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Supervisors: Charles Kerans and Hongliu Zeng 

 

The assumption of the chronostratigraphic significance of seismic reflections 

serves as a fundamental premise in interpreting stratigraphy from seismic images. This 

hypothesis proposed in 1977 was initially applied to delineate depositional sequences as 

the basic interpretive unit, and then to reconstruct Wheeler Diagram and regional sea level 

curves. After a further comparison against with global eustatic events, these regional curves 

can further facilitate predicting the age, distribution, and facies of depositional sequence 

before drilling in a seismic-covered area during petroleum exploration. With a boom in 

reservoir-level seismic applications, for obtaining significant high frequency sequence 

(HFS) surfaces as the bounding surfaces in static reservoir model construction, this 

fundamental assumption was inevitably extended to characterize HFS and even high-

frequency cycles (HFC) during seismic reservoir characterization. 

For an ultimate improvement in constructing reservoir-bounding surfaces, the 

author targeted at evaluating the validity of this fundamental assumption as applied to high-

order seismic stratigraphy. The author conducted the entire project via the forward seismic 

modeling upon geologic models with known chronostratigraphic relationship. Besides, 

these input models carefully honor the reservoir geology for meaningful discussions on (1) 

shallow marine siliciclastic reservoirs in Starfak Field, GoM, (2) shallow-water mixed 
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carbonate/clastic Upper San Andres-Grayburg reservoirs in Permian Basin, and (3) 

shallow-water carbonate Abo shelf margin-Clear Fork platform in Permian Basin. 

This study has achieved three-fold contributions. On the aspect of realistic 

geocellular, property and seismic modeling at the reservoir scale, the author integrated 

high-resolution sequence stratigraphic framework, published 3D depositional model, intra-

facies heterogeneity in 3D modeling to selectively apply advanced geostatistical methods 

to model hierarchical heterogeneity. Subsequently, the author proposed an evaluation 

scheme with a defined parameter ('time-correlation error/TCE') to assess HFS-scale 

reservoir-bounding surfaces. These assessments revealed an interactive influence from (1) 

stratal geometry, (2) lateral lithofacies variation, (3) lithofacies-sonic velocity relationship 

in pure- versus mixed-lithology successions, (4) intra-facies heterogeneity, and (5) seismic 

frequency. Finally, based on these forward modeling results, the author proposed a decision 

tree to determine valid interpretation strategy in seismic chronostratigraphic correlation in 

scenarios with geoscientists’ expert knowledge and recommended an attribute-driven 

volumetric picking scheme to improve published algorithms for scenarios without prior 

knowledge. 
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Chapter 1: Introduction 

In this chapter, the author starts with an introduction to the research topic on the 

fundamental premise of seismic stratigraphy regarding ‘the chronostratigraphic 

significance of seismic reflection’, its first and present applicable scales, and its values in 

petroleum geosciences. Subsequently, the author moves on to motivations and then specific 

research questions to be addressed in this dissertation. After the delineation of research 

questions, the author provides an overview of the experimental design with controllable 

variables. Finally, this chapter closes with a structure of this dissertation. 

1.1 RESEARCH TOPIC AND SIGNIFICANCE IN PETROLEUM GEOSCIENCES 

1.1.1 Chronostratigraphic significance of seismic reflections – the fundamental 

assumption for seismic stratigraphy 

The year 1977 witnessed a breakthrough in petroleum geosciences, as brought by 

the publication of AAPG Memoir 26. Entailing the introduction of ‘seismic stratigraphy’ 

by Fisher et al. (1973), this volume documented in detail of the seismic stratigraphy 

analysis approaches by Mitchum et al. (1977a and b) and Vail et al. (1977a, b, and c). With 

an emphasis on chronostratigraphic analysis of reflection seismic data, it represents a 

landmark for seismic interpretation and provides an invaluable tool for petroleum and 

mineral exploration (Brown and Fisher, 1980; Posamentier and Vail, 1988; Catuneanu, 

2006; Hart, 2013). In this memoir, Vail and his colleagues published their innovative 

techniques at Esso Production Research to interpret seismic cross-sections. Assuming 

seismic reflections to follow chronostratigraphic surfaces, namely stratal surfaces and 

unconformities (Vail et al., 1977c), one can track seismic reflection pattern as 

stratifications, and then delineate significant sequence boundaries from a seismic reflection 

image (Mitchum et al., 1977b). Subsequently, as stratigraphic information is successively 



 2 

presented on the seismic image and conforms to the ‘Law of Superposition’, these 

interpreted seismic horizons could be linked to globally significant tectono-eustatic and 

eustatic events that can be dated (Vail et al., 1977b). This application further provides 

valuable insights into the age, distributions, and facies within depositional sequences of 

exploration plays (Vail et al., 1977b). 

This fundamental assumption of seismic stratigraphy is also known 

“chronostratigraphic significance of seismic reflection”. It has two-fold of meanings. First 

of all, it assumes seismic reflections to follow chronostratigraphic/time-significant 

surfaces, including the stratigraphic surfaces following the geologic timelines, or the 

unconformities separating the overlying younger strata from the underlying older ones. On 

the other hand, this fundamental assumption for seismic stratigraphy also asserted that 

seismic reflections should not follow lithostratigraphic surfaces, which transect geologic 

timelines and thus regarded as 'diachronous'. 

1.1.2 Scale of applications of this fundamental assumption: original versus present 

At the time when Vail and his colleagues (1977a, b, and c; Mitchum et al., 1977a 

and b) proposed this fundamental assumption, they suggested two major applications, 

including the delineation of depositional sequences (Mitchum et al., 1977b), and the 

construction of chronostratigraphic correlative curve or Wheeler Diagram (1960). 

Assuming seismic reflections represent stratifications, one can delineate depositional 

sequences based upon seismic reflection terminations, such as baselap, toplap and 

truncation (Mitchum et al., 1977a). Furthermore, these interpretations on seismic 

termination relationship lead to a seismically-interpreted cross-section showing the lateral 

extensions of both coastal and marine deposits (Figure 1.1a). By transforming this depth-

domain cross-section into the geologic-time domain (Figure 1.1b), the Wheeler Diagram 
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is constructed (Figure 1.1b) with a further estimated regional relative sea-level curve (blue 

solid line, Figure 1.1b; Vail et al., 1977a). Finally, by comparing this estimated regional 

curve against other regional curves around the world from areas with mature explorations,  

one can more confidently predict the age, distribution, and facies of depositional sequences 

before drilling in a seismic-covered area (Vail et al., 1977b and c). This scale of 

applications have turned out highly successful in petroleum and mineral exploration 

(Posamentier and Vail, 1988; Catuneanu, 2006; Hart, 2013) when applied to low-order (up 

to third-order) seismic stratigraphy (Mayer, 1979 a, b; Mayer et al., 1986).   

Recent decades have witnessed a boom in the use of seismic data, when seismic 

reflection-based seismic stratigraphy has become a standard geophysical approach for 

subsurface mapping of sedimentary basins, showing responses of petrophysical 

interactions between seismic wave and sedimentary rocks (Grogery, 1977; Watkins and 

Drake, 1982; Bally, 1983; Weimer and Davis, 1996; Eberli et al., 2001). Inevitably, it 

gradually becomes a standard practice to extend the fundamental assumption for seismic 

stratigraphy regarding the 'chronostratigraphic significance of seismic reflections' from its 

originally-recommended applicable basinal and regional scales for exploration (Vail et al., 

1977a) to a local or prospect scale for reservoir development. With the advent of the 

computational seismic chronostratigraphy (Stark et al., 2013), advanced geophysical 

algorithms such as Predicative Painting (Fomel et al., 2010) has equipped the seismic 

interpreters with the power to automatically and densely pick seismic events (Figure 1.1c). 

If assuming these densely-picked horizons as chronostratigraphic surfaces, one can further 

deform these automated interpretations to a seismic relative geologic time/RGT domain 

(Stark, 2004), and then construct a seismic Wheeler Diagram (Figure 1.1d).  
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Figure 1.1: Seismic chronostratigraphic correlation applied to conventional seismic 

stratigraphy and modern computational seismic chronostratigraphy. 

Modified from Vail et al. (1977a), (a) and (b) show applications of seismic 

stratigraphy to interpret stratigraphic cross-section in (a), as well as Wheeler 

Diagram and then regional relative sea-level curve in (b).  Modified from 

Fomel (2010), (c) and (d) present an advanced automated picking algorithm 

of predicative painting in computational seismic chronostratigraphy, which 

is capable of densely picking all seismic reflections in (c) and then 

reconstruct a seismic Wheeler Diagram in (d). 

1.1.3 Significances of the research topic 

An in-depth evaluation of the chronostratigraphic significance of seismic 

reflections beyond its initially recommended scale of applications would facilitate the 

development of computational seismic stratigraphy for reservoir-scale applications, and 

then contribute to the improvement of static reservoir model constructions. Upon a better 
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understanding of chronostratigraphic significance of seismic reflections at the reservoir 

scale, one can tell apart the densely-picked seismic reflections that truly honors 

chronostratigraphic surfaces apart from those following diachronous lithostratigraphic 

surfaces. This knowledge could more broadly contributes to the subsequent applications of 

computational seismic chronostratigraphy (Stark et al., 2013), including the trap prediction, 

the static reservoir model construction, the facies prediction, the thin-bed interpretation and 

the low-frequency model building for seismic inversion.   

In terms of further applications discussed above, this dissertation focused on 

improving seismic chronostratigraphic correlation/ 3D horizon interpretation at HFS scale 

for an ultimate improvement on static reservoir model construction. During static reservoir 

model construction, among these seismically-derived model inputs, 3D seismic horizons 

at high frequency sequence (HFS) scale were presumed to be important time-markers or 

geologic timelines in seismic stratigraphic interpretation, and thus contribute to multiple 

stages of static reservoir model construction.  Most directly at the stage of stratigraphic 

modeling/framework construction, 3D seismic horizons serve as reference surfaces for 

stratigraphic layering if interpreted in/converted to depth domain (Doyen, 2007). This 

ensures as true a representation of stratigraphic patterns and geometries as possible. 

Subsequently, at the stage of facies modeling, horizon-based attribute maps, if extracted 

from a true time surface, can provide a snapshot into a contemporaneous depositional 

system when integrated with cores and wireline logs (Posamentier et al., 1996; Zeng et al., 

1998a, b; Posamentier and Kolla, 2003; Chopra and Marfurt, 2007). Attribute maps can 

also be integrated into facies modeling (Behrens et al., 1998; Yao and Chopra, 2000). In 

addition, at the final stage of property modeling, 3D seismic horizons can be optionally 

used to guide the extrapolation of wireline logs to build a low-frequency model for seismic 
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inversion, which further provide volumetric constraints for property estimation (Hampson 

et al. 2000; Chopra and Marfurt, 2007).   

1.2 MOTIVATIONS AND RESEARCH QUESTIONS 

1.2.1 Motivations 

The author was motivated to evaluate the applicability of this fundamental 

assumption of seismic stratigraphy regarding the 'chronostratigraphic significance of 

seismic reflections' at the reservoir scale. More specifically, it refers to the scales of high-

frequency sequence (HFS) and high-frequency cycle (HFC), compared with the initially 

recommended applicable scales up to defining a depositional sequence, which is one 

magnitude smaller than the supersequence (Sloss, 1963). The primary motivation herein is 

the increasing reported cases of failures of this fundamental assumption as applied for 

reservoir characterization, where the next paragraphs provide a concise review. The author 

is also intrigued by contemplations on Vail et al. (1977c)'s experiment design with a focus 

on exploration-scale validation, which calls an introduction of more variables when 

addressing reservoir-scale seismic stratigraphy (discussed in Section 1.3).  

Discussions on whether the extension is appropriate started from concerns about 

seismic resolution, which is controlled by seismic frequency, as well as by acquisition, 

processing, and display techniques. Aigner et al. (1989) and Lawrence et al. (1990) observe 

differences between the seismically interpreted and the simulated buildup architectures, 

indicating the limitations of interpreting stratigraphic development from normal-frequency 

seismic data. Seismic resolution imposed a threshold that constrains the ability to define 

stratigraphic sequence using seismic data and to restore detailed models of the geologic 

history. Biddle et al. (1992) use a synthetic seismic model of outcrops to show, in low-

frequency seismic, “aliased” onlapping surfaces may be present where the retrograding 
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platform was “still shedding sediment and no simple onlapping surface exists in the 

outcrops.”  

Studies by Tipper (1993), Stafleu and Sonnenfeld (1994), Zeng et al. (1998), Zeng 

and Kerans (2003), and Hardage et al. (2007) reveal other contributors of inconsistencies 

between seismic reflections and geologic timelines. Tipper (1993) initializes an open 

debate, using the accretion dominated “unsteady sedimentation” model, which revealed 

“recognizable, apparently continuous reflections parallel to diachronous lithofacies 

boundaries.” Inspired by this study, Hardage et al. (2007) define the Tipper point for a 

reflection as the critical point at which the reflection begins to show a more time-

transgressive/diachronous pattern. As a result, the Tipper point is jointly determined by the 

relative bed and interlayer thickness in wavelength units and the amount younger beds 

overlapping older beds. Zeng et al. (1998a) recognize basic conditions of the time 

transgression of a seismic event, including inadequate seismic resolution and an indented 

stack (en echelon or ramp) of thickness or impedance anomalies. Additional factors causing 

diachronous reflections, revealed by other studies, include but are not limited to complex 

depositional facies transitions (Stafleu and Sonnenfeld, 1994; Zeng and Kerans, 2003) and 

meteoric or burial-diagenetic alteration of carbonate rocks (Fournier and Borgomano, 

2007).  

1.2.2 Research questions 

With an ultimate goal of improving the seismic stratigraphic interpretation to 

construct more accurate chronostratigraphic bounding surfaces for reservoir 

characterization, the research questions to be addressed focus on three aspects: 

 For the evaluation of fundamental assumption of seismic stratigraphy at the 

reservoir scale, the research question to be address include (1) in what systems is it 
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most appropriate? (2) And in what settings is it violated by complex 3D 

arrangements of lithofacies in prograding sequences? 

 For the model construction of reservoir geologic model with hierarchical 

heterogeneity and seismic responses, the research questions to be addressed include 

(3) what are best techniques for modeling flat versus clinoformal stratigraphic 

architecture? And for facies and petrophysical properties in carbonate versus mixed 

successions? (4) What is the impact of intra-facies heterogeneity reflected as spatial 

velocity variation on seismic responses? 

 For recommendations on improving seismic chronostratigraphic correlation, the 

research questions to be addressed focus on what are alternative interpretation 

approaches if not directly picking seismic events and their suitable conditions? in 

cases (5) with and (6) without geoscientists'  expert knowledge as critical inputs? 

1.3 EXPERIMENTAL DESIGN AND CONTROLLABLE VARIABLES 

1.3.1 Five variables to test at the reservoir scale 

Similar to Vail et al. (1977c)’s experiment design, the author also adopted a forward 

modeling on geologic models as this approach allows a comparison of seismic stratigraphy 

against its definite and known chronostratigraphy in its input geologic model. Afterward, 

the author defined five variables which were less tested or insignificant for the initial 

validation of the chronostratigraphic significance of seismic reflections at the exploration 

scale (Vail et al., 1977c, p. 100~104); while can potentially influence its validity at the 

reservoir scale (Table 1.1).    
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Table 1.1:    Five variables to be tested in this study for a reservoir-scale evaluation, compared with Vail et al. (1977c)'s 

original experiment design targeted at exploration scale. 

Vail et al. (1977)’s original experiment

at exploration scale (up to CS)

New variables tested in this study

at reservoir scale (HFS, HFC)

Geologic model 

Sonic velocity model 

Seismic model

• Gently-dipping (0.36o) strata 

onlapping an UNC

Vp (m/s)
Shale Siltstone Sandstone

Increasing Vp with decreasing Vsh

• Very gentle lateral lithofacies 

variation (5~17 km per bed)

• Relatively linear lithofacies-Vp

relationship in siliciclastic system

• No overlap between Vp per facies

• Frequency-independent: works at 

both 20 and 90 Hz

20Hz

90Hz

• Variable 1: flat vs. clinoformal strata

• Variable 2: different lateral lithofacies variation

• Variable 3: Complex lithofacies-Vp relationship in 

mixed and pure carbonate system

• Variable 4: intra-facies heterogeneity, represented 

by different spatial velocity distribution

• Variable 5: Frequency-dependent? 

If so, proper interpretation strategy? 

2000 2500 3000 3500 4000 4500
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During geologic modeling, Vail et al. (1977) designed an example of gently-

dipping (0.36o) strata onlapping an angular unconformity, with very gentle lateral 

lithofacies variation containing laterally-extensive sandstone, siltstone and shale beds of 

5~17 kilometers. Therefore, this dissertation further works on the validity of the 

'chronostratigraphic significance of seismic reflections' on 

 clinoformal versus flat stratal geometry (Variable 1)  

 fast versus gentle lateral lithofacies variation (Variable 2) 

As for the sonic velocity model as an input seismic modeling, the previous 

experiment does not explicitly include sonic velocity modeling details. Instead, it included 

the range of velocities per lithofacies. The high-velocity sandstone, medium-velocity 

siltstone and low-velocity shale in the pure siliciclastic system respectively has a velocity 

range from 3,300 to 4,200m/s, 2,700 to 3,300 m/s and 2,200 to 2,700 m/s. In general, this 

lithology-sonic velocity/acoustic impedance relationship is relative simple, with increasing 

sonic velocity responding to decreasing shale contents, as well as no overlap of velocity 

distribution among different lithofacies. This dissertation further probe into the validity of 

the 'chronostratigraphic significance of seismic reflections' on 

 more complex lithofacies-sonic velocity relationship in mixed carbonate/clastic and 

carbonate system (Variable 3) 

 different spatial velocity variation, as a combination of velocity value spread and 

spatial continuity (Janson and Fomel, 2011) to reflect intra-facies heterogeneity 

(Variable 4). He et al. (2015) studied its impact on HFS- and HFC-scale seismic 

chronostratigraphic interpretation upon a simplified 2D model of strongly-

prograding mixed carbonate/clastic clinoforms, and illustrated the different 

associated challenges in interpreting both time-significant HFS boundaries and 
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diachronous lithofacies boundaries separating zones of contrasting petrophysical 

properties. 

The last but not the least, Vail et al. (1977c) simulated vertical-incidence synthetic 

seismic models at 20- and 90-Hz, as representations of comparable subsurface normal- and 

high-frequency seismic sections from South America. In these seismic models, the 

interpreted seismic horizons follow the chronostratigraphic surfaces (Horizon 8, 10, 15 and 

UNC, Table 1.1), and can both tell apart the sandstones of different ages (shaded in yellow 

and orange, Table 1.1). Therefore, the proposal of 'chronostratigraphic significance of 

seismic reflections' indicates its frequency-independent nature for exploration-scale 

applications. The author’s doubts on it first originates from He and Zeng (2014a)’s 

experiment on a duplicated Vail et al. (1977c) geologic section, where they observed 

apparent diachronous reflections following lithostratigraphic surfaces in both an 

intermediate-frequency (40Hz) and a low-frequency (8Hz) seismic model. Thus this study 

further tested 

 the frequency-dependency for the 'chronostratigraphic significance of seismic 

reflections' (Variable 5) – would an intuitive solution on increasing seismic 

frequency help improve the seismic chronostratigraphic interpretation? If yes, what 

are its applicable conditions? If no, would any other alternative interpretation 

strategies contribute to improving this seismic chronostratigraphic correlation? 

1.3.2 An overview of experimental design 

In this study, the author probe into these five variables (Table 1.1) using a forward 

seismic modeling upon high-resolution geologic models with known chronostratigraphic 

framework. The standard workflow (Figure 1.2) used in this study contains a forward 

seismic modeling workflow, followed by an evaluation workflow on the validity of the 
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fundamental assumption of seismic stratigraphy as applied to high-order seismic 

stratigraphy. Despite the variations in the selection of geostatistical modeling methods and 

the different levels of integrations with other multi-scale constraints (such as LIDAR data, 

wireline logs, cores, and field analogs) during geologic, acoustic property and seismic 

forward modeling workflow, the overall evaluation workflow remains consistent. It 

typically includes the geologic modeling, petrophysical modeling, and eventually seismic 

modeling, followed by an optional further calculation of seismic attributes. 

During the assessment/evaluation, the author interpreted the resultant synthetic 

seismic models by following seismic reflections as stratifications for reflection termination 

relationship, upon which a further delineation of HFS boundaries proceeds. The author 

then compared an interested interpreted seismic horizon following the 'chronostratigraphic 

significance of seismic reflections' with its modeled corresponding chronostratigraphic 

surface, by calculating their difference between the interpretation and the model.  We 

termed this difference as 'time-correlation error/TCE' in this study, as it serves as a good 

indicator for using a given seismic horizon as a 'time-significant' surface: the less this TCE, 

the more valid the 'chronostratigraphic significance of this seismic reflection' is. Chapter 2 

gives an introductory example for the calculation of TCE for both a single horizon and a 

densely-picked horizon volume, as well as how this concept in the forward modeling 

studies can tie to field applications. 
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Figure 1.2:    An overview of experiment design, containing a forward modeling and 

evaluation workflow, and five predefined controllable variables. 

1.4 STRUCTURE OF THIS DISSERTATION 

This dissertation is composed of five chapters: 

Chapter 1 reviews the significance of seismic stratigraphy in petroleum 

geosciences, the research topic on testing the validity of its fundamental assumption 

regarding the chronostratigraphic significance of seismic reflections. It also introduces an 

overview of experiment design and controllable variables, followed by the structure of this 

dissertation.  

As there is not a single geologic model to exclusively address all these five 

variables, the author designed three interconnected experiments (Figure 1.2), which will 

be addressed as stand-alone chapters in this dissertation in Chapter 2 to 4.  

 Chapter 2 serves as an introductory case for the entire dissertation project (Figure 

1.3a). In this study, the author constructed a series of the conceptual siliciclastic 

reservoir models using a fluvial-shallow marine dataset in Starfak Field, GoM. The 

author chose this geologic setting due to (1) its relatively flat-lying simple 

stratigraphy, and (2) an eligibility of using acoustic impedance as a proxy of 

WORKFLOW

3D stochastic stratigraphic & facies 

modeling

Wave-equation modeling & 

migration

Petrophysical analysis & modeling

Optional: seismic attribute 

calculation

Seismic model

Geologic model

Velocity, density 

model

Seismic attribute 

volume

TCE

Forward modeling workflow

Modeling products

FIVE VARIABLES

Intra-facies heterogeneity (V4)

Seismic frequency (V5)

Evaluation workflow

Chronostratigraphic 

surfaces

Seismic horizon 

following events

Lateral lithofacies variation (V2)

Stratal geometry (V1)

Lithofacies-AI relationship (V3)

?
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lithofacies variation for a reduction of variables to be discussed. These 

simplifications further allow a focused discussion on the influence of the lateral 

lithofacies variation (Variable 2), as well as seismic frequency (Variable 5). 

Furthermore, the author established an evaluation scheme for the 

chronostratigraphic significance of seismic reflections, which applies both for a 

single interested seismic horizon, and a horizon volume with a pile of densely-

picked horizons. Finally, the author implemented some initial search for a potential 

seismic attribute to predict the chronostratigraphic significance of a seismic 

reflector and established an attribute-driven volumetric picking scheme for a future 

field application. 

 Chapter 3 inherited the evaluation scheme on the chronostratigraphic significance 

of seismic reflections, by applying it to a real data to evaluate a particular HFS (G9 

HFS in PCS-10) for a mixed carbonate/clastic reservoir equivalency of Upper San 

Andres-Grayburg reservoirs in the Permian Basin (Figure 1.3b). Advancing from 

the conceptual models in Chapter 2, Chapter 3 honors the published 3D depositional 

model, discrete high-resolution measured sections/cores, and continuous lateral 

constraints of stratigraphic contacts, so that it makes a real-world case, by honoring 

the reservoir geology of Upper San Andres-Grayburg reservoirs as carefully as 

possible. More specifically, the outcrop data set at Last Chance Canyon, Guadalupe 

Mountains, allows a characterization of complex clinoformal stratigraphy up to 

HFC scale of Upper San Andres shelf margin. In comparison, the subsurface data 

set from a producing field of Central Basin Platform allows a modeling of complex 

lithofacies variation within relatively flat-lying strata of Grayburg and Lower 

Queen Formation. Finally, the author simulated a single seismic model from a 

facies-averaged velocity and density model, and applied an evaluation on the G9 
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HFS top and bottom, which can commonly serve as bounding surfaces for modeling 

Upper San Andres mixed carbonate/clastic shelf and shelf-margin reservoirs.   

 Chapter 4 utilized the skeleton of the 3D lithostratigraphic model from Chapter 3 

for a broader discussion on multiple variables potentially influencing the 

chronostratigraphic significance of seismic reflections. First of all, the author 

applied a 3D lithofacies substitution on the siliciclastic-rich lithofacies and 

stratigraphic adjustments on the 3D lithostratigraphic model from Chapter 3 (Case 

1), for the sake of constructing a carbonate reservoir model analogous to Early 

Permian Abo shelf margin - Clear Fork platform (Case 2, Figure 1.3c). The 

subsurface interpretations of Abo Formation from Kingdom Field in Terry and 

Hockley County of West Texas provides critical references for this comparative 

study, whereas the outcrop studies from Apache Canyon provides insights on facies 

model.  Resultantly, this pair of mixed carbonate/clastic and pure carbonate 

reservoir shelf margin - platform models allow an evaluation of the influences from 

flat versus clinoformal stratal geometry (Variable 1), respectively with gentle and 

fast lateral lithofacies variation (Variable 2). Besides, these two cases also represent 

situations with complicated lithofacies-sonic velocity relationship in mixed 

carbonate/clastic successions and carbonate successions. During velocity 

modeling, instead of assigning a constant velocity-density pair per lithofacies in 

Chapter 3, the author evaluated five different spatial velocity variations (S1~ S5) to 

reflect intra-facies heterogeneity (Variable 4). Finally, the author simulated seismic 

models at low-, medium-, and high-frequency (Variable 5) referring to a frequency 

spectrum from a producing field at the reservoir interval. The evaluations focused 

on HFS surfaces such as the flat-lying G12 HFS top and clinoformal G9 HFS 

bottom. Moreover, the author also compared the HFC-scale diachronous reflections 
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that follow porous reservoir-prone lithofacies in mixed and carbonate successions. 

Finally, the author addressed potential field applications based on main learnings 

from the forward modeling studies in this dissertation, in scenarios with or without 

sufficient geoscientists' expert knowledge.   

At this stage, Chapter 4 has summarized the influences of five predefined variables 

from Chapter 1 on the chronostratigraphic significance of seismic reflections at the HFS 

and HFC scale, as well as discussed potential field applications upon main learnings from 

the forward modeling results from Chapter 2 to 4. Herein, Chapter 5 only provides a brief 

summary of conclusions, followed by two directions of suggested future works.   
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Figure 1.3:    Focus of three dissertation projects. Chapter 2 to 4 presents these projects as stand-alone elements. Note their 

interrelations as stated in objectives. 

