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Abstract: Data envelopment analysis (DEA) is extended to the case of 
stochastic inputs and outputs through the use of chance-constrained programming. 
The chance-constrained envelope envelops a given set of observations ''most of 
the time''. 

We show that the chance-constrained enveloping process leads to the defini­
tion of a conventional (certainty-equivalent) efficiency ratio (a ratio between 
weighted outputs and weighted inputs). Furthermore, extending the concept of 
Pareto and Koopmans efficiency to the case of chance-constrained dominance (to 
be defined), we establish the identity of the following two chance-constrained 
efficiency concepts: (i) the chance constrained DEA efficiency measure of a 
particular output-input point is unity, and all chance-constraints are binding; 
(ii) the point is efficient in the sense Pareto and Koopmans. 

Finally we discuss the implications of our approach for econometric frontier 
analysis. 
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1. Introduction. 

As the literature of data envelopment analysis (DEA) has grown (for surveys 

see Charnes and Cooper [10] and Banker, Charnes, Cooper, Swarts and Thomas ([3 

]), many researchers have felt a need to incorporate stochastic considerations 

in the model to accommodate the presence of measurement and specification 

errors. 

By specification errors we mean here, as in statistical analysis generally, 

the presence of unspecified (''hidden'', "intervening'') causal factors so that the 

causal hypothesis at hand is not complete. The omission of thes~ factors 

appears in the model as stochastic variation. 

Production relationships are often stochastic in nature. In agriculture, 

weather is unpredictable. In manufacturing there may be considerable variability 

in the quality of output obtained, as attested by the need for statistical 

quality control. In product development there is uncertainty whether new designs 

will be technically viable and uncertainty about the prospective market. 

Another kind of uncertainty relates to the nature of the economic system 

inside which production units are operating. A comparison of the efficiency 

of private firms and government-owned firms operating in the same industry might 

hinge upon the evaluation of such factors as the willingness of management to 

take risks, and incentives to cost control (or the possible failure to exercise 

such control). Both the nature of risk and the attitude toward risk are often 

different in private and public enterprise. 

Uncertainty in the mind of the management regarding the availability of 

inputs or demand for outputs leads to a need to hold inventory - - stocks of raw 
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materials, of semifinished goods, and of consumer goods ready for shipment. A 

manufacturing firm holds inventory of steel profiles or imported electric com­

ponents. It stores output in a warehouse before delivery. In a market economy 

final demand may be quite volatile and management needs to put contingencies in 

place to deal with such variation. Under state socialism, managers hoard labor 

and resources to protect themselves against stochastic variation in supplies 

caused by abrupt changes ordered by state bureaucrats (Kornai [20) and [21)). 

The concept of "efficiency" must somehow be related to how managers deal 

with uncertainty. Inefficient use of inputs is not just inappro~riate propor­

tions, as when some inputs are lacking entirely and the presence of others is 

excessive. Efficiency is an ex ante concept and should refer to the degree of 

preparedness that management has established to handle stochastic variation in 

production relationships. 

In order to model efficiency in the face of uncertainty, we shall use the 

technique of chance-constrained programming (for early developments see Charnes, 

Cooper and Symonds [13) and Charnes and Cooper [6], [7], [8]). This programming 

method is attractive when the purpose of the programming is to avoid excessive 

one-sided stochastic variation. In deterministic DEA, and in conventional acti­

vity analysis, all observations are required to fall on one side of the effi­

ciency frontier. Here we shall permit stochastic variation around the frontier, 

but the bulk of observations will still be required to fall behind it. 

Our ideas have evolved, and been shared with the academic community, in the 

following manner. The starting point was the observation that the term 

"efficiency" was being used in the sociological literature somewhat loosely in 
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comparisons between capitalist firms and state socialist firms (e.g. in Burawoy 

and Lukacs [5]). Jn order to bring out what seemed to be intended, Land, Stark, 

and Thore [23] suggested a chance-constrained format. At a National Science 

Foundation conference on parametric and nonparametric approaches to frontier 

analysis, University of North Carolina at Chapel Hill, September 1988, Land, 

Lovell and There [22] presented the basic chance-constrained DEA model for the 

first time. The equivalence of chance-constrained DEA efficiency and chance-

constrained Pareto-Kooomans efficiencv was stated and proven by There at a svm-

posium on recent developments in evaluation of organisational productivity, 
• 

Odense University, May 1989 [31]. None of the reports mentioned now have been 

printed previously and this material is now brought together here for the first 

time. 

