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Berry curvature appears in the semi-classical theory of Bloch electrons

already to first order in electromagnetic fields, resulting in profound modifica-

tion of the carrier velocity and phase space density of states. Here we derive

the equations of motion for the physical position and crystal momentum to

second order in the fields. The dynamics still has a Hamiltonian structure,

albeit with noncanonical Poisson brackets between the physical variables. We

are able to expand both the carrier energy and the Poisson brackets to second

order in the fields with terms of clear physical meaning. To demonstrate the

utility of our theory, we obtain with much ease the electromagnetic response

and orbital magnetic susceptibility.
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1 Introduction

The essence of crystals is the periodic arrangement of atoms. The Born-

Oppenheimer approximation seperates the motion of fast moving electrons and

relatively inert ions [5]. Bloch waves express the structure of the electronic

wave function in a crystal [1]. These two ideas give rise to the band structure,

and lay down the foundation of the typical quantum mechanical treatment of

crystals. Yet another elegant and intuitive treatment of Bloch electrons is the

semiclassical theory.

Of course, the electronic motion is quantum mechanical in nature. The

concept of ‘classical’ description comes from the construction of wavepackets

as suggested by Paul Ehrenfest. However, the simple classical limit of Bloch

electrons is not appropriate, since the variation of periodic potential is of the

scale of interatomic distance and hence comparable with if not smaller than

the typical spatial spread of the wave packet. Also, the semiclassical theory

can not handle scattering from impurities or other imperfections in solids-it

more naturally describes electrons moving between two subsequent collisions.

For a long time, the semiclassical equations of motion for Bloch electrons read:

ṙ =
∂ε(k)

∂k
, (1)

k̇ = −eE − eṙ ×B , (2)

where ε(k) is the electronic band structure, E and B the external electro-

magnetic fields, and k the crystal momentum. Earlier works justifying the

validity of these equations of motion (EOM) include Blount from phase space
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quantum mechanics [3], Zak constructing the k-q representation [26, 27], and

Chambers explicitly formulating a wavepacket with its center following the

trajectory determined by Eq.(1)-(2). However, various Hall effects bring new

challenges to the semiclassical theory.

A unified first order theory was developed by Sundaram and Niu [19].

They start by assuming that the Hamiltonian is slowly perturbed due to, for

example, the external electromagnetic fields:

Ĥ = H(p̂+ eAr(r̂, t))− eφ(r̂, t) , (3)

and construct a wavepacket from a single band n:

|Ψ〉 =

∫
BZ

d3k

8π3
C(k)eik·r|unk〉 . (4)

Here Ar is the vector potential, φ is the scalar potential, and eik·r|unk〉 the

Bloch wave. Then they examine the Lagrangian defined by:

L = 〈Ψ|i d
dt
|Ψ〉 − 〈Ψ|Ĥ|Ψ〉 . (5)

In the context of Bloch electrons, they find that:

L = −εM + eφ(r, t) + k · ṙ + k̇ ·A− er̂ ·Ar , (6)

εM = ε(k)−B ·m , (7)

where A = 〈unk|i∂/∂k|unk〉 is the Berry connection, and m is the magnetic

moment:

m = eIm

[〈
∂unk
∂k

∣∣∣∣× (ε− Ĥ(k)

∣∣∣∣∂unk∂k

〉]
. (8)
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By applying the Euler-Lagrangian equations of motion, they are able to write

down the correct first order equations of motion:

ṙ =
∂εM
∂k
− k̇ ×Ω , (9)

k̇ = −eE − eṙ ×B . (10)

where Ω = ∇k ×A is the Berry curvature.

Comparing Eqs.(9)-(10) with Eqs.(1)-(2), two comments are in order:

(1) the force equation remains the same; (2) electromagnetic fields modify the

velocity equation in two ways: they modify the band energy by coupling to the

electron magnetic moment in the n-th band, and also give rise to a new term

by coupling to the Berry curvature in a symmetric way compared with the

Lorentz force. This new term in the velocity equation is called the anomalous

velocity. It is the cross product of the Berry curvature with k̂, the changing

rate of k-space parameter, and highly resembles the real space Lorentz force in

the magnetic field. This resemblance suggests Ω can be viewed as the k-space

magnetic field. To make the analogy more manifest, if one considers a two

band toy model H = h(R) · σ, it can be shown that the vector form Berry

curvature reads [22]:

