curvatures for warped products in Appendix

B.1.4.1.

First we rephrase our results in terms of how close the metric is to a

cylinder.
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Corollary 2.2.8. Suppose that g(t) is controlled in the productish region at

time t = t#.

For u# such that (u#, t#) is in the productish region, let

gcyl = dx2 + gSq +
Wprish(u#, t#)

u#

gF .

Let L be given such that ε = L
√
Vprish(u#, t#) < 1. There is a map Φ :

[−L,L] × Sq × F → M which is the identity on the second two factors such

that u(Φ(0, ·, ·), t#) = u# and

∣∣∣gcyl − Φ∗
(
u

(−1)
# g(t#)

)∣∣∣
C2([−L,L]×Sq×F )

≤ εC

We also state a result in terms of the curvature of the metrics.

Corollary 2.2.9. Suppose g(t) is controlled in the productish region. Then

there is a constant C such that for all points in the productish region the

curvature of g(t) satisfies

Rm = u−1 (ugSq ©∧ ugSq) + wRmgF + Rmwarp

= uRmgSq +wRmgF + Rmwarp

where |Rmwarp|≤ Cu−1v.

One more basic statement about the curvature is the following.

Corollary 2.2.10. Suppose g(t) is controlled in the productish region. If µF =

0, suppose F has constant curvature. Then for a larger C, for all points in the

productish region,

|Rm|≤ C

tν(t)
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Proof. In Corollary 2.2.9, since V is uniformly bounded in the productish

region, we get |Rmwarp|≤ Cu−1. We also have |uRmgSq |≤ Cu−1. (In fact, it is

exactly Cqu
−1 for some constant Cq depending on q. In the productish region,

we have u ≥ tν(t)σ∗, so u−1 ≤ 1
σ∗

1
tν(t)

.

We have |wRmgF |= CFw
−1. If µF < 0, thenW0(u+µt)−µF t ≥ (−µF )t.

If µF > 0, then our assumption (MP3) tells us W0(u + µt) − µF t ≥ cµF t. If

µF = 0, then seince we assumed F has constant sectional curvature, CF =

0.

2.3 Control in the tip region

We are still considering a Ricci flow of the form

g(t) = a(x, t)dx2 + u(x, t)gSq + w(x, t)gF , t ∈ [T1, T2].

Section 2.2.1 shows that our approximate solutions in the productish region

work up to where σ = u
tν(t)

stays very large. In order to examine the solution

where σ is bounded, we will rescale the metric g by α = tν(t): set g̃ = α−1g.

Since the approximate solution for w, coming into the tip region, is on

the order of ω(t) � tν(t) = α(t), rescaling w to w̃ = α−1w will cause w̃ to

be unbounded. Instead, we will work with the function w̄ = ω−1(w + µF t),

and since ω & t� α the effects of w on our equation for v will “scale away”.

(Some of this sentence is false for certain model pinches where µF ≤ 0, but

everything works out in any case.)

For other functions related to g, we will decorate them with a tilde for
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their scaled version. For example, L = u−1(1− 1
4
v) is the sectional curvature of

g for a plane tangent to the Sq factor, and L̃ = σ−1(1− 1
4
v) is the corresponding

sectional curvature for g̃. We also introduce a rescaled time derivative ∂θ =

α∂t.

In this section, we find the approximate solutions for v and w̄ 3 :

V := VBry(σ) + βVPert(σ)

W̄ := 1 + (logω)θWPert(σ)

where β = α′, (logω)θ = ∂θ(logω), and VBry, VPert, and WPert are functions

which are to be defined. In Lemmas 2.3.7 and 2.3.8 we define functions V ±

and W±, which satisfy V − < V < V + and W̄− < W̄ < W̄+, and will serve as

barriers for v and w̄. These functions depend on constants εv, εw, and δ.

The barriers V − and V + are carefully defined so that if V − < v < V +

then L̃ is bounded near σ = 0. We write Lapprox = σ−1(1 − 1
4
V ). Finally, we

introduce the notation xa,b = xa(1 + x)b−a; which is approximately xa near

x = 0 and xb near x =∞.

We make definitions similar to Definition 2.2.1. The tip region will be,

for a constant ζ∗ to be determined,

Ωtip =

{
(u, t) :

u

tν(t)
<

ζ∗
ν1/2

, t ∈ [T1, T2]

}
.

3We use the same notation V and V ± here for different functions than the barriers in
Section 2.2. In the following section, where we need to refer to both the functions defined
here and the functions from Section 2.2, we will use e.g. Vtip for the function defined here
and Vprish for the function defined there.
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Definition 2.3.1. We say that g(t) is barricaded (by the tip barriers) at a

point if it satisfies

V − < v < V +, W− < w < W+

at that point.

We say that g(t) is initially controlled in the tip region if at t = T1

for all points satisfying σ ≤ 2ζ∗ν
−1/2(T1) it is barricaded, for σ > 1 and for

k = 1, 2, 3,

|σk∂kσv − σk∂kσV | ≤ csafeCreg
(
δ−1εv

)
ν1/2σ−1, (2.10)

|σk∂kσw̄ − ∂kσw̄| ≤ csafeCregεwν
1/2.

and for σ ≤ 1 and for k = 1, 2, 3,

|σk/2∂kσL̃− σk/2∂kσL̃| ≤ csafeCreg
(
δ−1εv

)
ν1/2

|σk/2∂kσw̄ − σk/2∂kσW̄ | ≤ csafeCregεwν
1/2

We say that g(t) is barricaded at the right of the tip region if it is

barricaded for all points satisfying ζ∗ν
−1/2 < σ < 2ζ∗ν

−1/2.

We say that g(t) is controlled in the tip region if

(T1) For all points in Ωtip, the solution is barricaded.

(T2) For all points in Ωtip with σ ≥ 1 and for k = 1, 2,

|∂kσv − ∂kσV | ≤ Creg
(
δ−1εv

)
ν1/2σ−1

|∂kσw̄ − ∂kσW̄ | ≤ Cregεwν
1/2
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(T3) For all points in Ωtip with σ ≤ 1 and for k = 1, 2,

|σk/2∂kσL̃− σk/2∂kσL̃| ≤ Creg
(
δ−1εv

)
ν1/2

|σk/2∂kσw̄ − σk/2∂kσW̄ | ≤ Cregεwν
1/2

Remark 1. V satisfies (1/C)σ0,−1 < V < Cσ0,−1 and W satisfies (1/C) < W <

C. This is the reason for the factor σ−1 in (2.10). Furthermore, (δ−1εv) controls

the separation between the barriers for v, whereas εw controls the separation

between the barriers for w- this explains is the reason for the appearance of

those constants.

The following is the main result of this section.

Lemma 2.3.2. Let 0 < csafe < csafe < 1, Creg > Creg, εv, εw < εw(εv), ζ∗,

and δ < δ(ζ∗) be given. Suppose 0 < T1 < T2 < T∗ where T∗ may depend on

all other constants.

Suppose g(t) is initially controlled in the tip region, and barricaded at

the right of the tip region. Then g(t) is controlled in the tip region.

2.3.1 A summary of functions

We will be introducing many functions of σ. Here, we provide the

reader with a little cheat sheet to recall the asymptotics of the functions. This

makes us feel better about possibly using the asymptotics without warning.

We use the notation σa,b = σa(1 +σ)b−a and |F |2= F +σ∂σF +σ2∂2
σF .

As usual, c < C are constants depending only on the given model pinch.
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We have

cσ0,−1 < |VBry|2< Cσ0,−1

cσ1,0 < |VPert|2< Cσ1,0

cσ0,1 < |WPert|2< Cσ0,1.

As σ →∞ we have

VBry = µσ−1 +O(σ−2), VPert = 1
2

+O(σ−1), WPert = 1
2
µσ +O(log σ)

Our approximate solutions are V = VBry + βVPert and W = 1 +

(logω)θWPert. Here are crude bounds on our barriers: for ν1/2σ < ζ∗

1
2
VBry < V − < V < V + < 2VBry

1
2
< W̄− < W̄ < W̄+ < 2.

More precise bounds are given in Lemma 2.3.6: for Vdiff = V +−V or Vdiff =

V − V −

c
(
δ−1εv

)
ν1/2σ1,−1 ≤ Vdiff ≤ C

(
δ−1εv

)
ν1/2σ1,−1,

and for Wdiff = W+ −W or Wdiff = W −W−

cεwν
1/2 ≤ Wdiff ≤ Cεwν

1/2.

2.3.2 Type-II rescaling

Define α(t) = tν(t), ∂θ = α∂t, and β = α′. Recall g̃ = 1
α
g and σ = 1

α
u.

Note that v = u−1|∇u|2g= σ−1|∇σ|2g̃.
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We continually use the notation

∂σ = |∇σ|−2
g̃

˜gradσ,

∂θ;σ = ∂θ − (∂θσ)∂σ.

Note that ˜gradσ = gradu and |∇σ|2g̃= α|∇u|2g so ∂u = α−1∂σ. We can also

calculate,

∂t;u = ∂t − (∂tu)∂u

= α−1∂θ − (∂t(ασ))(α−1∂σ)

= α−1∂θ − α−1βσ∂σ − α−1(∂θσ)∂σ

= α−1 (∂θ;σ − βσ∂σ) (2.11)

We define Qσ and Lσ to be Q and L, from (B.10), with ∂u replaced

with ∂σ. Then using our equation for ∂t;uv, (B.10), we find

∂θ;σv = σ−1Qσ[v, v] + σ−1Lσ[v] + βσ∂σv (2.12)

− 2κ̃2v

where κ̃ = 1
4

dim(F )w̃−1y. Let

Fσ[v, κ̃] =
(
σ−1Qσ[v, v] + σ−1Lσ[v]− 2κ̃2v

)
.

So (2.12) is ∂θ;σv −Fσ[v, κ̃]− βσ∂σv = 0.

If v converges, as a function of σ, as θ ↘ −∞, and κ goes to 0, then

this equation tells us that v converges to a solution vS to Fσ[vS, 0] = 0. This

is the equation for a singly-warped steady soliton.
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2.3.3 The Bryant Soliton

The Bryant soliton (Bry, gBry, fBry) is a steady Ricci soliton on the

topology Bry = Rq+1. The metric is a singly warped product over the interval

[0,∞)

gBry = ds2 + σBry(s)gSq

which we may equivalently write as

gBry =
du2

uvBry
+ ugSq .

This soliton is the only steady Ricci soliton with this structure, besides the

Euclidean metric on Rq+1. 4

For the Bryant soliton, u is strictly increasing as a function of s. As a

steady soliton, under Ricci flow it moves only by diffeomorphisms, which fix

the warped product structure. Since u increasing is a diffeomorphism-invariant

property, u remains increasing under Ricci flow. The value of v = u−1|∇u|2 at a

point where u = u∗ is also a diffeomorphism-invariant property, so ∂t;uvBry = 0.

In other words, considering the function VBry so that vBry(p) = VBry(u(p)),

we have

Q[VBry, VBry] + L[VBry] = 0.

The Bryant soliton has strictly positive sectional curvature, and its

scalar curvature has a maximum at u = 0. The soliton is defined up to scaling

4TODO cite
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and diffeomorphism, so let’s say we have chosen the scaling with maximum

scalar curvature µ. As u→∞, VBry has the asymptotics

VBry(u) = (1 +O(σ−1))µu−1 (2.13)

and as u→ 0, VBry has the asymptotics

VBry(u) = 4

(
1− µ

q(q − 1)
u+ o(u)

)
. (2.14)

For any k > 0 we may scale the metric by k−1, resulting in the Bryant

soliton with maximum scalar curvature kµ. The corresponding function VkBry

is related by

VkBry(u) = VBry(ku).

2.3.4 Approximation for v

Suppose that v satisfies (2.12), and also converges sufficiently smoothly

to a limit v0 as θ ↘ −∞. Suppose also that κ̃2 converges to zero as θ ↘ 0.

Then we learn,

Qσ[v0, v0] + Lσ[v0] = 0.

That is, v0 describes a steady soliton.

If the limit metric has σ ∈ [0,∞), and has nonzero curvature, then we

learn that as a function of u, v0 = VkBry(u) for some scaling factor k. Com-

paring the asymptotics (2.13) with our approximate solution in the parabolic

region (2.5), we choose k = 1.
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Now we address the term βσvσ. This term suggests that our approx-

imation v ≈ v0 for small θ is off by a term of order β. Write ṽ(σ, θ) =

v0(σ) + βv1(σ), and plug into ∂θ;σv −Fσ[v, κ]− βσ∂σv = 0. This gives us,

∂θ;σv −Fσ[v, κ]− βσ∂σv = βθv1

− β
(
2σ−1Q[v0, v1] + σ−1L[v1] + σ∂σv0

)

+ (. . . )

Here the term (. . . ) is bounded by

|. . . | ≤ Cβ2
(
σ−1|v1|22+β−2κ2|v0|+β−1κ2|v1|

)

By elementary calculations using our assumed bound on ν [1] + ν [2] we can also

bound βθv1. (See Section B.3.3.) We have

∂θ;σv −Fσ[v, κ]− βσ∂σv = −β
(
2σ−1Q[v0, v1] + σ−1L[v1] + σ∂σv0

)

+ β2E

where

E ≤ C
(
|v1|+σ−1|v1|22+β−2|Ã|2|v0|+β−1κ̃2|v1|

)

Concerning the equation approximately satisfied by v1, we have the

following lemma, which is Lemma 4 of [ACK12]. Here we use the notation

xa,b = xa(1 + x)b−a.

Lemma 2.3.3. There is a solution VPert to

2σ−1Qσ[VBry, VPert] + σ−1L[VPert] = −σ∂σVBry.
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on [0,∞), which extends to a smooth even function on (−∞,∞).

The function VkPert(u) = k−1VPert(ku) is a solution to

2σ−1Qσ[VkBry, VkPert] + σ−1L[VkPert] = −σ∂σVkBry.

As σ →∞, VkPert has the asymptotics

VkPert = (1 +O(σ−1))k−1. (2.15)

There is a C > 0 depending on the dimension such that

|VPert|2< Cσ1,0 (2.16)

This invites the choice of approximate solution

V = VBry + βVPert.

2.3.5 Approximation for w

The expression for our approximation in the productish region (2.6)

suggests that, in the tip region, w̄ = ω−1(w + µF t) is approximately constant

in space.

We derive an equation for w̄, to find the next order term. We can come

from the evolution of w in terms of u, (B.15).

∂t;u(w − µF t) = uv∂2
u(w − µF t)− y + µ∂u(w − µF t)− µ/2v∂u(w − µF t).

Multiplying by ω−1α, we have

α∂t;uw̄ = σ−1R[w̄, v]− (αω−1)y − (logω)θw̄,
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where

R[W, v] = σ2v∂2
σW + (µ− (cv − 1

2
q)v)σ∂σW.

Then using (2.11),

∂θ;σw̄ = σ−1R[w̄, v]− (αω−1)y − (logω)θw̄ − βσ∂σw̄

= σ−1R[w̄, v]− 1

w̄ − µF t
ω

vσ(∂σw̄)2 − (logω)θw̄ − βσ∂σw̄. (2.17)

Concerning the operator R, we have the following Lemma.

Lemma 2.3.4. There is a solution WPert(σ) to

σ−1R[WPert, VBry] = 1

which extends to a smooth even function on (−∞,∞).

The function WkPert(σ) = WPert(kσ) is a solution to

σ−1R[WkPert, VkBry] = 1

As σ →∞, WkPert has the asymptotics

WkPert = (1 + o(1))1
2
µkσ (2.18)

Proof. The main idea is that WPert is just a scaling of the gradient potential

function f . This is because the gradient potential function (on any soliton)

satisfies

∆Xf = 1

and the operator σ−1R is a recasting of the laplacian in these coordinates. For

the derivation see page 186.
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This suggests the approximate solution W̄ = 1+(logω)θWPert. To find

this, plug in w̄(σ, t) = 1+ w̄1(σ, t) as an initial approximation and assume that

w̄1 goes to zero as t ↘ 0. Then taking the highest order terms in the limit

t↘ 0 we are left with the equation

−
(
σ−1R[w̄1, VBry]− (logω)θ · 1

)

for w̄1.

Note log(ω)θ = tν ∂tω
ω

= νω[1]

2.3.6 y control

One tricky term which appears in the evolution of v, (2.12), is κ̃2 =

1
4

dim(F )w−1y. This is difficult because it cannot be controlled with simple

barrier arguments: at a point where w is trapped between barriers for w,

and v touches barriers for v, we only know that the derivative v matches the

derivative of the barrier for v, but we do not get a free bound on the derivative

of w. For this reason we need to use regularity.

Lemma 2.3.5. Suppose we are in the setting of Lemma 2.3.2. Suppose that

(T1), (T2), and (T3) hold for t ∈ [T1, T2). Then, if T∗ is sufficiently small,

κ̃2 ≤ CC2
regε

2
wσ

1,0ν

Proof. We can use items (T3) and (T2) to control κ̃2 along the flow. We
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rewrite κ̃2 as,

κ̃2 = Cw̃−1y = C
|∇w̃|2g̃
w̃2

= Cv
|∇w̃|2g̃
w̃2

1

|∇φ̃|2g̃
= Cv

1

w̃2

(
∂φ̃w̃

)2

Here, we used that y and v are scale-invariant, and that v = 1
4
|∇φ̃|2g̃. Now use

w̃ = (αω−1)(w̄ − µF t/ω).

κ̃2 = Cv

(
1

w̄ − µF t
ω

)2 (
∂φ̃w̄

)2

Using the assumption (MP3) on W0, ω(t) > (1 + c)µt, so we have

κ̃2 ≤ Cv

(
1

w̄ − 1
1+c

)2 (
∂φ̃w̄

)2
.

In the region under consideration, we can take T∗ small enough so that W̄− >

1− 1
2

c
1+c

and in particular since w̄ > W̄−, 1
w̄− 1

1+c

< 21+c
c

. Therefore, increasing

C,

κ̃2 ≤ Cv
(
∂φ̃w̄

)2
. (2.19)

To control κ2 in {σ < 1}, we need to use that ∂φw̄ = 0 at φ = 0.

Copying (T3) for k = 2,

∂2
φ̃
w̄ < ∂2

φ̃
W̄ + Cregεwν

1/2

which we can integrate from φ = 0 to find,

∂φ̃w̄ < ∂φ̃W̄ + Cregεwν
1/2φ̃.
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By the definition of W̄ , and using that φ−1∂φWPert is bounded near φ = 0,

∂φ̃w̄ < ν∂φWPert + Cregεwν
1/2φ̃

<
(
Cν + Cregεwν

1/2
)
φ̃.

Therefore, restricting T∗ to be small enough so that the second term dominates,

we find (∂φ̃w̄)2 ≤ CC2
regε

2
wνφ̃

2 for a larger C. Using (2.19) proves the claim in

the region {σ < 1}.

To control κ2 in {σ > 1}, we just copy (T2):

∂σw̄ ≤ ∂σW̄ + Cregεwν
1/2.

We have ∂σW̄ ≤ Cν since ∂σWpert is bounded. So for small times,

∂σw̄ ≤ CCregεwν
1/2.

This implies, using v ≤ V + ≤ Cσ0,−1,

κ̃2 ≤ CC2
regε

2
wν

2.3.7 Barriers

In this section we define the barriers V ± and W̄± and prove that item

(T1) continues to hold. The barriers are defined as follows. Let k(t)± =

1∓ δ−1εvν
1/2 and then set

V ± = Vk±(t)Bry + (β ∓ εvν)Vk±(t)Pert (2.20)

W̄± = 1± εwν1/2 + ((logω)θ ∓ δεwν)WPert. (2.21)
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We will prove that these are sub- and supersolutions to the equations satisfied

by w̄ and v. The power ν1/2 is a bit mysterious here, but it is the best possible

for barriers of this form. We discuss its derivation after Lemma 2.4.2. It is

helpful to note that the assumptions on our model pinch imply that β ∼ ν,

and that (logω)θ . ν. (Straightforward calculation, see Section B.3.3.)

The terms −εvνVk±Pert and −νδεwWPert are the terms which will give

us that V + and W+ are strict supersolutions to their equations. They are

chosen by taking the approximate solution, which is found by starting from

a limit at t = 0 and adding a perturbation which solves an elliptic equation,

and then fiddling with the size of the perturbation.

Because the extra amount of the perturbation needed for a supersolu-

tion comes with a negative sign in both cases, we need to add something else

to ensure that the supersolution lies above the intended approximate solution.

This is the role of k±(t) and of ±εwν1/2. (If it’s not clear what’s going on

with k+, recall that VBry is decreasing so Vk+Bry(σ) = VBry(k
+σ) > VBry(σ).)

The role of δ in both equations is to control the ratio of the extra positive

term used to make the supersolution bigger than the approximate solution, to

the extra negative term used to make the supersolution a supersolution to the

equation.

Lemma 2.3.6 clarifies the role of δ. Recall the notation σa,b = σa(1 +

σ)b−a. The significance of the factor σ1,−1 in the inequalities for V in this

lemma is the following. At infinity, V ∼ σ so this is a normalization. At 0,

V + − V − ∼ σ is necessary to ensure smoothness of a solution with V trapped
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between V − and V +. On the other hand W̄ ∼ 1 everywhere so W̄ requires no

normalization.

Lemma 2.3.6. There are constants c < C depending only on the dimension

such that the following holds.

We have, for Vdiff = V + − V or Vdiff = V − V −,

cδ−1εvν
1/2σ1,−1

(
1− Cδν1/2σ0,1

)
≤ Vdiff ≤ Cδ−1εvν

1/2σ1,−1.

Similarly, for Wdiff = W̄+ − W̄ or Wdiff = W −W−,

cεwν
1/2
(
1− Cδν1/2σ0,1

)
≤ Wdiff ≤ Cεwν

1/2

In particular, if we choose δ < 1
2C
ζ−1
∗ then, renaming c, for all σ <

ζ∗ν
−1/2 we have

cδ−1εvν
1/2σ1,−1 ≤ Vdiff ≤ Cδ−1εvν

1/2σ1,−1,

cεwν
1/2 ≤ W̄diff ≤ Cεwν

1/2.

Proof. The asymptotics of the VBry are given in (2.13) and (2.14). Also recall

that VkBry(σ) = VBry(kσ). Using these asymptotics, for small enough σ,

cδ−1εvν
1/2σ < Vk+Bry(σ)− VBry(σ) < Cδ−1εvν

1/2σ,

and for large enough σ,

cδ−1εvν
1/2σ−1 < Vk+Bry(σ)− VBry(σ) < Cδ−1εvν

1/2σ−1.
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Furthermore, since VBry is strictly decreasing in any compact set away from

the origin, for any σ1 < σ2 there are constants cσ1,σ2 and Cσ1,σ2 such that

cσ1,σ2δ
−1εvν

1/2 < Vk+Bry(σ)− VBry(σ) < Cσ1,σ2δ
−1εvν

1/2.

This is enough to prove that for some c < C,

cδ−1εvν
1/2σ1,−1 < Vk+Bry(σ)− VBry(σ) < Cδ−1εvν

1/2σ1,−1.

Putting this together with the bound on VPert, (2.16), which says

−εvνVpert(σ) > −Cεvνσ1,0,

and using β ≤ Cν (Section B.3.3), we have the claim for V .

The proof for W̄ is similar but more straightforward. One needs to use

the properties from Lemma 2.3.4.

We now prove that V ± and W̄± are sub- and supersolutions to the

equations satisfied by v and w̄. In Lemma 2.3.9 we will summarize by saying

that item (T1) continues to hold.

