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River deltas are threatened regions of great societal and environmental im-

portance, and their continued survival depends upon a greater understanding of

their formation and evolution. Hydrological connectivity in river deltas is impor-

tant for delivering flow and sediment to the island interior and is responsible for a

large portion of the ecosystem benefits that deltas provide, which could be lever-

aged for restoration projects using nature-based engineering. However, the process

is still poorly understood. The roughness of island vegetation is known to signif-

icantly limit channel-island connectivity, but the importance of the spatial distri-

bution of vegetation is, as-of-yet, unknown. Using a 2D hydrodynamic model, we

investigate the influence of vegetation percent cover, patch size, and stem density

on the fraction of discharge allocated to the islands of an idealized delta complex,

modeled after the Wax Lake Delta in coastal Louisiana. We find that spatial

heterogeneity can substantially alter connectivity when vegetation is dense and

covers less than a “disconnectivity” threshold near 50% of the island domain, near
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the theoretical percolation limit. Above this threshold, models can accurately

approximate vegetation as uniform. Below this threshold, however, preferential

flow-paths develop in the islands, which greatly alter the hydraulics, transport

capabilities, and residence time distribution of the delta complex, with respect

to what is seen in uniform vegetation cases. Our results suggest that patchiness

has substantial hydrogeomorphic and biogeochemical implications which should

be considered when modeling deltaic systems.
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Chapter 1: Introduction

1.1 Deltaic systems: socioeconomic importance and threats

Coastal river deltas are regions of tremendous societal and ecological importance.

They are home to hundreds of millions of people worldwide [McGranahan et al.,

2007; Tessler et al., 2015], and many are huge hubs of economic activity — more

than half of the global GDP is generated within the coastal zone, primarily within

heavily populated delta regions [McGranahan et al., 2007; Vörösmarty et al., 2009],

and even conservative estimates place their worldwide economic value to be in

the trillions of US dollars [Giosan, 2014]. The wetlands of river deltas provide

a number of valuable ecosystem services, and are home to countless unique and

ecologically diverse ecosystems [Kingsford , 2000; Li et al., 2012]. Deltaic wetlands

improve water quality by treating nutrients released upstream [Hiatt et al., 2018],

which would otherwise contribute to off-shore hypoxic zones, therefore acting as

a natural buffer zone for nutrients. Deltas also act as blue Carbon sinks to an

estimated 75 TgC per year [Smith et al., 2015], with some deltas accumulating

Carbon at a rate comparable to or greater than other blue Carbon habitats [Shields

et al., 2017].

Despite their significance, coastal deltas are predicted to be subject to in-

creasingly high risks in the face of global environmental change; both natural and

anthropogenic factors threaten the long-term sustainability of a majority of the

world’s major deltas [Syvitski et al., 2009; Tessler et al., 2015; Day et al., 2016;

Tessler et al., 2017]. Worldwide, deltas are sinking into the sea at a record pace.

Deltas naturally subside as new accumulated sediment consolidates, but many

deltas are experiencing enhanced subsidence rates due to hydrocarbon extraction

[Morton et al., 2005; Couvillion et al., 2011]. When combined with sea-level rise

due to climate change, which is projected to be substantial over the next century

Text from this chapter has been submitted in an article to Geophysical Research Letters with
Kyle Wright, Matthew Hiatt, and Paola Passalacqua as authors.
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[Nicholls and Cazenave, 2010; Grinsted et al., 2010], this leads to very high rates

of relative sea-level rise in many coastal deltas [Syvitski et al., 2009; Tessler et al.,

2017]. The location of coastal deltas leaves them particularly vulnerable to flood-

induced erosion, as they not only have to face fluvial flooding, but also waves,

storm surge, and winds induced by tropical cyclones [Xing et al., 2017]. In many

catchments around the globe, not only are large-intensity storms that cause flu-

vial flooding projected to increase under the changing climate [Hirabayashi et al.,

2013], but also the frequency of the largest tropical storms [Knutson et al., 2010].

In addition to flooding and land loss threatening the physical deltaic system,

the populations and ecosystems who depend on these systems for their livelihood

are also threatened by pollution [Mendelssohn et al., 2012; Bai et al., 2012], hypoxia

and eutrophication [Mitsch et al., 2001; Paola et al., 2011], and saltwater intrusion

[Zhang et al., 2012]. When combined with coastal flooding, each of these issues

can work in concert to harm local economies, communities, and agriculture. It

has also been shown that the human populations most vulnerable to these threats

are typically those in the lowest socioeconomic class who most lack the resources

to respond to floods or rising seas [Adger , 1999; Douglas et al., 2008; Donner

and Rodŕıguez , 2008]. While the loss of deltaic systems is an environmental and

economic concern, it is additionally a problem of environmental justice, as these

issues tend to enforce and exacerbate existing inequalities between populations

along lines of race, gender, and class [Donner and Rodŕıguez , 2008].

Historically, engineering efforts have had a mixed effect on mitigating coastal

flooding. The addition of flow control structures and levees alleviates flooding on

the short-term, but on the long-term these projects have cut off the sediment sup-

ply to deltaic floodplains and wetlands and have contributed to the rapid land

loss seen in many coastal areas (e.g. Figure 1.1 shows projected land loss in

Louisiana over the next 50 years if no action is taken to mitigate, CPRA [2017]).

In un-engineered deltas, sediment consolidation within the floodplains is natu-

rally balanced by regular over-bank sediment deposition from the main channel

[Kim et al., 2009b]. The overconfinement of the riverine input has eliminated the

channel-floodplain connectivity on which sustainable deltaic evolution depends

[Paola et al., 2011]. It is for this reason that the Louisiana coast has lost around

5000km2 of land over the past century despite continuing to deliver over 100Mt of

2



Figure 1.1: Projected land loss in coastal Louisiana over the next 50 years with
no mitigation/restoration action. Figure from 2017 Master Plan for a Sustainable
Coast [CPRA, 2017]

sediment to the coast every year [Kim et al., 2009b; Nittrouer and Viparelli , 2014;

CPRA, 2017]. When combined with the upstream construction of dams, which

further reduce the load of suspended sediment delivered to the coast, the result is

that many deltas have become sediment-starved [Syvitski et al., 2005, 2009; Paola

et al., 2011; Giosan, 2014; Auerbach et al., 2015]. In addition to altering the

behavior of the physical deltaic system, these water management practices have

also impacted the way populations interact with these systems [Kingsford , 2000;

Leauthaud et al., 2013].

1.2 Coastal restoration with nature-based engineering

Research in engineering projects which aim to restore river deltas or mitigate

additional harm have seen a rapid increase in focus and funding in the past several

decades [e.g. Turner et al., 2007; Kim et al., 2009b; Paola et al., 2011; Schmitt

et al., 2013], and authorities in many locations have already invested large sums

of money towards their implementation [CPRA, 2017]. The prevailing paradigm

in coastal engineering has shifted in recent years, from the traditional approach

which fought the dynamic behavior of deltas, to one which takes advantage of
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the natural processes by which deltas self-maintain. This “ecosystem-based” or

“nature-based” engineering aims to use natural processes to restore deltas and

shield them against storm surges, nutrient overloading, and land loss [Temmerman

et al., 2013; Giosan, 2014; Temmerman and Kirwan, 2015].

A number of studies have demonstrated that expanding coastal wetlands

can help mitigate flooding in the mainland by attenuating waves and storm surge

associated with tropical storms [Wamsley et al., 2010; Shepard et al., 2011; Barbier

et al., 2013; Leonardi et al., 2017]. For example, Barbier et al. [2013] found that a

1% increase in wetland roughness due to vegetation resulted in a 15%-28% decrease

in storm surge, with avoided damages leading to considerable savings for residen-

tial property owners. Expanding wetlands has the additional benefit of increas-

ing biogeochemical nutrient processing [Mitsch et al., 2001, 2005; Rivera-Monroy

et al., 2013; Cheng and Basu, 2017]. The structure of macrophytic plants slows

down flow, which allows miscroscopic organisms and algae (and to some extent the

macrophytes themselves) to sequester Nitrogen, Phosphorus, and other pollutants

from upstream agricultural and urban runoff [Kadlec and Wallace, 2008]. This

can notably improve water quality and prevent the production and expansion of

hypoxic zones.

Restoration projects that incorporate nature-based engineering principles

typically fall into the categories of marsh expansion and sediment diversions. In

coastal Louisiana, these two project types have been allocated $17.8 billion and

$5.1 billion, respectively, which together make up almost 92% of the total spending

allocated for restoration efforts [CPRA, 2017]. Nearly all of the land built or

maintained due to restoration efforts is expected to come from one of these two

project types. Sediment diversions are engineered breaches in levees that aim

to reconnect fluvial sediment supplies to their sediment-starved floodplains [Kim

et al., 2009b], and despite each diversion only receiving a small fraction of the

channel flow, they are projected to result in a majority of the new land built

under the master plan [CPRA, 2017]. Reinstating this natural channel-floodplain

or channel-island connectivity not only builds land by the deposition of fluvial

sediment, but also rehabilitates wetlands, which for the aforementioned reasons

further improves water quality and limits saltwater intrusion [Lane et al., 2007;

Michot et al., 2015]. Once completed, these projects lessen a number of the threats
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deltaic systems face, all while requiring minimal intervention on the part of humans

— the system maintains itself.

A number of modeling efforts have been devoted to predicting the impact

of these projects on deltaic systems [e.g. Kim et al., 2009b; Li et al., 2012; Meselhe

et al., 2012, 2013; Wang et al., 2014; Yuill et al., 2016]. However, these efforts

are hindered by our current lack of understanding of the precise mechanisms by

which deltas build land, evolve, and respond to environmental change, even in

fully natural systems — let alone those perturbed by extensive anthropogenic

modification.

