Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A comparison of 3,4,6a,7,10,10a-hexahydro-7,10-epoxypyrimido[2,1-a]-isoindol-6(2H)-one and 2-(2-amino-ethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione: structural and reactivity differences of two homologous tricyclic imides

Lauren A. Mitchell, Julie M. Stanley, Liliana Espinosa De Hoyos and Bradley J. Holliday*

Department of Chemistry and Biochemistry, The University of Texas at Austin,
105 E 24th Street, Stop A5300, Austin, TX 78712, USA
Correspondence e-mail: bholliday@cm.utexas.edu
Received 21 December 2012
Accepted 19 April 2013

The crystal structures of $3,4,6 \mathrm{a}, 7,10,10 \mathrm{a}$-hexahydro-7,10-epoxypyrimido[$2,1-a]$ isoindol- $6(2 H)$-one, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, and 2-(2-aminoethyl)-3a, 4,7,7a-tetrahydro-1 $\mathrm{H}-4,7$-epoxyisoindole-1,3(2H)-dione, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$, two tricyclic imides, show one and two molecules in the asymmetric unit, respectively. Intermolecular hydrogen-bonding interactions are observed in both compounds.

Comment

3,4,6a, 7, 10,10a-Hexahydro-7,10-epoxypyrimido[2,1-a]iso-indol-6(2H)-one, (II), is an important intermediate in the synthesis of phloeodictine A1, which has been shown to have antimicrobial properties (Neubert \& Snider, 2003), as well as exhibiting significant cytotoxicity towards KB human nasopharyngeal carcinoma cells (Kourany-Lefoll et al., 1992). Additionally, cyclic amidines are commonly used in medicinal chemistry (Hellal et al., 2006). However, despite these important applications, the crystal structures of these compounds have not been well studied. In this work, 2-(2-aminoethyl)-3a,4,7,7a-tetrahydro-1 H -4,7-epoxyisoindole$1,3(2 \mathrm{H})$-dione, (IV), serves as a model for understanding the preferential formation of the cyclic compound, (II), via intramolecular condensation over the homologous acyclic precursor 2-(3-aminopropyl)-3a,4,7,7a-tetrahydro-1H-4,7-ep-oxyisoindole-1,3(2H)-dione, (III) (see Scheme), and for probing how the formation of the amidine ring influences the structural and electronic properties of this biologically relevant molecule.

In initial work focused on preparing (III) from (I) (see Scheme), ${ }^{1} \mathrm{H}$ NMR data indicated a break in symmetry
between atoms H 3 and H 6 and between atoms H 2 and H 7 . This suggested that the proton coupling could be affected by hydrogen bonding between the amine H atoms and one of the carbonyl O atoms, or that the actual structure differed from theoretical expectations altogether. Mass spectrometry was used to probe the first hypothesis and revealed that $\mathrm{H}_{2} \mathrm{O}$ elimination had occurred, indicating that the desired product was not obtained. However, through single-crystal X-ray crystallography, we were able to identify the material as compound (II) (Fig. 1), an unexpected yet interesting product of the reaction. Notably, model compound (IV) (Fig. 2) was easily obtained by substituting ethylenediamine for propane-1,3-diamine during the synthesis, demonstrating that the longer carbon chain is required for facile formation of the amidine ring.

Compound (IV) contains two molecules in the asymmetric unit, which are hydrogen-bonded dimers with a noncrystallographic inversion center at $x=\frac{1}{4}, y=0.53$ (near $\frac{1}{2}$) and $z=$ 0.12 (near $\frac{1}{8}$). Molecules (IV A) and (IVB) are nearly identical, with the exception of the $\mathrm{C} 3-\mathrm{C} 4$ bond lengths $[\mathrm{C} 3 A-\mathrm{C} 4 A=$ 1.518 (2) \AA and $\mathrm{C} 3 B-\mathrm{C} 4 B=1.509$ (2) $\AA]$. When comparing this bond with the analogous C5-C6 bonds, molecules (IV A) and (IVB) both have a bond length of 1.517 (2) \AA. Looking at the molecule of (II), the C3-C4 bond length is 1.5185 (17) \AA.

Figure 1
The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The two independent molecules of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

This leads us to believe that $\mathrm{C} 3 B-\mathrm{C} 4 B$ has undergone some distortion.

With the exception of $\mathrm{C} 3 B-\mathrm{C} 4 B$, the bond lengths and angles in the bicyclic ring for both (II) and (IV) agree with previously reported compounds containing the same functionality (Trujillo-Ferrara et al., 2004; Tan et al., 2012). Therefore, further discussion will focus on the amidine and central five-membered rings. However, it is also important to note that the bicyclic ring, with inherent internal ring strain, gives the molecules ROMP (ring-opening metathesis polymerization) reactivity, making these compounds available for uses in polymer chemistry (Trnka \& Grubbs, 2001; Runge \& Bowden, 2007).

When comparing the angles and bond lengths of the central five-membered ring of (II) (see Table 1) with those of (IV) (see Table 2), it appears that no distortion has occurred due to the formation of the amidine ring. The $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$ angle of (II) and the $\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{N} 1 A$ angle of (IV) are 108.68 (10) and 108.63 (12) ${ }^{\circ}$, respectively. Additionally, the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$ angle in (II) $\left[113.35(9)^{\circ}\right]$ and the $\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 8 A$ angle in (IV) $\left[112.94(12)^{\circ}\right]$ are approximately equal, supporting the conjecture that little or no distortion has occurred. The N2$\mathrm{C} 1-\mathrm{N} 1$ angle in (II) is $126.67(11)^{\circ}$, which is slightly greater than the average $\mathrm{N}-\mathrm{C}=\mathrm{N}$ angle (121.53 ${ }^{\circ}$) reported by Kosturkiewicz et al. (1992) for 28 amidine complexes. This is due to the additional flexibility during the formation of the compound, which is not uncommon for ring-fused cyclic amidine complexes. In fact, 2-[(1,3-benzodioxol-5-yl)methyl-ene]-6,7-dihydro-5 H -thiazolo[3,2-a]pyrimidin-3-one was reported to have an even larger $\mathrm{N}-\mathrm{C}=\mathrm{N}$ bond angle of 128.49 (18) ${ }^{\circ}$ (Liang, 2004).