Lemma 2.3.7. Let ζ∗ > 0, εv > 0, and δ > 0 be given. Let V ± be the functions

defined in (2.20).

Suppose κ̃ = y
w̃

= α y
w

satisfies κ̃2(σ, t) ≤ cytipεvνσ
1,0 where cytip is a

constant (chosen in the proof) depending only on dimensions.

Then there is a T∗ depending on all parameters so that for t < T∗ and

σ < ζ∗ν
−1

2 we have, for a constant c depending only on the dimensions,

∂θ;σV
+ −Fσ[V +, κ̃]− βσ∂σV + ≥ cεvνσ

1,−1 (2.22)
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and

∂θ;σV
− −Fσ[V −, κ̃]− βσ∂σV − ≤ −cεvνσ1,−1.

Proof. Let us first demonstrate the main calculation, implicitly defining error

terms E1 and E2. Calculate

−Fσ[V +, 0] = −
(
σ−1Q[Vk+Bry, Vk+Bry] + σ−1L[Vk+Bry]

)

− (β − εvν)
(
2σ−1Q[Vk+Bry, Vk+Pert] + σ−1L[Vk+Bry]

)

− (β − εvν)2σ−1Q[Vk+Pert, Vk+Pert].

The first line vanishes, and the second line can be computed from the equation

solved by Vk+Pert. The last line is error.

−Fσ[V +, 0] = +(β − εvν)σ∂σVk+Bry + E1

Also calculate,

−βσ∂σV + = −βσ∂σVk+Bry − (β − εvν)βσ∂σVk+Pert

= −βσ∂σVk+Bry + E2

Putting these together,

−Fσ[V +, 0]− βσ∂σV + = −εvβσ∂σVk+Bry + C(βσ1,−1)
(
βσ0,1

)

≥ cεvνσ
1,−1 + E1 + E2

where we used that σ∂σVk+Bry ≤ −cσ1,−1 for some c. Therefore it remains to

bound E1 and E2, as well as the other terms in (2.22), namely

∂θ;σV
+ and Fσ[V +, κ̃]−Fσ[V +, 0] = κ̃2V +.
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For the following, note We can assume that k(t) is in [1/2, 2]. Using

β ∼ ν, and recalling the notation |f |2= |f |+σ|∂σf |+σ2|∂2
σf |, we have the

bound on E1 and E2,

|E1|+|E2| =
∣∣(β − εν)2σ−1Q[Vk+Pert, Vk+Pert]

∣∣+ |(β − εν)βσ∂σVk+Pert|

≤ Cν2
(
σ−1|VPert|22+|VPert|2

)

≤ Cν2
(
σ−1

(
σ1,0
)2

+ σ1,0
)
≤ Cν2σ1,0 = C

(
νσ1,−1

) (
νσ0,1

)

Now we bound the time term, using ∂θβ . ν2 (straightforward calcu-

lation, Section B.3.3).

∂θ;σV
+ = ∂θ;σ

(
VBry(k(t)σ) + (1− ε) β

k(t)
VPert(k(t)σ)

)

≤ C (σ∂σVBry∂θk + (∂θβ + β∂θk)VPert + βσ∂σVPert∂θk)

≤ C
(
σ1,−1ν1+1/2 + (ν2 + βν1+1/2)σ1,0 + βσ1,0ν1+1/2

)

≤ Cνσ1,−1
(
ν1/2 + νσ0,1

)

Finally, we use our assumption on κ̃ to bound the term κ̃2V + by

κ̃2V + ≤ C
(
cytipεvνσ

1,0
)
σ0,−1

≤ Cνσ1,−1 (cytipεv)

All in all, we find

∂θ;σ −F [V +, κ̃]− βσ∂σV + ≥ νσ1,−1(cεv − Ccytipεv − o(1))

Here the term o(1) goes to zero as t ↘ 0, in any region where σ < ζ∗ν
−1/2.

The lemma follows by choosing the c in the statement to be one half of the
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c above, choosing cytip to be sufficiently small, and choosing T∗ to be small

enough so that the o(1) term is sufficiently small.

For arbitrary functions w̄ and v we define

D(w̄, v) := ∂θ;σw̄ −
(
σ−1R[w̄, v]− 1

w̄ − µF t
ω

vσ(∂σw̄)2 − βσ∂σw̄ − (logω)θw̄

)
.

The equation solved by w (2.17) is therefore D(w̄, v) = 0.

Lemma 2.3.8. Let ζ∗ > 0, εv > 0, εw > 0, and δ > 0 be given. Let V ± and

W± be the barriers defined in (2.20) and (2.21).

There is a T∗ depending on all parameters such that for all t < T∗ and

σ < ζ∗ν
−1/2 we have

D(W
+
, v) > 1

2
δεwν

and

D(W
−
, v) < −1

2
δεwν

Proof. The main idea is that

(logω)θW
+ − σ−1R[W

+
, v] = (1 + εwν

1/2)(logω)θ

+ (logω)θ ((logω)θ − δεwν)WPert

− (logω)θσ
−1R(Wpert, VBry) + δεwνσ

−1R(WPert, VBry)

+ ((logω)θ − δεwν) · (σ−1R(Wpert, VBry)− σ−1R(WPert, v))
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We can simplify the first and third lines to find

(logω)θW
+ − σ−1R[W

+
, v] ≥ εw(logω)θν

1/2 + δεwν

+ (logω)θ ((logω)θ − εwν)WPert

+ ((logω)θ − εwν) · (σ−1R(Wpert, VBry)− σ−1R(WPert, v))

The first line has the correct sign, we will use it to bound the other lines and

the rest of the terms. First, let’s bound the other lines above:

(logω)θW
+ − σ−1R[W

+
, v] ≥ εwν

− Cν2σ0,1

− Cν(δ−1εv)ν
1/2σ1,0

Here we used the bound |VBry−v|< cδ−1εvν
pσ1,−1 together with |σ∂σWPert|+|σ2∂2

σWpert|≤

σ0,1. In the second inequality we also used (logω)θ = νω[1] ≤ Cν.

Next we find the term ∂θ;σW̄
+. The term ∂θ;σεwν

1/2 has the correct sign,

so we ignore it. For the other time derivatives, we can use |∂2
θ (logω)|+|∂θν|≤

Cν2 (Section (B.3.1)):

|∂θ ((logω)θ − εwν)WPert| ≤ Cν2Wpert

≤ Cν2σ0,1.

To bound the remaining terms, note,

|σ∂σW̄+|≤ νσ1,1
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and v ≤ Cσ0,−1. Also, as in the proof of 2.3.5 we can bound 1
W̄±−µF t

≤ C. So

∣∣∣∣
1

W̄+ − µF t
ω

vσ(∂σW̄
+)2 + βσ∂σW̄

+

∣∣∣∣ ≤ C
(
σ−1v|σ∂σW̄+|2+ν|σ∂σW̄+|

)

≤ C
(
ν2σ1,0 + ν2σ1,1

)
≤ Cν

(
νσ1,1

)

Putting together all of the inequalities, we have

D(W̄+, v) ≥ ν
(
δεw − Cνσ1,1 − C(δ−1εv)ν

1/2σ1,0
)
.

In the space-time region under consideration,

D(W̄+, v) ≥ ν
(
δεw − Cν1/2ζ∗ − C(δ−1εv)ν

1/2
)

= ν
(
δεw − C(ζ∗ + δ−1εv)ν

1/2
)
.

For small enough T∗, the positive term dominates.

Lemma 2.3.9. Suppose we are in the setting of Lemma 2.3.2. Suppose εw ≤

εw(εv, Creg). There is a T∗ depending on all parameters such that the following

holds.

If items (T1), (T2), and (T3) hold for t ∈ [T1, T2), then item (T1)

holds for t ∈ [T1, T2].

Proof. Choose εw small enough (i.e. .
√
εv) so that Lemma 2.3.5 implies that

we have the desired inequality κ̃2 ≤ cytipεvβσ
1,0 needed to apply Lemma 2.3.7.

Now, suppose that v or w touches one of its barriers at time t = T2. By

Lemma 2.3.7 or 2.3.8, we get a contradiction to the maximum principle since

these lemmas say that V ± and W± are strict sub- and supersolutions to the

corresponding equations.
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2.3.8 Regularity

Lemma 2.3.10. Suppose we are in the setting of Lemma 2.3.2. Suppose

δ < δ(ζ∗) so that the conclusion of Lemma 2.3.6 holds. We can choose csafe and

Creg depending only on the dimensions such that the following holds. Suppose

item (T1) holds for t ∈ [T1, T2). Then item (T2) holds for t ∈ [T1, T2].

Proof. Consider equation (2.12). Use

κ̃2 = 1
4

dim(F )w̃−1y

= 1
4

dim(F )(w̄ − µF t/ω)−2|∇w̄|2g̃

= 1
4

dim(F )σv(w̄ − µF t/ω)−2∂2
σw̄

to write

∂θ;σv = σv∂2
σv + c1σ

−1v + c2∂σv + c3σ
−1v2 + c4σ(∂σv)2

+ βσ∂σv − 2σv

(
1

w̄ − µF t/ω

)2

(∂σw̄)2 v.

For σ1 arbitrary, we multiply this by σ1 to find,

∂θ;σ (σ1v) =

[
σ

σ1

]
(σ1v) ∂2

σ (σ1v) + c1

[σ1

σ

]
σ−1

1 (σ1v) + c2∂σ (σ1v)

+ c3

[σ1

σ

]
σ−2

1 (σ1v)2 + c4

[
σ

σ1

]
σ−1

1 (∂σ (σ1v))2

+ [βσ] ∂σ (σ1v) + c5

[
σ

σ1

(σ1v)2

(
1

w̄ − µF t/ω

)2
]

(∂σw̄)2 .
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We also have the equation, from (2.17),

∂θ;σw̄ = [σv] ∂2
σw +

[
(µ− (cv − 1

2
q)v)

]
∂σw̄

−
[

1

w̄ − µF t
ω

v

]
σ(∂σw̄)2

− (logω)θw̄ − [βσ] ∂σw̄.

For σ1 and t1 arbitrary but satisfying

1 < σ1 < ζ∗ν
−1/2

we will apply parabolic regularity to σ1v and w in the region

Ξ = (σ, θ) ∈ [σ1 − 1/2, σ1 + 1/2]× [max(θ(t1)− 1/2, θ(T1)), θ(t1)].(2.23)

By Lemma 2.3.6, for 1
2
< σ < ζ∗β

−1/2 we have

σV + − σV − < Cδ−1εvν
1/2,

W̄+ − W̄− < Cεwν
1/2.

Also, for functions between our barriers, the terms we have written in square

brackets are smooth functions of σ, σ1v, and w.

Therefore, we may apply parabolic regularity to σ1v− σ1V and w̄− W̄

to find that, for k = 1, 2,

∂kv ≤ ∂kV + δ−1εvν
1/2σ−1

1

and

∂kw ≤ ∂kW + εwν
1/2

at σ = σ1 and t = t1.
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Lemma 2.3.11. Assume that we are in the setting of Lemma 2.3.2. We can

choose csafe and Creg depending only on the dimensions such that the following

holds. Suppose additionally that item (T1) and (T2) hold for t ∈ [T1, T2). Then

item (T3) holds for t ∈ [T1, T2].

Proof. We will control the scaled sectional curvature

L̃ = αL = αu−1(1− 1
4
v) = ũ−1(1− 1

4
v).

and also controlled the scaled function w̄. We will write the evolution equations

in terms of φ̃ = α−1/2φ.

We can derive the evolution for L̃ from (B.13).

∂θ;φL̃ =
(

1− φ̃2L̃
)
∂2
φ̃
L̃+ 1

2
φ̃2(∂φ̃L̃)2

+ φ̃−1(1
2
µ+ 5− φ̃2L̃)∂φ̃L̃+ (µ+ 2)L̃2

+ 1
8

dim(F )
α

ω
v(w̄ − µF t/ω)−2∂2

σw̄

+ βL̃+ βσ∂σL̃.

=
(

1− φ̃2L̃
)
∂2
φ̃
L̃+ 1

2
φ̃2(∂φ̃L̃)2

+ φ̃−1(1
2
µ+ 5− φ̃2L̃)∂φ̃L̃+ (µ+ 2)L̃2

+ cφ̃−2α

ω
v(w̄ − µF t/ω)−2∂2

φ̃
w̄

+ βL̃+ 1
2
βφ∂φL̃.
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We can also derive the equation for w̄ in terms of φ̃:

∂θ;φ̃w̄ = v∂2
φ̃
w̄ − y + (1

2
µ− (1

4
µ− 1)v)φ̃−1∂φ̃w̄

+ (logω)θw̄ + 1
2
βφ∂φw̄

Let L̃approx = σ−1(1− 1
4
V ) = φ̃−2(1− 1

4
V ) which is the approximation

for L̃ given by the approximate solution for V . Our barriers tell us that, for

σ < 1, we have

|L̃− L̃approx|< cδ−1εvν
1/2, |w̄ − W̄ |< cεwν

1/2.

Furthermore, the regularity up to time T2 tells us that we may control

the C0,α norm of the terms φ̃1∂φ̃w̄ and φ̃−1∂φ̃L̃. Since Creg appears only as

a coefficient of ν, they may be controlled independently of Creg by taking t

small enough.

So, applying regularity to L̃− L̃approx and w̄ − W̄ proves the claim.

2.3.9 Corollary of control

The following corollary follows quickly from the control we have, by

checking the curvatures of warped products.

Corollary 2.3.12. Suppose gwp(t) is controlled in the tip region. If µF = 0,

suppose F has constant curvature. Then for some C, in the tip region,

|Rm|≤ C

tν(t)
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We now give a specific result about the convergence in tip region as

t↘ 0. We assume that g(t) is controlled in the tip region for t ∈ (0, T2). For

each time, the scaled warping function σ = u
tν(t)

is a function σ : I → (0,∞)

which we extend by the identity to a map σ : M = I×Sq×F → (0,∞)×Sq×F .

For each t, σ is a bijection if we restrict to some subset of I, i.e. we have an

inverse

σ−1 : (0, σmax(t))× Sq × F → I × Sq × F.

By our bounds on v, specifically since we keep it positive, σmax(t) → ∞ as

t↘ 0. We may define

G(t) =
1

α(t)

(
σ−1
)∗
g(t).

As t↘ 0 the domain of definition of G exhausts (0,∞)× Sq ×F . Essentially,

we can use σ to find the diffeomorphisms such that neighborhoods of the tip

converge to the Bryant soliton times a Euclidean factor.

Corollary 2.3.13. Suppose that g(t) is controlled in the tip region.

The (for each t partially defined) metric G(t), restricted to (0,∞)×Sq,

converges in C∞ as t↘ 0 to the Bryant soliton metric

dσ2
Bry

1
4
σBryvBry

+ σBrygSq .

The pullback of the vector field (∂θσ)∂σ,

X(t) =
(
σ−1
)∗

((∂θσ)∂σ)
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converges to the soliton vector field for the Bryant soliton.

Put p = dim(F ). Suppose additionally that gmp is F -reasonable (Defi-

nition 1.2.3).

For any point P ∈ (0,∞)×Sq×F the pointed manifolds ((0,∞)×Sq×

F,G(t), P ) converge, as t↘ 0, to

(
(0,∞)× Sq × Flat,

dσ2

σvBry
+ σ2gSq + gFlat , ?

)
.

The target point ? doesn’t matter since the target manifold is homogeneous.

The convergence is in the sense of pointed C∞ riemannian manifolds, which

allows a pullback by a time-dependent diffeomorphism.

Proof. The convergence to the Bryant soliton in terms of σ happens up to

some number of derivatives just because of the consequences of Lemma 2.3.2.

To get C∞ convergence, we need extra regularity, i.e. item (T2) and (T3) for

larger k. To get this, we use interior parabolic regularity in the same way as

Lemmas 2.3.10 and 2.3.11. In this situation, we no longer need estimates on

the initial data. This is because the time variable θ goes to −∞ as t↘ 0, so

the parabolic ball Ξ in (2.23) never touches t = 0, the initial time for g(t).

Note that g̃(t) = α−1g(t) satisfies

∂θg̃ = −2 Rc[g̃]− βg̃.

So G(t) satisfies

∂θG = −2 Rc[G]− L(∂θσ)∂σG− βg̃.
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D

σ∗
εw

εv

δζ∗
2.4.7

2.4.6

2.5.1

2.5.1

2.4.6 y control
2.5.1 Buckling barriers

2.4.7 V +
tip > V −

tip and W+
tip > W−

tip.

2.5.1

2.5.1

u∗2.3

2.3

2.3 Productish Section

Figure 2.2: Constant dependency graph. All constants only depend on
the constants which point to them. The arrows are marked with the Lemmas
where the dependency arises. There are no cycles in the graph. T∗ is allowed
to depend on all constants.

As t ↘ 0, we have β ↘ 0, G → GBry, and ∂θG → 0. This shows the

convergence of ∂θσ to the soliton vector field.

To get the final convergence of the wgF factor to gRdim(F ) , note that we

have

w ∼ ω − µF t

so α−1w ∼ α−1ω (1− µF t/ω). In the case µF < 0, this goes to ∞ at least as

fast as t
α

= 1
ν

goes to infinity. In the case µF > 0, this goes to infinity by the

assumption (MP3). If µF = 0, then this goes to infinity by the assumption

that gmp is F -reasonable.

2.4 Full flows of mollified metrics

In Sections 2.2 and 2.3, we studied the flow in two regions- the produc-

tish region and the tip region. We now want to start from one of our model

pinches and create mollified initial metrics. The mollified metrics will exist for
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a uniform amount of time and satisfy the estimates from Lemmas 2.2.2 and

2.3.2. We will then take a limit of the mollified flows to construct a forward

evolution from the model pinch.

In the previous two sections we constructed functions, which depend

on u and time, and serve as barriers of the flow. Let Vprish and Wprish be the

approximate solutions constructed in Section 2.2, and let V +
prish, V

−
prish, W

+
prish,

W−
prish be the functions constructed in Lemma 2.2.6. Let Vtip and Wtip be the

approximate solutions constructed in Section 2.3, and let V +
tip, V

−
tip, W

+
tip, W

−
tip

be the functions constructed in Section 2.3.7.

As a first step, the following lemma tells us how close the approximate

solutions are to each other. Here, |f |3= |f |+|σ∂σf |+|σ2∂2
σf |+|σ3∂3

σf |.

Lemma 2.4.1. For σ < ερ∗ν
−1,

σ|Vprish − Vtip|3 ≤ C(ρ∗)
(
ν2σ2 + σ−1 + ν

)
(2.24)

|W̄prish − W̄tip|3 ≤ C(ρ∗)
(
ν2σ2 + ν log σ

)

Proof. For V , the zeroth order statement follows from the approximation (2.5)

for the parabolic approximation, the asymptotics (2.13) and (2.15) for VBry

and VPert, and the fact that β = (1 + ν [1])ν. For W , it follows from (2.6), and

the asymptotics (2.18) for WPert

To get the higher order statement, we need to apply the higher deriva-

tive statement in Lemma B.3.3 to control the higher derivatives of the differ-

ence between Vprish and its approximation (2.5). We also control the higher
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derivatives of the difference between Vtip and its and the approximation com-

ing from the asymptotics of VBry and Vpert, using analyticity of the relevant

functions.

2.4.1 Buckling barriers

In this section, we prove Lemma 2.4.2. This shows that the barriers are

ordered in a specific way: see Figure 2.3. The point is that this ordering means

that boundary condition for the tip barriers is guaranteed by the productish

barriers, and the left-hand boundary condition for the productish barriers is

guaranteed by the tip barriers. We formalize this consequence in Lemma 2.4.3.

Lemma 2.4.2. Let εv, εw, and σ∗ be given. Assume D > D, ζ > ζ∗(D, εw),

δ < δ(ζ∗, εv, D), and finally T∗ is chosen depending on all other parameters.

Then we have the following inequalities. For ζ∗ν
−1/2 ≤ σ ≤ 2ζ∗ν

−1/2,

V +
tip > V +

prish V −tip < V −prish,

W+
tip > W+

prish W−
tip < W−

prish.

For 1
2
σ∗ ≤ σ ≤ σ∗,

V +
prish > V +

tip V −prish < V −tip,

W+
prish > W+

tip W−
prish < W−

tip

Proof. We note the following inequalities:

cDσ−1 < σV +
prish − σVprish < CDσ−1,

cDσ−1 < W̄+
prish − W̄prish < CDσ−1
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This comes from the definition of the barriers V ±prish = (1±DV )V and W̄±
prish =

(1 ± DV )W̄ , together with V ∼ σ−1 and W̄ ∼ 1. Also, provided we take

δ < cζ−1
∗ , by Lemma 2.3.6 we have

cδ−1εvν
1/2 ≤ σV +

tip − σVtip ≤ Cδ−1εvν
1/2,

cεwν
1/2 ≤ W̄+

tip − W̄tip ≤ Cεwν
1/2.

We can put all these inequalities, together with (2.4.1), in terms of ζ:

σ|Vprish − Vtip| ≤ C(ρ∗)
(
νζ2 + ζ−1ν1/2 + ν

)
, (2.25)

|W̄prish − W̄tip| ≤ C(ρ∗)
(
νζ2 + ν|log ν|+ν|log ζ|

)
,

cDζ−1ν1/2 < σV +
prish − σVprish < CDζ−1ν1/2, (2.26)

cDζ−1ν1/2 < W+
prish −Wprish < CDζ−1ν1/2,

cδ−1εvν
1/2 ≤ σV +

tip − σVtip ≤ Cδ−1εvν
1/2, (2.27)

cεwν
1/2 ≤ W̄+

tip − W̄tip ≤ Cεwν
1/2.

We now use the inequalities (2.25), (2.26), and (2.27) to prove the

desired inequalities for the supersolutions. The desired inequalities for the

subsolutions are similar.

First we deal with the inequality at σ∗/2 < σ < σ∗, where we wish to

100



show that V +
prish > V +

tip. By applying (2.26), then (2.25), then (2.27) we find

σV +
prish ≥ σVprish + cDσ−1

≥ σVtip + cDσ−1

− C
(
ν2σ2 + σ−1 + ν

)

≥ σV +
tip + cDσ−1

− C
(
ν2σ2 + σ−1 + ν

)
− Cδ−1εvν

1/2.

Choosing D such that cD ≥ 2C means that δV +
prish ≥ σV +

tip at least for short

time. Showing that W+
prish > W+

tip is similar.

Now we deal with the inequalities for ζ∗ ≤ ζ ≤ 2ζ∗. First choose

ζ∗ ≥ 10CD
cεw

, and then chose δ ≤ 1
10

(CD)−1cεvζ∗. Then we have, using (2.27),

σV +
tip ≥ σVtip + cδ−1εvν

1/2

≥ σVtip + 10CDζ−1ν1/2.

Now using (2.25) and then (2.26), for ζ∗ ≤ ζ ≤ 2ζ∗,

σV +
tip ≥ σVprish + 10CDζ−1ν1/2

− C
(
νζ2 + ν

)
− Cζ−1ν1/2

≥ σV +
prish + 10CDζ−1ν1/2

− C
(
νζ2 + ν

)
− Cζ−1ν1/2 − CDζ−1ν1/2

≥ σV +
prish + 8CDζ−1ν1/2

with the last line valid for small enough times. Therefore, for small enough

times, V +
tip ≥ V +

prish here. The calculation is similar for W ; since ζ ≥ 10CD
cεw

the
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upper bound CDζ−1ν1/2 on W̄+
prish −Wprish is dominated by the lower bound

cεwν
1/2 on W̄+

tip − W̄tip.