Additional aspects of chance-constrained DEA have been probed by Petersen 

and Olesen [24]. Alternative stochastic approaches to DEA have been reported by 

Banker [2] , Desai and Schinnar [14], Satish [25], Sengupta ([27], [28], [29]), 

and Sengupta and Sfeir [29]. Also, for a nonparametric study of optimizing beha-

vior with measurement error see Varian [33]. 

Turning to the parametric (econometric) approach to frontier analysis, 

Aigner and Chu [1], p. 838 made cautions but correct reference to chance­

constrained programming by noting that a deterministic production frontier rela-

tionship might be replaced with a probability statement involving a specified 

minimum probability with which the relationship is to hold. They did not imple-

ment their own suggestion, however. Three years later Timmer [31] did, in a way 

that was most unfortunate, suggesting that efficient observations be discarded 
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from analysis until the desired minimum probability is met. For criticism, see 

Forsund, Lovell and Schmidt [16], p. 10. Discarding observations, ostensibly 

efficient or otherwise, is not sound econometric practice. 

Our goal in this paper is to reintroduce chance-constrained programming into 

the frontier literature, to suggest that it offers a useful way of improving 

deterministic frontier models, and to use it to forge a link between the deter-

ministic and the stochastic approaches to frontier analysis. 

Sector 2 presents the basic chance-constrained DEA format. In the common 

fashion, the input and output observations of a particular DMU (decision-making 

unit) to be examined are compared with so-called ''best practice''. Adopting a 

standard input-oriented formulation, best practice is defined as the greatest 

possible radial contraction of the inputs, while still obtaining the considered 

vector of outputs. These conditi~ns are now all written as chance-constraints, 

i.e. they are required to hold "most of the time". The radial contraction factor 

is the desired chance-constrained DEA measure of efficiency. It can be written 

as an efficiency ratio (a ratio between weighted outputs and weighted inputs). 

A well known result in deterministic DEA states that a DEA-efficient point 

is also efficient in the sense of Pareto and Koopmans (Charnes, Cooper, Golany, 

Seiford, and Stutz [11]). Section 3 demonstrates a similar result for chance-

constrained DEA. The conventional way of defining a Pareto and Koopmans effi­

cient point is to state that it is an ''undominated point''. Extending the 

concept to a chance-constrained setting, we define chance-constrained dominance 

and identify chance-constrained Pareto-Koopmans efficiency with a chance­

constrained undominated point. It is shown that chance-constrained DEA effi­

ciency implies chance-constrained Pareto-Koopmans efficiency and conversely. 
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Section 4 ties Pareto-Koopmans efficiency to chance-constrained activity 

analysis (Thore [30]). Each DMU is reinterpreted as a separate "activity". An 

efficient activity can be represented as the optimal solution to a chance-

constrained programming problem representing the conversion of resources 

(inputs) into consumer goods (outputs). For any activity, whether efficient or 

not, one can calculate the chance-constrained DEA efficiency measure. In the 

case that the efficiency measure equals unity, there is again Pareto-Koopmans 

efficiency. The efficiency concepts are the same. 

. 
Section 5 comments on mixed nonparametric- parametric approaches. There is a 

mathematical Appendix. 

2. A Chance-Constrained Radial Contraction Formulation. 

Use the notation 

i=l,. .. ,I the collection of DMU's 

m=l, ... ,M 

n=l, .. .,N 

X = [XmiJ 

Y = [YniJ 

Xo= [xmoJ 

Yo= [YnoJ 

inputs 

outputs 

sample 

sample 

column 

column 

input matrix 

output matrix 

vector of inputs 

vector of outputs 

of the particular DMU investigated 

of the particular DMU investigated 

It is assumed that all Xmi and all Yni are stochastic with a known joint pro­

bability distribution. It should also be pointed out that what matters here is 

1 ' not the variability of these inputs and outputs in the past, but their expected 

variability. To simplify matters we shall assume throughout that this expected 

7 



probability distribution is jointly normal. (This assumption is made for con­

venience only, and any known joint probability distribution will do.) 

In the common manner, use the symbols xm and yn to denote the rows of the 

matrices X and Y, and the symbols Xi and Yi to denote the columns of the matri-

ces. 

Petersen and Olesen [24] also assume that Xo and Yo are stochastic. In what 

follows, we shall prefer to regard Xo and Yo as deterministic. That is, the 

question posed here is this: how is the particular observed outcome (Xo, Yo) of 

' the DMU under investigation to be rated in relation to the chance-constrained 

envelope? 