In both (II) and (IV), hydrogen bonding dictates the packing structure. In (II), there are no classical hydrogen

Figure 3
A three-dimensional packing diagram for (II), viewed along the a axis. Intermolecular hydrogen bonding (dashed lines) is shown between atoms N 2 and H 3 (marked \mathbf{a}), O 2 and $\mathrm{H} 10 B(\mathbf{b}), \mathrm{O} 2$ and $\mathrm{H} 6(\mathbf{c})$, and O 1 and H 7 (d).
bonds, but weaker interactions [compared with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (IV)], such as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$, exist between the molecules. Compound (II) packs in a head-to-tail fashion (see bond \mathbf{d} in Fig. 3) with respect to the ether groups, with intermolecular hydrogen bonding occurring between atoms O 1 and H 7 , while compound (IV) packs in a head-to-head fashion (see bonds \mathbf{a} and \mathbf{b} in Fig. 4), with hydrogen bonding present between atoms $\mathrm{O} 2 A$ and $\mathrm{H} 11 D$ and between $\mathrm{O} 2 B$ and $\mathrm{H} 11 B$. This bonding structure causes a stair step in the packing of (II). In (II) (see bonds a-c in Fig. 3), the molecule is inverted in each row, so that bonding occurs in a head-to-head/tail-to-tail fashion, resulting in hydrogen

Figure 4
A three-dimensional packing diagram for (IV), viewed along the b axis. Intermolecular hydrogen bonding (dashed lines) is shown between atoms $\mathrm{O} 2 A$ and $\mathrm{H} 11 D$ (marked a), O2B and $\mathrm{H} 11 B(\mathbf{b}), \mathrm{O} 3 A$ and $\mathrm{H} 11 A(\mathbf{c}), \mathrm{O} 3 B$ and $\mathrm{H} 11 C$ (d), and $\mathrm{O} 1 B$ and $\mathrm{H} 2 B(\mathbf{e})$.
bonding occurring between atoms N 2 and H 3 , between O 2 and H 6 , and between O 2 and $\mathrm{H} 10 B$ of adjacent molecules. The bonds between atoms N 2 and H 3 are significantly closer to linearity, as indicated by the bonding angle (see Table 3), which indicates that these bonds are stronger and therefore dictate the packing structure. In (IV), the bonds closest to linearity are between the carbonyl groups and the amine H atoms (see Table 4). Intermolecular hydrogen bonding also occurs between atoms $\mathrm{O} 3 B$ and $\mathrm{H} 11 C$, and between $\mathrm{O} 3 A$ and $\mathrm{H} 11 A$ (see bonds \mathbf{c} and \mathbf{d} in Fig. 4).

In addition to affecting the structural properties of (II), the formation of the amidine ring seems to have had notable perturbations on the distribution of charge compared with that of the other ring-fused amidine compounds. The $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bond lengths are highly indicative of electrondensity distribution across bonds. Previous studies reported the difference between the bond lengths of the analogous $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds in the amidine rings (Δ bond distance) as, on average, $0.0670 \AA$ for the 28 compounds studied (Kosturkiewicz et al., 1992), while the Δ bond distance in (II) was measured as $0.133 \AA$. From these data it was concluded that, compared with other ring-fused amidine complexes, (II) exhibits very little delocalization across the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds. Kosturkiewicz et al. (1992) speculated that the low level of delocalization is caused by the presence of an R group at the central C atom, which is consistent with the five-membered ring attached to atom C 1 in (II). Other cyclic amidines also display large Δ bond distances, including 2-[(1,3-benzodioxol-5-yl)methylene]-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidin-3one, where the Δ bond distance is $0.131 \AA$ (Liang, 2004).

This large discrepancy in the $\mathrm{N}-\mathrm{C}$ bond lengths also contributes to the previously discussed higher-than-average $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ angle in the six-membered ring of (II). If there were a higher degree of delocalization across the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$ unit, it would be expected that the $\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1$ [107.25 (10) ${ }^{\circ}$] and $\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10\left[114.08(10)^{\circ}\right]$ bond angles would be equivalent, but this is not the case. The same reasoning can be applied when considering the $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$ [121.17 (9) ${ }^{\circ}$] and $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 11$ [116.62 (11) ${ }^{\circ}$] angles.

In conclusion, we have determined that the formation of cyclic compound (II) does not cause noticeable perturbations in the structure of the bicyclic ring or the central fivemembered ring, compared with the linear compound, (IV). However, the formation of the cyclic compound does lead to perturbations in the $\mathrm{N}-\mathrm{C}=\mathrm{N}$ units, as indicated by the large bond angle and the large discrepancy in bond lengths between the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds.

Experimental

Propane-1,3-diamine ($14.9 \mathrm{~g}, 201.0 \mathrm{mmol}$) and 3a,4,7,7a-tetrahydro4,7 -epoxyisobenzofuran-1,3-dione ($4.8 \mathrm{~g}, \quad 28.9 \mathrm{mmol}$), (I), were refluxed at 353 K for 2 h . The resulting solution was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with dichloromethane $(2 \times 30 \mathrm{ml})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. A translucent solid was obtained by recrystallization from a solution in toluene to yield (II) [yield 23.5%; m.p. 393 K (decomposition)]. Crystals of (II) suitable for X-ray diffraction were obtained by slow

Table 1
Bond lengths and angles for the central five-membered ring $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ of (II).

$\mathrm{C} 1-\mathrm{C} 2$	$1.5100(17)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.3722(16)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.5485(15)$	$\mathrm{O} 2-\mathrm{C} 8$	$1.2212(15)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.5147(16)$		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$104.45(9)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$108.68(10)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$104.99(9)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$	$113.35(9)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$126.84(11)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$108.46(9)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1$	$124.47(11)$		

Table 2
Bond lengths and angles for the central five-membered ring ($\left(\AA,{ }^{\circ}\right)$ of (IV).

$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.509(2)$	$\mathrm{C} 8 A-\mathrm{N} 1 A$	$1.3858(19)$
$\mathrm{C} 2 A-\mathrm{C} 7 A$	$1.547(2)$	$\mathrm{C} 8 A-\mathrm{O} 3 A$	$1.2197(18)$
$\mathrm{C} 7 A-\mathrm{C} 8 A$	$1.518(2)$	$\mathrm{C} 1 A-\mathrm{N} 1 A$	$1.3877(19)$
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 7 A$	$104.74(12)$	$\mathrm{N} 1 A-\mathrm{C} 8 A-\mathrm{C} 7 A$	$108.63(12)$
$\mathrm{C} 8 A-\mathrm{C} 7 A-\mathrm{C} 2 A$	$104.56(11)$	$\mathrm{C} 8 A-\mathrm{N} 1 A-\mathrm{C} 1 A$	$112.94(12)$
$\mathrm{O} 3 A-\mathrm{C} 8 A-\mathrm{C} 7 A$	$127.27(14)$	$\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	$108.91(12)$
$\mathrm{O} 3 A-\mathrm{C} 8 A-\mathrm{N} 1 A$	$124.08(14)$		

evaporation from a saturated solution of (II) in dichloromethane that was layered with n-heptane. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are available in the Supplementary materials.

