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REGULARITY CRITERION FOR 3D NAVIER-STOKES EQUATIONS

IN TERMS OF THE DIRECTION OF THE VELOCITY*

Alexis Vasseur, Austin

(Received May 17, 2007)

Abstract. In this short note we give a link between the regularity of the solution u to
the 3D Navier-Stokes equation and the behavior of the direction of the velocity u/|u|. It is
shown that the control of div(u/|u|) in a suitable Lp

t (L
q
x) norm is enough to ensure global

regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity,
introduced first by Constantin and Fefferman. However, in this case the condition is not on
the vorticity but on the velocity itself. The proof, based on very standard methods, relies
on a straightforward relation between the divergence of the direction of the velocity and
the growth of energy along streamlines.
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1. Introduction

This short paper deals with a new formulation of the well-known criteria for reg-

ularity of solutions to the incompressible Navier-Stokes equation in dimension 3,

namely,

∂tu + div(u ⊗ u) + ∇P − ∆u = 0, t ∈ ]0,∞[, x ∈ R3,(1)

div u = 0.

The unknown is the velocity field u(t, x) ∈ R3. The pressure P is a non local operator

of u which can be seen as a Lagrange multiplier associated to the constraint of

incompressibility div u = 0. The existence of weak solutions was proved long ago by

Leray [10] and Hopf [7]. They showed that for any initial value with finite energy u0 ∈
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L2(R3) there exists a function u ∈ L∞(0,∞; L2(R3))×L2(0,∞; Ḣ1(R3)) verifying (1)

in the sense of distributions, and verifying in addition the energy inequality

(2) ‖u(t, ·)‖2
L2(R3) + 2

∫ t

0

‖∇u(s, ·)‖2
L2(R3) ds 6 ‖u0‖

2
L2(R3), t > 0.

Such a solution is now called the Leray-Hopf weak solution to (1).

In [12], Serrin showed that a Leray-Hopf solution of (1) lying in Lp(0,∞; Lq(R3))

with p, q > 1 such that 2/p+ 3/q < 1 is smooth in the spatial directions. This result

was later extended in [13] and [5] to the case of equality for p < ∞. Notice that the

case of L∞(0,∞; L3(R3)) was proven only very recently by Iskauriaza, Serëgin and

Shverak [8].

Another class of regularity criteria which involves the gradient of u was introduced

by Beirão da Veiga [2]. More precisely, he showed that any Leray-Hopf solution u

such that ∇u lies in Lp(Lq) with 2/p + 3/q = 2, 3/2 < q < ∞, is smooth. Beale-

Kato-Majda [1] dealt with the vorticity ω = rot u and proved regularity under the

condition ω ∈ L1(L∞). This condition was later improved to L1(BMO) by Kozono

and Taniuchi [9].

In [4], Constantin and Fefferman introduced a criterion involving the direction of

the vorticity ω/|ω|. They showed that under a Lipschitz-like regularity assumption

on ω/|ω|, the solution is smooth (see [14] for extension of this result).

Our result is of the same spirit but involves the direction of the velocity itself

instead of the vorticity.

Theorem 1. Let u be a Leray-Hopf solution to the Navier-Stokes equation with

an initial value u0 ∈ L2(R3). If div(u/|u|) ∈ Lp(0,∞; Lq(R3)) with

2

p
+

3

q
6

1

2
, q > 6, p > 4,

then u is smooth on (0,∞) × R3.

The result shows that it is enough to control the rate of change of the direction

of the velocity to get full regularity of the solution. The main point of this paper is

the following straightforward equality coming from the incompressibility of the flow:

(3) |u| div(u/|u|) = −
u

|u|
· ∇|u|.

This equality shows that, due to the incompressibility, the growth of |u| along the

stream lines is linked to the divergence of the direction of u. It means that to allow
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some increase of kinetic energy |u|2 along the streamlines, those streamlines need to

be bent, producing some divergence on the direction of the velocity.

This remark is the main point of this short note. The proof of the theorem then

follows in a very standard way. It uses the fact that the right-hand side term in (3)

corresponds, up to the multiplication by a power of |u|, to the flux of energy u·∇|u|2.

Besides, it is also interesting to notice that this term depends only on the symmetric

part of the gradient of u. Indeed, it can be rewritten as

|u|div(u/|u|) = −
u

|u|
· ∇|u| = −

u

2|u|2
· ∇|u|2 = −

uT

|u|2
· ∇u · u = −

uT

|u|2
· D(u) · u.

It has been already known that if one component of the velocity is bounded in

a suitable space, then the solution is smooth (see Penel and Pokorný [11], He [6],

Zhou [14], Chae and Choe [3]). Our result states that if the direction of the velocity

does not change too drastically, the conclusion is still true.

2. Proof of Theorem 1

Let us first state a technical lemma.

Lemma 2. For every r, 2 6 r < 6, there exists a constant C such that for every

β > 0 and every function f lying in L2(R3) and such that ∇f lies in L2(R3), we have

β‖f‖2
Lr(R3) 6

1

4
‖∇f‖2

L2(R3) + Cβ1/θ‖f‖2
L2(R3),

for θ = 3/r − 1/2.

P r o o f . The Sobolev inequality gives

‖f‖L6(R3) 6 C‖∇f‖L2(R3).