1.3 Connectivity in river deltas

One of the central obstacles to obtaining a full understanding of deltaic systems

is their high degree of complexity. Distributary networks tend to be very morpho-

dynamically and topologically complex [Tejedor et al., 2015a,b, 2016] and highly

interconnected [Hiatt and Passalacqua, 2015; Passalacqua, 2017]. Much remains

unknown about the structural and functional connections within the deltaic sys-

tem, between landscape elements (e.g. channels and islands) as well as among

system variables (e.g. vegetation, sediment, and flow).

Natural river deltas are “leaky networks” [Passalacqua, 2017] in which the

distributary channels and interdistributary islands are hydrologically connected.

In certain distributaries of the Wax Lake Delta in Louisiana, Hiatt and Passalac-

qua [2015] observed that up to 28%-54% of the channel flow is allocated to the

interdistributary islands before being discharged into the bay under non-flood con-

ditions — an observation that has since been backed up by other studies [Liang

et al., 2015; Shaw et al., 2016b; Hiatt and Passalacqua, 2017; Hiatt et al., 2018].

In addition, Sendrowski and Passalacqua [2017] revealed the existence of informa-

tion transfer among system drivers (e.g. discharge, tides, and wind) and system

variables (e.g. water level, nitrate concentrations) which spans the full delta com-

plex, indicating that deltaic processes can be measurably affected by non-local

interactions. Because deltaic islands are of central importance for land growth

and ecosystem services (e.g. marsh creation, water quality improvements), the

success of nature-based engineering projects depends upon our understanding of
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channel-island connectivity, and to what degree it is influenced by system drivers.

One previous study, Hiatt and Passalacqua [2017], looked at the influence

of discharge, tides, and island vegetative roughness on channel-island connectivity.

Through hydrodynamic modeling, they found that discharge and tides do not have

a notable effect on the percentage of channel flow allocated to the islands (when

averaged over a tidal cycle) — but an increase in vegetative roughness is able to

substantially limit connectivity. Model runs with higher vegetated roughness see

an increase in the percentage of flow that remains confined, in addition to raised

water surface elevations throughout the full backwater zone, diminished channel

velocities just upstream of the onset of lateral outflow, and longer residence times

in the islands. As such, the presence of island vegetation may be one of the most

important factors influencing channel-island connectivity.

However, the numerical modeling done in Hiatt and Passalacqua [2017], as

well as in other studies [e.g., Nardin et al., 2016; Hiatt et al., 2018], used the

simplifying assumption that vegetation is spatially-uniform within the islands.

While this may be a reasonable approximation, deltaic vegetation is often far

from uniform (Figure 1.2). It has yet to be shown how more complex spatial-

distributions of vegetation affect the degree of hydrological connectivity in a deltaic

system. How does the spatial heterogeneity of vegetation affect connectivity?

Under what circumstances can vegetation be approximated as uniform?

1.4 Ecogeomorphology in deltaic wetlands

It has been recognized for some time that heterogeneity can play an important

role in flow and transport through a system. In the subsurface, rock fractures and

differences in hydrologic conductivity can substantially impact groundwater fluxes

and the transport of environmental pollutants [Freeze, 1975; Dagan, 1984; Michael

and Voss , 2008; Khan et al., 2016]. Several researchers have shown that vegetation

could drive similar behavior in surface water fluxes by providing additional energy

losses by friction in areas where vegetation is present. However, research in this

area has been slow for two primary reasons: (1) only within the past few decades

has the paradigm in geomorphology shifted from physical processes setting the

constraints for biota to a perspective which includes mechanisms by which biota
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Figure 1.2: Aerial image of vegetation patches in the Barataria Basin, near the
site of an upcoming sediment diversion and marsh creation project. (Image source:
[NOAA, 2017])

“feeds back on, directly modifies, and contributes to the shape of their physical

environment” [D’Alpaos et al., 2016]; and (2) a number of ecogeomorphic feedbacks

exist between vegetation, flow, sediment, and nutrients that makes many physical

processes difficult to study in isolation [Corenblit et al., 2007; D’Alpaos et al., 2016;

D’Alpaos and Marani , 2016].

Despite this, some progress has been made in this research area at a range

of spatial scales of influence. At the scale of patches (also called canopies or

meadows), the flow around complex morphologies of individual stems becomes

unimportant, and their effects on hydrodynamics can instead be parameterized

using emergent characteristics of the patch [Nepf , 2012a; Luhar and Nepf , 2013].

Experiments and modeling results show that the spatial structure of vegetation

patches can control local hydrodynamics and turbulence production [Luhar et al.,

2008; Nepf , 2012a,b; Luhar and Nepf , 2013; Meire et al., 2014]. Aquatic vegetation
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can also affect sediment transport, though whether it enhances deposition (by

slowing flow and/or shielding the bed) or enhances resuspension (through the

production of turbulence, or scour zones around the patch) depends on the physical

structure and density of the macrophytes [Luhar et al., 2008; Follett and Nepf ,

2012; Ortiz et al., 2013; Meire et al., 2014; Van Oyen et al., 2014]. At the reach

scale, vegetation can control the shape of the residence time distributions (RTD)

in wetlands, which is an important control parameter for biogeochemical nutrient

processing [Kadlec and Wallace, 2008; Cheng and Basu, 2017; Hiatt et al., 2018].

It is feasible that these hydroecogeomorphic interactions could have notable

implications for hydrological connectivity in river deltas. Vegetation in wetlands

often self-organizes into patches of varying scales, species, and stem densities [Ad-

dicott et al., 1987; Fonseca and Bell , 1998; Oborny et al., 2007; Larsen and Harvey ,

2010; Vandenbruwaene et al., 2011], and in river deltas is generally more populous

near the proximal end of deltaic islands and along channel levees [Carle, 2013;

Olliver and Edmonds , 2017] (for examples of deltaic vegetation, see Figures 1.2

and 2.1b). Studies such as Larsen and Harvey [2011] and Larsen et al. [2017]

examined surface-flow through regions of heterogeneous vegetation and developed

useful expressions for effective roughness in landscapes of varying anisotropy, patch

coverage, and flow depth. However, such studies have yet to extend beyond the

vegetated section of the landscape to determine the effects of heterogeneity at the

system scale. In deltaic systems, the interaction at the boundary of the vegetated

islands and the distributary channels is of primary importance to the hydraulics of

the entire delta complex, including the delivery of solids and solutes to the island

interior. Thus, it is important to quantify how these local patch-driven effects

influence hydrodynamics and connectivity at the system scale.

1.5 Research Questions

The present thesis aims to provide insight into the following research questions:

1. To what extent does the spatial-variability of deltaic vegetation — specif-

ically, percent cover, patch size, and stem density — affect channel-island

hydrological connectivity?
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2. In addition to flow, what are the implications of vegetation characteristics

on the transport dynamics of nutrients and sediment through the system?

Can these dynamics inform the ecogeomorphic evolution of deltaic wetlands

towards stable vegetated states?

3. What does this mean for our ability to effectively model deltaic restoration

efforts? Under what circumstances can models approximate vegetation as

uniform?

1.6 Hypotheses

The following hypotheses are tested:

1. Heterogeneous vegetation will have a different signature on the hydrodynam-

ics of the delta complex than does uniform vegetation. The more clustered

the island roughness, the less we should expect island flow to flow homo-

geneously. Some distributions of heterogeneous vegetation should be better

approximated as uniform than others. Moreover, these effects will not only

affect fluid flow, but also the transport of solutes.

2. An increase in vegetative percent cover and patch roughness will decrease

channel-island connectivity. Each of these characteristics should increase

the average vegetative roughness in the islands, which is known to limit

connectivity when vegetative roughness is uniform.

3. The clustering of vegetation patches into one larger patch seems qualitatively

more heterogeneous than well-distributed smaller patches. Therefore, if het-

erogeneity affects deltaic hydrodynamics, an increase in patch size seems

likely to exacerbate those effects.
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Chapter 2: Methods

2.1 Overview of the Wax Lake Delta study site

In the midst of several decades of land loss in coastal Louisiana, a few select

locations are actively building land. One of those sites is the Wax Lake Delta

(WLD, Figure 2.1a), a small and relatively young delta which has been naturally

prograding since it first became subaerial during a flood in 1973 [Wagner et al.,

2017]. Located at the mouth of the Wax Lake Outlet, the WLD is just East of the

Atchafalaya, whose waters have fed the Wax Lake Outlet since its construction in

1941 by the U.S. Army Corps of Engineers. While its original purpose was simply

to alleviate flooding of the Atchafalaya in Morgan City, the project has since been

regarded as a prime example of a successful sediment diversion [Kim et al., 2009b;

Paola et al., 2011]. Both the Atchafalaya River and the Wax Lake Outlet are fed

by the Mississippi River, the latter receiving an average of about 110km3 of water

and 20.5 × 106 metric tons of sediment per year [Allison et al., 2012]. Between

1973 and the present, the WLD has built approximately 35km2 of new land [Allen

et al., 2012].

Due to the lack of anthropogenic modification, the WLD is now a frequent

study site for research aiming to increase our understanding of the physical and

biotic processes that drive the natural evolution of deltaic systems [e.g. Shaw et al.,

2013, 2016a; Wagner et al., 2017; Shields et al., 2017; Olliver and Edmonds , 2017;

Xing et al., 2017], including several of the aforementioned studies on structural and

functional connectivity [Hiatt and Passalacqua, 2015; Sendrowski and Passalacqua,

2017]. Vegetation in the WLD tends to be spatially heterogeneous (Figure 2.1b)

in terms of species and spatial extent, at least during many seasons of the year.