Compound (IV) was prepared in an analogous manner to (II), using ethylenediamine ($5 \mathrm{ml}, 74.9 \mathrm{mmol}$) and (I) ($5.0 \mathrm{~g}, 30.1 \mathrm{mmol}$). Compound (IV) was obtained as a white solid by recrystallization from a mixture of dichloromethane and ether (1:3 v/v) [yield 9.9\%; m.p. 399 K (decomposition)]. Crystals of (IV) suitable for X-ray diffraction were obtained by precipitation from a dichloromethaneether ($1: 3 \mathrm{v} / \mathrm{v}$) solution at $253 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.45$ $(s, 2 \mathrm{H}, \mathrm{H} 4 A$ and $\mathrm{H} 5 A), 5.20(s, 2 \mathrm{H}, \mathrm{H} 3 A$ and $\mathrm{H} 6 A), 3.48(t, 2 \mathrm{H}, J=$ 6.3, H9A and H9B), $2.80(t, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H} 2 A, \mathrm{H} 7 A, \mathrm{H} 10 A$ and $\mathrm{H} 10 B), 1.01(b r, 2 \mathrm{H}, \mathrm{H} 11 A$ and $\mathrm{H} 11 B) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 176.4(\mathrm{C} 1 A$ and $\mathrm{C} 8 A), 136.4(\mathrm{C} 4 A$ and $\mathrm{C} 5 A), 80.8(\mathrm{C} 3 A$ and C6A), 47.3 (C2A and C7A), 41.9 (C9A), 39.7 (C10A).

Compound (II)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=204.23$
Monoclinic, $P 2_{1} / c$
$a=4.916$ (2) \AA
$V=952.8(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$b=8.998$ (3) \AA
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.38 \times 0.14 \times 0.09 \mathrm{~mm}$
$\beta=94.445(7)^{\circ}$

Data collection

Rigaku AFC12 with Saturn 724+ CCD area-detector diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.822, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
136 parameters
H -atom parameters constrained
$S=1.05$
2193 reflections

21174 measured reflections 2193 independent reflections 2031 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 3
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.98	2.61	$3.570(4)$	165
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {ii }}$	0.98	2.48	$3.3421(19)$	147
$\mathrm{C}^{\text {iii }}-\mathrm{H} 7 \cdots \mathrm{O} 1^{\text {ii }}$	0.98	2.32	$3.2040(18)$	150
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {iv }}$	0.97	2.53	$3.393(4)$	148

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (IV).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 A-\mathrm{H} 11 A \cdots \mathrm{O} 3 A^{\mathrm{i}}$	$0.95(2)$	$2.42(2)$	$3.3599(18)$	$169.1(18)$
$\mathrm{N} 2 A-\mathrm{H} 11 B \cdots \mathrm{O} 2 B$	$0.89(2)$	$2.33(2)$	$3.1480(18)$	$151.8(17)$
$\mathrm{N} 2 B-\mathrm{H} 11 C \cdots \mathrm{O} 3 B^{\mathrm{ii}}$	$0.92(2)$	$2.30(2)$	$3.2175(19)$	$174.4(18)$
$\mathrm{N} 2 B-\mathrm{H} 11 D \cdots \mathrm{O} 2 A$	$0.93(2)$	$2.45(2)$	$3.2838(19)$	$148.7(19)$
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 1 B^{\text {iii }}$	0.98	2.52	$3.408(2)$	151

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$; (iii) $-x+1,-y+1,-z$.

Compound (IV)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \\
& M_{r}=208.22 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=17.840(2) \AA \\
& b=6.8747(6) \AA \\
& c=16.2125(17) \AA \\
& \beta=102.419(5)^{\circ}
\end{aligned}
$$

$V=1941.9(3) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
$0.48 \times 0.25 \times 0.07 \mathrm{~mm}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.923, T_{\text {max }}=1.000$
19826 measured reflections 4439 independent reflections 3478 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$$
\begin{aligned}
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \\
& w R\left(F^{2}\right)=0.125 \\
& S=1.07 \\
& 4439 \text { reflections } \\
& 287 \text { parameters }
\end{aligned}
$$

The amine H atoms were located in a difference Fourier map and both positional and isotropic displacement parameters were refined. All other H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SIR97 within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

The data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. CHE-0741973). The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3191). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hellal, M., Bihel, F., Mongoet, A. \& Bourguignon, J. (2006). Org. Biomol. Chem. 4, 3142-3146.
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kosturkiewicz, Z., Ciszak, E. \& Tykarska, E. (1992). Acta Cryst. B48, 471-476.
Kourany-Lefoll, E., Pais, E., Sevenet, T., Guittet, E., Montagnac, A., Fontain, C., Guenard, D. \& Adeline, M. T. (1992). J. Org. Chem. 57, 3832-3835.

Liang, Z.-P. (2004). Acta Cryst. E60, o339-o340.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Neubert, B. J. \& Snider, B. B. (2003). Org. Lett. 5, 765-768.
Rigaku (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Runge, M. B. \& Bowden, N. B. (2007). J. Am. Chem. Soc. 129, 10551-10560. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tan, X.-J., Li, C.-G., Xing, D.-X. \& Liu, Y. (2012). Acta Cryst. E68, 0866.
Trnka, T. M. \& Gurbbs, R. H. (2001). Acc. Chem. Res. 34, 18-29.
Trujillo-Ferrara, J. G., García-Báez, E. V., Padilla-Martínez, I. I., MartínezMartínez, F. J. \& Farfan-García, N. (2004). Acta Cryst. C60, o427-o430.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

A comparison of 3,4,6a,7,10,10a-hexahydro-7,10-epoxypyrimido[2,1-a]isoindol-6(2H)-one and 2-(2-aminoethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxy-isoindole-1,3(2H)-dione: structural and reactivity differences of two homologous tricyclic imides

Lauren A. Mitchell, Julie M. Stanley, Liliana Espinosa De Hoyos and Bradley J. Holliday

