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Decisions are prone to bias. This can be seen in daily choices. For instance, when the 

markets are plunging, investors tend to sell stocks instead of purchasing them with lower 

prices because people in general are more sensitive to the potential losses than the 

potential gains, or loss averse, in making financial choices. This also can be seen in 

laboratory tests. When participants receive higher payoffs for successfully discriminating 

a visual stimulus as one choice against the other, they begin choosing this higher-

rewarded option more often even though the objective evidence indicates the alternative. 

In my dissertation, I used mathematical models and functional magnetic resonance 

imaging (fMRI) to track the development of bias in perceptual and financial decision-

making and presented evidence characterizing the experience-sensitive and domain-

general decision-making process in the human brains. The first chapter showed that bias 

could be developed through associating decision contexts and reward feedback from trial 

to trial in perceptual decision-making. Although the surface task differed, this learning 

process involved the same prediction error driven mechanisms implemented in the 

dopaminergic system as in financial decision-making. Furthermore, the frontal cortex 

increased its strength of connection between visual and value systems that accounted for 
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the growth of perceptual bias. The second chapter extended this feedback-driven 

acquisition process to examine the influences of experience on loss aversion in financial 

decision-making. The results showed that people learned to make riskier or more 

conservative decisions according to the feedback that they had received in different 

decision contexts. This alternation in loss aversion was achieved through modulation of 

the value system’s sensitivity toward the potential gains in evaluation. The frontal cortex 

mediated this change. The third chapter used a mathematical model to identify the 

changes in financial decision-making that occurred faster than the temporal resolution of 

fMRI. The results suggested that people might simplify financial information into some 

rules of thumb for making a choice. These findings not only integrated the knowledge in 

different domains of decision neuroscience but also shed lights onto how one may refine 

the decision-making process against experiences. 
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Introduction 

Decisions are susceptible to bias. This is commonly seen in choices that people 

make on daily basis. For instance, it has been shown that if investors could abide by their 

financial plan, they would have gained more returns from the markets. However, since 

the potential losses have greater psychological impact than the potential gains, people 

tend to deviate from their plan by purchasing stocks when the markets roar and selling 

them when the markets plunge. Biased decisions are also ubiquitously observed across 

species when tested in laboratory settings. One easy way to demonstrate how much 

choices can depart from the objective evidence presenting in front of a decision maker is 

using perceptual discrimination tasks. When participants receive higher payoffs for 

successfully discriminating a visual stimulus as one choice against the other, they begin 

choosing this higher-rewarded option more often even though the visual stimulus 

indicates the alternative.  

 

For decades, research into the neural mechanisms that process objective decision 

evidence and those that contribute to biases in decision-making has proceeded in parallel 

domains with limited crosstalk. Specifically, the literature on perceptual decisions has 

focused on how an individual’s choices are influenced by the quality of sensory evidence, 

such as brightness, motion strength, vibration…etc. On the other hand, the literature on 

economic decisions has emphasized how individuals develop preferential choices from 

previous choice outcomes (Glimcher 2011; Lee, Seo, and Jung 2012; Montague and 
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Berns 2002). Recently, converging evidence from animal physiology (Ding and Gold 

2013) and human neuroimaging (Summerfield and Tsetsos 2012) has motivated a call to 

investigate behavior that links these two factors—evidence and experience—in order to 

identify the domain-general decision-making processes in the brain.  

 

The goal of my dissertation is to offer an integrated view of decision-making 

process in the human brains by tracing the development of bias in different domains of 

decision-making. To achieve this goal, functional magnetic resonance imaging (fMRI) 

and mathematical models were used to synthesize data collected from seemly different 

behavioral tasks into a common framework. The details of these studies and findings 

were reported in three chapters. In Chapter 1, I used a perceptual discrimination task to 

test the hypothesis that the reward feedback from trial to trial contributed to bias in 

perceptual decisions and that this development involved the reinforcement learning 

mechanism implemented in dopaminergic systems as shown in economic decision-

making. In Chapter 2, I examined the influence of choice feedback on a common bias in 

financial decision-making process--loss aversion. I tested the hypothesis that pairing 

decision contexts and feedback could alter loss aversion and that this adjustment was 

achieved by tuning the interaction between cognitive control and value systems. In 

Chapter 3, I developed a mathematical model to identify the experience-induced changes 

in financial decision-making in order to characterize those changes in the decision-

making process that were beyond the limited temporal resolution of the functional brain 
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imaging technique. This complimented the findings in Chapter 2. Overall, these findings 

not only bridge the literature gap between different domains of decision neuroscience but 

also provide insights into how one may refine daily choices in the face of experiences. 
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Chapter 1: Multiple brain networks contribute to the acquisition of bias 
in perceptual decision-making 

INTRODUCTION 

Decisions are driven both by the objective evidence presented to an individual 

and by the outcomes that the individual has learned to expect from the past. For decades, 

research in the neural mechanisms that processes each of the two factors in decision-

making has proceeded in parallel with very little crosstalk. The literature on perceptual 

decisions has focused on how an individual’s choices are influenced by the quality of 

sensory evidence, whereas the literature on economic decisions has emphasized how an 

individual’s choices are driven by the expected reward arising from previous choice 

outcomes (Glimcher 2011; Lee, Seo, and Jung 2012; Montague and Berns 2002). 

Recently, converging evidence from animal physiology (Ding and Gold 2013) and human 

neuroimaging (Summerfield and Tsetsos 2012) has motivated a call to investigate 

behavior that links these two factors in order to identify the general neural mechanisms of 

decision-making processes across domains. Reward-induced bias in perceptual decisions 

(Edwards 1965; Green and Swets 1966) is a phenomenon that sits exactly at this literature 

gap. Investigating the neural mechanisms underlying such bias hence will provide an 

integrated view of decision-making processes in the brain. 

 

Expected reward has a profound influence on perceptual decisions. When 

prompted to classify sensory information as one of the two alternatives offering 
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asymmetric payoffs, both humans and animals tend to prefer the higher-rewarded 

alternative (Feng, Holmes, Rorie, and Newsome 2009; Fleming, Whiteley, Hulme, 

Sahani, and Dolan 2010; Liston and Stone 2008; Mulder, Wagenmakers, Ratcliff, Boekel, 

and Forstmann 2012; Rorie, Gao, McClelland, and Newsome 2010; Summerfield and 

Koechlin 2010; Whiteley and Sahani 2008). At the behavioral level, this choice 

preference can be identified from the sigmoidal relationship between the strength of 

sensory evidence and the probability of choosing one of the alternatives, or psychometric 

function. The amount of bias is quantified as the horizontal shift of the indecision point in 

the psychometric function (Gold and Ding 2013; Green and Swets 1966; Macmillan and 

Creelman 2004). The choice preference also can be characterized by reaction time since 

the biased choices usually are made faster (Mulder et al. 2012; Summerfield and 

Koechlin 2010). Drift-diffusion modeling of the choices and reaction times suggests that 

information about reward generally affects the early stage of decision process (Mulder et 

al. 2012; Summerfield and Koechlin 2010; but see Blank, Biele, Heekeren, and 

Philiastides 2013 for alternatives), so that less sensory evidence is required to be 

accumulated in order to support the more beneficial option.  

 

In contrast to the well-established theoretical and empirical work at the 

behavioral level, the neural mechanisms by which reward information contributes to bias 

in perceptual decisions remain an open question. Specifically, it remains unclear how the 

expectation of reward is formed in a neural system during perceptual decisions and once 
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formed, how this reward information influences different neural components of the 

perceptual decision process. One possibility is that reward information is formed as a 

task-set (Summerfield, Egner, Mangels, and Hirsch 2006) in the higher level (i.e. frontal 

and parietal cortices) of the perceptual decision hierarchy. It then selectively influences 

the sensory and motor system to facilitate the choice of higher-rewarded options (Duncan 

2001; Liston and Stone 2008). However, this account is only partially supported by 

evidence from human functional magnetic resonance imaging (fMRI). After human 

participants receive explicit instructions for the payoffs of each perceptual choice, the 

activation of fronto-parietal cortices positively correlates with the amount of bias in their 

perceptual decisions (Fleming et al. 2010; Mulder et al. 2012; Summerfield and Koechlin 

2010). Yet, the correlation between perceptual bias and activation in sensory or motor 

cortices is inconsistent across studies (Fleming et al. 2010; Mulder et al. 2012; 

Summerfield and Koechlin 2010; Serences 2008).  

 

Another possibility is that bias in perceptual decisions reflects the subjective 

value that is learned from the previous choice outcomes. Evidence shows that as macaque 

monkeys developed a bias toward the higher-rewarded options in a motion discrimination 

task, the firing-rate of midbrain dopaminergic neurons increased when the animals 

received greater reward for correctly identifying the motion direction, and decreased 

when reward was absent after an incorrect choice (Nomoto, Schultz, Watanabe, and 

Sakagami 2010). This activation pattern is analogous to a reinforcement learning signal 
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(Schultz 1998; Sutton and Barto 1998) in which the difference between the expected and 

actual choice outcomes (reward prediction error, RPE) is used to update the subjective 

value of each option, which is putatively encoded in the ventromedial prefrontal cortex 

(vmPFC) (Bartra, McGuire, and Kable 2013; Garrison, Erdeniz, and Done 2013; 

Glimcher 2011; Montague and Berns 2002). The value difference between each option 

hence determines which options are worth repeating in the future (Lee et al. 2012). This 

observation has inspired theoretical work that combines drift-diffusion and reinforcement 

learning models to simulate the potential interaction between cortical and basal ganglia in 

the development of perceptual bias (Bogacz and Larsan 2011; Rao 2010). Nevertheless, 

until now, no empirical study has directly investigated this reinforcement-learning 

mechanism and its influence on different decision-making networks at the level of the 

whole-brain when individuals acquire perceptual bias.  

 

 In the present study, we approach these issues by tracking how humans 

developed bias in perceptual decisions using computational models and functional brain 

imaging. During fMRI acquisition, participants performed a motion discrimination task 

(Britten, Shadlen, Newsome, and Movshon 1993; Newsome, Britten, and Movshon 1989; 

Shadlen and Newsome 2001) with pre-trial cues signaling one of two different reward 

contexts. Trial-wise reward feedback was delivered to participants so that a correct 

response to one of the motion directions was reinforced more strongly in each reward 

context. To maximize reward, the subject must combine information about the stimulus 
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and the potential reward, such that predicted reward exerts a greater effect on choices 

when the stimulus is weak. As the experiment proceeded, the indecision point of 

perceptual choices gradually shifted when it was measured in different reward contexts. 

This shift was quantified using a reinforcement-learning model that estimated the 

subjective value of each option according to the association of reward prediction error 

(RPE) and the reward contexts (Watkins and Dayan 1992). Consistent with a role for 

value learning mechanisms, the RPE signals associated with the acquisition of perceptual 

bias positively correlated with the activation of ventral striatum, dlPFC, and parietal 

cortex. As the bias grows, we find that the value signals integrate into perceptual decision 

network through increasing functional connectivity in networks involved in motor 

preparation (vmPFC-motor cortex), stimulus evaluation (frontal-vmPFC-visual cortex), 

and cognitive control (parietal-anterior cingulate cortex [ACC]). These results enhance 

our understanding of the neural mechanisms underlying bias acquisition, and provide a 

fundamental linkage between the perceptual and economic decision-making processes in 

the brain. 

MATERIALS AND METHODS 

Participants 

Twenty-four human participants completed the behavioral paradigm in the MRI 

scanner (12 females, 12 males; age range: 18 - 30). One participant was excluded because 

of extreme parameter estimates in the fMRI data analysis. All participants were recruited 

through posted flyers and were prescreened. They were free of any self-reported 



 
 

9 

neurological or psychiatric diseases, had normal or corrected-to-normal visual acuity and 

normal color vision, and right-handed. They gave written informed consent for 

participation. The Institutional Review Board of the University of Texas at Austin 

approved all experimental procedures. 

Stimuli 

All stimuli were generated in Matlab version 7.10.0, using the Psychophysics 

Toolbox extension, version 3.0.10 (Brainard 1997; Pelli 1997). Each motion stimulus was 

composed of 150 white dots moving inside a donut-shaped display patch on a black 

background. The display patch was centered on the screen and extended from 4 to 8 

degrees of visual-angle. Within the display patch, every dot moved at the speed of 8 

degrees of visual-angle per second. Some dots moved coherently toward one direction 

while the others moved randomly. The percentage of coherently moving dots determined 

the motion strength (coherence level). The presentation of the dots was controlled to 

remove local motion signals (Britten et al. 1993; Newsome et al. 1989; Palmer, Huk, and 

Shadlen 2005; Shadlen and Newsome 2001). Upon stimulus onset, the dots were 

randomly located on the first three video frames. They were relocated after two 

subsequent frames, so that the dots in frame 1 were repositioned in frame 4, and the dots 

in frame 2 were repositioned in frame 5, etc.  When repositioned, each dot was either 

randomly presented at the new location or aligned with the pre-determined motion 

direction  (upward or downward), depending on the pre-determined motion strength on 
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that trial. Each stimulus was composed of 12 video frames with 60 Hz video frame 

refresh rates. 

Procedures and task 

Participants first performed a practice session in the laboratory to familiarize 

themselves with the random-dot motion discrimination task. In the practice session, a trial 

began with a red fixation cross that was presented at the center of the display screen for 

1.5s. Then, a patch of moving dots was presented for 200ms. After the stimulus offset, 

participants had to decide whether the global motion direction of these dots was upward 

or downward by pressing the corresponding spatially congruent buttons within 600ms. 

Error feedback was presented for 1.5s for incorrect or slow responses; otherwise, the next 

trial continued immediately with presentation of the fixation cross.  On each trial, the 

motion stimulus was a random sample from one of the 9 coherence levels (0%, ±6%, 

±12%, ±64%, ±80%; positive sign: upward motion, negative sign: downward motion). 

The correct response for 0% coherence trials was decided using a random number 

generator, so that the probability of being either correct or incorrect on this trial type was 

equal over the entire experiment. The total of 540 trials (9 coherence levels x 60 

repetition) was broken down into six 90-trial blocks. The participants could take a break 

after completing each block. 

 

The fMRI scan was conducted no more than 7 days after the practice session. In 

the scanner, participants were asked to decide the motion direction of moving-dots 
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presented in two independent reward contexts with a goal to get as many reward points as 

possible over the experiment. The task structure and the timeline of events on a trial are 

illustrated in Figure 1. Before a trial started, a white fixation-cross presented at the center 

of the display screen during the jittered inter-trial interval (truncated exponential 

distribution; mean:  4s, range 2.7 - 12.7s). At the beginning of a trial, the color of the 

fixation-cross changed into either blue or yellow for 1s to signal the reward context of the 

trial. Then, a motion stimulus was presented for 200ms. The participant had up to 800 ms 

from stimulus onset to decide the motion direction by pressing the corresponding button. 