A few specific species of vegetation dominate the ecology of the WLD. The su-

perelevated and rarely-inundated parts of the delta are predominantly populated

Text and figures from this chapter have been submitted in an article to Geophysical Research
Letters with Kyle Wright, Matthew Hiatt, and Paola Passalacqua as authors.
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Figure 2.1: The Wax Lake Delta (WLD) in Louisiana, USA. (a) False-color LAND-
SAT imagery of the WLD in October 2011. (b) Aerial imagery of deltaic vegetation
along the levee of Mike Island (location of white star in (a)) demonstrating spatial
complexity.

by Salix nigra (black willow), Colocasia esculenta (elephant ear), and Polygonum

punctatum (dotted smartweed) [Carle, 2013]. In the lowest-elevated parts of the

islands, grasses occupy most of the land, whereas most of the inundated areas are

occupied by emergent or floating vegetation, such as Nulembo lutea (American

lotus) [Carle, 2013]. Many of these species are also perennial, which leads to large

differences in vegetated extent between the vegetated minimum and maximum

most years [Olliver and Edmonds , 2017].

Due to the abundant information available on the WLD, it serves as the

natural analog for the numerical modeling done in the present study. Our modeling

domain is intended to serve as a proxy for the WLD, and the vegetation character-

istics, sediment sizes, and flow rates modeled herein were chosen to match those

of the WLD complex.
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2.2 Numerical model description

2.2.1 Overview of hydrodynamic model (FREHD)

We model hydrodynamics using the Fine Resolution Environmental Hydrodynam-

ics model, or Frehd [Hodges , 2014]. This model is used to numerically solve for the

steady-state solution of the depth-integrated shallow water equations, using the

computational schemes of Casulli and Cheng [1992], Casulli and Cattani [1994],

Hodges et al. [2000], Stelling and Zijlema [2003], Hodges [2004, 2014], and Hodges

and Rueda [2008]. For further details on the application of Frehd to a deltaic set-

ting, see Hiatt and Passalacqua [2017]; Hiatt et al. [2018]. The depth-integrated

shallow water equations may be written as

∂η

∂t
+

∂

∂x
HU +

∂

∂y
HV = 0 (2.1)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂η

∂x
− νe

(
∂2U

∂x2
+
∂2U

∂y2

)
+
CRU

√
U2 + V 2

2H
= 0 (2.2)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂η

∂y
− νe

(
∂2V

∂x2
+
∂2V

∂y2

)
+
CRV

√
U2 + V 2

2H
= 0 (2.3)

in which U and V are the depth-averaged velocities (m s−1) in the x and y direc-

tions respectively, H is the flow depth (m), η is the free surface elevation (m), g is

the gravitational acceleration (m s−2), νe is a horizontal eddy-viscosity (m2 s−1),

and CR is the hydraulic drag coefficient (−). We assume viscosity to be negligi-

ble, and that local turbulence dissipation is dominated by bed and vegetated drag

forces, which is a suitable assumption for subcritical, shallow flow. A constant

eddy-viscosity value of νe = 0.01 m2 s−1 is assumed for all model runs (Hiatt et al.

[2018] and the supporting information therein).

2.2.2 The channel-island complex

The domain bathymetry is an idealized channel-island complex (CIC) modeled

after the topography and bathymetry along Gadwell Pass at the WLD [Shaw

et al., 2016a; Hiatt and Passalacqua, 2017]. The CIC (Figure 2.2a) is a 7.5km long

by 2km wide domain composed of a 500m-wide central distributary channel and
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two adjacent interdistributary islands. The main channel extends 15km through

the CIC with an adverse bed slope of 1.33× 10−4 (the slope of Gadwell Pass).

To ensure that boundary effects are negligible, the CIC is nested within a

larger computational buffer domain with a 7.5km wide receiving basin, and a main

channel that extends upstream 100km to capture hydraulics over the full backwater

zone [Hiatt and Passalacqua, 2017]. The upstream slope was constructed to match

that of the Atchafalaya River (7×10−5). Previous work has shown that the amount

of channel-island connectivity is not strongly influenced by incoming discharge

across a range of reasonable values [Hiatt and Passalacqua, 2017]; thus, the inflow is

set to a constant 700m3s−1. The model is run on a Cartesian 50m uniform grid, but

select model runs are duplicated at 25m resolution, to ensure that discretization

effects are negligible (Table A.1).
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2.2.3 Vegetation maps: Generation and treatment

Vegetation is modeled in the present study by modifying the hydraulic drag coeffi-

cient CR in Equations (2.2) and (2.3) to account for the additional vegetative flow

resistance for all vegetated cells in the domain. The modified bed roughness is

calculated using the Baptist equation [Baptist et al., 2007], which may be written

as:

CR =
1

2
CDnhv + Cb (2.4)

in which CR is the modified drag coefficient, CD is the coefficient of drag around

a cylinder (Nepf [2012a]; assumed to equal unity), n is the vegetation frontal area

per unit volume (m−1), hv is the submerged vegetation height (m), and Cb = 0.005

is a typical bed roughness for natural channels [Nardin et al., 2016]. In using this

equation as written, we assume vegetation is emergent — however, this equation

can be modified to include submerged vegetation, and the values of CR used herein

could just as well represent a mix of emergent and submerged vegetation.

All models were run at two stem density values, i.e. selected values of

the product nhv: the first (nhv = 0.1) near the transition from sparse to dense

vegetation, and the second (nhv = 3.0) in the upper range of dense vegetation

[Luhar et al., 2008; Li et al., 2015]. We henceforth refer to these simply as “sparse”

and “dense” scenarios, respectively. Here, the words “sparse” and “dense” are

only a naming convention, meant in a relative sense, and are not meant to carry

with them the physical implications of these terms from the study of submerged

vegetation. A dense patch of vegetation is one which imparts more resistance

onto the flow than a sparse patch. Selected scenarios have also been run at two

intermediate values, (nhv = 0.5, 1.0). For all non-vegetated cells in the domain,

CR = Cb.

Several scenarios were considered for the study of spatially-variable vegeta-

tion, including:

1. Maps in which island vegetation decreases uniformly in the direction of the

bay according to some defined function (e.g. linear, logarithmic)

2. Maps in which the islands are populated by randomly distributed patches of

a defined size and percentage of island covered (also called “uniform random
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maps”)

3. Maps in which the islands are populated by randomly distributed patches,

but with patch characteristics (density, percent cover) that vary spatially

throughout the island, such that the resulting distribution looks like deltaic

vegetation (e.g. more vegetation upstream and along levees; also called “gra-

dient random maps,” or GRM)

While each of these options have their merits, in our present analysis we

choose to focus on uniform random maps, which are considered a neutral model

in landscape ecology [Gustafson and Parker , 1992; Oborny et al., 2007]. We ex-

pect that they more accurately represent heterogeneity in wetland vegetation than

option (1), while also requiring minimal assumptions about the spatial structure

of vegetation, on which the results of (3) would likely depend. It is true that (3)

would provide the most realistic parameterization of vegetation in any individual

system, but the results would potentially lose generality to systems whose vegeta-

tion characteristics differ. However, while most of the results and discussion will

focus on uniform random maps, examples of each of these alternatives are also

modeled and are discussed minimally in section 3.3.

For each random map, vegetation patches are distributed randomly through-

out the deltaic islands according to a specified percent cover, patch size, and den-

sity (CR). The modeled random maps (e.g. Figure 2.2b) span a range of coverage

values ∈ {10%, 20%, 30%, 40%, 50%, 70%}, and patch sizes, which are squares of

side length ∈ {50m, 100m, 250m}. Note that vegetation “density” refers to the

selection of (CR), and not to the percentage of the island occupied by vegetation.

These values were chosen to cover a range of vegetative characteristics one might

expect to see in systems like the WLD (Figures 2.1b, 1.2; [Olliver and Edmonds ,

2017]). For each unique pairing of patch coverage, size, and density, a minimum

of five maps are modeled, such that the results can draw upon the behavior of

the ensemble rather than any individual initialization of the model. The code for

generating these maps is given in Appendix D.

If vegetation patchiness is unimportant, one might expect that the same sys-

tem behavior would be observed if a single roughness value were applied uniformly

within the deltaic islands — such as, for example, the spatially-averaged vegetative
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roughness in each island. Effective uniformity would allow for a relatively simple

parameterization of vegetation in deltaic models, as was done in prior studies

[Nardin et al., 2016; Hiatt and Passalacqua, 2017]. Thus, a range of spatially-

uniform model runs has also been performed for comparison. These spatially-

variable and spatially-uniform runs will henceforth be referred to as “patchy” and

“uniform” runs, respectively. For each uniform run, the island roughness corre-

sponds to the spatially-averaged roughness in some patchy run. There exists a

corresponding uniform run for each unique pairing of percent cover and patch

density in the patchy runs. We expect that the differences in results between each

pair of runs represents the role of heterogeneity in the system.