(II) 3,4,6a,7,10,10a-Fexahydro-7,10-epoxypyrimido[2,1-a]isoindol-6(2H)-one

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=204.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.916$ (2) \AA
$b=8.998$ (3) \AA
$c=21.604$ (6) \AA
$\beta=94.445$ (7) ${ }^{\circ}$
$V=952.8(6) \AA^{3}$
$Z=4$

Data collection

Rigaku AFC12 with Saturn 724+ CCD areadetector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.822, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.05$
2193 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=432$
$D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 21982 reflections
$\theta=7.3-55.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.38 \times 0.14 \times 0.09 \mathrm{~mm}$

21174 measured reflections
2193 independent reflections
2031 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-11 \rightarrow 11$
$l=-27 \rightarrow 27$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0501 P)^{2}+0.4632 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Experimental. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): $6.44(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{t}, 2 \mathrm{H}, J=6.0), 3.47$ (t, $2 \mathrm{H}, J=5.6), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=7.2), 2.69(\mathrm{~d}, 1 \mathrm{H}, J=6.9), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{\mathrm{H}^{1}\right\} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $173.4,155.3,136.0(\mathrm{CH}), 82.4(\mathrm{CH}), 80.1(\mathrm{CH}), 46.4(\mathrm{CH}), 45.3(\mathrm{CH}), 44.3\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{2}\right)$. HRMS (CI+), calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2}:[M+\mathrm{H}]^{+} 205.0977$; found: 205.0977.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C11	$-0.0103(3)$	$0.26831(14)$	$0.40558(6)$	$0.0228(3)$
H11B	0.0009	0.3512	0.4344	0.027^{*}
H11A	-0.2009	0.2404	0.3988	0.027^{*}
C10	$0.0904(3)$	$0.31934(13)$	$0.34407(6)$	$0.0230(3)$
H10B	-0.0324	0.3941	0.3255	0.028^{*}
H10A	0.2699	0.3637	0.3514	0.028^{*}
C9	$0.1047(3)$	$0.18828(13)$	$0.29981(6)$	$0.0212(3)$
H9A	-0.0775	0.1533	0.2868	0.025^{*}
H9B	0.1938	0.2177	0.2632	0.025^{*}
C8	$0.4126(2)$	$-0.03622(13)$	$0.30657(5)$	$0.0173(2)$
C7	$0.5411(2)$	$-0.13572(12)$	$0.35729(5)$	$0.0159(2)$
H7	0.7407	-0.1378	0.3583	0.019^{*}
C6	$0.4117(2)$	$-0.29402(12)$	$0.35416(5)$	$0.0167(2)$
H6	0.4043	-0.3421	0.3134	0.020^{*}
C5	$0.5539(2)$	$-0.38203(13)$	$0.40695(6)$	$0.0196(2)$
H5	0.6827	-0.4569	0.4039	0.024^{*}
C4	$0.4574(2)$	$-0.33056(13)$	$0.45853(6)$	$0.0208(3)$
H4	0.5027	-0.3625	0.4990	0.025^{*}
C3	$0.2574(2)$	$-0.20859(13)$	$0.43766(5)$	$0.0182(2)$
H3	0.1207	-0.1844	0.4668	0.022^{*}
C2	$0.4360(2)$	$-0.07520(12)$	$0.41816(5)$	$0.0161(2)$
H2	0.5839	-0.0507	0.4495	0.019^{*}
C1	$0.2649(2)$	$0.05812(12)$	$0.39800(5)$	$0.0163(2)$
N1	$0.2610(2)$	$0.07085(11)$	$0.33328(4)$	$0.0176(2)$
N2	$0.1435(2)$	$0.14183(11)$	$0.43429(5)$	$0.0208(2)$
O1	$0.15021(16)$	$-0.26290(9)$	$0.37768(4)$	$0.0184(2)$
O2	$0.43549(19)$	$-0.04727(10)$	$0.25087(4)$	$0.0246(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C11	$0.0250(6)$	$0.0193(6)$	$0.0246(6)$	$0.0092(5)$	$0.0052(5)$	$0.0013(5)$
C10	$0.0246(6)$	$0.0171(6)$	$0.0276(6)$	$0.0049(5)$	$0.0027(5)$	$0.0040(5)$

C9	$0.0224(6)$	$0.0198(6)$	$0.0213(6)$	$0.0046(5)$	$0.0016(4)$	$0.0053(4)$
C8	$0.0154(5)$	$0.0168(5)$	$0.0202(5)$	$-0.0013(4)$	$0.0042(4)$	$0.0013(4)$
C7	$0.0128(5)$	$0.0163(5)$	$0.0187(5)$	$0.0015(4)$	$0.0031(4)$	$0.0002(4)$
C6	$0.0156(5)$	$0.0157(5)$	$0.0193(5)$	$0.0020(4)$	$0.0044(4)$	$-0.0014(4)$
C5	$0.0175(5)$	$0.0141(5)$	$0.0274(6)$	$0.0035(4)$	$0.0022(4)$	$0.0017(4)$
C4	$0.0234(6)$	$0.0161(5)$	$0.0227(6)$	$0.0027(4)$	$0.0009(5)$	$0.0041(4)$
C3	$0.0204(5)$	$0.0174(5)$	$0.0175(5)$	$0.0038(4)$	$0.0058(4)$	$0.0021(4)$
C2	$0.0171(5)$	$0.0150(5)$	$0.0160(5)$	$0.0028(4)$	$0.0003(4)$	$-0.0006(4)$
C1	$0.0162(5)$	$0.0150(5)$	$0.0179(5)$	$0.0005(4)$	$0.0017(4)$	$0.0007(4)$
N1	$0.0191(5)$	$0.0166(5)$	$0.0171(5)$	$0.0030(4)$	$0.0021(4)$	$0.0020(4)$
N2	$0.0243(5)$	$0.0174(5)$	$0.0212(5)$	$0.0058(4)$	$0.0045(4)$	$0.0004(4)$
O1	$0.0131(4)$	$0.0196(4)$	$0.0227(4)$	$0.0009(3)$	$0.0027(3)$	$0.0006(3)$
O2	$0.0316(5)$	$0.0250(5)$	$0.0181(4)$	$0.0024(4)$	$0.0080(4)$	$0.0016(3)$

Geometric parameters (A, ${ }^{\circ}$)