(a) Chapter 2: an introductory example (b) Chapter 3: an outcrop- and subsurface-

based example

(c) Chapter 4: a discussion of 

multiple variables 

Conceptual siliciclastic reservoir models with simple

flat-lying stratigraphy, constrained by

(1) Well-based characterization

Mixed carbonate/clastic reservoir equivalency with 

complex stratigraphy, constrained by 

(1) Digital outcrop model

(2) Integrated subsurface characterization

Mixed carbonate/clastic (Case 1) & carbonate (Case 2) 

reservoir equivalency and analog, constrained by

(1) Outcrop analog by lithofacies replacement

(2) Integrated subsurface characterization

Miocene interbedded sandstone-shale interval

(1) Starfak Field, GoM

Permian San Andres-Grayburg shelf margin

(1) Last Chance Canyon, Guadalupe Mountains

(2) A producing field, Central Basin Platform, Permian Basin

Permian Abo shelf margin

(1) Apache Canyon analog, Sierra Diablo Mountains

(2) Kingdom Field, NW shelf, Permian Basin

Overview

Study interval & area

2D/3D geological and seismic models

Objectives

An introductory example to establish an evaluation

scheme and conduct feasibility analysis

(1) Evaluate the influence by Variable 2 and 5

(2) Investigate the feasibility of using seismic attributes

to approximate TCE

Extend the established evaluation scheme to real data

on a normal-frequency seismic model to

(1) Model hierarchical heterogeneity

(2) Implement a case study on G9 HFS top and bottom

Model size = 1km*1km*200ms Model size = 5km*3km*0.44km Model size = 5km*3km*0.44km

Discuss multiple variables on the seismic

chronostratigraphy at the HFS and finer scale

(1) Evaluate the influence of Variable 1~5

(2) Discuss on practical approaches in improving the

seismic chronostratigraphic interpretation
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Chapter 2: An introductory example – conceptual siliciclastic reservoirs 

with flat-lying stratal geometry  

This chapter presented a conceptual example of Miocene fluvial-marine siliciclastic 

reservoir in Starfak Field, GoM1. This study area was chosen as the introductory example 

for this dissertation, due to its simple flat-lying stratal geometry, along with its relatively 

explicit lithology–impedance relationship, which allows an approximation of low-

impedance unit as reservoir-prone facies of porous sandstone.  These simplifications allow 

the author to focus on evaluating the influence on the chronostratigraphic significance of 

seismic reflections from two variables, including the lateral lithofacies continuity/reservoir 

continuity and the seismic frequency. A series of geologic model with increasing lateral 

lithofacies variation were constructed, succeeded by seismic simulation at multiple 

frequencies.  

The time-correlation error (TCE) is defined as the difference between seismic 

events and relative geologic time (RGT). A series of statistically simulated impedance 

models with flat chronostratigraphic surfaces was generated from a subsurface data set to 

describe gradual lithofacies changes in contemporaneous strata and to account for vertical 

cyclicity from seed wireline logs. The author converted these models to realistic seismic 

records using an exploding-reflector algorithm. The TCE from the seismic models was 

positively correlated to the lateral impedance variation, in which the TCE magnitude for a 

model of complex impedance variation could be quite significant. For example, a 

maximum, two-event, 32.5-m TCE had been observed in a small 1 × 1-km model. An 

increase in wavelet frequency in general reduced the TCE and improved the seismic 

chronostratigraphic correlation. In addition, a preliminary test confirmed that amplitude 

                                                 
1Figures and major contents of this chapter were from He et al. (2015a), being published in Interpretation 

Journal on May 2015 (v. 3, no.2, p. SN69-SN87, doi: 10.1190/INT-2014-0136.1.  
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variance in the seismic model was related to lateral impedance variation and could be used 

to predict TCE. Therefore, certain attributes (such as amplitude variance) were useful in 

developing tools for generating TCE-based, hybrid, and RGT volumes from field seismic 

data. This strategy integrated the advantages, and avoided the disadvantages, of the present 

methods. 

2.1 INTRODUCTION 

The seismic-stratigraphy analysis approach of Mitchum et al. (1977a and b) and 

Vail et al. (1977a, b, and c), with an emphasis on chronostratigraphic analysis of reflection 

seismic data, represents a landmark for seismic interpretation and provides an invaluable 

tool for petroleum and mineral exploration (Posamentier and Vail, 1988; Catuneanu, 2006; 

Hart, 2013). Vail et al. (1977a) propose that stratigraphic information is successively 

presented in seismic images and conforms to the law of superposition. To the extent that 

seismic reflections are assumed to follow chronostratigraphic surfaces (stratal surfaces and 

unconformities), seismic data can be linked to globally significant tectonoeustatic and 

eustatic events providing valuable insights into the age, distributions, and facies of 

depositional sequences of exploration plays (Vail et al., 1977b). Seismic reflections are 

chronostratigraphically significant or time significant when they represent stratal surfaces 

that are isochronous in geologic time scale or unconformities that are important markers 

separating younger strata from older rocks. In contrast, lithostratigraphic surfaces transact 

geologic timelines and are time transgressive or diachronous. 

Vail et al.’s (1977c) fundamental assumption of chronostratigraphic significance of 

seismic reflections was applied successfully to low-order (third- or lower order sequences) 

seismic stratigraphy (e.g., Mayer et al., 1986; Eberli et al., 2002). Vail et al. (1977c) expect 

all reflections to follow chronostratigraphically significant surfaces with a 
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chronostratigraphic correlation error of approximately +1∕2 wavelength (one peak or trough 

of seismic events). In conventional, low-frequency (20–50 Hz) seismic data, thick 

depositional sequences are adequately imaged by reflection configuration and geometry, 

as long as the thickness reaches two to three wavelengths. As a result, seismic reflections 

have chronostratigraphic meaning at large scale (Macurda, 2012). These practices 

successfully applied to lower order seismic stratigraphy, at the regional/basinal scale, 

primarily include the delineation of depositional sequence (Mitchum et al., 1977b) and the 

construction of chronostratigraphic correlation curves. 

In recent decades, the seismic-stratigraphy approach has been extended, with some 

controversy, from basinal and regional scale to prospect and reservoir scale (<50 m). 

Discussions on whether the extension is appropriate started from concerns about seismic 

resolution, which is controlled by seismic frequency, as well as by acquisition, processing, 

and display techniques. Aigner et al. (1989) and Lawrence et al. (1990) observe differences 

between the seismically interpreted and the simulated buildup architectures, indicating the 

limitations of interpreting detailed stratigraphic development from normal-frequency 

seismic data. Seismic resolution imposed a threshold that constrains the ability to define 

stratigraphic sequence using seismic data and to restore detailed models of the geologic 

history. Biddle et al. (1992) use a synthetic seismic model of outcrops to show, in low-

frequency seismic, “aliased” onlapping surfaces may be present where the retrograding 

platform was “still shedding sediment and no simple onlapping surface exists in the 

outcrops.”  

Studies by Tipper (1993), Stafleu and Sonnenfeld (1994), Zeng et al. (1998), Zeng 

and Kerans (2003), and Hardage et al. (2007) reveal other contributors of inconsistencies 

between seismic reflections and geologic timelines. Tipper (1993) initializes an open 

debate, using the accretion dominated “unsteady sedimentation” model, which revealed 
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“recognizable, apparently continuous reflections parallel to diachronous lithofacies 

boundaries.” Inspired by this study, Hardage et al. (2007) define the Tipper point for a 

reflection as the critical point at which the reflection begins to show a more time-

transgressive/diachronous pattern. As a result, the Tipper point is jointly determined by the 

relative bed and interlayer thickness in wavelength units and the amount younger beds 

overlapping older beds. Zeng et al. (1998a) recognize basic conditions of the time 

transgression of a seismic event, including inadequate seismic resolution and an indented 

stack (en echelon or ramp) of thickness or impedance anomalies. Additional factors causing 

diachronous reflections, revealed by other studies, include but are not limited to complex 

depositional facies transitions (Stafleu and Sonnenfeld, 1994; Zeng and Kerans, 2003) and 

meteoric or burial-diagenetic alteration of carbonate rocks (Fournier and Borgomano, 

2007). In summary, time-transgressive reflections may be expected when geologic 

timelines are flat and dipping (Figure 1, compare Figure 1a and 1b) and in prograding, or 

retrograding, settings (Figure 1, compare Figure 1b and 1c).  

In the era of “computational seismic chronostratigraphy” (Stark et al., 2013), an 

entire 3D seismic volume can be processed to generate a relative geologic time (RGT) 

volume (Stark, 2004), in which an arbitrary isosurface is ostensibly comprised of a single 

RGT. At present, there are two different ways to build an RGT volume, following the 

alternative views on the chronostratigraphic nature of seismic events. Applying the 

assumption of Vail et al. (1977c), one can pick seismic events manually followed by 

interpolation or, alternatively, one can use an autotracking algorithm to generate RGT 

(horizon) slices that strictly follow an equal phase (event). Many innovative methods have 

been developed to automatically flatten seismic events for an RGT volume (Stark, 2004; 

Groot et al., 2006; Lomask et al., 2006; Bruin et al., 2007; Fomel, 2010). Acknowledging 

that some seismic events have a tendency to be diachronous, phantom slices (time slice, 
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horizon slice, and stratal or proportional slice) do not necessarily follow an equal seismic 

phase, yet they still honor geologic timelines. In particular, the stratal-slicing approach 

(Zeng, 1994; Zeng et al., 1998a, 1998b) applies a linear interpolation model among selected 

geologic time-equivalent seismic reference events to generate proportional slices 

(Posamentier et al., 1996) for an RGT volume. 

Here, the author developed the foundation of a hybrid scheme that sufficiently 

integrates tracked time-equivalent seismic surfaces and phantom stratal surfaces by starting 

from impedance models with known flat chronostrati-graphic surfaces (similar to Figure 

1a). To validate such a scheme, the author tested two assumptions: that (1) the quality of 

seismic chronostratigraphic correlation can be measured and (2) this measurement can be 

correlated with certain seismic attributes. The author defined a measurement for seismic 

chronostratigraphic correlation, and the author observed how it responds to stratigraphic 

and lithofacies complexity, as well as the seismic frequency. Last, an example is provided 

to suggest a potential linkage between the proposed measurement and a particular seismic 

attribute, which may lead to the future development of an automatic hybrid method to better 

represent seismic information on geologic time surfaces. 

2.2 METHODS 

For this study, the author started by building geologic/lithofacies models with a 

known flat chronostratigraphic relationship. A set of geologic models with various 

geologic complexities are required for systematic consideration of the chronostratigraphic 

meaning of primary seismic reflections. In addition, these various geologic complexities 

were expected to incorporate reservoir-scale heterogeneity. These two requirements were 

satisfied by adjusting the lateral lithofacies variation/discontinuity between the same set of 

seed wells. In this experiment, the Gaussian random function simulation (GRFS) (Daly et 
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al., 2010) was applied to generate lithofacies models; by decreasing the lateral correlative 

distance/range of an input variogram, models with increasing lateral lithofacies 

variation/discontinuity were built. 

The input of seismic simulation requires the property of acoustic impedance (AI) 

as a product of velocity and density. The relationship between AI and petrophysical 

properties can be complicated because the velocity alone can be case-by-case dependent 

on multiple factors, including mineral composition, porosity and pore type, diagenesis, etc. 

(Christensen and Szymanski, 1991; Marion et al., 1992; Vernik and Nur, 1992; Anselmetti 

and Eberli, 1993, 1997, 2001). In this study, the author assumed a linear relationship 

between AI and effective porosity, on the basis of a reported observation of wireline log 

data in a Gulf Coast Miocene study (Zeng et al., 2001), in which AI was negatively 

correlated with the effective porosity. Then, the author generated synthetic models using 

the exploding-reflector algorithm (Loewenthal et al., 1976), which simulates wave 

propagation in 3D and thus produces more realistic records than do convolution models. 

Afterward, considering the thin-bedded nature of sandstone and shale beds in models of 

this study, synthetic records were shifted 90°-phase, for an easier visual linkage between 

an impedance unit and a seismic event (Zeng and Backus, 2005a, 2005b). 

After generating models of various complexities and their seismic records, the 

author defined a measurement on the quality of seismic chronostratigraphic correlation and 

studied its responses to multiple variables. This measurement, called the time-correlation 

error (TCE) herein, was defined to quantitatively describe to what extent seismic 

reflections depart from geologic timelines. Using prepared models of various complexities 

with a definite chronostratigraphic relationship, the author analyzed how TCE responds to 

lateral impedance variation and seismic frequency. 
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2.3 MODEL DESIGN: IMPEDANCE AND SEISMIC MODELS 

Various modeling techniques exist to simulate different geologic complexities. 

Early models for seismic simulation include simple conceptual models (e.g., Meckel and 

Nath, 1977; Neidell and Poggiagliolmi, 1977; Schramm et al., 1977; Tipper, 1993) 

featuring simplified facies with constant AI and stratigraphic surfaces designed in 2D with 

simple geometries. Honoring the more confidently mapped/correlated surfaces and using 

AI from the subsurface analog, more realistic outcrop and subsurface models were 

introduced to simulate geologic complexities (e.g., Biddle et al., 1992; Zeng et al., 1994). 

Again, the assignment of the AI property remained constant for each facies. The 

introduction of statistical stratigraphic and reservoir models (Issaks and Srivastava, 1989; 

Goovaerts, 1997; Dubrule, 1998) could be perceived as an improvement, by honoring AI 

variations within each facies in a predefined range. The author designed statistical models 

in 3D to investigate the chronostratigraphic significance of seismic reflections, replacing 

conceptual or “layer-cake” models commonly used for this topic. Statistical models can 

better describe gradual lithofacies changes in contemporaneous strata and avoid unnatural 

seismic diffractions at abrupt lithofacies boundaries seen in other models. Additionally, 

statistical models can account for vertical cyclicity from seed wireline logs, which are 

usually disregarded in non-statistical models. 

2.3.1 Impedance models 

As the input for the statistical AI models, four seed wells (A, B, C, and D) were 

selected from the upper Miocene Starfak Field, offshore Louisiana (Figure 2.1). The 

selected interval (1860–2164 m [6100–7100 ft]) is fluvial -shallow marine in origin (Hentz 

and Zeng, 2003). Seismic and wireline correlations (cs1–cs4, Figure 2.1a) show no 

unconformities or discordant surfaces along the seed wells; thus, the three stratigraphic 

zones (zones 1–3) are considered chronostratigraphic units. In this sandstone/shale 
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sequence, a measured relationship between AI and lithology in a Gulf Coast field (Zeng et 

al., 2001) was adopted, which shows AI to be linearly related to effective porosity (∅e). As 

a result, variation in impedance reflects complexity of lithofacies. 

 

To simulate a definite flat chronostratigraphic relationship in this study, the author 

applied a depth to time conversion and a slight stretching or compression. The wireline 

logs were converted to two-way traveltime (TWT). To simplify the modeling and 

interpretation, the four chronostratigraphic surfaces (cs1–4), along with the three 

stratigraphic units (zones 1–3), were flattened (Figure 2.1b). This adjustment removes the 

structural background with limited changes to thickness (Figure 2.2a). Wireline logs 

experienced little distortion within 5% in terms of time thickness during the adjustment 

(Figure 2.2b). In the new adjusted correlation scheme, all simulated chronostratigraphic 

surfaces/geologic timelines are flat in TWT. The local dip of a reflection is indicative of 

the magnitude of time transgression (Figure 2.2c), as explained later in the section “Results 

and interpretations.” 
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Figure 2.1: Correlation between seed wells. (a) Original correlation in subsea true 

vertical depth. Interpreted chronostratigraphic surfaces (cs1–4) defined three 

chronostratigraphic units (zones 1–3) and (b) adjusted correlation in TWT. 

Flattened chronostratigraphic surfaces (cs1–4) bounded three slightly 

compressed/ stretched chronostratigraphic units (zones 1′–3′). The AI for 

sandstone is lower in this study. 



 27 

Figure 2.2: A 2D illustration of the interpolation scheme used in this study. (a) 

Conversion from the original scheme (left) to the correlation scheme (right), 

where all chronostratigraphic layering (gray solid lines) is horizontal. (b) 

Little wireline-log distortion resulted during the conversion (average of 2% 

for each zone). The original and adjusted chronostratigraphic surfaces (cs1–

4 and cs1–4) are marked with dashed orange lines, and (c) the adjusted 

scheme facilitates easier observation of seismic time transgression. Time 

transgression Δt is proportional to dip α (compare I and II). 

Using the same four seed impedance logs and the same adjusted correlation scheme 

discussed above, impedance models of variable complexities (Figure 2.3) were simulated 

using GRFS (Daly et al., 2010). The lateral impedance variation, which is related to the 

lithofacies complexity in this study, could be adjusted by changing the correlative 

distance/range of the input variogram (Figure 2.3a). By reducing the lateral range in the 

input variogram, more lateral impedance variation/discontinuity is simulated (Figure 2.3b–

2.3d). 
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Figure 2.3: Impedance models with increasing lateral lithofacies variation. (a) 

Variograms to simulate impedance models via GRFS. Given the same seed 

wells (A, B, C, and D), the decreased lateral range in the input variogram 

produces increased lateral impedance complexity. (b) Layer-cake model I, 

generated with a lateral correlative distance/range of 50,000 m, 50 times its 

model size (1000 m). (c) Intermediate model II, generated with a lateral 

range of 1000 m. (d) Complex model III, produced with a lateral range of 

200 m.  
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Table 2.1: Engineering description of geologic complexity (Weber and van Geuns, 

1990). The reservoir heterogeneity is characterized by different extents of 

lateral lithofacies discontinuity/variation.   

These simulated models resemble the Weber and van Geuns’ (1990) engineering 

description of reservoir heterogeneity (Table 2.1). The layer-cake model (model I, Figure 

2.3b) is similar to their layer-cake reservoir type, featuring distinct layering with marked 

continuity and gradual thickness variation. The intermediate model (model II, Figure 2.3c) 

resembles their “jigsaw-puzzle” reservoir type, in which different sand bodies fit together 

without major gaps. The complex model (model III, Figure 2.3d) is analogous to the 

labyrinth reservoir type, in which sand pods and lenses are complexly and discontinuously 

arranged. 

2.3.2 Seismic models 

The author applied a noise-free, exploding-reflector algorithm (Loewenthal et al., 

1976) to generate seismic responses from the impedance models (Figure 2.3b–2.3d). A 

built-in package from the open-source geophysics software Madagascar (Janson and 
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Fomel, 2011) was used. The extended split-step method (Kessinger, 1992) was used to 

implement wave propagation in the frequency domain. One merit of this approach was the 

accommodation of lateral slowness variation, by introducing multiple reference slowness 

logic to the split-step Fourier method (Stoffa et al., 1990). Besides, compared with the 

conventional, idealized 1D convolution model, this wave-equation-based model simulates 

wave propagation in 3D and produces more realistic seismic records, especially in cases in 

which the geologic model is complex with many small, patchy impedance anomalies 

(Figure 2.4). More specifically, for a layer-cake impedance model (Figure 2.3b), 

convolutional and exploding-reflector modeling work well (Figure 2.4a). However, for an 

intermediate model (Figure 2.3c), seismic records modeled by the exploding-reflector 

modeling look more realistic, and they have enhanced horizon continuity (Figure 2.4b). 

For a complex model (Figure 2.3d), seismic records modeled by the convolution modeling 

will be even more chaotic and too noisy to apply autotracking in the following experiments. 

Because most of the sandstone and shale units in the seed wells are below seismic 

resolution limits at examined frequencies (Figure 2.5), a 90°-phase shift was applied to the 

synthetic records to improve the correlation between amplitude/polarity and relative AI/ 

lithology (Figure 2.6). Interpretive advantages of the 90° phase wavelet for thin beds are 

discussed by Zeng and Backus (2005a, 2005b). In a 90°-phase seismic model, the center 

of a high-impedance unit is expressed as maximum amplitude (compare Figure 2.6a and 

2.6b). In comparison, in a zero-phase seismic model, the top and bottom of each unit are, 

respectively, represented by a peak and a trough (compare Figure 2.6a and 2.6c). Therefore, 

the 90°-phase seismic models were used because of this straightforward correlation to the 

impedance model. Therefore, the 90°-phase seismic models were used because of this 

straightforward correlation to the impedance model. 
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Figure 2.4: Comparison of seismic models: convolution versus exploding-reflector. (a 

and b) In layer-cake cases, both models work well. In more complex cases, 

the exploding-reflector model provided more realistic synthetics, with 

enhanced horizon continuity, than did the convolution model. Thus, the 

exploding-reflector model was used in this study. 
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Figure 2.5: Most of the impedance/lithofacies units in this study are below seismic 

resolution. More than 70% of high-impedance shaly units (blue curve) and 

low-impedance sandstone units (red curve) were irresolvable at ultiple 

frequencies. 

 

 

Figure 2.6: Comparison between 90°- and zero-phase seismic models. (a) Impedance 

section, (b) 90° seismic model, in which the top and bottom of a high-

impedance unit (black lines) are, respectively, expressed as a −∕t zero 

crossing and a t∕− zero crossing (yellow lines), and (c) zero-phase seismic 

model, in which the top and bottom of the unit are, respectively, represented 

as a peak and a trough (yellow lines). Panel (b) was used in this study for its 

straightforward correlation to the impedance model (panel [a]). 
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2.4 QUANTIFY THE QUALITY OF RELATIVE GEOLOGIC TIME 

CORRELATION 

In this study, the author define the TCE to evaluate the quality of seismic 

chronostratigraphic correlation between simulated geologic surfaces in an impedance 

model and tracked seismic events in the corresponding seismic model. The author begin 

by defining the TCE for a single, manually tracked event. To evaluate TCEs for an entire 

seismic volume, the author use the RGT volume (Stark, 2004), which contains densely 

mapped seismic events. 

2.4.1 The time-correlation error for a manually tracked seismic event 

Vail et al. (1977c) refer to a “time-equivalent” reflection as a reflection following/ 

paralleling geologic timeline(s). Following this notion, the difference between a seismic 

reflection hk and its nearest stratigraphic surface CSk in TWT (t) is defined as a TCE:  

TCEhk(x, y) =  thk(x, y) − tCSk(x, y)                 (1) 

The word “parallel” suggests that there is a shift of reflection hk toward its nearest 

stratigraphic surface CSk (Figure 2.7a). In that way, the distribution of TCEs is expected to 

spread around zero. In this specific correlation scheme, in which all chronostratigraphic 

surfaces are flat, the calculation of the TCE is simpler (Figure 2.7b). It is merely necessary 

to compare a tracked seismic reflection hk against its own median value to obtain a zero-

centered distribution: 

TCEhk(x, y) =  thk(x, y) −  median[thk(x, y)]                 (2) 

The histogram of TCEs from a tracked event measures the quality of seismic 

chronostratigraphic correlation when using that event. The width of the TCE distribution 

(delta) equals the difference between the maximum positive and negative departures from 

the chronostratigraphic surfaces, and thus it refers to the magnitude for the time 

transgression. The standard deviation (std. dev.) of the TCE distribution refers to the degree 
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in which a given measurement deviates from the mean, and it is indicative of the 

representative ranges of TCEs. 

 

 

Figure 2.7: The TCE of a horizon, measuring the time difference between a seismic event 

hk and the nearest chronostratigraphic surface CSk. (a) In a general case, a 

shift of the seismic event is needed to measure only the minimum time 

difference. (b) In this specific scheme, a seismic event hk is compared with 

an arbitrary flat geologic timeline, e.g., the median value for the seismic 

event hk. 

2.4.2 The time-correlation error for a manually tracked seismic event 

To estimate the quality of the seismic chronostratigraphic correlation for an entire 

3D volume, the author have to obtain the TCE at each sample point in that volume. The 

RGT volume (Stark 2004; Figure 2.8) provides a convenient platform for the TCE 
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calculation (Figure 2.9). By definition, an arbitrary constant surface/isosurface within a 

seismically estimated RGT represents an autotracked seismic horizon; therefore, an RGT 

volume could be viewed as a densely autotracked seismic cube in terms of relative geologic 

time registration. Furthermore, a TCE volume (Figure 2.9c) is taken as the difference 

between the seismically estimated RGT volume (Figure 2.9a) and the predefined linear 

RGT volume from the geologic/impedance model (Figure 2.9b). Where seismic events 

closely follow geologic timelines, the TCE is small (box I). Where reflections are 

apparently transacting geologic timelines, the TCE is large. Depending on the sign of the 

apparent seismic dip, the true RGT could be either overestimated (box II) or 

underestimated (box III). 

In this study, the predictive painting technique (Fomel, 2010) was used to generate 

the RGT volume. This technique is appropriate to evaluate the quality of seismic 

chronostratigraphic correlation, due to its event-based nature. In other words, information 

in the multiple seed reference lines was spread through the entire volume following the 

local inline and crossline dip fields, which were estimated by the method of plane-wave 

destruction (Claerbout, 1992). 
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Figure 2.8: An RGT volume estimated from a seismic time-amplitude volume (from 

Stark, 2003). (a) Seismic cube and (b) estimated RGT volume, in which the 

constant-value surface is equal to a seismic horizon. Therefore, the RGT 

volume could be viewed as a densely interpreted cube. 

 

 

Figure 2.9: TCE for a seismic RGT cube. (a) RGT volume from the seismic model, with 

curved RGT lines and (b) RGT volume from the impedance model, with flat 

RGT lines. Contours = 10 ms in panels (ab,). (c) The difference between 

panels (ab) is an estimation of TCE. Where reflections follow geologic 

timelines, the TCE is small (box I). Boxes II and III show positive 

(overestimated) and negative (underestimated) TCE, respectively. Note that 

higher TCE offset values around the margins result from a seed reference 

trace emplaced in the center. 
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2.5 RESULTS AND INTERPRETATIONS 

The quality of the seismic chronostratigraphic correlation can be evaluated by either 

describing TCEs corresponding to lateral lithofacies/impedance changes in seismic models 

of fixed frequency (Figures 2.10–2.12) or by studying TCE trends in a frequency range 

within the same impedance model (Figures 2.13–2.15). For each case, the author started 

from a visual comparison of TCEs, followed by statistical analyses for selected manually 

tracked horizons and autotracked seismic volumes, respectively. 

2.5.1 The time-correlation error distribution related to lateral impedance variation  

The models with increasing lateral impedance variation (models I to III) and their 

corresponding 40-Hz, 90°-phase seismic models (Figure 2.10) were generated for an initial 

visual evaluation of how the quality of the seismic chronostratigraphic correlation responds 

to the impedance (lithofacies) complexity. Note that in these simulated geologic models, 

all chronostratigraphic surfaces/geologic timelines are flat in TWT. In other words, any 

local dipping of a seismic event in the synthetic seismic records indicates a departure from 

chronostratigraphic surfaces (Figure 2.2c). Therefore, the observed smooth and flat seismic 

reflections in the layer-cake model (model I, Figure 2.10d) follow (are parallel to) the 

geologic time surfaces defined in the impedance model (Figure 2.10a). In comparison, 

reflections in the intermediate model (model II, Figure 2.10e) contain a mixture of long, 

continuous reflections and relatively short, dipping events, indicating a deteriorating 

quality of geologic time correlation. Furthermore, in the complex model (model III, Figure 

2.10f), seismic events are very chaotic with steep local dips, suggesting deviations from 

true modeled timelines, which are flat. 

Subsequently, TCE responses to the lateral impedance (lithofacies) variation were 

evaluated using manually picked horizons (horizons h1, h2, and h3) in these three seismic 

models, respectively (Figure 2.11). As discussed in the last section, greater spreading of a 
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TCE distribution (delta) generally indicates less accurate chronostratigraphic interpretation 

by tracking seismic events. Clearly, all three manually picked horizons become more and 

more time-transgressive when the author increase the lateral litofacies variations in the 

impedance models (models I to III, Figure 2.11). The maximum TCE in the 40-Hz complex 

model (model III, Figure 2.11) can be as great as the width of two seismic events, or 31.25 

m in a 2500 m/s sandstone formation. 

 

 

Figure 2.10: Visual comparison for geologic time correlation of seismic events, among 

models with increasing lateral impedance variation. From models I to III, 

there is an increase in dipping and chaotic reflections, indicating increased 

TCE. The front, side, and top frames of a cube, respectively, show the center 

crossline (crossline = 500 m), inline (inline = 500 m), and time slice (time = 

120 ms). The same visualization cube also applies to Figure 2.12. 
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Figure 2.11: TCEs for selected horizons (h1, h2, and h3) at 40 Hz, showing an increasing 

trend with increasing lateral impedance variation. Event width = 12.5 ms. 

Units for the maximum time transgression (delta) and standard deviation 

(std. dev.) are milliseconds (ms). 
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Figure 2.12: TCEs for the same intersection extracted from 40-Hz seismic volumes. Panel 

(a-c) are the TCEs for models I to III. The same inline was visualized in the 

same color scheme. (d) Overlaying TCE histograms of three models. The 

visual comparison among (a-c) and histograms in panel (d) show increasing 

TCEs with increasing lateral lithofacies variation. 