2.2.4 Tracer studies & residence time distributions

For each model run, a pulse of tracer is released in the central channel upstream

of the domain of interest at steady state, and the flux of tracer exiting the delta

complex at the distal end of the system is monitored through time. The transport

of a passive tracer in Frehd is modeled with a conservative advection-diffusion

scheme [Hodges , 2014] according to the following equation:

∂cH

∂t
+

∂

∂x
UcH +

∂

∂y
V cH − κe

∂

∂x

(
H
∂c

∂x

)
− κe

∂

∂y

(
H
∂c

∂y

)
= 0 (2.5)

in which c is the depth-averaged concentration of tracer (kg m−3) and ke is the

scalar eddy diffusivity (m2 s−1), which we have assumed to be equal to the mo-

mentum eddy diffusivity νe = 0.01. The exit age distribution E(t) (also called the

residence time distribution, or RTD) can be evaluated as the rate at which tracer

exits the domain [Benjamin and Lawler , 2013], normalized by the initial mass of

the pulse; that is,

E(t) =
xB,N∑
xB,0

Q⊥(xB, t)

Min

c(xB, t) (2.6)

where Q⊥(xB, t) is the local volumetric flow rate (m3 s−1), Min is the initial mass

of the tracer pulse (kg), and c(xB, t) is the local concentration of tracer, summed

over all cells xB along the boundary. The volumetric flow rate, Q⊥(xB, t) is equal

to the product U⊥(xB, t) ·H(xB, t), where U is the velocity vector normal to the
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boundary (m s−1), and H is the flow depth (m). Because Min is equal to the

total amount of tracer that will eventually exit the domain, equation 2.6 can be

equivalently written:

E(t) =

∑xB,N
xB,0

Q⊥(xB, t) · c(xB, t)∑∞
t=0

∑xB,N
xB,0

Q⊥(xB, t) · c(xB, t)
(2.7)

For each model scenario, these E(t) curves can be separated into the relative

contribution of the channel and the islands to the bulk E(t). More formally,

Etotal(t) = Eisl(t) + Echan(t) (2.8)

The discrete integration of E(t) through time yields F (t), the cumulative

fraction of tracer that has exited the domain by time t:

F (t) =
t∑

τ=0

E(τ) (2.9)

which in the limit as t goes to ∞ converges to unity. The time integration of

the channel and island contributions to E(t) can be said to represent the relative

fraction of tracer that is allocated to each. As with E(t), F (t) can be equivalently

decomposed into Fisl(t) and Fchan(t). The time-integration of Eisl(t) gives the total

fraction of tracer allocated to the islands (Fisl(t)). Studying the transport of the

tracer through the CIC allows us to characterize flow patterns and can serve as

a proxy for the transport of suspended sediment or nutrients through the system

[Hodges , 2014].

2.2.5 Calculation of shear velocities

To gain insight into sediment dynamics, flow velocity and depth values are used

to calculate shear velocities using the Wilcock equation [Wilcock , 1996]:

u∗ = κ
√
U2 + V 2

[
ln
(

H

e · z0

)]−1
(2.10)
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in which u∗ is the shear velocity (m s−1), κ ≈ 0.4 is the von Kármán “constant”,

and z0 is the reference roughness height (m). We can approximate the roughness

height as z0 ≈ 0.095D90, in which D90 is the 90th percentile grain size. In the

Wax Lake Delta (WLD), studies have shown that the majority of the deposited

sediment is fine sands, with a representative D90 of approximately 350µm [Shaw

et al., 2013].

By comparing shear velocity values to the critical threshold values for mo-

tion (u∗crit = 9.2 mm/s) and suspension (u∗sus = 21.0 mm/s) for the D50 (210µm)

in the WLD [Shaw and Mohrig , 2014], we can determine where the median grain

size is likely to be in incipient motion or suspension within the delta complex.
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Chapter 3: Results

3.1 Hydraulic implications of vegetation percent cover, patch size, and

stem density at local and system scales

3.1.1 The transition to unconfined flow

Due to hydrological connectivity, we expect to see a marked decrease in the amount

of flow that remains confined in the channel moving downstream towards the bay

[Hiatt and Passalacqua, 2017]. In our model runs, discharge transects in the central

channel from the upstream end of the CIC to the bay show between 20%-70%

of the channel flow is allocated to the islands (Figure 3.1) for both patchy and

uniform vegetation distributions. The fraction of discharge that remains in the

channel increases for an increase in average vegetation roughness — which, for the

patchy runs, entails either an increase in vegetation coverage or density. Little

variation has been observed between runs with the same coverage characteristics,

particularly when patches are small.

Patchy and uniform runs differ in connectivity by only a small amount in

many of the modeling scenarios — when vegetation patches are sparse, small, and

coverage is high, the fraction of discharge allocated to the islands in patchy and

uniform runs is closely comparable (e.g. Figure 3.1a). However, when vegetation

is dense (more resistant to flow) and covers less than half the domain, the disparity

between patchy and uniform runs grows considerably (Figure 3.1b). At 10% cover,

roughly 22%-27% more of the channel flow is allocated to the islands in the patchy

runs before discharging into the bay. At 40% cover, this disparity shrinks to a

smaller but still significant 7%-19%. However, at 70% cover, the behavior between

patchy and uniform runs is nearly indistinguishable (1%-3% difference for 50m-

100m patches, 7% for 250m). Generally, the disparity is larger for all runs with

Text and figures from this chapter have been submitted in an article to Geophysical Research
Letters with Kyle Wright, Matthew Hiatt, and Paola Passalacqua as authors.
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Figure 3.1: Profiles showing the fraction of discharge that remains confined in the
channel averaged over the ensemble of select scenarios for (a) sparse and (b) dense
vegetation. The abscissa is collinear with line a-a’ shown in Figure 2.2a. These
transects correspond to patchy model runs with 10%, 40%, and 70% cover (at all
patch sizes), as well as their corresponding uniform-roughness runs. The y-axis is
normalized by the discharge of the inflow.

40% vegetation or less, and negligible at 50% or higher (transects for all scenarios

are shown in Figure C.3). Each patchy run displaying higher connectivity has a

water surface elevation in the channel centimeters to decimeters lower than its

corresponding uniform run (Figure 3.2), driven by changes in lateral outflow. As

such, certain patchy runs demonstrate considerably different hydrodynamics over

the full backwater length.

The amount of flow allocated to the islands also tends to increase with

increasing patch size. For runs with larger patches (100m and 250m width), dis-

charge transects typically fall 6%-13% below those for the smallest patches at all

coverage values (Figure 3.1), indicating an increase in lateral outflow. The dif-

ference between the curves for the smallest and largest patches is of the same

magnitude at all coverage values, suggesting that scaling effects are relatively con-

sistent irrespective of other coverage characteristics. Notably, the model runs with

larger patches contain the largest deviations from the mean behavior, with flow
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Figure 3.2: Profiles showing the water surface elevations in the main channel for
select model scenarios with (a) sparse and (b) dense vegetation. The abscissa is
collinear with line a-a’ shown in Figure 2.2a. These transects correspond to patchy
model runs with 10%, 40%, and 70% cover (at 50m and 250m patch sizes), as well
as their corresponding uniform-roughness runs.

sometimes even being rerouted back into the main channel from the islands. So,

while the general trend may indicate an increase in lateral outflow for an increase

in patch size, it may not be true for every individual run or at any given transect

of an individual run.

3.1.2 Effects on island flow

Having a heterogeneous vegetation distribution creates a heterogeneous flow field in

the islands. Maps of velocity magnitude throughout the islands show high spatial

complexity for both dense (Figure 3.3a-d) and sparse (e-h) vegetation. Vegetation

patches reduce flow velocities within and near patches, but they also elevate ve-

locities in many non-vegetated cells with respect to what is seen in uniform runs.

This is particularly true at low coverage values, where high-velocity preferential

flow-paths are clearly visible (e.g. Figure 3.3e,f). These flow corridors develop less
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frequently as coverage increases (Figure 3.3d). In contrast, all uniform roughness

runs display a fairly uniform flow-field within the islands.
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Figure 3.3: Flow and shear velocity magnitudes throughout a representative sec-
tion of the CIC for sparse (a-d) and dense (e-h) vegetation. The color axis is trun-
cated to provide the most resolution within the islands. The patches of vegetation
not only reduce in-patch flow velocities, but elevate the velocities in non-vegetated
cells. At ≤ 40% cover, high-velocity preferential flow-paths develop, particularly
when vegetation is dense.

The difference in flow velocities between vegetated and non-vegetated cells

also increases as a function of patch density and size, and decreases for increasing

coverage. The average velocity in vegetated and non-vegetated cells, as well as

the ratio of the two, shows a clear trend for changes in density, coverage, and

patch size (Figure 3.4). The mean velocity within vegetated cells is much lower
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when density is high, and is similar in magnitude across all patch sizes — though

there is a slight decrease for an increase in patch size. The mean velocity in non-

vegetated cells shows a clear decreasing trend for increases in percent cover, and

differences are more pronounced between runs of different patch size. The ratio of

vegetated and non-vegetated velocities (Figure 3.4c-d) shows a near-linear increase

for increases in percent cover, indicating that vegetated and non-vegetated cells

have increasingly similar mean velocities at high percent cover. Larger patch sizes

lead to larger differences and thus lower ratios at all coverage values.

To ensure that each ensemble of patchy runs with identical vegetation char-

acteristics were statistically similar, the distribution of flow velocities throughout

the vegetated islands is compared using Wilcoxon rank-sum tests. For each unique

pairing of coverage, patch size, and density, each of the five runs from different ran-

dom initializations are compared to each of the others (i.e. a total 10 comparisons)

and the p values are tabulated. Most runs representing the same characteristics

are statistically similar – with the threshold for “similarity” set by the typical p

value of comparing runs with different vegetation characteristics. Runs with larger

patch sizes tend to be more dissimilar than those with smaller patch sizes, but still

typically fall below the threshold. See Appendix B for details.
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Figure 3.4: Comparison of mean velocities in vegetated and non-vegetated island
cells. (a-b) The mean velocity in the vegetated (solid lines) and non-vegetated
(dashed lines) island cells for all model runs at each patch size for sparse (a) and
dense (b) vegetation. The error bars represent the standard deviation of the means
of the ensemble. (c-d) The ratio of the vegetated and non-vegetated velocities
shown in (a-b) for sparse (c) and dense (d) vegetation. The ratio approaches unity
at high percent cover values, indicating that vegetated and non-vegetated cells
have increasingly similar average velocities.
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3.2 Patchiness and transport: the enhanced delivery of solutes to the

island interior

3.2.1 Allocation of the tracer in the channel-island complex

Releasing a passive tracer upstream of each model scenario allows for the construc-

tion of fractional mass-flux curves (E(t)) at the bay end of the domain. These

curves represent the residence time distributions (RTD) for each scenario, which

can be decomposed into the marginal contribution of the channel (Echan(t)) and

islands (Eisl(t)) to the bulk RTD (e.g. Figures 3.5a-b, 3.6a-b, C.1). Generally, each

RTD contains a tall peak corresponding to the main channel, through which some

of the tracer exits the domain all at once — followed by a shorter, longer-lived tail

corresponding to the islands that decays exponentially. The relative contributions

of the channel and islands to the RTD depend on the amount of flow allocated

to each. The RTD for all uniform runs is relatively smooth with a single peak,

whereas the RTD for patchy runs is often multi-modal, with a more rapid decay.