Ω =
1

2

h

h3
, (11)

which is the field generated by a charge 1/2 monopole at the degenerate point

h = 0 in the parameter space. In this case, the implementation of Gauss

theorem gives a delightful result which is useful beyond this simple toy model:∫
Σ

Ω · dS = 2π . (12)
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The generalization is more easily addressed in the language of differ-

ential geometry. The playground for differential geometry in the context of

crystals is the first Brillouin zone(BZ), because each point in the BZ will speci-

fy a possible electronic state. The BZ is a smooth, differentialable and oriented

manifold. Interestingly, the real space periodicity is reflected also in the k-

space, which identifies any two points in the parameter space differing by a

reciprocal lattice vector. This assigns a nontrivial torus topology to the BZ

in the 2D case. The Bloch wave function has a U(1) phase redundancy and

A = 〈u|i∂/∂k|u〉 is the corresponding local connection. One can define an

exact curvature form: ω = dA. Then the following integration can be proven

to take only integer values:

N =
1

2π

∫
BZ

ω . (13)

This leads to various interesting topics on exploring the topology of the band

structure.

The fruitful implications of the anomalous velocity in the semiclassical

theory is largely explored by Di Xiao et al. [24]. The key message is that

it breaks the canonicality between the semiclassical phase space variables r

and k. Indeed, in the derivation provided by Sundaram and Niu, r and k are

taken as independent degrees of freedom, so there is no reason they happen to

be canonical. From the quantum mechanical point of view, this fact is due to

the projection P of the whole Hilbert space to a subspace spanned by Bloch
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states from only one band, so that

P [r̂, k̂]P 6= [P r̂P, P k̂P ] . (14)

A direct consequence is that Liouville’s theorem is violated and the

phase space density of states will pick up an additional term:

1→ 1 +B ·Ω . (15)

However, the total number of states is fixed, so the Fermi surface is shifted.

Since various transport properties of solids are effects determined by processes

in the neighbourhood of the Fermi surface, this shift is then of great signifi-

cance - for example, in the understanding of anomalous Hall conductivity and

orbital magnetization. Despite its success, the semiclassical theory up to now

has had a serious limitation: it is only accurate to the first order in external

fields. Therefore it cannot deal with quantities that require second order ac-

curacy. In this work, I will generalize the semiclassical equations of motion

to the second order accuracy in external fieds, and use it to examine vari-

ous polarizabilities and susceptibilities in solids. To realize the generalization,

an alternative formalism of quantum mechanics called phase space quantum

mechanics would be more useful.
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2 Phase Space Quantum Mechanics

The role of statistical concepts has bothered the founders of quantum

mechanics. In 1927, Hermann Weyl [21] designed a transformation, which

maps each Hilbert space operator to a phase space function. This map is a

new and complete representation of quantum mechanics in the sense that it is

also assembled with a star product between two functions which mimics the

operator product in the Hilbert space. Since the star product possesses an

asymptotic expansion with the expanding parameter ~, it actually describes

the quantum mechanics as a deformation of classical mechanics mediated by

the Planck constant. In 1932, Eugene Wigner [10] introduced the Wigner

quasi-probability distribution to study quantum corrections to classical statis-

tical mechnics. It is the phase space analog of quantum mechanical wavefunc-

tions which encode all expectation information. However, Wigner has noticed

that this distribution function cannot be made positive all the time. So he

emphasises that it is only a useful mathematical tool. In 1949, José Enrique

Moyal [16] explored in depth the possibility of reformulating quantum mechan-

ics in the statistical language. Here I will just sketch his major ideas and main

results.

One should focus on the measurable quantities in a system, i.e. the

expectation values of physical observables. In the statistical language, it is:

〈G〉 =

∫
dxG(x)ρ(x; t) , (16)

where G(x) is the observable of physical interest, and ρ(x; t) the distribution

6



function.

From this, it is obvious that to map the quantum mechanics into a

statistical theory, one needs to resolve three problems: (1) How to get a dis-

tribution function that describes the state of a quantum system; (2) How to

get the appropriate function for observables; (3) How does the distribution

function evolve.