We take a moment here to remark on the design of the tip barriers.

To understand the term ν1/2 in the barriers’ definitions, consider what would

happen in Lemma 2.3.6 if we replaced ν1/2 with some function f(ν) � ν1/2.

We would still have

Vdiff = V + − V ≥ cδ−1εvf(ν)σ1,−1 − Cεvνσ1,0

and upon pulling out the factor δ−1εvf(ν)σ1,−1,

Vdiff ≥ cδ−1εvf(ν)σ1,−1

(
1− Cδ ν

f(ν)
σ0,1

)
.

Since f(ν)� ν1/2, ν
f(ν)
� f(ν), so the region where Vdiff > 0 is not contained

in the region f(ν)σ ≤ ζ∗ for any ζ∗.

However, in Lemma 2.4.2, it was important that the region where

Vdiff > 0 is contained in the region f(ν)σ ≤ ζ∗. The reason is that, in

approximating the first term of V +
tip, we use the asymptotics of VBry to say

Vk+Bry = (µ+ δ−1εvf(ν))σ−1 +O(σ−2).

The term µσ−1 matches with the leading order term of the approximation for

V coming from the productish region (2.5). The O(σ−2) term is essentially

uncontrollable and falls into the error between Vtip and Vprish in (2.24). (We

could find its sign by studying the Byrant soliton more closely, but that would
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only help us for either the sub- or supersolution.) Then we need the left over

term f(ν)σ−1 to cover O(σ−2)- in other words, we need f(ν)σ ≥ C for some

C.

Therefore the ν1/2 is somehow optimal, at least for the technique that

we are using.

The point of the inequalities in Lemma 2.4.2 is that they immediately

imply Lemma 2.4.3 below. This says that we can remove the assumption in

Lemma 2.2.2 which assumed that the solution stays within the productish

barriers on the left edge of the productish region, and we can remove the

assumption from 2.2.2 which assumed that the solution stays within the tip

barriers on the right edge of the tip region.

Lemma 2.4.3. Let D > D, Creg > Creg, u∗ < u∗(D,Creg), σ∗ > σ∗(D,Creg),

εv, εw < εw(εv), ζ∗ ≥ ζ∗(εw, D), and δ < δ(εv, D, ζ∗) be given. There is a T∗

depending on all parameters such that if T2 < T∗ we have the following.

Let 0 < T1 < T2 < T∗. Assume that the initial metric is controlled at

the initial time in the productish and tip regions, and also controlled at the

right of the productish region. Then then conclusions of Lemmas 2.2.2 and

2.3.2 hold, i.e. we have (P1), (P2) and (T1), (T2), (T3).

Proof. Let Tbad > T1 be the maximal time such that all the conclusions hold for

g(t). By Lemma 2.4.2, the assumption that the solution is barricaded on the

right edge of the tip region is satisfied on [T1, Tbad], since the productish region

barriers are tighter than the tip region barriers there. Similarly, the assumption
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Figure 2.3: Buckling barriers. The red solution lies between the productish
barriers in the productish region, and the tip barriers in the tip region. Because
of the ordering of the barriers at σ = σ∗, the boundary conditions for the
productish barriers are automatically satisfied. Similarly at σ = β−pζ∗.

that the solution is barricaded on the left edge of the productish region holds on

[T1, Tbad]. By the assumptions of our lemma, all other assumptions needed to

apply Lemmas 2.2.2 and 2.3.2 hold on [T1, Tbad]. Therefore all the conclusions

still hold at time t = Tbad.

The assumptions that g is well controlled in the productish and tip

regions are all assumptions on the metric at time T1. The only assumption

left after Lemma 2.4.3 that is an a priori assumption on the forward evolution

is that the metric is barricaded at the right of the productish region.
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From now on we consider the constants D, Creg, u∗, σ∗, εv, εw, ζ∗, and

δ to be fixed and satisfying Lemma 2.4.3.

2.4.2 Mollifying metrics

In this section we will define mollified metrics, and prove some basic

properties. We introduce a smooth cutoff function η(x) : [0,∞)→ [0, 1] which

satisfies




η(x) = 1 x < 1

η(x) ∈ [0, 1] 1 ≤ x ≤ 2

η(x) = 0 x > 2

and define ηr(x) = η(x/r).

Now, for arbitrary sufficiently small m, and T
(m)
1 to be determined, we

define

V
(m)
init =





η2ζ∗(ζ)Vtip(u, T
(m)
1 ) + (1− η2ζ∗(ζ))Vprish(u, T

(m)
1 ) ζ∗ν

−1/2 ≤ ζ ≤ 4ζ∗ν
−1/2

Vprish(u, T
(m)
1 ) 4ζ∗tν

1/2 ≤ u ≤ m

ηm(u)Vprish(u, T
(m)
1 ) + (1− ηm(u))V0(u) m ≤ u ≤ ∞

and define W
(m)
init similarly. Therefore these functions agree with V0 and W0 for

u > 2m, agree with the productish approximation (evaluated at time T
(m)
1 ) for

4ζ∗tν
1/2 < u ≤ m, and agree with the tip approximation (evaluated at time

T
(m)
1 ) for ζ < 2ζ∗.

So far we have just been dealing with the diffeomorphism invariant

considerations of v and w as functions of u and t. Now fix a model pinch

metric gmp on M = I × Sq × F , with the corresponding function V0(u) and
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W0(u), and write it in coordinates so that:

gmp =
dx2

1
4
xV0(x)

+ x2gSq +W0(x)gF .

In other words, the coordinate x is defined so that the value of φ =
√
u for

gmp is x. Now we define mollifications g
(m)
init(t). We define them as

g
(m)
init =

dx2

1
4
xV

(m)
init (x)

+ x2gSq +W
(m)
init (x, t)gF .

Note that g
(m)
init is equal to gmp for x > 2m, and is smooth. It may seem that

we have repeated ourselves, since we have already chosen V
(m)
init and W

(m)
init . The

point here is we are also fixing the coordinate of the interval factor.

The following Lemma says that g
(m)
init satisfies all of the conditions on

the initial metric required by Lemmas 2.2.2 and 2.3.2.

Lemma 2.4.4. Let m < m and suppose T
(m)
1 < T

(m)
1 (m) < m. Let g

(m)
init =

g(m)(T
(m)
1 ). Then for T1 = T

(m)
1 , the metric g

(m)
init is initially controlled in the

productish and tip regions.

Proof. That g
(m)
init is initially controlled in the tip region is immediate, because

the functions v and w for g
(m)
init exactly agree with with the functions Vtip and

Wtip in the tip region.

Where v and w agree with Vprish and Wtip, the assumptions in the

productish region are automatic. This is true for 4ζ∗tν
1/2 ≤ u ≤ m. What’s

left is to check the assumptions for σ∗tν ≤ u ≤ 2ζ∗tν
1/2 and m ≤ u ≤ 2m
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Both conditions hold for u ≤ ζ∗tν
1/2 by Lemma 2.4.1, and the separa-

tion of the barriers. To check the conditions for m ≤ u ≤ 2m, note that they

hold strictly in this compact set at time t = 0, so for sufficiently small T
(m)
1

they will continue to hold.

2.4.3 Controlling curvature and convergence

Since g
(m)
init is smooth, there is a solution to Ricci flow g(m)(t) on [T

(m)
1 , T

(m)
final)

with g(m)(T
(m)
1 ) = ginit. We want to control g(m)(t). By Lemma 2.4.4 and 2.4.3,

we have all of the conditions of Lemmas 2.2.2 and 2.3.2, except for the condi-

tion that the solution is between the barriers for u∗ < u < 2u∗. Let T
(m)
2 be

the maximal time such that this condition holds on [T
(m)
1 , T

(m)
2 ). In Corollary

2.4.8 we will argue that we have a fixed lower bound on T
(m)
2 .

As usual, in each lemma we may decrease T∗.

Lemma 2.4.5. For any k, there is a constant Ck depending only on V0, W0,

and u∗ such that

|∇k Rmg(m)(t,x)|< Ck

for any m < m, any x ∈ [1
4
u∗,∞), and any t ∈ [T

(m)
1 ,min(T∗, T

(m)
2 )].

Proof. The curvatures of the metrics g
(m)
init have a uniform bound on their curva-

ture and the volume of small enough balls in the subset [1
8
u∗,∞)×Sq×F ⊂M .

Therefore we can apply the pseudolocality theorem (Theorem 10.3 of [Per02])

at any point there, to get control on |Rm|. Applying local derivative estimates

(14.4.1 of [CCG+07b]) gives control on higher derivatives.
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Since our barrier control is in terms of u, we need to be able to transfer

the set written in terms of u to being written in terms of x.

Lemma 2.4.6. There is a m such that for any m < m.

{p ∈M : u(m)(x, t) ∈ [u∗, 2u∗]} ⊂ [1
4
u∗, 4u∗]× Sq × F

for all t ∈ [T
(m)
1 ,min(T∗, T

(m)
2 )].

Proof. For t = T
(m)
1 , we have 1

4
u∗ < u(m)(x, t∗) < 4u∗(m) for x ∈ [1

4
u∗, 4u∗]

(just from the definition). By Lemma 2.4.5, there is a uniform speed limit on

u for all x ∈ [1
4
u∗,∞]. Therefore for x ≥ 4u∗, u cannot decrease too fast and

so we can get a time T∗ so that u will not go below u∗ before time T∗.

Also, we can decrease T∗ so that u cannot go above u∗ at x = 1
4
u∗.

Since the conclusions of Lemmas 2.2.2 and 2.3.2 hold for t ∈ [T
(m)
1 , T

(m)
2 ], v

is between its barriers for these times, and is in particular positive for u ∈

[0, 2u∗]. Therefore u is increasing up to 2u∗. Therefore, u is smaller than u∗

for x < 1
4
u∗.

We do something sort of silly here. For a few lemmas, we assume that

(F, gF ) has constant sectional curvature. This is so that we can have control

on |Rm| via Corollaries 2.2.10 and 2.3.12. The control on |Rm| lets us use the

powerful regularity theory set up by Shi [Shi89]. In the end, we can replace

the constant sectional curvature fiber with anything we want, since the Ricci

flow of warped products only cares about the Ricci curvature of the fiber.
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Lemma 2.4.7. Suppose (F, gF ) has constant sectional curvature. For any

t0 > 0, and k ∈ N ∪ {0}, there is a constant C(t0, k) such that

|∇k Rmg(m) |≤ C(t0, k)

tν(t)
.

for all t ∈
[
max(t0, T

(m)
1 ),min(T∗, T

(m)
2 )

]
.

Proof. For k = 0, this is exactly Lemma 2.2.10, Lemma 2.3.12, and Lemma

2.4.5. For k > 0, we can apply Shi’s derivative estimates (Theorem 1.1 of

[Shi89]), using the result for k − 1 at time t0/2.

Corollary 2.4.8. T
(m)
final > T

(m)
2 > T∗.

Proof. The Ricci curvature is bounded at time T
(m)
2 , by Lemma 2.4.7. There-

fore, T
(m)
final > min(T

(m)
∗ , T

(m)
2 ).

By Lemmas 2.4.5 and 2.4.6 the curvature and its derivatives are bounded

for u(m)(x, t) ∈ [u∗, 2u∗]. This implies a speed limit on the functions v(m) and

w(m) there. Since the functions are uniformly separated from the barriers are

time t = T
(m)
1 , they cannot pass the barriers for some fixed time.

We now have all of the conclusions of Lemmas 2.2.2 and 2.3.2, for each

g(m)(t), on [T
(m)
1 , T∗].

Lemma 2.4.9. Possibly decreasing T∗, for any x0 > 0, and k ∈ N∪{0}, there

is a constant C(x0, k) such that

|∇k Rmg(m) |≤ C(x0, k)

for x ∈ [x0,∞) and t ∈ [T
(m)
1 , T∗].
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Proof. Once we prove the Lemma for k = 0, the result follows for k > 0 using

local derivative estimates and the result for k′ = k − 1 and x′0 = 2x0.

Since T
(m)
1 < m, at the beginning time T

(m)
1 the point x0 lies in the

productish region, which is defined as the points where u ≥ tν(t)σ∗. (By

restricting T∗, we can assume ν(t) < 1
σ∗

). We begin by showing that we can

control how long x0 stays in the productish region.

The function u satisfies the evolution equation

∂tu = ∆Mu− 2u−1|∇u|2−µ

and as long as u is in the productish region, we have the estimate

|∆Mu|+u−1|∇u|2= |∆Mu|+v ≤ Cv ≤ c

where C and c are some constants depending only on the model pinch. (The

bound on the laplacian comes from the regularity in conclusion (P2).) Fur-

thermore, u(x0, T
(m)
1 ) = x0. Therefore,

u(x0, t) ≥ x0 − (µ+ c)(t− T (m)
1 ) ≥ x0 − (µ+ c)t

Now, x0 continues to be a point in the productish region as long as u ≥ σ∗tν(t),

so at least as long as

x0 − (µ+ c)t ≥ tν(t)σ∗

or for at least

t ≤ x0

(µ+ c) + ν(t)σ∗
,
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which, since we assume ν(t) < 1/σ∗, will be implied if t ≤ t0(x0) := x0
µ+c+1

.

Now, for t < t0(x0) we have

u0 ≥ x0 − (µ+ c)t0 ≥ x0

(
1− µ+ c

µ+ c+ 1

)
= c′x0.

So, since x0 is in the productish region for t < t0(x0) we have, by Lemma 2.2.9,

|Rm|≤ C

c′
1

x0

.

On the other hand, for t > t0(x0) we have |Rm|≤ C 1
t0(x0)ν(t0(x0))

by

Lemma 2.4.7.

Lemma 2.4.10. Possibly decreasing T∗, for any x0 and k ∈ N ∪ {0} there is

a constant C(x0, k) such that

|(∇gmp)k g(m)(x, t)|gmp≤ C(x0, k).

for all x ∈ [x0,∞) and t ∈ [T
(m)
1 , T∗].

Proof. In this proof we take all norms and covariant derivatives with respect

to gmp unless otherwise specified. At time t = T
(m)
1 we have some bound on

the left hand side. Now, for k = 0, we integrate

∂t|(g(m)(x)− gmp)|= |−2 Rc[g(m)]|≤ 2C(x0, 0)

where C(x0, k) is the constant from Lemma 2.4.9. This gives us the bound for

k = 0.
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For k = 1 we can differentiate the Ricci flow equation with ∇gmp to find

∂t∇g(m) = −2∇Rcg(m) .

Using the formula for writing one connection in terms of another, we find

|∇Rcg(m) |≤ |∇g(m)

Rcg(m) |+C|∇g(m)||Rcg(m)|,

so

∂t|∇g(m)| ≤ |∇(m) Rcg(m) |+C|∇gmpg(m)||Rcg(m) |

≤ C(x0, 1) + CC(x0, 0)|∇gmpg(m)|

where C(x0, 1) and C(x0, 0) are the constants from 2.4.9. By Gronwall’s in-

equality, the result follows.

Now we prove Theorem 1.2.2. Recall that we identify M = I × Sq ×F

with (R1+q \ {01+q})× F ⊂ M̄ := R1+q × F , where 01+q is the origin in R1+q.

We will construct the Ricci flow g(t) provided by Theorem 1.2.2 as a limit

of our flows of mollified metrics g(m)(t). As a little notational annoyance, we

set g
(m)
shift(t) = g(m)(t− T (m)

1 ), which is a Ricci flow for times at least [0, T∗/2].

(g(m) has the nice property that g(m) evaluated at time t is approximately our

approximate solution at time t, whereas g
(m)
shift is nice because it always starts

at time 0.)

Lemma 2.4.11. There is a sequence mk ↘ 0, and a family of metrics g(t),

t ∈ [0, T∗/2] such that

g
(m)
shift(t)→ g(t)
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in C∞loc (M × [0, T∗/2]).

We have ∂tg(t) = −2 Rcg(t) and g(0) = gmp. Furthermore, g(t) satisfies

the conclusions of Lemmas 2.2.2 and 2.3.2, with non-strict inequalities. For

t > 0 the metric g(t) can be extended smoothly to M̄ .

Proof. For any x0 > 0 we have C∞ control on the derivatives of g
(m)
shift for

(x, t) ∈ [x0,∞) × [0, T∗/2] (Lemma 2.4.10). By the Arzelà-Ascoli Theorem,

we get convergence of a subsequence in any such region. By taking a diagonal

subsequence, we get convergence to a metric on g(t) as desired. Since the

convergence happens in C∞, the Ricci flow equation and all the estimates pass

to the limit.

For any t > 0, the doubly-warped product metric g(t) satisfies the

inequalities the conclusion of Lemma 2.2.2 and 2.3.2. (Perhaps with non-strict

inequalities, but we can make the constants worse to make the inequalities

strict.) These imply that the metric has a extension to M̄ .
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Chapter 3

Forward flow from asymmetric metrics

3.1 Overview of the proof and tools

In this chapter, we set up and prove Theorem 1.2.4. Before anything,

I want to remind the reader of Appendix D, which starts on page 208, and

densely lists a lot of the notation we use. I hope it is of use.

In Section 3.3, we prove Theorem 1.2.4. As in the proof of Theorem

1.2.2, we construct the forward flow as a limit of mollified metrics. Here, the

mollified metrics will satisfy Ricci-DeTurck flow (see Section 3.1.1) around a

background metric constructed from the forward evolution from the model

pinch gmp. The shape of the model pinch plays a role in being able to control

the flow, and similarly to our proof of Theorem 1.2.2 we get control in the

productish and tip regions separately.

In the productish region, we again use the inequalities built up in Sec-

tion A to control the evolution. In the tip region, we use a contradiction-

compactness argument to move the flow to Ricci flow near the Bryant soliton.

Then we use Lemma 3.2.4, which is proved in Section 3.2. This constructs

supersolutions to Ricci-DeTurck flow around the Bryant soliton. This was the

hardest step to find, and is most dependent on the specific geometry.
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3.1.1 Ricci-DeTurck flow

The Ricci flow is not a stictly parabolic system. In [DeT83], DeTurck

introduced a modification of Ricci flow which is strictly parabolic. Further-

more, the modification is only the pullback by a family of diffeomorphisms,

and so the Ricci flow can be reconstructed by undoing the pullback.

To implement Ricci-DeTurck flow, one chooses a background metric g̃.

This background metric may itself evolve in time. Define, for any other metric

g, the vector field

(V [g, g̃])i = gab
(

(Γg)
i
ab − (Γg̃)

i
ab

)
.

Here Γg and Γg̃ are the Christoffel symbols of g and g̃. A fancier definition of

V is that it is the map laplacian of the identity map from (M, g) to (M, g̃).

Now, we solve the initial value problem

g(0) given,

∂tg(t) = −2 Rc[g] + LV [g,g̃]g. (3.1)

Here L is the Lie derivative. As it goes, (3.1) is a strictly parabolic quasilinear

system, and may be solved by standard theory. “As it goes” is a poor descrip-

tion, see Chapter 4 of [AH11] for a good explanation why this is true. Once

we have a solution to (3.1), we can recover a solution to Ricci flow. Define

Φ : M →M by integrating the vector field −V [g, g̃]:

∂tΦ(p, t) = −V [g, g̃](p, t)
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and then set gRF = Φ∗g. This “undoes” the lie derivative in (3.1), and gRF

will satisfy ∂tgRF = −2 Rc[gRF ].

In Lemma 2.1 of [Shi89], Shi derived the following coordinate evolution

equation for g(t):

∂tgij = ∆g̃,ggij −
[
gabgip Rmp

ajb

]
i↔j + Cov(g,∇g)ij. (3.2)

We explain the notation. Here, the convention is that all covariant derivatives

and norms are by default with respect to the background metric g̃. We define

∆g̃,g = gab∇a∇b,

where we are taking covariant derivatives with respect to the background met-

ric g̃, and tracing with g. The notation [·]i↔j means the symmetrization of the

tensor with respect to i and j, that is [Aij]i↔j = Aij +Aji. Finally, Cov(g,∇g)

is a tensor contraction of two copies of g−1 and two copies of ∇g. Generally

when dealing with questions of stabiltiy, one does not need its exact form and

will only need that if |g− g̃|g̃< 1
2

then for some c0 depending on the dimension,

|Cov(g,∇g)|≤ c0|∇g|2.

(The restriction |g − g̃|g̃< 1
2
< 1 is needed to estimate the size of the inverse

of g.)

It is useful to write (3.2) in terms of thinking of g as a perturbation of

g̃. Furthermore, we will want to consider not just Ricci flow, but also Ricci

flow modified by a time-dependent vector field. For a time-dependent vector
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field X, we write

RfX [g] = ∂tg − (−2 Rc[g]− LXg) .

Now we write an equation for h = g̃−g. We have seen the evolution in Lemma

3.1.1 used in many places in many forms, but never written explicitly. We give

the derivation in Appendix B.5. Please be patient with the dense notation,

and maybe skip to the explanation after the statement of the following lemma.

Lemma 3.1.1. Let g̃ be a time-dependent family of metrics, and let X be a

time-dependent vector field. Let g be a metric satisfying

RfX [g] = LV [g,g̃]g. (3.3)

Let g = g̃ + h, g−1 = g̃−1 − h̄, and ĥij = g̃aig̃bjhab − ĥab.

Then

X,g̃,gh = 2 Rm[h] + UT[h] +Q[h] + Cov[g,∇h]

− RfX [g̃]− (RfX [g̃] · h)

where all covariant derivatives and curvatures are with respect to g̃, and

(∆g̃,gh)ij = gab∇a∇bhij, ∆X,g̃,g = ∆g̃,g −∇X , X,g̃,g = ∂t −∆X,g̃,g,

Rm[h] = g̃acg̃bd Rmajbi hcd, Q[h] =
[
Rmp

ajb h
abhip − Rmajbi ĥ

ab
]
i↔j

,

(A ·B)ij = 1
2

1
2

[
g̃abAaiBbj

]
i↔j , UT[B] = ((∂tg̃) ·B)

Remark 2. We can also write the statement of Lemma 3.1.1 as,

RfX+V [g̃,g][g] = RfX [g̃] + (RfX [g̃] · h)

+ X,g̃,gh− 2 Rm[h]− UT[h]−Q(h)− Cov(g,∇h)
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The linear term 2 Rm[h] is the term of principle interest. The term

UT[h] can be handled by the Uhlenbeck trick. This term comes from the

change in background metric and the Uhlenbeck trick says that it may be

removed by considering a changing orthonormal frame. We just use the fol-

lowing, which is a straightforward calculation and may be considered a cheap

version of the Uhlenbeck trick.

Lemma 3.1.2. If B is a time dependent two-tensor and g̃ is a time-dependent

metric, then

∂t|B|2g̃= 2〈B, ∂tB − UT[B]〉g̃

From this, we see that the term UT[h] cancels in the evolution of |h|g̃.

In our application, we will just bound the rest of the terms. As long as |h|< 1
2

(we require |h|< 1
2
< 1 to control the norm of the inverse of g) we have

Q[h] ≤ c0|Rm|g̃|h|2g̃, Cov[g,∇h] ≤ c0|∇h|2g̃,

for some c0 depending on the dimension.