In addition, TCE responses to lateral impedance (lithofacies) variation were also 

evaluated for an entire volume by calculating the difference between the seismically 

tracked and geologically simulated RGT volumes. In Figure 2.12, the same intersection 

from the 40-Hz seismic models (Figure 2.10d, 2.10e, and 2.10f) was extracted to calculate 

TCEs. As a result, in impedance models with increasing lithofacies variation (models I to 

III), TCEs tend to have greater magnitudes and are increasingly less accurate for 

reproducing chronostratigraphic relationships. Note that the overlaying TCE histograms 

(Figure 2.12d) for models I to III also show a wider TCE distribution for models with 

increasing lithofacies variation. 
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2.5.2 The time-correlation error distribution related varying seismic frequencies 

The secondary aim of this section is to evaluate the influence of wavelet frequency 

on the TCE distribution of seismic events from various impedance models. Therefore, the 

same experiment at 40 Hz (Figure 2.10) was expanded to include seismic models generated 

with 90°-phase-shifted Ricker wavelets at different predominant frequencies, ranging from 

20 to 160 Hz (Figure 2.13).  

Resembling the case of 40-Hz models (Figure 2.10), all other seismic models at 

different frequencies (20-, 80-, and 160-Hz; Figure 2.13) demonstrate a similar trend: More 

dipping and discontinuous events are associated with more complex lateral impedance 

(lithofacies) variations. However, visual examination of seismic models at various 

frequencies against their impedance models (Figure 2.13a–2.13c) alone leads to 

inconclusive observations. Therefore, quantitative TCE evaluations are essential for 

capturing the impact of frequency and heterogeneity. 

A manually tracked horizon (horizon h2) was selected for analysis of the TCE 

versus frequency (Figure 2.14). The TCEs calculated from the intermediate and complex 

models (Figure 2.14b and 2.14c) show a decreased magnitude with increased frequency in 

TCE histograms, indicating improved time-correlation accuracy at higher seismic 

frequencies. Estimation for the layer-cake model (Figure 2.14a) at examined frequencies 

shows similar small departures from real geologic timelines. Though still small in absolute 

value, the TCE distribution at 40 Hz is about two times wider than that at other frequencies. 

Probably at 40 Hz, the relative bed and interlayer thickness in wavelength units and the 

amount younger beds overlapping older beds jointly contribute to more reflections that 

reach the Tipper point (Hardage et al., 2007). 
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Figure 2.13: Visual comparison for geologic time correlation of seismic events at 

multiple frequencies. The TCE tends to decrease with increasing seismic 

frequency for the (b) intermediate and (c) complex models. It is difficult to 

visually identify a trend for the layer-cake model (a). 
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Besides, for a more complete evaluation, TCE volumes were also calculated for the 

seismic models at different frequencies in Figure 2.12. Again, in the intermediate and 

complex models (Figure 2.15b and 2.15c), higher frequencies in general lead to smaller 

TCE magnitudes and more accurate seismic chronostratigraphic interpretation. Similarly, 

inconclusive results occur in the layer-cake model (Figure 2.15a), probably suggesting that 

a highly continuous impedance model with few lithofacies anomalies tends to generate 

highly chronostratigraphic reflections, regardless of the wavelet frequency. 

These results, achieved by evaluating TCEs for all reflections in 3D seismic 

volumes, agree with early studies by Zeng et al. (1998a) and Zeng and Kerans (2003) that 

are dependent on visual inspection of individual seismic events. As supported by all these 

studies, improved resolution in higher frequency seismic data reduces lithofacies 

interferences and creates more geologic time-equivalent reflection events, unless there is 

very little geologic heterogeneity.  
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Figure 2.14: TCEs for seismic event h2 (see Figure 2.10 for position) at different seismic 

frequencies. The accuracy of the chronostratigraphic correlation tends to 

improve with the increasing seismic frequency, especially for the (b) 

intermediate and (c) complex models. 

 

 

Figure 2.15: Frequency influence on the TCE for densely interpreted volumes. The 

accuracy of the chronostratigraphic correlation tends to improve with the 

increasing seismic frequency, especially for the (b) intermediate and (c) 

complex models. In the layer-cake model (panel [a]), the TCE is small at all 

frequencies, with the best interpretation from 80 Hz. 
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Note that TCEs calculated in this study are a conservative estimation of true TCEs. 

The TCEs calculated in these models are probably smaller than those in field observations. 

This phenomenon results from the way the author designed geologic models, in which a 

small vertical correlative distance is assigned by assuming good stratification. In reality, a 

much larger TCE can occur in field data, as suggested by Zeng et al. (1998b). Moreover, 

as for an autotracked seismic volume, estimated TCEs can be even smaller than manually 

tracked horizons. For instance, predictive painting (Fomel, 2010) follows the continuous 

dip field, which is smoothed by shaping regularization (Fomel, 2007). The smoothing 

effect smeared local features of dipping and chaotic reflections, further resulting in TCEs 

smaller than those of manually tracked horizons. 

2.6 POTENTIAL APPLICATIONS TO SEISMIC CHRONOSTRATIGRAPHY  

To generate RGT volumes from field seismic data, autotracking and stratal slicing 

have advantages and disadvantages. Autotracking of all primary reflections can capture all 

geologic time-equivalent seismic events, but many of the picks may be diachronous. In 

comparison, stratal slicing, is designed to replace diachronous horizons with phantom 

slices that statistically better track geologic time, while omitting many time-equivalent 

reflections. To more accurately track horizons without omitting detailed information, the 

author propose an integration of the above two processes. As discussed in previous 

sections, the TCE could be a measurement to evaluate seismic chronostratigraphic 

correlation, although it is not a variable measurable directly from the field data. So the key 

is to identify a seismic attribute (or combination of attributes) that is indicative of the 

quality of seismic chronostratigraphic correlation (i.e., as an approximation of the TCE, He 

and Zeng, 2014b). The application of this selected attribute with limited human 
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intervention would improve the integration process and make a hybrid RGT volume a 

reality. 

2.6.1 Looking for a useful attribute 

In this study, a limited number of seismic attributes have been tested for their 

relationship with the TCE. Amplitude variance is highlighted here; it measures how 

amplitude values spread out around a sample point and is a first-order approximation of 

amplitude energy (Barnes, 2001). In a thick homogeneous medium, the author expected to 

see zero amplitude variance in a seismic model. For models with abrupt impedance change, 

greater amplitude variance is expected near the lithofacies boundary. In other words, 

amplitude variance increases in models with increasing impedance variability and with 

increasing facies heterogeneity in this study.  

Volumes of amplitude variance were calculated for the 40-Hz seismic models 

related to impedance models I, II, and III, respectively (Figure 2.10a–2.10c). Six extracted 

time slices in each of the three volumes demonstrate similar variance histograms (e.g., the 

time slice at 100 ms, Figure 2.16). The log-normal distribution of variance varies greatly 

among different models. Minimal variance is related to models of the least lateral 

impedance changes (model I, Figure 2.16a), whereas dramatically increased variances are 

observed in models of increasing impedance variations (models II and III; Figure 2.16b 

and 2.16c).  

To observe a relationship between a specific seismic attribute with lateral 

impedance variation, more impedance models beside the original three ones have been 

simulated, with a lateral correlative distance/range ranging from 20 × 100 to 29 × 100 m. 

As observed, it exhibits a power relationship between the median amplitude variance from 

the seismic models and the lateral correlative distance/range used in simulating the 
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impedance model (Figure 2.17). Therefore, the author expect to predict geologic 

(lithofacies) heterogeneity from a specific seismic attribute, for example, the medium 

amplitude variance in this case. 

 

 

Figure 2.16: Observed correlation between lateral variations in the impedance models and 

amplitude variances calculated from their seismic records. Multiple variance 

time slices (60, 80, 100, 120, 140, and 160 ms) show similar distributions 

within models (a) I, (b) II, and (c) III. However, the amplitude variance 

increases when the range of lateral impedance variation increases from 

model I to model III. Note the changes in the horizontal scale of variance. 
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Figure 2.17: Power relationship between the lateral correlative distance in impedance 

model and the median value of the amplitude variance, calculated from the 

synthetic seismic volume. 

Notice that the TCE, measured either for manually tracked seismic events or for an 

autotracked seismic volume, is also positively related to the lateral correlative distance 

used to build impedance models (Figures 2.11 and 2.12); this result suggests that the 

seismic attribute, medium amplitude variance, may help to predict/ approximate the TCE, 

which is useful for the development of TCE-based, hybrid RGT, and stratal slice volumes. 

2.6.2 Integrating autotracking and phantom slicing (stratal slicing) 

At present, in determining the chronostratigraphic significance of a seismic event, 

two popular approaches include seismic modeling of either a conceptual model or a target-

oriented geologic model. A conceptual model is built through consultation with experts 

who have sufficient experience with regional and local geologic settings, reservoir 

distribution patterns, depositional/production history, and local seismic interpretation. And 

the target-oriented geologic model is built from subsurface data (e.g., wireline logs) that 

capture certain depositional/reservoir architectures. Note that designing these models is 

experience guided. Moreover because judgment for seismic chronostratigraphic 

significance is based on visual comparison between the model and synthetic seismic 
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records, these two approaches are difficult, if not impossible, to apply to the generation of 

a hybrid RGT volume. 

The author recommend a new, attribute-based flattening scheme that makes use of 

the TCE information automatically estimated from the 3D seismic data that is to be stratal 

sliced (Figure 2.18). Assuming a particular seismic attribute that highly correlated with the 

TCE has been found through the above/similar forward modeling experiments, this key 

learning could be extended to field data. The procedure includes two steps: First, a specific 

seismic attribute (e.g., amplitude variance in this study) is calculated from the original 3D 

seismic volume as an approximation for TCEs of each seismic event. Then, interpreters 

could set a threshold value for this particular attribute to judge the chronostratigraphic 

significance of seismic events and thus to select the method for predicting RGT: If an event 

is estimated to follow geologic timelines, an autotracking operation would be performed 

on the event; otherwise, a phantom stratal slice would be chosen. Eventually, a hybrid RGT 

volume could be generated. 
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Figure 2.18: Workflows for generating the hybrid RGT volume. The author propose to 

use a special seismic attribute to replace human judgment for a quantitative 

and practical procedure. 

Note that the optimum threshold value for this particular seismic attribute could be 

determined by multiple runs. By comparing multiple test results against the predetermined 

geologic model, this limited human intervention helps to improve the accuracy of the newly 

generated RGT volume.  

2.7 CONCLUSIONS AND FUTURE WORKS  

2.7.1 Conclusions 

Statistically simulated impedance models with flat chronostratigraphic surfaces at 

reservoir scale have been used to study the quality of relative geologic time correlation of 

seismic reflections/seismic chronostratigraphic correlation. The observed difference 

between simulated geologic time surfaces in an impedance model and tracked seismic 

events in the corresponding seismic is quantified as the TCE. The TCEs for selected 

manually tracked horizons and also for autotracked seismic volumes reveal increased 
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seismic time transgression with increased lateral impedance variation. Observed TCEs can 

be as large as the width of two seismic events, or 32.5 m in a small, complex impedance 

model. Higher frequency models in general tend to generate more accurate seismic 

chronostratigraphic interpretations. 

A preliminary test showed that medium amplitude variance calculated from seismic 

models has a power relationship with the lateral impedance variability (range), which is in 

turn negatively related to TCE. Consequently, medium amplitude variance could be useful 

for generating TCE-based, hybrid RGT volumes from field seismic data. The proposed 

procedure integrates two present techniques, autotracking and phantom slicing (stratal 

slicing), and it can be practical and economical when implemented in an automated 

computer algorithm. 

2.7.2 Future Works 

The statistical modeling procedure used in this study can produce impedance 

models and associated seismic models. They simulate flat relative geologic time surfaces 

and lateral impedance/lithofacies variations within each chronostratigraphic unit. These 

simplified models can be viewed as geologically reasonable; however, they represent 

limited scenarios. Among the many other factors that can be tested, the most important is 

to search for more efficient ways to calculate and interpret TCEs in complex stratigraphic 

frameworks. This requires expanding the approach to models with dipping geologic time 

surfaces, unconformities, and faults; sequence- stratigraphic frameworks and depositional 

system tracts can be introduced so that TCEs can be evaluated in real space and time. 

A digital outcrop model (DOM) built from detailed geologic mapping constrained 

by highly accurate spatial data, such as terrestrial LIDAR data, can provide an important 

platform for this research. When built in a high-frequency sequencestratigraphic 
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framework, a high-quality DOM model can demonstrate realistic stratigraphic and 

lithofacies complexities, while honoring detailed observations following multiple outcrop-

defined surfaces (Bellian et al., 2005). Many DOMs have been built and studied in the past 

decade (e.g., Enge et al., 2007; Janson et al., 2007; Bellian et al., 2012). The DOM models 

will provide opportunities to discuss conditions and procedures for realistic applications of 

hybrid RGT. 

Clearly, a critical test will be using real field data, in which a combination of core, 

logs, and high signal-to-noise ratio 3D seismic provide adequate geologic constraint. This 

test should confirm that a hybrid RGT volume should be a better representation of a true 

RGT cube in that it tends to integrate advantages and avoid disadvantages of autotracking 

and phantom slicing. By finding a calculated and highly TCE-indicative seismic attribute 

(amplitude variance or other candidates), the procedure should be practical and economical 

when implementing as an automated computer algorithm. 
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Chapter 3: Improving 3D seismic horizon interpretation for reservoir 

model construction: an example of 3D geocellular and seismic model of 

Permian San Andres shelf-Grayburg platform mixed carbonate/clastic 

strata 

Seismic horizons are a significant component for reservoir model construction, 

commonly serving as reference surfaces for stratigraphic layering and a contemporaneous 

snapshot into depositional system from which to extract seismic attributes, as well as 

guiding the construction of low-frequency model for seismic inversion. This study2 tests 

limitations of using horizons extracted from 3D seismic as bounding surfaces in building 

an accurate reservoir model, as applied on Permian mixed siliciclastic-carbonate shelf 

reservoirs, whose seismic stratigraphic interpretation is challenged by its internal complex 

shelfal stratal geometry and its interference with overlying platforms containing  numerous 

laterally-continuous but vertically-thin fluid barriers. To investigate the seismic response 

of this mixed system, a hybrid model was built from both high-resolution outcrop and 

subsurface data, and then populated with lithostratigraphic and acoustic properties. 

Geostatistical interpolations were used extensively during model construction, in order to 

simultaneously honor high-resolution discrete vertical measurements, the lateral 

continuous constraints, and published 3D depositional models. Relationship between 

lithofacies and acoustic properties were established from outcrop measurement and well 

logs. Forward acoustic-wave equation modeling/migration was then applied to investigate 

seismic response at an analogous peak frequency of field seismic at 35 Hz. Subsequently, 

reflection-geometry-based conventional seismic stratigraphic interpretation was used to 

pick the maximum flooding surface and top of a well-constrained high frequency sequence 

                                                 
2Figures and major contents of this chapter were from a manuscript completed in March 2017 (He et al., 

2017c, in preparation) for a submission to AAPG Bulletin, which is currently undergoing data sponsors’ 

final review and approval.    
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(HFS) as the base and top of strongly-progradational shelf reservoirs. In both cases, spatial 

discrepancies exist between the interpreted seismic horizon and the input stratigraphic 

surface, thus the author made recommendations to improve practical seismic interpretation.  

3.1 INTRODUCTION 

Derivative products from the analysis of 3D seismic data are important components 

of modern reservoir characterization. Such products provide essential map-view or three-

dimensional constraints for 3D static reservoir models, and guide stratigraphic, facies, and 

property modeling via a variety of forms, including seismic horizons, horizon-based 

attribute map analysis, volume-based attribute analysis, and seismic inversion results 

(Grötsch and Mercadier, 1999; Chopra and Marfurt, 2007). Among these seismically-

derived model inputs, 3D seismic horizons were presumed to be important time-markers 

or geologic timelines in seismic stratigraphic interpretation (Vail et al., 1977c), and thus 

contribute to multiple stages of static reservoir model construction.  Most directly at the 

stage of stratigraphic modeling/framework construction, 3D seismic horizons serve as 

reference surfaces for stratigraphic layering if interpreted in/converted to depth domain 

(Doyen, 2007). This ensures as true a representation of stratigraphic patterns and 

geometries as possible. Subsequently, at the stage of facies modeling, horizon-based 

attribute maps, if extracted from a true time surface, can provide a snapshot into a 

contemporaneous depositional system when integrated with cores and wireline logs 

(Posamentier et al., 1996; Zeng et al., 1998a, b; Posamentier and Kolla, 2003; Chopra and 

Marfurt, 2007). Attribute maps can also be integrated into facies modeling (Behrens et al., 

1998; Yao and Chopra, 2000). In addition, at the final stage of property modeling, 3D 

seismic horizons can be optionally used to guide the extrapolation of wireline logs to build 
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a low-frequency model for seismic inversion, which further provide volumetric constraints 

for property estimation (Hampson et al. 2000; Chopra and Marfurt, 2007).   

Many of these significant roles of seismic horizons for the static reservoir model 

construction are explicitly or implicitly based on the fundamental assumption of seismic 

stratigraphy (Vail et al., 1977c), which presumes seismic reflections to chronostratigraphic 

surface/geologic timelines, rather than lithostratigraphic surfaces. Therefore, one can 

interpret ‘seismic sequence/depositional sequence’ as the ‘basic unit’ (Mitchum et al., 

1977b) based on seismic reflection patterns (Mitchum et al., 1977a), including the 

reflection terminations at the sequence boundary, the reflection configurations within 

sequence, and the external forms of sequences and seismic facies. The suggested basic 

interpretation unit of ‘depositional sequence’ was defined as ‘a stratigraphic unit composed 

of a relatively conformable succession of genetically related strata and bounded at its top 

and base by unconformities or their correlative conformities’ (Mitchum et al., 1977b), and 

one magnitude smaller than Sloss (1963)’s supersequence (Mitchum et al., 1977b).  

This fundamental assumption for seismic stratigraphic interpretation has facilitated 

many great successes in petroleum exploration and low-order (3rd-or lower-order) seismic 

stratigraphy (Brown and Fisher, 1980; Posamentier and Vail, 1988; Eberli et al., 2002; 

Catuneanu, 2006; Hart, 2003), while requires additional validations when extending to the 

smaller-scale seismic stratigraphy to define high frequency sequence (HFS’s) and high 

frequency cycles (HFC’s) in scenarios of complicated lithofacies-acoustic impedance 

relationship, complex stratigraphy, and typical normal-frequency industrial seismic data.  

First of all, the original authors have stated a rule of thumb that ‘the greater the sea-level 

fall the easier it is to recognize sequence boundaries’ by reflection terminations (p. 65, Vail 

et al., 1977a). Therefore, small-scale events during paracycles or shorter pulse, especially 

during greenhouse with low-amplitude and faster sea level variation (Read, 1985), could 
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fall below the seismic resolution (Sheriff, 1977), thus requires additional data such as 

outcrops and tightly-spaced wells with adequate cores (p.64, Vail et al., 1977a). In addition, 

the original synthetic experiment to propose this fundamental assumption (p. 103, Vail et 

al., 1977c) was drawn upon a siliciclastic geologic cross-section with both simple 

lithofacies-impedance relationship and simple stratigraphy of flat strata onalp a 0.36o 

angular unconformity, thus the author was motivated to test the model-dependency of this 

assumption by applying to a shelf-margin mixed siliciclastics-carbonate model in this 

study. Most importantly, the applicability of this fundamental assumption has been 

reported for being venerable to seismic resolution (Aigner et al., 1989; Lawrence et al., 

1989), indented lithofacies stack pattern (Zeng et al., 1998a; Hardage, 2007), and meteoric 

or burial-dagenetic alternation of carbonate rocks (Fournier and Borgomano, 2007).  

Therefore, when applied to reservoir-scale interpretation, these uncertainties could lead to 

seismic reflections not follow chronostratigraphic layering at the high-resolution scale 

(Grammer et al., 2004), and further result in misinterpretation of depositional environment 

and reservoir compartmentalization (Zeng and Kerans, 2003), as well as stratigraphic 

architecture and thus misinterpretation of facies model and inaccurate volumetric 

calculation (Stafleu and Sonnenfeld, 1994). 

In this study, with an ultimate goal to improve 3D seismic horizon interpretation 

for the static reservoir model construction, the author tested the validity of the fundamental 

assumption of seismic stratigraphy as applied to higher-order seismic stratigraphy of a 

mixed siliciclastic-carbonate shelf margin with complex stratigraphy, and then make 

recommendations on practical interpretation accordingly. More specifically, the author 

chose Permian mixed siliciclastic-carbonate Upper San Andres (uSA) shelf-margin 

reservoirs as an example, due to its significance in Permian production, challenges in 

seismic stratigraphic interpretation, and multi-scale (regional- to core-scale) data 
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availability. Subsequently, the author applied 3D geocellular modeling for stratigraphy, 

facies, and acoustic properties, and then seismic modeling.  Implementing a conventional 

seismic stratigraphic approach by assuming seismic reflections represents 

chronostratigraphic stratifications, the author interpreted the top and base of strongly-

progradational reservoirs. Finally the author compared the seismic horizons against the 

geologic model for their discrepancies, as a proxy to evaluate the applicability of 

fundamental assumption of seismic stratigraphy as applied to reservoir model construction.   
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3.2 STUDY TARGET AND CHALLENGES 

Permian Upper San Andres (uSA, Figure 3.1) mixed-system shelf reservoirs were 

chosen as the target for this study. These reservoirs have contributed significantly to 

Permian cumulative production numbers, and continued extraction through both 

waterflooding and Tertiary recovery is ongoing. Besides its significance in Permian 

production, the author chose this target for its challenges in seismic stratigraphic 

interpretation, as well as and its good data availability to construct both a 3D high-

resolution stratigraphic model and forward seismic model for a comparison between an 

idealized seismic stratigraphy against high-resolution stratigraphy.   

3.2.1 Seismic stratigraphic interpretation challenges for uSA shelf reservoirs 

The seismic stratigraphic interpretation for the top and base of the uSA prograding 

shelf reservoirs showcased challenges in an HFS- and smaller-scale seismic stratigraphy. 

One can chose the top and bottom of G9 HFS as the bounding surfaces of these reservoirs, 

as (1) the G9 top segmented uSA shelf reservoir and Grayburg platform reservoir 

compartment and (2) the G9 bottom featured in a transition from aggradational to 

progradational geometry. Applying the conventional seismic stratigraphic interpretation 

approaches (Mitchum et al., 1977a), the author identified the shingled to sigmoidal 

reflections as clinoforms prograding toward the basin (Figure 3.1c, magenta arrows). These 

clinoforms terminate downdip (downlap) against a continuous and gently-inclined seismic 

trough at the toe of slope, thus the author interpreted this seismic trough as the G9 

bottom/reservoir model base (Figure 3.1c, the lower white lines). In addition, these 

clinoforms terminated updip (toplap) against a relatively flat-lying seismic trough, thus the 

author interpreted this seismic trough as the G9 top/model top (Figure 3.1c, the upper white 

lines). However, when applying this conventional seismic stratigraphic interpretation 

approach to HFS- and smaller scale, the key encountered challenges include but not limit 
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to (1) the difficulties in characterization of complex stratigraphic architecture at a typical 

seismic peak frequency of 35 Hz (Figure 3.1c) for accurate reflection terminations and 

internal reflection configurations, (2) the uncertainties in interpreting the uSA reservoir 

top, as seismic reflections may follow low-impedance reservoir compartments and thus 

cross uSA-Grayburg sequence boundary, where these reservoir compartments include both 

uSA porous carbonate and Grayburg porous carbonate and sandstone/siltstone (Dutton et 

al., 2004, Play 127 – Grayburg Platform Mixed Clastic/Carbonate Play), and (3) the lack 

of deep wells and cores for an integrated interpretation.  

 

 

Figure 3.1: Permian San Andres-Grayburg stratigraphy, and challenges in seismic 

stratigraphic interpretation of shelf-margin reservoirs. (a) stratigraphic 

column and (b) regional stratigraphic cross-section are modified from 

Kerans et al.(2013). (c) a local dip-oriented seismic section. The annotated 

red and green box represents outcrop- and subsurface-constrained modeling 

interval in this study, with study areas shown in Figure 3.2.   
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3.2.2 An opportunity to investigate seismic stratigraphy through forward modeling 

A forward seismic modeling on a 3D geologic model would allow a validation of 

this conventional seismic interpretation results against the reality. An advantage of the 

Permian mixed system dataset used in this study is the availability of other significant 

multi-scale (core- to regional scale) inputs for use in the interpretation/model-building 

process, including core and wireline logs as well as close outcrop analogs. This allows 

analysis of the idealized seismic responses and limitations of using 3D seismic horizons in 

reservoir model construction through forward modeling. Core-scale characterization 

provides high-resolution 1D and 2D stratigraphic descriptions (Kerans and Tinker, 1996) 

but these are inherently limited in terms of uncertainties in correlation and interpolation, 

especially in scenarios of sparse or clustered well distributions. Outcrop analog data 

provide 2.5D information of stratigraphic layering and distribution of petrophysical 

properties, but will always be limited in their applicability by the degree to which these 

datasets are indeed “analogous” to subsurface field data, in terms of geologic settings, 

depositional and post-depositional history, and lithofacies assemblage.  Fortunately, 

regional geologic frameworks allows for more effective leveraging of analogs for seismic 

stratigraphic analyses (Shepherd, 2009), therefore joint examination of outcrop analogs and 

a subsurface field provides a unique opportunity in this study. 

3.3 STUDY AREAS, GEOLOGIC SETTING AND DEPOSITIONAL MODELS 

3.3.1 Study areas and datasets 
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Figure 3.2: Study areas and subsurface productions. (a) Middle Permian stratigraphy 

showing LCC outcrop study area (red box) and CBP subsurface study area 

(green box), which is located within Dutton et al. (2004)’s Play 127 

reservoir trend. (b) 2015 statistics on Play 127, the subsurface data is from a 

top producing field.  (c) A zoomed-in LCC outcrop study area showing 

dataset. (d) A zoomed-in CBP subsurface study area showing dataset.  

The two study areas for this modeling research are from the well-studied San 

Andres and Grayburg outcrops of Last Chance Canyon in Guadalupe Mountains 
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(Sonnenfeld and Cross, 1993; Stafleu and Sonnenfeld, 1994; Phelps and Kerans, 2012, 

Phelps, 2006, and Scott, 2007) and a subsurface reservoir setting from the eastern margin 

of the Central Basin Platform (Figure 3.2a). These settings are closely analogous 

geologically and examining the two together affords a unique opportunity to test limits of 

seismic imaging for analysis of reservoir architecture. The author use the regional 

stratigraphic framework (Figure 3.1a) proposed by Kerans and Fitchen (1995) and Kerans 

and Kempter (2002) that recognizes three scales of stratigraphic cycles, with five 

composite sequences (PCS’s), 32 high frequency sequences (HFS’s) and numerous high 

frequency cycles (HFC’s). The San Andres and Grayburg units at Last Chance Canyon and 

surrounding canyons have been shown to define two PCS’s with distinctly different stratal 

architectures. 