Assuming p̂ is a complete set of commutating obserbles, it is usually

not enough to specify the dynamical properties of the system. One needs to

find a complementary set q̂, which do not commute with p̂, and together they

characterize a given system dynamically and span the phase space. This idea

can also be stated in a more intuitive way: one prepares a sample as an eigen-

state of some operator, however the measurement process usually corresponds

to an observable which does not commute with the original one. One example

is that q̂ can be the Cartesian coordinates and p̂ the conjugate momenta (for

simplicity, the following derivation will make this identification). So the first

problem amounts to finding the phase space distribution function ρ(p, q).

Moyal [16] anwsered the first question by transfering the concept of the

characteristic function in statistics, i.e. by looking for the Fourier inverse of

ρ(p, q):

M(τ, θ) =

∫∫
ρ(p, q)ei(τq+θp)dpdq . (17)

So the characteristic function is the expectation value of the phase space func-

tion ei(τq+θp). The connection with the quantum mechanics comes from substi-

tuting q and p by its operator form q̂ and p̂. Then one can identify Eq.(17) with
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the quantum mechanical expectation value of the operator kernel ei(τ q̂+θp̂). If

the wavefunction Ψ is given, the result is:

M(τ, θ) = 〈Ψ|ei(τ q̂+θp̂)|Ψ〉 . (18)

By taking the Fourier transform, the distribution function is obtained:

ρ(p, q) =
1

4π2

∫∫
〈Ψ|ei(τ q̂+θp̂)|Ψ〉e−i(τq+θp)dτdθ . (19)

A more useful form of Eq.(19) would require the Baker-Hausdorff formula:

eX+Y = eXeY e−
1
2

[X,Y ]e
1
6

(2[Y,[X,Y ]]+[X,[X,Y ]]) · · · . (20)

And the phase space distribution function takes a form:

ρ(p, q) =
1

2π

∫
Ψ∗(q − 1

2
~τ)e−iτpΨ(q +

1

2
~τ)dτ . (21)

The next step is to find the mapping of Hilbert space operators and

phase space functions. Given a phase space function G(p, q), the measurement

of G yields:

G =

∫∫
G(p, q)ρ(p, q)dpdq =

〈
Ψ

∣∣∣∣∫∫ g(τ, θ)ei(τ q̂+θp̂)dτdθ

∣∣∣∣Ψ〉 , (22)

where

g(τ, θ) =
1

4π2

∫∫
G(p, q)e−i(τq+θp)dpdq . (23)

So one can take the corresponding Hilbert space operator to be:

Ĝ =

∫∫
g(τ, θ)ei(τ q̂+θp̂)dτdθ . (24)
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Here, the operator kernel in the Fourier inverse combined with the Fourier

transform actually yields a Dirac delta analogue:

1

4π2

∫∫
e−i(τ(q−q̂)+θ(p−p̂))dτdθ = δ(q − q̂)δ(p− p̂) . (25)

Another useful expression for Ĝ from G(p, q) is:

Ĝ = e~/(2i)∂
2/∂p∂qĜ0(q̂, p̂) , (26)

where Ĝ0(q̂, p̂) is obtained from the ordinary function G(p, q) by writing all

the operator p̂ to the right, and this order is maintained when applying the

operator e~/(2i)∂
2/∂p∂q . Later, it is pointed out that this is just another way to

write down Ĝ in the fully symmetrized form.

The inverse problem is more difficult. Given a Hilbert space operator,

to find its phase space correspondance, one needs to use the Schwartz kernel

theorem, which asserts that for a linear operator, one can find its kernel:

Ĝϕ(q) =

∫
KG(q; q′)ϕ(q′)dq′ , (27)

where Ĝ is a linear operator and ϕ is a wavefunction. Then the phase space

function is given by:

G(p, q) =
1√
2π

∫
dτe−iτqKG(p+ τ/2, p− τ/2) . (28)

As for the evolution of the distribution function, Moyal [16] found that

it should not be done in the framework of classical statistical mechanics, which
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is a ‘crypto-deterministic’ theory, but appears more like a special case of dy-

namical stochastic processes, i.e. a Markov process. After some lengthy deriva-

tion, his result is:

∂

∂t
G(p, q; t) =

2

~
sin

~
2

[
∂

∂pG

∂

∂qH
− ∂

∂qG

∂

∂pH

]
G(p, q; t)H(p, q) , (29)

where H(p, q) is the phase space function of the Hamiltonian operator, the

subscript G or H means acting on G(p, q; t) or H(p, q), and the sine function

is in the sense of Taylor series expansion. Above processes complete the con-

struction of the phase space representation of quantum mechanics. Now one

is ready to apply this formalism to solid state physics.
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3 Bloch Electrons in Uniform Electromagnetic Fields

Consider these three different types of Hamiltonian that may be used

in solid state physics (for simplicity, the natural units e = ~ = c = 1 are

adopted):

(a) Schrödinger Hamiltonian:

Ĥ =
p̂2

2m
+ U(r̂) , (30)

where m is the mass of the electron and U the periodic crystalline potential.