For short-time existence and regularity, e.g. the work in [Shi89], it is

enough to fix a background metric which doesn’t change in time, and is close

enough to the initial metric, provided that the background metric has bounded

curvature. For long-time existence and stability, or short-time existence near

metrics with unbounded curvature, one needs the background metric to satisfy

Ricci flow at least to a high degree.
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3.1.1.1 Evolution of the norm

The regularity theory of Ricci flow, which we use heavily, relies on the

strictly parabolic nature of the evolution of h given in Lemma 3.1.1. How-

ever, the only consequence we directly use from the evolution is the following.

Suppose RfX [g̃] = 0 and let y = |h|2g̃. Let ΛRm : M → R be

ΛRm(p) = max
h∈Sym2(TpM):|h|=1

〈Rm[h], h〉.

Then (in this section c0 is a floating constant depending on the dimension)

X,g̃,gy ≤ 4ΛRmy − 2gabg̃cdg̃ef∇ahce∇bhdf

+ c0

(
|Rm|y3/2 + |∇h|2y1/2

)
.

The term −2gabg̃cdg̃ef∇ahce∇bhdf is strictly negative. There are two

(well known) ways to use it to our advantage, and one of them is sharp so we

cannot use both at once. The simpler way is to write (assuming |h|< 1
2
, and

letting c0 be a floating constant depending on the dimension)

gabg̃cdg̃ef∇ahce∇bhdf ≥ (1− c0|h|)g̃abg̃cdg̃ef∇ahce∇bhdf

= (1− c0y
1/2)|∇h|2

and therefore we can write

X,g̃,gy ≤ 4ΛRmy − 2(1− c0y
1/2)|∇h|2+c0|Rm|y3/2. (3.4)

This has the advantage that the derivative terms on the right hand side are

strictly negative, provided y is sufficiently small.
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The second way to use this good term is by deriving the equation for

z = y1/2 = |h|:

X,g̃,gz ≤ 2ΛRmz

− |h|−1gabg̃cdg̃ef∇ahce∇bhdf + 1
4
|h|−3gab∇a|h|2∇b|h|2

+ c0

(
|Rm|z2 + |∇h|2

)
.

This introduces the undesirable positive term +1
4
|h|−3gab∇a|h|2∇b|h|2 from

differentiating the square root twice. However, we can use the inequality

gab∇a|h|2∇b|h|2≤ 4|h|2gabg̃cdg̃ef∇ahce∇bhdf ,

to absorb that term. We end up with

X,g̃,gz ≤ 2ΛRmz + c0

(
|Rm|z2 + |∇h|2

)
. (3.5)

Note now that the first term 2ΛRmz has one power of h, whereas the other

terms have two powers of h- so as long as the derivative is controlled the first

term should dominate. In order to use this, we will need some estimate on

|∇h|2, probably from regularity theory. In the end, the regularity theory uses

the first trick on the evolution of |∇h|2.

3.2 Stability of the Bryant soliton

In this section, we will prove a sort-of stability result for Ricci DeTurck

flow around the Bryant soliton, Lemma 3.2.4. This will be used to prove the

short-time stability of flows from model pinches. It might be possible to bring
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this statement to a full C2 stability statement for the Bryant soliton. For a

complete stability result for the Bryant soliton, see [Der14]. Note that that

result does not suffice here because being in the weighted L2 space required

there requires exponential decay at infinity.

We begin by proving a version of the Anderson-Chow estimate. In

[AC05], Anderson and Chow proved an estimate in three dimensions for solu-

tions to the linearization of Ricci-DeTurck flow, in terms of the scalar curva-

ture. The inequality is

|Rc|2−RΛRm ≥ 0 (3.6)

valid on any three-dimensional manifold. Recall the definition

ΛRm = max
h∈Sym2(M):|h|=1

〈Rm[h], h〉

from Section 3.1.1.1. This estimate is useful in classifying solitons [Bre13], and

was also vital in [BK17]. In [WC16], Wu and Chen prove a higher-dimensional

version of the Anderson-Chow estimate, assuming that the Weyl tensor van-

ishes identically along the flow (Claim 2.1 in [WC16]). For a singly-warped

product, the Weyl tensor does vanish identically (since it is conformal to a

cylinder) and therefore [WC16] applies. We also give a proof in the restricted

setting we need, because it is more elementary.

For a singly warped product, ds2 + u(s)gSq , we let L be the sectional

curvature of a plane tangent to Sq, and K the sectional curvature of a plane

spanned by ∂s and a vector from Sq.
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Lemma 3.2.1. Let g = ds2+ugSq be a warped product metric with nonnegative

sectional curvature. Then the Anderson-Chow inequality (3.6) holds for g. The

equality is achieved only at points where the sectional curvature is constant or

the curvature K = −u−1/2∂2
su

1/2 is 0.

Proof. Note the calculation below is just done within the vector space TPM

for an arbitrary P ∈M . The scalar curvature of g is

R = 2qK + q(q − 1)L.

The Ricci curvature of g is

Rc = qKds2 + (K + (q − 1)L)(ugSq)

so

|Rc|2= q2K2 + q(K + (q − 1)L)2.

Writing α = K
(q−1)L

we can rewrite these as

R

(q − 1)L
= q(2α + 1),

|Rc|2
((q − 1)L)2

= q
(
qα2 + (α + 1)2

)

Now let’s find h with |h|= 1 which maximizes Rm[h, h]. Take an or-

thonormal basis V0 = ∂s, V1, . . . , Vq for TpM , such that h is diagonal with re-

spect to V1 . . . , Vq, that is for i, j nonzero and distinct, hii = λi and hij = 0.
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Then we calculate,

Rm[h, h] = Rmaibj h
ijhab

=
n∑

a=1

h00haa Rma0a0 +
n∑

i=1

hiih00 Rm0i0i +
n∑

i=1

n∑

a=1

hiihaa Rmaiai

+
n∑

j=1

h0jhj0 Rmj00j +
n∑

i=1

hi0h0i Rm0ii0 +
n∑

i=1

n∑

j=1,j 6=i

hijhji Rmijji .

The first line is the case when i = j: the first term is when i = 0, the second

term is when a = 0, and the third term is when neither is 0. The second line

is when i 6= j: the first term is when i = 0, the second term is when i 6= 0

but j = 0, and the third term is when neither is 0. Note that actually this

last term vanishes since hij = 0, and since Rm0ii0 = Rmj00j = −L, the second

line is negative. Therefore to optimize h we will take h0i = 0. Let b = h00.

Simplifying, we have

Rm[h, h] = 2b(
∑

λi)K +

((∑
λi

)2

−
∑

λ2
i

)
L

We can assume b > 0, since negating h does not change Rm[h, h]. Then, to

maximize either

∑
λi or

((∑
λi

)2

−
∑

λ2
i

)

we would take the λi all equal. Since this maximizes either term, and since K

and L are positive, it maximizes all of Rm[h, h]. Define λ =
√
qλi, with the

motivation that λ is the norm of the restriction of h to TSq, so b2 + λ2 = 1.

So, recalling the definition α = K
(q−1)L

we arrive at

Rm[h, h]

(q − 1)L
= 2
√
qα(bλ) + (λ2).
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The positive eigenvalue of the matrix

(
0

√
qα√

qα 1

)
is 1

2
(1 +

√
4qα2 + 1).

Therefore, since b and λ optimize 2
√
qαbλ+ λ2 with b2 + λ2 = 1, we have,

ΛRm

(q − 1)L
= 1

2
(1 +

√
4qα2 + 1)

Therefore,

A =
|Rc|2−RRm[h, h]

q(q − 1)2L2
= qα2 + (α + 1)2 − 1

2
(2α + 1)(1 +

√
4qα2 + 1)

Now, for q = 2 and for each α, we have A ≥ 0 by the three dimensional

Anderson-Chow estimate. (We could also check by hand.) We claim A doesn’t

decrease as we increase q. Calculate,

dA

dq
= α2 − (2α + 1)(4qα2 + 1)−1/2α2

So for q ≥ 2

dA

dq
≥ α2

(
1− (2α + 1)(8α2 + 1)−1/2

)
≥ 0.

Now let gRp be the euclidean metric, and let gsol be the product metric

gsol = gBry+gRp . Here gBry is the Bryant soliton, and we let R0 be its maximum

scalar curvature..

Corollary 3.2.2. The Anderson-Chow inequality (3.6) holds for gsol.
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Proof. The extra flat factor does not affect any of the terms in (3.6). The

Bryant soliton has nonnegative curvature, so the previous lemma applies.

Using this estimate, we construct a supersolution to linearized Ricci-

DeTurck flow around gsol. We write gBry = ds2 + u(s)gSq .

Lemma 3.2.3. Let (Bry × Rp, gsol, X) be the Bryant soliton crossed with a

euclidean factor, with maximum scalar curvature R0.

There is a function F : Bry × Rp → R>0, which is just a function of

u, with the following properties.

1. For some c > 0, ∆XF + 2ΛRmF ≤ −cu0,−2 log(2 + u)F .

2. For some c1, c2 > 0, as u→∞, F = c1u
−1
(
1 + c2

log u
u

)
(1 + o(1)).

Proof. First recall that if f is the soliton potential and f̄(p) = −f(p)−f(0)
R0

then

f̄ satisfies

∆X f̄ = 1, f̄(0) = 0, ∇f̄(0) = 0,

and has the asymptotics at ∞,

f̄ = µ−1u

(
1− cf̄

log u

u

)
(1 + o(1;u→∞))

for some constant cf̄ (see Section B.4 and especially (B.20)). Also, f̄ attains

its minimum of 0 at u = 0.
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Now let F1 =
(
f̄ + a

)−1
for some a > 0 to be determined. Calculate,

∆XF1 = −(F1)2∆f̄ + 2F 3
1 |∇f̄ |2

= −
(
F1 − 2F 2

1 |∇f̄ |2
)
F1

so,

− (∆X + 2ΛRm)F1 =
(
F1 − 2ΛRm − 2F 2

1 |∇f̄ |2
)
F1 (3.7)

We claim that for large enough B, the function F = F1 + BR satisfies

the properties in the lemma. The asymptotics at infinity (i.e. item (2) of

the conclusion) are immediate from the asymptotics for F1 and R = c1u
−1 +

O(u−2). Now calculate,

−(∆X + 2ΛRm)F =

(−(∆X + 2ΛRm)F1

F1 +BR
+B
−(∆X + 2ΛRm)R

F1 +BR

)
F

=: (T1 + T2)F

Note the term T2 is positive everywhere by the singly-warped Anderson-Chow

estimate:

∆XR + 2ΛRmR = −2|Rc|2+2ΛRmR ≤ 0.

Claim: Let K be a compact subset of Bry not containing the origin. If B is

sufficiently large, then there is a c so that T1 + T2 > c on K × Rp.

Proof of Claim: On K×Rp, the singly-warped Anderson-Chow estimate is not

sharp, so |Rc|2−RΛRm > cK in K × Rp. Therefore,

− (∆X + 2ΛRm) ≥ cKR inK × Rp
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By compactness of K, everything is bounded from below on K. Therefore,

examining the dependence of T1 and T2 on B, we can chose B large enough so

that T1 ≥ −cK/4 and T2 ≥ cK/2 on K. �

Claim: For sufficiently small a in the definition of F1 (independent of B), and

sufficiently small u1 (independent of B), there is a c (which may depend on

B) such that T1 > c in {u < u1}.

Proof of Claim: Choose a < 1
2ΛRm(0)

. Then F1 − 2ΛRm > 0 in a neighborhood

of 0. Also, |∇f̄ |2(0) = 0. The claim follows from (3.7) by choosing u1 and c

small enough. �

Claim: For sufficiently large u2 (depending on a, but independent of B) and

sufficiently small c (depending on B and a), T1 satisfies T1 ≥ cu0,−2 log(2 + u)

on the set {u > u2}.

Proof of Claim: The Bryant soliton satisfies, as u→∞,

Rm = u−1 (ugSq � ugSq) +O(u−2|∇u|2) = u−1 (ugSq � ugSq) +O(u−2)

Note that the largest eigenvalue of u−1 (ugSq � ugSq) is (q − 1) = 1
2
µ. We

can calculate the asymptotics of F1 from the asymptotics of f̄ from (B.20) in

Section B.4.1:

F1 = µu−1

(
1 + cf̄

log u

u

)
(1 + o(1;u→∞)).

Also, |∇f̄ |2= O(1;u→∞). From this we find,

(F1 − 2ΛRm − 2F 2
1 |∇f̄ |2) = µcf̄u

−2 log u+O(u−2;u→∞)
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The claim follows by choosing u2 large enough and c small enough. �

To prove the lemma, choose u1 and u2 in accordance with the second

and third claims above, and then choose B large enough so the conclusion of

the first claim holds on the complement of {u1 < u < u2}. Then the conclusion

of the lemma holds (taking the minimum over the values of c).

Lemma 3.2.4. There is a constant ε > 0 depending only on the dimension

with the following property. Suppose ε < ε and let F̄ = εF , where F is defined

in Lemma 3.2.3.

Suppose that g(t) = gsol + h(t) is a Ricci DeTurck flow around gsol

modified by X, on a time interval I (so (3.3) holds). Suppose that for all

P ∈ Bry × Rp and t ∈ I,

|h(P, t)|≤ F̄ (P ).

Suppose that either I = (−∞, T ] or I = [0, T ] with the condition at

time t = 0 that

u0,1/2|∇h|+u0,1|∇2h|< F̄ . (3.8)

Then the strict inequality |h(P, t)|< F̄ holds for all P ∈ Bry and t ∈ I.

We note that we could change (3.8) to having right hand side ChF̄ if

we allow ε to depend on Ch.

Proof. In this proof the ever-increasing constant C is chosen independently of

ε. First, we write the inequality solved by F̄ in terms of the laplacian ∆X,gBry ,g.
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By Lemma 3.2.3, we have

−
(
∆XF̄ + 2ΛRmF̄

)
≥ cu0,−2 log(2 + u)F̄ . (3.9)

Since |∇∇F |≤ Cu0,−3 ≤ Cu0,−2F , and |h|≤ εF , we have

|∆X,gBry ,gF −∆XF |≤ Cu0,−2εF 2 = Cεu0,−3F

and multiplying through by ε, |∆X,g,ḡF̄ − ∆XF̄ |≤ Cεu0,−3F̄ . Therefore, de-

creasing c and demanding that ε is sufficiently small, we can replace (3.9)

with

−
(
∆X,gBry ,gF̄ + 2ΛRmF̄

)
≥ cu0,−2 log(2 + u)F̄ . (3.10)

Next we note the regularity available. We claim that for some C (inde-

pendent of ε, P∗, and t∗), we have |∇h|(P∗, t∗) < Cu0,−1/2F̄ (P∗). To see this,

let a = u0,−1(P∗) and scale the parabolic system by a:

g̃Bry = ag, h̃ = ah, t̃ = at, X̃ = a−1X, ũ = au.

We want to apply regularity in a parabolic neighborhood of some sufficiently

small size r > 0. The Bryant soliton has a bound |∇u|2≤ C for some C. So,

for any r, for all P ∈ Bg̃(P∗, r) = Bg(P∗, r/
√
a) we have

|ũ(P )− ũ(P∗)| = a|u(P )− u(P∗)|

≤ Ca
r√
a

= Cr
√
a = Cru0,−1/2 ≤ Cr. (3.11)

Therefore for sufficiently small r, the ball of radius r around P∗, with respect

to g̃, is close to a euclidean ball, uniformly in P∗.
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To continue the regularity argument, in the case when I = [0, T ], the

parabolic neighborhood of size r around P∗ may see the initial condition. We

need to check what the bounds on the initial condition (3.8) says about h̃. At

the initial time,

|∇h̃|g̃(P, 0) = a−1/2|∇h|g(P, 0) ≤ ch
u0,−1/2(P )

u0,−1/2(P∗)
F̄ = ch

u0,1/2(P∗)

u0,1/2(P )
F̄ ≤ CF̄

where we used (3.11) and forced r sufficiently small. Similarly scaling shows

|∇∇h̃|g̃(P, 0) ≤ CF̄ .

Therefore, in the parabolic neighborhood of size r we may apply parabolic

regularity to find that |∇h̃|g̃Bry is bounded by CF̄ . Scaling back, we find

|∇hgBry |(P∗, t∗) = a1/2|∇hgBry |(P∗, t∗) ≤ Cu0,−1/2(P∗, t∗)F̄ (P∗, t∗).

Now, by the bound on the evolution of |h| (3.5), we have that Z = |h|

satisfies

X,gBry ,gZ − 2ΛRmZ ≤ C|RmgBry |Z2 + C|∇h|2.

Or, since we have assumed Z ≤ F̄ , and also |∇h|< Cu0,− 1
2 F̄ by the discussion

on regularity,

X,gBry ,gZ − 2ΛRmZ ≤ Cu0,−1Z2 + Cu0,−1F̄ 2.

Then since Z ≤ F̄ ≤ εCu0,−1,

X,gBry ,gZ − 2ΛRmZ ≤ εCu0,−2F̄ .

In particular, we can choose ε sufficiently small so that

X,gBry ,gZ − 2ΛRmZ ≤ (c/2)u0,−2F̄ .
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where c is the constant from (3.10).

Therefore

X,gBry ,g(F̄ − Z)− 2ΛRm(F̄ − Z) ≥ (c/2)u0,−2F̄ > 0

and the lemma follows by the maximum principle.

3.3 Asymmetric metrics

In this section, we carry out the proof of Theorem 1.2.4, which shows

that we can flow from metrics with neighborhoods close to model pinches.

3.3.1 Setup of the background metric

Let (M, ginit) be a manifold satisfying the assumptions of the theorem.

To summarize, there is an open set U ⊂ M , and a diffeomorphism Φ : U →

(L,L′)× Sq × F , and a model pinch gmp such that

|ginit − Φ∗gmp|≤ ε0V0.

We also have some regularity. We will forget about the diffeomorphism Φ and

just use the coordinates for (L,L′)×Sq×F on U . The metric gmp has a forward

Ricci flow gwp(t) (where “wp” stands for warped product) from Theorem 1.2.2.

We may restrict this flow to (L,L′) and then view it as a flow on U , and now

(remember we are forgetting about Φ) we have functions u : U × [0, T∗)→ R+

and w : U × [0, T∗) → R+ defined on U coming from the warped product

gwp(t). We write u0 for the initial value of u.
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For any u] > 0, let Ω<u] = {p : u0(p) < u]} and Ω>x = {p ∈ U :

u0(p) > u]} ∪ (M \ U). Note that while {p : u < u]} is a subset of space-time

which is different for each time-slice, Ω<u] is a fixed subset of M .

Now, we wish to set up a background metric to use for Ricci-DeTurck

flow. Below, we will chose constants 0 < u∗∗ < u∗ < u†. In the region Ω<u∗ we

will want the background metric to be gwp(t) and we will control the solution

using barriers. In the region Ω>u∗∗ , we will be able to control the solution

more crudely, since the initial metric has bounded curvature there. Because

our control is cruder, it will not be so important exactly what the background

metric is.

Let η : [0,∞) → R be a smooth cutoff function satisfying η(x) ∈ [0, 1]

and

η(x) = 1 for x < 1 η(x) = 0 for x > 2,

and define ηr(x) = η(x/r). Then define

gbg(t) = ηu† (u0) gwp(t) +
(
1− ηu†(u0)

)
ginit.

Here, we abuse notation and define ηu†(u(p, 0)) = 0 where u is undefined, i.e.

outside of the set U . So, gbg(t) is a time-dependent metric which agrees with

gwp(t) for points p ∈ Ω<u† , and agrees with ginit for points p ∈ Ω>2u† .

Note that we can always choose T∗ small enough (depending on u∗ and

u†) so that for t < T∗ we have u0(p) < u† wherever u(p, t) < u∗. Therefore

g(p, t) = gwp(t) on the set {(p, t) : u(p, t) < u∗}.
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m 2m u∗∗ u∗ u† 2u†

gwp(t) ginit

g
(m)
init

gbg(t)

gwp

(
T

(m)
1

)
ginit

0 < 2ε0V0(u) 0

u0

h
(m)
init

Control via interior estimates and short time

Control with barriers

Figure 3.1: A map of our background metric and mollified metrics. The
background metric gbg is defined in Section 3.3.1 and the mollified metric g

(m)
init

is defined in Section 3.3.2. The dashed lines between m and 2m and between
u† and u2† indicate that the metric is being interpolated between the value on
the left and the value on the right. The control is performed in Lemma 3.3.5.

3.3.2 Construction of mollified initial metrics

As in the proof of Theorem 1.2.2, we will construct the forward evolu-

tion from ginit as a limit of mollified flows. A parameter m ∈ [0, 1] determines

the space scale of the mollification. Define T
(m)
1 = εtimemV0(m), where we will

choose εtime later. We define the mollified initial metric g
(m)
init by

g
(m)
init = ηm (u0) gwp(T

(m)
1 ) + (1− ηm (u0)) ginit.

Then g
(m)
init can be extended to be a smooth complete metric with bounded

curvature on M̄ (since gwp(t) can). (Recall the notation M̄ from the statement

of Theorem 1.2.4.) Therefore, there is a solution to Ricci-DeTurck flow with
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background metric gbg on a time interval [T
(m)
1 , T

(m)
2 ], with initial value g

(m)
init :

g(m)(T
(m)
1 ) = g

(m)
init

∂tg
(m)(t) = −2 Rcg(m)(t) +LV [g(m)(t), gbg(t)]gm(t).

We let h(m)(t) be the difference

h(m)(t) = g(m)(t)− gbg(t),

and h
(m)
init = h(m)(T

(m)
1 ) = g

(m)
init − gbg(T (m)

1 ). For the remainder of this section,

we derive bounds on h
(m)
init and its derivatives.

In Ω<m, both the mollified metric g
(m)
init and the background metric

gbg(T
(m)
1 ) are equal to gwp(T

(m)
1 ), so h

(m)
init = 0 in Ω<m. Similarly, in Ω>2u† ,

both g
(m)
init and gbg(T

(m)
1 ) are equal to ginit, so h

(m)
init = 0 in Ω>2u† .

Note that |Rm[gwp(t)]|< Cu(p, t)−1 in Ω>m ∩ Ω<u† . Therefore for t <

T
(m)
1 = εtimeCV0(m)

|gwp(t)− gwp(0)|< εtimeCV0(m) < εtimeCV0(u)

for all points in Ω>m ∩ Ω<u† . Subsequently

|gwp(T (m)
1 )− ginit(T (m)

1 )| < |gwp(T (m)
1 )− gwp(0)|+|gwp(0)− ginit|

< (εtimeC + ε0)V0(u).

Here we used the assumption that |gwp(0) − ginit|< ε0V0(u). By choosing

εtime = (ε0/C) we get

|gwp(T (m)
1 )− ginit(T (m)

1 )|< 2ε0V0(u) (3.12)
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for all points in Ω>m ∪ Ω<u† .

Therefore, coming back to the definition of g(m) and the definition of

gbg, we find

|h(m)
init|= |g(m)

init − gbg(T (m)
1 )|< 2ε0V0(u) (3.13)

everywhere.

We can also control the higher derivatives of h(m) with respect to gbg.

Here the covariant derivative ∇ is defined to be, by default, with respect to

gbg. Consider,

∇h(m)
init = ηm(u0)∇gwp(T (m)

1 ) + (1− ηm(u0))∇ginit +
1

m
η′(u0/m)(∇u0)

(
gwp(T

(m)
1 )− ginit

)

Note that wherever ηm 6= 0, gbg(T
(m)
1 ) = gwp(T

(m)
1 ), so the first term vanishes.