After this 800-ms response window, a number appeared on the screen for 1.5s to inform 

the participant how many reward points that they earned from their decisions. The payoff 

of the two possible motion direction choices was associated with the reward contexts. In 

one context correct upward motion choices led to more reward points, whereas in the 

other state correct downward motion choices led to more reward points (Figure 1). The 

total reward points were converted into US dollar as bonus at the end of the experiment. 

The participants were unaware of this payoff structure before they began the task. They 

were simply instructed to decide the motion direction on each trial in order to harvest the 

most reward points.  

 

Several procedures were implemented in the experimental design in order to rule 

out other potential sources of decision bias rather than reward itself. First, each context 

was paired with equal numbers of trials in each motion direction and the same levels of 
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motion discriminability, which controlled the prior-induced bias (Green and Swets 1966). 

The motion stimulus was a random sample from one of 7 coherence levels (0%, ±4%, 

±12%, ±64%) on each trial. Every coherence level repeated 20 times within each state.  

The total 280 trials (2 reward contexts x 7 coherence levels x 20 repetition) were equally 

distributed in the 5 scanning runs for each participant. Moreover, the presentation of 

reward contexts were independent from trial to trial, which rules out the potential 

confound that participants used the sequential pattern to guide their choices (Daw, 

Gershman, Seymour, Dayan, and Dolan 2011; Glascher, Daw, Dayan, and O'Doherty 

2010). Finally, the response buttons and the colors of the fixation cross were counter-

balanced across participants in order to remove other potential confounds. The 

participants’ choice and the reaction time were recorded on each trial. 

Behavioral data analysis 

We applied the hierarchical logistic models to evaluate run-by-run changes of 

bias and discrimination, using the lme4 package (http://cran.r-

project.org/web/packages/lme4/index.html) in R Version 3.0.0 (http://www.r-

project.org/). The full model included five exploratory regressors: coherence-level, 

reward context, run-number, context-by-run, and coherence-by-run interaction. The 

intercept was taken as a random effect across participants. When testing the learning 

effects across the five scanning runs, we used a Chi-square test to compare the goodness-

of-fit of this full model against the model in which either of the interaction terms was 

reduced.  
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Furthermore, we applied computational models to capture the cross-correlation 

between the feedback on the previous trial and the choice on the next trial. We 

implemented two reinforcement-learning models with different hypotheses regarding 

how participants might use their experiences about contexts, choices, and rewards to 

develop biases in perceptual decision-making. In each case, a logit function was used to 

generate the probability of binary choices on every trial based on the reward each 

participant had received so far and the motion stimulus that was presented on the 

particular trial. The models are described in detail in the next section. Auto-correlation 

functions were computed from the residuals of the best-fit learning model at the group 

level using the acf function in R (Box, Jenkins, and Reinsel 1994; Pinheiro and Bates 

2009) to identify additional factors potentially missing in the model. 

Reinforcement learning models 

We assumed that on the 𝑡!! trial, an individual chose probabilistically 

according to the value difference of each motion direction (𝑄!(𝑚!); a binary variable i, 

respectively indicating the upward and downward motion) and the perceived motion 

strength. This relationship can be described by a logit function with the linear 

combination of the value difference between each motion direction and the perceived 

motion strength (Green and Swets 1966; Macmillan and Creelman 2004). Since the 

perceived motion strength was monotonic with the physical stimulus (Britten et al. 1993), 

we used the coherence level on trial t (𝑆!) to model the contribution of physical stimuli 

to the choice. The probability of choosing upward motion hence is: 
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𝑃! 𝑚! =  1 {1+ exp [𝛽! ∗ 𝑄! 𝑚! −  𝑄! 𝑚! +  𝛽! ∗  𝑆!]}
                  (1) 

 

where the 𝑏! and 𝑏! reflected how the choice probability was influenced by the 

subjective value difference and motion stimulus on the current trial respectively.  

  

The second part of the model was constructed to simulate how the trial-wise 

reward feedback was used to estimate the subjective value of each motion direction. Two 

Q-learning models (Watkins and Dayan 1992) were separately specified such that the 

reward prediction error (RPE) was used to update action value differently.  The RPE 

was used to updated the action value pertained to the context in one model and the action 

value regardless of context in the other model. 

 

On every trial, the context-dependent action value was adjusted by keeping track 

of the context in which a choice was made. The context-dependent RPE (𝛿!!) was 

computed as the difference between expected and the actual outcomes (𝑟!) followed by a 

choice made in the specific context. This error was scaled by a constant learning rate (𝛼!) 

and added into the value of each motion direction choice made in the same context before: 

𝛿! =  𝑟! −  𝑄! 𝑚!  𝑐!),  

𝑄!!! 𝑚!  𝑐!) =  𝑄! 𝑚!  𝑐!)+  𝛼! ∗  𝛿!!                                (2) 
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where 𝑐! and 𝑚! takes binary values respectively for indicating the context on trial t 

and the motion direction choice made in this context. 

 

A second model was constructed based on the assumption that context was 

ignored. In this case, the action value was adjusted by adding RPE (𝛿!), weighted by a 

constant learning rate (𝛼), to the value of each motion direction (𝑄!(𝑚!)), regardless of 

the contexts where the choice was made: 

𝛿! =  𝑟! −  𝑄! 𝑚!  

𝑄!!! 𝑚! = 𝑄! 𝑚! +  𝛼 ∗  𝛿!                                       (3) 

 

We used maximum likelihood method to obtain parameter estimates for each 

model. The likelihood that a sequence of choice and feedback (D) was generated by a set 

of free parameters (𝜃! ∈ {𝛽!, 𝛽!, 𝛼}) was the product of Equation 1 over the total trials 

(Daw, 2009): 

𝑃 𝜃!   𝐷) ∝ 𝑃 𝐷  𝜃!) =  𝑃! 𝑚!  θ!)!                               (4) 

 

We fit each model's free parameters by minimizing the negative log of Equation 

4 with nonlinear optimization function (fmin) in the Scipy toolbox for python 

(http://docs.scipy.org/doc/scipy-0.7.x/reference/optimize.html). We initialized the value 

of each motion direction choice with the participants' initial bias toward either motion 

direction, if they showed any in the practice session. Once the best-fit parameters were 
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determined for each participant, the indecision point on each trial was computed by 

solving the coherence level that yielded equal chance of choosing either motion direction 

given the rest of parameters in Equation 1. For model comparison, the Akaike 

Information Criterion (AIC) was computed by summing the negative log of Equation 4 

over all participants and taking the number of parameters as a penalty term (Akaike 1974).  

MRI data acquisition 

Imaging data were collected using a Siemens Skyra 3T MR scanner. Functional 

data were collected using a T2*-weighted multi-band echo-planar imaging sequence 

(Moeller et al., 2010) with 60° flip-angle (TR: 2 s; TE: 30 ms; FOV: 256 mm, multi-band 

acceleration factor: 2, parallel acceleration factor: 2, matrix size: 128). Forty-eight 

oblique axial slices were collected in interleaved fashion with 2 mm isotropic resolution. 

To reduce dropout in orbito-frontal cortex, the slices were tilted at a 10-15° angle off of 

the anterior-commissure-posterior-commissure line and higher-order shimming was 

applied. T1-weighted anatomical images was collected using an MP-RAGE sequence 

with 9° flip angle (TR: 1.9 s; TE: 2.43 ms; FOV: 256 mm; Matrix size: 256 x 256, 192 

slices; slice thickness: 1 mm). 

Image preprocessing and registration 

FMRI data preprocessing was carried out using FSL Version 5.0.1 (FMRIB's 

Software Library: www.fmrib.ox.ac.uk/). All image time series were aligned with the 

MCFLIRT tool, and the resulting motion parameters were used to compute frame-wise 
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displacement (FD) and temporal derivative of the root mean square variance over voxels  

(DVARS) to identify bad time points (FD>.5; DVARS>.5) (Power, Barnes, Snyder, 

Schlaggar, and Petersen 2012). The skull was removed from the functional images with 

the brain extraction tool (BET) and from the structural images using FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/). Spatial smoothing was applied using a Gaussian 

kernel of FWHM 5 mm. The grand-mean intensity was normalized over the entire 4D 

dataset by a single multiplicative factor, and a high-pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma=50.0 s). This same high-pass filter 

was applied to the design matrix for analyzing the fMRI time-series. All functional 

images were registered to the high resolution structural image using Boundary-Based 

Registration (BBR) then the high resolution structural image to the MNI-152 2 mm 

template using the FLIRT linear registration (12 DOF) tool of FSL. 

fMRI analysis 

We used multi-stage general linear model (GLM) approach to analyze the brain 

imaging data, using FSL FEAT (FMRI Expert Analysis Tool) Version 6.00. The first-

level model was estimated separately for each run and each participant. All five runs 

were combined within participant using a fixed-effects model. At the group level, the 

FLAME 1 mixed-effects model of FSL was applied to all participants (Worsley 2001). 

All the statistical maps were corrected by cluster-based random field theory using clusters 

determined by Z > 2.3 and a family-wise error corrected cluster significance threshold of 
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P=0.05 (Worsley 2001). The statistics maps of all analyses were projected onto the 

group-averaged brain from this study for visualization.  

GLM model 

The first level of GLM contained parametric modulated regressors to identify 

the brain mechanisms underlying the acquisition of bias in perceptual decisions as well as 

nuisance regressors to control for potential confound. The parametric modulated 

regressors included 1) the absolute value of the coherence level (duration between the 

onset and offset of the stimulus), 2) the trial-wise amount of bias (duration between trial 

onset and stimulus offset) and 3) the reward prediction error derived from both learning 

models (duration between the onset and offset of the reward feedback). The values of the 

bias were derived as the absolute value difference between the two choices from the best-

fit reinforcement-learning model at the group-level for each participant. All the values of 

parametric modulated regressors were mean-centered before entering the GLM. Nuisance 

regressors in the model were 1) a boxcar regressor encoding trial-evoked activity 

(duration between the onset of the context and the next ITI), 2) a boxcar regressor 

between the stimulus onset and the time when a key press was detected to control the 

reaction time (RT), and 3) a confound file including all the motion correction parameters 

(estimated translation and rotation and their first derivatives, FD, and DVARS) together 

with single-time-point regressors for each time point that exceeded the FD/DVARS 

thresholds (which effectively performs “scrubbing” of those time points) (Power et al. 

2012). All the regressors except the motion-correction regressors in the first-level model 
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were convolved with a double-gamma hemodynamic response function. Their temporal 

derivatives were also included in the model to accommodate for potential slice timing 

differences. Except for that the RT regressor that was orthogonalized relative to the 

regressor for the trial-evoked activity, all other regressors entered the GLM without 

orthogonalization. 

Psychophysiological interaction (PPI) analysis 

To examine the effect of the value system on the acquisition process of perceptual bias, 

we define a seed region (10-mm sphere around the vmPFC; MNI coordinates: X=-6, 

Y=39, Z=-8) according to previous results on value-based decisions (Tom, Fox, Trepel, 

and Poldrack 2007). Likewise, to examine the effect of the fronto-parietal system on the 

acquisition of bias, we defined seed regions for frontal cortex (MNI coordinates: X=-45, 

Y=21, Z=0) and parietal cortex (MNI coordinates: X=-36, Y=-39, Z=45) that have been 

replicated by previous study on perceptual bias (Fleming et al. 2010; Summerfield and 

Koechlin 2010). The BOLD activation of the seed regions was extracted from each 

participant’s individual brain in each run. For each individual and each run, the neural 

signal of the seed region was estimated by deconvolving the BOLD signals using the 

deconvolution algorithm of SPM (Gitelman, Penny, Ashburner, and Friston 2003). The 

interaction between the seed region and the regressor modulated by trial-wise amount of 

bias was generated in the neural domain and then reconvolved with hemodynamic 

function. The first-level design matrix of the PPI analysis was the above-mentioned GLM 

design matrix with two additional regressors: 1) the raw time course extracted from the 
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seed, and 2) a PPI regressor (the interaction between the amount of bias and the mean 

BOLD response in the seed region) with duration between the trial onset and the stimulus 

offset.  

RESULTS 

Behavioral results 

To visualize how the decisions changed as the experiment unfolded, the group 

average of the choice probability in each context is plotted against the coherence level 

across the five runs (Figure 2A). We first applied hierarchical logistic regression models 

to identify the factors driving the changes over the experiment. The intercept of each of 

these models was taken as a random effect across individual participants. The full model 

assumes that both the participants’ ability to discriminate motion direction and their 

preference for one of the motion directions changes from run to run in the experiment. If 

either of these factors is not constant over the experiment, removing either term from the 

full model should significantly reduce the model fit to the data. We used a chi-square test 

for model comparison to evaluate whether the drop in goodness-of-fit between the full 

and the reduced models reaches significance. We find that the interaction between 

coherence level and run number can be eliminated from the full model (𝜒! 4 =

 6.15,𝑝 = .1881 >  𝛼 =  .05), suggesting that the participants’ ability to discriminate 

motion direction did not change over the entire experiment. However, removing the 

interaction between the reward context and the run number from the full model 
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significantly reduces the model fit to the data (𝜒! 4 =  72.22,𝑝 < .0001), suggesting 

that the degree of bias did change across runs of the experiment. 

 

We further examined how the participant acquired bias in perceptual decision-

making over the experiment. The participant may utilize the previous reward that had 

been received in a particular context to guide the next choice that would be made in the 

same context along with the motion coherence of the present stimulus. Alternatively, the 

participant may simply adjust their perceptual choice according to the reward obtained on 

the previous trial (independent of context) as well as the strength of the motion stimulus. 

These two possibilities were evaluated through model comparison. We find that after 

controlling for individuals’ abilities to discriminate motion direction, the reinforcement-

learning model that associates previous reward and the next choice in the same context 

fits the data better than the learning model that ignores the context (Table 1). 

 

One may suspect that the participant simply applied pre-existing knowledge 

about perceptual uncertainty and reward to make a choice rather than adjusting their 

choice from trial to trial  (Whiteley and Sahani 2008). If this is the case, the above-

mentioned hierarchical logistic regression model that treats each choice as an 

independent observation should fit the data better than the reinforcement-learning model 

that accounts for the cross-correlation between previous decision outcome and the next 
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choice made in the same context. The result of model comparison indicates that the 

reinforcement-learning model does provide a better fit to the data than the hierarchical 

logistic regression model (Table 1). Furthermore, using the reinforcement-learning model 

(Equation 1 and 2), we are able to track the trajectory of the indecision points from trial 

to trial (Figure 2B) and reproduce the choice probability up to the final trial of each run 

(solid lines in Figure 2A) at the group level. 