(b) Pauli Hamiltonian which is the Schrödinger Hamiltonian with the

spin-orbit coupling:

Ĥ =
p̂2

2m
+

1

4m2
p̂ · σ ×∇U(r̂) + U(r̂) , (31)

where σ is the Pauli matrices.

(c) Relativistic Dirac Hamiltonian:

Ĥ = α · p̂+ U(r̂) , (32)

where α is the four-component spinor.

For these Hamiltonians, one can define a total velocity operator V̂ as

follows:

V̂ = −i[r̂, Ĥ] . (33)

When uniform external electromagnetic fields are turned on, one should add

a scalar potential E · r̂, and use the mechanical momentum to substitute the

11



canonical momentum in these three Hamiltonians:

p̂→ p̂+
1

2
B × r̂ . (34)

Here E and B are electromagnetic fields. The symmetric gauge is chosen for

the vector potential. These Hamiltonians under EM fieds can be put in a

unified form:

Ĥ = Ĥ0 +
1

4
{V̂ ·B × r̂}+

(B × r̂)2

8m
, (35)

except that for the Dirac case one must set 1/m = 0 and the last term dis-

appears. Here Ĥ0 is the Hamiltonian without external fields. If one treats

the second and third terms as perturbations, a serious issue is that r̂ is in-

volved in the vector potential, which is an unbound operator. So convential

perturbation technique is not applicable here. Yet the smallness of external

fieds means that the scalar and vector potential varies slowly from cell to cell.

Based on this observation, E.I.Blount [2, 3] tackled this kind of perturbation

in the framework of phase space quantum mechanics.

To get the phase space function for the Hamiltonian operator, it is

convinent to use the Bloch wavefunction, which is the eigenstate for the un-

perturbed Hamiltonian. Note that any operator Ô under the Bloch basis takes

the form Omn(p1,p2), where m and n are band indices, p1 and p2 the crystal

momentum. Rewrite Omn(p1,p2) as follows:

Omn(p;p′) ≡ Omn(p+ p′/2,p− p′/2) = Omn(p1,p2) . (36)

The the phase space function is found by:

Omn(p, q) =

∫
dp′Omn(p;p′)eiq·p

′
. (37)
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In the phase space representation, the quantum nature of any function

lies in the deformation of the matrix product, i.e. the multiplication rule.

Given two Hilbert space operators N̂ and Ô, whose phase space functions are

N(p, q) and O(p, q) respectively, the counterpart of N̂Ô is obtained by the

following asymptotic expansion:

N ? O = NO +
i

2
{N,O}PB

− 1

8

(
∂2N

∂pi∂pj

∂2O

∂qi∂qj
− 2

∂2N

∂pi∂qj

∂2O

∂qi∂pj
+

∂2N

∂qi∂qj

∂2O

∂pi∂pj

)
+ · · · . (38)

Here the subscript PB means Poisson bracket:

{N,O}PB =
∂N

∂qi

∂O

∂pi
− ∂N

∂pi

∂O

∂qi
. (39)

The applied magnetic field changes the commutation relation between

physical momenta, so the original Bloch wavefunction does not generate the

correct energy band any more. However, if the magnetic field is small, one

can imagine that the deviation is also small. The general idea to solve this

perturbed system is to design a unitary transformation which can diagonalize

the Hamiltonian, however this purpose seems to be too hard to achieve in one

step. A more realistic goal is to block diagonolize the Hamiltonian operator

with respect to the band index n. Yet even this is difficult to accomplish

exactly. Fortunately, there is a recursive procejure to do this order by order.