Each patchy run has an RTD that is visually similar to its respective uniform run,

but different runs with the same coverage characteristics are more variable due to

the random placement of vegetation (for examples, see Figure C.1). At what time

the variations occur depends upon each individual roughness map. The relative

sizes of local maxima tend to increase with patch size.

Integrating each of the mass-flux curves through time yields the cumulative

flux of tracer (F (t)) through the CIC, which goes to unity as t → ∞. Likewise,

the time-integration of Eisl(t) gives the total fraction of tracer allocated to the

islands (Fisl(t)). For the range of scenarios tested herein, the total fraction of

tracer allocated to the islands ranges from 0.2 to 0.7 (e.g. Figures 3.5c-g and

3.6c-g). For model runs with uniform vegetation, this value varies linearly as a

function of the logarithm of the island roughness (for details see Figure C.2). All

Fisl(t) curves for uniform vegetation fall below those of patchy vegetation. At

40% vegetation or less, large differences are clearly visible between Fisl(t) curves

for uniform and patchy runs, particularly for dense vegetation. Some patchy runs

(e.g. Figure 3.5d) show over twice the amount of tracer allocated to the islands

as the uniform scenario would predict. At 50% vegetation or greater, however,

the disparity shrinks such that most curves differ by only a few percent (Figure
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3.5e-f). For small patch sizes, the disparity decreases gradually, whereas for the

larger patch sizes, there exists more of a step-like threshold near 50% at which the

tracer flux decreases considerably. For sparse vegetation, Fisl(t) curves follow a

similar trend, but to a lesser extent (Figure 3.6).
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Figure 3.5: Fraction of the tracer allocated to the islands through time. (a-b)
Example RTD calculated using mass-flux breakthrough curves at the bay end of
the CIC, decomposed into channel and island contributions. (c-g) Time-integrated
form of Eisl(t), the island contribution to the RTD. Higher values imply larger
tracer flux into the islands. Each plot shows Fisl(t) curves for patchy runs at
all patch sizes (and the corresponding uniform run) for a given percent cover.
Shaded regions delineate ±1 standard deviation. Patchy and uniform runs differ
considerably at low coverage values (c-e). There appears to be a threshold near
50% cover (e-f), above which patchy and uniform runs converge to very similar
temporal behavior (f-g).
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Figure 3.6: The same as Figure 3.5 but for sparse vegetation. As with dense
vegetation, the largest differences between patchy and uniform runs appears to
occur below a threshold near 50% cover (e-f), above which patchy and uniform
runs converge to approximately the same temporal behavior (f-g). However, these
differences are less pronounced for sparse vegetation.

3.2.2 Diminishing tracer flux for an increasing stem density

Several patchy model runs were also repeated for intermediate values of the patch

density, with values of nhv = 0.5, 1.0. Because patchy and uniform runs differed

most at around 30% vegetated cover, these models were run for all patch sizes at

30%. The intention of these runs is to be exploratory — to determine how the

system behaved in the transition from sparse to dense vegetation — which is why

these runs were not repeated on the exhaustive list of percent cover values.
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Figure 3.7: The cumulative amount of tracer allocated to the islands vs vegetation
stem density at 30% cover. For uniform runs, the decrease in island flux is a
function of the logarithm of the stem density. For patchy runs, the trend is similar,
but the decay is slower. At large patch sizes, plant density does not seem to
significantly affect island tracer flux.

Perhaps the most illustrative trend for an increase in density occurs in the

proportion of tracer allocated to the islands. For fully uniform runs, the total

cumulative flux of tracer into the islands decreases for an increase in island rough-

ness. This trend is almost perfectly log-linear, i.e. the tracer flux decreases linearly

proportional to the logarithm of the roughness (this trend can be seen in full in

Figure C.2, but the relevant portion is also shown as the black line in Figure 3.7).

For patchy runs, this log-linear behavior nearly holds for small patches (magenta

line in Figure 3.7) and becomes increasingly linear-linear for larger patches (blue
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line). All patchy runs show a noticeable increase in the island tracer flux when

compared to the uniform runs. Additionally, the difference between the uniform

and patchy runs increases for an increase in density, as we should expect from

the previous results. This finding retroactively provides insight into what could

reasonably be considered “sparse” and “dense” scenarios: “sparse” vegetation has

an nhv value small enough (≤ O(0.1)) that inhomogeneity is negligible, whereas

“dense” vegetation has an nhv large enough (≥ O(1)) for these differences to be

considerable.

3.2.3 Fate and transport of sediment

As a fairly straightforward extension of the velocity maps shown in section 3.1.2,

maps of shear velocities reveal a similarly complex picture (Figure 3.8). For all

uniform runs, we observe nearly identical behavior: shear velocities < u∗crit every-

where in the islands, and > u∗sus everywhere in the main channel, with some cells

in the range of incipient suspension along the subaqueous levees. For patchy runs,

however, shear velocities in large sections of the islands are elevated above u∗crit

into incipient suspension, primarily along channelized flow-paths. As vegetative

cover increases, shear velocities converge to match the spatial trend of the uniform

runs.

We find that a significant portion (though not all) of the cells within vege-

tation patches remain < u∗crit at all coverage values, while only a small percentage

of the non-vegetated cells remain within the range of no motion. For example, at

10% (dense) vegetation cover, 70%-80% of the non-vegetated cells in the islands

have shear velocities above the threshold of motion. This number decreases with

increasing coverage, and becomes nearly zero at around 50% vegetation cover.

3.3 Other roughness maps

Aside from the uniform maps, the results from modeling several other spatially-

variable scenarios (Figure 3.9) are briefly mentioned. The first two are maps

with uniformly decreasing roughness toward the distal end of the channel-island

complex (Figure 3.9a-b). The latter two are gradient random maps (GRMs), in

which the linearly decreasing island roughness is superimposed on a mosaic of
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Figure 3.8: Calculated shear velocity (u∗) values for the same section of the domain
as those shown in Figure 3.3 for sparse (a-d) and dense (e-h) vegetation. In
contrast to uniform-roughness runs, for which island shear velocities are all ≤ u∗crit,
greater transport potential exists when vegetation is heterogeneous.

random patches, which decrease in percent cover in the island interiors as well as

in the more distal end of the system (Figure 3.9c-d).

The GRM maps provide some first-order exploration of the effect of vege-

tation seasonality. This is done by varying the percent cover in the island interior

while maintaining approximately the same amount of vegetation in the proximal

end of the delta, as well as along the channel levees. These example maps are

dubbed “summer” and “winter” scenarios, respectively 3.9c-d), though they do

not intend to accurately represent conditions in natural systems for which actual
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coverage characteristics are unknown.
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Figure 3.9: Other spatially-variable roughness maps that have been modeled. (a)
Linearly decreasing island roughness. (b) Logarithmically decreasing island rough-
ness. (c-d) Example gradient random maps (GRM) where roughness and percent
cover decrease in the interior of the island and in the downstream direction. (d)
has a lower percent cover along the island interior, where seasonal vegetation is
more populous. The comparison between (c) and (d) is intended to explore the
difference in connectivity between a feasible vegetation maximum and minimum.

For model runs with linearly/logarithmically decreasing island roughness,

we observe similar behavior to systems with uniform island roughness, with the

primary difference being the location at which lateral outflow begins to occur. The

onset is generally delayed with respect to uniform runs and increases in magnitude

moving downstream. Aside from this change in shape of the outflow curve, spatial-

variable vegetation of this type does not seem to have any other significant effects

on the hydraulics of the system.

For the GRM maps tested, we find (somewhat unsurprisingly) that the
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behavior lies in between that of the decreasing island roughness and that of the

patchy uniform random maps. The curve representing the transition to unconfined

flow has a shape similar to that for the uniformly decreasing island roughness

scenarios, with a slight increase in connectivity with respect to those scenarios due

to the formation of connected flow-paths in the islands. The fact that GRM runs

still demonstrate an increase in connectivity when high-velocity flow-paths form

in the island interior demonstrates that these flow-paths do not have to connect to

the central distributary channel for there to be a visible increase in connectivity.

Therefore, it stands to reason that the prior results shown for uniform random

maps would still hold true even when there exists a higher proportion of vegetation

along the island levees, as is typically the case in natural systems.

It is, however, difficult to determine which of the observed hydraulic effects

are due to the decreasing density, the decreasing coverage downstream, or the

decreasing coverage towards the inside of the island. The results from these maps

are included only to emphasize that the observed threshold behavior appears to

persist even when the presence of vegetation is more pronounced on the levees.
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Chapter 4: Discussion

4.1 Disconnectivity above a vegetation cover threshold

4.1.1 Connection to percolation theory

The hydraulic and tracer results (Figures 3.1 and 3.5) reveal a noticeable change

in hydrological connectivity near 40%-50% vegetation cover, particularly for dense

vegetation. This seems to suggest that some form of threshold exists in connec-

tivity near that value. Above the threshold, patchy and uniform scenarios differ

minimally at the system scale — the island flow is approximately homogeneous,

and the same amount of lateral outflow is observed regardless of patch character-

istics. Below the threshold, however, uniform runs consistently underestimate the

degree of connectivity observed in patchy runs. For sparse vegetation, the effects

of this threshold are visible, but small. Only when patches are dense do the effects

become substantial.