 

One may also suspect that in addition to the context and reward association, the 

previous choice (Lau and Glimcher 2005) or even the sequential structure of stimulus 

types (Cho et al. 2002) alone could contribute to the observed bias. We calculated the 

average correlation between residuals that are lagged behind a certain number of trials 

(autocorrelation functions) after the context and reward association has been accounted 

for in the reinforcement-learning model. If the response-by-response or stimulus-by-

stimulus structure was an additional source of bias in our experiment, we should observe 

that some of the autocorrelations in the residuals are significantly nonzero since these 

factors were ignored in the learning model. As illustrated in Figure 2C, we compared the 

autocorrelation functions estimated from the residuals against those estimated from an 

independent random process with the same number of trials. The dashed horizontal lines 

show the 95% confidence intervals for autocorrelations expected from an independent 

random process. All the autocorrelations estimated from the residuals fall well within this 
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confidence interval. This suggests that there is no appreciable temporal structure in the 

residuals after the context and reward association was taken into account. 

 

Neuroimaging results 

The neural correlates of the acquired decision bias 

Through the analyses of the behavioral data, we found that the amount of 

perceptual bias on each trial can be modeled as the subjective value difference between 

the two motion directions at that particular time point of the reinforcement-learning 

process. If perceptual bias shares the same neural basis as economic decisions, we expect 

to see that the activation of the value-based decision network (Bartra et al. 2013) 

positively correlates with the amount of bias that has been acquired at the point of each 

trial of the experiment. Using the absolute value difference between the two motion 

directions in each context that is estimated from the best-fit reinforcement-learning model 

as a parametric modulated regressor, we find that the activation of vmPFC and midbrain 

dopaminergic areas is positively correlated with the bias acquired in each reward context 

(Figure 3; Table 2). 

 

Moreover, we find that the bias acquired through reinforcement has a wider 

influence on the perceptual decision networks in the brain compared to that induced by 

explicit instructions about payoffs (Fleming et al. 2010; Summerfield et al. 2010; Mulder 
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et al. 2012) (Figure 3; Table 2). A consensus in human functional neuroimaging literature 

is that the perceptual bias induced by explicit instructions interferes with the intermediate 

stage of decision process in the fronto-parietal cortices. However, we find that the degree 

of acquired bias extends to a wider set of brain regions. In addition to the frontal and 

parietal regions, we also observe that the activation in the visual and motor cortices 

positively correlate with the amount of acquired bias from trial to trial. No regions 

showed negatively correlations with this regressor after whole-brain correction. 

Learning signals for the acquisition of decision bias 

Human fMRI studies have identified that when individuals use reward feedback 

to adjust the subjective value of taking each action, the signal pertaining to the difference 

between the expected and actual reward (reward prediction error, RPE) is represented in 

ventral striatum, a major target of midbrain dopaminergic neurons (Pagnoni, Zink, 

Montague, and Berns 2002). Recent findings further distinguish that when multiple 

reward contexts are involved in a task, the activation of fronto-parietal cortices in 

addition to the ventral striatum correlates with the PE signals (Daw et al. 2011; Glascher 

et al. 2010). Following the same framework, our reinforcement-learning model assumes 

that perceptual bias is acquired from adjusting the subjective value of each action (motion 

directions) in the context using prediction errors. Based on the above-mentioned findings, 

we suspect that our task may involve two types of RPE signals. One is derived from the 

action-outcome association; the other is derived from the action-outcome association that 

is contingent on a specific context. We used two learning models (see Methods section 
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for details) to generate each type of RPE as parametric modulated regressors in order to 

search for its neural correlates.  

 

We found that in perceptual decisions, both the context-based and context-free 

RPE regressor reveals a similar pattern of brain activation. Activation in ventral striatum, 

fronto-parietal, visual, and motor cortices positively correlated with both RPE signals 

when each of the regressors was modeled separately in a GLM. This pattern is consistent 

with the meta-analysis result of RPE signals in the brain elicited by economic decisions 

(Garrison et al. 2013). However, distinct patterns were revealed when both of the 

regressors were presented together in the same GLM. The RPE derived from the 

contextual action-outcome association positively correlated with the ventral striatum, the 

fronto-parietal cortices, and the posterior and anterior cingulate gyrus (Figure 4, yellow-

red; Table 2). In contrast, PE signals from the context-free RL model positively 

correlated with activity in the visual and motor cortices (Figure 4, blue-light blue; Table 

2). Although interesting, the interpretation of these findings is made difficult by the very 

high degree of collinearity between the context-free and context-based prediction errors. 

 

One may argue that the activation pattern that uniquely correlates with the 

context-based RPE simply reflects the level of surprise about the reward (Ding and Gold 

2010; Gottlieb 2012). We therefore added the absolute value of this RPE into the above-

mentioned model to adjust for the effect of surprise. The signed context-based RPE still 
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elicits the same activation pattern (whole-brain corrected) after the level of surprise is 

controlled in the statistical model. Furthermore, no brain regions show activation that 

correlates with this unsigned RPE after whole-brain correction for multiple comparisons. 

Thus, this result rules out the potential confound in the RPE signals owning to the 

surprise about the reward.  

The functional connectivity patterns underlying the growth of bias   

We further used psychophysiological interaction (PPI) analysis to examine how 

the perceptual and economic decision-making networks interact with each other as 

participants acquire bias in perceptual decisions. The reinforcement learning literature 

suggests that the value of each action is encoded in motor areas and sent to vmPFC to 

guide choices (Wunderlich, Rangel, and O'Doherty 2009). Using the same framework, 

our learning model assumes that perceptual bias at the behavioral level reflects the 

subjective value difference between each action (i.e. choosing one of the two motion 

directions) in the current context. If perceptual bias is guided by the value system, we 

should observe that the functional connectivity between vmPFC and motor region 

increases during the decision period as the bias grows. Using vmPFC (Tom et al. 2007) 

as the seed region in the PPI analysis, we find that the task-related interaction between 

vmPFC and motor cortex increases as the amount of bias increases over the experiment 

(Figure 5; Table 3).  
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We also evaluated the hypothesis that perceptual bias results from a task set 

encoded in the frontal and parietal cortices. According to this theory, bias arises from the 

mechanism that frontal and parietal regions provide top-down influence to facilitate the 

visual representation or motor response that favors the higher-valued option (Fleming et 

al. 2010; Summerfield et al. 2006). If this is the case, we should observe that the 

connectivity between the fronto-parietal and sensorimotor network gradually increase as 

individuals develop bias. To further distinguish the role of each individual brain region, 

we separated the frontal and parietal cortices into two individual seed regions and extract 

each of their activation as a regressor in two independent PPI analyses. We centered the 

seed regions of frontal and parietal cortices at the MNI coordinates in which the BOLD 

signals have been repetitively shown to correlate with the magnitudes of reward-induced 

bias in perceptual decisions (Fleming et al. 2010; Summerfield and Koechlin 2010). We 

find that these two seed regions yield distinct connectivity patterns. Using the left frontal 

cortex as a single seed region, its connectivity with vmPFC, ventral striatum, and visual 

cortex increased as bias grew (Figure 5; Table 3). On the other hand, the connectivity 

between left parietal and ACC increased as bias grew (Figure 5; Table 3).   

DISCUSSION 

We demonstrated that bias in perceptual decision-making could be acquired 

through a reinforcement learning mechanism. In perceptual decisions, individuals 

constantly learn the values of the two potential perceptual choices (e.g. the two motion 

directions in our task) by associating the deviation between the expected and actual 
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outcome (RPE) with each reward context. When the context is clearly indicated, a 

perceptual choice reflects the sum of the present sensory information and the expected 

value difference between the two options that has been learned so far. At the neural level, 

the activation of ventral striatum, frontal, and parietal cortices positively correlate with 

the contextual RPE derived from modeling each individual’s performance over the 

experiment. Furthermore, three distinct functional connectivity patterns echo the growth 

of such bias, suggesting that the value signals became increasingly integrated with neural 

systems involved in action, stimulus evaluation, and cognitive control.  These results 

reveal the shared neural mechanism between perceptual and economic decisions, and 

highlight the involvement of multiple control networks during the development of bias. 

 

There is increasing convergence across different neuroscience methods and 

across species regarding the involvement of reinforcement learning processes in 

perceptual decisions. Most of these findings focus on the improvement in individuals’ 

ability to detect or discriminate sensory information, or perceptual learning (Kahnt, 

Grueschow, Speck, and Haynes 2011; Law and Gold 2008). Here, we extend this line of 

research by showing that bias in perceptual decision-making can be acquired through the 

same learning mechanism. Given the commonality between our findings and the findings 

in perceptual learning, one may suspect that the RPE signals that we report in ventral 

striatum, frontal, and parietal cortices may simply reflect perceptual learning (Kahnt et al. 

2011) rather than the development of bias. However, we found that participants’ ability to 
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discriminate the motion direction did not improve significantly over the experiment. Our 

experiment may be too short to elicit the effect of perceptual learning, which usually 

requires more than a thousand trials (Kahnt et al. 2011; Law and Gold 2008). This 

mismatched temporal dynamic between perceptual learning and the acquisition of bias 

further rules out this alternative interpretation.  

 

Our findings also speak to the great interest in the literature regarding the 

integration of reward and sensory information in the brain during perceptual decisions. 

Using general linear model, it has been shown that reward information integrates into the 

intermediate level (frontal and parietal cortices) of perceptual decision hierarchy in the 

brain (Mulder et al. 2012; Summerfield and Koechlin 2010) that may further facilitate 

downstream visual and motor processes (Fleming et al. 2010; Liston and Stone 2008; 

Serences 2008). In this study, we further identified the neural locus for the integration of 

reward information into perceptual decision networks in the brain by tracking changes in 

functional connectivity patterns as bias developed. We found that functional connectivity 

between vmPFC-motor cortices, frontal-vmPFC-visual cortices, and parietal-ACC 

increases with the growth of perceptual bias. These distinct connectivity patterns reveal a 

more integrated view than previous findings and suggest that multiple mechanisms 

contribute to bias in perceptual decisions through integration of value processing with 

action, sensory, and control systems. 
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Since perceptual decisions are usually analyzed under the framework of drift-

diffusion process, one obvious question is how our finding relates to this tradition. In fact, 

many theoretical approaches have been proposed to account for the function of basal 

ganglia and its contribution to the learning of perceptual bias in terms of drift-diffusion 

process (Bogacz and Larsan 2011; Rao 2010). However, it is very challenging to 

empirically test these theories at the whole brain level. The difficulty is that bias induced 

by reward usually is weak in human studies using reaction time tasks (Mulder et al. 2012) 

because of the speed-and-accuracy trade-off (Maddox and Bohil 1998; Simen et al. 2009). 

In order to investigate the acquisition process of perceptual bias, we applied decision 

deadline to boost the effect of reward-induced bias since this type of bias usually occurs 

in fast choices and suggests the influence on the starting point of the drift-diffusion 

process (Mulder et al. 2012; Summerfield and Koechlin 2010). Using this manipulation, 

we present the first empirical evidence showing the role of basal ganglia in the 

acquisition of perceptual bias and three functional connectivity patterns pertaining to 

expressing the acquired bias in the human brain. However, the drawback of this 

manipulation is that it limits the interpretation of our finding to the speeded decisions and 

prevents us from applying the drift-diffusion model to the present data. Future study 

should focus on identifying the neural mechanisms by which bias presents as individuals 

freely adjust reaction time in order to maximize reward. 
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In conclusion, the present study shows that perceptual bias can arise from the 

neural mechanisms that learn the association between contexts and choice outcomes. The 

learning signals (contextual RPE) are observed in ventral striatum, frontal, and parietal 

cortices. The acquired bias mirrors the learned value difference between each perceptual 

choice at the behavioral level and correlates with multiple connectivity patterns 

suggesting that the information about value contributes to perceptual bias through 

interactions with multiple systems. Our results demonstrate the pervasive effects of 

reinforcement learning mechanisms on the whole-brain connectivity by which the 

subjective expectation of reward colors the interpretation of objective evidence in 

decision-making process. 
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Chapter 2: Training of loss aversion modulates neural sensitivity 
toward potential gains 

INTRODUCTION 

When facing uncertain outcomes, people tend to be more sensitive toward the 

potential losses than the potential gains. This tendency can lead to poor investment 

decisions that derail investors from their financial plans. Theories in psychology and 

economics attribute loss aversion to different sensitivities when transforming the possible 

gains and losses into subjective value (Kahneman & Tversky, 1979; 1984; Tversky & 

Kahneman, 1992). This asymmetrical response to potential outcomes has found its neural 

basis in the brain regions processing value (Tom, Fox, Trepel, & Poldrack, 2007) or 

emotional (Canessa et al., 2013; De Martino, Camerer, & Adolphs, 2010; Sokol-Hessner, 

Camerer, & Phelps, 2013) information. 

 

Although multiple neural systems entail the loss aversion effect by responding 

more strongly to potential losses than to potential gains, the regulation of loss aversion 

has been focused majorly on its emotional component. Strategies for regulating negative 

emotional responses, such as reappraisal or taking different perspectives, has been shown 

effective in lessening the aversive emotion triggered by the potential losses, which 

correlates with the reduction of loss aversion in financial decisions (Sokol-Hessner et al., 

2009). However, in addition to the emotion system (amygdala) in the brain, the value 

system (ventral striatum and vmPFC) is another neural basis of behavioral loss aversion 

(Tom et al., 2007). Several mechanisms have been shown to effectively alter the 
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responses of the value system in order to make optimal choices. However, the 

possibilities of utilizing these potential mechanisms to tackle the value system with the 

aim of regulating loss aversion in financial choices remain unexplored. Here we provide 

the first evidence showing a novel mechanism through which loss aversion can be 

dynamically adjusted in order to fulfill the demands of current decision contexts. 

 

Economic decisions can be altered through modulating the value system, 

specifically the ventral medial prefrontal cortex (vmPFC). One of the mechanisms that 

can modify the response of vmPFC in value-based decision-making is reinforcement 

learning. Through trial-and-error, the difference between the expected and the actual 

choice outcomes (reward prediction errors) triggers the activation in ventral striatum that 

in term adjusts the subjective value encoded in the vmPFC (Bartra, McGuire, & Kable, 

2013; Garrison, Erdeniz, & Done, 2013; Glimcher, 2011; Lee, Seo, & Jung, 2012; 

Schultz, 1998). This subjective value then determines which actions are worth repeating 

in the future. Since loss aversion can be explained by the asymmetrical responses of the 

value system (ventral striatum and vmPFC) toward the potential gains and the potential 

losses (Tom et al., 2007), this reinforcement learning mechanism implies that loss 

aversion can be either enhanced or reduced by providing reward feedback to encourage 

either type of decisions about uncertain financial outcomes. 