Also, the region η′ 6= 0 is the region u0 ∈ [m, 2m], so up to a constant we can

replace the m in the denominator of the third term with u0. Furthermore, η′

is uniformly bounded. Therefore,

|∇h(m)| ≤ |∇ginit|+C
|∇u0|
u0

|gwp − ginit|χu0∈[m,2m]

= |∇ginit|+C
1√
u0

√
v0|gwp − ginit|χu0∈[m,2m]

≤ |∇ginit|+C
1√
u0

v
3/2
0 .

In the last line we use (3.12). Now, considering only the region u0 < u†, where

gbg = gwp(t), we can use our assumption on the higher derivatives in Theorem
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1.2.4 to get

|∇h(m)| ≤ |∇gwpginit|+C
1√
u0

v
3/2
0

≤ C
1√
u0

+ C
1√
u0

v
3/2
0 ≤ C

1√
u0

.

Finally, we can bound |∇ginit| in the region u0 > u† by some constant, so this

estimate extends to that region as well.

Doing similar computations for higher derivatives, we find

5∑

i=1

u
i/2
0 |∇ih

(m)
init|≤ C. (3.14)

This implies that the curvature of g
(m)
init satisfies, in the region u0 > u∗∗,

|Rm
g
(m)
init
|+|∇Rm

g
(m)
init
|+|∇∇Rm

g
(m)
init
|≤ C.

and in the region u0 ∈ [m,u∗],

|Rm
g
(m)
init
|+u1/2

0 |∇Rm
g
(m)
init
|+u0|∇∇Rm

g
(m)
init
|≤ C

u0

3.3.3 Control in the productish region

In this section we control the Ricci DeTurck flow in the productish

region of the warped-product solution gwp(t). This uses the general sub- and

supersolutions from Appendix A. Note that since u∗ < u†, in {u < u∗} the

background metric gbg agrees with the warped product solution to Ricci flow

gwp (for small enough times), so g(m)(t) solves Ricci DeTurck flow around gwp.
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Our warped product metric gwp(t) satisfies the following in the pro-

ductish region. (See the definition of “controlled in the productish region”

(Definition 2.2.1) and Corollary 2.2.9.)

• We have

(1−DV )V ≤ v ≤ (1 +DV )V and (1−DV )Ŵ t ≤ w + µF t ≤ (1 +DV )Ŵ

where V = Q · V0 ◦ U0 = u+µt
u
V0(u+ µt), and Ŵ = W0(u+ µt).

• |∇∇u|< Cv.

• The curvature Rm can be written as

Rm = uRmgSq +wRmF + Rmwarp (3.15)

= u−1 ((ugSq)©∧ (ugSq)) + wRmF + Rmwarp,

where Rmwarp satisfies |Rmwarp|≤ Cu−1v.

Recall the definition ΛRm = maxh∈Sym2(M):|h|=1〈Rm[h], h〉gmp from Sec-

tion 3.1.1.1. Here, and in this section, by default we are taking all inner

products and curvatures with respect to gwp(t). From the second point, we

will get the following Lemma.

Lemma 3.3.1. There is a constant C depending on the model pinch gmp such

that the forward evolution gwp(t) from gmp satisfies

ΛRm ≤ (q − 1)u−1 + Cu−1v = 1
2
µu−1 + Cu−1v.
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Proof. Note the use of the metric in Rm[h] to contract tensors. Let us write

(Rmg1 [h; g2])ef = (g2)ab(g2)cd (Rmg1)acef hbd

so that Rm[h] = Rmgwp [h; gwp]. Now we can compute some scaling for the

components of Rmgwp in (3.15).

(uRmgSq ) [h; gwp] = (uRmgSq ) [h;ugSq ]

= u−1 (RmgSq ) [h; gSq ].

Therefore

max
|h|gwp=1

〈(uRmgSq )[h; gwp], h〉gwp = u−1 max
|h|gSq=1

〈RmgSq [h; gSq ], h〉gSq

:= u−1ΛSq = u−1(q − 1). (3.16)

Similarly,

max
|h|gwp=1

〈(wRmgF )[h; gwp], h〉gwp = w−1ΛF . (3.17)

Now, we use our assumed bounds on W0,

w

u
≥ W0(u+ µt)− µF t

u
+
DVW0(u+ µt)

u

≥ k · (u+ µt)− µF t
u

+
kDV · (u+ µt)

u
,

where k = max
(

ΛF
ΛSq

, (1 + c)µF
µ

)
by the assumption (MR1) of Theorem 1.2.4

and the assumption (MP3) of model pinches. First using k ≥ (1 + c)µF
µ

and

then k ≥ ΛF
ΛSq

,

w

u
≥ k +

kDV · (u+ µt)

u
≥ ΛF

ΛSq
+ Cu−1V
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for some C depending only on gwp. Therefore, coming back to (3.17), and

increasing C,

max
|h|gwp=1

〈(wRmgF )[h; gwp], h〉gwp ≤ u−1ΛSq + Cu−1V. (3.18)

Now we put together (3.16) and (3.18). Since RmgF and RmgSq act only

on the orthogonal components Sym2(TF ) ⊂ Sym2(TM) and Sym2(TSq) ⊂

Sym2(TM) respectively, we can take the maximum of the two pieces to find

max
|h|gwp=1

〈(uRmgqS
+wRmgF )[h; gwp], h〉gwp ≤ u−1ΛSq + Cu−1V.

Finally, adding in Rmwarp can only change this result by something

proportional to its norm. So, increasing C,

max
|h|gwp=1

〈Rmgwp [h; gwp], h〉gwp = max
|h|gwp=1

〈(uRmgqS
+wRmgF + Rmwarp)[h; gwp], h〉gwp

≤ u−1ΛSq + Cu−1V.

Let y = |h(m)(t)|2. By the equation for the evolution of the norm of the

perturbation (3.4), in the productish region y satisfies the inequality

gwp,gy ≤ u−1
(
2µ+ Cv + Cy1/2

)
y, (3.19)

or, just rewriting,

( gwp,g − 2µu−1)y ≤ Cu−1
(
v + y1/2

)
y. (3.20)

We now use the supersolutions found in Appendix A to control y in the pro-

ductish region.
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Lemma 3.3.2. Suppose D′ > D
′
(gwp), 0 < ε < 1 is given, u∗ < u∗(gwp, D

′), σ′∗ <

σ′∗(gwp, D
′), and T∗ < T ∗(gwp, D

′). Set

Ω′prish =

{
(p, t) : u < u∗, σ =

u

tν(t)
> σ′∗, t < T∗

}

Let Y + = (1 + D′V )Q2 (V0 ◦ U0)2 = (1 + D′V )V 2 and Ȳ + = ε2Y +. If

y < Ȳ + on the parabolic boundary of Ω, then y < Ȳ + in Ω.

The factor of ε2 may seem superfluous, but it is needed for the argument

in the tip region.

Proof. In the end, we will choose u∗, σ∗, and T ∗ to ensure that Ȳ + is cer-

tainly smaller than 1
2

in the region Ω. (We may do this since we can make V

arbitrarily small by Lemma 2.2.4.) Therefore equation (3.4) is valid.

By Lemma A.1.5 we have that, for some c > 0,

gwpȲ
+ − 2µu−1Ȳ + ≥ (cD′)u−1vȲ +.

Since (Ȳ +)1/2 ≤ CV , we find (possibly decreasing c),

gwpȲ
+ − 2µu−1Ȳ + ≥ (cD′)u−1

(
v + (Ȳ +)1/2

)
Ȳ +

We can change the gwp to gwp,g(m) . (Recall the definition of gwp,g(m) in

Lemma 3.1.1.) As long as y < Y + we have

| gwpY
+ − gwp,g(m)Y +|≤ C(Ȳ +)1/2|∇∇Y +|≤ Cu−1v(Ȳ +)3/2.
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In the second inequality we use Lemma A.1.6, and our bound |∇∇u|< Cv.

Again decreasing c, we have

gwp,g(m)Y + − 2µu−1Y + ≥ (cD′)u−1
(
v + (Ȳ +)1/2

)
Ȳ + (3.21)

The lemma follows by comparing (3.21) to the evolution for y (3.20), choosing

D′ large enough, and applying the maximum principle.

3.3.4 Control in the tip region

Lemma 3.3.3. Let σ∗, ζ∗, and ε < ε(gwp) be given. Let F be the function

from Lemma 3.2.3 and let F̄ = εF . There is a T∗(σ∗, gwp) such that we have

the following.

Suppose g(t) = gbg(t) +h(t) is a solution to Ricci-DeTurck flow around

a background metric gbg(t), on a time interval [T1, T2], and T2 < T∗. Suppose

that gbg(t) = gwp(t) for u < u†, for some u† > 0 and for some metric gwp(t)

satisfying the conclusions of Theorem 1.2.2. Suppose that

h = 0 for t = T1 and σ < ν−1/2(T1)ζ∗,

|h|gwp≤ F̄ for t ∈ [T1, T2] and σ ∈ [σ∗, ν
−1/2ζ∗],

and

max
M
|Rmg|≤ CRm

1

tν(t)
.

Then |h|gwp≤ F̄ for σ < σ∗ and t ∈ [T1, T∗].
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Proof. We will choose ε sufficiently small in the end. We use a contradiction-

compactness argument to move the situation to Ricci-DeTurck flow around

the Bryant soliton crossed with a euclidean factor, gsol = gBry + gRdim(F ) .

For contradiction, assume that there is no such T∗. This means that

there is a sequence of counterexamples: there are solutions g(i) = gwp + h(i) to

the Ricci DeTurk flow around gwp, defined on intervals [T
(i)
1 , T

(i)
2 ], satisfying

the conditions of the Lemma, but |h(i)(p(i), T
(i)
2 )|= F̄ (σ(p(i), T

(i)
2 )) for some

sequence p(i) with σ(p(i), T
(i)
2 ) ≤ σ∗ and T

(i)
2 ↘ 0. Let σ(i) = σ(p(i), T

(i)
2 ). We

may pass to subsequence so that the σ(i) converge to some σ(∞) ≤ σ∗.

Let α(i) = α(T
(i)
1 ). We claim that there is a T∗∗ depending on gwp such

that T
(i)
2 − T (i)

1 ≥ α(i)T∗∗. Indeed, we can let g
(i)
scaled(0) = 1

α(i) g
(i)(0). This will

have uniformly bounded curvature, and so for some fixed time its Ricci flow

will have uniformly bounded curvature, and therefore can only move so far.

Also, g
(i)
wpscaled = 1

α(i) gwp has the same property. By regularity the covariant

derivatives of h with respect to gwp are uniformly bounded for bounded time,

and hence the DeTurk diffeomorphisms can only move so much. All in all, for

some fixed time, the scaled version of h can only move so far on the compact

set {σ < σ∗}, so scaling back we get the result.

Let Gwp be the family of metrics Gwp = α−1(σ−1)∗gwp which is gwp

modified by scaling by α−1 and pulling back for σ. Also let G(i) = α−1(σ−1)∗g(i)

and H(i) = G(i) −Gwp = α−1(σ−1)∗h(i).
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Now G(i) satisfies

∂θG
(i) = −2 Rc[G(i)]− LX+V [G(i),Gwp]G

(i) − βG(i), (3.22)

for θ ∈ [θ(T
(i)
1 ), θ(T

(i)
2 )]. Here X is the vector field ∂θσ. Note that

θ(T
(i)
2 )−θ(T (i)

1 ) =

∫ T
(i)
2

T
(i)
1

α−1dt ≥
∫ T

(i)
1

T
(i)
1 −α(i)T∗∗

α−1(t)dt ≥ T∗∗
α
(
T

(i)
1

)

α
(
T

(i)
1 + α(T (1)(i))T∗∗

)

By Lemma B.3.2, this right hand side is (1+o(1;T1 ↘ 0))T∗∗. So, passing to a

subsequence, the sequence θ(T
(i)
2 )− θ(T (i)

1 ) either converges to∞ or converges

to some Θ1 > 0.

Translate the θ intervals so that the times θ(T
(i)
2 ) all land at time 0. By

Corollary 2.3.13, the background metrics Gwp converge to the Bryant soliton

crossed with Rdim(F ), and the vector field X converges to the soliton vector

field. Passing to a subsequence, the H(i) converge to a solution H of Ricci-

DeTurck flow around the Bryant soliton, modified by the Bryant soliton vector

field X. (Note that the term βG in (3.22) converges to zero.) The time

interval is either θ ∈ (−∞, 0], or θ ∈ [Θ1, 0]. In the second case, H(Θ1) = 0.

Furthermore, since h(i) satisfy the hypotheses of the lemma, the bounds in

Lemma 3.2.4 are satisfied, provided ε is small enough.

However, at time 0 and at some point p ∈ Bry×Rdim(F ) with σBry(p) =

σ(∞), we will have |H|= |F̄ |. This contradicts the strict inequality in the

conclusion of Lemma 3.2.4.
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3.3.5 Buckling Barriers

In this lemma, we show that the function

Y + = (1 +D′V )Q2(V0 ◦ U0)2,

which we use as a barrier for |h|2 in the productish region, crosses the function

F 2, which we use as a barrier in the tip region. This shows that they ensure

each others’ boundary conditions.

The following Lemma deals with the unscaled functions Y + and F 2.

Of course, the inequalities (3.23) and (3.24) also hold for Ȳ + = ε2Y and

F̄ 2 = ε2F 2.

Lemma 3.3.4. Let the constant D′, in the definition of Y + be given. There

are σ∗ > 0, σ2 > 0, ζ∗ > 0, and b ∈ R+ such that we have the following

inequalities.

For t < T∗, at σ = σ∗, we have

bF 2 < Y +. (3.23)

For t < T∗, and σ ∈ [σ2, ζ∗ν
−1/2], we have

Y + < bF 2. (3.24)

Proof. Below ci are positive constants, and all asymptotics are as σ →∞ and

t↘ 0.

Recall the asymptotics of F :

F = c1σ
−1 − c2σ

−2 log σ + o(σ−2 log σ),

144



so,

F 2 = σ−2
(
c3 − c4σ

−1 log σ + o(σ−1 log σ)
)
.

Recall the asymptotics of V :

V = c5σ
−1
(
1 +O(ν + ν2σ)

)
,

so,

Y + = (1 +D′V )V 2

= σ−2
(
c6 + c7D

′σ−1 +O(ν + ν2σ) +O(D′σ−2)
)
.

Letting d = bc3 − c6, we find,

σ2(bF 2 − Y +) = d− σ−1
(
c4 log σ + c7D

′σ−1 + o(log σ) +O(D′σ−2)
)

+O(β + β2σ)

Now choose σ∗ large enough so that for σ > σ∗ the asymptotic terms o(log σ)

and O(D′σ−2) above apply well. Furthermore, since σν2 < ζ∗ν
3/2 for σ ≤

ζ∗ν
−1/2, we can choose T∗ small enough so that the O(ν+ν2σ) term is smaller,

in norm, than d/2. Specifically, for σ ∈ [σ∗, ζ∗ν
−p] and t < T∗ we have

1
2
d− 3

2
σ−1

(
c4 log σ + c7D

′σ−1
)

≤ σ2(bF 2 − Y +)

≤ 3
2
d− 1

2
σ−1

(
c4 log σ + c7D

′σ−1
)
.

Now choose b = b(σ∗, D
′) so that d = bc3−c6 is positive but small enough that

3
2
d− 1

2
σ−1
∗
(
c4 log σ∗ + c7D

′σ−1
∗
)
< 0
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so the desired inequality holds at σ = σ∗. Then choose σ1 large enough so that

1
2
d− 3

2
σ−1

(
c4 log σ + c7D

′σ−1
)
> 0

for σ > σ1. Then the desired inequality for σ ∈ [σ1, ζ∗ν
−1/2] also holds, for

small enough times.

3.3.6 Global control

We come back to our mollified initial metrics g
(m)
init defined in section

3.3.2. Recall that for each m, we have defined g(m)(t) to be the Ricci-DeTurck

flow around gbg(t), on some interval [T
(m)
1 , T

(m)
2 ], starting from g

(m)
init .

By now, we are set up with the functions

Ȳ + = ε2Y + = ε2(1 +D′V )Q2(V0 ◦ U0)2

which serves as an upper barrier for |h|2 in the productish region, and

F̄ 2 = bε2F 2

which serves as an upper barrier in the tip region. By Lemma 3.3.4, we only

need to ensure the boundary conditions for the barriers at the initial time

and at the u = u∗ boundary of the productish region. The following Lemma

summarizes this.

Recall that ε0 controls how close we assume the singular initial metric g

is to the model pinch gmp. On the other hand ε controls how tight our barriers

are, and needs to be small for Lemma 3.3.3. ε0 will be smaller than ε so that

the initial metric has a little room below the barriers.
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Lemma 3.3.5. Let the constants D′, σ∗, ζ∗, ε, and b, used to define the

barriers Ȳ + and F̄ 2, be chosen in accordance with Lemmas 3.3.2, 3.3.3, and

3.3.4. Let ε0 = (1/Cε)ε, where ε0 is in the assumption of Theorem 1.2.4 and

Cε depends only on the model pinch. Let u∗ < u∗(ε0, D
′), in accordance with

Lemma 3.3.2, and let δ =
√

1
2
Ȳ (u∗, 0). Then, decreasing T∗ depending on

everything else, the following holds.

Let gbg(t) be defined as in Section 3.3.1 with u† = 2u∗, and let g(m) and

h(m) be defined as in Section 3.3.2. At the initial time T
(m)
1 , we have

|h(m)
init|< 1

2
δ in Ωu>u∗/4.

Let T
(m)
bad be the first time such that

|h(m)|< δ in Ωu>u∗/2 (3.25)

fails to hold. Then on [T
(m)
1 ,min(T

(m)
bad , T∗)],

1. For σ < ζ∗β
−1/2, we have |h(m)|2< bF̄ 2.

2. For σ > σ∗ and u < u∗, we have |h(m)|2< Ȳ +.

Proof. Choose Cε > 2 at least large enough so that with, ε0 = 1
Cε
ε the definition

of g
(m)
init (and in particular (3.13)) implies items 1 and 2 at time t = T

(m)
1 . We

even have h(m)(T
(m)
1 ) = 0 for σ < β−1/2σ∗. Then, by Lemmas 3.3.2, 3.3.3, and

3.3.4, items 1 and 2 hold as long as

|h(m)|2< Ȳ + (3.26)
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continues to hold at u = u∗.

Choose u† = 2u∗, and possibly decrease u∗ and increase Cε so that

4ε0V0(2u†) < δ :=
√

1
2
Ȳ +(u∗, 0).

To do this, we first possibly decrease u∗ so that V0(2u†) = V0(4u∗) <
1
4
δε−1

0 .

Then note

√
1
2
Ȳ +(u∗, 0) =

ε1√
2
V0(u∗)

√
1 +D′V0(u∗)

≥ ε1√
2
V0(u∗) =

Cεε0√
2
V0(u∗)

=
Cε

4
√

2

V0(1
2
u†)

V0(2u†)
(4ε0V0(2u†)) .

So, choosing Cε large enough, we get the desired inequality. Note that it can

be chosen independently of u† = 2u∗ by Lemma B.3.2, which is just some

calculus with the regularity assumption on V0.

By (3.13) we have

|h(m)
init|≤ 2ε0V0(u) ≤ 2ε0V0(2u†) <

1
2
δ in Ω>u∗/4.

which proves the claim for the initial time T
(m)
1 . We have δ =

√
1
2
Ȳ +(u∗, 0),

so possibly restricting T∗, we can get that δ <
√
Ȳ +(u∗, t) for all t < T∗.

Therefore, as long as

|h(m)|< δ in Ω≥u∗/2,

we would have (3.26) and therefore prove items 1 and 2.
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The final desired inequality (3.25) can be shown to hold for a short

time just by regularity of the Ricci DeTurck flow.

Lemma 3.3.6. With the setup of Lemma 3.3.5, possibly decreasing T∗ and u∗,

T
(m)
bad > T∗.

Proof. The set Ωu>u∗/4 is a compact manifold with boundary. On it, gbg has

bounded curvature for t ∈ [0, T∗]. On [T
(m)
1 , T

(m)
bad ], |h(m)| is bounded by Cδ

for some C depending only on the model pinch. (This uses conclusion (2) of

Lemma 3.3.5.) Also on this set, up to five derivatives (with respect to gbg) of

h(m) are controlled at the initial time (from (3.14)).

We decrease u∗ so that δ =
√

1
2
Ȳ (u∗, 0) is small enough so that we can

apply interior Schauder estimates to the Ricci DeTurck flow within Ωu>u∗/4.

This gives us bounds on up to four derivatives of h(m) in Ωu>(3/8)u∗ , which are

independent of m. Therefore we have a bound on the time derivative of |h(m)|,

so restricting T∗ we get the claim.

Lemma 3.3.7. There is a constant C such that

|Rmgwp|−i/2|∇ih|≤ C

in u < u† and t < T∗, for i = 1, 2, 3, 4. Furthermore, the final time T
(m)
2 of the

Ricci-DeTurck flow of g(m) satisfies T
(m)
2 > T∗.

Proof. As long as |h(m)(t)| stays bounded everywhere, we can apply interior

regularity to control the derivatives of h(m), using our derivative bounds for

the initial metric (3.14).
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Once we have derivative bounds on h(m), we can also control the cur-

vature of g(m). This gives us a full bound on the curvature, up to time T∗, so

T
(m)
2 > T∗.

Lemma 3.3.8. As m ↘ 0, a subsequence of the time-dependent metrics

g(m)(t) converge to a solution g(t) of Ricci-DeTurck flow around gbg, with

g(0) = ginit. The convergence happens in C3
loc

(
M̄ × [0, T∗] \ P × {0}

)
, where

P = M̄ \M .

Furthermore, the DeTurck vector fields V [g(m), gbg] converge, in C2, to

V [g(t), gbg].

Proof. Let Ki, i ∈ N be an increasing sequence of compact sets whose union is

M̄ × [0, T∗]\P ×{0}. On each Ki, up to four derivatives of h(m) are controlled

by a constant which is independent of m, so we can apply Arzela-Ascoli to find

a convergent subsequence on Ki in C3. The diagonalization argument gives

convergence on C3
loc

(
M̄ × [0, T∗] \ P × {0}

)
.

Since the convergence happens in C3, the equation passes to the limit.

Since V [g(m), gbg] depends on one derivative of g(m) with respect to gbg, we get

the convergence of the vector fields.
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Appendix A

Nearly constant regions

A.1 Nearly constant regions of reaction-diffusion equa-
tions

Let µ > 0 and cv ∈ R. We study solutions to

u = −µ+ cvu
−1|∇u|2

= −µ+ cvv (A.1)

where we have defined v = u−1|∇u|2. We are interested investigating regions

where v is small, and controlling other functions in terms of u.

In this section we consider u : M × [0, T ) → R which satisfies (A.1),

on an evolving Riemannian manifold (M, g(t)) which satisfies Ricci flow. (If

(M, g(t)) does not satisfy Ricci flow, there is another term in (A.2) below.)

The value of cv does not come into play very much here. (Recall from the

paragraphs after (1.13) in Section 1.6 that in some situations it is important.)

Lemma A.1.1. Suppose u satisfies (A.1), and suppose g satisfies Ricci flow.

Then v satisfies

v = u−1 (µ+ Eerror) v
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where Eerror is a function of space-time satisfying

−C
(
v +
|∇∇u|2

v

)
≤ Eerror ≤ Cv (A.2)

and C is a constant depending on cv.