Next, introduce the following unknowns to be determined: 

e radial contraction factor 

DMU loadings, determining ''best practice'' 

and consider 

(1) min e 

subject to Prob (Yn• ~ Yno) > 0.95 , n=l, ... ,N 

Prob (exmo ~ xm•) > 0.95 , m=l, ... ,M 

e unrestricted in sign, A~ 0 

The program instructs us to minimize the contraction or shrinking factor e, 

subject to two sets of chance constraints: "best practice" outputs should not 

fall short of the output considered, and the shrunken input cannot fall short of 

best practice inputs. 
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(Here and throughout the paper the additional restriction lAi = 1 can be 

adjoined to the model. See Grosskopf [17] for an exposition of the link between 

restrictions on the intensity vector and scale economies in production.) 

Converting to certainty equivalents 

(2) min 0 

subject to E(Yn•) - 1.645 s.d.(YnA) ~ YnO n=l, ... ,N 

0xmo - E(Xm•) - 1.645 s.d.(Xm•) > O m=l, .. .,M 

0 unrestricted in sign, A ~ 0 

The number 1.645 is F-l(0.95) where F is the distribution function of the 

normal distribution. (5 % of the observations of a normal distribution with 

mathematical expectation =O and standard deviation= 1 exceed this number.) The 

operator E is the mathematical expectation. The operator s.d. is the standard 

deviation (the square root of the variance). 

Define Lagrange multipliers 

row vector of ''virtual multipliers'' of outputs 

row vector of "virtual multipliers" of inputs 

There is a Kuhn-Tucker condition that states (since e is unrestricted in 

sign) 

(3) * u Xo = 1 

Next, using the Theorem in the Appendix, one has (in the common fashion, the 

asterisk denotes an optimal value) 
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(4) * * e = v Yo 

so that, combining (3) and (4) 

(5) e* = v*Yo/u*xo 

In words, the optimal contraction factor e* can be written as a deterministic 

Charnes-Cooper efficiency ratio. 

In the deterministic case one has that e* ~ 1. But no such result is 

available here. Instead, there are three possibilities: 

e* < 1, • or e = 1 but some the DMU being rated will be said to 

constraints remain slack be ''chance-constrained DEA 

at the point of optimum inefficient'' (or subefficient); 

e* = 1 and a 11 constraints the DMU being rated will be said to 

are tight at the point be ''chance-constrained DEA 

of optimum efficient"; 

e* > 1 the DMU being rated will be said to 

be ''chance-constrained DEA 

hypereffi ci ent". 

The locus of efficient input-output combinations may be referred to as the 

chance-constrained efficiency frontier. Chgance-constrained DEA inefficient 

points are located "below" the frontier. Hyperefficient points lie "above" it. 

Hyperefficiency can occur precisely because some small threshold fraction of all 

observed points are permitted to cross the efficiency frontier. 
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The point (Yo, e*Xo) is a point on the efficiency frontier (the chance­

constrained envelope). 

The formulations that we have provided up to this point have avoided possible 

difficulties arising if one or several virtual multipliers become zero. In order 

to deal with this matter (see Charnes and Cooper [9]), program (2) should be 

amended to read 

(6) min e - e(es+ + es-) 

subject to E(Ynx) - 1.645 s.d.(Ynx) -

0XmO - E(Xmx) - 1.645 s.d.(Xmx) - s­m 

e unrestricted in sign, X, s+, s- '.'. 0 

= YnO , n=l, ... ,N 

=O m=l, ... ,M 

where s+ = [s+n] and s- = [s-m] are column vectors of slack variables and e is a 

row vector of suitable dimensionr, with unity in all positions, and e > 0 is a 

non-Archimedean infinitesimal. If e* = 1 and s+* = s-* = 0, the DMU being tested 

is rated efficient. 