The upper San Andres Formation G8 HFS was the focus of Phelps’ (2006) work, 

whereas Sonnenfeld (1991a,b) and Scott (2007) were focused on the G9 HFS. The focus 

in this study is the upper San Andres composite sequence or PCS 10 (both G8 and G9 

HFS’s, Figure 3.1a, red box). The specific model area covers approximately 15 square 

kilometers, including four canyons which are altogether shortened as LCC (Figure 3.2a, 

red box; Figure 3.2c). The Upper San Andres at LCC consists of mixed siliciclastic-

carbonate oblique to complex oblique-sigmoidal HFC clinoforms (Sonnenfeld and Cross, 

1993) with distinctive promontory-reentrant along-strike variability, generally prograding 

to the east (Figure 3.2c) with a maximum topset to bottomset relief of approximately 140 

meters (Sonnenfeld and Cross, 1993; Scott, 2007). Grayburg strata onlap the top-San 

Andres karstic unconformity (Scott, 2007) and form a landward (Western locally) tapering 

onlap wedge of shallow subtidal carbonates and sandstones that upon detailed inspection 

can be further subdivided into 3 high-frequency sequences of which two are present at LCC 

(Hiebert, 2012). The author revisited this outcrop as recent data acquisition on this outcrops 
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allows a 3D stratigraphic and facies modeling:  Phelps (2006) and Scott (2007) 

supplemented along-strike measured sections to the classic dip-oriented ones by 

Sonnenfeld (1991a), compiling a dense network of 42 measured sections with spacing 

between sections varying between 50 m and 700 m (Figure 3.2a), and acquired ground-

based Light Detection and Ranging (LIDAR, Bellian et al., 2005; Buckley et al., 2008, 

Janson et al., 2010) to provide a merged visualization of the LCC canyons walls using 

Bellian et al. (2005)’s methodology. 

The subsurface study area is from a top producing Grayburg waterflooding field on 

the eastern margin of the Central Basin Platform (Figure 3.2a, green box). This field 

produces from Grayburg units within the transgressive to early highstand sequence set of 

PCS 11 (Figure 3.1, green box), with only minor contribution from the underlying San 

Andres Formation. Regionally this field is part of the Grayburg mixed siliciclastic-

carbonate play ( Play 127 in Dutton et al. 2004) which had produced 669.7 MMbbl 

cumulatively as of 2000, and is currently under secondary recovery in the Basin today 

(Figure 3.2a and b). This field was selected for this study because (1) it has a geologic 

setting that is closely analogous to the LCC study area and (2) it has a dataset (Figure 3.2d) 

consisting of 16 cored wells (2,931 feet in total), 64 wells with good-quality log suites 

penetrating the Grayburg Formation, 8 deep wells penetrating the San Andres Formation, 

and a modern 3D seismic volume with a 35-Hz peak frequency. This field is both 

representative of the larger producing play and is an excellent dataset to interrogate and 

demonstrate the ability to correctly model the subsurface, revealing key reservoir 

heterogeneities at a scale analogous to that observed in this outcrop model. 
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3.3.2 Geologic setting 

Paleogeographic reconstructions place the Permian Basin within 0 to 5o North of 

the equator during Middle to Late Permian (Coffin et al., 1992; Lottes and Rowley, 1990; 

Scotese, 2004). Outcrop and subsurface studies both suggest a long-term arid environment, 

supported by the abundance of evaporites and eolian terrigenous clastics (Fischer and 

Sarnthein, 1988; King, 1948) and the lack of clay-rich fluvial runoff in both outcrop and 

subsurface (Kerans and Tinker, 1999). During the Guadalupian, the LCC outcrop and CBP 

subsurface study areas were located near the periphery of the shallow-water shelf of the 

Permian Basin. Reciprocal sedimentation, where shallow-water carbonate sedimentation 

on the shelf alternated with basin-centered terrigenous siliciclastic deposition (Silver and 

Todd, 1969), occurs during both the San Andres and Grayburg times. At the basinal scale, 

eolian terrigenous sands are transported into the basin during low relative sea level, 

followed by shelf-centered shallow-water carbonate deposition during relative high sea 

level, when the broad backreef lagoon prevented the terrigenous sediments from reaching 

the basin. The basinal equivalent of San Andres and Grayburg strata, the Brushy 

Canyon/Cherry Canyon formations of the Delaware Mountain Group, mark distinct 

lowstand events (Harms, 1974; King, 1942) of bypass of eolian sandstone and siltstone, 

whose lack of clay was explained by detritus segregation in eolo-marine model (Sarnthein 

and Diester-Haass, 1977; Sarnthein and Koopmann, 1980) and whose sand origin was 

recently revealed to be sourced from south of Ouachita-Marathon suture using detrital-

zircon geochronology (Soreghan and Soreghan, 2013).   
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3.3.3 Depositional models for San Andres-Grayburg strata 

The PCS 10 (Figure 3.1) chronologically contains 3 lowstand HFS’s of the Brushy 

Canyon Formation (G5-G7 HFS) without shelf equivalency (Gardner and Borer, 2000), the 

G8 HFS and basinal Brushy Canyon Formation (transgressive sequence set), and G9 HFS 

of uppermost San Andres Formation affinity (highstand sequence set). The Lower Cherry 

Canyon Formation or Cherry Canyon Tongue is the lowstand to transgressive element of 

the G9 HFS. According Kerans et al. (2013)’s 3D depositional models of Upper San 

Andres Formation, the G8 HFS has gentle depositional profiles with average depositional 

dip less than 5o, and is characterized by upper-slope fusulinid-rich mounds or shoals, 

lower-slope small-scale channel-levee complexes and basinal hemipelagic mudstone 

blanket (Phelps and Kerans, 2007).  In comparison, the sandier G9 HFS exhibits steepened 

depositional profiles and sinuous promontory-reentrant shelf margins (Figure 3.3a). Its 

adjacent shelf-margin promontories are spaced at 200~500 meters apart along-strike and 

serve as preferential sites for patch reef growth, whereas its shelf-margin reentrants were 

favorable for siliciclastic bypass (Scott, 2007). Sonnenfeld (1991) and Scott (2007) both 

divided an idealized HFC clinoform into a lower siliciclastic-rich transgressive (T) 

hemicycle and an upper carbonate-dominant regressive (R) hemicycle (Figure 3.3c).  The 

author applied Scott (2007)’s facies model to Sonnenfeld (1993)’s cross-section, and then 

get a measurements on the dimensions per strongly-progradational HFC, namely the 

HFC6~14 in Sonnenfeld (1993): its bottomset-topset elevation can reach up to 158 meters. 

In addition, its width of outer ramp, upper slope and low-slope facies belt respectively 

ranges from 827~1604 meter, 607~1020 meter, and more than 2237 meters. In comparison, 

Phelps and Kerans (2007)’s 3D model for distally steepened ramp clinothems in G8 HFS 

of Last Chance Canyon shows more straight or linear along-strike boundaries between 

various facies tracts.   
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Figure 3.3: 3D depositional and facies model from previous studies, with facies codes in 

this study. (a) and (b) show 3D depositional model of G9 HFS in PCS-10 

and G11 HFS in PCS-11 (Kerans et al., 2013). (c) Facies model for an 

idealized HFC in G9 HFS, proposed based on LCC observations (Scott, 

2007). (d) Facies model for a single timeline in G11 HFS, proposed based 

on field observations in Shattuck Escarpment (Hiebert, 2012). Other 

modeled facies in PCS10 and 11 are listed at the bottom, with more details 

in methodology section. 

The PCS 11 herein (Figure 3.1) includes the G10 HFS (lowstand sequence set, 

lower Grayburg Formation), G11 HFS (transgressive sequence set, middle Grayburg 
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Formation), and G12-G13 HFS (highstand sequence set, upper Grayburg-Lower Queen 

Formation). Kerans et al. (2013) proposed 3D depositional models of G10-G13 HFS. In 

general, the depositional profiles evolve from distally steepened ramp to reef-rimmed shelf 

with relief of 80-100 m in the G12 HFS. For the inner/mid ramp, the G10 HFS displays a 

sabkha facies with localized tepee island complexes, compared with the G11 and G12 

HFSs which contain an evaporite-dominated salina and oolitic barrier.  The carbonate 

factory for the G11 and G12 is much broader than that of the G10 HFS (10 km compared 

with 5 km). As shown in an example of the G11 HFS (Figure 3.3b), depositional profiles 

steepen with clinoform slopes of 10-30o. The model interval in this study corresponds to 

the landward platform area, with a mixed siliciclastic-carbonate-evaporite association. 

Hiebert (2012) proposed a single timeline facies model using measured sections from the 

Shattuck Escarpment (Figure 3.3d), showing a basinward facies transition from 

inner/middle-ramp facies belt of dominantly fenestral laminate (<1 km width), to middle 

ramp facies belt of peloid packstone (3~4 km width), to shelf crest facies belt of ooid 

grainstone (2~3 km width), and then to Fusulinid-rich outer shelf facies belt (4~5 km 

width). Compared with the facies model of upper San Andres Formation, the Grayburg 

model shows greater lateral facies continuity.  
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3.4 MODELING WORKFLOW AND METHODOLOGY OVERVIEW 

The overall modeling interval (Figure 3.1) contains two PCS’s of mixed clastic-

carbonate systems, including (1) PCS-10 of uSA Formation and its equivalent Brushy 

Canyon and Lower Cherry Canyon basinal deposits, and (2) PCS-11 including Grayburg 

and Lower Queen formations, whose flat-lying inner to middle ramp onlaps the subaerial 

unconformity on the karst-modified top uSA sequence boundary (Fitchen, 1993). The 

geocellular forward model draws upon detailed LCC outcrop data (Figure 3.2c) for its 

lower San Andres-equivalent portion and subsurface data for the upper Grayburg-

equivalent portion (Figure 3.2d). A single high-resolution reservoir model was constructed 

based the San Andres outcrop- and Grayburg subsurface geocellular model, which were 

built separately using  different geostatistical methods driven by the different input data 

types and geological complexity. This section presents a six-step (Figure 3.4) geocellular 

and seismic modeling workflow with an overview of methodology, with a focus on inter-

connection among steps. For those complex steps (Step 2~3, 4, and 5), the author will 

present detailed methodology, parameters and examples in separate subsequent sections.  

3.4.1 Workflow 

Six steps were followed to build the 3-D geocellular and then seismic model (Figure 

3.4), including 

1. Lithofacies definition 

2. High-resolution sequence stratigraphic correlation 

3. Stratigraphic modeling and gridding 

4. Facies modeling 

5. Petrophysical analysis, adjustment and modeling 

6. Seismic modeling 
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Figure 3.4: Geocellular and seismic modeling workflow. 

3.4.2 Methodology overview 

For both outcrop and subsurface datasets, Embry and Klovan (1971)’s modification 

of Dunham (1962)’s classification system for carbonate rocks was used for lithofacies 

definition (Step 1), and resulted in 14 lithofacies for PCS-10 and an additional 10 for PCS-

11.  Afterward, high-resolution sequence stratigraphic correlation up to HFC scale was 

applied (Step 2). For the outcrop dataset, 19 stratigraphic contacts between G9 MFS and 

G9 top was digitized on LIDAR image of canyon walls by Scott (2007), and 19 lower 

stratigraphic contacts below G9 MFS were digitized on the georeferenced Sonnenfeld and 

Cross (1993)’s cross-section. As for the subsurface dataset, Kerans and Sitgreaves (2015) 

interpreted well tops for 15 surfaces and two seismic horizons.  
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In this study, the author defined a 105o-oriented 20× 20m grid in an area of 

approximately 5×3-km for stratigraphic modeling, and then chose 105o as its updip-

downdip orientation for facies modeling. This decision was supported by Scott (2007)’s 

reconstruction of strongly-progradational clinoforms between G9 MFS to its top. Scott 

(2007) reconstructed surfaces in a 78o-oriented 5.7×3.6km rectangular area (Figure 3.2c), 

in order to optimally bounding the LIDAR-coverage, by using Sequential Gaussian 

Simulation (SGS, Deutsch and Journel, 1998) with a Gaussian variogram to extrapolate 

surfaces from 2.5D stratigraphic contacts. As the best-constrained G9 MFS has a 105o dip 

orientation, the author adopted this orientation as the updip-downdip orientation in this 

study. Applying to this map-view grid, the author constructed 38 outcrop-constrained PCS-

10 surfaces and 15 subsurface surfaces (Step 3) by (1) extrapolating from digitized 

stratigraphic contacts below G9 MFS, (2) resampling from Scott (2007)’s surfaces between 

G9 MFS, and (3) deforming Kerans and Sitgreaves (2015)’s subsurface-constrained 15 

PCS-11 surfaces, which was extrapolated using refinement gridding (Shi et al., 2013). 

Subsequently, the author layered the stratigraphic model vertically to an average thickness 

of 1~2ft to capture subtle vertical facies variation to mimic the stratification style per zone 

(Janson et al., 2007). Details of stratigraphic correlation, modeling and gridding will be 

presented in a subsequent section, including examples for three sub-models and their 

integration into one stratigraphic model.  

The author upsacled facies logs to the vertical scale of this stratigraphic grid, and 

then extrapolated facies from these upscaled logs using a variety of facies modeling method 

(Step 4), including Constant Facies Value (CFV), Stochastic Object Modeling (SOM, 

Adam et al., 2005), Truncated Gaussian Simulation (TGS) with Trend (Matheron et al., 

1987, Ravenne and Beucher, 1988, Rudkiewicz et al., 1990, Galli et al., 1994, Labourdette 

et al., 2008; ; Amour et al., 2013), and Pluri-Gaussian Simulation (PGS, Le Loc’h et al., 
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1994, Galli et al., 2006; Yarus et al. 2012), depending on the heterogeneity per zone. 

Details of facies modeling will be presented in a subsequent section, starting with a 

decision tree for method selection/combination per zone in outcrop-constrained PCS-10 

model, and the resultant four scenarios (S1, S2, S3, and S4) in facies modeling per zone. 

After an information extraction from outcrop photos, the author presented examples 

respectively for S2, S3, and S4, as S1 is merely assigning a constant facies for some highly-

homogeneous zones. Finally, the author presented a facies modeling example of 

subsurface-constrained PCS-11 using PGS (Kerans and Sitgreaves, 2015).  

Here lithofacies was chosen as the primary unit for property analysis and modeling 

(Step 5), as it represent distinct rock elements with characteristic grain types, compositions, 

and sedimentary structures that form the basic modeling component, and incorporate key 

factors influencing the sonic velocity of mixed carbonate-siliciclastic units, including 

porosity, primary pore type, quartz content, and dolomite content (Anselmetti and Eberli, 

1993; Kenter et al., 2001; Kenter et al., 1997; Janson et al, 2007; Janson and Fomel, 2010). 

After velocity and density analysis per facies using outcrop plugs and six type wells, the 

author assigned an average velocity-density pair per lithofacies to build the velocity and 

density models for both outcrop and subsurface dataset. Note a systematically slower 

velocity measurement from outcrop plugs, the author made adjustment for a better analog 

of CBP field seismic.  Details of acoustic property analysis, adjustment, and modeling will 

be presented in a subsequent section.  

Finally, the author stitched the subsurface-constrained acoustic property model 

(sonic velocity and density) above the G9 HFS top of outcrop-constrained model along a 

105o dip,  then generated a single synthetic forward model (Step 6) in the depth domain for 

future direct comparison with the stratigraphic model. The forward-seismic modeling 

approach applied here uses a waveform-based exploding reflector model (Claerbout et al., 
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1985; Janson and Fomel, 2010). This model simulates the acoustic wavefield and then 

migrates this to the depth domain, where the acoustic wave equation is solved using 

extended split-step Fourier method (Kessinger, 1992) with its advantage to accommodate 

for fast lateral velocity changes. For a close analog with the CBP field seismic, the author 

resampled the velocity and density model of a stratigraphic grid to a regular grid of 20× 

20×1m to mimic the receiver alignment in the CBP field (65ft/19.8m). Moreover, the CBP 

field seismic serves as a quality control during the synthetic seismic modeling.    

3. 5. STRATIGRAPHIC CORRELATION, MODELING AND GRIDDING (STEP 

2~3) 

3.5.1 An overview of hard constraints and modeling methods 

The stratigraphic model was integrated from three sub-models with distinct hard 

constraints and methods during surface modeling (Table 3.1).  In the subsequent sub-

sections, the author introduce the stratigraphic correlation, modeling, and gridding 

workflow, with examples of resultant stratigraphic surfaces for three sub-models (Section 

5.2~5.4), followed by their stratigraphic model integration into a single seamless model.  

 

 

Table 3.1: Surface modeling methodology overview and integration of three sub-models. 

Constraints Surface modeling methods Stratigraphic model integration

PCS-11

(1) Well tops for 15 surfaces 

(2) Seismic horizon for G9 top 

and the base of main

evaporite

Refinement gridding by Kerans and Sitgreaves,

2015)

(1) Deform relative to G9 top from PCS-10 upper model

(2) Crop an area with similar size as PCS-10 upper model

(3) Rotate 30o clockwise to align with PCS-10 upper model

PCS-10 

upper

Digitized 2.5D stratigraphic

contacts on LIDAR canyon

wall by Scott (2007)

(1) Sequential Gaussain Simulation (SGS), and

flattened to a local datum of 'HSS' (Scott, 2007)

(2) Surface resampling to the new 105o -

oriented grid

Remain the same

PCS-10 

lower

Digitized 2.5D stratigraphic

contacts on georeferened

Sonnenfeld and Cross

(1993)'s cross-section

Convergent interpolation Deform relative to G9 MFS from PCS-10 upper model
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3.5.2 Outcrop-constrained upper PCS-10 flattened to HSS (Model I-b) 

The PCS-10 upper model between G9 MFS and G9 top is the core modeling 

interval in this study (shaded in gray, Table I), being made up of strongly-progradational 

mixed clastic-carbonate clinoforms (G9-HFC5~14, Figure 3.6b) with 42 measured 

sections, thus ground-based LIDAR images acquired by Phelps (2006) and Scott (2007), 

combined these detailed measured section data permit high-resolution mapping of this 

complex stratigraphy (Figure 3.5, Bellian et al. 2005; Janson et al., 2007; Buckley et al., 

2008; Burton et al., 2011). Scott (2007) digitized stratigraphic contacts of 19 surfaces 

between G9 MFS and G9 top, including each cycle top and some flooding surface per cycle 

for HFC5~14 (Figure 3.5), and then extrapolated to 19 surfaces using SGS (Deutsch and 

Journel, 1998) with a Gaussian variogram, which randomly placed highs and lows between 

data in a manner that honors the Gaussian variogram, thus particularly suitable for 

modeling the strongly-progradational PCS-10 upper model with shelf-margin 

promontories and reentrants (Scott, 2007). In order to mitigate the effect of tilting 

associated with Tertiary uplift, Scott (2007) flattened these surfaces relative to Hayes 

Sandstone (Figure 3.5, yellow line annotated as ‘HSS’ ), as it was interpreted as a local 

datum within the lower few meters of Grayburg Formation (Sonnenfeld and Cross, 1993). 

In this study, the author resampled his flattened surfaces to the new 20×20m grid in an 

area of 5×3-km with x axis along 105o (compare Figure 3.2c for original and this modeling 

area), and enforced an additional rule to impose the law of superposition, where younger 

surfaces never crosscut older surfaces for resampled surfaces in this study.  
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Figure 3.5: 3D visualization of LIDAR-image of canyon walls, showing high-resolution 

of stratigraphic correlation for G9 HFC5~14 up to HFC scale. 

A map-view resampled key stratigraphic surfaces for HFC6 clinoform before 

flattening is provided as an example (Figure 3.6), including its base, flooding surface and 

top. The LIDAR image (Figure 3.6a) is predominantly a high resolution DOM, containing 

both (X, Y, Z) for geometry of canyon walls and intensity (I) information as a sensor for 

rock properties (Bellian et al., 2005; Burton et al., 2011), thus allows stratigraphic surface 

mapping on it. Note that the most strongly-prograding clinoforms of these restricted 

shelves have limited lateral extension (stratigraphic contacts shown as white lines in Figure 

3.6b-d), thus the author ensured that the present modeled surface always gradually draped 
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on its underlying adjacent surface, in the way that the flooding surface of HFC6 conforms 

to its base surface (compare Figure 3.6b and c), and the top of HFC6 drapes on its 

respective flooding surface (compare Figure 3.6c and d). After flattening of all surfaces 

between G9MFS to G9 top (Figure 3.7a and b), the author obtained a more gentle 

topography. For instance, the slope at the upper slope of G9 MFS is now approximately 

3.5~9.4o. 

 

 

Figure 3.6: An example showing molded stratigraphic surfaces of a HFC. Stratigraphic 

contacts for the top, flooding surface and base of HFC6 were mapped on 

LIDAR image of canyon walls, then interpolated using Kriging. Results are 

shown in (b), (c) and (d). 

Subsequently, the author layered the upper PCS-10 stratigraphic model to an 

average layer thickness of 1ft. A zone of transgressive hemicycle was layered by following 
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the zone top/cycle top. In comparison, a zone of regressive hemicycle was layered by 

following its reference surface, which is the average of the zone base and top, namely the 

flooding surface and top of this regressive hemicycle. Examples of layering will be given 

when presenting facies modeling examples in the next section.  

3.5.3 Outcrop-constrained lower PCS-10 (Model I-a) 

In comparison, the lower PCS-10 lower model below G9 MFS, that is made up or 

distally-steepened ramp strata (G9-HFC1~4 and lower HFS’s) lacks sufficient controls 

from measured sections and outcrop plugs to model deterministically in this study. 

Fortunately, there is less along-strike lithostratigraphic variability with more 

linear/stratigraphic facies boundaries, as shown in Phelps and Kerans (2007)’s 3D 

depositional of G8 HFS exposed at Last Chance Canyon and surface-based facies model. 

Therefore, the author georeferenced Sonnenfeld and Cross (1993)’s cross-section, and 

digitized 2.5D stratigraphic contacts of the high-frequency cycle boundaries and flooding 

surfaces. Assuming a very gentle along-strike stratigraphic and facies variation, the author 

shifted and duplicated these stratigraphic contacts along strike as additional constraints, 

from which the author extrapolated 3D stratigraphic surfaces using polynomial-

interpolation-based normal convergent interpolation in Petrel, as this method uses a series 

of refinements to locally tune the surface to neighboring data and reduces wild 

extrapolations (SCM, 2014), thus is suitable for modeling these gently-dipping surfaces.  

A shown in the example of G9 MFS as the top of this modeling interval, the author 

digitized the G9 MFS stratigraphic contacts (shown as purple solid line in Figure 3.7d) on 

the georeferenced section, and then shifted and duplicated it along the strike orientation 

(15o) forward/southward for 1160m and 1740 meters, and northward/backward for 580 

meters as three additional constraints (shown as purple dashed line in Figure 3.7d). The 



 77 

resultant surface has exhibited little along strike variations, with a dip angle of oscillating 

slightly around 5o at the upper slope.  

Subsequently, the author layered the stratigraphic model to an average thickness of 

2 feet, by applying proportional layering for most zones. Exceptions are a few zones of 

transgressive sandstone or siltstone (such as G9-HFC1), where the author layered by 

following the top for an onlapping stratification.   
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Figure 3.7: Selected surfaces for three sub-models. (a) and (b) are LIDAR-constrained 

G9 top and MFS flattened to Hayes sandstone to mitigate effect from 

Tertiary uplift. (c) is the cropped subsurface model to a similar size of LCC 

model, it shows a similar topography with (a) after rotating 30o clockwise. 

(d) is the G9 MFS as the top of lower PCS-10 model which assumed little 

along-strike topographic variation, thus the author deformed all these lower 

PCS-10 surfaces in relative to the LIDAR-constrained G9 MFS in (b).    

3.5.4 Cropped subsurface-constrained PCS-11 (Model II) 

For this seismic-covered subsurface modeling area (purple outline, Figure 3.2d), 

wells penetrating PCS-11 are clustered in the center area and sparsely distributed in toward 

the North and South ends. Therefore, Kerans and Sitgreaves (2015)’s stratigraphic 

0 1 2km0 1 2km

Depth

LIDAR boundary of 
canyon walls

Stratigraphic contacts from georeferenced 
Sonnenfeld and Cross (1993)’s section 

Additional stratigraphic contacts by shifting 
the contacts above forward and backward

(c) G9 Top – Cropped subsurface model(a) G9 Top – Upper PCS-10 model after flattening

(b) G9 MFS – Upper PCS-10 model after flattening (d) G9 MFS – Lower PCS-10 model

30o rotation 
to align with LCC dip

Core
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correlation and modeling utilized both 16 cores and seismic data for high-resolution 

stratigraphic correlation. Kerans and Sitgreaves (2015) interpreted well tops for 15 surfaces 

(Figure 3.8), including G9, G10, G11, and G12 HFS tops (Figure 3.8, black lines), along 

with a few intermediate surfaces within the Grayburg Formation of G10~G12 (Figure 3.8, 

green lines), and key datum surfaces within Lower Queen Formation of G13 (Figure 3.8, 

pink lines). This correlation is based upon Kerans et al. (2014)’s updated Grayburg model, 

which was supported by Hiebert (2010) and Parker (2010)’s studies of Shattuck 

Escarpment. These interpreted well tops as the primary control, combined with selected 

seismic horizons (i.e. the base of main evaporite and the G9 top), allows the construction 

of 15 key surfaces on a map-view regular grid of 150×150ft (45.7×45.7m) using 

refinement gridding (Shi et al., 2013), which conducts a series of refinements until the 

target grid cell size is reached, by passing the surface model through a biharmonic filter to 

produce a smooth surface with minimum curvature in area without a fault. The resultant 

14 intervals were mostly layered by proportional layering to an average thickness of 2 ft, 

except for Zone 6 (Figure 3.8) being layered by following its top. In this study, the author 

cropped a 4.1×2.5km center area (green box in Figure 3.2d) from Kerans and Sitgreaves 

(2015)’s 4.1× 5.8km model (black box in Figure 3.2d), and then named it as ‘Model II’. 

This area was chosen both for its densest well control, and for its similar reconstructed 

topography of G9 top (Figure 3.7c) with that from outcrop-constrained PCS-10 model 

(Figure 3.7a).  
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Figure 3.8: Dip-oriented well panel (see Figure 3.2d for location), showing stratigraphic 

correlation and zonation for subsurface-constrained PCS-11.  

3.5.5 Integration for a single stratigraphic model 

Since the above stratigraphic model construction was implemented separately, the 

author made certain adjustments for a single stratigraphic model. As the outcrop-

constrained upper PCS-10 (Model I-b) is the core modeling interval all of its surfaces from 

G9 MFS to G9 top remained unchanged. The author deformed all surfaces in outcrop-

constrained Lower PCS-10 model (Model I-a) in relative to G9 MFS from Model I-b, and 

then obtained a composite outcrop-constrained PCS-10. As a result, the adjusted 38 

stratigraphic surfaces in PCS-10 on the dip-oriented section (Figure 3.10a) are closely 

comparable to Sonnenfeld (1991)’s interpretation, that showed clinoforms evolving from 
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oblique to complex oblique-sigmoidal. Besides, three strike cross-sections (Figure 3.10b1, 

b2, and b3) are taken to highlight the younger strongly-progradational clinoforms 

(HFC6~HFC14), which all show moderate to strong along-strike topographic variability 

near the shelf margin, featured by promontories and reentrants, where Scott (2007) 

interpreted the distance between adjacent promontories being 200 to 500 meters. 

Next, the author needed to stitch the cropped subsurface-based PCS-11 model 

(Model II) above this outcrop-constrained PCS-10 model (Model Ia+Ib). The author scaled 

up the 4.1×2.5km cropped subsurface PCS-11 model (Model II) to the same size of 5×3km 

PCS-10 model, and then rotated the new PCS-11 model clockwise for 30o (Figure 3.8c) so 

that its dip is aligned with that of PCS-10.  Finally the author deformed all surfaces in this 

model relative to the G9 top from Model I-b, and eventually constructed a seamless San 

Andres-Grayburg stratigraphic model.  