C1-C2	1.5100 (17)	C7-C6	1.5591 (17)
C2-C7	1.5485 (15)	C7-H7	0.9800
C7-C8	1.5147 (16)	C6-O1	1.4460 (18)
N1-C8	1.3722 (16)	C6-C5	1.5143 (16)
O2-C8	1.2212 (15)	C6-H6	0.9800
C11-N2	1.4762 (16)	C5-C4	1.3279 (17)
C11-C10	1.5245 (17)	C5-H5	0.9300
C11-H11B	0.9700	C4-C3	1.5185 (17)
C11-H11A	0.9700	C4-H4	0.9300
C10-C9	1.5233 (18)	C3-O1	1.4455 (14)
C10-H10B	0.9700	C3-C2	1.5642 (17)
C10-H10A	0.9700	C3-H3	0.9800
C9-N1	1.4642 (15)	C2-H2	0.9800
C9-H9A	0.9700	$\mathrm{C} 1-\mathrm{N} 2$	1.2690 (16)
C9—H9B	0.9700	C1-N1	1.4017 (15)
C1-C2-C7	104.45 (9)	O1-C6-C5	101.99 (9)
C2-C7-C8	104.99 (9)	O1-C6-C7	100.29 (9)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	126.84 (11)	C5-C6-C7	106.39 (10)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1$	124.47 (11)	O1-C6-H6	115.4
N1-C8-C7	108.68 (10)	C5-C6-H6	115.4
C8-N1-C1	113.35 (9)	C7-C6-H6	115.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	108.46 (9)	C4-C5-C6	105.99 (10)
N2-C11-C10	114.08 (10)	C4-C5-H5	127.0
N2-C11-H11B	108.7	C6-C5-H5	127.0
C10-C11-H11B	108.7	C5-C4-C3	105.56 (10)
N2-C11-H11A	108.7	C5-C4-H4	127.2
C10-C11-H11A	108.7	C3-C4-H4	127.2
H11B-C11-H11A	107.6	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	101.80 (9)
C9-C10-C11	110.36 (10)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	101.02 (9)
C9-C10-H10B	109.6	C4-C3-C2	105.69 (11)
C11-C10-H10B	109.6	O1-C3-H3	115.5
C9-C10-H10A	109.6	C4-C3-H3	115.5
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.6	C2-C3-H3	115.5

H10B-C10-H10A	108.1	C1-C2-C7	104.45 (9)
N1-C9-C10	107.25 (10)	C1-C2-C3	112.04 (11)
N1-C9-H9A	110.3	C7-C2-C3	100.96 (9)
C10-C9-H9A	110.3	C1-C2-H2	112.8
N1-C9-H9B	110.3	C7- $\mathrm{C} 2-\mathrm{H} 2$	112.8
C10-C9-H9B	110.3	C3-C2-H2	112.8
H9A-C9-H9B	108.5	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	126.67 (11)
C8-C7-C6	111.27 (10)	N2-C1-C2	124.86 (11)
C2-C7-C6	101.33 (9)	C8-N1-C9	125.47 (10)
C8-C7-H7	112.8	C1-N1-C9	121.17 (9)
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	112.8	C1-N2-C11	116.62 (11)
C6-C7-H7	112.8	C3-O1-C6	96.21 (9)
N2-C11-C10-C9	52.43 (15)	C4-C3-C2-C7	71.22 (11)
C11-C10-C9-N1	-51.50 (14)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	-178.87 (11)
O2-C8-C7-C2	-177.88 (11)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	72.70 (15)
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 2$	1.78 (12)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	2.03 (12)
O2-C8-C7-C6	-69.07 (16)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	-106.39 (10)
N1-C8-C7-C6	110.59 (11)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$	179.14 (11)
C8-C7-C6-O1	-73.71 (11)	C7-C8-N1-C1	-0.53 (13)
C2-C7-C6-O1	37.46 (10)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	-0.25 (19)
C8-C7-C6-C5	-179.57 (9)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	-179.92 (10)
C2-C7-C6-C5	-68.40 (11)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	179.92 (11)
O1-C6-C5-C4	-31.12 (12)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	-1.00 (13)
C7-C6-C5-C4	73.52 (13)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	-0.66 (18)
C6-C5-C4-C3	-0.78 (12)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	178.41 (10)
C5-C4-C3-O1	32.45 (12)	C10-C9-N1-C8	-152.25 (11)
C5-C4-C3-C2	-72.72 (12)	C10-C9-N1-C1	28.41 (14)
C8-C7-C2-C1	-2.26 (11)	N1-C1-N2-C11	-2.07 (18)
C6-C7-C2-C1	-118.15 (10)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 11$	179.00 (11)
C8-C7-C2-C3	114.14 (11)	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 1$	-24.52 (16)
C6-C7-C2-C3	-1.75 (10)	C4-C3-O1-C6	-49.60 (10)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	76.14 (10)	C2-C3-O1-C6	59.19 (10)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	-178.13 (9)	C5-C6-O1-C3	49.17 (10)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	-34.51 (10)	C7-C6-O1-C3	-60.20 (9)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.98	2.61	$3.570(4)$	165
$\mathrm{C} 6 — \mathrm{H} 6 \cdots 2^{\mathrm{ii}}$	0.98	2.48	$3.3421(19)$	147
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.32	$3.2040(18)$	150
$\mathrm{C} 10 — \mathrm{H} 10 B^{\cdots} \mathrm{O}^{\mathrm{iv}}$	0.97	2.53	$3.393(4)$	148

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $x+1, y, z$; (iv) $-x, y+1 / 2,-z+1 / 2$.

(IV) 2-(2-Aminoethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=208.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2ybc
$a=17.840$ (2) \AA
$b=6.8747$ (6) \AA
$c=16.2125(17) \AA$
$\beta=102.419(5)^{\circ}$
$V=1941.9$ (3) \AA^{3}
$Z=8$

$$
\begin{aligned}
& F(000)=880 \\
& D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \text { Ka radiation, } \lambda=0.71075 \AA \\
& \text { Cell parameters from } 4078 \text { reflections } \\
& \theta=2.6-27.5^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=153 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.48 \times 0.25 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.923, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.125$
$S=1.07$
4439 reflections
287 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 19826 measured reflections
> 4439 independent reflections
> 3478 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.033$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-23 \rightarrow 23$
> $k=-8 \rightarrow 8$
> $l=-21 \rightarrow 21$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.056 P)^{2}+0.7213 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e} \AA^{-3}$