 



 
 

34 

Alternatively, the value system can also be modulated by the cognitive control 

system in order to achieve the desirable goal by following certain rules. Overcoming 

tempting but suboptimal choices according to the current decision context requires the 

cognitive control system (frontal and parietal cortices) to suppress the unwanted drives 

(Bunge, 2004; Miller & Cohen, 2001). This interaction between the cognitive control and 

value systems in a task can be measured as functional connectivity and has been shown to 

correlate with whether people can successfully inhibit their temptation of eating 

preferable but unhealthy food in order to follow their diet plans (Hare, Camerer, & 

Rangel, 2009). This mechanism implies that offering a rule for evaluating uncertain 

outcomes in a decision context should elicit the interaction between the cognitive control 

and value systems. This in turn may alter the level of loss aversion according to the 

present decision context. 

 

We showed that the level of loss aversion is modifiable, and that this is 

associated with changes in activation of the value system (vmPFC). During functional 

brain imaging scans, participants were asked to decide whether to accept or reject a stock 

offering equal chance to either win or lose a certain amount of money. These stocks were 

presented in two different decision contexts. One context provided reward feedback to 

encourage riskier decisions (i.e. loss neutral) whereas the other offered reward feedback 

that reinforced more conservative decisions (i.e. more loss averse). In order to maximize 

the reward, the participants must use feedback from trial to trial to learn the optimal rule 
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for deciding in either context. At the end of this training, they were probed to apply what 

they had learned when evaluating uncertain outcomes in each context without trial-wise 

feedback.  

 

We found that the level of loss aversion can be enhanced or reduced according 

to the decision context by respectively decreasing or increasing the sensitivities toward 

the potential gains but not the potential losses. The activation in cognitive control system 

(frontal, parietal, and middle temporal cortices) mirrored this behavioral pattern during 

the training. Furthermore, over the course of learning, the functional connectivity 

between the cognitive control and value system gradually decreased when the 

participants evaluated the potential gains in the loss neutral context. After this training, 

while participants’ choices were modulated by the decision contexts, the value system 

becomes more sensitive toward the potential gains in the loss neutral context than that in 

the conservative context. The findings suggest that the level of loss aversion can be 

flexibly adjusted via releasing value system’s inhibited response toward the potential 

gains from the cognitive control system. These highlight the important role of cognitive 

control systems in decision-making under risk and provide insights about how cognitive 

control can refine investment choices in order to achieve the desired financial goal. 
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MATERIALS AND METHODS 

Participants 

Sixty	human	participants	completed	the	behavioral	paradigm	in	the	MRI	

scanner	(31	females,	29	males;	age	range:	18	–	30	with	mean	22.9-year-old).	The	

sample	size	was	determined	by	a	power	analysis	using	the	fMRIpower	software	

package	(http://fmripower.org/;	Mumford	&	Nichols,	2008)	based	on	pilot	imaging	

data	from	8	participants.	Two	of	the	participants	were	discarded	from	the	brain	

imaging	analyses;	one	due	to	missing	the	anatomical	image,	and	the	other	due	to	

excessive	head	movement	(more	than	one-third	of	the	volumes	were	considered	

“bad	time	points”	according	to	the	motion	correction	procedures	detailed	in	the	

Preprocessing	section).	All	participants	were	recruited	through	posted	flyers	and	

were	prescreened.	They	were	free	of	any	self-reported	neurological	or	psychiatric	

diseases,	had	normal	or	corrected-to-normal	visual	acuity	and	normal	color	vision,	

and	right-handed.	They	gave	written	informed	consent	for	participation.	The	

Institutional	Review	Board	of	the	University	of	Texas	at	Austin	approved	all	

experimental	procedures.	

Stimuli and Apparatus 

We utilized a mixed gambles task for measuring individuals’ sensitivity to 

potential gains and losses (Tom	et	al.,	2007). To fit into the cover story of this 

experiment, which will be described in details in the Procedures and task section, we 
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called these stimuli “stocks”, and they had equal chance to gain or loss a certain amount 

of money. In the baseline and the probe session, the potential gains ranged from $10 to 

$40 with the increment of $4 whereas the potential losses ranged from $5 to $20 with the 

increment of $2 (Figure 6, top- and bottom-right). In the training session, each stock was 

a random sample from six levels of gain-to-loss ratio (.52–.79, .88–1.07, 1.18 – 1.8, 2.1–

2.41, 2.59–3.17, 3.21–6.33) with a potential gain selected uniformly between $9 and $62 

and a potential loss selected uniformly between $3 and $52 (Figure 6, middle-right). The 

number of trials at each level of the gain-to-loss ratio was adjusted according to the 

decision criterion of each decision context (1.12 and 2.5, respectively), so that there was 

the same number of the acceptance and rejection responses in each context. This ensured 

that the observed behavior was not due to response bias (Green	&	Swets,	1966). The 

overall expected value of the two stimulus sets were both positive (2.84, 8.56) but 

significantly different (t(238) = -6.44, p<.0001).  

 

The experiment was programmed and delivered in python version 2.6 on Mac 

OS 10.6.8. The randomization procedure was conducted using numpy version 1.6.1 

(http://www.numpy.org/), and the stimulus presentation and the response recording were 

controlled by pygame version 1.9.1 (http://www.pygame.org/). 

Procedures and task 

The experiment was presented to participants as a stock market investment 

scenario. As illustrated in the left panel of Figure 6, three phases were designed to 



 
 

38 

measure participants’ own loss aversion tendency (baseline), to shift their loss aversion 

tendency using contextual feedback (training), and to test how this training was 

consolidated in each context without immediate feedback (probe). Participants performed 

all the phases during the fMRI acquisition. They did not receive endowment before they 

came for the experiment. They were told that the outcome that they received in the first 

phase would be their initial reward points to start the rest of the phases. The decision 

contexts and response buttons were counter-balanced across the group of participants to 

remove any potential stimulus or response confounds. The inter-trial interval was 

sampled from a truncated exponential distribution (mean = 3 sec., range = 2.5 – 8 sec.) 

and the randomized orders of trial types and stimuli presentation in all the three phases 

were the top sixty design matrices from 10,000 simulation with the highest efficiency for 

contrasting the gain variable between the two decision contexts and for contrasting the 

loss variable between the two decision contexts. The procedures of each phase are 

detailed below. 

 

Phase 1: Baseline. As shown in Figure 6 (top-left), on each trial, participants 

saw a set of stocks offering 50-50 chances to either win or lose a certain amount of 

money. They had to press one of the four buttons to indicate whether they strongly 

accept, weekly accept, weekly reject, or strongly reject each stock into their own 

investment portfolio in 2.5 s. The trial would be aborted if no response made during this 

time window. At the end of this phase, one of the trials was randomly selected and 
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revealed the outcome. If the participant previously accepted this selected stock, a 

Bernoulli trial with probability of .5 would determine the payoff according to the amount 

of potential gains and potential losses offering by this stock. If the participant rejected 

this selected stock, the payoff would be zero. The outcome of this selected stock then 

became the initial number of reward points for the participants to continue collecting 

reward points in the next phase.  

 

Phase 2: Training This phase was designed to use feedback for encouraging 

participants to use two different risk preferences as they decided whether to accept or 

reject a stock for one of two clients specified by a pre-trial cue. Participants were asked to 

review stocks with one of the two clients and suggest that client whether to accept or 

reject the stock into the client’s investment portfolio. Figure 6 (middle-left) illustrates the 

events timeline of a trial. In the beginning of every trial, the participants saw for whom 

they would be providing investment suggestion for 1 s. Then, they saw a stock that has 

equal chance to win or lose certain amount of money. They had up to 2.5 s to decide 

whether they would suggest the client to accept or reject that stock by pressing buttons. 

Immediately after the participants responded, they saw the number of reward points that 

they earned or deducted from the client for 1.5 s. As shown in Figure 6, one of the clients 

was loss-neutral and would accept the stock as long as the potential gain is 1.12 times 

greater than the potential losses (riskier context). The other was loss averse and would 

accept the stock at least the potential gains were 2.5 times greater than the potential losses 
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(conservative context). If the participants’ suggestion matched each client’s investment 

preference, they would earn 10 reward points; otherwise, they would lose 10 reward 

points. Participants were unaware of the clients’ preferences before they began the 

experiment. They simply were told to make suggestion that they thought would maximize 

their total reward points over the course of this phase. 

 

Phase 3: Probe. This phase was designed to evaluate how the previous 

experiences in the two decision contexts would influence the participants’ decision-

making under risk without the guidance of immediate feedback. The events timeline were 

the same as in the previous phase, except for that no feedback was presented on every 

trial and that the stimuli in each decision context were the same set of stocks used in the 

first phase (Figure 6, bottom-left). The participants were requested to maximize their 

reward points that were accumulated in the background by applying what they had 

learned about each client’s preference when making a suggestion. The decision criterion 

and payment structure in each context was exactly the same as in the previous training. 

At the end of this phase, the total reward points that have been collected by each 

participant over the three phases were convert into bonus and added into the 

compensation (500 reward points = 1 USD).    

Behavioral analysis 

Baseline phase. We followed the same analysis procedures as in the (Tom	et	al.,	

2007) to estimate each individuals’ loss aversion tendency. We applied logistic 
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regression to estimate three parameters in the model from each individual’s choice data: 

choice biases (𝛽!), sensitivity toward the potential gains (𝛽!"#$%), and sensitivity toward 

the potential losses (𝛽!"##$#). The loss aversion tendency for each individual was 

indicated as the ratio between the sensitivities toward the potential losses and the 

potential gains (𝜆 =  −𝛽!"##$# 𝛽!"!"#). We added the negative sign in this indicator 

because the absolute value of the potential losses was used in the model. 

 

Training phase. The analyses were done at the two levels. At the first level, we 

applied logistic regression model to each of the five scanning runs to estimate choice 

biases, sensitivity toward the potential gains and losses for each participant. The loss 

aversion indicator (𝜆) was also derived for each individual from run to run in each 

condition. 

 

At the second level, all these parameters were used as the dependent variables 

for repeated measure ANOVA test. We focused on testing whether there was any 

significant interaction between the two decision contexts and the five scanning runs. This 

would show how the sensitivities toward the gains and losses changed when people 

learned to become riskier or more conservative in evaluating the uncertain outcomes. 

 

Probe phase. The above-mentioned analysis procedures were used in this phase 

as well. At the second level analysis, we used paired t-test to examine whether the 
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participants’ loss aversion tendencies were significantly different across the two 

conditions.  The same test was applied to identify the differences in either the 

sensitivities toward the potential gains or the potential losses across the two decision 

contexts. 

 

All the first level analysis was done using the logistic regression function in the 

scikit-learn package version 0.1 (http://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) that 

empirically provided more robust parameter estimation against the problems of complete 

separation in binary data. The second level analysis was done using R with the nlme 

package (http://stat.ethz.ch/R-manual/R-devel/library/nlme/html/lme.html). We were 

aware that the two-level analysis could be done using the hierarchical logistic regression 

in the same package. However, the parameter estimation of this model did not converge, 

leading us to adopt the two-level analysis as stated. 

FMRI acquisition 

Imaging data were collected using a Siemens Skyra 3T MR scanner. Functional 

data were collected using a T2*-weighted multi-band echo-planar imaging sequence 

(TR=1.16 ms, TE=30 ms, flip angle=63 degrees, voxel size=2.4 X 2.4 X 2 mm, distance 

factor=20%, 96x96 matrix, FOV=230 mm, MB factor=4, 64 slics). To reduce dropout in 

orbito-frontal cortex, the slices were tilted at a 30° back from the anterior-commissure-

posterior-commissure line and higher-order shimming was applied. T1-weighted 
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anatomical images was collected using an MP-RAGE sequence with 8° flip angle (256 

sagittal slices, voxel size=.8 X .8 X .8 mm, TR=2.4 s, TE=1.94 ms, TI=1000 ms, PAT=2, 

FOV=205 mm).  

Image preprocessing and registration 

FMRI data preprocessing was carried out using FSL Version 5.0.1 (FMRIB's Software 

Library: www.fmrib.ox.ac.uk/). All image time series were aligned using the MCFLIRT 

tool, and the resulting motion parameters were used to compute frame-wise displacement 

(FD) and temporal derivative of the root mean square variance over voxels (DVARS) to 

identify bad time points (FD>.5; DVARS>.5) (Power et al., 2012). The skull was 

removed from the functional images with the brain extraction tool (BET) and from the 

structural images using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). Spatial 

smoothing was applied using a Gaussian kernel of FWHM 5 mm. The grand-mean 

intensity was normalized over the entire 4D dataset by a single multiplicative factor, and 

a high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0 s). This same high-pass filter was applied to the design matrix for analyzing 

the fMRI time-series. All functional images were registered to the high resolution 

structural image using Boundary-Based Registration (BBR) then the high resolution 

structural image to the MNI-152 2 mm template using the FNIRT nonlinear registration 

(12 DOF; Wrap resolution: 10mm) tool of FSL. 
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FMRI analysis 

We	used	a	multi-stage	general	linear	model	(GLM)	approach	to	analyze	the	

brain	imaging	data	with	FSL	FEAT	(FMRI	Expert	Analysis	Tool)	Version	6.00.	The	

first-level	model	was	estimated	separately	for	each	run	and	each	participant.	All	five	

runs	in	the	training	and	two	runs	in	the	probe	were	separately	combined	within	

participant	using	a	fixed-effects	model.	When	testing	the	learning	effect,	a	linear	

contrast	was	added	into	the	second	level	design	matrix.	At	the	group	level,	the	

FLAME	1	mixed-effects	model	of	FSL	was	applied	to	all	participants	(Worsley,	2001).	

All	the	statistical	maps	were	corrected	by	cluster-based	random	field	theory	using	

clusters	determined	by	Z	>	2.3	and	a	family-wise	error	corrected	cluster	significance	

threshold	of	P=0.05	(Worsley,	2001).	The	statistical	maps	for	all	analyses	were	

projected	onto	the	group-averaged	brain	from	this	study	for	visualization.	 	