In general, for a Hilbert space operator Ô, suppose one can find a

unitary matrix U (0)(q,p) in the phase space, such that it can diagonalize

O(q,p) according to the usual matrix product. The substitution by the star
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product would change this simple result in two ways: (1) U (0)(p, q) is not

unitary with respect to the star product, although it is with respect to the

usual product; (2) generally, U (0)(q,p) cannot diagonalize O(p, q). But the

deviation is determined from the asymptotic expansion Eq.(38).

Formally, one can correct the original transformation U by a series of

prefactors:

U =
∞∏
i

(1 + U (i))U (0) (40)

U(n) =
n∏
i

(1 + U (i))U (0) . (41)

The Hermitian part of U (1) is dertermined as follows:

U (1) + U (1)† +
i

2
{U (0), U (0)†}PB = 0 . (42)

For the nth order one will obtain

U(n) ? U
†
(n) = 1 + ∆(n+1) + ∆R , (43)

where ∆(n+1) is of the order (n+ 1) and ∆R is of higher order. Then U (n+1) is

so chosen that

U (n+1) + U (n+1)† + ∆(n+1) = 0 . (44)

So the Hermitian part is all about making the transformation unitary.

One still have another constraint to fix the antihermitian part, i.e. to

diagonalize O with respect to the star product. At the beginning, one has

U (0) ? O ? U (0)† = O
(0)
D +O(1) +OR , (45)
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where O
(0)
D is diagonal, O(1) is the first order residue with possible off-diagonal

elements, and OR is of higher order. In general order,

U(n) ? O ? U †(n) = O
(n)
D +O(n+1) +OR . (46)

So one should choose U (n) such that

U (n+1)O
(n)
D +O

(n)
D U (n+1)† +O(n+1) = O

(n+1)
D . (47)

The off-diagonal element yields

1

2
[(U (n+1) − U (n+1)†), O

(n)
D ] = −O(n+1) − 1

2
{∆(n+1), O

(n)
D } . (48)

This completes diagonalizing O with respect to the star product.

Applying this scheme, one can find the effective Hamiltonian up to the

second order

H = ε(π)− (B × v) · a−B ·m+
3

8
{Ui, {Uj, αij}}+ U2/2m

+
1

2
{vj, {Up, ∂pUj}}+ EV D +

1

4
[[Ui, vp], ∂iUp]

− 1

2
{Ui, ∂i(B ·M)}+

1

8
[∂pUj, [∂jUp, ε]] , (49)

where π = p+ 1
2
B × q is the physical momentum before the transformation,

αij = ∂ijε is the effective mass, A = 〈un,p|i∂p|un′p′〉 is the Berry connection,

U = 1
2
B × A is the gauge momentum associated with the Berry connection,

and Mk = −εijk 1
4
{Ai, Vj} is the magnetic moment. Also, lower case letters

u ,a ,m ,v are for the intraband part and upper case letters U ,A ,M ,V
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the interband part of U ,A ,M ,V, respectively. The quantity EV D is from the

conventional perturbation theory:

EV D = −
∑
m 6=n

|B ·Mnm + (B × v) ·Amn|2

En − Em
. (50)

Position and momentum are the two fundamental observables in the

semiclassical description. Hence it is useful to derive their appropriate forms

in the single band representation as well. Applying the same transformation

which digonalize the hamiltonian function, and one can find that the position

operator r̂ and the mechanic momentum operator π̂ = (p̂ + 1
2
B × r̂) after

transformation become

r = q + a(n) + Ω(n) ×
1

2
(B × a(n)) + u`∂`a(n) + [F,A](n) +

1

2
{D`A, U`}(n) ,

(51)

k = p+
1

2
B × q +B × a(n) −

1

2
(B ·Ω(n))B × a(n)

+ u`∂`(B × a(n)) +B × [F,A](n) +
1

2
B × {D`A, U`}(n) , (52)

where ∂` ≡ ∂
∂k`

, and n is the band index (hereafter I will drop the subscript n for

simplicity). D` is defined to be the covariant derivative: D`X = ∂`X− i[a`, X]

for some quantity X. And

Fmm′ =
E ·Amm′ − 1

2
{B × v, ·A}mm′ + 1

4
ε`ijB`{Ai, Vj}mm′

εm − εm′
(53)

is a correction factor purely from interband interference effects. It should be

noted that the expression of r is only valid up to the first order in external

fields (see Eq.(51)), while the expression for k is valid to the second order.
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This is because the second order terms in r would give contributions that

are higher than second order in the equations of motion, hence they can be

neglected in this treatment. This situation is analogous to the first order case,

there we only need a zeroth order r for constructing the first order equations

of motion.