Special details

Experimental. HRMS (CI+), calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 209.0921$; found: 209.0922. Analysis, calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2}$: C 57.68, H 5.81, N 13.45; found: C $57.27, \mathrm{H} 5.51, \mathrm{~N} 12.96$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1A	$0.11191(8)$	$0.5549(2)$	$0.21220(9)$	$0.0245(3)$

C8B	0.30204 (9)	0.7661 (2)	0.03009 (9)	0.0236 (3)
C2A	0.05896 (8)	0.3813 (2)	0.19748 (9)	0.0240 (3)
H2A	0.0264	0.3709	0.2389	0.029*
C7B	0.38202 (9)	0.8530 (2)	0.04465 (9)	0.0240 (3)
H7B	0.3878	0.9480	0.0014	0.029*
C3A	0.01235 (8)	0.3770 (2)	0.10399 (9)	0.0270 (3)
H3A	-0.0135	0.4988	0.0833	0.032*
C6B	0.40781 (9)	0.9334 (2)	0.13638 (9)	0.0292 (3)
H6B	0.3716	1.0224	0.1546	0.035*
C4A	-0.03908 (9)	0.1990 (3)	0.09612 (10)	0.0312 (4)
H4A	-0.0920	0.1969	0.0913	0.037*
C5B	0.48865 (10)	1.0111 (3)	0.14447 (10)	0.0375 (4)
H5B	0.5037	1.1408	0.1464	0.045*
C5A	0.00715 (9)	0.0472 (2)	0.09755 (9)	0.0303 (4)
H5A	-0.0067	-0.0834	0.0943	0.036*
C4B	0.53341 (10)	0.8565 (3)	0.14828 (11)	0.0368 (4)
H4B	0.5864	0.8554	0.1538	0.044*
C6A	0.08715 (9)	0.1305 (2)	0.10547 (9)	0.0257 (3)
H6A	0.1239	0.0454	0.0859	0.031*
C3B	0.48096 (9)	0.6824 (2)	0.14183 (10)	0.0285 (3)
H3B	0.5057	0.5604	0.1640	0.034*
C7A	0.11273 (8)	0.2044 (2)	0.19850 (9)	0.0235 (3)
H7A	0.1067	0.1060	0.2403	0.028*
C2B	0.43554 (8)	0.6755 (2)	0.04771 (9)	0.0250 (3)
H2B	0.4690	0.6848	0.0072	0.030*
C8A	0.19280 (8)	0.2911 (2)	0.21489 (8)	0.0232 (3)
C1B	0.38243 (9)	0.5025 (2)	0.03199 (9)	0.0252 (3)
C9A	0.25164 (8)	0.6263 (2)	0.22864 (9)	0.0259 (3)
H9A	0.2357	0.7442	0.1969	0.031*
H9B	0.2925	0.5673	0.2063	0.031*
C9B	0.24321 (9)	0.4292 (2)	0.01472 (9)	0.0262 (3)
H9C	0.2002	0.4915	0.0319	0.031*
H9D	0.2579	0.3165	0.0506	0.031*
C10A	0.28184 (9)	0.6778 (2)	0.32148 (9)	0.0265 (3)
H10A	0.2393	0.7229	0.3450	0.032*
H10B	0.3022	0.5611	0.3518	0.032*
C10B	0.21842 (9)	0.3630 (2)	-0.07725 (10)	0.0305 (4)
H10C	0.1980	0.4741	-0.1117	0.037*
H10D	0.2633	0.3175	-0.0963	0.037*
N1A	0.18672 (7)	0.49184 (18)	0.21772 (7)	0.0237 (3)
N1B	0.30777 (7)	0.56515 (18)	0.02627 (7)	0.0232 (3)
N2A	0.34167 (8)	0.8271 (2)	0.33524 (9)	0.0313 (3)
N2B	0.16070 (9)	0.2086 (2)	-0.09061 (9)	0.0316 (3)
O1A	0.09422 (7)	0.72480 (16)	0.21678 (8)	0.0350 (3)
O3B	0.24162 (6)	0.85307 (17)	0.02391 (7)	0.0328 (3)
O2A	0.07133 (6)	0.31402 (16)	0.06088 (6)	0.0266 (2)
O2B	0.42195 (6)	0.75223 (16)	0.18321 (6)	0.0280 (3)
O3A	0.25344 (6)	0.20386 (17)	0.22252 (7)	0.0330 (3)
O1B	0.40037 (7)	0.33208 (16)	0.02779 (8)	0.0360 (3)