Interpolation gives

β‖f‖2
Lr(R3) 6 (β1/θ‖f‖2

L2(R3))
θ(‖f‖2

L6(R3))
1−θ,

where
θ

2
+

1 − θ

6
=

1

r
,

that is θ = 3/r − 1/2. We complete the proof using the Minkowski inequality

ab 6
ap

p
+

bq

q
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with

θ =
1

p
, 1 − θ =

1

q

and

a =
(β1/θ‖f‖2

L2)θ

ε
, b = ε(‖∇f‖2

L2)1−θ

for ε small enough. �

We consider now u, a Leray-Hopf solution to the Navier-Stokes equation. Since

u lies in L∞(0,∞; L2(R3)) ∩ L2(0,∞; Ḣ1(R3)), for almost every t0 > 0, u(t0, ·) lies

in H1(R3). It is classical that there exists a maximal T > t0 such that u is smooth

on (t0, T ) × R3. Our goal is to show that

lim
t→T

‖u‖L3(t0,t;L9(R3)) < ∞.

Thanks to Serrin’s criterion, this implies that T = ∞. Note that u(t0, ·) ∈ L2(R3) ∩

L6(R3), so it lies in L3(R3). We consider u on (t0, T ) × R3. Multiplying (1) by u|u|

and integrating in x we find

d

dt

∫R3

|u|3

3
dx +

∫R3

|u|(|∇u|2 + |∇|u||2) dx −

∫R3

Pu · ∇|u| dx = 0.

Noting that

−∆P =
∑

ij

∂i∂j(uiuj),

we have, for every 4/3 < r < ∞,

‖P‖L3r/4(R3) 6 Cr‖u‖
2
L3r/2(R3).

Since div(u/|u|) ∈ Lp(Lq) for 2/p+3/q 6 1/2, q > 6, and u ∈ La(Lb) for 2/a+3/b =

3/2, 2 6 b 6 6, there exist p > 1 and 2 < q < 6 such that |u| div(u/|u|) ∈ Lp(Lq)

with
1

p
=

1

p
+

1

a
,

1

q
=

1

q
+

1

b
.

Note that 2 6 q < 6 and

(4)
2

p
+

3

q
6 2.

So, using (3), we have for every fixed time t,

d

dt

∫R3

|u|3

3
dx +

∫R3

|u||∇|u||2 dx 6

∫R3

|P ||u|
∣

∣

∣

u

|u|
· ∇|u|

∣

∣

∣
dx

6 C‖u‖3
L3r/2(R3)‖|u| div(u/|u|)‖Lq(R3)
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with
2

r
+

1

q
= 1.

Using Lemma 2 with

f = |u|3/2, ∇f =
3

2
|u|1/2∇|u|,

we find that

C‖u‖3
L3r/2(R3)‖|u| div(u/|u|)‖Lq(R3)

= C‖f‖2
Lr(R3)‖|u| div(u/|u|)‖Lq(R3)

6
9

16
‖|u|1/2∇|u|‖2

L2(R3) + C‖|u| div(u/|u|)‖
1/θ

Lq(R3)
‖u‖3

L3(R3),

where

θ =
3

r
−

1

2
=

1

2

(

2 −
3

q

)

.

By virtue of (4), this gives 1/θ 6 p, hence ‖|u| div(u/|u|)‖
1/θ

Lq(R3)
lies in L1(0, T ) with

d

dt

∫R3

|u|3

3
dx +

7

16

∫R3

|u||∇|u||2 dx 6 C‖|u| div(u/|u|)‖
1/θ

Lq(R3)

∫R3

|u|3

3
dx.

The Gronwall lemma gives that, whenever T is finite,

lim
t→T

∫R3

|u|3 dx < ∞,

and so
∫ T

t0

∫R3

|u||∇|u||2 dx dt =
4

9

∫ T

t0

∫R3

|∇|u|3/2|2 dxdt

is finite too. The Sobolev imbedding gives that u ∈ L3(t0, T ; L9(R3)). The Serrin’s

criteria, then, contradict the fact that T is finite. This shows that u is smooth on

(t0,∞) × R3 for almost every t0 > 0. The assertion of Theorem 1 follows.

References

[1] J.T. Beale, T. Kato, A. Majda: Remarks on the breakdown of smooth solutions for the
3-D Euler equations. Commun. Math. Phys. 94 (1984), 61–66. zbl

[2] H. Beirão da Veiga: A new regularity class for the Navier-Stokes equations in Rn. Chin.
Ann. Math., Ser. B 16 (1995), 407–412. zbl

[3] Dongho Chae, Hi-Jun Choe: Regularity of solutions to the Navier-Stokes equation. Elec-
tron. J. Differ. Equ. No. 05 (1999). zbl

[4] P. Constantin, C. Fefferman: Direction of vorticity and the problem of global regularity
for the Navier-Stokes equations. Indiana Univ. Math. J. 42 (1993), 775–789. zbl

51

http://www.emis.de/MATH-item?0573.76029
http://www.emis.de/MATH-item?0837.35111
http://www.emis.de/MATH-item?0923.35117
http://www.emis.de/MATH-item?0837.35113


[5] E.B. Fabes, B. F. Jones, N.M. Rivière: The initial value problem for the Navier-Stokes
equations with data in Lp. Arch. Ration. Mech. Anal. 45 (1972), 222–240. zbl

[6] C. He: Regularity for solutions to the Navier-Stokes equations with one velocity com-
ponent regular. Electron. J. Differ. Equ. No. 29 (2002). zbl

[7] E. Hopf: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.
Math. Nachr. 4 (1951), 213–231. (In German.) zbl
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