General Linear Model (GLM) 

The first level of GLM contained parametric modulated regressors to identify 

the brain activation correlating with the potential gains and the potential losses as well as 

nuisance regressors to control for potential confound. A confound file included all the 

motion correction parameters (estimated translation and rotation and their first 

derivatives, FD, and DVARS) together with single-time-point regressors for each time 

point that exceeded the FD/DVARS thresholds (which effectively performs “scrubbing” 

of those time points)(Power	et	al.,	2012). All the regressors except the motion-
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correction regressors in the first-level model were convolved with a double-gamma 

hemodynamic response function. Their temporal derivatives were also included in the 

model to accommodate for potential slice timing differences. All parametric modulated 

regressors were mean centered before entering the model. The regressors used in the 

design matrix of each phase were described in details below.  

 

Baseline phase. There were five regressors in the design matrix. Two parametric 

modulated regressors encoded the amount of potential gains and the amount of potential 

losses. The duration of these regressors started from trial onset and lasted for the mean 

response time of each participant in this phase. Three nuisance regressors were used to 

model each trial, response time, and missing trials. The trial and missing trial regressors 

were boxcar regressors beginning at the trial onset and lasting the duration of the mean 

response time of each participant in this phase as well. Response time was modeled as an 

additional parametric regressor starting from the trial onset with 1 sec. duration and 

mean-centered response time as its amplitude. This procedure was used to model the 

effect of response time in the rest of the phases as well. 

 

Training and probe phase. Nine regressors were included in the design matrix of 

the training phase. Four parametric modulated regressors were used to model the 

potential gains and losses in each of the two conditions. These regressors started from the 

trial onset with the duration of mean response time plus two seconds to accommodate the 
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presentation of the context cues and feedbacks. Another parametric regressor indicated 

the amplitude of feedback starting from the feedback onset with the duration of 1 sec. 

Four additional regressors were included: two for the onset of trials from each context, 

one for the missing trial, and the other one for the response time. These regressors were 

generated with the same procedures as described in the previous section, except for that 

the duration here was two seconds plus the mean of each participant’s response time in 

each run. In the probe phase, the regressors were the same as in the training phase, except 

for that there was no regressor indicating the feedback since there was no feedback in this 

phase. The duration of the regressors was the participant’s mean response time in each 

run plus 1 second to account for the presentation of the cue. Four nuisance regressors 

were included: two for the onset of trials from each context, one for the missing trial, and 

the other one for the response time. The regressor for the response time was 

parametrically modulated with 1 second duration and the mean-centered response time as 

its amplitude. 

Psychophysiological Interaction (PPI) 

We used PPI analysis to examine the changes in functional connectivity between 

the vmPFC and the rest of brain as the participants become more conservative or risky in 

evaluating the uncertain outcomes. The vmPFC region was selected from the peak 

response to the potential gains in the probe phase (10-mm sphere around the vmPFC; 

MNI coordinates [x, y, z] = [-12, 54, -4]). The BOLD activation of the seed region was 

extracted from each participant’s individual brain in each run. For each individual and 
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each run, the neural signal of the seed region was estimated by deconvolving the BOLD 

signals using the deconvolution algorithm of SPM (Gitelman,	Penny,	Ashburner,	&	

Friston,	2003). The interaction between the seed region and the regressor parametrically 

modulated by the potential gains or the potential losses was generated in the neural 

domain and then reconvolved with hemodynamic function. The first-level design matrix 

of the PPI analysis was the above-mentioned GLM design matrix with five additional 

regressors: the raw time course extracted from the seed and four PPI regressors. The PPI 

regressors indicate the interaction between the mean BOLD response in the seed region 

and the amount of gain or losses in either of the two context, respectively.  

RESULTS 

Behavioral results 

The participants followed the instructions to accumulate the reward points over 

the three phases of the experiment. On average, they earned -8.5 points in the first phase 

(standard deviation = 5.76) as their initial points, 1490 points over the five training runs 

(standard deviation = 182.12), and 972 points in the probe (standard deviation = 156.54). 

There was no significant effect of the initial points on the performance in the subsequent 

phases. The correlation between the number of initial points and the points that collected 

in the training (Pearson’s correlation = -0.09, p = .48 > α = .05), the probe (Pearson’s 

correlation = -0.001, p = .94 > α = .05), or the total points gained over these two 

subsequent phases (Pearson’s correlation = -0.06, p = .65 > α = .05). 
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Using our paradigm, we replicated previous findings that people are loss averse 

when facing uncertain outcomes. In the first phase of experiment, the participants were 

asked to decide whether to accept or reject a stock offering an equal chance to win or lose 

a certain amount of money, which later became their initial reward points to start the rest 

of the sessions. Using hierarchical logistic regression with individuals taken as random 

effects in the model, we found that the participants did not show any significant 

preference for either choice (z = 1.608, p = 0.108 > α = .05). Instead, their choices were 

significantly dominated by the potential gains (averaged 𝛽!"#$ =  .27, z = 27.05, 

p<.0001) and the potential losses shown on each stock (𝛽!"## =  −.40, z = -23.53, 

p<.0001). The negative value here is because the absolute value of the potential losses 

was used in the model. Each participant’s level of loss aversion also was characterized by 

the loss aversion indicator (λ): the ratio between the absolute parameter estimates for the 

potential losses (Figure 7B, top panel) versus potential gains (Figure 7B, top panel) based 

on the logistic regression that was individually applied to everyone’s choice data (Tom et 

at., 2007). The group average of this indicator (λ) is 1.4 (standard deviation= .54; median 

= 1.29, range = .63 – 3.58). This value reflected the indecision points shown in Figure 

8A. When the ratio between the potential gains and the potential losses fell around 1.4, 

participants were equally likely to accept or reject those stocks (green grids in the left 

panel of Figure 8A) and spent longer time to decide (brown grids in the right panel of 

Figure 8A). The value of the loss aversion indicator was lower than the previous study 

(λ=1.93 [Tom et al., 2007]). A potential reason why participants in the present study 
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showed weaker loss aversion could be that they did not receive an endowment 

beforehand as in that study.  

 

During training, we found that loss aversion can be either enhanced or reduced 

through feedback. As shown in Figure 6 (middle left panel), the same task was presented 

in two decision contexts with feedback to either enhance (conservative) or reduce (risky) 

loss aversion. In the risky context, the feedback encouraged the participants to accept the 

stocks as long as the potential gains were 1.12 times greater than the potential losses (loss 

neutral). In the conservative context, the feedback reinforced them to accept those as long 

as the potential gains were at least 2.5 times greater than the potential losses (more loss 

averse). Figure 7A shows that this procedure gradually changed the participants’ levels of 

loss aversion. In the first run, the indecision points of accepting a stock in both decision 

contexts were around the third level of the gain-to-loss ratio (gray dashed lines in Figure 

7A). The mean gain-to-loss ratio of this bin was 1.49 that was within one standard 

deviation of the original loss aversion indicator at the group level (mean λ = 1.4, standard 

deviation = .54). However, as the experiment proceeded, the indecision points shifted 

leftward when the participants were encouraged to use a risker criterion (Figure 7A; light 

blue - blue). On the contrary, this point shifted rightward when a more conservative 

criterion was reinforced (Figure 7A; light brown - brown).    
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We also used logistic regression model to identify how the participants’ loss 

aversion changed in each decision context over the course of training. The ratio between 

the regression coefficients for the loss and gain variables (loss aversion indicator) 

estimated in each decision context was then plotted against the five training runs to 

illustrate these changes (Figure 7B, bottom panel). We found a significant interaction 

effect between the decision context and the training runs on the loss aversion indicator 

(repeated measured ANOVA, context x run interaction: F(4, 531) = 9.6570, p < .0001), 

suggesting that the participants gradually learn to become risky or conservative according 

to the decision context.  

 

We further tested whether the changes in the sensitivity toward the potential 

gains or the potential losses contributed to the different loss aversion in the two decision 

contexts over the training. As shown in the top panel of Figure 7B, we found that the 

participants became more sensitive toward the potential gains when they were 

encouraged to become risker compared to when they were encouraged to become more 

conservative (repeated-measure ANOVA, context x run interaction: F(4, 531) = 13.6393; 

p < .0001). They also become more sensitive toward the potential losses in both 

conditions over this course (repeated-measure ANOVA, context x run interaction: F(4, 

531) = 4.1548; p = .0025 < α = .05). However, this incremental trend was very similar in 

both contexts (Figure 7B). This indicates that the sensitivity toward the potential gains 

largely mediated the training of loss aversion in the two decision contexts. 
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Finally, we found that two decision contexts continued influencing the 

participants’ decisions about the uncertain outcomes even when no immediate feedback 

was presented. As shown in Figure 8B and 8C, the indecision points (green grids in the 

left panels) were close to the criteria that the participants were encouraged to used in the 

previous session (gain-to-loss ratio as 1.12 or 2.5). It also took longer for the participants 

to decide when the potential gains and potential losses pair fell near these ratios (brown 

grids in the right panels). Their loss aversion tendencies were significantly different 

between the two contexts (paired t-test: t(59) = -12.3943, p < .0001; Figure 7B bottom 

panel). This distinct pattern of loss aversion can be attributed to the different sensitivities 

toward the potential gains (paired t-test: t(59) = 8.3373, p < .0001; Figure 7B top panel) 

but not that toward the potential losses (paired t-test: t(59) = -0.3781, p = 0.7067 > α 

= .05; Figure 7B top panel) in the two contexts.  

Brain imaging results 

In the baseline phase, we replicated previous findings that loss aversion 

correlated with the responses of the value system toward the potential gains and the 

potential losses. Behaviorally, we found that the participants would accept the stock at 

least the potential gains are 1.4 times greater than the potential losses, which decisions 

also took them longer to make (Figure 8A). We also found that the activation in the value 

system correlated with the participants’ choices. As shown in Figure 9, the vmPFC (MNI 

coordinates [x, y, z] =  [4, 38, -14]; cluster size = 603 voxels; Zmax = 4.26, P = .0007) 
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positively correlated with the potential gains after whole-brain corrected for multiple 

comparisons. It also de-activated as the potential losses increased, as shown previously 

(Tom et al., 2007); however, this effect was weaker in our sample (Figure 9, 

uncorrected), which may because our participants on average were less loss averse as 

previous study.  

Changing the sensitivity toward the potential gains relies on cognitive control  

We first used the general linear model to identify the brain areas whose activity 

was correlated with changes in loss aversion over the course of learning. The potential 

gains and losses entered the design matrix as parametric modulated regressors that were 

separated into two sets for modeling the effect of the two decision contexts. We searched 

the whole brain for areas showing different neural sensitivities toward the potential gains 

or the potential losses between the two decision contexts. We found that the value and 

cognitive control systems responded more strongly toward the potential gains in the risky 

than the conservative conditions over the training (Figure 10A, Table 4). To be qualified 

as the learning mechanisms, this difference should also increase from run to run, 

indicating the linear trend of learning as shown in the behavioral results (top panel in 

Figure 10B). We found that the activation of three brain regions in the cognitive control 

system matched this selection criterion when they responded to the potential gains 

(Figure 10B, red-yellow, Table 4 and Figure 10C; red shaded plots). These brain regions 

were right middle frontal gyrus (MNI coordinates [x, y, z] =  [30, 36, 52]; cluster size = 

653 voxels; Zmax = 4.33, P = .0002), right angular gyrus of the parietal cortex (MNI 
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coordinates [x, y, z] =  [46, -54, 32]; cluster size = 664 voxels; Zmax = 4.58, P = .0002), 

and right middle temporal gyrus (MNI coordinates [x, y, z] =  [60, -8, -22]; cluster size 

= 373 voxels; Zmax = 4.29, P = .0157). No activation in other regions showed this linear 

trend that survived the whole-brain correction for multiple comparisons.  

 

We also searched for brain regions that gradually showed differentiable 

activation toward the potential losses between the two contexts. We found that the 

activation in the cognitive control and value systems (Figure 10A; Table 4) also 

responded more strongly toward the potential losses during training. However, only the 

activation in the right frontal pole (MNI coordinates [x, y, z] =  [30, 60, 12]; cluster size 

= 417 voxels; Zmax = 4.2, P = .0065) showed a linear trend such that it became 

increasingly stronger in the riskier context compared to the conservative context over 

training (Figure 10B, blue-light blue, Table 4, and Figure 10C; blue shaded plots).  

Cognitive control system releases supression from the value system during learning 

We further tested the hypothesis that the interaction between the value and 

cognitive control systems was necessary to execute preferable choices according to the 

decision context (Hare	et	al.,	2009). We centered the seed region at the vmPFC (MNI 

coordinates [x, y, z] =  [-12, 54, -4]) with 10mm radius covering the surrounding voxels. 

If using the decision contexts to adjust loss aversion requires the cognitive control system 

to modulate the value system, we should observe that the functional connectivity between 

the two is altered in the two contexts during the training. Furthermore, this change should 
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be more pronounced in response to the potential gains than to the potential losses based 

on our behavioral results. As shown in Figure 11A and Table 5, the interaction between 

vmPFC and the left middle frontal cortex (MNI coordinates [x, y, z] =  [-35, 14, 48]; 

cluster size = 508 voxels; Zmax = 4.15, P = .0014) and the left supramarginal gyrus of the 

parietal cortex (MNI coordinates [x, y, z] =  [-47, -46, 43]; cluster size = 401 voxels; 

Zmax = 3.38, P = .0076) became differentiable across the two contexts when responding to 

the potential gains over the training. As shown in the plots of Figure 11B, the functional 

connectivity between the vmPFC and frontal cortex gradually increased when the 

participants became less sensitive toward the potential gains in the context where 

conservative choices were preferred. However, this connectivity gradually decreased 

when the participants learned to be more sensitive toward the potential gains in the 

context where riskier choices were reinforced. On the other hand, the functional 

connectivity between vmPFC and the parietal cortex was overall greater in the 

conservative context than that in the risky context (Figure 11B). When responding to the 

potential losses, we found that the functional connectivity between the vmPFC and the 

superior parietal cortex (MNI coordinates [x, y, z] =  [11, -52, 66]; cluster size = 1706 

voxels; Zmax = 4.2, P < .0001), angular gyrus (MNI coordinates [x, y, z] =  [54, -54, 31]; 

cluster size = 331 voxels; Zmax = 3.53, P = .016), and midbrain area (MNI coordinates [x, 

y, z] =  [-2, -21, -36]; cluster size = 408 voxels; Zmax = 4.35, P = .0041) were greater in 

the conservative than that in the riskier context during the training (Figure 11A, blue-light 

blue; Table 5).  
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The functional connectivity between the vmPFC and the rest of the brain only 

occurred in the training. During the probe, no brain areas showed significant differences 

in functional connectivity between the vmPFC across the two decision contexts in 

responding to either the potential gains or losses. This is also the case after we restricted 

the search within the regions showing different connectivity patterns in the two contexts 

during the training.  