3.6 FACIES MODELING (STEP 4) 

3.6.1 PCS-10 facies modeling overview and method selection per zone  

In order to populate lithofacies across the stratigraphic grid of PCS-10, measured 

sections were upscaled and then extrapolated per zone, using one or a combination of three 

following geostatistical methods (Table 3.2). Constant Facies Value (CFV) assigns a 

constant facies for a relatively homogenous zone of sandstone or mudstone. Pixel-based 

Stochastic-Object Modeling (SOM) enables a simulation of localized objects, such as 

turbidite channels (Falivene et al., 2006) and bioherms (Adam et al., 2005). In addition, 

Truncated Gaussian Simulation (Matheron et al., 1987, Ravenne and Beucher, 1988, 

Rudkiewicz et al., 1990) ensures an ordered basinward facies transition in shoreface and 

carbonate ramps/slopes (Galli et al., 1994, Labourdette et al., 2008; Amour et al., 2013).  
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In practice, the author designed a two-step query tree to select and combine these 

three methods, in order to accommodate for four scenarios that may occur for a zone (Table 

3.3). This query essentially questioned a larger- and smaller- scale of heterogeneity within 

a zone, by sequentially examining if the modeling zone exhibits highly-ordered basinward 

facies transition, and if it includes localized objects. Consequently, in cases of relatively 

homogeneous sandstone/mudstone without both features (Scenario 1/ S1), CFV was used 

to assign a constant facies for these HFC’s. In cases of no highly-ordered facies transition 

but containing localized objects (Scenario 2/ S2), SOM was used alone to insert localized 

objects in homogeneous background. In cases of highly-ordered facies transition without 

any additional localized objects (Scenario 3/ S3), TGS with trend ensured this transition. In 

the most complicated scenario (Scenario 4/ S4), a certain modeling zone/hemicycle both 

exhibit strongly-ordered basinward facies transition and certainly contain localized 

mounds/buildups (F6-M/B), the author used TGS with trend to model a primary facies 

fabric of basinward facies transition, and then inserted bioherms within its upper slope 

facies tract (F3-fpMDP, F4-fpW, F5-pW).  In a few extreme cases when bioherm strongly 

affected the overlying facies, two iterations may be necessary to fit local deposition pattern 

strongly influenced by bioherms. Examples will be presented for S2, S3, and S4, after an 

analysis of outcrop photos for along-strike facies variability and dimensionality.  
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Table 3.2: Facies modeling overview, with zonation information, as well as number of measured sections, layering and 

modeling method per zone.  
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Table 3.3: The decision tree to select and combine facies modeling methods, and four 

scenarios. 

3.6.2 PCS-10 along-strike facies variability and dimensionality from outcrop photos 

The author used Scott (2007)’s outcrop photos (Figure 3.9) to interpret cross-well 

along-strike facies variability within stratigraphic surfaces (Figure 3.10, He et al. 2016), 

and to obtain facies dimensionality information for localized objects (Figure 3.11). The 

selected along-strike photos (Figure 3.9a) are from the West and East wall of White Oaks 

Canyon (Figure 3.9b and c) and the East wall of Sitting Bulls Canyon (Figure 3.9d). 

Besides, a dip-oriented photo was chosen near the vicinity of Gilson Canyon (Figure 3.9e), 

as it highlights a special HFC of major reef development (HFC11b) and its affected 

HFC12a.  
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As exhibited in the large outcrop photo at the East Wall of White Oak Canyon 

(Figure 3.9c), the lateral facies variability for strongly-progradational HFC’s above G9 

MFS is much stronger than that of weekly-progradational HFC’s below G9 MFS. This 

observation agrees with Phelps and Kerans (2007)’s 3D idealized facies model showing a 

more linear/straight facies boundaries.  Therefore, the author assumed a moderate to strong 

along-strike facies variability for G9 HFC5~14 and a weak one for the lower HFC’s in 

PCS10. 
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Figure 3.9: Outcrop photos showing along-strike facies variability and dimensionality 

(modified from Scott, 2007). (a) LIDAR image of canyon walls showing 

outcrop photo locations. (b)~(d) along-strike outcrop photos from updip to 

downdip. (e) in the vicinity of Gilson Canyon, showing a major reef 

development in HFC11b, and its affected HFC12a.  
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Figure 3.10: Modeled stratigraphic surfaces and along-strike interpretations, with 

locations shown in Figure 3.9a. (a) Dip-oriented section showing 

Sonnenfeld and Cross (1993)’s cross-section from measured section 14 to 

27. (b) Along-stick cross-sections showing facies interpretation within 

modeled stratigraphic surfaces, along the East walls of (b1) White Oaks 

Canyon, (b2) Sitting Bulls Canyon, and (b3) Gilson Canyon.  

The shelf-margin promontory/reentrant topography for G9 HFC5~14 resulted in 

along-strike differential deposition, thus further leads to sinuous facies boundaries in plane 

view. The shelf-margin reentrants served as preferential pathways for siliciclastic bypass 

(Scott, 2007, Kerans et al., 2013), as shown in the HFC6 (Figure 3.9b, c, Figure 3.10b1), 
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HFC-11a (Figure 3.10b2), HFC12a and 12b (Figure 3.10b3). In comparison, with their 

elevated topography and shallower water depth, the shelf-margin promontories became the 

preferential sites for authigenic carbonate deposition, especially for the reef/bioherm 

deposition, as shown in (Scott, 2007, Kerans et al., 2013), as shown in the HFC6-R (Figure 

3.9a,b, and Figure 3.10b1), HFC10 (Figure 3.9d, Figure 3.10d), as well as HFC11b and 

Figure 3.11a (Figure 3.9e and Figure 3.10b3). Therefore, in the map view, the resultant 

carbonate-siliciclastic facies boundary curves landward at the shelf-margin reentrants, 

while curves basinward at the shelf-margin promontories (Figure 3.3a).  

Outcrop photos, combined with upscaled measured sections, also provided us some 

basic information for section-view geometry of localized objects (Figure 3.11a), including 

the turbidite channels (F7-fpS) encased in bioturbated sandstone (F8-pS), and 

mounds/bioherms (F2-M/B) deposited within upper-slope facies (F3-fpMDP, F4-fpW, F5-

fpW). From the above outcrop photos and an additional along-strike photo from Scott 

(2007, Figure 3.1.14), the author located six bioherms and six turbidite channels, measured 

their observed maximum thickness and width from DOM for improved accuracy and then 

plotted the results in the crossplot shown in Figure 3.11. Given these measurements are 

highly dependent on its azimuth when exposing on the way and its internal position, thus 

can not provide us actual maximum width and thickness per localized object, they do 

provide some typical values to set up a size distribution for these localized objects (Table 

3.4) when combining with thickness measurements from measured sections (Figure 3.11b), 

and referring to similar scenarios. Meanwhile, the author also calculated the seismic 

resolution of their surrounding rocks at a 35Hz peak frequency/27 Hz dominant frequency, 

where that of bioturbated sandstone is 38.6m and of Fusulinid peloid wackestone is 43.6m. 

A comparison with the observed object size (Figure 3.11a) shows that most of these 

localized objects are below vertical seismic resolution, while resolvable in map view. An 
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exception of F6 herein is the major reef development in HFC11b and HFC12a (Figure 

3.9e), whose cumulative thickness reaches 47 meters and thus anticipated to be resolvable 

from seismic. Therefore, during facies modeling, the author modeled all these sub-seismic-

resolution localized objects using SOM, while modeled the major reef development and its 

debris (F13- Allodapic coated pack/grainstone) using TGS with trend.   

 

 

Figure 3.11: Observed width and maximum thickness for localized objects from outcrop 

photos, including the turbidite channels (F7-fpS) and mounds/bioherms (F6-

M/B).  In both case, most localized objects are well below vertical seismic 

resolution of their background facies, whereas above horizontal seismic 

resolution at a dominant frequency of 27 Hz or peak frequency at 35Hz. 

3.6.3 Modeling highly-ordered facies transition using TGS with trend – an example 

of Scenario 3 

Three types of highly-ordered basinward facies transition were classified in this 

study (Table 3.4), on the basis of the order of facies occurrence and their along-strike facies 

variability. The author named the Type I-III in their order of relative geologic time from 

older to younger, where Type I, II, III facies transition, which respectively characterized 
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the carbonate-dominant ramps of G8-HFC2~5, the upper carbonate-lower silty-clastics 

weekly-progradational shelf of G9-HFC1~5, and the upper carbonate-lower sandstone 

strongly-progradational shelf of G9-HFC6~14. In general, the author observed increasing 

siliciclastic contents from Type I to Type III facies transition. Besides, as discussed in the 

outcrop photo analysis, Type III exhibits stronger facies variability than Type I and II, thus 

the author assumed sinuous map-view facies boundaries for Type III, and linear/straight 

ones for Type I and II.  

 

Table 3.4: Three types of facies transition, modeled by TGS with Trend in this study, 

for Scenario 3 or Scenario 4.  

The author present an example from the regressive hemicycle of HFC8 here to 

illustrate the simulation of Type III – highly-ordered facies transition (Figure 3.12). TGS 

with trend (Matheron et al., 1987, Ravenne and Beucher, 1988, Rudkiewicz et al., 1990) 

requires a facies proportion volume to define the likelihood of a facies to occur per cell, 

and a variogram to control the lithofacies continuity along major orientation, minor 

orientation and vertical direction.  

The facies proportion volume, also known as probability volume per facies, defines 

the likelihood for a certain lithofacies to occur per cell. As the input for facies proportion 

Facies 

transition
Applicable targets

Idealized order for basinal facies 

transion

Along-strike 

facies variability

F1->F2->F3->F4->F5->F8 

F6->F13, an exception for HFC11b

Type-II Upper carbonate-lower silty clastics 

weekly-progradational shelf 

e.g. G9 - HFC2~3

F4->F12->F9->F10

Featured in the inclusion of F9-

Glauconite peloid muddy siltstone

Type-I Carbonate-dominant ramps and weekly-

progradational shelf 

(G8 - HFC4~5, G9-HFC1,4,5)

F3->F4->F12->F10

Upper carbonate-lower sandstone 

strongly-progradational shelf 

e.g. G9-HFC6~14

Type-III 
Moderate to 

Strong

Weak (assumed)
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volume per zone, the author used a horizontal trend map instead of vertical proportion 

curve, as lithofacies changes fast along a contemporaneous layer, which makes the 

simulation result highly-dependent on layering accuracy and available measured section 

numbers (ranging from 2~28 with a median of 9, Table I) if using the vertical proportion 

curves.  Alternatively, the author draw a horizontal trend map per zone, as it both ensures 

an definite order of basinward facies transition, and is eligible to control the inclination of 

lithostratigraphic units to mimic Scott (2007)’s conceptual diagram. More specifically, the 

author defined a map view basinward facies transition from outer ramp (F1-pS, F2-pGDP), 

to upper slope (F3-pMDP, F4-fpW), then to lower slope (F8-bS) facies belt, as previously 

illustrated in Scott (2007)’s idealized facies model (Figure 3.3c). Then the author shaped 

the map-view lithofacies boundaries to a sinuous pattern (Figure 3.12b) by referring the 

zone base, namely the HFC8 flooding surface (contoured surface in Figure 3.12a and 

colored surface in Figure 3.12b), as its topography provided information on both an 

approximate updip-downdip extension of each facies belt and the locations of shelf-margin 

promontories and reentrants. In this case, the author identified a dominant promontory 

(blue arrow, Figure 3.12), and reentrant (red arrow, Figure 3.12). As discussed in the last 

section, the development of these shelf-margin topographic features led to sinuous facies 

boundaries in map view, with carbonate-siliciclastic facie boundary curves landward near 

the reentrant, and basinward near the promontory.  Therefore, the author draw the 

basinward facies boundaries accordingly (denoted as b1, b2, b3, b4, b8 with black solid 

lines, Figure 3.12b).  In addition, the landward limits (denoted as l1, l2, l3, l4, l8, black 

dashed lines, Figure 3.12b) are critical to define, as the along-dip distance between the 

landward and basinward limit of a facies/the lateral extension of the facies, controls the 

manner it follows the layering/stratification: a larger distance (blue double-sided arrow, 

Figure 3.12b) contributes to a better conformance of this lithofacies unit to the stratigraphic 
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layering (Figure 3.12c), whereas a smaller distance (red double-sided arrow, Figure 3.12b) 

led to the lithostratigraphic unit to intersect with the layering at a more oblique angle 

(Figure 3.12d).  

Using this trend map along with a Gaussian variogram (Figure 3.12b) to control 

spatial continuity, the author effectively reproduced Scott (2007)’s 3D conceptual facies 

transition diagram (Figure 3.1.7 in Scott, 2007) via TGS with Trend. For the variogram the 

author defined, the author set up the major, minor and vertical range (Figure 3.12b) 

referring to the typical dip-oriented clinoform size, the distance between adjacent shelf-

margin promontories, and the vertical thickness per facies as observed from upscaled facies 

logs. The nugget and sill controls the lower and upper limit of similarity for two points at 

an infinitesimally small distance and large distance, where the author chose 0.05 and 1 for 

this interval. In addition, the variance controls the width of interfingerring facies transition 

zone, where the small variance here contributes to a shorter facies transition zone.  

 

The resultant facies model for HFC8-R is shown using a fence diagram in Figure 

3.12a. As one can compare between the dip-oriented facies fence at the shelf-margin 

promontory (labeled with blue arrow, Figure 3.12a) and at the reentrant (labeled with red 

arrow, Figure 3.12a), the author effectively reproduced elevated carbonate/siliciclastic 

proportion at the shelf-margin promontory than at the reentrant. Besides, the reconstructed 

vertical lithofacies contacts agree with Scott (2007)’s idealized dip-oriented facies models 

crossing shelf-margin promontory and reentrant (Figure 3.1.7 in Scott, 2007): the 

lithostratigraphic units in upper-slope facies tract (F2, F3, F4) is slightly basinward dipping 

at a shelf-margin promontory, while landward dipping at the reentrant.  
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Figure 3.12: An example of modeling highly-ordered facies transition using TGS with 

Trend, as applied to HFC8-R hemicycle. (a) 3-D visualization of HFC8-R, 

with measured sections and result displayed in fence diagram, (b) Trend 

map used for facies modeling, (c) and (d) are resultant facies model near the 

promontory and reentrant, compared with layering/stratifications.  

Reference  surface 
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Surface size  5× 3 km
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3.6.4 Modeling localized objects using SOM – an example of Scenario 2  

Pixel-based Stochastic Object Modeling (SOM) was used to simulate two localized 

objects, including turbidite channels (Falivene et al., 2006) and mounds/buildups (Adam 

et al., 2005) in the mixed clastic-carbonate strongly-progradational HFC6~14 within G9 

HFS. Outcrop photos and measured sections (Figure 3.11) has provided thickness and 

width information for defining section-view geometry, whereas the author referred to 

similar settings to define plane-view layout. Figure 3.13 shows an illustration and typical 

parameters used in modeling turbidite channels within bioturbated sandstone as an example 

of Scenario 2 (Figure 3.13a), and up-rounded bioherms within the upper-slope facies tract 

of highly-ordered basinward facies transition, as an example of Scenario 4 (Figure 3.13b).  

Note that, another example of Scenario 2 is the localized intraclastic mudstone megabreccia 

(F14-imB) within the mudstone (F10-M) G8-HFC4-T (Table I). Without sufficient along-

strike hard constraints in this less interested lower interval, the author simplified inserted 

an elongated intraclastic mudstone megabreccia along the plane of geospatially-corrected 

Sonnenfeld (1991a)’s cross-section.  

Serving as an example of Scenario 2 in facies modeling (Table 3), the author present 

the modeling of turbidite channels in the transgressive hemicycle of HFC8 (HFC8-T), 

where channelized Fusulinid peloid sandstone deposits (F7-fpS) were found in erosional 

contact with bioturbated sandstone (F8-bS, Sonnenfeld and Cross, 1993; Scott, 2007). 

Since its updip point-source remains unknown (Scott, 2007), the author fitted data-driven 

adaptive turbidite channels within a bioturbated sandstone matrix. Using the parameters as 

defined in Figure 3.13a, the author obtained the facies model by assigning the highest 

priority to honor the hard data of measured sections and by conservatively extrapolating 

only assured turbidite channels that intersecting with measured sections. The adaptive 

channels fitted in the resultant model (Figure 3.14b) suggest a preferential updip-source 
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from shelf-margin promontories, and thus well agrees with Scott (2007)’s interpretation 

and Kerans et al. (2013)’s 3D depositional model of G9 HFS (Figure 3.3a). Section-view 

facies model along reentrant and promontories (Figure 3.14c) exhibits these simulated 

turbidite channels well following the layering/stratifications as localized discontinuities in 

bioturbated sandstone.  

 

 

Figure 3.13: Examples of parameters used for simulating localized object of (a) turbidite 

channels, and (b) mound/buildups. In both case, the author assigned the 

highest demand to honor hard data of measured sections, and conservatively 

only generate object that intersect wells.   

(a) Localized object 1: turbidite channels in T-hemicycle

(b) Localized object 2: mounds/buildups in R-hemicycle

Objective: fitting adaptive channels, on a prior knowledge of 
• F7 (fpS) scoured into F8 (bS) (Sonnenfeld and Cross, 1993)
• Point-sourced channels, with unknown exact updip source (Scott, 2007)

Objective: modeling upper-rounded mounds/bioherms, on a prior knowledge of 
• F6 (M/B) overlies FS of a HFC, and possibly in contact with F3 (fMDP), F4 (fpW), F5 (fW) (Sonnenfeld and Cross, 1993)
• Along-strike, mounds preferentially deposits near the shelf-margin promontories than reentrant (Scott, 2007)

Other inputs and rules:
• Horizontal trend map to assign higher probability of occurrence near 

shelf-margin promontory
• F6 can only be inserted within/replace F4, F5, and F6 

An example of parameters (HFC8-T)

An example of parameters (HFC10)

Distribution Min Mean Max

Orientation Triangle 60 105 150

Sinuosity Triangle 0.3 0.5 0.6

Amplitude (m) Triangle 600 800 1000

Wavelength (m) Triangle 1000 1500 2000

Width (m) Triangle 60 80 100

Thickness (m) Triangle 2 7 12

Orientation Triangle 90 105 120

Minor width (m) Triangle 60 100 140

Maj/Min ratio Triangle 0.8 1 1.2

Thickness (m) Triangle 5 10 15
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Figure 3.14: An example of modeling adaptive turbidite channel using SOM, as applied 

to HFC8 transgressive hemicycle. (a) 3-D visualization of measured sections 

in HFC8-T, (b) 3-D visualization of modeling results, where the background 

F8-bS is tuned as transparent.  

3.6.5 Modeling both large- and small-scale heterogeneity – an example of Scenario 4  

The last example in PCS-10 shown in this study is the most complicated example 

of Scenario 4 in facies modeling (Table 3). Scenario 4 was regarded as the most 

complicated scenario in facies modeling of this study, as it exhibits large-scale 

heterogeneity of highly-ordered facies transition, as well as localized objects of both 

(a) HFC8-T measured sections (b) HFC8-T modeling result (only F7 visible)

Upper 
slope

Lower
slope

(c) HFC8-T modeling result in fence diagram (for comparison at reentrant and promontory)

Zone base/HFC8 bottom 
Size: 5×3 km
V.E.=10
contoured every 10m
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turbidite channels and bioherms. In addition, the HFC10 is a complex S4 example. For a 

typical HFC with both transgressive and regressive hemicycle, such as the discussed HFC8, 

its zonations have implicitly imposed preferred locations for localized object, where 

turbidite channels were simulated in the transgressive hemicycles to ensure their lower-

slope locations (Figure 3.14), while bioherms were inserted within the upper-slope facies 

in regressive hemicycles. However, this implicit preferred location for localized object 

does not directly apply to HFC10, as it has no flooding surface mapped and thus no 

zonation of transgressive and regressive hemicycle.  

Therefore, alternatively, the author simulated the gradual basinward facies 

transition between 11 measured sections (Figure 3.15a) as a primary facies fabric using 

TGS with trend, using a similar approach as applied in the previous S3 example. The 

resultant shows a thicker and more carbonate-dominant deposition toward the North 

(Figure 3.15b), with deposition affected by more densely-spaced promontories than the S3 

example.  Subsequently, the author modeled the secondary fabric of bioherms using 

parameters in Figure 3.13b. Note the preferred locations of bioherms herein is enforced by 

a facies replacement rule, where the author regulated the bioherms to be inserted only 

within the upper-slope facies belt (F4-fpMDP, F5-fpW), or uppermost bioturbated 

sandstone (F8-bS), as observed from outcrop photos of HFC6-R (Figure 3.9b) and HFC10 

(Figure 3.9d), also as that Scott (2007) reported the gradational contacts between bioherms 

and F4 or F5, and then interpreted these bioherm communities to be tolerable of limited 

carbonate debris until eventually being smothered by progradational upper slope deposits.  

Similar to the previous S2 example, the author only conservative interpolated bioherms 

intersecting with the measured sections. The resultant facies model (Figure 3.15c) shows 

bioherms to follow chronostratigraphic layering as localized discontinuity, where HFC10 
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was layered by paralleling its middle surface. In the map view, this resultant bioherm is 

approximately 80×80 in a selected contemporaneous k layer (Figure 3.15d).  

 

 

Figure 3.15: An example of Scenario 4 as applied for HFC10. (a) input measured 

sections for HFC10, where a bioherm was interpreted in measure section 

#V. (b) primary fabric modeled for HFC10, using TGS with trend. (c) a dip-

view showing simulated bioherm in upper slope location, where previous 

layering follows a reference surface, (d) a map-view k-layer in HFC10 

showing modeled bioherm within bioturbated sandstone near #V.   

(a) HFC10 measured section (b)  HFC10-primary facies fabric of large-scale 
heterogeneity in fence diagram

(c)  A dip view showing secondary bioherm
fabric in dip view

(d)  A k-layer in HFC 10 showing secondary 
bioherm fabric in plane view

#V

Layering following the reference surface, 
namely the mid surface for a HFC without 
digitized flooding surface
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3.6.6 Modeling complex facies distribution using PGS – an subsurface example 

Since the facies distribution of subsurface-constrained PCS-11 is more complex 

than the highly-ordered facies transition in PCS-10, a pixel-based Pluri-Gaussian 

Simulation algorithm (PGS, Le Loc’h et al., 1994), as an extension of TGS, was used to 

handle the complex facies transition in Grayburg-Lower Queen platform (G10~G13HFS). 

As an extension of TGS (Amstrong et al., 2003), PGS allows a definition of a lithotype 

rule containing 2 different lithotype rule set with two variograms to model complex 

stratigraphy. Back in 2012, Yarus et al. successfully applied this method in modeling an 

alternating dolomite and siltstone distribution in Grayburg platform in a west Texas Field, 

which is located slightly south of the area of interest in this study along the same reservoir 

trend, and proved the benefits of using two different lithotype rule set and variogram in 

modeling complex stratigraphy in a similar setting.  

An example presented here are from Kerans and Sitgreaves (2015). Lithotype 

proportion matrix/LPM (Figure 3.16a) along with two lithotype sets and their variograms 

(Figure 3.16b) are two significant inputs to model complex stratigraphy using PGS (Figure 

3.16c). For each cell or grouped cell in LPM (Figure 3.16a), it contains the probability per 

lithofacies (Beucher et al., 2006; Amstrong et al., 2011; Hamon et al., 2011; Yarus et al., 

2012), and was obtained by extrapolating from lithofacies proportion curves at core 

locations (Figure 3.16a1) to a coarse grid (Figure 3.16a2), using Linear Model Kriging in 

DecisionSpace, which is a special kriging which does not requires the user to compute and 

model a variogram. Instead, an map-view isotropic model was assumed as an input.  

Afterward, for the lithotype rule (Figure 3.16b) used in this zone, it contains two lithotype 

sets (Figure 3.16b1, b2) with distinct variogram. These user-defined rule sets were based 

on observed contact relationship from cores and 3D conceptual geologic model, and was 

user-defined to regulate facies spatial relationships of Grayburg Formation, whereas the 
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cubic variograms controls facies continuity per lithotype rule set, where F15 and F19 in 

lithotype set 1 (Figure 3.16c1) were assumed to be less continuous than the rest lithofacies 

in lithotype set 2 (Figure 3.16c2). As shown in a resultant example (Figure 3.16c) of a 

chronostratigraphic layer within interval 7 (Figure 3.8), one can observe a facies transition 

from fenestral laminites (F22) and a tepee-pisolite complex (F23) in the inner platform, to 

ooid grainstones (F16) of the shallow shoreline setting and ooid peloid packstone (F17) 

and peloid packstone (F18) in the outer platform. 
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Figure 3.16: An example of modeling complex stratigraphy in Grayburg-Lower Queen 

Formation, as applied to zone 7 (Figure 3.8). (a) Lithotype proportion matrix 

LPM and (b) Lithotype rule are two major inputs to generate (c) facies 

modeling results, as displayed in a chronostratigraphic k layer. (a) was 

generated by extrapolating from vertical proportion curves (a1) to a dense 

grid (a2) using Linear Model Kriging. (b1) and (b2) are two lithotype sets 

combing into the lithotype rule (b).  

(a1) Lithotype curve per core
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(a) LPM by Linear Model Kriging
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(b1) Lithotype set 1

(b2) Lithotype set 2
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(c) Facies modeling result on a k-layer
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3.7. PROPERTY AND SEISMIC MODELING (STEP 5~6) 

3.7.1 Data sources for acoustic properties (outcrop and subsurface) 

The availability of P-wave velocity (VP) and bulk density (ρ) data from both LCC 

outcrop and CBP subsurface dataset (Figure 3.17) allows one to apply seismic modeling 

using the acoustic wave equation. Kenter et al. (1997, 2001) collected 1-inch core plugs 

from the LCC outcrops to measure bulk density, porosity, mineral composition, as well as 

P- and S-wave velocity at a confining and pore pressure of 40-10MPa. These confining and 

pore pressure conditions correspond to burial depths of 750–2500m and are analogous to 

those of typical producing fields in the Permian Basin (Kenter et al., 2001). In terms of 

spatial distribution, these plugs were collected within Sonnenfeld and Cross (1993)’s 

HFC6, being sampled with the strategy of capturing the petrophysical variability associated 

with the faceis within a single HFC (Figure 3.17a). For other facies (Facies 9-14) in G9 

and G8 HFS’s, the author use the mean velocity-density pair per facies in Stafleu and 

Sonnenfeld (1994). As for the CBP subsurface dataset, the author used six type well (Figure 

3.17b) with sonic, bulk density logs, and described cores for acoustic property analysis.  
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Figure 3.17: Data source for acoustic property. (a) outcrop plugs in Sonnenfeld and Cross 

(1993)’s HFC6, laboratory measurements from Kenter et al. (1997, 2001). 

(b) A type well from CBP dataset with sonic and density logs.  

3.7.2 Relationship between acoustic velocity and impedance 

Instead of jointly considering the two variables of P-wave velocity and bulk density 

per location, the author focused on modeling velocity as a single variable, and then 

estimated bulk density (ρ′) using Gardner’s equation (Gardner et al., 1974). The resultant 

further estimated P-wave impedance (IP′) is highly correlated with actual measured 

impedance (IP) from both outcrop (Figure 3.18a) and subsurface (Figure 3.18b).  
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Figure 3.18: P-wave velocity and impedance relationship of (a) PCS-10 and (b) PCS-11. 

The colored dots shows samples from outcrop plugs for PCS-10, and a type 

well for PCS-11, whereas the blue line shows predicted P-wave impedance 

(Ip) from P-wave velocity (Vp), where density is estimated from velocity 

using Gardner’s equation (1974). The author focused on velocity modeling, 

since Ip is highly predictable from Vp for both outcrop and subsurface 

datasets. 

3.7.3 Acoustic velocity analytic results and adjustments 

Following Janson and Fomel (2010) workflow,  facies-based velocity modeling as 

the definition of lithofacies itself has already incorporated some key factors influencing the 

sonic velocity of mixed carbonate-siliciclastic systems, including porosity and primary 

pore type, quartz content and dolomite content (Anselmetti and Eberli, 1993). For a less 

controversial discussion on seismic stratigraphy, the author assigned an average velocity-

density pair per facies as the most common inputs for seismic modeling, which assumes 

little intra-facies heterogeneity (Meckel and Nath, 1977; Neidell and Poggiagliolmi, 1977; 

Schramm et al., 1977; Biddle et al., 1992; Tipper, 1993). In comparison, in an accompany study 

(He et al., 2016), the author incorporated the analytic intra-facies heterogeneity for a 

discussion on its effect on the interpretation of key chronostratigraphic surfaces. This 

consideration of intra-facies heterogeneity could be necessary, considering that the large 

size of a sandstone (F8-bS) in transgressive hemicycle, which could reach up to 2200 m 
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Predicted   
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Samples

Predicted   

(a) Vp-Ip cross plot (PCS-10) (b) Vp-Ip cross plot (PCS-11)
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laterally and 120 m vertically. Both of its lateral and vertical dimensions are beyond 

seismic resolution at 35 peak frequency, when the acoustic wave propagates through strata 

with an average velocity around 5000m/s.  
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Table 3.5: Raw analytic results of P-wave velocity before adjusting systematic differences, which was originated from 

different acoustic property data sources.   
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Initial petrophysical analysis (Table 3.5) shows systematic discrepancies between 

the outcrop-based lower model and the subsurface-based upper model (Figure 3.19). 