We attribute this to the fact that high-velocity preferential flow-paths are

able to develop within the islands at low coverage values (Figure 3.3a-b,e-f), which

are able to draw a higher proportion of the flow from the main channel. These flow

corridors increase the transport capabilities through the islands, as quantified by

the RTD and Fisl(t) curves. Below this “disconnectivity” threshold, uniform model

runs with an equivalent spatially-averaged roughness poorly capture the behavior

of model runs in which heterogeneity is modeled explicitly. Uniform model runs

with other estimates of mean roughness, such as the geometric or harmonic mean,

were not any more capable of capturing these dynamics, nor were models using

other uniform estimates for effective resistance, such as blockage factor [Nepf ,

2012a] (results not shown).

The observed threshold behavior appears to match that predicted by isotropic

Text and figures from this chapter have been submitted in an article to Geophysical Research
Letters with Kyle Wright, Matthew Hiatt, and Paola Passalacqua as authors.
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Figure 4.1: Demonstration of the percolation limit on a 1000 x 1000 square lattice.
For each lattice, the percent vegetated is equal to the probability of each cell
in the lattice being “occupied” by vegetation. The largest contiguous cluster of
non-vegetated cells is highlighted in light blue. As percent cover decreases from
50% to 35%, the “percolating cluster” spans the full domain near the theoretical
percolation threshold of ≈ 41%.

percolation theory. This theory describes a threshold change in the connectivity

of “occupied” cells in a binary domain — which, in our case, would represent veg-

etated cells vs non-vegetated cells — once a specific percentage of the domain is

occupied. Used in this sense, the word “connectivity” describes the contiguity of a

cell with other cells in the same von Neumann neighborhood [Oborny et al., 2007].

On a 2D square lattice, a critical transition is predicted to occur once more than

about ≥ 59% of the cells are occupied [Stauffer , 1979]. This transition is only

approximate for finite domains, and becomes increasingly step-like as the size of
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the domain approaches infinity.

If our system is analogous, one might expect islands to channelize once

≥ 59% of the domain is non-vegetated — or, equivalently, once ≤ 41% of the

domain is vegetated. This is indeed what we observe in our model runs. The

mathematical details of percolation theory are complex and not particularly im-

portant for the present discussion (for good overviews on percolation theory, see

Stauffer [1979]; Hunt and Sahimi [2017]), but qualitatively, the theory provides

insight and a potential explanation for the threshold we observe in our system. Fig-

ure 4.1 demonstrates what the percolation transition looks like on a much larger

domain (1000×1000 cells) than that of our deltaic islands; there is a critical shift in

connectivity at the percolation threshold, from a state where every non-vegetated

cell in the domain is relatively isolated to a state where nearly all of them are

connected.

Some studies hypothesized that a percolation-style threshold could exist in

ecological systems [Oborny et al., 2007; Luhar et al., 2008; Larsen et al., 2017],

with vegetation patches possibly self-organizing near this threshold to maximize

nutrient delivery [Fonseca and Bell , 1998; Luhar et al., 2008]. We believe the

results of the present study lend credibility to those hypotheses. Our study also

indicates that the effects of preferential flow-paths extend beyond the vegetated

domain, by providing a control on hydrological connectivity with the main channel.

It is also interesting that we observe this threshold despite the fact that, from

the perspective of flow, our islands are not strictly binary (flow is still permitted

through vegetated cells).

One notable caveat, however, bears consideration: there is not only one

percolation threshold. The actual value at which the transition occurs depends on

the shape of the cells comprising the lattice. For 2D fields, the critical transition

could occur at 41% (for a square lattice), but it could also occur anywhere from 30%

(honeycomb) to 50% (triangular) [Hunt and Sahimi , 2017]. Therefore, because

vegetation in real systems would not strictly adhere to any of these shapes, we

should not expect that the disconnectivity threshold in natural systems be exactly

41%. Rather, these results simply indicate that such a threshold can exist, and

wherever it may lie in any given system, it can substantially influence hydrological

connectivity and flows through the vegetated domain.
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4.1.2 Potential implications for deltaic systems

Whatever the percentage at which the exact transition occurs, it remains true that

the existence of a connectivity threshold should be important in natural systems.

In the WLD, Olliver and Edmonds [2017] estimated that island vegetation coverage

is often below 40%-50%, particularly for more distal islands. Temporal variations

in vegetative coverage — whether seasonal, yearly, or in response to storms [Carle

et al., 2013; Carle and Sasser , 2016] — should entail periods of high and low

connectivity, particularly if the vegetation population crosses this threshold. In

a previous study, Sendrowski and Passalacqua [2017] observed a loss in system-

scale transfer entropy links between periods of minimum and maximum biomass

in the WLD, which may have corresponded to vegetation coverage crossing this

disconnectivity threshold, thus restricting the cross-delta transfer of information.

The results of the present study could have implications for the ecogeomor-

phic succession of deltaic systems. In our model, static vegetation offered a control

on flow, but in reality the reverse would also be true. It is possible that, through

autogenic processes, vegetation would self-organize towards a particular distribu-

tion of patch sizes, coverage, or stem densities that best optimizes their living

conditions. Important questions remain regarding whether a stable state (or mul-

tiple quasi-stable states) exist for vegetation in deltaic systems, what they would

be, and whether they are attainable. Further research is required to determine how

vegetation would respond to the hydrodynamic and transport behavior observed

here, but the results of the present study could help inform such an analysis.

As is discussed in section 3.2.2, our results from modeling intermediate

roughness values (nhv = 0.5, 1.0) reveal a logarithmic decrease in the amount

of tracer delivered to the islands for an increase in vegetation density (Figure

3.7). Therefore, there is a trade-off between the ability to deliver sediment and

nutrients to the islands and the ability to retain what arrives there. Vegetation

and topography could co-evolve to achieve conditions most favorable for vegetation

stability, potentially near the disconnectivity threshold as hypothesized in previous

studies [Luhar et al., 2008]. Future research is needed to understand precisely how

ecogeomorphic feedbacks influence the evolution of coastal deltas.
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4.2 The role of patch size

Below the disconnectivity threshold, increasing patch size tends to exacerbate

differences between the behavior of patchy and uniform scenarios. Runs with larger

patches tend to develop more well-established flow corridors in the islands (Figure

4.2). These flow corridors can lead to large localized hotspots of connectivity when

adjacent to the main channel (Figure C.3), which function similarly to established

secondary channels in natural systems [Hiatt and Passalacqua, 2015]. Interestingly,

transects like those shown in Figure C.3 for runs with the largest patch sizes often

demonstrate a number of local maxima, indicating that a considerable amount of

flow can sometimes be re-routed into the central channel from the islands. This

corresponds to scenarios in which the high-velocity channels terminate back at the

main channel, with no other optimal route for flow. It has yet to be seen whether

similar behavior occurs in natural systems, but if it does, it would likely divide the

island into two over time, eventually forming a new bifurcation and downstream

confluence. These results therefore demonstrate a potential avenue for vegetation

to act as the driving force behind topological changes on the deltaic distributary

network.

When patches are small, the critical transition near the threshold of chan-

nelization is fairly smooth (e.g. Figure 3.5); as patch sizes increase, however, the

transition becomes more step-like. Model results at 25m resolution suggest that

this effect is not a result of the numerical model (Table A.1), but is rather an

actual trend in the hydraulic behavior of the system. We therefore hypothesize

that when patches are large and coverage is low, island transport relies more on

bathymetric geometry than vegetation characteristics.

Patches on the order of 50m-100m in diameter are certainly of the scale that

we observe in systems like the WLD (see Figure 2.1b), but patches that are 250m

in diameter may be bordering on unrealistic — at least for small systems like the

WLD. We expect that the observed flow through regions of smaller patches more

accurately represents reality, and suggest that any future work which draws upon

this analysis give the model runs with the largest patches lower credence in their

interpretation of these results.
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Figure 4.2: The influence of patch size on flow velocity magnitudes throughout
a representative section of the CIC for sparse (a-f) and dense (g-l) vegetation.
Shown are maps at 30% (a-c,g-i) and 50% (d-f,h-l) cover for 50m, 100m, and 250m
wide patches.

4.3 Implications for the modeling of deltaic systems

While the implications of vegetation heterogeneity on delta hydrodynamics are

important, deltaic models often go beyond hydrodynamics to assess the merits of

engineering projects intended to promote land growth (e.g. sediment diversions)

or improve water quality (e.g. rebuilding wetlands). While the present study ex-

clusively models hydrodynamics, we discuss the potential effects of heterogeneous

vegetation on the ability of deltaic models to estimate aggradation and denitrifi-

cation potential.

Estimating actual locations of aggradation depends on where sediment is

routed, which has not been modeled explicitly here — however, it is apparent from

the maps of shear velocity (Figure 3.8) that a considerable amount of transport

is predicted to occur within the islands when vegetation coverage is below the

disconnectivity threshold. Neglecting vegetation heterogeneity in the modeling of
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deltaic systems may lead to the erroneous conclusion that the vegetated islands

are incapable of transporting the D50 grain size under non-flood conditions. It

would also underestimate the total amount of flow (and therefore sediment) be-

ing delivered to the island interior. Thus, the explicit treatment of vegetation

heterogeneity should be included in hydromorphodynamic models of deltas.