Value and cognitive control systems modulate loss aversion after training 

The above-mentioned finings together with the suggested function between the 

cognitive control and value system (Hare	et	al.,	2009) implies that reducing loss 

aversion by being more sensitive toward the potential gains relies on the interaction of 

cognitive control systems with the value system. If this is the case, after this training, we 

should expect that the value system remained more sensitive toward the potential gains 

when probed in the context reinforcing riskier choices. Our data supported this 

hypothesis. We found that both the value (vmPFC, MNI coordinates [x, y, z] =  [-12, 54, 

-4]; cluster size = 404 voxels; Zmax = 3.81, P = .0154) and the cognitive control systems 

(middle frontal gyrus: MNI coordinates [x, y, z] =  [28, 36, 40]; cluster size = 464 

voxels; Zmax = 3.83, P = .0065; angular gyrus: MNI coordinates [x, y, z] =  [54, -48, 18]; 

cluster size = 337 voxels; Zmax = 4.07, P = .0424) become more sensitive toward the 

potential gains in the context where the participants were trained to be riskier compared 

to the more conservative context (Figure 12, red-yellow; Table 4). Behaviorally, the 
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participants responded to the potential losses with equal sensitivities in the two conditions 

(Figure 7B, top panel); however, we observed that the parietal (supramarginal gyrus: 

MNI coordinates [x, y, z] =  [56, -42, 28]; cluster size = 933 voxels; Zmax = 3.98, P 

< .0001) and supplementary motor area (MNI coordinates [x, y, z] =  [4, -2, 60]; cluster 

size = 365 voxels; Zmax = 3.65, P = .0357) were more sensitive toward the potential losses 

in the riskier context than that in the more conservative context (Figure 12, blue – light 

blue; Table 4).  

DISCUSSION 

We have illustrated that a cognitive control process can account for the 

adjustment of behavioral and neural loss aversion according to the environmental 

demands. We found that people become more sensitive toward the potential gains when 

learning to be loss neutral. This change correlates with the linearly increasing activation 

of the cognitive control system (frontal and parietal cortices) during the training. 

Meanwhile, the functional connectivity between the vmPFC and the frontal lobe 

decreased when the participants learned to become more sensitive toward potential gains 

in the risky context. After this training, the two decision contexts continued modulating 

the participants’ loss aversion tendencies: they were more sensitive toward the potential 

gains in the loss neutral context while their sensitivities toward the potential losses were 

the same in both contexts. Underlying this behavioral change, we found that both the 

cognitive and the value systems activated more strongly toward the potential gains in the 
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loss neutral context than that in its conservative counterpart. These suggest that gradually 

reducing the influence of the cognitive control system is necessary for the value system to 

become more sensitive toward the potential gains, which then neutralizes the tendency 

toward loss aversion in decision-making under risk. 

 

Some theories propose that regulating negative emotion could modulate loss 

aversion; however, our results suggest that this idea is relatively speculative. We did not 

observe any activation in brain areas involved in emotion process (amygdala) correlated 

with loss aversion tendencies in any phase of our experiment. Fundamentally, whether 

negative emotion can explain the overly sensitive toward the potential losses, which leads 

to behavioral loss aversion, is still debatable since the results from neural imaging studies 

are inconsistent (Canessa	et	al.,	2013;	De	Martino	et	al.,	2010;	Sokol-Hessner	et	al.,	

2013;	Tom	et	al.,	2007). Specifically, the activation in amygdala, the brain region 

correlating with negative emotion process and used as an indicator of the emotional 

component of loss aversion, is not consistently observed in the literature. Even though 

this discrepancy may be due to the difference in experimental designs and regulating loss 

aversion did involve regulating negative emotion (Sokol-Hessner	et	al.,	2009), the 

evidence supporting the role of cognitive control system in this regulation is indirect. In 

the recent finding, the cognitive control system (dlPFC) showed greater baseline 

responses during the decision period in the “emotion regulation” condition. However, this 

activity neither particularly correlates with the process of the potential losses nor links to 
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the activation in amygdala via functional connectivity (Sokol-Hessner	et	al.,	2013). It is 

hence doubtful that loss aversion can be reduced by emotion regulation. 

 

We present a novel mechanism that a direct relationship between the cognitive 

control and the value systems can regulate the loss aversion through increasing the 

sensitivity toward the potential gains. This finding extends the functional connectivity 

between cognitive control and value system in value-based decision-making. The 

cognitive control system (dlPFC) has been shown sending signals to value system 

(vmPFC) via a two-node functional connection to suppress the value of the unwanted 

feature, relative to the goal, of each decision target (Hare	et	al.,	2009). Here, instead of 

this two-node connectivity between the cognitive control and the value systems, we 

report a direct functional connection and bidirectional effect on this suppression 

mechanism in modulating loss aversion. When more conservative choices were 

reinforced, the dlPFC gradually showed stronger functional connectivity with vmPFC in 

response to the potential gains. On the contrary, there was weaker functional connectivity 

between the two in response to the potential gains when loss neutral was promoted in a 

context. This suggests that relaxing the value system’s response toward the potential 

gains from the cognitive control system is necessary for learning to take riskier choices. 

This account has been verified with our finding that the vmPFC became more sensitive 

toward the potential gains in the loss neutral context after the training. Our findings 

together suggest that future research on loss aversion should take a “loss neutral” 
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perspective. In addition to studying why people are more sensitive toward the potential 

losses, it also will be fruitful to examine why people are less sensitive toward the 

potential gains. Our finding implies that it may because the value system is normally 

inhibited by the cognitive control system. 

 

Furthermore, our finding implies that cognitive control system may play extra 

role in decision-making under risk according to the current decision context. We found 

that during the probe, the activation in the supplementary motor and the parietal cortices 

was stronger toward the potential losses in the risky context than in the conservative 

context. Recent findings showed that the activation pattern in these brain regions could be 

used to predict whether a risky or a safe choice would be made subsequently after the risk 

level in a decision context increased (Helfinstein	et	al.,	2014). Taken together, these 

imply that becoming more sensitive toward the potential losses in a risky decision context 

might facilitate the cognitive control system to execute a safe choice subsequently. 

Unfortunately, we could not examine this hypothesis further since our task did not require 

the participants to make sequential decisions about risk taking. We leave the relationship 

between processing potential losses and determining the time when a safe choice should 

be executed for future studies. 

 

One may suspect that our findings may not actually speak to the core of loss 

aversion since in our task, the participants decided “for others” rather than “for 
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themselves”. This seems to be a valid point at the first glance since it has been shown that 

people make different choices when the perspective shifts (Sokol-Hessner	et	al.,	2009). 

If this account applies, we should observe that the participants’ sensitivities toward the 

potential gains and the potential losses in the first run (when they just changed the 

“perspective”) should be different from the baseline session when they decided for 

themselves. However, we found that the loss aversion was almost the same as in the 

baseline in either context of the first run (Figure 7B). This suggests that our participants 

reacted similarly as deciding for themselves even though the perspective changed. Our 

findings simply demonstrated the mechanism underlying daily situations regarding how 

decision-making under risk could be modulated by decision contexts. The question 

regarding how this experience influenced individuals’ own loss aversion is beyond the 

scope of our study. This interesting question is awaited for future exploration. 

 

In conclusion, we have shown that loss aversion can be neutralized through 

increasing the sensitivity toward the potential gains in response to the environmental 

demands. This can be achieved by releasing the value system from being suppressed by 

the cognitive control system when evaluating the potential gains during the training. As a 

result, when probed, the value system activates more strongly toward the potential gains 

in the loss neutral than in the conservative context. These point out the important but 

often overlooked interaction between cognitive control and evaluation in decision-
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making under risk and offer insights onto how investors may refine their decision-making 

process to avoid being derailed from their financial plans owning to loss aversion. 
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Chapter 3: Modeling the decision-making process of financial choices 

INTRODUCTION 

Financial decisions can be made in very short period of time. For instance, a 

trader has to decide whether to buy or sell a share in response to a sudden change in the 

financial markets. Some of these fast decision making processes may not be captured by 

the BOLD signals measured with functional MRI. In order to better understand the 

decision making process, we used mathematical models to decompose the choice and 

response time data into important psychological factors underlying the decision-making 

processes in this chapter.  

 

The decision-making process underlying binary choices can be modeled as a 

drift-diffusion process (Ratcliff,	1976). This model assumed that during the deliberation, 

a decision maker constantly accumulates noisy evidence that supports one of two possible 

choices. A decision is made once the accumulated evidence reaches a predetermined 

level, or decision bound. Three parameters control this evidence accumulation process. 

The drift rate determines the speed of evidence accumulation. The starting point indicates 

the decision maker’s initial preference for either choice. The drift variance reflects the 

noise level of this accumulation process. 

 

This model has been successfully applied to account for behavioral and neural 

activities data in different domains of decision-making. Especially, when applied to 
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value-based choices, it can capture the evaluation of costs and benefits (Basten,	Biele,	&	

Heekeren,	2010) and the attention weights that decision makers put on different 

attributes of the target as they browse at each alternative (Krajbich	&	Rangel,	2011;	

Krajbich,	Armel,	&	Rangel,	2010;	Krajbich,	Lu,	Camerer,	&	Rangel,	2012). Here, we 

applied the drift-diffusion model to identify which of the psychological factors in 

decision-making under risk can be shaped by experiences from trial to trial. To achieve 

this goal, we adapted a novel method for estimating parameters in drift-diffusion models 

in contrast to the traditional simulation-based fitting routine. First, the usage of analytical 

solutions for modeling the joint distribution of choice and reaction time were proposed 

and validated in this Chapter. This method then was applied to the empirical data in order 

to identify the psychological factors that account for the changes in decision-making 

under risk. Finally, we discuss the implementation of loss aversion in the drift-diffusion 

model framework and the potential extension of this modeling approach with learning 

algorithms that potentially could uncover the feedback-driven learning processes from 

trial to trial.  

METHODS 

We applied the drift-diffusion modeling approach to the behavioral data 

obtained from the previous chapter. The details of this dataset, such as sample size, data 

collection, and the experimental procedures, were described in the Methods section in the 
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previous chapter. Here, we focused on our implementation of the drift-diffusion model to 

this dataset. 

Model assumptions and parameterization 

We first assumed that the evidence driving the choices in our task was the gains-

to-losses ratio in our experiment. For each run and each context, we binned all the stimuli 

into 6 different levels according to the ratio between the gains and losses magnitudes (the 

range of the gain-to-loss ratio in each bin: .52–.79, .88–1.07, 1.18 – 1.8, 2.1–2.41, 2.59–

3.17, 3.21–6.33). Each level hence provided different strengths of evidence to support 

either rejecting or accepting the potential outcomes. For each run, we used distinct drift 

rate (μij) to model the different speed of evidence accumulation driven by the gain-to-loss 

ratio at each level (i) in each decision context (j). In addition, we also tested the other 

assumption that the drift rate could be the subjective value that was the weighted sum of 

the potential gains (𝑥!"#$%) and the potential losses (−𝑥!"##) on each trial according to the 

Prospect Theory (Kahneman & Tversky, 1979; 1984; Tversky & Kahneman, 1992): 

µ! =  𝑥!"#$! −  𝜆 ∗  (−𝑥!"##)! , 

where the 𝜆 indicated the amount of loss aversion. 

 

We further assumed that in each decision context within each run, this evidence 

accumulation process was perturbed by Gaussian random noise of constant magnitude 

(σj). Moreover, this process also was susceptible to initial preferences for either option in 
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each decision context (x0j) that was independent of the evidence. The required amount of 

evidence, or decision bounds, were fixed as 1 or -1 respectively for the choice of 

acceptance or rejection. The non-decision time (τj) associated with perceptual and motor 

processes also was included in the model for each decision context within each run. 

Joint distribution of choice and response time 

Given the Gaussian random noise assumption, the duration for accumulating 

evidence toward one of the decision bound, or reaction time (x), followed inverse 

Gaussian distribution: 

𝑓 𝑥 𝑎, 𝜆) =  !
!!!!

!
! ∗ exp !!(!!!)

!

!!!!
                         (5) 

At the ith gain-to-loss level, the drift rate (𝜇!) and the distance between the 

starting point and one of the decision bounds (|(±1− 𝑥!)|) determined the mean of the 

reaction time distribution:  

𝑎 = !"#(±!!!!)
!!

.                                           (6) 

The square of this distance together with the variance of the drift determined the 

spread of the reaction time distribution: 

𝜆 = !"#(±!!!!)
!

!
.                                        (7) 

With the same assumption, the probability of reaching the lower bound was 

(Ratcliff,	1976): 

P(choice = reject) = 𝑒!(!∗!!/!) −  𝑒!(!∗ !!!!! /!) 𝑒!(!∗!!/!) −  1 .  (8) 
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We also assumed that the choice and the reaction time were independent. The 

product of the two distributions therefore became the joint distribution of choice and 

reaction time. Given the set of parameter (𝑥!, 𝜇! ,𝜎, 𝜏), this joint distribution was: 

𝑝 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑥  𝑥!, 𝜇! ,𝜎, 𝜏) = 𝑝 𝑐ℎ𝑜𝑖𝑐𝑒|𝑥!, 𝜇! ,𝜎, 𝜏 ∗ 𝑓 𝑥 𝑥!, 𝜇! ,𝜎, 𝜏 . (9) 

Parameter estimation 

Given a set of parameters (Θ={𝑥!, 𝜇! ,𝜎, 𝜏}), the likelihood function for getting 

the observed choice and response time over n trials (t: trial number) was: 

𝐿 Θ 𝑐ℎ𝑜𝑖𝑐𝑒! , 𝑥!) = 𝑝(𝑐ℎ𝑜𝑖𝑐𝑒! , 𝑥!|Θ)!
!!!                     (10) 

The maximum likelihood method was used for parameter estimation. We used 

the fmin function in the scipy optimize package 

(http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html#scipy.opti

mize.fmin) to search for the parameters that minimized the negative sum of the logarithm 

likelihood function for the obtained data. 

Model validation 

This analytical solution to choice and reaction time distribution was validated in 

two folds. First, the joint distribution from analytical solution was plotted against that 

derived from simulating 5000 Weiner (drift-diffusion) processes. Second, we used 

convergence test to evaluate how well our maximum likelihood fitting routine would 

recover the true parameters as the sample size increased. For conducting this test, we 

independently simulated 100, 500, 1000, 2500, and 5000 data points from the Weiner 
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processes. The parameters used for the simulation (true parameters) were entered as 

initial guess in the gradient descent parameter estimation algorithm in the scipy optimize 

package (fmin). This simulation-and-fit process was repeated 100 times for each sample 

size and four different sets of true paramters. The mean square errors between the true 

and the best-fit parameters were computed and then averaged over the 100 iterations as 

the indicator of convergence for each parameter set.  