A more precise derivation of the evolution of v is in Lemma B.2.2, but

this is all we need in this section.

Proof. This is a consequence of the parabolic Bochner formula ((1.6) of [HN15]),

valid whenever we have an evolving metric and evolving function:

|∇w|2= 2〈∇w,∇ w〉 − 2|∇∇w|2−Rf(∇w,∇w).

Here Rf(∇w,∇w) = ∂tg(∇w,∇w) − −2 Rcg(∇w,∇w). The upper bound on

the error is stronger because we can throw away the norm of the hessian which

comes in the Bochner formula.

A.1.1 Two dimensional first order PDE

We will use functions dependent on u and t to control v. If F depends

on u and t alone then

F =
(
( u)F [1] + F [t] − vF [2]

) (
u−1F

)
.

Here, we use the notation F [k] = uk 1
F
∂kuF and F [t] = u 1

F
∂tF . These are both

invariant under scaling the system or F .

Given the equation for u we can calculate further,

F =
(
F [t] − µF [1] + v

(
cvF

[1] − F [2]
)) (

u−1F
)
. (A.3)
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This formula tells us that when v is small and F [1], F [2] are controlled, F

is approximately the first order linear operator L[F ] := (∂t;u − µ∂u)F =
(
F [t] − µF [1]

)
(u−1F ).

A relevant function that we will use is U0(u, t) := u+µt. The inspiration

for the name is that if u(p, 0) =: u0(p) were constant in space then U0(p, t) =

u0(p). We will also use Q(u, t) := u−1U0. These are related to the linear

operator L[F ]. U0 gives the characteristic curves of the equation, and Q is a

solution to L[F ] = µu−1F with constant initial data 1. The following lemma

collects these facts.

Lemma A.1.2. The function U0 satisfies U
[1]
0 = Q−1, U

[2]
0 = 0, U

[t]
0 = µQ−1,

and in particular

U
[t]
0 − µU [1]

0 = 0.

The function Q satisfies Q[1] = −(1 − Q−1), Q[2] = 2(1 − Q−1), Q[t] = µQ−1,

and in particular

Q[t] − µQ[1] = µ, Q(u, 0) = 1, Q(u, t) ≥ 1.

Proof. The calculation for U0 is small. To ease the calculation for Q, let

F (x) = x−1 which satisfies

F[1] = −1, F[2] = 2, F[t] = 0.

Then we can use the (standard calculus) formulae in Lemma B.3.1.
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We can use Q and U0 to solve more linear equations involving L[F ] =

(F [t] − µF [1])F . The following calculation is immediate.

Lemma A.1.3. If Z0 : R+ → R+ is a differentiable function and Z = Qp(Z0 ◦

U0) then Z satisfies

∂tZ − µ∂uZ = pµu−1Z,

Z(x, 0) = Z0(x).

If Z0 satisfies |Z [1]
0 |+|Z [2]

0 |< K, then Z satisfies |Z [1]|+|Z [2]|< K ′ for

some K ′ depending on p and K.

Now that we have given the solutions to the first-order equation which

approximates for a (u, t)-dependent function, we quantify the approximation.

The following lemma describes the degree to which

Z(p, t) = Qp · (Z0 ◦ U0) =

(
u(p, t) + µt

u(p, t)

)p
Z0(u(p, t) + µt)

is approximately a solution to the linear parabolic PDE ( − pµu−1)w = 0 on

the evolving manifold.

Lemma A.1.4. Let Z0 be a given differentiable function Z0 : R+ → R+. Then

Z = Qp · (Z0 ◦ U0) satisfies

Z − pµu−1Z = Eu−1vZ (A.4)

Z(p, 0) = Z0(u(p, 0))

where |E|≤ C(|Z0
[1]|+|Z0

[2]|), and C is a constant depending only on cv and

p.
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Proof. Apply equation (A.3), using Lemma A.1.3 to find Z [t] − µZ [1].

A.1.2 Sub- and super-solutions

We are still assuming that u satisfies (A.1) and g satisfies Ricci flow.

Suppose the error term in Lemma A.1.1 is small. Then we may expect v itself

to be approximately given by a solution to v− µu−1v = 0. By Lemma A.1.4

we find that v should be approximately given by V := Q · (V0 ◦ U0). This, in

turn, will give us control on the error term in Lemma A.1.4, which told us

that Z = Qp · (Z0 ◦ U0) is approximately a solution to z = pµu−1z.

In this lemma we create sub- and supersolutions to z = pµu−1Z, which

beat the error in this approximate solution. The supersolution is defined as

Z+ = (1 +DV )Z, and the subsolution as Z− = (1−DV )Z, for some D > 0.

Lemma A.1.5. (Supersolutions to linear parabolic equations) Let Z0 and V0

be given differentiable functions Z0, V0 : R+ → R+. Define V = Q · (V0 ◦ U0)

and Z = Qp · (Z0 ◦ U0).

There is D > 0 and c > 0 depending on

sup|V [1]
0 |, sup|V [2]

0 |, sup|Z [1]
0 |, sup|Z [2]

0 |, cv, p, µ. (A.5)

such that for any D > D, there is ε > 0 depending on (A.5) and D with the

following property.

Suppose u satisfies (A.1), and let Ω be a subset of space-time where

1
2
V ≤ v(p, t) ≤ 2V and V < ε. Then Z+ is a supersolution to ( − pµu−1) on
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Ω. Even better,

Z+ − pµu−1Z+ ≥ (cD)u−1vZ+, on Ω, (A.6)

and,

Z− − pµu−1Z− ≤ −(cD)u−1vZ−, on Ω.

Proof. Write Z+ = Z +Z2 with Z2 = DV Z = DQp+1((V0 ·Z0) ◦U0). Then we

can use Lemma A.1.4 and in particular (A.4) to calculate the heat operator

applied to Z2:

Z2 − (p+ 1)µu−1Z2 = E2u
−1vZ2

where E2 is some error which is absolutely bounded depending on V
[1]

0 , V
[2]

0 , Z
[1]
0 ,

and Z
[2]
0 . In terms of the linear equation we are interested in, this means

Z2 − pµu−1Z2 = u−1 (1 + E2v)Z2

= Du−1 (1 + E2v)V Z.

By choosing ε small enough we can force 1 + E2v ≥ 1
2
. Now using again

equation (A.4) from Lemma A.1.4, but now applied to Z, we find

( − pµu−1)(Z+) = ( − pµu−1)(Z + Z2)

= u−1 (Ev +D (1 + E2v)V )Z

≥ u−1 (Ev +D(1− δ)V )Z

= Du−1

(
E

D
+ 1

2

V

v

)
v

Z+

1 +DV

≥ Du−1

(
E

D
+ 1

4

)
v

Z+

1 +DV
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Here, E (another error term with unknown sign, bounded in terms of (A.5))

is independent of D. (This uses Lemma A.1.6 below.) In the last line we used

the assumption that v ≤ 1
2
V . We can choose D large to force E

D
to be at least

−1
8
, and then choose ε small enough so that 1

1+DV
is at least 1

2
. Then we take

c = 1
16

.

Lemma A.1.6. There is a constant C depending on the items in line (A.5),

and in particular independent of D, such that

|(Z+)
[1]|+|(Z+)

[2]|≤ C,

and similarly for the subsolution Z−.

If in addition we assume that |∇∇u|≤ Chessv, then |∇∇Z+|≤ C for a

constant depending on line (A.5) and Chess.

Proof. First, derive bound for V = QV0 ◦ U0 and Z = QpZ0 ◦ U0.

V [1] = Q[1] +
(

(V0)[1] ◦ U0

)
(U0)[1]

= −(1−Q−1) +
(

(V0)[1] ◦ U0

)
Q−1,

so |V [1]|≤ 1 + sup|V [1]
0 |. Similarly, we can bound Z [1] by p+ sup|Z [1]

0 |.

Now calculate,

(1 +DV )[1] =
u∂u(1 +DV )

1 +DV

=
DV

1 +DV

u∂uV

V
≤ V [1].
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Once we have this, the full bound on (Z+)
[1]

follows from

(Z+)
[1]

= ((1 +DV )Z)[1] = (1 +DV )[1] + Z [1].

The bound on (Z+)
[2]

is similar.

To get the second claim, use (B.16):

u

v

|∇∇Z+|
Z+

≤
(
Z+[2]

+ Z+[1] |∇∇u|
v

)
≤
(
Z+[2]

+ CZ+[1]
)
.

Corollary A.1.7. With the setup of Lemma A.1.5, by decreasing c we actually

have

Z+ − pµu−1Z+ ≥ (cD)u−1vZ+

(
1 + u

|∂uZ+|
Z+

+
u

v

|∇Z+|2
(Z+)2

)
.

Proof. Note that

u
∂uZ

+

Z+
= Z+[1]

and unraveling definitions,

u

v

|∇Z+|2
(Z+)2

=
u

u−1|∇u|2
(∂uZ

+)2|∇u|2
(Z+)2

=
(
Z+[1]

)2

.

Therefore the inequality follows from the bounds in Lemma A.1.6.

A.1.3 Bounding v

In this section we estimate v, using barrier arguments. An upper bound

on v is easier, because the upper inequality in Lemma A.1.1 is independent of

159



second derivatives of u. Lemma A.1.8 shows how one may get such an upper

bound. However, in order to glue our approximation in the region where v is

small to something where v is not small, we need a lower bound on v in terms

of u as well. This follows from an assumption on the Hessian of u, which will

be understood later.

Lemma A.1.8. If D > D(V0, cv) and ε < ε(V0, cv, D) the following holds. Let

Ω be a smooth subset of space-time where V < ε.

Set V + = (1 + DV )V. If v < V + on the parabolic boundary of Ω, then

v < V + in Ω

Proof. By our assumption and the upper bound in Lemma A.1.1, v satisfies

v − µu−1v ≤ Cu−1v2

for some constant C. We consider this as A(v) ≤ 0 where A is the linear

operator

A(f) =
(
− µu−1 − Cu−1v

)
f.

We can apply Lemma A.1.5, with p = 1 and Z0 = V0. By (A.6) we

have

V + − µu−1V + ≥ Du−1vV +.

so we find A(V +) ≥ 0 provided D ≥ C.

The claim follows from the maximum principle.
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In order to bound v from below, we also need an upper bound on the

hessian of u.

Lemma A.1.9. Let Chessbnd > 0 be given, D > D(V0, cv, Chessbnd) and ε <

ε(V0, cv, D, Chessbnd) the following holds. Suppose |∇∇u|2≤ (C+Chessbnd)(v
2 +

uv−1|∇v|2).

Set V − = (1 − DV )V . If V − < v < V + on the parabolic boundary of

Ω, then V − < v < V + in Ω.

Proof. Applying Lemma A.1.1, we learn that

v − µu−1v ≥ −(C + Chessbnd)u
−1
(
v2 + uv−1|∇v|2

)

In other words, A(v) ≥ 0 where

A(f) = f − µu−1f + (C + Chessbnd)u
−1vf

(
1 +

u

v

|∇f |2
f 2

)

By the first part of Lemma A.1.7 we can choose D large enough so that

V − satisfies A(V −) ≤ 0. The maximum principle is strong enough to deal

with the extra term |∇v|2, because at a first point where v = V − we know

∇v = ∇V −.
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Appendix B

Equations and derivations

B.1 Equations for warped products and Ricci flow

In this section we review some of the properties of Ricci flow on warped

products. The metrics are on the topology M = Bm ×N q, for some manifold

B which we call the base. The metrics have the form

g = gB + φ2(b)gN ,

where gB is a metric on B, gN is a metric on N , and φ : B → R+. We assume

that gN is an Einstein manifold: 2 Rc[gN ] = µNgN .

In this thesis we are mostly concerned with doubly warped products

over intervals, i.e. metrics of the form

a(x)dx2 + φ2(x)gSq + φ2(x)gF , x ∈ I.

These are singly warped products in two ways: with base I × Sq and fiber F

or with base I × F and fiber Sq. Both points of view have been useful for our

intuition. A big simplification for a doubly warped product over an interval is

that the hessian of a function of x is much simpler than that of a function of

a general base.
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We use the convention that X and Y are lifts of vector fields on B to

the product B×F , while U and V are lifts of vector fields on F . Furthermore,

we will forevermore not say “X is a lift of a vector field on B to the product”

and rather just say “X is a vector field on B” with the understanding that it

is lifted to the product whenever we use it as such.

Everything here can be found or derived from Section 7 of [O’N83].

B.1.1 The connection on vector fields

We first describe how the Levi-Civita connection of g acts on vector

fields. If X and Y are vector fields on B, then

∇XY = ∇B
XY

where ∇B is the Levi-Civita connection of gB.

Now, if we were dealing with a product (e.g. φ = const), then for a

vector field U on F , we would have that U is parallel with respect to vector

fields from B, so that ∇XU = 0. For a warped product, we have

∇XU = φ−1dφ(X)U.

However, there is a way to create a parallel (for B) vector field from U : if we

normalize U with respect to g. That is, let

Û = φ−1U.

Then we can immediately check the properties

g(Û , Û) = gF (U,U), ∇XÛ = 0
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which say that Û has constant norm and is parallel as we move on B.

As a consequence, we find that submanifolds of the form B × {p} for

p ∈ F are totally geodesic submanifolds of (M, g).

Now consider taking covariant derivatives with respect to vector fields

on F . We have

∇UX = φ−1dφ(X)U

∇UV = ∇F
UV − g(U, V )φ−1 gradφ

The way we remember the sign above is by drawing R2 with polar

coordinates, in which the metric can be written

dr2 + r2gSq

B.1.2 Curvatures

The curvature of a warped product can be described as follows. If U

and V are perpendicular unit vectors on the fiber, then

R(U, V, U, V ) =
RN(U, V, U, V )− |∇φ|2

φ2
.

In particular, if (gN , N) is the metric of constant sectional curvature Sec, then

R(U, V, U, V ) =
Sec− |∇φ|2

φ2
.

For vectors U on the fiber and X, Y on the base, we have

R(U,X,U, Y ) = −∇X∇Y φ

φ
, (B.1)
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and if both W , X, Y , and Z are all vectors on the base, then

R(X, Y, Z,W ) = RB(X, Y, Z,W ).

From these formulae, we can calculate the Ricci curvature directly from

definition.Using 2 Rc[gN ] = µNgF ,

Rc(U, V ) = −φ∆Bφ+ 1
2
µ

(
1− 2(q − 1)

µ
|∇φ|2

)
,

Rc(U,X) = 0,

Rc(X, Y ) = RcB(X, Y )− qφ−1∇X∇Y φ.

B.1.3 Ricci flow for warped products

If g evolves by Ricci flow, then

∂tgB = −2 Rc[gB] + 2qφ−1∇∇φ

∂tφ = ∆Bφ− 1
2
µφ−1

(
1− 2(q − 1)

µ
|∇φ|2

)

= ∆Mφ− φ−1|∇φ|2−1
2
µφ−1

In a different notation,

Rf[gB] = 2qφ−1∇∇φ

Bφ = −1
2
µφ−1

(
1− 2(q − 1)

µ
|∇φ|2

)

Mφ = −φ−1|∇φ|2−1
2
µφ−1
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and u = φ2 satisfies,

Mu = 2φ Mφ− 2|∇φ|2

= −µ− 4|∇φ|2 (B.2)

=
(
−u−1µ

)
u− 2〈∇u,∇ log φ〉

or

Bu = 2φ Bφ− 2|∇φ|2

= −µ+ 1
4
(2(q − 1)− 2)v (B.3)

where v = u−1|∇u|2.

Recall in our case, for gN = gSq we have µ = 2(q − 1).

B.1.4 Doubly warped products over an interval

Now consider a metric of the form

g = a(x)dx2 + φ2gF1 + ψ2gF2 , x ∈ I.

We define an arclength coordinate s (up to a constant) by ds2 = adx2. We

can view g as a warped product with fiber gF1 over base I × F2, as well as a

warped product with fiber gF2 over the base I × F2. Consider for simplicity

the case when gF1 has constant sectional curvature Sec1 and gF2 has constant

sectional curvature Sec2. Then there are five special sectional curvatures:

L1 =
Sec1 − |∇φ|2

φ2
=
Sec1 − φ2

s

φ2
, L2 =

Sec2 − ψ2
s

ψ2
,

K1 = −φss
φ
, K2 = −ψss

ψ
, Kmix = −φsψs

φψ
.
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The curvatures L1 and L2 are those that we get from planes spanned by two

perpendicular vectors tangent to the same fiber. K1 and K2 come from planes

spanned by ∂s and a vector on one of the fibers. Kmix comes from a plane

spanned by a vector on F1 and a vector on F2; this comes from the extra terms

(compared to a product) in computing the hessian in (B.1).

B.1.4.1 Curvatures in terms of u, v and w

We put the curvatures of a doubly warped product in terms of v and

w, and their u derivatives. Recall the definitions

u = φ2, w = ψ2, v = u−1|∇u|2= 4|∇φ|2

First, we have

L1 = u−1Sec1 − 1
4
u−1v.

Now calculate,

∂su∂uv = (∂su)4(∂sφ)(∂u∂sφ) = 4(∂sφ)(∂2
sφ)

so

2φ∂uv = 4(∂2
sφ)

and

K1 = −1
2
∂uv = −∂

2
sφ

φ
.
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Now we calculate the curvatures involving ψ.

ψs = 1
2
w−1/2ws = 1

2
w−1/2wuus = 1

2
w−1/2u1/2v1/2wu

so

L2 =
Sec2

w
− 1

4
u−1v

(
u2w−2w2

u

)

Kmix = (1
2
u−1/2v1/2)(1

2
w−1u1/2v1/2wu) = 1

4
u−1v

(
uw−1wu

)
.

Finally, we calculate

ψss = 1
4

(
w−3/2u1/2v1/2wuws + w−1/2u−1/2v1/2wuus + w1/2u1/2v−1/2wuvs + w−1/2u1/2v−1/2wus

)

= 1
4
w−1/2uv(w−1w2

u + u−1wu + v−1wuvu + wuu).

Therefore,

K2 = −1
4
u−1v(u2w−2w2

u + uw−1wu + u2v−1w−1wuvu + u2w−1wuu)

B.2 Deriving equations

B.2.1 Deriving equations for v.

In this Lemma, Rf[gB] = ∂tgB − (−2 RcgB).

Lemma B.2.1. Suppose (B, gB) is an evolving Riemannian manifold and φ :

B × [T1, T2]→ R+ is an evolving function on B. Suppose gB and φ satisfy

Rf[gB] = T + 2c1φ
−1∇∇φ

Bφ = 1
2
φ−1 · (−µ+ czz)
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where z = |∇φ|2.

Let κ(p, t) be the norm of the second fundamental form of the level set

of u passing through p at time t.

Then z satisfies

z = φ−2(µ− czz)z

+ (cz − c1)〈∇z,∇ log φ〉 − z−1|∇z|2+1
2
φ2z−2 (〈∇z,∇ log φ〉)2

− 2zκ2 − φ2T (∇ log φ,∇ log φ)

Proof. We can apply the parabolic Bochner formula ((1.6) of [HN15]) to these

equations to find

|∇φ|2 = 2〈∇ φ,∇φ〉 − 2|∇∇φ|2B−Rf(∇φ,∇φ)

= 2〈∇ φ,∇φ〉 − 2|∇∇φ|2B−2c1φ
−1∇∇φ∇∇φφ− T (∇φ,∇φ)

We calculate the first term:

2〈∇ φ,∇φ〉 = φ−2(µ− czz)|∇φ|2+czφ
−1〈∇z,∇φ〉

= φ−2(µ− czz)z + cz〈∇z,∇ log φ〉

For the second term, we can change the hessian to

−2|∇∇φ|2 = −2zκ2 − z−1|∇z|2+1
2
z−2〈∇z,∇φ〉2

= −2zκ2 − z−1|∇z|2+1
2
z−2φ2〈∇z,∇ log φ〉2

And for the third term, we can change the hessian using

−2c1φ
−1∇∇φ∇∇φφ = −c1φ

−1〈∇z,∇φ〉 = −c1〈∇z,∇ log φ〉
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Putting everything together, we find the desired equation.

Lemma B.2.2. Suppose (B, gB) is an evolving Riemannian manifold and u

is a function on B. Suppose gB and u satisfy

Rf[gB] = T + 2c1u
−1/2∇∇u1/2

Bu = −µ+ cvv (B.4)

where v = u−1|∇u|2.

Let κ2(p, t) be the norm of the second fundamental form of the level set

of u passing through p at time t. Define the constants cz = (4cv + 2), c′v = 1
4
cz,

and c3 = 1
2

(cz − c1).

Then v satisfies

v = u−1(µ− c′vv)v − 2vκ2 − T (∇u,∇u)

+ c3〈∇v,∇ log u〉 − v−1|∇v|2+1
2
uv−2 (〈∇v,∇ log u〉)2

Proof. Let v = u−1|∇u|2= 4|∇φ|2. Define z = |∇φ|2. Calculating the evolu-

tion for φ we find,

Bφ = −1
2
µφ−1 + (1

2
)(cz)φ

−1z

= −1
2
φ−1 (µ− (cz)z)
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where cz = 4cv − 2. To check this, write

Bu
1/2 = 1

2
u−1/2

Bu+ 1
4
u−3/2|∇u|2

= −1
2
φ−1µ+ 1

2
cvφ
−1v + 1

4
φ−1v

= −1
2
φ−1µ+ 2cvφ

−1z + φ−1z

= −1
2
φ−1µ+ (2cv + 1)φ−1z

= 1
2
φ−1

(
−µ+ (4cv + 2)φ−1z

)

Then, apply Lemma B.2.1, and use v = 4z and log u = 2 log φ.

B.2.1.1 Equidistant Level Sets

Now, suppose that the level sets of u are equidistant. Then v is depen-

dent on u and t alone so we find ∇v = |∇u|−1〈∇v,∇u〉. Then we find, from

Lemma B.2.2,

Bv = u−1(µ− c′vv)v − 2κ2v − u−1T̄ v (B.5)

+ c3v(∂uv)− 1
2
u(∂uv)2

On the other hand, since the level sets of u are equidistant, we can use that v

is a function of u and t to calculate Bv in terms of derivatives with respect

to u, using (B.4). (This is applying the general formula (B.17).)

Bv = (−µ+ cvv)∂uv + ∂t;uv − uv∂2
uv. (B.6)

From (B.5) and (B.6) it follows that,

∂t;uv = uv∂2
uv − 1

2
u(∂uv)2 + u−1(µ− c′vv)v + (c4v + µ)∂uv (B.7)

− 2κ2v − u−1T̄ v
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where c4 = c3 − cv.

B.2.1.2 The case of warped product Ricci flow

In the case of Ricci flow of a metric g = gB + ugSq , where the Ricci

curvature of gSq is µgSq = 2(q − 1)gSq , we have

Rf[gB] = 2qu−1/2∇∇u1/2

Bu = −µ+ 1
4
(µ− 2)v (B.8)

Therefore in Lemma B.2.2 we have cv = 1
4
(µ− 2) and c1 = q = 1

2
µ+ 1. Then

we find

cz = 4cv + 2 = µ

c′v = 1
4
cz = 1

4
µ

c3 = 1
2
(cz − c1) = 1

2
(µ− (1

2
µ+ 1)) = 1

4
µ− 1

2

Finally, c4 = c3 − cv = 1
4
µ− 1

2
− (1

4
µ− 1

2
) = 0.