Up to now, the expressions of the physical position and mechanical

momentum projected into the n-th band are obtained, and so is the effective

Hamiltonian function which governs the dynamic evolution. It is possible to

build a semiclassical effective theory based on this information. The dynamics

of the canonical variables is governed by the Hamiltonian equations of motion:(
q̇
ṗ

)
=

(
03×3 I3×3

−I3×3 03×3

)(
∂H
∂q

∂H
∂p

)
. (54)

Eqs.(51)-(52) give non-canonical transformations from (q,p) to (r,k). They

should also induce a change in the Hamiltonian function:

H(r(q,p),k(q,p)) = H(q,p) (55)

In analogy with the classical equations of motion, the dynamics of the physical

phase space variables reads:(
ṙ

k̇

)
=

(
{r, r}PB {r,k}PB
{k, r}PB {k,k}PB

)(
∂H
∂r

∂H
∂k

)
. (56)
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From Eqs.(51) and (52), one can find that:

{ri, rj}PB =
ε`ijΩ̃`

1 +B · Ω̃
(57)

{ri, pj}PB =
δij +BiΩ̃j

1 +B · Ω̃
, (58)

{pi, pj}PB = − εij`B`

1 +B · Ω̃
, (59)

which are determined by two quantities: the magnetic fieldB and the modified

Berry curvature Ω̃ with

Ω̃(k) = Ω(k) +
1

2
∇× {D`A, U`}+∇× [F,A] . (60)

Ω̃ is the usual Berry curvature plus corrections that are first order in field.

Substituting Eqs.(57)-(59) into Eq.(56), we finally obtain the equations of

motion as

ṙ =
∂H

∂k
− k̇ × Ω̃, (61)

k̇ = −∂H
∂r
− ṙ ×B . (62)

It is remarkable that the second order equations of motion retains a

simple elegant structure. Compared with Eqs.(9)-(10), the only difference is

that we need to work with the modified (more accurate) Hamiltonian and

Berry curvature. The non-canonicality from these Poission brackets induces

the correction to the density of states. Denote the Jacobian matrix from the

canonical variables to physical variables by J. Then the density of states is

determined by the determinant of J [15]: D = det (J). The result is

D = 1 +B · Ω̃ . (63)
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4 Electromagnetic Polarizability

In the first application, I would like to discuss the magnetoelectric

polarizability. The corresponding response function is predicted to contain a

Chern-Simons form, which should be quantized to integer multipliers of e2/2h

by symmetry arguments. The semiclassical approach for the Chern-Simons

form is examined by Xiao Di et al. [23] by using the non-Abelian electronic

dynamics and modern theory of polarization. However, his method is not

rigorous due to the first order accuracy of the semiclassical theory. Our theory

can serve as part of the theoretical ground for his method.

This problem is now revisited from the modern theory of polarization.

According to King-Smith and Vanderbilt [13], under an appropriate gauge

choice for the Berry connection, the polarization for solids is:

P =

∫
BZ

d3k

(2π)3
a . (64)

This is the formula without external fields. The presence of a magnetic

fieldB modifies it in two ways: (1) the density of states is altered by an amount

of B ·Ω; (2) the physical position obtains additional corrections: comparing

with the zero field expression r = q+a, the Berry connection is field shifted by

the last four terms of Eq.(51). We take account of all these variations, collect

terms of first order in external field and rewrite them in terms of the physical

momentum k. It is the trace part of the response function that should have
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the Chern-Simons form, so finally we have:

α =
1

3
Tr

(
∂Pi
∂Bj

)
= −

∫
BZ

d3k

(2π)3

(
1

2
Ω · a+

1

3
[
∂F

∂Bi

, Ai]

+
1

6
{ε`imD`Ai, Am}

)
. (65)

By using density operator perturbation technique and adiabatic pump-

ing, Essin et al [11, 12] has obtained the general Chern-Simons 3-form for the

electromagnetic polarizability. Note that the first term in Eq.(65) only in-

volves single band quantities, and is exactly the same expression as obtained

by A.M.Essin et al. [12] for the Abelian case. The other two terms corre-

spond to the perturbative contributions stemming from the change of basis in

previous papers [17, 23].
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5 Magnetic Susceptibility

In the second application, I would like to examine the magnetization

and its response to external fields. Start from the standard definition of the

magnetization in statistical mechanics:

M = − 1

V

(
∂G

∂B

)
µ,T,V

, (66)

where G = U − TS − Nµ is the thermodynamics grand potential, and V

the system volume. G can also be obtained from the partition function G =

Tr[g(Ĥ)], with g(ε) = −kBT ln{1 + exp[(µ− ε)/kBT ]} .