Normalized velocity distributions from outcrops plugs (Figure 3.19b) of uSA Formation 

measured at 30MPa effective pressure are not only systematically much slower than that 

from sonic logs of Grayburg and Lower Queen, but also  exhibit a wider distribution and a 

more dramatic contrast between siliciclastics and carbonates  (Figure 3.19a). Beyond the 

difference in input frequency for laboratory ultrasonic (300~800kHz, Kenter et al., 2001) 

versus subsurface sonic (3~7kHz, Haldorsen, 2006) measurements, these differences were 

likely caused by multiple other factors. Petrographic analysis shows extensive anhydrite 

cements for Grayburg subsurface samples, compared with those of uSA outcrop samples 

that are devoid of anhydrite cements (Kenter et al., 1997). Anhydrite cements occluded 

some interparticle porosity in the subsurface (Murray, 1960), contributing to a more rigid 

rock matrix (Brie, 1985; Anselmetti and Eberli, 1993). In addition, the pore fluid contents 

(Batzle and Wang, 1992) and effective pressure (Anselmetti and Eberli, 1993) may cause 

an even more minor difference, as laboratory measurements for the 100%-water-saturated 

outcrop plugs were taken at an effective pressure at 30 MPa, whereas the Grayburg sonic 

logs actually penetrated 50%-brine-and-50%-oil-saturated reservoirs. 

If this raw separate analysis for the subsurface-constrained Grayburg-Lower Queen 

model (Figure 3.19a) and outcrop-constrained uSA model (Figure 3.19b) were directly 

used, the resultant seismic reflections near the San Andres-Grayburg sequence boundary 

would be unrealistically stronger and more continuous than the subsurface seismic (Figure 

3.1c). Therefore, the author adjusted the outcrop-constrained velocity distribution (Figure 

3.19c) to match a common facies in subsurface data: the outcrop-derived Gaussian 

distribution of F8 was elevated and then compressed to match the distribution of 

subsurface-constrained F15.  
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Figure 3.19: P-wave velocity distribution of (a) subsurface-constrained Grayburg 

Formation, and outcrop-constrained Upper San Andres Formation, before 

(b) and after (c) adjustments. The author elevated the mean and compressed 

the spread per lithofacies for outcrop-constrained uSA Formation (compare 

b and c) in order to image a realistic uSA-Grayburg sequence boundary. 

3.7.4 Seismic modeling parameters  

As the direct input for the exploding-reflector imaging/migration package of 

Madagascar (Janson and Fomel, 2011; Fomel et al., 2013), the velocity and density model 

was resampled to a regular spacing of 20 meters, in order to mimic receiver geometry in 

CBP subsurface seismic (65ft/19.8m). Besides, since the frequency spectrum at the 
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reservoir level shows a peak frequency at 35Hz, and a bandwidth of 0~80 Hz. The author 

simulated 0o-phase seismic model at a peak frequency of 35 Hz, or dominant frequency of 

27Hz as an analog for CBP seismic.  

3.8. RESULTS AND DISCUSSIONS ON CHRONOSTRATIGRAPHIC 

SIGNIFICANCE FOR A RESERVOIR TOP AND BASE 

3D lithostratigraphic model (Figure 3.20a), acoustic impedance model (Figure 

3.20b), and 35-Hz normal-frequency seismic model (Figure 3.20c) were ready for further 

evaluation on the conformance or discrepancy of HFS and higher-order seismic 

stratigraphy as compared with the high-resolution modeled stratigraphy. The author started 

with a 2D and then 3D example to illustrate the evaluation of the difference between a 

seismic horizon interpreted by conventional seismic stratigraphic interpretation approach 

(Mitchum et al., 1977a) against the actual modeled stratigraphic surface. The author 

evaluated two important seismic horizons, including the base and top of G9 which covers 

from the platform to the toe-of-slope, as well as the segmented uSA shelf and Grayburg 

platform reservoirs in subsurface fields. Finally, the author analyzed the cause of apparent 

discrepancy in the most error-prone area, and then propose potential alternative practical 

solutions.   
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Figure 3.20: Three-dimensional modeling results. (a) outcrop-constrained and subsurface 

constrained facies model. (a) Lithostratigraphic model, (b) Facies-averaged 

impedance model, and (c) 0o-phase 35Hz seismic model.     

3.8.1 2D and 3D evaluation methods and examples 

In previous published 2D comparison of seismic stratigraphy against actual 

stratigraphy (Stafleu and Sonnenfeld, 1994), important actual chronostratigraphic surfaces 

were projected on seismic models, so that one can visually compare how an interested 

seismic reflector would agree/deviate from the reality. The author started with a similar 

logic for the evaluation of an interested seismic horizon (Figure 3.21). For instance, an 

uninterpreted IL116 is shown in Figure 3.21a. Assuming seismic reflections follows 

stratigraphic surfaces and unconformities (Vail et al., 1977c), the author interpreted the top 
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and base of G9 HFS based on reflection termination relationship (red arrows in Figure 

3.21b). More specifically, G9 HFS base was interpreted as a seismic peak (green line, 

Figure 3.21b) underneath marine onlaps, where the author had the most confidence when 

tracking at the base of a thick Lower Cherry Canyon Sandstone Tongue (A-B, Figure 

3.21d), and then started to lose confidence when approaching the shelf margin (B-C), with 

even less certainty near the outer ramp (C-D) when two seismic troughs converged (Figure 

3.21b). Compared with the interpretation of G9 base, the interpretation of G9 top as a 

seismic peak (yellow line, Figuer 22b) had less ambiguity when tracking the seismic peak 

above toplap of a few lower HFC clinoforms. Then the author projected the interpreted G9 

top and base horizons on modeled stratigraphy (Figure 3.21c), upon which visual 

comparison can be easily made.  

If the author further plot interpretations and modeled stratigraphic surface of the 

G9 base and top as a function of distance (Figure 3.22a and c), their difference could be 

easily calculated per location  (Figure 3.22b and d). When interpretation is shallower than 

the modeled surface (such as Point C, Figure 3.22a), their positive difference (Point C, 

Figure 23, colorcoded with red) represents an over-estimation of relative geologic time at 

this location if using the interpreted horizon as an approximation of a geologic timeline. In 

contrast, when interpretation is below the modeled surface (such as Point A, Figure 3.21a), 

their negative difference (Point A, Figure 3.21b, colorcoded with blue) represents an under-

estimation of relative geologic time at this location if using the interpreted horizon as an 

approximation of a geologic timeline. When interpretations almost coincide with the 

modeled surface (white arrow in Figure 3.17a), their difference is approaching zero (white 

arrow in Figure 3.22b, colorcoded with white). Using this evaluation approach, the 2D 

example of G9 bottom horizon follows the geologic timeline well at the platform and along 

the slope, however it becomes convex-up near the shelf margin, and slightly convex-down 
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near toward the basin. In comparison, the example of G9 HFS top horizon (Figure 3.22c 

and d) suggested a systematically shallower (10~70m) interpretation than modeled surface.  

 

 

Figure 3.21: G9 top and bottom horizon interpretation following conventional seismic 

stratigraphic interpretation approach. (a) and (b) show IL116 of 90o 

synthetic seismic (fd=27Hz) before and after interpretation. (c) highlights a 

comparison between seismic horizon of G9 top and base against modeled 

G7~G13 top. (d) interpreted horizon overlying on lithostratigraphic model. 
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Figure 3.22: 2D example showing the colorcode of the difference between interpretation 

and modeled chronostratigraphic surface, where the red represents scenarios 

when interpretation is shallower than modeled surface, thus an over-

estimation of relative geologic time if using the seismic horizon as geologic 

timeline. In contrast, the blue indicates an under-estimation of relative 

geologic time, and the white represents a well match. 

Extending the above 2D interpretation to 3D, the author sparsely picked and then 

autotracked the seismic peak at G9 HFS bottom (Figure 3.23a). Comparing this seismic 

horizon (Figure 3.23a) with the actual modeled G9 HFS bottom (Figure 3.23b), its more 

densely-spaced contours near the shelf margin of the seismic horizon suggests a steeper 

interpretation than the modeled stratigraphy. Subsequently, the author computed the 

difference between seismic horizon (Figure 3.23a) and modeled surface (Figure 3.23b), 

and then colored using RWB color scheme as in the previous 2D example. The difference 

map (Figure 3.23c) suggested the most predominant error occurs near the shelf margin, and 

becomes more severe near the shelf margin promontories, which is also shown in XL198 

(Figure 3.24). 
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Figure 3.23: 3D example showing evaluation method of chronostratigraphic significance 

of interested horizons, such as G9 HFS bottom. (a) Interpretation without 

smoothing, by tracking seismic peak underneath coastal onlaps. (b) Modeled 

stratigraphic surface of G9 HFS bottom. (c) Difference map between 

interpretation and model (a) and (b). Map size is 4940 by 2880 meters, 

contoured every 10 meters.   
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Figure 3.24: XL198. (a) seismic section showing seismic horizon versus modeled G9 

HFS bottom. (b) Modeled G9 MFS and bottom. Interpreted and modeled G9 

MFS bottom overlying on facies (c) and impedance model. 

3.8.2 Discussion and recommendations 

As shown in the above 2D and 3D example (Figure 3.21~24), G9 HFS top and 

bottom were interpreted using a conventional seismic stratigraphic interpretation 

workflow, by assuming the seismic reflections follow stratigraphic 

surfaces/unconformities, thus G9 HFS top and bottom were interpreted by following events 

and termination relationships. The discrepancy between the interpreted horizon and its 

corresponding stratigraphic surface suggests further actions to should be made to improve 

seismic stratigraphic interpretation at HFS scale.  
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3.8.2.1 Interpreted G9 HFS bottom and interpretation strategy 

In general, at the lower slope, the seismic peak representing G9 HFS bottom agrees 

well with the modeled chronostratigraphic surfaces, with minor discrepancies less than +-

25 meters (shown as blue, white and pink in Figure 3.23c). The maximum negative 

discrepancy occurs near Point A (Figure 3.26c), where the higher-impedance turbidite 

channel (pointed by the green arrow in Figure 3.26d) above the mudstone near G9 

maximum flooding surface generates localized seismic amplitude anomalies, which 

slightly interfere with the seismic peak at the bottom of Cherry Canyon sandstone, and then 

caused the local interpretation to be deeper than the modeled G9 HFS bottom (compare 

Figure 3.23 a and b). Most importantly, significant discrepancies occur near the shelf 

margin, where the positive discrepancy could reach up to 80 meters (shown as red to dark 

red in Figure 3.23c). The more closely spaced contours in the G9 bottom horizon (Figure 

3.23a), as compared with the G9 bottom surface (Figure 3.23b) indicate an over-steepened 

interpretation between Point B and C in IL116 (Figure 3.26c). Along the strike orientation, 

the positive discrepancy seems to further increase near the shelf margin promontories, 

compared with the shelf margin reentrants (Figure 3.23c). As shown in a crossline 

transecting the shelf margin (Figure 3.24), the interpreted G9 top as a seismic peak seems 

better follow the modeled G9 MFS instead of G9 top, while imaged much lower than the 

reality (approximately more than 3/4 wavelength).  

Considering the large discrepancy between the seismic horizon and modeled 

surface at G9 HFS bottom, the author are more concerned about the areal discrepancies 

along the shelf-margin trend, compared with the localized discrepancy resulting from the 

interference of turbidite channels. Furthermore, the author suggest an alternative practical 

interpretation approach (Figure 3.25), starting with a partial grid (Figure 3.25a), where 

interpretation is stopped wherever the interpreter loses confidence in correlating further 
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(Figure 3.25a). Next the author suggest use of automated 3D tracking within defined patch 

polygons (Figure 3.25b). Finally, convergent interpolation or other interpolation can be 

applied to fill in the holes (Figure 3.25c). This practical approach improves the overall 

discrepancy between the seismic horizon and the actual G9 HFS bottom (Figure 3.25d). 

However, the interpolation across shelf-margin trend results in a smoothed shelf margin 

(Figure 3.25e and f), losing the ability to present all shelf-margin reentrant and 

promontories. Thus an interpolation with well tops near the shelf margin could further 

improve the interpretation.  
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Figure 3.25: an alternative practical interpretation approach combining (a) partial 

interpretation, (b) autotracking with defined polygon and (c) interpolation. 

The resultant difference map (d) shows an improved overall interpretation 

quality, as compared with Figure 3.23(d). (e) and (f) shows comparison on 

IL116 and XL198.   

3.8.2.2 Interpreted G9 HFS top and alternative interpretation strategy  

Tracking the seismic trough to interpret the G9 HFS results in an interpretation one 

HFS higher than it should be. In the selected cross-section view on IL116 (yellow solid 

line, Figure 3.26c), the interpreted G9 topseismic trough) is 10~65m shallower than the 

(a) Partial interpretation grid (b) Partial dense automated interpretation

(c) Interpolated horizon (d) Difference map

(e) IL116 (f) XL198

Horizon by event picking

Modeled surface

Horizon by picking + interpolation
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modeled G9 top (Figure 3.22d), and more closely resembles the actual modeled 

stratigraphy of G10 HFS top (Figure 3.26c).  It seems more likely that the underlying 

adjacent seismic peak better reflects the location of G9 HFS top. Since this seismic peak is 

far less continuous and more difficult to follow, the author took an alternative approach in 

practical chronostratigraphic interpretation (Figure 3.26), where an overall depth shift of 

45 meters was applied to the interpreted seismic trough (Figure 3.26a). The resulting 

discrepancy (Figure 3.26c) between interpreted (Figure 3.26a) and modeled (Figure 3.26b) 

G9 top is now reduced within +-32meter, which isless than the +-1/4 wavelength of a 

normal-frequency (fp=35Hz) seismic data. By using this shifted horizon as the base of the 

Grayburg reservoir model, it a more realistic thickness of the pay zones may be achieved, 

compared with using the original seismic trough.  
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Figure 3.26: an alternative practical approach to interpreted G9 HFS top. The G9 HFS 

interpreted as a seismic trough is systematically one event higher than the 

modeled stratigraphic surface (as shown in Figure 3.14c, 16c and d). If 

interpreting the underneath seismic peak as G9 HFS, its discontinuity would 

result in great difficulties in interpretation. Alternatively, the author shifted 

the previously interpreted seismic peak for 45 meters (a), and the difference 

(c) between the current interpretation (a) and modeled surface (b) is within 

¼ wavelength (b). Selected IL116 (d) and (e) XL198 are shown for 

comparison. 

3.9 CONCLUSIONS AND FUTURE WORK  

The author presented an innovative 3-D lithostratigraphic modeling workflow to 

reconstruct the hierarchically-embedded high-resolution mixed clastic-carbonate strata of 

the San Andres-Grayburg-Lower Queen formations that serve as high-resolution analogs 

for the Grayburg Platform Mixed Clastic/Carbonate Play (Dutton et al., Play 127).  This 

workflow started with reconstruction of hierarchically-embedded stratal surfaces, followed 

by facies interpolation using a mixture of geostatistical modeling approaches to reconstruct 

Original 
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Difference (m)

- +0

(a) Shifted G9 top horizon (b) Modeled G9 top surface (c) Difference map (a) – (b)
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large-scale natural facies transitions, and localized objects. Consequently, the resultant 

model in this study effectively characterized complex uSA clinoformal stratigraphy, and 

contained horizontally-extensive and vertically thin fluid barriers, which have imposed key 

challenges in utilizing seismic inputs in static reservoir modeling. Velocity analysis per 

facies revealed a systematic error between laboratory measurements of uSA outcrop plugs 

and Grayburg core plugs, and thus adjustments were made according to seismic reflection 

magnitude at the San Andres-Grayburg unconformity. With the facies-averaged velocity 

and density model as an input, the author simulated waveform-based acoustic seismic 

response at 35 Hz. Finally, the author evaluated the discrepancy of seismically-interpreted 

horizons versus modeled stratigraphic surfaces of G9 HFS top and bottom, and then 

discussed a potential practical interpretation approach to mitigate these discrepancies for 

more accurate HFS-scale seismic stratigraphic interpretation.  

Only a seismic model generated from facies-averaged P-wave impedance model 

was presented and discussed in this study, and it was assumed that intra-facies 

heterogeneity is negligible in terms of HFS-scale seismic stratigraphic interpretation. In an 

accompany study in the next chapter, more variables with be considered that potentially 

influence the HFS-scale seismic stratigraphic interpretation for shelf reservoirs, as 

predefined in Chapter 1.  
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Chapter 4: Improving 3D seismic stratigraphic correlation for reservoir 

model construction: evaluation and discussions3 

Upon the constructed high-resolution 3D lithostratigraphic model of Upper San 

Andres shelf margin-Grayburg and Lower Queen platforms in the last chapter, herein the 

author used this skeleton to discuss the predefined factors in Chapter 1 that potentially 

influence the chronostratigraphic significance of seismic reflections at the high-frequency 

sequence and cycle (HFS and HFC) scale. The author started with constructing an 

analogous model of pure carbonate successions of Early Permian Abo shelf margin and its 

overlying Clear Fork platform, via lithofacies substitution and stratigraphic adjustment. 

The resultant model allows a comparative study between mixed carbonate-siliciclastic 

successions (Case 1) and pure carbonate successions (Case 2) with the same stratal 

geometry. Subsequently, the author modeled a variety of intra-facies heterogeneity per case 

represented as five scenarios of spatial velocity variations (𝑆1, 𝑆2, 𝑆3, 𝑆4  and 𝑆5), which 

further accommodates for the possible subsurface situations. Upon these ten models, the 

author simulated 90o-phase seismic data at a dominant frequency of 13.5Hz, 27 Hz, and 54 

Hz. These seismic data served as the low-, normal-, and high-frequency representation of 

subsurface seismic in Central Basin Platform (CBP), referring to the extracted frequency 

spectrum at the reservoir interval from a producing field along the eastern flank of CBP.  

The evaluation of the chronostratigraphic significance of seismic reflections was 

applied at both HFS and HFC scale, compared with the typical application scale up to a 

scale using the depositional sequence as the basic interpretive unit (Mitchum et al., 1977b). 

Using a similar approach as showcased in the evaluation workflow in Chapter 3, the author 

compares the interpreted seismic horizon following the 'chronostratigraphic significance 

                                                 
3This chapter is edited from an unpublished manuscript of the author, containing partially published figures 

from He et al. (2017a) presented in AAPG ACE 2017 and He et al. (2017b, in review) for SEG 2017.   
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of seismic reflections' against the modeled chronostratigraphic surface, and then termed 

their discrepancies as time-correlation error/TCE. TCE serves as a proxy for the validity of 

'chronostratigraphic significance of seismic reflections', where a larger value at a given 

location represents a severe violation of this fundamental assumption for seismic 

stratigraphy. The author firstly applied evaluations on two types of HFS surfaces, by 

comparing their respective interpretation from 30 seismic models against the modeled 

stratigraphy. The evaluated surfaces include a clinoformal G9 HFS bottom as it spans from 

the platform to the toe-of-slope and a flat-lying G12 HFS top as it is atop of Grayburg 

platform reservoirs. Furthermore, the author also extended the evaluation to HFC scale 

using an alternative approach, by manually picking horizon patches for landward-dipping 

diachronous seismic reflections and then cross-comparing for their areal pattern and 

structural dip within the mixed (Case 1) versus carbonate (Case 2) successions.   

4.1 INTRODUCTION 

In this study, the author tested the validity of 'chronostratigraphic significance of 

seismic reflections' when interpreting HFS and higher-order seismic stratigraphy. The 

author adopted the same forward modeling and then evaluation workflow as in Chapter 3, 

while extended its model design for a comprehensive consideration of possible subsurface 

scenarios. During geologic modeling, besides the original Middle Permian mixed 

carbonate/clastic shelf margin-platform lithostratigraphic model from Chapter 3 (shortened 

as 'Case 1’ in this study), the author built an analogous model of Early Permian carbonate 

shelf margin-platform model via lithofacies substitution and stratigraphic adjustment. The 

comparisons of published and the author’s recent works on Case 1 against subsurface 

interpretations from Kingdom Field on Case 2 provided important references during 

geologic modeling of Case 2. Subsequently, this pair of 3D high-resolution 
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lithostratigraphic models benefited the discussion of the chronostratigraphic significance 

of seismic reflections in three aspects. It allows a comparison between flat versus 

clinoformal stratigraphy, the fast versus gentle lateral lithofacies variation, and the mixed- 

versus pure-lithology (Variable 1, 2, and 3 predefined in Chapter 1). Furthermore, upon 

these two cases, the author tested the influence of intra-facies heterogeneity reflected as 

spatial velocity and then density variations, as well as the effect of seismic frequency 

(Variable 4 and 5 predefined in Chapter 1). Finally, upon the evaluations of 30 resultant 

seismic models, the author made recommendations on potential interpretation strategies to 

improve seismic chronostratigraphic correlation at the reservoir scale and then listed their 

applicable conditions.   

4.2 MODELING AREAS AND DATASETS 

4.2.1 Modeling areas 

The author targeted at two types of shallow-water reservoirs in Permian Basin for 

a comparative study (Figure 4.1a), including the Grayburg Platform Mixed 

Clastic/Carbonate Play (Play 127) and the Abo Platform Carbonate Play (Play 116) in 

Dutton et al. (2004)’s Permian Basin Play Portfolio. Play 127 (Figure 4.1, shaded in 

yellow) is located in the Eastern Margin of Central Basin Platform. Despite its name of 

‘Grayburg’ mixed carbonate-siliciclastic reservoirs, Play 127 has been producing from 

both porous carbonates and siliciclastics in Grayburg Formation, as well as porous 

carbonates in San Andres Formation ((Entzminger et al., 2000; Petersen and Jacobs, 2003; 

Ruppel, 2001). The reciprocal deposition of the Permian Basin (Silver and Todd, 1969) 

deposited these thick mixed carbonate-siliciclastic successions. In comparison, Play 116 

(Figure 4.1, shaded in blue) has reservoirs developed along the southern margin of the 

Northwest Shelf and the West margin of the Central Basin Platform (Dutton et al., 2004). 
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This play type has in total contributed a production of 541.5 MMbbl till 2000, from the 

shelf and shelf-margin porous carbonates (Kerans, 2000; Kerans et al., 2000). 

  

 

Figure 4.1: Study interval and areas, highlighted on (a) a Leonardian-Guadalupian 

stratigraphic column and (b) Middle Permian paleogeography map (Kerans 

et al., 2013). Constructed in Chapter 3, Case 1 used an outcrop dataset from 

Last Chance Canyon (blue box), and a subsurface dataset from Central 

Basin Platform (blue arrow). Case 2 in this study referred to Kingdom Field 

interpretations (red box) and facies model observed in Apache Canyon (red 

arrow) for a comparison with Case 1. The author consistently used red for 

Case 1 and blue for Case 2 for all applicable figures.   

4.2.2 Datasets for Case 1 and Case 2 

The previously constructed 5×3×0.44-km 3D lithostratigraphic model in Chapter 3 

covers a stratigraphic interval of Upper San Andres shelf margin – Grayburg and Lower 
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Queen platform. An updated outcrop dataset constrained the lower portion of Upper San 

Andres Formation (G8~G9 HFS's). This dataset from Last Chance Canyon (LCC, blue 

arrow, Figure 4.1), Guadalupe Mountains, New Mexico, contains 42 measured sections, a 

merged LIDAR image of canyon walls where Scott (2007) mapped stratigraphic surfaces 

from G9 MFS to the G9 top, and digitized stratigraphic surfaces from Sonnenfeld and Cross 

(1993)’s 2D section for the lower stratigraphic surfaces. Moreover, Kenter et al. (2001)’s 

laboratory measurements of outcrop plugs (Figure 4.2b) in Sonnenfeld and Cross (1993)’s 

HFC6 in G9 HFS at 30MPa effective stress provides the basis for facies-based analysis of 

acoustic properties. In comparison, a subsurface dataset (Figure 4.2c) from a producing 

field in Central Basin Platform constrained the upper portion of Grayburg-Lower Queen 

platform (G10~G13 HFS’s), with its densely-spaced 64 wells with sonic or density logs, 

16 cores, and 3D seismic coverage.  

As a major producing field within Early Permian Abo Platform Play/ Play 116 

reservoir trend (Dutton et al., 2004), Kingdom Field is located along the Southern margin 

of Northwest shelf (Figure 4.1). The area of interest in this field is covered by a 3D time-

domain seismic survey and has 166 dense well penetrations of complete or uppermost Early 

Permian pure carbonate Abo shelf margin reservoirs and its overlying Clear Fork platforms 

(Figure 4.3a). This field data, combined with Kerans (1995) and Courme (1999)’s outcrop 

studies in its analogous outcrops in Apache Canyon (Figure 1b), provides the basis for 

constructing an analogous carbonate model of Early Permian Abo shelf margin to its 

overlying Clearfork platform in Case 2.  
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Figure 4.2: Case 1 datasets, including (a) a 3D lithostratigraphic model constructed in 

Chapter 3, as the skeleton for this study, and (b) 64 outcrop plugs from 

Kenter et al. (2001) for acoustic property analysis of Upper San Andres 

Formation. (c) wells and cores from the CBP producing field for Kerans and 

Sitgreaves (2015)’s facies modeling and acoustic property analysis for 

Grayburg-Lower Queen Formation in this study. 
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Figure 4.3: Kingdom Field dataset projected on a depth structure map of Abo Formation 

top, which was interpolated among 99 well picks. This dataset includes a 

time-domain seismic volume, 166 wells, and two described cores. This 

author projected the 1300-m depth contour from this structure map of Abo 

Formation top as the terminal Abo shelf margin on the stratal slice shown in 

Figure 4.5a2. 
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4.3 MODEL DESIGN: WORKFLOW AND RESULTS 

4.3.1 An overview of modeling workflow 

The author used a six-step workflow in this study (Figure 4.4) to develop a 

framework for comparative analysis of the two cases of mixed carbonate-siliciclastic (Case 

1) versus pure carbonate (Case 2) shelf margin-platform successions.  

 

 

Figure 4.4: Workflow in this study for a comparative analysis of mixed 

carbonate/clastic (Case 1) versus pure carbonate (Case 2) shelf margin. For 

each case, the author modeled five different scenarios of spatial velocity 

distribution, and then simulated their seismic responses at three frequencies 

as low-, normal-, and high-frequency representations of field seismic data. 

Consequently, the author evaluated 30 seismic models in this study for a 

broad discussion on possible subsurface scenarios. 

After lithofacies identification (Step 1) and stratigraphic adjustments (Step 2) upon 

the Case-1 3D lithostratigraphic model, the author obtained a pure carbonate 

lithostratigraphic model for Case 2. The completion of lithostratigraphic modeling and 

layering resulted in a simulation grid per case along the chronostratigraphic surfaces and 

contemporaneous layering, upon which the author can further simulated velocity and 
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density models (Step 3 and 4). The velocity models herein were extrapolated using Janson 

and Fomel (2011)’s method for an integration of intra-facies heterogeneity, where velocity 

extrapolation per facies was simulated along its contemporaneous slopes with user-defined 

(1) normalized velocity distribution controlling the possible velocity values and (2) 

velocity variogram controlling the spatial velocity continuity. During implementations, the 

author analyzed velocity variograms for selected zones (Step 3), using Kenter et al. 