So, from (B.7),

∂t;uv = uv∂2
uv − 1

2
u(∂uv)2 (B.9)

+ µ
(
1− 1

4
v
)
u−1v + µ∂uv

− 2(κ2)v

One convenient way to write this is as,

∂t;uv = u−1Q[v, v] + u−1L[v]− 2(κ2)v (B.10)
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where L and Q are the operators

L[w] = L(w, ∂uw)

L(A,B) = µA+ µB

and

Q[w,w] = Q(w, u∂uw, u
2∂uwuu)

Q(A,B,C) = AC − 1
2
B2 − 1

4
µC2.

For w1 and w2 different functions, we define Q[w1, w2] to be the extension of

Q to a symmetric bilinear operator.

The properties relevant to the analysis are

1. L is linear in its arguments, and Q is quadratic in its arguments.

2. The coefficient on u2Vuu is V .

3. The strictly first-order terms are u−1µ(1− 1
4
V )V .

B.2.1.3 Writing the evolution in terms of L and φ

It is also convenient to consider the evolution of L =
1−1

4
v

u
. L is a

sectional curvature, so it is a geometrically natural quantity to consider. If

the metric is smooth near u = 0 then L will be bounded there, which gives us

more information that v being bounded.
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Coming from (B.9), replace v = 4(1− uL) and divide through by −4u

to find

∂t;uL = 4u (1− uL) ∂2
uL+ 2u2(∂uL)2

+ (µ+ 8− 4uL)∂uL+ (µ+ 2)L2 + 1
2
u−1κ2v.

An important point here is that the terms u−1L cancel. This is somewhat

expected, since for example the sphere has constant non-zero curvature L

despite u going to zero. Let us also put this in terms of derivatives with

respect to φ =
√
u. Note that

∂u = 1
2
φ−1∂φ (B.11)

and

u∂2
u = 1

4

(
∂2
φ − φ−1∂φ

)
. (B.12)

Since φ is a function of u, ∂t;u = ∂t;φ. So, we have

∂t;φL =
(
1− φ2L

)
(∂2
φL− φ−1∂φL) + 1

2
φ2(∂φL)2 (B.13)

+ φ−1(1
2
µ+ 4− 2φ2L)(∂φL) + (µ+ 2)L2 + 1

2
κ2v

=
(
1− φ2L

)
∂2
φL+ 1

2
φ2(∂φL)2

+ φ−1(1
2
µ+ 5− φ2L)∂φL+ (µ+ 2)L2 + 1

2
κ2v.

The advantage of this is the clear regularity around φ = 0 provided L is

bounded.
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B.2.2 Additional warped product factors

We continue considering the Ricci flow of a metric of the form g =

gB + ugSq :

Rf[gB] = 2c1u
−1/2∇∇u1/2,

Bu = −µ+ cvv.(B.8)

Here cv = 1
4
(µ − 2). Suppose that gB itself has a warped product factor:

B = B2 × F p and gB = gB2 + wgF . Take y = w−1|∇w|2 and suppose that

2 Rc[gF ] = µFgF . We make no assumptions on the sign on µF .

To quickly derive an equation for h in terms of B, go from (B.2) which

says

B2×F×Sqw = −µF − y

where y = w−1|∇w|2. Since

B2×F×Sqw = ∂tw − (∆B2×F×Sqw)

= ∂tw −
(
∆B2×Fw + 1

2
qu−1〈∇u,∇w〉

)

= ∂tw −
(
∆Bw + 1

2
qu−1〈∇u,∇w〉

)

= Bw − 1
2
qu−1〈∇u,∇w〉

So we find,

Bw = −µF − y − 1
2
qu−1〈∇u,∇w〉

= −µF − y − 1
2
qv∂uw. (B.14)
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Now, using and the fact that w is a function of u and t,

Bw = (−µ+ cvv)∂uw + ∂t;uw − uv∂2
uw

so by (B.14) we find

∂t;uw − uv∂2
uw = −µF − y + µ∂uw − cvv∂uw − 1

2
qv∂uw

= −µF − y + µ∂uw − µ/2v∂uw. (B.15)

Note we may also write y = w−1|∇w|2= w−1uv(∂uw)2.

B.2.2.1 Writing the evolution in terms of φ

We also write (B.15) in terms of φ. Using (B.11) and (B.12) we have

∂t;uw = v
(
∂2
φw − φ−1∂φw

)

− µF − y + (µ− µ/2v)1
2
φ−1∂φw

Simplifying,

∂t;φw = v∂2
φw − µF − y + (1

2
µ− (1

4
µ− 1)v)φ−1∂φw

B.2.3 Second fundamental form for doubly warped products

Consider the case of a doubly warped product over an interval,

ds2 + ugSq + wgF

the second fundamental form κ in Section B.2.1 is the second fundamental

form of a surface (s, p)× F , which is

1
4
dim(F )w−1y = 1

4
dim(F )w−2u2v(∂uw)2.
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Therefore the term−2(κ2)v is−1
2
dim(F )w−2u2v2(∂uw)2 = −1

8
dim(F )w−2v2φ2(∂φw)2.

Using this we can change (B.13) to

∂tL =
(
1− φ2L

)
∂2
φL+ 1

2
φ2(∂φL)2

+ φ−1(1
2
µ+ 5− φ2L)∂φL+ (µ+ 2)L2 − 1

8
w−2v2φ2(∂φw)2

=
(
1− φ2L

)
∂2
φL+ 1

2
φ2(∂φL)2

+ φ−1(1
2
µ+ 5− φ2L)∂φL+ (µ+ 2)L2 + w−2(1− uL)2(∂φw)2

B.3 Calculus

B.3.1 Calculus with functions of functions on manifolds

Suppose (M, g(t)) is a manifold with an evolving metric, and u : M ×

[0, T ]→ R is a function on the manifold. For a function F : M × [0, T ] we use

∂uF = |∇u|−2∇graduF . Note that ∂uF is defined where |∇u|6= 0 (and maybe

elsewhere). We also define,

∂t;u = ∂t − (∂tu)∂u.

The derivative ∂u is the derivative along a curve which moves perpen-

dicular to the level sets of u at unit speed. The derivative ∂t;u is the derivative

along a curve in M × [0, T ] which moves so that the time-derivative of the

t component is 1, and also moves in M to always stay on the level set of u

(always choosing to move perpendicularly to the level set).
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Say that a function F : M × [0, T ]→ R is (u, t)-dependent if F (p, t) =

f(u(p, t), t) for some f : R× [0, T ]→ R. If F is (u, t)-dependent then

∂uF (p, t) = |∇u|−2∇graduF = |∇u|−2f1(u(p, t), t)∇gradu gradu = f1(u(p, t), t),

where we use subscript 1 to denote derivative with respect to the first compo-

nent. Also,

∂t;uF (p, t) = f2(u(p, t), t).

In particular, ∂uu = 1 and ∂t;uu = 0.

Now suppose u : M × [0, T ] → R+ is positive and understood. Then

we define the following. For F : M × [0, T ]→ R+ set

F [1] =
u∂uF

F
, F [2] =

u2∂2
uF

F
, F [t] =

u∂tF

F
.

In the case that F is (u, t)-dependent then ∂uF gives information about

the full derivative of F :

∇F (p, t) = (∂uF )∇u = (F [1])
(
u−1F

)
∇u.

Also,

∇∇F (p, t) = (∂2
uF )∇u⊗∇u+ ∂uF∇∇u

= u−1F ·
(
(F [2])u−1∇u⊗∇u+ F [1]∇∇u

)

so

|∇∇F |≤ (u−1vF )

(
F [2] + F [1] |∇∇u|

v

)
(B.16)
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We can also calculate F as

F = ∂t;uF + ( u) ∂uF − |∇u|2∂2
uF.

If v = u−1|∇v|2 we have

F =
(
( u)F [1] + F [t] − vF [2]

)
u−1F. (B.17)

The following lemma states standard calculus formulae.

Lemma B.3.1. Suppose F and G are (u, t)-dependent functions. Then

(FG)[1] = F [1] +G[1]

(FG)[2] = F [2] +G[2] + F [1]G[1]

FG[t] = F [t] +G[t]

Suppose G is a (u, t)-dependent function and F : R → R. Then the (u, t)-

dependent function H(p, t) = F (G(p, t), t) satisfies

H [1] =
(
F [1] ◦G

)
G[1]

H [2] =
(
F [2] ◦G

) (
G[1]
)2

+
(
F [1] ◦G

)
G[2]

H [t] =
(
F [1] ◦G

)
G[t]

B.3.2 One dimensional calculus

In this section, we put down facts for functions f : [0, xmax] → R≥0 ∪

{∞}. We assume for x > 0, f is smooth and f(x) ∈ R+. We really only care

about what is happening in any open neighborhood of 0, where f may go to

∞ or 0.
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We use the notation

f [k](x) =
xkf (k)(x)

f(x)

where f (k) is the kth derivative. For example, if f(x) = xp log(x)q, for p, q ∈ R,

then f [1](0) = p. Note that f [k] is invariant under scaling either f or the

interval [0, xmax].

Let

f̂(t, r) =
f(t(1 + r))

f(t)

Lemma B.3.2. Suppose f [1] is bounded. Then for any r′ > 0, f̂ is bounded

(independently of t) for r ≤ r′.

Proof. Calculate,

∂rf̂(t, r) =
t

f(t)
f ′(t(1 + r))

=
1

1 + r
f̂(t, r)f [1](t(1 + r)).

Therefore by Gronwall’s inequality,

f̂(t, r) ≤ f̂(t, 0) exp

(∫ r

0

1

1 + r
f [1](t(1 + r))dr

)

= exp

(∫ r

0

1

1 + r
f [1](t(1 + r))dr

)
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Lemma B.3.3. Suppose that both f [1] and f [2] are bounded. Then as r ↘ 0,

f̂(r, t) = 1 + rf [1](t) +O(r2).

If k > 1 and both f [k] and f [k+1] are bounded, then as r ↘ 0,

∂kr f̂(r, t) = f [k](t) +O(r).

The big-oh terms in these statements are independent of t.

Proof. By Taylor’s theorem, there is an r∗ ∈ [0, r] such that

f̂(r, t) = 1 + rt
f ′(t)

f(t)
+ (rt)2 1

2

f ′′((1 + r∗)t)

f(t)

= 1 + rf [1](t) + r2f((1 + r∗)t)

f(t)
1
2
f [2]((1 + r∗)t)

= 1 + rf [1](t) + r2f̂(r∗, t)
1
2
f [2]((1 + r∗)t)

By Lemma B.3.2, f̂(r∗, t) can be bounded independently of t. The statement

follows.

∂rf̂(r, t) =
t

f(t)
f ′(t(1 + r))

=
t

f(t)
f ′(t) + rt

t

f(t)
f ′′(t) + 1

2
(rt)2 t

f(t)
f (3)(t(1 + r∗))

= f [1](t) + rf [2](t) + 1
2
r2f [3](t(1 + r∗))
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rk∂kr f̂(r, t) =
tk

f(t)
f (k)(t(1 + r))

=
rktk

f(t)

(
f (k)(t) + (rt)f (k+1)(t(1 + r∗))

)

= rkf [k](t) + rk+1f [k](t(1 + r∗))

B.3.3 Time derivatives

We examine the size of time derivatives appearing in type two rescal-

ings. We have α = tν(t), β = α′, and ∂θ = α∂t.

First calculate,

β = ν + tν ′

= ν
(
1 + ν [1]

)
.

Therefore β ∼ ν.

Next,

α′′ = β′ = 2ν ′ + tν ′′

= t−1ν
(
2ν [1] + ν [2]

)
.

Therefore, ∂θβ = α∂tβ = ν2(2ν [1] + ν [2]) . ν2. We also calculate the second

derivative of logω.

∂θ(logω) =
∂θω

ω

= νω[1].
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∂2
θ (logω) =

∂2
θω

ω
− (∂θω)2

ω2

=
tν∂t(tν∂tω)

ω
− ν2(ω[1])2

= ν2ω[1] + tννtω
[1] + ν2ω[2] − β2(ω[1])2

= ν2
(
ω[1] + ν [1]ω[1] + ω[2] − (ω[1])2

)

In particular, ∂2
θ (logω) . ν2.

B.4 Facts about the Bryant soliton

Let (Bry, gBry, X) be the Bryant steady soliton with minimum scalar

curvature R0. Bryant’s original work is [Bry], see also Section 1.4 of [CCG+07a]

for an exposition of the construction. The extra analysis carried out here is

generally justified by the analyticity of the solution. Let

gBry = ds2 + uBrygSq = ds2 + φ2
BrygSq

and

X = grad f.

On any steady soliton we have R + |∇f |2= R0 (Corollary 1.16 in

[CCG+07a]). Since the Bryant soliton is a singly warped product, we have

more precisely df = −√R0 −Rds. Taking the trace of the soliton equation

we have R + ∆f = 0, so we find

∆f (−f) = R0.
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We know that φBry = O(
√
s) as s → ∞. To find the exact coefficient

use

0 = φss − fsφs − (q − 1)
1− |∇φ|2

φ

so φ ∼ R
−1/4
0

√
µs and u ∼ R

−1/2
0 µs at ∞.

B.4.1 Next order approximation

So far we have found as s→∞

f = −(1 + o(1))R
−1/2
0 s

u = (1 + o(1))µR
−1/2
0 s.

Now we seek the next term in the asymptotic expansion.

The function u satisfies

0 = uss − fsus + cvu
−1u2

s − µ

where cv = 1
2
(1

2
µ− 1). We also have ∆f (−f) = R0 or

0 = (−f)ss − fs(−f)s + qφ−1φs(−fs) = R0.

Strictly in terms of u and f̄ = −f/R0 we have

uss +R0f̄sus + cvu
−1u2

s = µ

f̄ss +R0f̄
2
s + 1

2
qu−1usf̄s = 1

Write G = f̄s.

uss +R0Gus + cvu
−1u2

s = µ (B.18)

Gs +R0G
2 + 1

2
qu−1usG = 1 (B.19)
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Now write u = µR
−1/2
0 s+u1 and G = R

−1/2
0 +G1. Partially writing out (B.18)

and (B.19),

u1,ss +R0

(
R−1

0 µ+ µR
−1/2
0 G1 +R

−1/2
0 u1,s + u1,sG1

)
+ cvu

−1u2
s = µ

G1,s +R0

(
R−1

0 + 2R
−1/2
0 G1 +G2

1

)
+ 1

2
qu−1usG = 1

Simplifying,

u1,ss + µR
1/2
0 G1 +R

1/2
0 u1,s +R0u1,sG1 + cvu

−1u2
s = 0

G1,s + 2R
1/2
0 G1 +R0G

2
1 + 1

2
qu−1usG = 0

We have u−1 = µ−1R
1/2
0 s−1 (1− u1 + o(u1)). Now, the highest order terms in

the equation for G1 are

2R
1/2
0 G1 + 1

2
qR
−1/2
0 s−1,

therefore

G1 = (1 + o(1))
(
−1

4
R−1

0 s−1
)
.

Then the highest order terms in the equation for u1 are

µR
1/2
0 G1 +R

1/2
0 u1,s − cvµR−1/2

0 s−1

which gives

u1 = (1 + o(1))R−1
0

(
1
4
qµ+ cvµ

)
log s

Unravelling definitions, we have found

f̄ = R
−1/2
0 s+ 1

4
qR−1

0 log s+ o(log s)

u = µR
−1/2
0 s+R−1

0

(
1
4
q + cv

)
µ log s+ o(log s)
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Therefore,

f̄ = µ−1u− 1
4
qR−1

0 log u+ o(log u) (B.20)

B.4.2 Continuation of the proof of Lemma 2.3.4

For the Bryant soliton, We have that

uss − usfs − µ+ cvv = 0

Equivalently,

∆Xu− µ+ (cv − 1
2
q)vBry = 0. (B.21)

(The −1
2
qvBry comes because ∆u = uss + 1

2
qu−1u2

s.)

We also have that

∆X f̄ = ∆X − f/R0 = 1.

Thinking in terms of u this says,

fu∆Xu+ fuuu
2
s = −R0

fu∆Xu+ fuuuvBry = −R0

Then, using (B.21)

fu(µ− (cv − 1
2
q)vBry) + fuuu

2
s = −R0

fuµ− (cv − 1
2
q)fuvBry + fuuuvBry = −R0

The asymptotics claimed in the Lemma are given in (B.20).
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B.5 Deriving the evolution of Ricci-DeTurck flow

Here we prove Lemma 3.1.1, which gives the evolution of a perturbation

of the background metric under Ricci-DeTurck flow.

Proof. (Lemma 3.1.1) The convention in this proof is that all curvatures and

covariant derivatives are taken with respect to g̃.

By Lemma 2.1 of [Shi89] we have

∂tgij = gab∇a∇bgij −
[
gabgip Rmp

ajb

]
i↔j − (LXg)ij + Cov(g,∇g)

Since g = g̃ + h and g̃ is parallel with respect to ∇, we find

∂thij = gab∇a∇bhij (B.22)

− ∂tg̃ −
[
gabgip Rmp

ajb

]
i↔j − (LXg)ij (B.23)

+ Cov(g,∇h)

Rewriting the curvature term. Let gij = g̃ij− h̄ij. Expand gabgip =

(g̃ab − h̄ab)(g̃ip + hip) in the curvature term.

−gabgip Rmp
ajb =

(
−g̃abg̃ip + h̄abg̃ip − g̃abhip + h̄abhip

)
Rmp

ajb

= −Rcij +h̄ab Rmajbi−Rcpj hip + h̄abhip Rmp
ajb (B.24)

Now let

ĥij = g̃cig̃djhcd − h̄ab

187



so that

h̄ab Rmajbi = g̃cag̃db Rmcjdi hab − Rmajbi ĥ
ab.

Putting this together with (B.24) we have

−gabgip Rmp
ajb = −Rcij +g̃acg̃bd Rmcjdi hab − Rcpj hip

+ habhip Rmp
ajb−Rmajbi ĥ

ab.

Finally taking the symmetrization we find

[
−gabgip Rmp

ajb

]
i↔j = −2 Rcij +2 Rm[h]ij − (Rc ·h)ij +Q(h)ij (B.25)

Rewriting the Lie term We have

−LXg = −LX g̃ − LXh

We use the formula relating the lie derivative with the covariant derivative and

the lie derivative of the metric,

(−LXh)ij = (−∇Xh)ij − 1
2

[hpig̃
pq(LX g̃)qj]i↔j

= (−∇Xh)ij − 1
2

((LX g̃) · h)ij

(The first line is true in general, the second line uses that hij is symmetric.)

Thus

−LXg = −LX g̃ −∇Xh− 1
2

(LX g̃) · h (B.26)
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Coming back to the evolution. Using (B.25) and (B.26), the evo-

lution (B.22)-(B.23) becomes

∂th = ∆̂h−∇Xh

− ∂tg̃ − 2 Rc[g̃]− LX g̃

− 1
2

((2 Rc +LX g̃) · h)

+ 2 Rm[h] +Q(h) + Cov(g, h).

So unraveling definitions,

ˆXh = −RfX [g̃]

+ 1
2

((∂tg) · h)− 1
2

((∂tg + 2 Rc +LX g̃) · h)

+ 2 Rm[h] +Q(h) + Cov(g, h)

= −RfX [g̃]

+ 1
2

UT[h]− 1
2

(RfX [g̃] · h)

+ 2 Rm[h] +Q(h) + Cov(g, h)

as desired.
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Appendix C

Formal asymptotics before a singularity

In this section we formally derive the asymptotics of a flow into a sin-

gular metric of the form assumed in Theorem 1.2.2. This was described in

Section 1.3.3. We work in the s coordinate, which is the arclength from the

tip. In other words, we write our warped product metrics as

(ds(x, t))2 + φ(s, t)2gSq + ψ(s, t)2gSp

Under Ricci flow,

∂t|xψ = ψss +

(
p
ψs
ψ

+ q
φs
φ

)
ψs − ψ−1ψ2

s − (p− 1)ψ−1,

∂t|xφ = φss +

(
p
ψs
ψ

+ q
φs
φ

)
φs − φ−1φ2

s − (q − 1)φ−1,

∂t|x log s′ = p
ψss
ψ

+ q
φss
φ
.

To convert the time derivatives to the s coordinate we may use that for any

evolving function f ,

∂t|sf = ∂t|xf − [∂t|xs] ∂sf

= ∂t|xf −
[∫ s

0

∂t|xs′
s′

ds

]
∂sf

= ∂t|xf − I[ψ, φ]∂sf
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Where in the last line we have named I[ψ, φ] =
∫ s

0
pψss
ψ

+ q φss
φ
ds. Using this

we find,

∂t|sψ = ψss +

(
p
ψs
ψ

+ q
φs
φ
− I[ψ, φ]

)
ψs − ψ−1ψ2

s − (p− 1)ψ−1

∂t|sφ = φss +

(
p
ψs
ψ

+ q
φs
φ
− I[ψ, φ]

)
φs − φ−1φ2

s − (q − 1)φ−1

Before the singular time, these functions will have the boundary con-

ditions at s = 0:

φ > 0, ψ = 0,

∂sφ = 0, ∂sψ = 1.

Given this, we rewrite ψ = s(1 + ψ̃) where now ψ will have ψ̃s = 0 at s = 0, if

the metric is smooth. We may integrate I[φ, s(1 + ψ̃)] by parts to find

[(
p
ψs
ψ

+ q
φs
φ

)
− I[ψ, φ]

]
=

[
p

s
−
∫ s

0

(
q
φ2
s

φ2
+ p

(
ψ̃2
s

(1 + ψ̃)2
+

2ψ̃s

s(1 + ψ̃)

))
ds

]
.

One may then compute,

∂t|sψ̃ = ψ̃ss + p
ψ̃s
s
− 2p

1

s

∫ s

0

ψ̃s
s
ds+ 2(p− 1)

ψ̃

s2

− 2p
ψ̃

s

∫ s

0

ψ̃s

s(1 + ψ̃)
ds− 2p

1

s

∫ s

0

ψ̃s
s

(
1

(1 + ψ̃)
− 1

)
ds

+
(p− 1)

s2

((
1 + ψ̃

)
− 1

1 + ψ̃
− 2ψ̃

)

− 1 + ψ̃

s

∫ s

0

(
q
φ2
s

φ2
+ p

ψ̃2
s

(1 + ψ̃)2

)
ds

− ψ̃s
∫ s

0

(
q
φ2
s

φ2
+ p

(
ψ̃2
s

(1 + ψ̃)2
+

2ψ̃s

s(1 + ψ̃)

))
ds− ψ̃2

s

s
,

191



∂t|sφ = φss +
p

s
φs − (q − 1)φ−1

−
∫ s

0

(
q
φ2
s

φ2
+ p

(
ψ̃2
s

(1 + ψ̃)2
+

2ψ̃s

s(1 + ψ̃)

))
φs −

φ2
s

φ
.

Here we have organized the equations so that the first lines are linear.

C.1 Overview of formal asymptotics

Our inspection of the shape of the Ricci flow starts with what we are

most confident in. Our primary assumption is that the flow develops a Type-I

singularity modeled on Rp+1×Sq. This means that under a rescaled flow, the

metric approaches the standard metric on Rp+1 × Sq, which is a fixed point

for the flow.

In order to study the flow more closely, we expand the solution around

the fixed point. We assume that the solution approaches the fixed point at the

same rate as in previously studied cases (the case p = 1), which gives us an

asymptotic expansion. Our goal is to be able to use this asymptotic expansion

to learn something about the “naked-eye” final time profile by looking at

this asymptotic expansion. (Note however that the “neck” region where this

asymptotic expansion is valid becomes a single point at the singular time.)