For a single band semiclassical theory, the trace reduces to integration

of the physical momentum over the Brillouin zone:

G =

∫
BZ

DgPS
d3k

8π3
, (67)

where gPS is the single state grand potential in the phase space. It contains

two parts: gPS = gLandau + gquasi. gLandau is the Landau diamagnetic free

energy, and its contribution to G is:

GLandau = − 1

48
BλBνελ`kεµνρ

∫
BZ

d3k

8π3

∂f0(εn)

∂εn
α`ναkρ , (68)

where εn is the n-th band dispersion, f0 the Fermi distribution function, and

αkρ = ∂2εn/∂πk∂πρ the effective mass tensor. For a simple metal, the ef-

fective mass tensor takes a diagonal form under principal axes, rendering a

simplification of GLandau to its standard form.

gquasi is due to the modification of the quasi-particle energy H. Ap-

plying an electric field may induce a current, driving the system away from
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equilibrium. To avoid this, I assume that the n-th band is fully occupied. In

this case one would also throw away E ·q term in the electric potential energy.

Then one rewrites the other second order Hamiltonian function in terms of

physical variables, plugs it in g(ε) and carrys on the Taylor series expansion

to second order. Combining gPS with Eqs. (16)-(17), one obtains:

M =

∫
BZ

d3k

8π3
(mf0 −Ωg)−

∫
BZ

d3k

8π3

(
1

2
a× (E ×Ω)f0 + Ω(E · a)f0

−m(E · a)f ′0 − a×∇(E · a)f0 +

[
∂F

∂B
,E ·A

]
f0

+
1

2
êi[D`(E ·A), εij`Aj]f0

)
− ∂

∂B
(GLandau +Gquasi +Gorb−geo +Ggeo) .

(69)

The magnetization falls into three groups. The first group reproduces

the magnetization obtained by Junren Shi et al. [18], and is an intrinsic

contribution. The second group describes how the electric field would induce

the magnetization. Taking its derivative with respect to the electric field would

lead to the same result as Eq. (65) (assume zero temperature). The magnetic

moment m is defined as: m = −1/4εijk{rj, ṙk}. So the electric field modifies

the magnetic moment through altering the position or the velocity. Among the

first four terms in the second group, the first one comes from the anomalous

velocity, and it amounts to the surface Hall effect mentioned by A.M. Essin et

al. [12]. The second and third term corresponds to the electric dipole shifted

Fermi energy. For an insulator, the Fermi surface lies within the band gap, so

the third term vanishes. The fourth term is due to the electric dipole modified

velocity. They together yield the Chern-Simons form.
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The third group would give rise to the magnetic susceptibility. Gquasi

is the system grand potential soly due to the quasi-particle energy. It can be

further divided into two parts: the Pauli paramagnetism contribution

GPauli =

∫
BZ

d3k

8π3
f ′0(B ·m)2/2 , (70)

and the Van Vleck-like contribution

GV V =

∫
BZ

d3k

8π3
f0H

(2) . (71)

Note that the Pauli contribution is not in the usual sense and may contain the

magnetic moment due to the orbital motion. Gorb−geo is characterized by the

coupling between the orbital moment and density of states:

Gorb−geo = −
∫
BZ

d3k

8π3
(B ·Ω)(B ·m)f0 . (72)

Di Xiao et al. [25] have find a good realization of this term in graphene, when

the inversion symmetry is broken by applying a staggered potential. Ggeo is

of purely geometric origin:

Ggeo =

∫
BZ

d3k

8π3

(
1

2
B · ∇ × {D`A, U`}

+B · ∇ × [F,A]) g . (73)

In a two band model, it will pick up the detailed geometric information of the

band curve near the band bottom.
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