RESULTS 

Analytical joint distribution can be used to fit drift-diffusion model 

The visual comparison between the analytical and the empirical joint 

distributions are shown in the left panel of Figure 13. This comparison has been done 

using four different sets of parameters (Figure 13A – D, left panel). The empirical joint 

distribution (black and red dots) was derived from 5,000 data points simulated with each 

of the four sets of parameters. Each of the analytical joint distributions (black and red 

lines) was a result of entering the parameters into Equation 9. Generally speaking, the 

empirical and analytical joint distributions aligned well regardless of the different sets of 

parameters. However, they started to misalign when the sign of the starting point (𝑥!) 

and the drift rate (𝜇!) were different (Figure 13D, left panel). Specifically, the analytical 

distribution did not perfectly match the shape of the joint distribution for the processes 

ending at the lower bound. This may reflect the fact that the inverse Gaussian distribution 

is limited to the case when the drift rate and decision bound are both positive. When we 
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applied the inverse Gaussian distribution to the negative drift rate and decision bound, we 

forced them to be positive by taking absolute value. This procedure inevitably decoupled 

the correlation between processes ending in either bound when there was bias in the 

starting point. 

 

Although this caveat existed, the maximum likelihood procedure combined with 

the analytical joint distributions still could recover the true parameters as the sample size 

increased. For each set of parameters, the convergence tests were conducted by 

comparing the best-fit parameters estimated from five different sample sizes (n = 100, 

500, 1000, 2500, and 5000) using the mean square errors. As shown in the right panel of 

Figure 13, as the sample size increased, the errors between the estimated and the true 

parameters approached zero, indicating the convergence. 

Gain-to-loss ratio is the evidence driving a choice  

This drift diffusion model was applied to analyze the data in two different ways 

to test the how the potential gains and losses were transformed into the evidence during 

the decision-making process. The first model assumed that the ratio between the potential 

gains and losses might be the evidence determining the choice. The magnitudes of this 

evidence then were enhanced or reduced according to whether a risky or conservative 

choice was reinforced in a certain context. The second model assumed that the objective 

magnitudes of the potential gains and losses first transformed into subjective value 

(Kahneman	&	Tversky,	1979;	Tversky	&	Kahneman,	1992), depending on each 
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individual’s sensitivity toward gains and losses, which became the evidence driving a 

choice. These two assumptions were tested using model comparison. As shown in Table 

5, we found that the model using the six levels of gain-to-loss ratio as the evidence for 

making a choice fit the obtained data better than the one calculating the subjective value. 

Overall, this best-fit model could account for 62% of the variance in the choice and 67% 

of the variance in response time over the experiment. This amount of variance in choices 

and response time that could be accounted for by this model was shown in each context 

and training runs in Figure 14.   

The effect of experience on the decision-making process 

The parameter estimation from the best-fit model is plotted according to the two 

different contexts over the five training runs to illustrate the effect of experiences (Figure 

15). The drift rates showed the major differences between the two decision contexts over 

the five training runs. This interaction between the decision contexts and the training runs 

was significant at the levels where the gain-to-losses ratio was close to the acceptance 

criterion in each decision context (gray dashed lines). For instance, the drift rate of those 

originally unattractive (gain-to-loss ratio = .88–1.07, the 2nd level on the axis of Figure 

15A) or indifference stocks (gain-to-loss ratio = 1.18 – 1.8, the 3rd level on the axis of 

Figure 15A) gradually became positive (more attractive to the participants) in the risky 

context, whereas the drift rate of the same stocks progressively turned negative in the 

conservative context (interaction effects on the 2nd level: F(4,484) = 3.31, p=.01 < α 

= .05; on the 3rd level: F(4, 484) = 14.31, p<.0001). The training experience also 
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enhanced the attraction of an originally good financial offer (gain-to-loss ratio = 2.59–

3.17, the 5th level o the axis of Figure 15A) in the risky context but reduced that in the 

conservative context (interaction effect on the 5th level: F(4, 484) = 2.47, p = .04 < α 

= .05). 

 

One might suspect that training may increase the signal-to-noise ratio by 

reducing the noises in the evidence accumulation process that can be quantified as the 

drift variance. However, as shown in Figure 15D, we found that the drift variance 

remained constant over the five training runs (F(4, 484) = 1.9745, p = 0.10 > α = .05) and 

the two conditions (F(1, 484) = 0.4497, p = .51 > α = .05). The interaction between 

decision context and run was also not significant (F(4, 484) = 1.2609, p = .29 > α = .05). 

 

We found that people tended to accept the stock regardless of the magnitudes of 

the potential gains and the potential losses. This can be seen from Figure 15B that the 

overall starting-point is greater than zero. There was also significant main effect on such 

bias across the two decision contexts (F(1, 484) = 39.31, p<.0001). The tendency to 

accept a stock was greater in the conservative context than that in the risky context. 

However, this tendency to accept the stock went down over the training runs (main effect 

on runs: F(4, 484) = 2.78, p = .026 > α = .05). There was no significant interaction 

between the decision context and the training runs (F(4, 484) = 1.728, p = .1425 > α 

= .05), suggesting that this bias was not a result of training. 
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Finally, the non-decision time became shorter over the training (Figure 15C). 

The main effect on run was significant (F(4, 484) = 2.51, p = .04 < α = .05). There was 

no significant effect on the interaction between decision context and run (F(4, 484) = .83, 

p = 0.5012 > α = .05) nor the main effect on the decision context (F(1, 484) = 1.18, p = 

0.2785 > α = .05). 

DISCUSSION 

The influences of experience on the decision-making under risk were identified 

using the drift-diffusion model to complement the limited temporal resolution of the 

BOLD signals in functional neural imaging. We showed that the parameters in this model 

could be estimated more efficiently and flexibly with analytically derived joint 

distribution of choice and response time. The ratio between the potential gains and the 

potential losses rather than the subjective value computed from prospect theory better 

accounted for the evidence that drove decisions in our sample. Also, the magnitude of 

this decision evidence was modulated by the reinforcement in each decision context. This 

was shown as the effects of interaction between the decision contexts and the training 

runs on the drift rates. However, the drift variance remained constant over the training in 

both decision contexts, suggesting that the noises perturbing the evidence accumulation 

process remained the same. Finally, the non-decision time decreased over the training, 

indicating overall improvement of perceptual and motor processing in the task. 
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The finding that the evidence driving decisions about accepting or rejecting a 

potential financial outcome was better described as the gain-to-loss ratio suggests that 

financial decisions can be made by simplified the features of each option. It has been 

suggested that when choosing from multiple alternatives defined by two dimensions (e.g. 

considering the price and fuel economics when buying a car), people constantly switch 

attention across one of the dimensions and compare all the options alone this currently 

attended dimension at a time (Tversky,	1972;	Usher	&	McClelland,	2004). For each 

option on this attended dimension, the negative difference across all the options would be 

weighted greater than the positive difference, indicating the loss aversion (Kahneman	&	

Tversky,	1979;	Tversky	&	Kahneman,	1992). All the different scores then were 

summed across all dimensions to derive the evidence supporting each alternative. Instead 

of switch between the dimensions for consideration, we found that people may use a 

linear combination to reduce the two dimensions into one and compare the options alone 

this new dimension (e.g. gain-to-loss ratio) in order to derive evidence supporting a 

choice. Furthermore, the weights for reducing two dimensions into one can be shaped by 

experiences in the current decision context. Our finding hence highlights the need to 

investigate the generation of heuristic strategies (e.g. dimension reduction) and its 

influences on the neural system in decision-making under risk. 
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The driving force underlying the changes in decision-making under risk is of 

great interest. This learning process may be similar to learning a rule to classify objects 

that required working memory to verbalize the rule (accepting that offer if the gains are x 

times greater than the losses) and test hypotheses. Such learning relies the frontal-

striatum loop in the brain (Ashby	&	Maddox,	2005). However, this idea may not apply 

according to the results from the previous chapter: we only observed the activation in 

frontal lobe but not the striatum during the training and the probe. Alternatively, this 

learning process may be similar to the prediction-error-driven reinforcement learning 

mechanism (Schultz,	1998;	Sutton	&	Barto,	1998). We have built the groundwork for 

testing this hypothesis. By showing that parameters in drift-diffusion model can be 

accurately estimated using analytical solutions, this approach can be combined with 

learning algorithms to estimate the cross-correlation between the feedback and the next 

choice. Unfortunately, deriving the detailed learning algorithms is beyond the timeline of 

the dissertation; hence, we left it to future study. 

 

One may criticize that our modeling approach may ignore an important factor 

that participants may trade off speed and accuracy over the training. For instance, 

findings in lexical categorization (word vs. non-word) showed that over the training, the 

decision boundaries in the drift-diffusion process decreased. This suggested that 

experiences in two-alternative categorization made people became less cautious in 

making a choice (Dutilh,	Krypotos,	&	Wagenmakers,	2011). However, in our study, we 
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fixed the height of the decision boundaries when applying the analytical solution to the 

drift-diffusion model in order to constrain the parameter estimation. This is an inevitable 

caveat of our approach.   

 

In conclusion, we found that applying rules can better account for the decision-

making process when people learned to make risker or more conservative financial 

choices over experiences. We also showed that parameters in drift-diffusion model could 

be estimated more efficiently with analytical solutions. This opened the potential to apply 

drift diffusion model to cases where trial-by-trial differences were important in decision-

making.  
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Conclusions 

Through tracking how bias could be developed in perceptual and financial decisions, I 

presented evidence suggesting an integrated picture of a domain general decision-making 

system in the human brains. The core brain structures of this system were the frontal and 

parietal cortices. The major role of this system was constantly associating decision 

contexts and reward feedback in order to learn how objective evidence (e.g. visual 

stimulus in perceptual decisions, magnitudes of costs and benefits financial decisions) 

should be evaluated. Decision bias hence occurred when this system altered its strengths 

of link between the functionally specialized brain areas that processed the evidence under 

consideration based on the current decision context. For instance, the functional 

connectivity among the frontal, visual, and value systems increased as people developed 

the tendency to make a perceptual choice according to the reward magnitudes in the 

decision context rather than abide by the perceptual evidence presented in front of them. 

Moreover, when people were encouraged to make risky or conservative financial choices 

according to the decision context, the frontal cortex gauged its functional connectivity 

between the value systems to determine the weights of the potential gains in a financial 

choice. Results from analyzing the representation of this decision evidence with a 

mathematical model suggested that this system might further synthesize experiences in 

complicated choices (e.g. costs and benefits) into rules of thumb in each decision context. 

These findings highlight the importance of integrating domain-specific knowledge in 
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decision neuroscience into a whole and provide insights into how our decision-making 

processes could be refined in the face of experiences. 
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Table 1. Best-fitting parameter estimates in the study of Chapter 1 

Parameters Learning Model I 

(contextual action-

outcome 

association) 

Learning Model II  

(action-outcome 

association)  

Hierarchical logistic 

regression (context  

by run number 

interaction) 

𝑏! .81 (.39, 1.23) 1.03 (.01, 1.44) -- 

𝛼 .02 (.009, .03) .01 (.006, .02) -- 

𝑏! 4.01 (3.54, 4.80) 3.54 (2.47, 4.11) -- 

AIC 6672.9 7770.24 6962 

N(fit)/N(total) 21/23 2/23 -- 

Notes. The parameter values are shown as median and the interquartile range (25th, 

75th percentile) across participants. Also shown are the proportions of participants 

whose data are better fit by each of the learning model. Bold fonts: the best-fit model. 

N: the number of participants, AIC: Akaike’s Information Criterion. 
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Table 2. GLM results in the Chapter 1 

Effect Brain regions 

Cluster 

size 

(voxels) p-value z-value MNI coordinates 

     X Y Z 

Acquired bias Frontal Orbital Cortex 1336 <.0001 4.13 46 20 -12 

 

Superior Frontal Gyrus 949 <.0001 3.37 0 34 50 

 

Inferior Frontal Gyrus 766 <.0001 3.77 -54 24 12 

 

Posterior Supramarginal Gyrus 729 <.0001 3.98 -52 -46 10 

 

Superior Lateral Occipital Cortex 692 <.0001 3.48 -12 -84 38 

 

Posterior Middle Temporal Gyrus 364 <.0001 3.25 62 -30 -16 

 

Postcentral Gyrus 262 <.0001 3.55 2 -34 52 

 

Brain-Stem 237 <.0001 3.89 14 -22 -14 

 

Middle Frontal Gyrus 167 <.0001 3.13 38 0 64 

 

Precentral Gyrus 163 <.0001 3.17 44 0 34 

 

Frontal Medial Cortex 105 0.005 2.95 0 46 2 

 

Posterior Superior Temporal Gyrus 100 0.007 3.16 58 -34 4 

 

Frontal Pole 94 0.011 3.40 -28 52 34 

 

Temporal Pole 91 0.014 3.26 -54 4 -24 

Contextual RPE Superior Lateral Occipital Cortex 3635 <.0001 4.28 50 -62 24 

 

Posterior Supramarginal Gyrus 1596 <.0001 4.39 -50 -48 52 

 

Superior Frontal Gyrus 1395 <.0001 4.26 -16 18 52 

 

Posterior Middle Temporal Gyrus 1189 <.0001 4.26 -62 -40 -8 

 

Middle Frontal Gyrus 1134 <.0001 3.69 38 26 52 

 

Frontal Medial Cortex 1065 <.0001 4.43 2 44 -4 
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Table	2.	(Cont.) 