H11A	$0.3196(12)$	$0.944(3)$	$0.3100(13)$	$0.055(6)^{*}$
H11B	$0.3779(12)$	$0.794(3)$	$0.3075(12)$	$0.042(5)^{*}$
H11C	$0.1829(12)$	$0.101(3)$	$-0.0609(13)$	$0.046(6)^{*}$
H11D	$0.1210(14)$	$0.253(3)$	$-0.0666(14)$	$0.058(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0261 (8)	0.0258 (8)	0.0221 (7)	-0.0004 (6)	0.0066 (6)	-0.0001 (6)
C8B	0.0276 (8)	0.0259 (7)	0.0170 (6)	-0.0005 (6)	0.0040 (5)	0.0004 (6)
C2A	0.0232 (7)	0.0260 (8)	0.0239 (7)	-0.0017 (6)	0.0074 (6)	0.0001 (6)
C7B	0.0283 (8)	0.0222 (7)	0.0211 (7)	-0.0036 (6)	0.0043 (6)	0.0005 (6)
C3A	0.0231 (7)	0.0305 (8)	0.0270 (8)	0.0019 (6)	0.0042 (6)	0.0018 (6)
C6B	0.0365 (9)	0.0242 (8)	0.0245 (7)	0.0009 (6)	0.0016 (6)	-0.0029 (6)
C4A	0.0238 (8)	0.0413 (9)	0.0275 (8)	-0.0059 (7)	0.0030 (6)	-0.0023 (7)
C5B	0.0414 (10)	0.0347 (9)	0.0314 (9)	-0.0126 (8)	-0.0032 (7)	-0.0048 (7)
C5A	0.0319 (9)	0.0330 (9)	0.0241 (7)	-0.0087 (7)	0.0016 (6)	-0.0020 (6)
C4B	0.0277 (8)	0.0445 (10)	0.0350 (9)	-0.0103 (7)	-0.0003 (7)	-0.0051 (8)
C6A	0.0300 (8)	0.0243 (7)	0.0222 (7)	0.0000 (6)	0.0045 (6)	-0.0013 (6)
C3B	0.0218 (7)	0.0323 (8)	0.0305 (8)	0.0017 (6)	0.0039 (6)	-0.0012 (6)
C7A	0.0262 (8)	0.0230 (7)	0.0210 (7)	-0.0008 (6)	0.0046 (6)	0.0020 (6)
C2B	0.0226 (7)	0.0267 (8)	0.0271 (7)	-0.0040 (6)	0.0081 (6)	-0.0027 (6)
C8A	0.0274 (8)	0.0253 (7)	0.0166 (6)	0.0011 (6)	0.0040 (5)	0.0007 (5)
C1B	0.0256 (8)	0.0254 (8)	0.0255 (7)	-0.0022 (6)	0.0076 (6)	-0.0018 (6)
C9A	0.0263 (8)	0.0296 (8)	0.0224 (7)	-0.0061 (6)	0.0064 (6)	-0.0004 (6)
C9B	0.0251 (7)	0.0300 (8)	0.0241 (7)	-0.0080 (6)	0.0067 (6)	-0.0002 (6)
C10A	0.0277 (8)	0.0294 (8)	0.0222 (7)	0.0009 (6)	0.0053 (6)	-0.0026 (6)
C10B	0.0326 (9)	0.0330 (8)	0.0256 (8)	-0.0105 (7)	0.0055 (6)	0.0006 (6)
N1A	0.0234 (6)	0.0245 (6)	0.0232 (6)	-0.0026 (5)	0.0053 (5)	-0.0005 (5)
N1B	0.0215 (6)	0.0244 (6)	0.0243 (6)	-0.0037 (5)	0.0061 (5)	-0.0029 (5)
N2A	0.0265 (7)	0.0367 (8)	0.0299 (7)	-0.0024 (6)	0.0043 (6)	-0.0078 (6)
N2B	0.0306 (8)	0.0315 (8)	0.0318 (7)	-0.0080 (6)	0.0045 (6)	-0.0007 (6)
O1A	0.0358 (6)	0.0245 (6)	0.0455 (7)	0.0029 (5)	0.0104 (5)	-0.0029 (5)
O3B	0.0289 (6)	0.0349 (6)	0.0332 (6)	0.0055 (5)	0.0037 (5)	0.0013 (5)
O2A	0.0281 (6)	0.0301 (6)	0.0220 (5)	0.0009 (4)	0.0061 (4)	0.0037 (4)
O2B	0.0295 (6)	0.0317 (6)	0.0222 (5)	0.0040 (5)	0.0045 (4)	0.0028 (4)
O3A	0.0266 (6)	0.0342 (6)	0.0365 (6)	0.0056 (5)	0.0028 (5)	0.0007 (5)
O1B	0.0316 (6)	0.0257 (6)	0.0519 (7)	0.0003 (5)	0.0113 (5)	-0.0047 (5)

Geometric parameters ($A,{ }^{\circ}$)

C1A-C2A	$1.509(2)$	C6A-O2A	$1.4515(17)$
C2A-C7A	$1.547(2)$	C6A-C7A	$1.5639(19)$
C7A-C8A	$1.518(2)$	C6A-H6A	0.9800
C8A-N1A	$1.3858(19)$	C3B-O2B	$1.4465(18)$
C8A-O3A	$1.2197(18)$	C3B-C2B	$1.567(2)$
C1A-N1A	$1.3877(19)$	C3B-H3B	0.9800
C1A-O1A	$1.2166(19)$	C7A-H7A	0.9800
C8B-O3B	$1.2177(18)$	C2B-C1B	$1.508(2)$
C8B-N1B	$1.3878(19)$	C2B-H2B	0.9800

C8B-C7B	1.518 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.565 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.9800
C7B-C2B	1.543 (2)
C7B-C6B	1.560 (2)
C7B-H7B	0.9800
C3A-O2A	1.4490 (18)
C3A-C4A	1.518 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	0.9800
C6B-O2B	1.4520 (19)
C6B-C5B	1.517 (2)
C6B-H6B	0.9800
C4A-C5A	1.327 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	0.9300
C5B-C4B	1.323 (3)
C5B-H5B	0.9300
C5A-C6A	1.517 (2)
C5A-H5A	0.9300
C4B-C3B	1.509 (2)
C4B-H4B	0.9300
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	104.74 (12)
C8A-C7A-C2A	104.56 (11)
O3A-C8A-C7A	127.27 (14)
O3A-C8A-N1A	124.08 (14)
N1A-C8A-C7A	108.63 (12)
C8A-N1A-C1A	112.94 (12)
N1A-C1A-C2A	108.91 (12)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	123.67 (14)
O1A-C1A-C2A	127.40 (14)
O3B-C8B-N1B	123.88 (14)
O3B-C8B-C7B	127.28 (14)
N1B-C8B-C7B	108.83 (12)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	110.64 (12)
C7A-C2A-C3A	101.22 (11)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	113.1
C7A-C2A-H2A	113.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	113.1
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	104.39 (12)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	111.23 (12)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	101.29 (11)
C8B-C7B-H7B	113.0
C2B-C7B-H7B	113.0
C6B-C7B-H7B	113.0
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	101.96 (12)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	100.56 (11)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	106.40 (12)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	115.4
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	115.4

C1B-O1B	1.2203 (19)
C1B-N1B	1.3838 (19)
C9A-N1A	1.4624 (18)
C9A-C10A	1.527 (2)
C9A-H9A	0.9700
C9A-H9B	0.9700
C9B-N1B	1.4637 (18)
C9B-C10B	1.530 (2)
C9B-H9C	0.9700
C9B-H9D	0.9700
C10A-N2A	1.463 (2)
C10A-H10A	0.9700
C10A-H10B	0.9700
C10B-N2B	1.462 (2)
C10B-H10C	0.9700
C10B-H10D	0.9700
N2A-H11A	0.95 (2)
N2A-H11B	0.89 (2)
N2B-H11C	0.93 (2)
N2B-H11D	0.93 (2)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	115.4
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	115.4
C2B-C3B-H3B	115.4
C8A-C7A-C6A	111.40 (12)
C2A-C7A-C6A	101.17 (11)
C8A-C7A-H7A	112.9
C2A-C7A-H7A	112.9
C6A-C7A-H7A	112.9
C1B-C2B-C7B	104.84 (12)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	111.28 (12)
C7B-C2B-C3B	101.20 (11)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	112.9
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	112.9
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	112.9
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	123.73 (14)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	127.16 (14)
N1B-C1B-C2B	109.06 (12)
N1A-C9A-C10A	111.62 (12)
N1A-C9A-H9A	109.3
C10A-C9A-H9A	109.3
N1A-C9A-H9B	109.3
C10A-C9A-H9B	109.3
H9A-C9A-H9B	108.0
N1B-C9B-C10B	111.67 (12)
N1B-C9B-H9C	109.3
C10B-C9B-H9C	109.3
N1B-C9B-H9D	109.3
C10B-C9B-H9D	109.3