(2001)’s outcrop plugs (Figure 4.2b) for Upper San Andres shelf margin and subsurface 

sonic logs (Figure 4.2c) for Grayburg-Lower Queen platforms. These variograms, along 

with normalized velocity distribution per facies from Chapter 3, serves as inputs for Janson 

and Fomel (2011)’s facies-based velocity modeling methods, where velocity was 

extrapolated along stratigraphic layering using Gaussian Random Function Simulation 

(Step 4, GRFS, Lantuéjoul, 2013). Subsequently, the author estimated a density model 

from the velocity model using Gardner (1974)’s equation, which was proven in Chapter 3 

to be highly efficient for Case-1 datasets. Note that, instead of modeling a single pair of 

the velocity-density model as the inputs for acoustic wave equation seismic 

modeling/migration, this study considered five scenarios per case (Case 1 and Case 2) to 

accommodate for wider subsurface situations. Next, the author calculated a frequency 

spectrum from a Central Basin Platform producing field at its reservoir interval. This 

frequency spectrum served as a reference to select three wavelet frequencies for seismic 

simulation (Step 5) using an exploding-reflector modeling/migration package in 

Madagascar (Fomel et al., 2013), upon which the author further analyzed as the low-, 

medium-, and high-frequency representations of subsurface seismic. Finally, this chapter 

presents the evaluation of the resultant 30 seismic models (Step 6) in the next stand-alone 

section.  
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4.3.2 Results: Case 2 model construction 

The author identified the siliciclastic-rich lithofacies for replacment in Case 1 by a 

multi-scale comparison between Middle Permian Upper San Andres (uSA) shelf margin in 

Case 1 and Early Permian Abo shelf margin in Case 2 (Figure 4.5).   

First of all, both the 3D perspective (Figure 4.5a) and sectional comparison (Figure 

4.5b) illustrated similar strong progradation and thus resembling stratal geometry near the 

terminal shelf margin of uSA Formation in Case 1 and of Abo Formation in Case 2. In the 

3D perspective, the author compared Kerans et al. (2013)’s depositional model of G9 HFS 

in uSA shelf margin (Figure 4.5a1) with subsurface interpretations of Abo Fm. (Figure 

4.5a2), where a seismic amplitude stratal slice was extracted slightly below Abo top 

(location shown as white dashed line in Figure 4.5b2) from a 90o-phase time-domain 

seismic volume. On this stratal slice, the author projected a 1300m-contour (green solid 

line, Figure 4.5a2) from the depth structure of Abo top (Figure 4.3) interpolated from 99 

well picks as Abo terminal shelf margin. Moreover, as for the dip-oriented seismic sections, 

the author displayed a seismic section (an equivalent location shown as AA’ in Figure 

4.5a1) from a synthetic 90o-phase normal-frequency (dominant frequency/fd =27Hz) 

seismic model, which was simulated from a Case1 facies-averaged velocity and density 

models. Next, the modeled stratigraphic surfaces of HFC6~14 in G9 HFS (solid canyon 

lines, Figure 4.5b1) were projected on this synthetic seismic section. In comparison, the 

author also showcased a seismic section (Figure 4.5b2, location shown as BB’ in Figure 

4.5b1) from a field 90o-phase seismic volume (fd=30 Hz, Zeng and Kerans, 2003), with its 

inferred interpretations of clinoforms. This interpretation mainly based on the outcrop 

analog from Apache Canyon (Kerans et al., 1995; Courme, 1999) and on 3D analysis from 

multiple stratal slices to differentiate individual clinoform (comparing the numbers 

annotated in Figure 4.5a2 and b2). As a result, the strong progradation near the terminal 
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shelf margin for the uSA Formation in Case 1 is apparently shown on its dip-oriented 

seismic section (Figure 4.5a2). In comparison, that for the Abo Formation in Case 2 is 

shown as (1) map-view closely-spaced seismic troughs paralleling the Abo terminal shelf 

margin on the amplitude stratal slice (Figure 4.5a2),  and as (2) the inferred HFC clinoforms 

(cyan solid lines, Figure 4.5b2) on the field seismic section (Figure 4.5b2). The paralleling 

seismic troughs on the amplitude stratal slice were interpreted as a proxy of shelf-margin 

low-impedance porous reservoir facies (see Zeng et al., 2005a, b for the interpretive 

advantage of 90o-phase seismic volumes). 

Moreover, the author anticipated resembling lithofacies spatial distribution pattern 

after a substitution of siliciclastic-rich lithofacies in Case 1 for carbonates lithofacies in 

Case 2. In general, both cases feature in a sinuous along-strike shelf margin trend (shown 

as a red solid line in Figure 4.5a1, and green solid line in Figure 4.5a2). For the mixed 

carbonate-siliciclastic G9 HFS in Case 1 (Figure 4.5a1, from Kerans et al., 2013), the shelf-

margin reentrants became preferential pathways for sand bypass (F8) to the lower slope. In 

comparison, the promontories are dominated by carbonate deposition including the upper-

slope bioherms (F6) and possibly serve as updip sources of mixed turbidite channels of 

Fusulinid peloid sandstone (F7).  Therefore, during the lithofacies substitution of 

siliciclastic-rich lithofacies in this Case 1 for carbonate facies in Case 2,  

 the author started with a comparison of ‘larger’-scale heterogeneity with highly-

ordered basinward facies transition, by comparing the HFC clinoform model as 

observed from Last Chance Canyon for Case 1 (Figure 4.5c1, Sonnenfeld and 

Cross, 1993; Scott, 2007) and as observed from Apache Canyon for Case 2 (Figure 

4.5c2). This comparison revealed a similar lithofacies assemblage (F2, F3, F4 and 

F5) in their shelf margin to upper-slope facies belt; thus the author kept them 

unchanged when constructing the Case 2 lithostratigraphic model. In contrast, the 
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author replaced middle/outer shelf peloid sandstone (F1) with fenestratal laminate 

(F22), as well as the lower-slope bioturbated sandstone (F8) with Fusulinid peloid 

wackestone to mudstone (F26).  

 subsequently, the author validated the existence of localized objects in Case 2, 

which were simulated in Case 1 using Stochastic Object Modeling as described in 

Chapter 3. First of all, the seismic anomalies on carbonate slope, which are 

perpendicular/oblique to Abo terminal shelf margin (green solid line, Figure 4.5a2), 

can be seismic geomorphologically interpreted as turbidite channels. This 

possibility was further tested by core descriptions (Figure 4.6) noting pure-

carbonate turbidite channels of Fusulinid peloid pack- to wackestone (F27). 

Meanwhile, the core ML&C77 (Figure 4.6, location shown as a white triangle in 

Figure 4.5a2) also encountered an interval of upper-slope reefal boundstone (F6). 

Therefore, the author kept the F6 unchanged during lithofacies substitution, while 

replaced the mixed turbidite channels of fusulinid peloid sandstone (F7) with 

carbonate turbidite channels of Fusulinid peloid pack- to wackestone (F27). Using 

a similar comparative analysis approach, for the rest lithofacies not included in G9-

HFC6 (Figure 4.5c1), the author replaced glauconite peloid muddy siltstone (F9) 

with F26. 

After the lithofacies substitution, the author obtained a new Case 2 

lithostratigraphic model, and then further re-layered this model to mimic the stratification 

of the HFC clinoform model as observed from Apache Canyon (Figure 4.5c2). This 

stratigraphic adjustment serves as a critical procedure before velocity modeling, whose 

extrapolation follows the real contemporaneous slopes. More specifically, the previous 

layering of a typical HFC in Case 1 (black dashed lines in Figure 4.5c1) has been applied 

separately for its transgressive/T- and regressive/R- hemicycle, referring to Sonnenfeld and 
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Cross (1993) and Scott (2007)’s observations on stratifications. The author layered the T-

hemicycle by following its zone top (the flooding surface of this HFC), whereas layered 

the R-hemicycle by following an imaginary reference surface, which is the middle surface 

between the zone base and top (the flooding surface and cycle top of this HFC). After the 

stratigraphic adjustment referring to Kerans (1995)'s HFC clinoform facies model from 

Apache Canyon(Figure 4.5c2), the author re-layered the Case 2 by proportional layering 

upon corresponding entire HFC (illustrated on a Case 1 clinoform model as magenta 

dashed lines, Figure 4.5c1). As a result, the previous two-zone stratigraphic grid in Case 1 

model has now changed into a single-zone proportionally-layered stratigraphic grid in the 

Case 2 lithostratigraphic model.  
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Figure 4.5: Comparisons between two cases for lithofacies substitution and stratigraphic adjustment. (a) A 3D comparison 

between (a1) Kerans et al. (2013)’s depositional model for G9 HFS of uSA Fm., and (a2) interpretation on a 

stratal slice along Abo Fm. top. (b) A comparison of a dip-oriented seismic section between (b1) synthetic 35Hz- 

90o-phase seismic section of uSA shelf margin with overlying modeled stratigraphic surfaces (solid canyon lines), 

and (b2) field seismic section of Abo shelf margin, with inferred HFC clinoformal surfaces (solid canyon lines). 

The synthetic seismic model in (b1) was simulated from a facies-averaged velocity and density model. (c) a 

comparison of HFC-clinoform facies model between (c1) uSA clinoform observed in Last Chance Canyon and 

described by Scott (2007) and (c2) Abo clinoform observed in Apache Canyon and described by Kerans (1995).
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Figure 4.6: Described cores by Kerans (modified from internal course slides) from 

Kingdom Field, including (a) ML&C 77 and (b) Gordon 31 with locations 

shown in Figure 4.3. The lithofacies assemblage shown in these cores is 

similar to Kerans (1995)’s facies model for a typical HFC clinoform 

proposed from Apache Canyon (Figure 4.5c2), with the development of 

reefal boundstone in reefal shelf facies belt. 
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4.3.3 Results: velocity variogram analysis and models 

He et al. (2015b) previously studied the influence of different spatial velocity 

variation on resultant reservoir-scale seismic models upon a simplified 2D geologic section 

of uSA HFC clinoforms exposed at Last Chance Canyon (modified from Kenter et al., 

2001). That study proved the significance of integrating intra-facies heterogeneity 

represented as the spatial velocity variation for uSA modeling interval. In this study, the 

author utilized the same velocity modeling approach (Janson and Fomel, 2011) upon 25 

lithofacies within 38 zones for five different spatial velocity variations. First of all, the 

author constructed the intermediate velocity model (Figure 4.7, S3) with adjusted 

normalized velocity distribution per facies from Chapter 3 and experimental velocity 

variograms for selected zones in this study (Table 4.1). For the new experimental 

variogram analysis, the author conducted it separately for the outcrop-plug-constrained 

uSA shelf margin HFC clinoform/HFC6 (Figure 4.2b) versus the sonic-log-constrained 

Grayburg-Lower Queen platforms (Figure 4.2c). Detailed analysis has been included in 

Appendix I, with analytic results of the fitted variograms shown in Table 4.1b. As revealed 

by this analysis, the Grayburg-Lower Queen platforms fitted from upscaled sonic logs have 

apparently more continuous spatial velocity distribution (along both horizontal and vertical 

orientation) than that of Upper San Andres shelf-margin clinoform fitted from outcrop 

plugs. Moreover, within the upper platform interval, the spatial velocity distribution is 

more continuous along the strike than the dip orientation. Within the lower uSA shelf 

margin HFC (HFC6), its transgressive siliciclastic-rich hemicycle is less continuous than 

its regressive carbonate-dominant hemicycle.  

This intermediate velocity model (S3, Figure 4.7) with experimental velocity 

distribution (Figure 45.8b) and spatial continuity (Table 4.1b) provided a reference to set 
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up four realistic end-member velocity models. The author shrank this intermediate velocity 

spread (σ) per facies in S3 (Figure 4.8b) to half (1/2 σ, Figure 4.8a) for end-member velocity 

models with a small velocity spread (S1 and S2, Figure 4.7). In contrast, the author whereas 

double-stretched it (2σ, Figure 4.8a) for end-member velocity models with a large velocity 

spread (S4 and S5, Figure 4.7). Similarly, for the other variable of spatial velocity 

continuity, the author adjusted it by changing the range of the velocity variograms away 

from the intermediate velocity model (S3) with an imaginary variogram range of a (Table 

4.1b). Referring to this variogram range (major, minor horizontal range, and vertical range) 

in intermediate model per zone, the author obtained the end-member velocity models with 

twice as good spatial velocity continuity (range=2 a, Table 4.1a; S1 and S4, Figure 4.7). In 

contrast, the author also obtained the end members with poor, half spatial velocity 

continuity (range=1/2×a, Table 4.1c; S2 and S5, Figure 5.7). Note that, finally the author 

decided to use the facies-averaged velocity model as S1. Besides its significance as an 

extreme representation of S1 with an infinitely narrow velocity distribution and great 

velocity continuity, the facies-averaged velocity model also serves as a benchmark model, 

as it has been most widely used as an input for seismic modeling of large outcrops.   
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Figure 4.7: Velocity modeling of five scenarios for Case 1, reflecting five levels of intra-facies heterogeneity. Velocity was 

modeled using Janson and Fomel (2011)’s method, where spatial velocity continuity is equivalent to a 

combination of velocity spread and spatial velocity continuity. The intermediate velocity model (S3) was 

constructed using experimental normalized velocity distribution per facies (Figure 4.8b) and experimentally fitted 

velocity variogram per zone (Table 4.1b). The four realistic end members (S1, S2, S3 and S4) were constructed by 

adjusting velocity distribution per lithofacies and velocity variograms for selected zones.  
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Figure 4.8: Normalized velocity distribution per facies with (a) small-, (b) medium, and 

(c) large spread of velocity values.   

 

Table 4.1: Velocity variograms for selected zones used in this study, with (a) good, (b) 

intermediate/experimentally-fitted, and (c) poor velocity continuity.   
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Similarly, five scenarios of velocity models (Figure 4.9) were constructed to 

accommodate a variety of intra-facies heterogeneity in Case-2 pure carbonate successions. 

The Case-2 velocity distribution per facies refers to that of the same or analogous 

lithofacies in Case 1 (Figure 4.8). Besides, as discussed in the facies modeling section, the 

siliciclastic-rich transgressive hemicycle and carbonate-dominant regressive hemicycle in 

a typical HFC of Case 1 have been grouped into a single pure carbonate HFC before 

proportional re-layering in Case 2 (compare Figure 4.5c1 and c2). Therefore, the author 

further assigned the velocity variogram of the carbonate-dominant regressive hemicycle in 

Case 1 (Table 4.1) to the new pure carbonate HFC’s in Case 2 during the velocity modeling. 

Finally, these five velocity models per case (Figure 4.7 for Case 1 and Figure 4.9 for Case 

2) serves as inputs for estimating their respective density model using Gardner (1974)’s 

equations. This estimation is highly-effective for the uSA-Grayburg modeling interval, as 

discussed in Chapter 3.  
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Figure 4.9: Velocity modeling of five scenarios for Case 2, reflecting five levels of intra-facies heterogeneity. Velocity was 

modeled using Janson and Fomel (2011)’s method, where spatial velocity continuity is equivalent to a 

combination of velocity spread and spatial velocity continuity. Compared with Case 1 velocity models, the author 

referred to same/similar lithofacies in Case 1 (Figure 5.8) to assign velocity distribution per lithofacies in Case 2. 

Besides, the velocity variograms for pure carbonate clinoform HFC’s was assigned using that from the carbonate-

dominant regressive hemicycle in uSA Formation (G9 HFS-HFC6-R, Table 4.1).
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4.3.4 Results: seismic models 

The author extracted a seismic frequency spectrum (Figure 4.10) from the stacked 

and migrated seismic data of uSA-Grayburg reservoir interval in the Central Basin 

Platform producing field (Figure 4.1). This seismic frequency spectrum has a dominant 

frequency at 35Hz and a bandwidth of 0~80 Hz. Since the author chose Ricker wavelet, 

whose dominant frequency is 1.3 times of its peak frequency, the author simulated seismic 

models at a peak frequency of 27 Hz as a 35 Hz subsurface representation. Afterward, the 

author chose half and double of this frequency, namely a dominant frequency of 17.5- and 

70-Hz as the low- and high-frequency representations of subsurface seismic data.  

 

 

Figure 4.10: Seismic frequency spectrum extracted from the uSA-Grayburg reservoir 

interval of a producing field along the Eastern flank of CBP.   

Eventually, this forward modeling workflow has obtained 15 90o-phase seismic 

models per case for the mixed carbonate/clastic successions in Case 1 (Figure 4.11) and 
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models, and seismic models have incorporated five controllable variables potentially 

influencing the 'chronostratigraphic significance of seismic reflections' at the reservoir 

scale (as predefined in Chapter 1), including   

1. flat versus clinoformal stratal geometry, by comparing uSA shelf margin versus 

Grayburg-Lower Queen platforms 

2. gentle versus fast lateral lithofacies variation, by comparing the slower lateral 

lithofacies variations within Grayburg-Lower Queen platforms and fast lithofacies 

variations within uSA HFC shelf-margin clinoforms 

3. mixed carbonate/clastic and pure carbonate successions (Case 1 and Case 2) with 

more complicated lithofacies-velocity relationship than that of the siliciclastic 

cross-section in Vail et al. (1977c) 

4. different levels of intra-facies heterogeneity reflected as spatial velocity continuity, 

which can break down to velocity value spread and spatial velocity continuity, and  

5. varied seismic frequencies to test the frequency-dependency for the fundamental 

assumption of seismic stratigraphy, which was proposed to be frequency-

independent at exploration scale. 

  



 145 

 

Figure 4.11: Case 1 seismic models at a dominant frequency of 13.5, 27 and 54Hz, as 

low-, normal-, and high-frequency representations of subsurface seismic, 

generated from five different levels of intra-facies heterogeneity represented 

as different spatial velocity variations (S1~S5).    
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Figure 4.12: Case 2 seismic models at a dominant frequency of 13.5, 27 and 54Hz, as 

low-, normal-, and high-frequency representations of subsurface seismic, 

generated from five different levels of intra-facies heterogeneity represented 

as different spatial velocity variations (S1~S5).    
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4.4 EVALUATION METHODS AND EXAMPLES 

The evaluation method in this study is an extension from He et al. (2015a) included 

as Chapter 2, which defined time-correlation error (TCE) as a measurement of discrepancy 

between the horizon interpreted following seismic reflection geometry against its 

corresponding modeled stratigraphic surface. In addition to the initial application of this 

TCE concept on conceptual flat-lying siliciclastic reservoir models in Chapter 2, this 

concept herein applies to the outcrop- and subsurface-constrained model (Case 1) as well 

as its analogous model. Moreover, the evaluation of the chronostratigraphic significance 

of seismic reflections is at the HFS and finer scale4. 

4.4.1 An example on evaluating one horizon from one seismic model 

The example shown in Figure 4.13 illustrated the evaluation on the 

chronostratigraphic significance of an HFS-scale interested seismic horizon from a 35-Hz 

0o-phase seismic model constructed in Chapter 3, which was simulated from a facies-

averaged velocity and density model for the mixed carbonate/clastic successions (Case 1 -

S1). Following the assumption of the chronostratigraphic significance of seismic reflections 

(Vail et al., 1977c), seismic reflections were assumed as internal stratifications so that 

termination relationships can be interpreted (red arrows and double-sided arrows, Figure 

4.13a) on dip-oriented inlines. Upon the interpretations of the termination relationship, the 

author picked two HFS boundaries, including G9 HFS top as a seismic trough (solid yellow 

line, Figure 4.13a) and G9 HFS bottom as a seismic trough (green solid line, Figure 4.13a). 

Furthermore, the author focused on the evaluation of the G9 HFS bottom, by extending its 

interpretation to strike-oriented cross-lines (Figure 4.13b), and finally to the 3D seismic 

horizon (Figure 4.13c). Subsequently, the author compared this interpreted seismic horizon 

                                                 
4Figure 4.13 and 4.14 were modified from He et al. (2017a)’s AAPG ACE talk.    
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following the 'chronostratigraphic significance of seismic reflections' against its modeled 

surface (Figure 4.13d). This procedure resulted in a difference map known as TCE map in 

this study (Figure 4.13e), which allows identification of error-prone areas. For instance, a 

positive value on TCE map at a given location represent that the interpretation is higher 

than the modeled surface (such as Point A, Figure 4.13a), whereas its negative value (such 

as Point B, Figure 4.13a) represent an interpretation lower than the modeled surface. 

Furthermore, the histogram (Figure 4.13g) of this TCE map (Figure 4.13e) provides a 

likelihood distribution for a given error to occur. Note that, the author shifted the original 

TCE map (Figure 4.13e) in relative to its mean (17.66m, Figure 4.13g) so that one can 

obtain a zero-centered TCE map (Figure 4.13f) and then its histogram (Figure 4.13h) with 

a mean of zero. This procedure accommodates for the original definition of a 'time-

significant' seismic reflection, which can be either coincide with or 'parallel to' its 

corresponding chronostratigraphic surface (Vail et al., 1977c). As another advantage of this 

shift, the resultant zero-centered TCE map and histogram (Figure 4.13 f and h) further 

facilitate cross-comparisons between evaluation results of multiple seismic models, as 

shown in the next example.  
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Figure 4.13: An example of evaluating the chronostratigraphic significance for a targeted 

horizon of G9 HFS bottom. (a) and (b) are dip- and strike- sections showing 

interpretations against modeled stratigraphy. (c) and (d) are respectively the 

interpretation of G9 HFS bottom following the ‘chronostratigraphic 

significance of seismic reflections’ and the modeled G9 HFS bottom. (e) 

and (g) are the original TCE map and its histogram, whereas (f) and (h) are 

zero-centered TCE map and histogram. The following examples all use 

zero-centered TCE maps and histograms to facilitate cross-comparison. 
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4.4.2 An example of cross-comparison among multi-frequency seismic models 

Applying the above evaluation workflow to multi-frequency seismic models from 

the same velocity-density model allows a further discussion on frequency-dependency 

(Variable 5 predefined in Chapter 1) of the ‘chronostratigraphic significance of seismic 

reflections’, and then interpretation strategies to improve the seismic chronostratigraphic 

correlation. An example (Figure 4.14) shown here is a cross-comparison of evaluations on 

interpreted G9 HFS bottom from low-, normal-, and high-frequency 0o-phase seismic 

models, whose inputs were Case 1- S1 velocity (Figure 4.7) and density model (Figure 4.9). 

Similar to the normal-frequency example illustrated in the last section (Figure 4.13), the 

interpreted seismic horizons of G9 HFS bottom (Figure 4.14b~d) from multi-frequency 

seismic volumes all follow a seismic peak based on termination relationship. Subsequently, 

the author obtained their zero-centered TCE map (Figure 4.14e~g) and then TCE histogram 

(Figure 4.14h~j). 

In the next discussion section, the author will probe into three alternative solutions 

as suggested in this comparative example, including 

 Option 1: using the high-frequency seismic components/volume to improve the 

seismic chronostratigraphic correlation. This option serves as an efficient approach 

if the TCE histogram distribution narrows with the increasing seismic frequency. 

In this example of Case 1- S1 (Figure 4.14h-j), this option does not work well, as 

the interpretation from the low-frequency seismic model has exhibited the smallest 

discrepancy (Figure 4.14h), whereas that from the intermediate-frequency volume 

displays the widest TCE distribution (Figure 4.14i). 

 Option 2: incorporating preferential interpretation with well-interpolation, based on 

the error distribution pattern from the forward seismic modeling studies. In this 

example, all of these three tested TCE maps (Figure 4.14 e~g) exhibit a linear/low-
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sinuosity positive anomaly ridge near the shelf margin, with a larger error near the 

shelf-margin promontories than reentrants. Therefore, one can consider picking 

seismic events along dip-sections crossing less-error-prone shelf-margin reentrants 

and then integrate this preferentially-interpreted horizon patch with other horizon 

patches near the error-prone shelf-margin promontories constrained, which can be 

obtained by interpolation among well tops. 

 Option 3: integrating horizon patches from multi-frequency seismic volumes. In 

this example, a comparison between interpreted structure maps from low-, medium-

, and high-frequency seismic volumes (Figure 4.14b~d) against the modeled G9 

HFS bottom (Figure 4.14a) revealed a promising application in combining horizon 

patches interpreted from different frequencies to obtain a composite surface better 

honoring the actual stratigraphy. In this example (Figure 4.14), one can consider 

integrating three horizon patches of different locations. For instance, the platform 

area of the low-frequency interpretation (labeled as ① in Figure 4.14a and b) most 

resemble the actual chronostratigraphic surface and thus can be cropped as a 

horizon patch. Similarly, a horizon patch upper to lower-slope from medium –

frequency interpretation (labeled as ② in Figure 4.18a and c), and a horizon patch 

at the toe-of-slope from high-frequency interpretation (labeled as ③ in Figure 4.18a 

and d), would also help improve the seismic chronostratigraphic correlation. 
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Figure 4.14: A comparative example on interpretations of G9 HFS bottom from multi-frequency seismic volumes simulated 

from Case 1 - S1 velocity and density models. (a) Modeled G9 HFS bottom surface, (b)~(d) are interpretations 

from multi-frequency seismic volumes, whose TCE maps and histograms are respectively shown in (e)~(g) and 

(h)~(i). 
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4.5 EVALUATION RESULTS AT HFS AND HFC SCALE 

This chapter further applied the above comparative evaluation approaches to five 

velocity and density models (𝑆1~𝑆5, Figure 4.7 and 4.9) per case (Case 1 and Case 2) for a 

complete evaluation of 30 90o-phase seismic models (Figure 4.11 and 4.12). The author 

focused on the assessment of two HFS surfaces. One is the flat-lying G12 HFS top (Figure 

4.2a), also known as the Grayburg Formation top and used as Grayburg reservoir-bounding 

surface. The other is the clinoformal G9 HFS bottom (Figure 4.2a), which is the same 

surface illustrated in the previous introductory examples, spanning from the platform to the 

toe-of-slope and can optionally serve as a significant surface in constructing uSA porous 

carbonate reservoirs. Finally, the author also extended the discussion to HFC scale, by 

manually picking landward-dipping diachronous horizon patches and then comparing their 

occurrences in mixed carbonate/clastic and carbonate shelf margins with the change of 

seismic frequency.  

4.5.1 Evaluation results of flat-lying G12 HFS top 

The seismic interpretations of G12 HFS top from 30 seismic models follow the 

most continuous reflector in the closet adjacent of the modeled G12 HFS top (Figure 4.15), 

referring to the termination relationships by assuming seismic reflections as stratifications. 

Subsequently, the author calculated their zero-centralized TCE maps (Figure 4.16) and 

histograms (Figure 4.17) using the method introduced in Section 4.4. Evaluation results 

suggest that 

1. Mixed versus carbonate successions: the chronostratigraphic significance of G12 

HFS top in carbonate platforms are in general better than that in mixed platforms, 

with narrower TCE distributions for all of the tested five intra-facies heterogeneity 

and at all of the three tested frequencies (Figure 4.17). 



 154 

2. Regarding the three alternative options to improve the seismic chronostratigraphic 

correlation 

 Option 1: Increasing the seismic frequency significantly helps improve 

chronostratigraphic significance of G12 HFS top for all tested scenarios, with 

narrower TCE distributions with increasing seismic frequency (Figure 4.17). 

 Option 2: For both mixed carbonate/clastic (Case 1) and carbonate (Case 2) 

platforms, at low-frequency (fd =13.5Hz), TCE map suggested an over-steepened 

interpretation than the actual modeled G12 HFS top, with positive TCE updip and 

negative TCE downdip. In comparison, at medium to high frequency, TCE map 

illustrated a less steep interpretation than the actual modeled G12 HFS top (Figure 

4.16). The TCE map-view distribution does not exhibit a consistent along-strike 

trend, thus not appropriate for the preferential picking with well-top-constrained 

interpolation. 

 Option 3: From the analysis in Option 2, integrating updip horizon patch from the 

low-frequency volume with downdip horizon patch from the medium/high-

frequency volume, or vice versa, can potentially improve seismic 

chronostratigraphic interpretation. 