The asymptotic expansion around the fixed point is actually not enough

to tell us about the naked-eye profile. It is, however, enough to tell us about a

region farther from the neck, which still disappears at the singular time. Then,

information from this region is enough to tell us about the naked-eye profile.
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C.2 The neck region

Our primary assumption is as follows:

Assumption C.2.1. On the submanifold {s = 0}, and at time T , the metric

has a type-I singularity modeled on Rp+1 × Sq. Precisely,

• At s = 0, |Rm|= O
(

1
T−t

)

• The metrics G(t) = 1
T−t(X(t))∗g(t) converge to the soliton metric Gsol on

Rp+1 × Sq, in compact neighborhoods of the submanifold {s = 0}. Here

X(t) is a family of diffeomorphisms which integrate the soliton vector

field.

In particular, Assumption C.2.1 implies the following on the level of

the functions s, φ, ψ. Set:

σ = (T − t)−1/2s Φ = (T − t)−1/2φ Ψ = (T − t)−1/2ψ Ψ̃ = ψ

Then Φ → σ and Ψ →
√

2(q − 1) in regions {σ < A}. We will call such a

region {σ < A} a neck region.

Notice that because s is a geometric coordinate for the metrics g (and σ

is a geometric coordinate for G) we do not have to worry about the diffeomor-

phisms X(t). The soliton metric is given by Ψ̃ = 0, Φ =
√
µ :=

√
2(q − 1),

and is a fixed point of the rescaled system. Write Φ =
√
µ(1 + Φ̃) so that now

193



Ψ̃ = 0, Φ̃ = 0 is a fixed point. In full, the evolution of Φ̃, Ψ̃ is

∂τ |σΨ̃ = Ψ̃σσ + p
1

σ
Ψ̃σ − 1

2
σΨ̃σ +

2(p− 1)

σ2
Ψ̃− 2p

σ

[∫ σ

0

Ψ̃σ

σ

]

− 2p
Ψ̃

s

∫ s

0

Ψ̃s

s(1 + Ψ̃)
ds

− 2p
1

s

∫ s

0

Ψ̃s

s

(
1

(1 + Ψ̃)
− 1

)
ds

+
(p− 1)

s2

((
1 + Ψ̃

)
− 1

1 + Ψ̃
− 2Ψ̃

)

− 1 + Ψ̃

s

∫ s

0

(
q

Φ̃2
s

(1 + Φ̃)2
+ p

Ψ̃2
s

(1 + Ψ̃)2

)
ds

− Ψ̃s

∫ s

0

(
q

Φ̃2
s

Φ̃2
+ p

(
Ψ̃2
s

(1 + Ψ̃)2
+

2Ψ̃s

s(1 + Ψ̃)

))
ds− Ψ̃2

s

s

∂τ |σΦ̃ = Φ̃σσ + p
1

σ
Φ̃σ − 1

2
σΦ̃σ + Φ̃

+ 1
2

(
1 + Φ̃− 1

1 + Φ̃
− 2Φ̃

)

+

[∫ σ

0

q
Φ̃2
σ

(1 + Φ̃)2
+

pΨ̃2
σ

(1 + Ψ̃)2
+

2pΨ̃σ

σ(1 + Ψ̃)

]
Φ̃σ −

[
Φσ

1 + Φ̃

]
Φ̃σ

Here, the first lines in both evolutions are linear and the others are at least

quadratic in Φ̃ and Ψ̃.

We proceed to study these linearizations. Most familiar is the lineariza-

tion of the evolution for Φ̃.
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C.2.1 The linearization for Φ̃.

We study the operator

∂2
σ +

p

σ
∂σ − 1

2
σ∂σ + 1. (C.1)

For smoothness of the metric, Φ̃ as a function of σ must extend to an even

function around zero. On functions with this property the operator (C.1) can

be recognized as the operator

LΦ = ∆Rp+1 − 1
2
~x · ∇+ 1

acting on a rotationally symmetric function in Rp+1. This operator is self-

adjoint on

L2(R+, σ
peσ

2/4) = rotationally symmetric functions of L2(Rp+1, e|−~x|
2/4).

The eigenvalues of ∆Rp+1− 1
2
~x·∇ in L2(Rp+1, e−|~x|

2/4) are the (p+1)-dimensional

Hermite polynomials, which are all given by products of one-dimensional her-

mite polynomials in each coordinate. The eigenvalues of ∂2
σ+ p

σ
∂σ− 1

2
σ∂σ come

from those hermite polynomials which happen to be rotationally symmetric.

The eigenspaces of ∂2
σ + p

σ
∂σ − 1

2
σ∂σ + 1 (including the +1 term which shifts

eigenvalues) are as follows:

• Constants are eigenfunctions with eigenvalue 1.

• There is a one-dimensional nullspace. f(x1) = x2
1−2 is a one-dimensional

hermite polynomial, and if x1, x2, . . . , xp+1 are the coordinates of Rp+1
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then

(x2
1 − 2) + (x2

2 − 2) + · · ·+ (x2
p+1 − 2) = (x2

1 + x2
2 + · · ·+ x2

p+1)− 2(p+ 1)

is in the nullspace of ∆Rp+1 − 1
2
x · ∇+ 1, and

σ2 − 2(p+ 1)

is in the nullspace of

∂2
σ +

p

σ
∂σ − 1

2
σ∂s + 1

• All further eigenspaces are negative.

Remember that we are considering a flow in which Φ approaches
√
µ,

i.e. Φ̃ approaches zero. Therefore the constant component of Φ̃ should get

smaller, and in the τ → ∞ limit should disappear. Therefore we expect the

nullspace to play the biggest role; this was the case in [AK07] as well. Lemma

C.2.2 studies the nullspace more explicitly.

Lemma C.2.2. In any neighborhood of zero, the only solutions to

∂2
σf +

( p
σ
− σ

2

)
∂σf + 1 = 0 (C.2)

which are C2 at zero are multiples of

f(σ) = (σ2 − 2(p+ 1))

where k is arbitrary.
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Proof. (C.2) is a degree two linear ODE with an isolated regular singular point

at σ = 0. The method of Frobenius yields two independent solutions to (C.2)

around zero: one is σ2 − 2(p+ 1) and the other blows up at σ = 0 with order

O(σ−(p+1)).

C.2.2 The linearization for Ψ̃

The linearization of the evolution for Ψ̃ is

LΨ[f ] = ∂2
σf +

p

σ
∂σf −

σ

2
∂σf +

2(p− 1)

σ2
f − 2p

σ

[∫ σ

0

fσ
σ
dσ

]
.

This is more complicated because there is a nonlocal term in the linearization.

We can begin by computing it on monomials. Since Ψ must be even and vanish

at zero, we just compute LΨ[f ] for f = σ2k, k ≥ 1.

LΨ[σ2k] = 2k(2k − 1)σ2k−2 + p2kσ2k−2

− 1

2
2kσ2k + 2(p− 1)σ2k−2 − 2p

σ

∫ σ

0

2kσ2k−2

=

(
2k(2k − 1) + 2pk + 2(p− 1)− 4pk

2k − 1

)
σ2k−2 − kσ2k

The pleasant part of the situation is that the operator acts on the monomials

as an upper-triangular matrix. Therefore one can read off the eigenvalues in

the span of the monomials. They are the coefficients of σ2k above, that is

−k for k ∈ N, k ≥ 1. This method also gives a formula for computing the

eigenfunctions.

One can also study the functions satisfying LΨ[f ] = λf by multiplying
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by σ and differentiating with respect to σ, arriving at

σ∂3
σf +

(
(p+ 2)− σ2

2

)
∂2
σf +

(
(4p− 2)

σ
− (1 + λ)σ

)
∂σf −

(
2(p− 1)

σ2
− λ
)
f = 0

In any case we find the following.

Lemma C.2.3. The operator LΨ has a strictly negative spectrum in L2(R+, σ
pe−σ

2/4).

C.2.3 The ansantz for Φ̃, Ψ̃

Our assumption that the rescaled metric approaches the soliton Rp+1×

Sq says that Φ̃ and Ψ̃ both approach zero as τ → ∞. We make two further

assumptions about the rate of this convergence.

Assumption C.2.4. The limits

Ψ̃1(σ) := lim
τ→∞

τΨ̃(σ, τ), Φ̃1(σ) := lim
τ→∞

τ Φ̃(σ, τ)

both exist. The convergence happens in C2 on any region {σ < σ#}.

Assumption C.2.5. As functions of σ, Ψ̃1 and Φ̃1 are in L2(R+, σ
pe−σ

2/4).

By Assumption C.2.4 we can write

Ψ̃ = τ−1(Ψ̃1(σ) + Ψ̃
(err)
1 (σ, τ)), Φ̃ = τ−1(Φ̃1(σ) + Φ̃

(err)
1 (σ, τ))

where Ψ
(err)
1 and Φ

(err)
1 converge C2

loc to zero as τ →∞. Plugging this into the

evolution equations and bounding nonlinear terms shows LΦ[Φ̃1] = LΨ[Ψ̃1] =

0. Then Lemmas C.2.2 and C.2.3 with Assumption C.2.5 show that for some

k0

Ψ̃1 = 0, Φ̃1 = k0(σ2 − 2(p+ 1)).
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Remark 3. In [AK07], the authors rigorously found the value of k0 for the case

p = 0. Formally one can find the value by analyzing the evolution of the inner

product

k0(τ) =

∫

R

(
Φ̃(σ, τ)

) (
σ2 − 2(p+ 1)

) (
σpe−σ

2/4
)
dσ,

taking into account quadratic terms in the evolution of Φ̃.

Story C.2.6. I’ll be honest, I think I could have written some of this better.

If you want to talk about it, let me know. If you’re reading this and need a

break, here’s a story.

Telling of Story: A student really enjoyed Professor Gordon’s algebraic topol-

ogy class. As a thank-you, he brought a box of donut holes from Ken’s Donuts

to his office one day.

“What. . . are these?”, Professor Gordon exclaimed. “They taste good,

but. . . something is just off!”

At first, the student was confused. Ken’s Donuts is well known for their

high quality control and safety standards! But, the next morning, the student

was enlightened.

The student brought the professor Gordon a box of Ken’s finest, honest

donuts. “I’m, I’m sorry for, for, for my faux paux yesterday, p-p-professor,”

the student stammered. The hardened Professor took the box suspiciously.

He looked inside. His eyes glistened. He took a bite, and said, “tapology

accepted.” �
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C.2.4 Validity

We come back to

Ψ(σ, τ) = σ
(

1 + τ−1Ψ̃
(err)
1 (σ, τ)

)
, (C.3)

Φ(σ, τ) =
√
µ
(

1 + τ−1k(σ2 − 2(p+ 1)) + τ−1Φ̃
(err)
1 (σ, τ)

)
, (C.4)

and study the regions where it is valid for Ψ
(err)
1 and Φ

(err)
1 to be small. Using

(C.3), (C.4) we can derive evolution equations for Ψ
(err)
1 and Φ

(err)
1 . These will

be parabolic equations with a source term which is O((τ−1σ2)2, (τ−1σ2)→ 0).

Therefore it is consistent to assume that

Ψ̃
(err)
1 (σ, τ), Φ̃

(err)
1 (σ, τ) = o(1; τ →∞) if σ = o(

√
τ , τ →∞).

We study regions where σ = O(
√
τ) in the next section.

C.3 The intermediate region

When σ ∼ √τ , the assumption that the error term for the neck ap-

proximation Φ̂ is small is no longer feasible. Let us introduce scaled functions

ξ = σ/
√
τ Y = Ψ/

√
τ Ỹ = Ψ̃ (so Y = ξ(1 + Ỹ ) )

Then

∂τ |σ = ∂τ |ξ + (∂τξ)∂ξ

= ∂τ |ξ − 1
2
τ−1ξ∂ξ

∂σ = (∂σξ)∂ξ

= τ−1/2∂ξ
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Calculate the evolutions. Every term in the right hand side of ∂τ |σΨ scales to

have a τ−1 coefficient except for the −1
2
σΨσ which just scales to −1

2
ξΨξ. The

evolution of Φ also has reaction terms with no τ−1 coefficient.

We assume that Φ and Ỹ have limits as τ →∞:

Assumption C.3.1. The limits

Φint0(ξ) = lim
τ→∞

Φ(τ, ξ) and Ỹint0(ξ) = lim
τ→∞

Ỹ (τ, ξ)

exist. The limit occurs in C2 on regions {ξ < ξ#}.

Under Assumption C.3.1, Φint0 and Ỹint0 will solve

0 = −1
2
ξỸint0,ξ

0 = −1
2
ξΦint0,ξ − (q − 1)Φ−1

int0 + 1
2
Φint0

so they are

Ỹint0 = k0

Φ̃int0 =
√
k1ξ2 + µ

(Recall µ = 2(q − 1)).

C.3.1 Matching

We want the intermediate approximations to be valid at the boundary

of the neck region, and match the neck approximations. Therefore, let us say

we hope the intermediate solutions to be valid on regions of the form

{σ ≥ σ0 and ξ < ξ0} = {√τξ ≥ σ0 and ξ < ξ0} =

{
σ0√
τ
≤ ξ ≤ ξ0

}
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Set

Ỹint = k0

Φint =
√
k1ξ2 + µ

with k0 and k1 to be determined.

First, unravel the definition of Ỹ .

Yint = ξ(1 + Ỹint) = ξ(1 + k0)

Ψint =
√
τYint = σ(1 + k0)

Matching Ψint with Ψneck = σ gives k0 = 0.

Putting Φneck in terms of ξ gives

Φneck =
√
µ(1 + k(ξ2 − 2(p+ 1)τ−1))

so when ξ is small and τ is large

Φneck ≈
√
µ, Φneck,ξ ≈ 0, Φneck,ξξ ≈ 2k

√
µ,

Φint ≈
√
µ, Φint,ξ ≈ 0, Φint,ξξ ≈

k1√
µ
.

So we choose k1 = 2kµ and have

Φint =
√
µ
√

2kξ2 + 1

C.4 Outer region

Both the neck and intermediate regions shrink to the singular subman-

ifold at t = T . Now we attempt to use the intermediate approximations to get

information about the solution at time T , outside of the singular submanifold.

202



From our considerations in the intermediate region, with Assumption

C.3.1 and the matching we can write

ψ =
(
(T − t)1/2|log(T − t)|1/2

)
ξ
(

1 + Ỹ
(err)
int0

)
= s

(
1 + Ỹ

(err)
int0

)
, (C.5)

φ =
√

(T − t)√µ
(√

2kξ2 + 1 + Φ
(err)
int0

)

= e−τ/2
√
µ
(√

2kξ2 + 1 + Φ
(err)
int0

)
, (C.6)

where the error terms Y
(err)
int0 and Ψ

(err)
int0 are o(1; τ → ∞) on sets {ξ < ξ#}.

Recall that τ, ξ, s, t are related by

(T − t)τ = e−ττ =
s2

ξ2
.

We will take ξ# to infinity and s to 0, but still have the error terms

go to zero. To do this, let τ#(ξ#) be chosen large enough depending on ξ# so

that as ξ# →∞

Y
(err)
int0 (ξ#, τ = τ#(ξ#))→ 0, Φ

(err)
int0 (ξ#, τ = τ#(ξ#))→ 0.

Because the error terms are continuous, it is possible to make τ#(ξ#) contin-

uous and increasing. As a further requirement on τ#(ξ#) we ask that

log(ξ#)

log(s#)
=

log ξ#

log
(√

e−τ#τ#ξ#

) → 0, equivalently
log ξ#

τ#

→ 0. (C.7)

To recap, we are taking ξ# to infinity and τ# to infinity, monotonically. From

these we can find t# and s# by (T − t#) = e−τ# and

e−τ#τ# =
s2

#

ξ2
#

. (C.8)
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Find an expression for (T − t#) = e−τ# by taking the logarithm of both sides

of (C.8) and then dividing e−τ#τ# by τ#:

−τ# + log τ# = −2 log s# − 2 log ξ#

so,

τ#(1 + o(1; t# → T )) = −2 log s#

(
1− log ξ#

log s#

)
,

τ# = (2 log s#) (1 + o(1; t# → T ))

e−τ# =
s2

#

ξ2
#

1

−2 log s#

(1 + o(1; t# → T )) .

We used (C.7) in the second implication.

Now, evaluate (C.5), (C.6) for s ≤ s#, t = t#.

ψ(s, t#) = s

(
1 + Ỹ

(err)
int0

(
s

eτ#τ#

ξ#, t#

))

= s (1 + o(1; t# → T )) (C.9)
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In evaluating (C.6), we use (??) to evaluate
√
T − t# = e−τ#/2.

φ(s, t#) =
s#

ξ#

1√
−2 log s#

(1 + o(1; t# →∞))
√
µ

·
(√

2k
s2

e−τ#τ#

+ 1 + Φ
(err)
int0 (ξ#, τ#)

)

=
s#

ξ#

1√
−2 log s#

√
µ

(√
2k

s2

e−τ#τ#

+ 1

)

=
s

s#

s#

ξ#

1√
−2 log s#

√
µ



√

2k
s2

#

e−τ#τ#

+ 1


 (1 + o(1; t# →∞))

=
√
µk

s

log s

log s

log s#

√
1 +

1

2kξ#

(1 + o(1; t# →∞))

=
√
µk

s

log s

log s

log s#

(1 + o(1; t# →∞)) (C.10)

We assume that the value of φ(s#, t) at t = t# is a good approximation

for its value at t = T .

Assumption C.4.1.

|ψ(s#, t#)− ψ(s#, T )| = o(1; s# → 0)ψ(s#, t#),

|φ(S#, t#)− φ(s#, T )| = o(1; s# → 0)φ(s#, t#).

In particular, Assumption C.4.1 implies the asymptotic profile at the

singular time t = T :

ψ(s, T ) = s(1 + o(1; s→ 0)), φ(s, T ) =
√
µ

s√
|log s|

(1 + o(1; s→ 0)).

The following lemma provides justification for Assumption C.4.1, by showing

that it is at least true for the linearization of the system in time.
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Lemma C.4.2. With all assumptions before Assumption C.4.1, the time deriva-

tives of φ and ψ at (s, t) = (s#, t#) satisfy

(T − t#) · ∂t|sψ(s#, t#) = o(1)ψ(s#, t#), (T − t#) · ∂t|sφ(s#, t#) = o(1)φ(s#, t#)

Proof. The evolution for ψ and φ (after performing an integration by parts) is

∂t|sψ = ψss +

(
p
ψs
ψ
− p

∫ s

0

ψss
ψ
ds− q

∫ s

0

φ2
s

φ2
ds

)
ψs − ψ−1ψ2

s − (p− 1)ψ−1,

∂t|sφ = φss +

(
p
ψs
ψ
− p

∫ s

0

ψss
ψ
ds− q

∫ s

0

φ2
s

φ2
ds

)
φs − φ−1φ2

s − (q − 1)φ−1.

To evaluate the terms involving just derivatives of φ and ψ we can use (C.9)

and (C.10). For the nonlocal terms, we need more. To evaluate the nonlocal

term involving ψ, note that ψ ≈ s is valid in the parabolic region as well. To

evaluate
∫ s

0
φ2s
φ2
ds, we can apply Cauchy-Schwarz and integrate:

∣∣∣∣
∫ s

0

φ2
s

φ2

∣∣∣∣ (s, t#) ≤
(

max
[0,s]
|φs(s, t#)|

) ∣∣∣∣
∫ s

0

φs
φ2

∣∣∣∣

=

(
max
[0,s]
|φs(s, t#)|

) ∣∣∣∣
1

φ(0)
− 1

φ(s)

∣∣∣∣

≤ 1 · 2√µ 1
√
µ
√
T − t#

(1 + o(1; t# →∞))

C.5 Conclusion

Our conjecture is thus as follows: consider any Ricci flow in the space

of metrics we are considering, which has a type-I singularity at s = 0, t = T

modeled on the standard soliton on Rp+1× Sq and which is either compact or
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has reasonable growth at infinity. Then the limit of the metrics as t→ T will

have the form

ψ = s(1 + o(1; s→ 0)),

φ =
√
µ
√
k

s√
|log s|

(1 + o(1; s→ 0)) .

This is an unsurprising conclusion if one considers the stability of Rp+1

under Ricci flow, and compares with previous results in the p = 0 case. In

fact the only effect that the value of p has, on the level of our asymptotics, is

in on term in the neck region.
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Appendix D

Notation

We adopt the shorthand that when stating hypotheses, the statement

x < x(y, z) means “there exists an x, depending on y and z, such that if

x < x, the following holds.” This allows us to quickly state “if x < x(y, z) and

w < w(x, y) then . . . .” For some reason, we might need to choose x strictly

smaller than x(y, z) when apply the theorem, so the statement can not be

reduced to implementing some constants depending on y and z alone.

The curvature tensors are Rm for the full riemannian (0, 4) tensor, Rc

for the Ricci curvature, and R for the scalar curvature. The indices of Rm are

such that Rmijij is a sectional curvature in an orthonormal frame.

The vector field V [g, g̃], the operator ∆g,g̃, and Rf[g] are defined in

Section 3.1.1. There we also define Rm[h] for a symmetric two-tensor h, and

ΛRm : M → R.

Partial derivatives are denoted with ∂·. See Section B.3.1 for the nota-

tion ∂tf , ∂t;uf , and f [1], f [t], etc.

Everywhere gSq is the metric of sectional curvature 1 on the q dimen-

sional sphere Sq. We define µ = 2(q − 1) so that 2 RcgSq = µgSq . We also

have a general Einstein manifold (F, gF ) in play, its Ricci curvature satisfies
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2 RcF = µFgF for some µF ∈ R.

Usually we have a metric of the form

adx2 + ugSq + wgF

for x in some interval I. Here a, u, and w are functions of I. The functions a,

u, and w may also depend on time. On these manifolds we have the derived

functions v = u−1|∇u|2 and y = w−1|∇w|2. Rarely we also use φ =
√
u and

ψ =
√
w.

The heat operator is u = ∂tu − ∆u. This depends on a (usually

time-dependent) riemannian metric. We may decorate or ∆ with subscripts

to specify which metric. If X is a vector field then ∆Xu = ∆u − X(u) and

X = ∂t −∆X .

We have a lot of scaling. Briefly:

ν(t) = V0(µt), ω(t) = W0(µt), α(t) = tν(t), β(t) = α′(t)

ρ = t−1u, σ = (tν(t))−1u, ζ = tν(t)−1/2u = ν(t)σ,

w̄ = ω(t)−1(w + µF t).

We have some functions which are written in terms of u. Generally

capital letters denote known functions which are written in terms of u, whereas

lowercase letters denote unknown functions. The functions V0 and W0 are

the initial values for v and w in a model pinch. Vprish and Wprish are our

approximations for v and w in the productish region, and V ±prish and W±
prish are
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upper and lower barriers for v and w based on these approximations. Similarly

these names with the subscript tip are approximations and barriers in the tip

region. In Section 2.2, we only refer to the functions for the produtish region,

and therefore we drop the subscripts for cleanliness. Similarly in Section 2.3

we only refer to the tip functions, so we drop the subscript there as well.

Other functions of u and t are Q and U0 (introduced in Lemma A.1.2)

and VBry, Vpert,Wpert (introduced in Section 2.3, and with an overview in Sec-

tion 2.3.1).

We define xa,b = xa(1 + x)b−a. The point is that it’s a smooth function

on (0,∞) which behaves like xa at 0 and xb at ∞.
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