Figures 1 and 2 illustrate the chance-constrained frontier that can be solved 

under varying circumstances from the problem formulation (2) (or from (6), as 

the case may be).1 Figure 1 shows how the location of the frontier depends upon 

the expected stochastic nature of inputs and outputs. The bottom curve in the 

diagram illustrates a case where there is little random variation in the data so 

that the joint probability distribution is well concentrated around its mean. As 

explained, the chance-constrained frontier is defined so that at least 95 % of 

,- all data points are expected to fall below it. With increasing variability of 

data (but keeping the mathematical expectations unchanged) the frontier is 

shifted successively upward. 
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I Figure 1 About Here/ 

Figure 2 demonstrates how the frontier depends on the preset probability 

threshold level employed in the chance-constrained formulation. The top curve 

in the diagram is the same as the top curve in Figure 1. It is drawn with that 

threshold being equal to 0.95. What happens if the chance-constraint becomes 

less stringent so that, say, only 90 % or more of the data points are required 

to fall below the frontier( but now keeping the probability distribution itself 

unchanged)? The answer is that the frontier is then parametrically shifted down­

ward. The diagram illustrates two alternatives, with the threshqld level equal 

to 90 % and 80 %, respectively. 

I Figure 2 About Here/ 
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3. Pareto-Koopmans Efficiency. 

Already in the pioneering paper of DEA (Charnes, Cooper and Rhodes [12]), it 

was pointed out that the conditions for efficiency in the sense of the 

efficiency ratio measure are also the conditions for Pareto-Koopmans efficiency 

(ibid., p.433). The formal developments were supplied a couple of years later, 

in Charnes, Cooper, Golany, Seiford, and Stutz [11]. 

In a similar manner we now proceed to show that the conditions for efficiency 

developed in Section 2 can identically be interpreted as chance-constrained 

Pareto-Koopmans efficiency. 

To develop these matters ab initio, it is convenient first to define the 

concept of chance-constrained dominance. We shall say that the stochastic point 

(x,y) dominates a given test point (xo,Yo) in the sense of chance-constrained 

programming (on the tolerance level of 95 %) if 

(7) Prob (Yn ~ Yno) ~ 0.95 , n=l, ... ,N 

Prob (xm 2 xmo) 2 0.95 , n=l, ... ,N 

with at least one of the certainty equivalence constraints being strict. 

In order to clarify these concepts, turn to the diagrams Figure 3a and Figure 

3b. Figure 3a shows x-space (the space of inputs), and Figure 3b shows y-space 

(the space of outputs). The deterministic test point (xo,Yo) is marked in the 

diagrams. A stochastic point (x,y) will dominate (xo,Yo) in the chance­

constrained sense if the vector of inputs x lies ''below'' the vector xo most of 
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the time so that the use of inputs is "smaller'', and if the vector of outputs Y 

lies ''above'' the vector YO most of the time so that the resulting outputs 

obtained are "greater". 

- - - - - - I xo 

x 
YO 

-I 

y 

Figure 3a. Input space. Figure 3b. Output space. 

Thus prepared, we shall say that a given DMU under investigation (having out­

puts YO and inputs XO)• is Pareto-Koopmans efficient in the sense of chance­

constrained programming (on the :olerance level 95 %) if and only if it is 

possible to determine a nonnegative vector X of best practice so that the chance 

constraints 

(8) Prob (Ynx ~ Yno) ~ 0.95 n=l, ... ,N 

Prob cxmx 2 Xmo) ~ 0.95 I m=l, ... ,M 

can be brought into tightness. 

Converting into certainty equivalents, this is to require that the deter­

ministic constraints 

(9) E(Ynx) - 1.645 s.d.(Ynx) ~ YnO n=l, ... ,N 

E(Xmx) + 1.645 s.d.(Xmx) 2 XmO , m=l, ... ,M 
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can be brought into tightness. 

Writing down the goal program (e > 0 is the same non-Archimedean used in 

program (6)) 

(10) min -e(es+ + es-) 

subject to E(Ynx) - 1.645 s.d.(Ynx) - s+n = YnO n=l, ... ,N 

E(xmx) + 1.645 s.d.(Xmx) + s-m = XmO , m=l, ... ,M 

the DMU under investigation will be obviously be Pareto-Koopman~ efficient if 

and and only if the goal program (10) has the optimal solution s+* = s-* = 0. 

The main result is now that a DMU will be Pareto-Koopmans efficient in the 

sense of chance-constrained programming if and only if the DMU is chance­

constrained DEA efficient. Compare first (10) with (6). Assume that the DMU 

under investigation is rated ''efficient'' in the sense that the optimal effi­

ciency value 0 to be solved from program (6) equals unity and that all enve­

loping constraints are tight. In other words, assume that program (6) has an 

optimal solution e*, x*, s+*, s-* withe*= 1 and s+* = s-* = 0 and one sees 

that x*, s+* = s-* = 0 solves program (10). Hence, the DMU is Pareto-Koopmans 

efficient in the sense oif chance-constrained programming. 