It is known that the RTD of a wetland system is an important control pa-

rameter for biogeochemical nutrient processing [Kadlec and Wallace, 2008; Cheng

and Basu, 2017]. Because vegetation patchiness alters the shape of the RTD

through the CIC (Figures C.1, 3.5, and 3.6), it stands to reason that estimates

of nutrient processing would also be affected [Hiatt et al., 2018]. Below the dis-

connectivity threshold, the RTD for patchy runs differs from the RTD for uniform

runs in shape (often multi-modal), temporal behavior (peak often delayed), and in

the relative contribution of the islands to the full RTD (sometimes displaying more

than a two-fold increase in net island flux). To the extent that the bulk system

RTD reflects the degree of biotic nutrient processing, estimates based on patchy

model runs may predict higher nutrient retention rates for the delta complex than

would estimates based on uniform vegetation. There is, however, a trade-off be-

tween the increased island flux in patchy runs and the reduction in RTD due to

high-velocity preferential flow-paths. It is possible that short-circuiting due to the

high-velocity preferential flow-paths would actually lead to decreases in wetland

nutrient processing. Further research is needed to constrain the RTD of deltaic is-

lands with spatially-variable vegetation and its resulting impact on denitrification

and the removal of other nutrients in the delta complex.

For full-complexity deltaic models, the range of effects observed in the

present study due to heterogeneity ought to be an important consideration. If

vegetation is relatively sparse, treating vegetation as homogeneous may be an ap-

propriate approximation. However, if the vegetation is very dense, approximating

it as homogeneous within a deltaic island will likely lead to a conservative estimate

of channel-island hydrological connectivity and will underestimate the capabilities

of flow pathways within the island to form and transport sediment and nutrients

to the island interior.
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4.4 Limitations

A few limitations of the present study should be noted. First, the random maps

of vegetation modeled here are still quite simplified with respect to actual deltaic

vegetation. Vegetation colonization is not fully random, but rather influenced by

flow conditions and elevation differences in the deltaic marsh. The intention of this

study, however, is not to try to accurately represent the full range of possible vege-

tation found in deltaic marshes, but rather to explore connectivity in a system that

is one step in complexity above that of fully uniform vegetation. We believe that

uniform random maps provide a good first-order approximation of heterogeneous

vegetation. Connecting these results to the hydrogeomorphic processes of natural

system remains non-trivial, but the present study gets us closer to the processes of

the fully complex system without necessarily losing generality to systems outside

the WLD. Future studies should explore more complex vegetated distributions in

deltaic settings.

It would be beneficial to have more model initializations in each ensemble

over which to average the hydraulic behavior of the system. While five random

maps per scenario is not statistically ideal, the long run-time required by each

model run made testing additional maps per scenario too computationally inten-

sive. The small variation observed between each set of five initializations, partic-

ularly when patch size is small, leads us to conclude that five runs is sufficient

to have confidence in the findings presented herein. The phenomena we observe

across our model runs — such as the increase in connectivity in patchy runs and

the formation of preferential flow-paths at low percent cover — persist throughout

each ensemble. However, we caution that any future studies based on these results

bear in mind the relatively few numbers of model runs considered for each scenario

in this study.

Lastly, the mechanics of flow through vegetation is fairly complex, and our

use of the shallow water, Baptist, and Wilcock equations are all simplifying ap-

proximations that introduce their own set of errors into this analysis. Surely the

turbulent interactions at different levels of patch density could have important

implications for the dynamics measured here, as could the 3D flow structures that

form atop the neglected submerged vegetation. However, these errors are likely to
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be small over the spatial scales measured here. Additionally, the Wilcock equation

was not developed for vegetated flows, and it stands to reason that the roughness

height z0 in that equation could noticeably increase in regions of vegetation. How-

ever, in our analysis of shear velocities we focus our attention primarily on the

non-vegetated regions of the domain in which there is transport, rather than on

the vegetated regions in which this equation is perhaps less accurate. Thus, we

believe the errors introduced by our use of the Wilcock equation will minimally

influence our conclusion that more sediment is capable of transport in much of the

deltaic islands when vegetation is heterogeneous.
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Chapter 5: Conclusions and future work

In the present work, we used a depth-integrated hydrodynamic model in an ide-

alized channel-island complex to analyze the influence of patchy, heterogeneous

vegetation on hydrological connectivity and transport in river deltas. The com-

putational domain is based on the Wax Lake Delta in coastal Louisiana, with

deltaic islands populated by randomly distributed vegetation patches of a given

size, percent cover, and stem density. These three vegetation characteristics were

varied in our model runs, and five random initializations were modeled for each

unique pairing of these characteristics to determine the average behavior of each

ensemble. Then, using tracer studies, we developed residence time distributions

for each model scenario and analyzed the impact of vegetation characteristics on

transport through the domain as a proxy for nutrients or sediment.

In section 1.5, we laid out three driving research questions for the present

analysis, which may be summarized as such: (1) To what extent does the spatial-

variability of deltaic vegetation affect channel-island connectivity? (2) Beyond

flow, what are the implications of vegetation heterogeneity on other deltaic pro-

cesses, such as the transport of solutes or its ecogeomorphic evolution? (3) What

does this mean for our ability to effectively model deltaic restoration efforts? We

additionally presented three relevant hypotheses — namely, (1) the heterogeneity

of vegetation will affect the hydrodynamics of the system, (2) an increase in per-

cent cover and stem density will decrease channel-island connectivity, and (3) the

importance of heterogeneity is likely to scale with patch size.

In our modeling analysis, we observe an increase in channel-island hydro-

logical connectivity in model runs in which vegetation is heterogeneous when com-

pared to model runs with the same spatially-averaged roughness applied uniformly

throughout the islands. This increase in connectivity is negligible when vegetation

is sparse or coverage is high, but it is substantial when vegetation is dense and

covers less than a “disconnectivity” threshold of 40% − 50% of the islands. The

disparity between patchy and uniform scenarios is additionally enhanced by an

increase in patch size. Below the threshold, we observe (1) an up to 27% increase
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in lateral outflow from the central distributary channel into the islands, (2) the

formation of high-velocity preferential flow-paths in the islands, which are capa-

ble of transporting not only flow but also the median sediment grain size of the

WLD, and (3) as much as a factor of two increase in the proportion of a passive

tracer that is allocated to the islands. Once this threshold is crossed, the flow

field in patchy runs becomes effectively homogeneous, and there is only a minor

increase in lateral outflow or the proportion of tracer allocated to the islands, when

compared to uniform runs. This disconnectivity threshold is near the theoretical

percolation threshold and may demonstrate the effects of percolating flow-paths

on hydrodynamics in a vegetated system. We therefore confirm all three of our

aforementioned hypotheses, with the caveat that the significance of heterogeneity

strongly depends upon vegetation characteristics.

The results of this work suggest that models of deltaic systems – such as

those projecting the effects of sediment diversions or other coastal restoration ef-

forts – should consider the possible effects of heterogeneous vegetation on the sys-

tem being modeled. The increase in connectivity we observe suggests that models

which neglect to account for spatial complexity could underestimate channel-island

hydrological connectivity, over-estimate the ability for deltaic islands to retain

sediment, and underestimate the potential for denitrification and other ambient

nutrient processing in the marshes of the deltaic islands. The existence of the ob-

served disconnectivity threshold could have implications beyond hydrodynamics,

such as on the long-term ecogeomorphic or biogeochemical evolution of natural

deltaic systems.
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Appendix A: Discretization tests at 25m resolution

Table A.1: Comparison of cumulative tracer flux for identical runs at 50m and
25m resolution. The average (± standard deviation) tracer flux for patchy runs at
30% and 50% cover are 0.3934 (± 0.0117) and 0.2878 (± 0.0143), respectively.

Scenario 50m Resolution 25m Resolution

30% Cover, Uniform 0.2774 0.2607
30% Cover, Patchy 0.4016 0.4242
50% Cover, Uniform 0.2390 0.2249
50% Cover, Patchy 0.2781 0.2896
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Appendix B: Ensemble statistics
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Figure B.1: The statistical similarity of model runs in each ensemble. On the
abscissa is each vegetation scenario (each unique pairing of percent cover, patch
size, and density). On the ordinate is the negative logarithm of the p value from
a Wilcoxon rank-sum comparison of the island velocities in each given model run.
For every scenario, each of the five runs is compared to each of the others, for a
total of 10 comparisons. Data points which are higher on the ordinate are more
statistically dissimilar. The threshold for statistical dissimilarity (the red dashed
line) is chosen such that 95% of rank-sum tests comparing model runs with different
vegetation characteristics falls above that line. Only one model run (run 4 at 30%
cover, 250m patches, dense vegetation) exceeds this threshold.
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Appendix C: Supplementary figures
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Figure C.1: Example residence time distributions, as well as the decomposition of
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Figure C.3: Discharge transects for the first run in all vegetation coverage scenar-
ios. Select curves are included in the ensembles shown in Figure 3.1.
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Appendix D: MATLAB code for map generation

1 %% Island Roughness Distribution=================================
2 % Script produces a vegetation map of randomly distributed patches
3 % with a specified percent cover, patch size, and patch roughness
4 bathy = load(’bathy changeCf 50m 100km fixed.mat’); % Load bathymetry
5

6 % Input Vegetation Characteristics:
7 Percent cover = 50; % Changing this value changes percent cover
8 Patch size = 1; % Set patch size: {1,2,5}, i.e. {50m,100m,250m}
9 Veg cf = 0.055; % Vegetated drag coefficient (Baptist et al., 2007)

10

11 Patch size 2 = Patch size; % Allows for anisotropic patches
12 Channel cf = 0.005; % Default bed drag coefficient
13 Cf final = zeros(size(bathy.eta,1),size(bathy.eta,2)) + Channel cf;
14

15 %% Check for Domain Size Error====================================
16 if (mod(2300,Patch size)>0)
17 error(’Domain Size Error’);
18 elseif (mod(60,Patch size 2)>0)
19 error(’Domain Size Error’);
20 end
21 %% Random Patches================================================
22 % Only save map within 1% cover of target; Variable to be updated:
23 QualityCheck = Percent cover + 10;
24 while abs(QualityCheck−Percent cover) > 1
25 % Populate smaller array with random integers from 1−100:
26 Island cf = randi([1 100],2300/Patch size,60/Patch size 2);
27

28 Island cf(Island cf<=Percent cover) = Veg cf; % Vegetated cells
29 Island cf(Island cf>Percent cover) = Channel cf; % Non−vegetated
30

31 % Expand array to island domain size:
32 Island cf = repelem(Island cf,Patch size,Patch size 2);
33 % Fill islands (and surrounding area):
34 Cf final(1:2300,10:69) = Island cf; Cf final(1:2300,82:141) =

Island cf;
35 % Update QualityCheck (i.e. Actual percent cover)
36 IslandRegion = [Cf final(2150:2300,56:69) Cf final(2150:2300,82:95)];
37 QualityCheck = sum(sum(IslandRegion==Veg cf))/numel(IslandRegion)

∗100;
38 end
39 save(’Cf 50Percent P1 R5.txt’,’Cf final’,’−ASCII’)
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Hiatt, M., E. Castañeda-Moya, R. Twilley, B. R. Hodges, and P. Passalac-

qua (2018), Channel-island connectivity affects water exposure time distribu-

tions in a coastal river delta, Water Resources Research, 54 (0), doi:10.1002/

2017WR021289.

Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki,

S. Watanabe, H. Kim, and S. Kanae (2013), Global flood risk under climate

change, Nature Climate Change, 3 (9), 816–821.

Hodges, B. R. (2004), Accuracy order of Crank–Nicolson discretization for hydro-

static free-surface flow, Journal of engineering mechanics, 130 (8), 904–910.

54



Hodges, B. R. (2014), A new approach to the local time stepping problem for

scalar transport, Ocean Modelling, 77, 1–19.

Hodges, B. R., and F. J. Rueda (2008), Semi-implicit two-level predictor–corrector

methods for non-linearly coupled, hydrostatic, barotropic/baroclinic flows, In-

ternational Journal of Computational Fluid Dynamics, 22 (9), 593–607.

Hodges, B. R., J. Imberger, A. Saggio, and K. B. Winters (2000), Modeling basin-

scale internal waves in a stratified lake, Limnology and oceanography, 45 (7),

1603–1620.

Hunt, A. G., and M. Sahimi (2017), Flow, transport, and reaction in porous media:

Percolation scaling, critical-path analysis, and effective medium approximation,

Reviews of Geophysics.

Kadlec, R. H., and S. Wallace (2008), Treatment wetlands, CRC press.

Khan, M. R., M. Koneshloo, P. S. Knappett, K. M. Ahmed, B. C. Bostick, B. J.

Mailloux, R. H. Mozumder, A. Zahid, C. F. Harvey, A. Van Geen, et al. (2016),

Megacity pumping and preferential flow threaten groundwater quality, Nature

communications, 7, 12,833.

Kim, W., D. Mohrig, R. Twilley, C. Paola, and G. Parker (2009b), Is it feasible

to build new land in the Mississippi River Delta?, EOS, Transactions American

Geophysical Union, 90 (42), 373–374.

Kingsford, R. T. (2000), Ecological impacts of dams, water diversions and river

management on floodplain wetlands in Australia, Austral Ecology, 25 (2), 109–

127.

Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea,

I. Held, J. P. Kossin, A. Srivastava, and M. Sugi (2010), Tropical cyclones and

climate change, Nature Geoscience, 3 (3), 157–163.

Lane, R. R., J. W. Day Jr, B. D. Marx, E. Reyes, E. Hyfield, and J. N. Day (2007),

The effects of riverine discharge on temperature, salinity, suspended sediment

and chlorophyll a in a Mississippi delta estuary measured using a flow-through

system, Estuarine, Coastal and Shelf Science, 74 (1-2), 145–154.

55



Larsen, L. G., and J. W. Harvey (2010), How vegetation and sediment transport

feedbacks drive landscape change in the everglades and wetlands worldwide, The

American Naturalist, 176 (3), E66–E79.

Larsen, L. G., and J. W. Harvey (2011), Modeling of hydroecological feedbacks

predicts distinct classes of landscape pattern, process, and restoration potential

in shallow aquatic ecosystems, Geomorphology, 126 (3), 279–296.

Larsen, L. G., J. Ma, and D. Kaplan (2017), How important is connectivity for

surface water fluxes? a generalized expression for flow through heterogeneous

landscapes, Geophysical Research Letters, 2017GL075432.

Leauthaud, C., S. Duvail, O. Hamerlynck, J.-L. Paul, H. Cochet, J. Nyunja, J. Al-

bergel, and O. Grünberger (2013), Floods and livelihoods: The impact of chang-

ing water resources on wetland agro-ecological production systems in the Tana

River Delta, Kenya, Global Environmental Change, 23 (1), 252–263.

Leonardi, N., I. Carnacina, C. Donatelli, N. K. Ganju, A. J. Plater, M. Schuerch,

and S. Temmerman (2017), Dynamic interactions between coastal storms and

salt marshes: A review, Geomorphology.

Li, S., H. Shi, Z. Xiong, W. Huai, and N. Cheng (2015), New formulation for

the effective relative roughness height of open channel flows with submerged

vegetation, Advances in Water Resources, 86, 46–57.

Li, X., C. Liang, and J. Shi (2012), Developing wetland restoration scenarios and

modeling its ecological consequences in the Liaohe river delta wetlands, China,

CLEAN–Soil, Air, Water, 40 (10), 1185–1196.

Liang, M., V. Voller, and C. Paola (2015), A reduced-complexity model for river

delta formation–part 1: Modeling deltas with channel dynamics, Earth Surface

Dynamics, 3 (1), 67–86.

Luhar, M., and H. M. Nepf (2013), From the blade scale to the reach scale: A

characterization of aquatic vegetative drag, Advances in Water Resources, 51,

305–316.

56



Luhar, M., J. Rominger, and H. Nepf (2008), Interaction between flow, transport

and vegetation spatial structure, Environmental Fluid Mechanics, 8 (5-6), 423.

McGranahan, G., D. Balk, and B. Anderson (2007), The rising tide: assessing the

risks of climate change and human settlements in low elevation coastal zones,

Environment and urbanization, 19 (1), 17–37.

Meire, D. W., J. M. Kondziolka, and H. M. Nepf (2014), Interaction between

neighboring vegetation patches: Impact on flow and deposition, Water Resources

Research, 50 (5), 3809–3825.

Mendelssohn, I. A., G. L. Andersen, D. M. Baltz, R. H. Caffey, K. R. Carman,

J. W. Fleeger, S. B. Joye, Q. Lin, E. Maltby, E. B. Overton, et al. (2012),

Oil impacts on coastal wetlands: implications for the Mississippi River Delta

ecosystem after the Deepwater Horizon oil spill, BioScience, 62 (6), 562–574.

Meselhe, E., J. A. McCorquodale, J. Shelden, M. Dortch, T. S. Brown, P. Elkan,

M. D. Rodrigue, J. K. Schindler, and Z. Wang (2013), Ecohydrology component

of Louisiana’s 2012 Coastal Master Plan: mass-balance compartment model,

Journal of Coastal Research, 67 (sp1), 16–28.

Meselhe, E. A., I. Georgiou, M. A. Allison, and J. A. McCorquodale (2012), Nu-

merical modeling of hydrodynamics and sediment transport in lower Mississippi

at a proposed delta building diversion, Journal of hydrology, 472, 340–354.

Michael, H. A., and C. I. Voss (2008), Evaluation of the sustainability of deep

groundwater as an arsenic-safe resource in the bengal basin, Proceedings of the

National Academy of Sciences, 105 (25), 8531–8536.

Michot, B., E. Meselhe, K. W. Krauss, S. Shrestha, A. S. From, and E. Patino

(2015), Hydrologic modeling in a marsh–mangrove ecotone: predicting wetland

surface water and salinity response to restoration in the Ten Thousand Islands

region of Florida, USA, Journal of Hydrologic Engineering, 22 (1), D4015,002.

Mitsch, W. J., J. W. Day Jr, J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W.

Randall, and N. Wang (2001), Reducing nitrogen loading to the Gulf of Mexico

57



from the Mississippi River basin: Strategies to counter a persistent ecological

problem, BioScience, 51 (5), 373–388.

Mitsch, W. J., J. W. Day, L. Zhang, and R. R. Lane (2005), Nitrate-nitrogen

retention in wetlands in the Mississippi River Basin, Ecological engineering,

24 (4), 267–278.

Morton, R. A., J. C. Bernier, J. A. Barras, and N. F. Ferina (2005), Historical sub-

sidence and wetland loss in the Mississippi Delta plain, Gulf Coast Association

of Geological Societies Transactions.

Nardin, W., D. Edmonds, and S. Fagherazzi (2016), Influence of vegetation on

spatial patterns of sediment deposition in deltaic islands during flood, Advances

in Water Resources, 93, 236–248.

Nepf, H. M. (2012a), Hydrodynamics of vegetated channels, Journal of Hydraulic

Research, 50 (3), 262–279.

Nepf, H. M. (2012b), Flow and transport in regions with aquatic vegetation, An-

nual Review of Fluid Mechanics, 44, 123–142.

Nicholls, R. J., and A. Cazenave (2010), Sea-level rise and its impact on coastal

zones, science, 328 (5985), 1517–1520.

Nittrouer, J. A., and E. Viparelli (2014), Sand as a stable and sustainable resource

for nourishing the Mississippi River delta, Nature Geoscience, 7 (5), 350.

NOAA (2017), Barataria Basin, http://gulfspillrestoration.noaa.gov, Ac-

cessed: 2017-09-28.
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