$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	115.4
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	101.63 (12)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	100.20 (11)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	106.68 (13)
O2B-C6B-H6B	115.5
C5B-C6B-H6B	115.5
C7B-C6B-H6B	115.5
C5A-C4A-C3A	105.67 (14)
C5A-C4A-H4A	127.2
C3A-C4A-H4A	127.2
C4B-C5B-C6B	105.93 (15)
C4B-C5B-H5B	127.0
C6B-C5B-H5B	127.0
C4A-C5A-C6A	105.94 (14)
C4A-C5A-H5A	127.0
C6A-C5A-H5A	127.0
C5B-C4B-C3B	105.95 (14)
C5B-C4B-H4B	127.0
C3B-C4B-H4B	127.0
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	101.96 (12)
O2A-C6A-C7A	100.54 (11)
C5A-C6A-C7A	106.15 (12)
O2A-C6A-H6A	115.4
C5A-C6A-H6A	115.4
C7A-C6A-H6A	115.4
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	101.94 (13)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	100.73 (11)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	105.93 (13)
O1A-C1A-C2A-C7A	-179.51 (15)
N1A-C1A-C2A-C7A	2.19 (15)
O1A-C1A-C2A-C3A	72.18 (19)
N1A-C1A-C2A-C3A	-106.12 (13)
O3B-C8B-C7B-C2B	179.53 (14)
N1B-C8B-C7B-C2B	0.71 (15)
O3B-C8B-C7B-C6B	71.08 (19)
N1B-C8B-C7B-C6B	-107.74 (14)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	74.43 (14)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	-36.17 (13)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-179.63 (12)
C7A-C2A-C3A-C4A	69.77 (14)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	72.99 (14)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	-37.46 (14)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	178.53 (13)
C2B-C7B-C6B-C5B	68.07 (14)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	32.38 (15)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	-72.54 (15)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	31.39 (16)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	-73.11 (16)

H9C-C9B-H9D	107.9
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	113.85 (12)
N2A-C10A-H10A	108.8
C9A-C10A-H10A	108.8
N2A-C10A-H10B	108.8
C9A-C10A-H10B	108.8
H10A-C10A-H10B	107.7
N2B-C10B-C9B	114.02 (12)
N2B-C10B-H10C	108.7
C9B-C10B-H10C	108.7
N2B-C10B-H10D	108.7
C9B-C10B-H10D	108.7
H10C-C10B-H10D	107.6
C8A-N1A-C1A	112.94 (12)
C8A-N1A-C9A	124.59 (13)
C1A-N1A-C9A	122.43 (13)
C1B-N1B-C8B	112.70 (12)
C1B-N1B-C9B	121.96 (13)
C8B-N1B-C9B	125.31 (12)
C10A-N2A-H11A	107.9 (13)
C10A-N2A-H11B	109.0 (13)
H11A-N2A-H11B	106.3 (18)
C10B-N2B-H11C	107.2 (13)
C10B-N2B-H11D	105.9 (14)
H11C-N2B-H11D	109.0 (18)
C3A-O2A-C6A	95.91 (10)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	95.97 (11)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	34.90 (14)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	-70.95 (14)
C2A-C7A-C8A-O3A	178.38 (14)
C6A-C7A-C8A-O3A	-73.16 (18)
C2A-C7A-C8A-N1A	-3.32 (15)
C6A-C7A-C8A-N1A	105.14 (13)
C7B-C2B-C1B-O1B	178.86 (15)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	-72.5 (2)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-3.73 (15)
C3B-C2B-C1B-N1B	104.86 (14)
N1A-C9A-C10A-N2A	-174.08 (13)
N1B-C9B-C10B-N2B	172.66 (14)
O3A-C8A-N1A-C1A	-176.58 (13)
C7A-C8A-N1A-C1A	5.05 (16)
O3A-C8A-N1A-C9A	1.2 (2)
C7A-C8A-N1A-C9A	-177.21 (12)
O1A-C1A-N1A-C8A	177.01 (14)
C2A-C1A-N1A-C8A	-4.61 (16)
O1A-C1A-N1A-C9A	-0.8 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	177.59 (12)

$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-0.51(16)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$0.50(18)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$-31.43(15)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$73.40(15)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	$-32.42(16)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$72.55(16)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$0.67(14)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$115.74(12)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-115.15(12)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-0.08(13)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-74.40(14)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$179.74(12)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$36.24(13)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-69.62(14)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$1.77(14)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$117.39(12)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-114.03(12)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$1.59(14)$
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-76.04(14)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$178.11(13)$

$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-93.08(16)$
$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$84.46(16)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$-178.00(14)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$4.48(16)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$0.1(2)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$-177.36(12)$
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$177.87(13)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-3.27(16)$
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$-0.2(2)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$178.66(12)$
$\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-79.01(17)$
$\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$98.90(17)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-49.59(12)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$59.87(12)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$49.24(12)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-59.95(12)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$49.64(13)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-59.36(12)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-49.14(13)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$60.42(12)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 A — \mathrm{H} 11 A \cdots \mathrm{O} 3 A^{\mathrm{i}}$	$0.95(2)$	$2.42(2)$	$3.3599(18)$	$169.1(18)$
$\mathrm{N} 2 A — \mathrm{H} 11 B \cdots \mathrm{O} 2 B$	$0.89(2)$	$2.33(2)$	$3.1480(18)$	$151.8(17)$
$\mathrm{N} 2 B — \mathrm{H} 11 C \cdots \mathrm{O} 3 B^{\mathrm{ii}}$	$0.92(2)$	$2.30(2)$	$3.2175(19)$	$174.4(18)$
$\mathrm{N} 2 B — \mathrm{H} 11 D \cdots \mathrm{O} 2 A$	$0.93(2)$	$2.45(2)$	$3.2838(19)$	$148.7(19)$
$\mathrm{C} 2 B — \mathrm{H} 2 B \cdots \mathrm{O} 1 B^{\mathrm{iii}}$	0.98	2.52	$3.408(2)$	151

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$; (iii) $-x+1,-y+1,-z$.