Effect Brain regions 

Cluster 

size 

(voxels) p-value z-value MNI coordinates 

     X Y Z 

 Posterior Cingulate Gyrus 1063 <.0001 3.80 0 -36 42 

 

Frontal Pole 443 <.0001 3.58 50 44 20 

 

Inferior Lateral Occipital Cortex  308 <.0001 3.15 42 -78 -2 

 

Right Caudate 270 <.0001 4.42 12 12 4 

 

Cerebellum 234 <.0001 4.15 -40 -68 -38 

 

Frontal Pole 194 <.0001 3.85 -20 36 -16 

 

Left Caudate/Accumbens 170 <.0001 4.01 -10 10 0 

 

Frontal Orbital Cortex 100 0.002 3.39 -26 22 -20 

 

Anterior parahippocampal Gyrus,  67 0.037 3.37 20 -2 -26 

Context-free RPE Occipital Pole 179 <.0001 3.49 28 -96 16 

 

Pre-central Gyrus 101 0.002 3.28 -48 -18 52 
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Table 3. PPI results in the Chapter 1 

Seed regions Co-activating brain regions 

Cluster 

size 

(voxels) p-value z-value MNI coordinates 

     X Y Z 

vmPFC Pre-central Gyrus 56 0.037 3.44 -36 -30 68 

Frontal cortex 

(Left) Occipital Pole 325 <.0001 3.27 22 -92 -2 

 

Paracingulate Gyrus 131 <.0001 3.42 0 54 16 

 

Frontal Medial Cortex 117 <.0001 3.24 -4 38 -20 

 

Occipital Fusiform Gyrus 90 0.003 3.10 -48 -70 -26 

 

Right Putamen/Caudate  63 0.039 3.09 18 16 -4 

Parietal cortex 

(Left) Anterior Cingulate Cyrus 98 0.001 3.07 10 38 6 

 

Paracingulate Gyrus 71 0.009 3.37 18 52 2 
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Table 4. FMRI results in Chapter 2: General Linear Model (Risky > Conservative). 

Variebles Location 
Cluster size 

(voxels) 
Z 

statistics P value 
MNI (mm) 

X Y Z 

Training phase (Main effect) 
Gains Frontal Pole 2699 4.12 <.0001 -22 42 52 

 Precuneous Cortex 1761 4.27 <.0001 -2 -58 30 
 Lateral Occipital Cortex 1709 4.42 <.0001 -46 -62 26 
 Frontal Pole 566 4.3 0.0018 24 44 46 
 Lateral Occipital Cortex 564 4.27 0.0018 52 -60 26 
 Inferior Temporal Gyrus 350 3.85 0.0371 -68 -30 -24 

Losses Lateral Occipital Cortex 22321 6.45 <.0001 -46 -62 24 
 Precuneous Cortex 4262 6.06 <.0001 -4 -58 34 
 Angular Gyrus 2441 5.8 <.0001 50 -56 30 
 Middle Temporal Gyrus 1411 4.93 <.0001 64 -10 -20 

Training phase (Linear trend) 
Gains Angular Gyrus (Parietal cortex) 664 4.58 .0002 46 -54 32 

 
Frontal Pole (Frontal cortex) 653 4.33 .0003 30 36 50 

 
Middle Temporal Gyrus 373 4.29 .0157 60 -8 -22 

Losses Frontal Pole (Frontal cortex) 417 4.2 .0065 30 60 12 

Probe phase 
Gains Frontal Pole (Frontal cortex) 464 3.83 .0065 28 36 40 

 
Frontal Medial Cortex (vmPFC) 404 3.81 .0154 -12 54 -4 

 
Angular Gyrus (Parietal cortex) 337 4.07 .0424 54 -48 18 

Losses Supramarginal Gyrus (Parietal cortex) 933 3.88 <.0001 56 -42 28 

 
Supplementary Motor Cortex 365 3.65 .0357 4 -2 60 
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Table 5. Functional connectivity with vmPFC (Conservative > Risky). 

Variables Location 
Cluster size 

(voxels) 
Z 

statistics P value 
MNI (mm) 
X Y Z 

Training phase (Main effects) 
Gains Middle Frontal Gyrus (Frontal cortex) 508 4.15 0.0014 -48 12 38 

 
Supramarginal Gyrus (Parietal cortex) 401 3.38 0.0076 -44 -54 44 

Training phase (Linear trend) 
Losses Superior Parietal Lobule (Parietal cortex) 1706 4.2 <.0001 0 -50 68 

 
Midbrain 408 4.35 0.0041 -6 -16 -24 

 
Angular Gyrus (Parietal cortex) 331 3.53 0.0160 44 -50 30 
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Table 6. Testing different representations of evidence in financial choices. 

Model Negative log 
likelihood 

AIC BIC Proportion of 
fit among the 
sample 

Gain-to-loss 
ratio: 6 levels 

60449 
 

67019 
 

73987 .91 

Subjective 
value function 

66818 73118 
 

79872 .95 

Notes. The bolded font indicates the model that best accounts for the obtained data. 
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Figure 1 Experimental paradigm used in Chapter 1. Each trial is composed of a 
context, motion stimulus (illustrated as white dots), and reward points. The 
number of reward points that one can earn depends on the context and the 
choice. P: probability; Δt: duration; AVG: average; s: second. 
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Figure 2 Behavioral results in Chapter 1. A) Psychometric function. The motion 
strength was plotted against the probability of choosing “up” in each context 
across the five runs (dots). This change is modeled with logit function in 
which its intercept reflects the value difference between the two motion 
directions that has been learned up to the end of each run (solid lines). The 
dashed lines are the indecision points. Motion strength: the percentage of 
coherent moving-dots; +/-: upward/downward motion. Error bars: ±1 s.e.m. 
B) The bias acquisition process. The trial numbers are plotted against the 
indecision points estimated by the reinforcement-learning model using 
individuals’ data. Solid lines: group mean. Shaded areas: ±1 s.e.m. Dashed 
lines: the end of each run. Colors: corresponding to the reward context as 
illustrated in Figure 2A. C) The autocorrelation functions. The correlation 
estimates using the residuals from the context-based learning model is 
plotted against each lag. Solid lines: group average. Dashed lines: 95% 
confidence interval of the autocorrelation estimated from a random series 
with the same number of trials (a total of 280 trials).  
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Figure 3 The acquired perceptual bias in the bran. The maps show the brain areas 
whose activation positively correlates with the amount of acquired bias on 
each trial. No brain areas negatively correlate with this signal after the 
whole-brain correction of multiple comparisons. All maps are presented at p 
< .05 whole-brain corrected using cluster-based Gaussian random field and 
overlaying on the mean anatomical images from the group of participants. 
R: right hemisphere; L: left hemisphere; Z: the MNI coordinate of the axial 
slice. 
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Figure 4 The reward prediction errors. The brain maps show the regions whose 
activation positively correlates with the two types of reward prediction error 
signals in perceptual decisions after adjusting one type over the other. All 
maps are presented at p < .05 whole-brain corrected using cluster-based 
Gaussian random field and overlaying on the mean anatomical images from 
the group of participants. Red-Yellow: context-based RPE; Blue-Light-blue: 
context-free RPE; R: right hemisphere; L: left hemisphere; Z: the MNI 
coordinate of the axial slice. 
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Figure 5 Three functional connectivity patterns underlying the growth of perceptual 
bias. The left panel shows the seed regions that were used in the 
psychophysiological interaction analyses. These seed regions were selected 
according to the literature and centered at the MNI coordinates (vmPFC: [-6, 
39, -8]; left-frontal: [-45, 21, 0]; left-parietal: [-36, -39, 45]) with the radius 
of 10 mm. The brain maps on the right panel show the areas that positive 
correlate with the interaction between each of the seed regions and the 
amount of acquired bias on each trial. The statistical maps are corrected for 
multiple comparisons at the whole-brain level using cluster-based Gaussian 
random field correction at P < 0.05 and overlaying on the mean anatomical 
images from the group of participants. R: right hemisphere; L: left 
hemisphere; X, Y, Z: the MNI coordinates. 
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Figure 6 Behavioral paradigms used in Chapter 2. Left panel: The timeline of each 
event in the three phases of the experiment. Right panel: The ranges of the 
potential gains and the potential losses. In the baseline and probe phase, all 
the tested pairs of the potential gains and losses are shown as the grids. In 
the training phase, the tested pairs in each decision context are shown as the 
open circles. The blue and the yellow shaded areas show those pairs that 
should be accepted according to the decision criterion of each context. 
Those pairs fall in the gray shaded area should be rejected. ΔT: duration; s: 
seconds. 
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Figure 7 Changes in behavioral loss aversion. A) The probability of accepting a stock 
at each level of gain-to-loss ratio is gradually modulated by the decision 
contexts. The progression of training runs is shown as the gradient from 
light to dark colors. The ranges of the gain-to-loss ratio at each level, from 
the level-1 to the level-6, are .52–.79, .88–1.07, 1.18 – 1.8, 2.1–2.41, 2.59–
3.17, 3.21–6.33. Dashed gray line: indecision points. B) The measurements 
of loss aversion over the three phases of the experiment. Top panel: The 
sensitivities toward the potential gains and the potential losses in the two 
decision contexts. Bottom panel: The loss aversion indicators in the two 
decision contexts. Black dashed line: the decision criterion in each context; 
Solid dots: group average; Error bars: ±1 standard error of the group 
average. 
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Figure 8 Choice and response time in the baseline and probe phases. A) Baseline. B) 
The loss neutral (risky) context of the probe. People should accept the stocks 
as long as the potential gains are 1.12 times greater than the potential losses. 
C) The loss averse (conservative) context of the probe. People should accept 
the stocks when the potential gains are at least 2.5 times greater than the 
potential losses. P(accept): Probability of acceptance. 
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Figure 9 FMRI results in the baseline phase. Brain regions positively correlated with 
the potential gains but negatively correlated with the potential losses during 
the baseline phase. Notice that the real values of the potential losses were 
used in the design matrix; therefore, positive sign of the z-value indicates 
negative correlation. The brain map of the potential gains is presented at p 
< .05 whole-brain corrected using cluster-based Gaussian random field. The 
brain map of the potential losses is uncorrected. L: left hemisphere; Y: the 
MNI coordinates. 
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Figure 10 Training effect on brain responses (Risky – Conservative). A) Main effect. 
Brain areas showed greater responses toward the potential outcomes in the 
risky than in the conservative context. B) Linear trends. Brain areas 
gradually show greater responses toward the potential outcomes in the risky 
than that in the conservative context. C) The plots of the peak response areas 
shown in (B) against the five training runs. Red shaded plots: responses 
toward the potential gains; blue shaded plot: responses toward the potential 
losses; red solid lines and dots: group averaged response in the conservative 
context; blue solid lines and dots: group averaged in the risky context; solid 
dots: group average; error bars: ±1 standard errors. Left: left hemisphere; 
Right: right hemisphere; Y, Z: the MNI coordinates. All the brain maps are 
presented at p < .05 whole-brain corrected using cluster-based Gaussian 
random field.  
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Figure 11 Training effect on the functional connectivity with the vmPFC 
(Conservative - risky). A) Brain areas show greater functional connectivity 
between the vmPFC over the training when participants evaluated the 
potential gains (red-yellow) or the potential losses (blue-light blue). The 
map is presented at p < .05 whole-brain corrected using cluster-based 
Gaussian random field. Left or right: left or right hemisphere. B) The plots 
of the responses of the peak voxel within each cluster in (A) against the five 
training runs. Red shaded plots: the responses toward the potential gains; 
blue shaded plot: the responses toward the potential losses; red solid lines 
and dots: measured in the conservative context; blue solid lines and dots: 
measured in the risky context; solid dots: group average; error bars: ±1 of 
the standard errors.  
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Figure 12 Brain activation in the probe phase (Risky - conservative).  Brain areas 
show greater responses toward the potential gain (red-yellow) or the 
potential losses (blue-light blue) in the risky than that in the conservative 
context when probed after the training. All the maps are presented at p < .05 
whole-brain corrected using cluster-based Gaussian random field. Y, Z: the 
MNI coordinates; Left or right: left or right hemisphere. 

 

  

Z-value
2.3 3.8

Gains
Losses

Left Right



 
 

96 

Figure 13. Convergence test results. A) – D): Results from four different parameter 
sets. The left panel shows the comparison of choice and response time joint 
distribution between the simulation and analytical solution. Red: response 
time ending at the upper bound; black: response time ending at the lower 
bound; dots: simulation results; lines: analytical solutions. The right panel 
plots the sample size used in the simulation against the mean square errors 
between the true and best-fit parameters. 𝜎!: drift variance; 𝜇: drift rate; 
𝑥!: starting point; 𝜏: non-decision time. 

 

C)

D)

σ =1 τ=.5µ=.3x =02
0

A)

0 .5 1.0 1.5 2.0 2.5 3.0
Time (sec.)

.06

.05

.04

.03

.02

.01

0

Pr
ob

ab
ili

ty

.07

.08
Emp_up
Analy_up
Emp_low
Analy_low

B)
σ =1 τ=.5µ=-.3x =02

0

0 .5 1.0 1.5 2.0 2.5 3.0
Time (sec.)

.06

.05

.04

.03

.02

.01

0

Pr
ob

ab
ili

ty

.07

.08 Emp_up
Analy_up
Emp_low
Analy_low

σ =1 τ=.5µ=.3x =.22
0

Pr
ob

ab
ili

ty

0 .5 1.0 1.5 2.0 2.5 3.0
Time (sec.)

.06

.04

.02

0

.08

.10

.12 Emp_up
Analy_up
Emp_low
Analy_low

σ =1 τ=.5µ=-.3x =.22
0

0 .5 1.0 1.5 2.0 2.5 3.0
Time (sec.)

.06

.05

.04

.03

.02

.01

0

Pr
ob

ab
ili

ty

.07

.08 Emp_up
Analy_up
Emp_low
Analy_low

.4

.2
0

M
SE

5 6 7 8 5 6 7 8 9
log(sample size)

9

σ 2 µ

x 0 τ

.6

.8

.4

.2
0

.6

.8
1.0

5 6 7 8 5 6 7 8 9
log(sample size)

9

.4

.2
0

M
SE

.6

.8

.4

.2
0

.6

.8
1.0

σ 2 µ

x 0 τ

5 6 7 8 5 6 7 8 9
log(sample size)

9

.4

.2
0

M
SE

.6

.8

.4

.2
0

.6

.8

1.0
σ 2 µ

x 0 τ

5 6 7 8 5 6 7 8 9
log(sample size)

9

.4

.2
0

M
SE

.6

.8

.4

.2
0

.6

.8

1.0
σ 2 µ

x 0 τ



 
 

97 

Figure 14. The comparison between the model and the data. The empirical and model 
derived choice accuracy and response time are plotted against each other 
together with the corresponding Spearman correlation and R2 indicating the 
goodness of fit in each context and training run. The black line shows the 
cases of perfect model fit. Blue dots and font color: risky context; red dots 
and font color: conservative context. 
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Figure 15. Parameter estimation from the drift-diffusion model. A) The drift rate 
estimated in the six different levels of gain-to-loss ratio. Blue gradients: 
risky context; brown gradients: conservative context; dashed line: criteria 
for acceptance in the risky (blue) and conservative (brown) context; stars: 
significant context-by-run interaction effects. B) The starting points. C) The 
non-decision time. D) The drift variance. Dots: group average; error bars: ± 
1 standard error.  
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