Conversely, assume that the DMU under investigation is Pareto-Koopmans effi­

cient in the sense that it is possible to determine a nonnegative vector X of 

best practice so that the constraints (8) are brought into tightness. Then 

1 • program (10) has an optimal solution x#, s+#, s-# withs+#= s-# = 0 and one 

sees that 0 = 1, x#, s+# = s-# = 0 solves program (6). Hence, the DMU is rated 

chance-constrained DEA efficient. Q.E.D. 
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4. Chance-Constrained Activity Analysis. 

The concept of chance-constrained Pareto-Koopmans efficiency in its turn is 

related to chance-constrained activity analysis. 

In order to bring out this relation, identify each DMU i=l, .. .,I with the 

"manager" of a separate activity. (Koopmans called the coordinator of the 

overall mathematical program the "helmsman", the administrator of each commodity 

a "custodian", and the administrator of each activity a "manager", see [18], p. 

93 ff.) The sample input matrix X is interpreted as the matrix of unit input 
. 

requirements of managers, i.e. Xmi is the amount of input m required to operated 

activity i at unit level. Similarly, the sample output matrix Y is interpreted 

as the matrix of unit outputs, with Yni being the amount of output n obtained 

when activity is is operated at unit level. Further, the DMU loading factor Ai 

of each activity is interpreted as the "level" (or intensity) of operation of 

activity i. In the common manner of activity analysis, the vector product XX is 

then the vector of input requirements, and the vector YX is the vector of out-

puts obtained. 

The inputs n=l, ... ,N are now also referred to as ''resources'', and the outputs 

as "consumer goods" m=l, ... ,M. 

Also introduce the following additional notation 

p = [Pn] row vector of prices of consumer goods n=l, ... ,N 

d = [dn] column vector of demand for consumer goods n=l, ... ,N 

q = [qn] row vector of prices of resources m=l, ... ,M 

w = [wm] column vector of supplies of resources m=l, ... ,M 

16 



The chance-constrained activity analysis model is (see Thore [30)): 

(11) max pd - qw 

subject to Prob (dn - yn, ~ O) ~ 0.95, n=l, ... ,N 

Prob (XmA - Wm~ O) ~ 0.95, m=l, ... ,M 

d,W,A ~ 0 

where the constraints have the certainty equivalents 

(12) dn - EYnA + 1.645 s.d.(Yn') ~ 0, n=l, ... ,N 

Exm, + 1.645 s.d.(Xm') - Wm~ O, m=l, ... ,M 

The first set of constraints (12) states that if production is to be suf­

ficient to cover actual consumer demand most of the time, as required by the 

chance-constraint, then expected output must be large enough to cover actual 

demand all of the time, plus a contingency term whose magnitude depends on tech­

nological output variability and managerial risk. The second set of constraints 

in (12) states that if the supply of a resource is to be sufficient to cover the 

input requirement most of the time, actual supply must be large enough to cover 

expected input all of the time, plus a contingency term depending upon tech­

nological input variability and managerial risk. Uncertainty about output coef­

ficients leads management to hold inventories of finished goods. Uncertainty 

about input coefficients leads management to hoard resources and maintain excess 

capacity. Chance-constrained programming provides a way of formalizing these 

notions, and provides a solution technique for determining optimal activity 

I· levels and optimal stocks. See further Thore [30). 
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An efficient point of chance-constrained activity analysis is a solution 

point to program (11) with p,q > 0. More specifically, (d*, w*) is said to be 

efficient if and only if there exists p,q > 0 so that (d*, w*, x*) solves 

program (11). 

It is immediately clear that this is the same as Pareto-Koopmans chance­

constrained efficiency. For (d*, w*) is now the test point, and comparing the 

constraints of program (11) with (7) we see that (Xx*, Yx*) dominates (d*, w*) 

in the sense of chance-constrained programming. Conversely, given any test point 

(xo, YQ) that happens to be Pareto-Koopmans chance-constrained efficient, the 

deterministic constraints (9) can then be brought to tightness. Hence, there 

exists some x* that together with d* =YO and w* = xo brings (12) into tight­

ness. In other words, the point (d*, w*) solves the chance-constrained activity 

analysis model (11). 
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5. Chance-Constrained Frontiers and Parametric Stochastic Frontiers. 