3. Recommendations: In cases of available high-frequency volume, the author 

recommend an interpretation of flat-lying platform from this volume to most 

efficiently and conveniently improve seismic chronostratigraphic correlation; in 

cases of available only low- and medium-frequency volume, an integration of 

horizon patches worth further validation. 
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Figure 4.15: Modeled G12 HFS top and its interpretations from 30 seismic models.  
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Figure 4.16: Zero-centered TCE maps for G12 HFS top from 30 seismic models. 
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Figure 4.17: Zero-centered TCE histograms for G12 HFS top from 30 seismic models. 
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4.5.2 Evaluation results of clinoformal G9 HFS bottom 

The seismic interpretations of G9 HFS bottom from 30 seismic models follow the 

most continuous horizon in the closet adjacent of the modeled G9 HFS bottom (Figure 

4.18), referring to the termination relationships by assuming seismic reflections as 

stratifications. Subsequently, the author calculated their zero-centralized TCE maps 

(Figure 4.19) and histograms (Figure 4.20) using the method introduced in Section 4.4. 

Evaluation results suggest that  

1. Mixed versus carbonate successions: the chronostratigraphic significance of G9 

HFS bottom in carbonate platforms are in general better than that in mixed 

platforms, with narrower TCE distributions for 13 out of 15 tested five intra-facies 

heterogeneity and at three tested frequencies (Figure 4.17). Two exceptions are 

low-frequency seismic models from 𝑆2 and 𝑆4 models with good spatial velocity 

and density continuity (Figure 4.7 and 4.9). 

2. Regarding the three alternative options to improve the seismic chronostratigraphic 

correlation 

 Option 1: Increasing seismic frequency more gently improve the seismic 

chronostratigraphic significance of G9 HFS bottom with a less apparent decreasing 

in TCE distribution (Figure 4.20), compared with G12 HFS top discussed above 

(Figure 4.17). Besides, there are a few exceptions where interpretation from the 

medium-frequency volume (fd=27Hz) resulted in the worst seismic 

chronostratigraphic correlation, including models with narrower velocity spread or 

less intra-facies heterogeneity, such as the Case 1- S1, S2 and Case 2- S1. This 

phenomenon is probably due to the preferential development of mounds/buildups 

(F6) near the shelf-margin promontories. The assignment of constant/small-spread 
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velocity for this high-impedance lithofacies tend to increase more localized high-

impedance anomalies, and thus further adversely influence the seismic reflections 

to follow this impedance trend (as analyzed in He et al., 2016).   

 Option 2: Similar to the discussion in the introductory examples from the last 

section, TCE maps for interpretations against modeled G9 HFS bottom from 23 out 

of 30 models exhibit an apparent ridge of positive anomalies near the shelf margin, 

with increasing TCE near the shelf-margin promontories than reentrants (Figure 

4.19). This TCE pattern is less significant for the low-frequency seismic models, 

when the interpretations tend to be less steep than the model, with negative TCE 

updip and positive TCE downdip.  

 Option 3: The idea of integrating horizon patch for a combined surface to better 

represent the clinoformal modeled stratigraphy of G9 HFS bottom is highly 

dependent on the complexity of velocity models. This statement is supported by a 

comparison between structure maps of interpreted horizons against the modeled 

surface for Case 1 and 2 (Figure 4.18). This interpretation strategy is most 

applicable to S1 and S2with no or small velocity spread for the Case 1 of mixed 

successions, whereas extended to S1, S2 and S3 with up to intermediate velocity 

spread and continuity. For the cases with large velocity spread (S4 and S5), this 

approach is not very helpful if not entirely invalid. 

3. Recommendations: In cases of intermediate to strong intra-facies heterogeneity, 

interpretation from high-frequency seismic volumes should be sufficient, whereas, 

for the cases of weak intra-facies heterogeneity, the integration of multi-frequency 

horizon patches should help most. Moreover, for those with a focus on improving 

shelf-margin interpretation quality to reflect along-strike topographic variations, a 
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preferential interpolation near shelf-margin reentrants with well-top-constrained 

interpolation near the promontories would be beneficial. 
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Figure 4.18: Modeled G9 HFS bottom and its interpretations from 30 seismic models. 
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Figure 4.19: Zero-centered TCE maps for G9 HFS bottom from 30 seismic models. 
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Figure 4.20: Zero-centered TCE histograms for G9 HFS bottom from 30 seismic models. 
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4.5.3 Evaluation results of diachronous HFC-scale seismic reflections 

As during the previous stratigraphic model construction of uSA Formation (Chapter 

3), Scott (2006) deformed all HFC tops and flooding surfaces to Hayes sandstone in Lower 

Grayburg Formation. Therefore, the chronostratigraphic surfaces within uSA Formation 

should be seaward-dipping. In this example, when evaluating the HFC-scale 

chronostratigraphic significance of seismic reflections, the author manually picked the 

most apparent landward-dipping horizon patches as diachronous seismic reflections (Zeng 

and Kerans, 2003). The author chose S3 intra-facies heterogeneity, which is reflected as the 

intermediate spatial velocity variation, and then applied a comparative study on the mixed 

carbonate/clastic (Case 1) and carbonate (Case 2) shelf margin for an evaluation on the 

frequency-dependency of HFC-scale diachronous reflections.  

This evaluation started with a dip-sectional comparison (IL135, Figure 4.21), with 

examples of diachronous HFC-scale seismic reflections in the medium-frequency Case 1- 

S3 and Case 2- S3 seismic models. In this example, the author interpreted the G9 HFS top 

as a seismic -/+ zero crossing (yellow dashed lines, Figure Figure 4.21a1, a2, b1, and b2), 

based on the termination relationships (double-sided arrow, Figure 4.21a1 and a2). Note 

that, in both cases, the interpreted G9 HFS top is severely diachronous by transecting from 

G9 HFS-HFC12a bottom to G10 HFS top (compare the yellow dashed line against solid 

canyon lines of HFC boundaries, Figure 4.21b1 and b2). It better follows the diachronous 

high-to-low impedance trend (Figure 4.21c1 and c2) mainly caused by landward stepping 

Lower Grayburg strata (Figure 4.21d1 and d2). Subsequently, the landward-dipping 

seismic reflectors (pink dashed lines circled with eclipses, Figure 4.21b1 and b2) were 

located slightly below the interpreted G9 HFS top. In general, these diachronous seismic 

reflectors tend to follow the low-impedance trend (Figure 4.21c1 and c2) of porous shelf-
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margin carbonate reservoirs (Figure 4.21d1 and d2). As shown in the comparison between 

the Case 1 and Case 2 example, the identified diachronous reflection in the carbonate shelf 

margin of Case 2 (pink dashed line, Figure 4.21b2) extend wider with a steeper dip than 

that in Case 1 (pink dashed line, Figure 4.21b1). The former one in Case 2 approximately 

has a dip of -3.7o and a horizontal extension of 1010 meters, whereas the later one in Case 

1 roughly has a dip of  -1.5o and a horizontal extension of 380m.  
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Figure 4.21: A comparison of diachronous internal reflections within G9 HFS in 35Hz 

seismic models on IL135. (a1) and (b1) are Case 1 seismic models, 

generated from (d1) a mixed carbonate/clastic lithostratigraphic model, 

which was assigned with a velocity/ impedance model with S3 intra-facies 

heterogeneity. In comparison, (a2)~(d2) are Case-2 equivalent IL135 

sections, showing (a2) and (b2) of seismic models, (c2) impedance model, 

and (d2) lithostratigraphic model.  The dashed lines in all subplots are 

interpreted G9 HFS top following a +/- zero-crossing based on termination 

relationship (single- and double-sided arrows) interpreted in Figure (a1) and 

(a2) per case. The eclipses highlights zones with diachronous landward-

dipping seismic reflections, whereas the white guiding solid lines aligned 

the same locations among different models for a convenient comparison.  
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Figure 4.22: Interpretation of diachronous landward-dipping internal HFC-scale 

reflectors within G9 HFS for the mixed successions at (a1) low-, (b1) 

medium-, and (c1) high-frequency, and for the carbonate successions at (a2) 

low-, (b2) medium-, and (c2) high-frequency. 
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Figure 4.23: A comparison of dip for these diachronous reflectors (magenta boxes in 

Figure 4.22) following the shelf-margin and upper-slope reservoir trend. (a), 

(b) and (c) are respectively dip of these horizon patches at low-, medium-, 

and high-frequency, whereas (d), (e) and (f) are their histograms. 
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The author preliminarily tested the preferential occurrence of these HFC-scale 

diachronous reflectors responding to the seismic frequency in mixed versus carbonate shelf 

margin. First of all, the author extended the above dip-oriented example to 3D for six 

seismic models at all of three tested frequencies from Case 1- S3 and Case2- S3 velocity 

and density models (Figure 4.22). These horizon patches (colorcoded with elevations, 

Figure 4.22) were projected on G9 MFS (contoured gray structure maps, Figure 4.22) for 

a comparison against along-strike shelf-margin promontories and reentrants, given their 

specific locations oscillate with time. Resultantly, these diachronous patches appear more 

likely to occur perpendicularly to shelf-margin promontories (Figure 4.22). 

Furthermore, the author calculated the dip and dip histograms of these diachronous 

horizon patches (Figure 4.23). As suggested by a joint analysis of structure (Figure 4.22) 

and dip (Figure 4.23) of these diachronous horizon patches, increasing seismic frequency 

helps to mitigate these diachronous HFC-scale reflections following the porous carbonates 

for both the Case 1-mixed and Case 2-carboante shelf margin. This statement is supported 

by both a decreasing area of occurrence (Figure 4.22, comparing a1, b1 and c1; also 

comparing a2, b2, and c2) and gentler dip (Figure 4.23, comparing a1~c1 or d1~f1, also 

comparing a2~c2 or d2~f2) with an increasing of seismic frequency. Moreover, the author 

compared these diachronous HFC-scale patches in the mixed (Case 1) versus carbonate 

(Case 2) shelf margin. This comparison revealed these diachronous reflectors to be more 

extensive in size (Figure 4.22, comparing a1~c1 with a2~c2) and steeper/more-severely 

landward-dipping (Figure 4.23, comparing a1~f1 with a2~f2) for the carbonate (Case 2) 

shelf margin.  

At the author's best understanding, the different behavior of diachronous HFC-scale 

seismic reflectors in mixed versus carbonate shelf margin is probably due to their different 

impedance trend per cycle (Figure 4.24). The mixed carbonate-siliciclastic cycle has lower-
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slope low-impedance sandstone/siltstone jointly creating an HFC-scale low-impedance 

trend with the shelf-margin and upper-slope porous carbonate (comparing the white eclipse 

area, Figure 4.24a1~c1). In comparison, in a carbonate HFC cycle, the shelf-margin and 

upper-slope porous carbonate is bounded by high-impedance outer-ramp and lower-slope 

facies. Therefore, the low-impedance lithostratigraphic unit relatively stands out to create 

a contrasting-AI surface which does not follow geologic timeline (comparing the white 

eclipse area, Figure 4.24a2~c2).   
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Figure 4.24: A comparison example explaining why diachronous HFC-scale reflector is more extensive and steeper in the 

carbonate shelf margin in Case 2. (a) dip-oriented seismic sections, (b) impedance models, and (c) facies models. 
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4.6 DISCUSSIONS ON POTENTIAL FIELD APPLICATIONS 

4.6.1 A decision tree based on forward models in Chapter 3 and 4 

As for a field seismic volume (Figure 2.25a), selective frequency filtering using 

continuous wavelet transform/ CWT allows a separation of low-, medium-, and high-

frequency components (Figure 2.25b~d). These volumes can further serve as data sources 

for the decision tree (Figure 2.26) proposed in this study. Upon the forward modeling 

results in this chapter, the author introduced this decision tree to search proper 

interpretation strategies/hints (purple boxes, Figure 2.26) in improving seismic 

chronostratigraphic analysis at the HFS and HFC scale. This decision tree best suits, when 

the geoscientists can provide critical judgments (green diamonds, Figure 2.26) on the 

following four aspects:  

1. The first-and-foremost question on mixed or pure carbonate lithology facilitates an 

identification of the error-prone scale that requires special cautions. The author 

recommend being more cautionary on the HFS-scale interpretation of reservoir-

bounding surfaces for a mixed succession, whereas being more alerted on the HFC-

scale diachronous seismic reflections following the reservoir-prone lithofacies for 

a carbonate succession. 

2. Subsequently, for an interested horizon of HFS surface, the judgment on its 

topography further helps the selection of interpretation method. For a flat-lying 

stratigraphic surface, one can better reply on interpretation from a high-frequency 

seismic volume. In comparison, the interpretation of a clinoformal surface requires 

additional information from the3rd judgment.  
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Figure 4.25: Data preparation for different frequency volumes as inputs for the decision 

tree in Figure 4.26. (a) Input seismic volume. In this case, IL116 from the 

normal-frequency time-domain seismic model was used for an illustration. 

(b)~(d) are resultant low-, medium-, and high-frequency sections from 

selective frequency filtering using CWT.  
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3. For a clinoformal surface, one can further question its surrounding intra-facies 

spatial velocity variation/intra-facies heterogeneity. If this heterogeneity is 

intermediate to fierce, interpretation from a high-frequency volume would help 

improve the seismic chronostratigraphic correlation. Otherwise, one needs to 

consider alternative solutions via the 4th judgment.    

4. For a clinoformal surface with surrounding strata of gentle intra-facies 

heterogeneity, one can keep questioning the availability of well controls. In cases 

with well controls near the error-prone shelf-margin promontories, the author 

recommend an integration of preferential interpretation from medium/high-

frequency seismic volume with well-top-constrained interpolation in the error-

prone area (Option 2). In comparison, in areas lacking well constraints, an 

integration of multi-frequency horizon patches would be most effective, by 

utilizing the platform patch from low-frequency interpretation, the upper-slope 

patch from medium-frequency interpretation, and the lower-slope to basin patch 

from high-frequency interpretation.  
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Figure 4.26: A solution tree proposed based on forward modeling results in Chapter 4.  
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to mention, as for the central idea in this attribute-driven volumetric picking scheme, the 

author advocated using a seismic volume, which has a good correlation with TCE and 

selected from the forward modeling studies, to replace the human judgments. Regarding 

algorithm implementation, this selected seismic attribute as a proxy of TCE can be 

modified as a weighting function in a published 3D volumetric picking algorithm (Equation 

4.1) to drive the selection of volumetric picking following dip field or phantom slicing.  

 

 

Figure 4.27: An attribute-driven volumetric picking scheme to tie the chronostratigraphic 

significance of seismic reflections (quantified as TCE here) with a particular 

seismic attribute. Chapter 2 proves the mean of amplitude variance to be 

highly correlated with TCE for flat-lying siliciclastic reservoirs.     

0  residual = 𝐖 (𝛻𝝉(x, y, t)-𝒑𝜖(𝑥, 𝑦, 𝝉))      (4.1) 

   

 

 
    (  𝒑) 

 

   

Note: this or any other
seismic attributes with a
good negative/positive
correlation with TCE
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where  

 𝛻: gradient operator 

 𝝉(x, y, t): time-shift field 

  𝜖: estimated dip 

𝑾: weighting function  

The published volumetric picking equation (4.1) cited here comes from Lomask 

(2006, Equation 2.24), where the regression originated from Fomel (2002).  

4.7 CONCLUSIONS AND FUTURE WORK 

In this study, the author tested the fundamental assumption of seismic stratigraphy 

as applied to interpret HFS surfaces, and to interpret HFC-scale reflections from its initial 

recommended scale when the basic interpretive unit is a depositional sequence (Mitchum 

et al., 1977b). For the sake of accommodating as many realistic scenarios as possible, the 

author tested upon both mixed carbonate/clastic (Case 1) and carbonate system (Case 2). 

For each case, the author modeled five scenarios of intra-facies heterogeneity (𝑆1~𝑆5) 

reflected as different spatial velocity variations and then simulated the seismic responses 

at low-, medium-, and high-frequencies.  

The forward modeling studies have illustrated  

 A few general conclusions on the validity of ‘chronostratigraphic significance of 

seismic reflections’, when it is applied to interpret HFS surfaces. Table 4.2 

summarized the generalized results. In this table, the symbol  ‘>’ represents a better 

validity to using the 'chronostratigraphic significance of seismic reflections' in 

seismic chronostratigraphic correlation.  
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Table 4.2: General conclusions for influencing factors on the ‘chronostratigraphic 

significance of seismic reflections at the HFS scale.  

 a comparative result on the existence of HFC-scale diachronous reflectors 

following the porous reservoir-prone lithofacies: this phenomenon preferentially 

occur near the shelf-margin promontories, and is more severe for the carbonate than 

the mixed carbonate/clastic shelf margin, thus requires more cautions. Fortunately, 

increasing seismic frequency, in general, helps mitigate these diachronous HFC-

scale localized reflectors. 

Upon the forward modeling results, a decision tree was proposed to assist 

geoscientist’s selection from three alternative approaches to improve seismic 

chronostratigraphic correlation at the HFS and HFC scale. Furthermore, to deal with an 

area with very limited geoscientists’ prior knowledge, the author extended a discussion to 

the attribute-driven volumetric picking scheme proposed in Chapter 2, by discussing its 

underlying logic, as well as possible algorithm implementation. Future works are 

recommended to select a seismic attribute as a proxy of TCE from different scenarios. 
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Chapter 5: Conclusions and Future Work 

5.1 CONCLUSIONS  

This dissertation evaluated the validity of the fundamental assumption of seismic 

stratigraphy, which is also known as the chronostratigraphic significance of seismic 

reflections, at the reservoir scale (HFS and finer scale). In spite of a broader impact on 

multiple reservoir-scale application from this study as stated in Chapter 1, the author 

focused on the evaluation and discussions on improving the interpretation of reservoir-

bounding HFS-scale surfaces, which will further enhance the accuracy of static reservoir 

model construction. The model construction in this study evolves from conceptual to 

realistic, in order to approximate reservoir geology of (1) shallow-marine siliciclastic 

reservoirs in Starfak Field, GoM, (2) shallow-water mixed carbonate-siliciclastic Upper 

San Andres shelf margin – Grayburg platform, Permian Basin, and (3) shallow-water 

carbonate Abo shelf margin – Clear Fork platform, Permian Basin. 

This dissertation has achieved three-fold contributions respectively on modeling 

hierarchical heterogeneity and resultant seismic responses, on the evaluation of five 

predefined variables on the chronostratigraphic significance of seismic reflections, and on 

the recommendations for seismic chronostratigraphic correlation at the reservoir scale. 

Respectively, the author concludes that  

1. The hierarchical heterogeneity, which is intrinsic in facies and property models, can 

be modeled via an integration of high-resolution sequence stratigraphic framework, 

published 3D depositional models, outcrop analogs and discrete observations. A 

selective usage of geostatistical methods and their parameters is critical in 3D 

geocellular and acoustic property model construction so that the populated models 

can address questions in 3D reservoir-scale interpretations. 
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2.  Five predefined variables interactively influence the chronostratigraphic 

significance of seismic reflections at the reservoir scale, and alternative solutions if 

not picking a seismic event as an HFS surface. In general, one can expect 

 Variable 1 – clinoformal versus flat-lying  HFS surface:  

Horizon interpretations of both surfaces are safer to apply ‘chronostratigraphic 

significance of seismic reflections’ within carbonate than mixed carbonate/clastic 

successions. Increasing seismic frequency, in general, helps improve the accuracy 

of seismic chronostratigraphic interpretation for a flat-lying HFS surface, especially 

for stratigraphic intervals with either fast lateral lithofacies variation or severe intra-

facies heterogeneity featured by a large velocity spread and poor velocity 

continuity. In comparison, increasing seismic frequency is less influential in 

improving the accuracy of seismic chronostratigraphic interpretation, and is valid 

only when the intra-facies heterogeneity is intermediate to fierce.   

 Variable 2 – lateral lithofacies variation:  

For a flat-lying/gently-dipping stratigraphic interval, increasing its lateral 

lithofacies variation, in general, would lead to degraded seismic 

chronostratigraphic interpretation/increasing TCE, which can be improved by 

increasing seismic frequency. Chapter 2 fitted a power function between the lateral 

impedance variogram range and the mean of amplitude variance. Therefore, the 

author inferred a positive correlation between this particular seismic attribute and 

TCE, thus recommend to use it to revise the weighting function in published 

volumetric picking algorithm to improve the accuracy of computation seismic 

chronostratigraphy. Besides, for a strongly-progradational stratigraphic interval, its 

faster lateral lithofacies variation compared with overlying platforms, can result in 

HFC-scale misinterpretations. 
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 Variable 3 – mixed carbonate/clastic versus carbonate successions with complex 

lithofacies-sonic velocity relationship:  

The TCE is, in general, smaller for carbonate successions than that for mixed 

carbonate-siliciclastic successions, when one interprets either flat or clinoformal 

stratigraphy at HFS scale. This effect is more significant on the flat than the 

clinoformal stratigraphy. At the HFC scale, the author observed diachronous 

landward-dipping reflections following the porous shelf-margin reservoir facies, 

which is more severe for the carbonate than the mixed shelf margin. Fortunately, 

increasing seismic frequency can mitigate this HFC-scale diachronous 

phenomenon, by reducing the size and lard-ward dipping angle of these 

diachronous patchy reflectors.  

 Variable 4 – intra-facies heterogeneity reflected as spatial sonic velocity/impedance 

distribution:   

In general, an increasing in lateral impedance variation would lead to increasing 

TCE within flat-lying siliciclastic stratigraphy. For the mixed carbonate/clastic 

(Case 1) and carbonate successions (Case 2), the author modeled spatial velocity 

variation as a combination of velocity value spread and spatial velocity continuity 

via five scenarios (S1~S5). It appears that for both cases, the more severe TCE's 

occurs for S4 and S5 when the velocity spread is large. Fortunately, increasing 

seismic frequency significantly improves the chronostratigraphic correlation for 

these scenarios. 

 Variable 5 – seismic frequency:  

As discussed when addressing other variables, interpretation from high-frequency 

seismic volume does help improve seismic chronostratigraphic interpretation in 

limited scenarios, such as flat-lying stratigraphy and clinoformal stratigraphy with 
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intermediate to fierce intra-facies heterogeneity. Beyond of its applicable 

conditions, to reconstruct a clinoformal surface with small intra-facies 

heterogeneity, one can consider applying preferential interpretation with well-

interpolation based on TCE map-view distributions gained from the forward 

modeling studies or integrate horizon patches from interpretations from different 

frequency components, which were obtained via selective frequency filtering.  

3. Based on the forward modeling studies, the proposed decision tree in Chapter 4 for 

manual interpretation strategies and attribute-driven volumetric picking scheme in 

Chapter 2 respectively suits scenarios with or without sufficient geoscientists’ prior 

knowledge.  

5.2 FUTURE WORK 

Entailing the completion of this dissertation, the author and her advisers consider 

the listed two topics as potential future work, including  

 Future work on attribute-driven volumetric picking. This topic would require a 

further search for a particular seismic attribute with high correlation with TCE from 

the mixed carbonate/clastic and the carbonate shelf-margin-platform successions 

built in Chapter 3 and 4. We perceive it as an extension of Chapter 2 which 

proposed the attribute-driven volumetric picking scheme upon the forward 

modeling results of flat-lying siliciclastic stratigraphy and thus need further 

attribute selection for the rest models in this dissertation. The final deliverables 

would further contribute to computation seismic chronostratigraphy, especially in 

scenarios with limited geoscientists’ prior knowledge. 

 Future work on the influence from these improved reservoir-bounding surfaces on 

reservoir property modeling. Up till this point, this dissertation mainly focused on 
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improving seismic chronostratigraphic correlation for reservoir-bounding surfaces 

at HFS scale, with a secondary touch on diachronous HFS-scale seismic reflections 

following shelf-margin porous reservoir-prone lithostratigraphic surfaces. A further 

evaluation on how the improved chronostratigraphic reservoir-bounding HFS 

surface and stratigraphic layering further contributes to reservoir property 

prediction can be another interesting extension of this study. Kingdom Field 

dataset, with closely spaced wells and recently collected production data, can be an 

excellent test ground.  
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Appendix  

In this study, the author constructed the intermediate case of spatial velocity 

distribution (𝑆3), using the normalized velocity distribution per facies from Chapter 3, and 

the best efforts in fitting velocity variograms for selected zones using the available data. 

This appendix includes details in velocity variogram analysis and modeling.  

As for the subsurface-constrained Grayburg-Lower Queen Formation of G10~G13 

HFS, the author started with a map-view anisotropy analysis via a standardized variance 

map (Figure A.1a) on a grid of 200 by 200 meters. As the standardized variance just 

narrowly approached one in its minor orientation (75o), which roughly aligns with the 

depositional dip direction, the author estimated an anisotropy ratio of 1.72 from the 0.6 

contour. Afterward, the author calculated an experimental variogram per lag along both the 

major (shown as green dots) and minor orientation (shown as magenta dots, Figure A.1b). 

The author then applied a least-square fit and then obtained a spherical variogram with a 

minor range of 3205 m. Furthermore, the author assigned 5515 m as the major range after 

multiplying the estimated anisotropy ratio. Finally, the author adopted the nugget and sill 

from this map-view variogram analysis, and then manually fitted the vertical range per 

HFS (red dots in Figure A.1c) of Grayburg-Lower Queen Formation, referring to their 

experimental variograms (black dots in Figure A.1.c). 
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Figure A.1: Velocity variogram analysis per HFS for subsurface constrained G10~G13 

HFS of Grayburg and Lower Queen platforms. (a) experimental 

standardized variance map showing velocity anisotropy. (b) Experimental 

variogram along major (green dots) and minor orientation (magenta dots), 

where a spherical variogram was fitted along the minor orientation by least-

square regression. (c) Manually-fitted vertical range after fixing the 

variogram nugget and sill from (b). (d) a table showing resultant velocity 

variogram parameters.   
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In comparison, as for the outcrop-constrained Upper San Andres shelf margin, its 

velocity variogram analysis was implemented upon 63 outcrop plugs from Kenter et al. 

(2001). These sonic velocity samples were imported as pseudo logs and then upscaled to 

attach to the 2D stratigraphic grid of HFC 6 (Figure A.2a) with two zones: one is the 

siliciclastic-rich transgressive/T-hemicycle, whereas the other is the carbonate-dominant 

regressive hemicycle. Subsequently, the author calculated experimental semi-variance per 

lag (black squares in Figure A.2b) along vertical and horizontal orientation for both T- and 

R-hemicycle. Finally, a spherical variogram was fitted per zone using least-square 

regression, with parameters recorded in Figure A.2c. 

 

 

Figure A.2: Velocity variogram analysis for the transgressive/T-hemicycle and 

regressive/R-hemicycle of Sonnenfeld and Cross (1993)’s HFC6 in G9 HFS. 

(a) up-scaled velocity samples to the stratigraphic grid of HFC5 in G9 HFS, 

which contains two zones of T-hemicycle and R-hemicycle, (b) variogram 

models fitted by least-square regression for two zones, and (c) recorded 

variogram parameters.  
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Regarding the comparison and analysis of these fitted variograms for the selected 

zone, the author first compared the fitted variogram models for Grayburg-Lower Queen 

platforms (Figure A.1) and the Upper San Andres shelf margin (Figure A.2). This 

comparison suggested a more continuous spatial velocity distribution for the platforms, 

with its larger vertical, major and minor range approximately in the magnitude of 4~15 

times than the later one. In addition, the larger nugget for the former one at zero lag 

suggested a chaotic correlation when two points are closely-spaced. Within the Grayburg-

Lower Queen platform, the fitted vertical ranges indicated an increasing velocity continuity 

with the depth from G13 to G10 HFS. This result is probably due to a thicker 

lithostratigraphic bedding in G10 HFS compared with interbedded sandstone and anhydrite 

in G13 HFS. Finally, a comparison of the fitted variograms for the T- and R- hemicycle of 

HFC6 suggested a more continuous velocity distribution for the carbonate-dominant 

regressive hemicycle than the siliciclastic-rich transgressive hemicycle. This result agrees 

with the field observations of less homogeneous sandstone in the transgressive hemicycle. 
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Glossary 

 

The author managed to limit the usage of abbreviations. Table G.1 listed all 

abbreviations used in this dissertation.  

 

 

Table G.1: Abbreviations used in this dissertation.  
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