The chance-constrained efficiency measure is calculated through conversion 

of the original chance-constrained program to its certainty equivalent. In this 

sense it is still deterministic, just like best practice efficiency measurement 

is. No parameters are estimated in the process, and efficiency scores do not 

come with standard errors in parentheses. Nonetheless chance-constrained effi-

ciency analysis takes on the appearance of, and much of the content of, a 

stochastic cost frontier model. 

. 
Consider first a conventional deterministic cost minimization problem 

(13) min wXA 

subject to YX ~ YO 

X ~ 0 

where w is a row vector of input prices. The chance-constrained version of (13) 

reads on certainty-equivalent form (see Thore [30), eq. (2)) 

(14) min w(EX)X 

subject to E(Ynx) - 1.645 s.d.(Ynx) ~YO , n=l, ... ,N 

X ~ 0 

The solution point lies on the chance-constrained Pareto-Koopmans efficiency 

frontier. 

A generic parametric stochastic cost frontier model can be written as 

(15) wx = C(y,w) + T + Uc 

Xm = Dm(y,w) +Tm+ um , m=l, ... ,M 

19 



Here wx is total cost, C( ) and Dm( ) are specified functional expressions 

depending on one or several parameters, T ~ 0 is the cost of inefficiency, Tm is 

the amount of inefficiency, and (uc,Un) is a random disturbance vector. (The 

inefficiency term T may be broken up into a technical inefficiency component and 

an allocative inefficiency component.) If system (15) is expressed in natural 

logarithms of variables, input demands are replaced with input cost shares. 

Also, output equations can bew added to the system, although they rarely are. As 

Bauer [4] has noted, this system can be estimated in a variety of ways. 

Note first the structural similarity between the two systems., Chance­

constrained technology is described by an enveloping, or supporting, or extre­

mal, best practice technology. Deviations from the frontier in both directions 

are permitted, but the frontier is determined so that the observations stay 

beneath it most of the time. Stochastic cost frontier technology, on the other 

hand, is described by a deterministic kernel plus a one-sided deviation above it 

plus a two-sided random deviation. The input demand appears as a deterministic 

kernel plus a two-sided deviation, plus a two-sided random deviation. 

Consider also the information requirements of the two approaches. They both 

start out from given observations (X,Y,w). Chance-constrained efficiency 

measurement requires evaluator-supplied information on the joint probability 

distribution of all stochastic inputs and outputs. The parametric approach 

requires evaluator-supplied information of the functional forms C and Dm and • 

frequently for T, Tm, Uc, um as well, plus a linkage relationship between T and 

the Tm. Whether the requirements of the one approach are more or less onerous 

than of the other is an empirical matter worthy of examination. 
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Appendix. 

This appendix states and proves a simple theorem for chance-constrained 

[. programming. Consider the chance-constrained program 

(Al) min ex 

subject to Prob(Aix ~bi)> 0.95, i=l, ... ,m 

x ~ 0 

where x is a nxl column vector of unknowns to be determined, A is a mxn matrix 

of random variables with a known and given joint probability distribution (for 

simplicity but without loss of generality assumed to be joint ndrmal), and b = 

b(mxl) and c = c(lxn) are deterministic. 

The certainty equivalent to (Al) is 

(A2) min ex 

subject to E(Aix) - 1.645 s.d.(Aix) >bi, i=l, .. .,m 

x ~ 0 

where 

(A3) (s.d.(Aix))2 = 
j=n k=n 
~ ~ XjXk Cov(aij•aik). 

j=l k=l 

Define the vector u = u(lxm) of Lagrange multipliers of the constraints in 

(A2). Then 

(A4) ex* = u*b 

(In the common manner, the asterisk denotes the value at an optimal point). 
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The desired result follows from application of the Kuhn-Tucker conditions to 

(A2). There arc two sets of conditions that read 

i=m 
(A5) }'. 

i=l 

k=n 
}'. 

k=l 
* ui ( Eaij - 1. 645 ---------

k=n 
}'. xk* Cov(aij,aik) 

k=l 

) < c. 
- J 

* Xj 
i=m 

}'. 

i=l 
Ui * * ( Eaij - 1.645 --------- ) - CjXj = 0, 

for all j=l, ... ,n. 

Using the last of these two sets of conditions, summing over j=l, ... ,n to 

* form ex , and simplifying, the result (A4) follows. 
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Figure 1. Chance-Constrained Frontiers for Different Degrees of 
Expected Variability of Inputs and Outputs. 
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Figure 2. Chance-Constrained Frontiers at Varying Probabilistic 
Threshold Levels. 
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