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This dissertation investigates automatic geolocation of documents (i.e. identification of
their location, expressed as latitude/longitude coordinates), based on the text of those documents
rather than metadata. I assert that such geolocation can be performed using text alone, at a sufficient
accuracy for use in real-world applications. Although in some corpora metadata is found in abun-
dance (e.g. home location, time zone, friends, followers, etc. in Twitter), it is lacking in others, such
as many corpora of primary-source documents in the digital humanities, an area to which document
geolocation has hardly been applied. To this end, I first develop methods for accurate text-based
geolocation and then apply them to newly-annotated corpora in the digital humanities. The geolo-
cation methods I develop use both uniform and adaptive (k-d tree) grids over the Earth’s surface,
culminating in a hierarchical logistic-regression-based technique that achieves state of the art results
on well-known corpora (Twitter user feeds, Wikipedia articles and Flickr image tags).

In the second part of the dissertation I develop a new NLP task, text-based geolocation
of historical corpora. Because there are no existing corpora to test on, I create and annotate two
new corpora of significantly different natures (a 19th-century travel log and a large set of Civil War
archives). I show how my methods produce good geolocation accuracy even given the relatively
small amount of annotated data available, which can be further improved using domain adapta-
tion. I then use the predictions on the much larger unannotated portion of the Civil War archives to
generate and analyze geographic topic models, showing how they can be mined to produce interest-
ing revelations concerning various Civil War-related subjects. Finally, I develop a new geolocation
technique for text-only corpora involving co-training between document-geolocation and toponym-
resolution models, using a gazetteer to inject additional information into the training process. To
evaluate this technique I develop a new metric, the closest toponym error distance, on which I show
improvements compared with a baseline geolocator.
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Chapter 1

Introduction

Georeferencing, the relation between information and geographic location, is an important compo-

nent of textual understanding (Hill, 2006). Georeferencing is extensively used in knowledge organi-

zation, and geographic references are found throughout general conversion and writing (Buchel and

Hill, 2009). It has been estimated that 50-80% of textual documents contain geographic references

(Petras, 2004; Ridley et al., 2005). Automated georeferencing has become increasingly important

in day-to-day life through the ubiquity of location-based services in many components of smart

phones.

This dissertation focuses on one georeferencing task, that of document geolocation, which

locates an abstract document (a stretch of text, which may in reality be a paragraph, article, chapter,

etc.) in geographic space. In other words, it identifies the location that forms the primary focus

of each document—for example, identifying an article whose focus is on Austin, Texas with a lati-

tude/longitude coordinate that represents the city (perhaps its geographic center or downtown area).

This can be thought of as one way to summarize the geographic content of the document.

Figure 1.1 shows the kind of summary possible using document geolocation, plotting on

a per-chapter level the paths followed in John Beadle’s Western Wilds, and the Men Who Redeem

Them, published in 1878 (§2.3.1). Each location corresponds to a paragraph and is labeled by the

chapter in which it occurs (using a Roman numeral). Lines are drawn connecting adjacent para-

1



Figure 1.1: Plot of locations in Beadle’s Western Wilds labeled by chapter, with lines connecting
locations for adjacent paragraphs within a given chapter.

Figure 1.2: Plot of one interpretation of the paths and locations followed in Homer’s Odyssey, from
Google Lit Trips.
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graphs within a given chapter, with different colors for each chapter. This map is similar to the maps

produced by the Google Lit Trips project1, as shown in Figure 1.2, which plots an interpretation of

the locations found in Homer’s Odyssey. Both are great teaching tools and serve as points of ref-

erence for further discussion of entire historical worlds. The difference between the two is that the

locations in the Odyssey map are subject to a great deal of interpretation and thus the map can only

be drawn by hand, but the map of Western Wilds could potentially be drawn automatically using

document geolocation, particularly in the presence of a carefully tailed sequence model (§7.5).

This dissertation focuses on document geolocation, in particular using a document’s text

rather than its metadata.2 The motivation for this, including the core theses of this dissertation, is

covered in §1.1. The structure of a text-based geolocation system is described in §1.2, and §1.4

discusses previous work in document geolocation. Further discussion of the applications of geolo-

cation in general is found in §1.5, and applications to the digital humanities, a core component of

the second half of this dissertation, are discussed in §1.6. Finally, §1.7 presents an outline of the rest

of this dissertation.

1.1 Core theses

The primary thesis of this dissertation is that geolocation can be performed with accuracy suf-

ficient for useful real-world applications by using only the text of a document, even without

any available metadata associated with the document. The metadata of a document is any in-

formation associated with the document other than its raw text, e.g. hyperlinks to other documents,

the social media profile of the author of the document in a social network, a user’s self-declared

location, the set of other users connected to such an author through a friend or follower relationship,

etc.

Metadata-based approaches can achieve great accuracy,3 but are very specific to the partic-

1http://www.googlelittrips.com/GoogleLit/Home.html
2This dissertation is partly based upon Wing (2011); Wing and Baldridge (2011); Roller, Speriosu, Rallapalli, Wing and

Baldridge (2012); and Wing and Baldridge (2014).
3For example, Schulz et al. (2013) obtain 79% accuracy within 100 miles for a US-based Twitter corpus, compared with

49% using my methods on a comparable corpus.
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ular corpus and the types of metadata it makes available. Twitter,4 for example, includes a great

deal of metadata with its tweets, most of which is unavailable e.g. for Wikipedia documents.5 In

some domains, such as the digital humanities, documents are typically pure text, lacking any meta-

data. Text-based approaches can be applied to all types of corpora; metadata can be additionally

incorporated when available.

In the first part of this dissertation I present numerous methods for supervised text-based ge-

olocation, including novel ones I have developed. These methods divide the Earth into a grid of cells,

each covering a particular region, using either a uniform or adaptive (k-d tree) grid (Roller, Speriosu,

Rallapalli, Wing and Baldridge, 2012). I then treat geolocation as a classification problem. In this

case, the number of cells is often very large. This leads to another thesis of this dissertation, that

geolocation as a classification problem can be successfully solved using discriminative methods

despite having thousands or tens of thousands of classes. I do this using a hierarchical classifi-

cation method that I introduce, which achieves state-of-the-art results in text-based classification.

In the second part of this dissertation I investigate a particular use case of my methods,

text-only historical corpora in the digital humanities (§1.6). By hand-annotating part of some dig-

ital humanities texts, I show that, if even a fraction of the paragraphs of a document can be

annotated with geographic coordinates, sufficient accuracy can be achieved to facilitate inter-

esting real-world applications. I hand-annotated part of a 19th-century travel log and supervised

the annotation of a portion of a major primary-source archive of Civil War documents (§2.3). I train

models on this annotated data and use these models to label the remainder of the data, which allows

for applications relevant to the digital humanities, such as geographic topic models (§5.5.1).

One way to increase the accuracy of predictions given a fairly small set of labeled data is

through domain adaptation (Daumé III, 2007; Chen et al., 2011; Daumé III et al., 2010), incor-

porating a model trained on a different (out-of-domain) corpus for which abundant labeled data is

available (in my case, the English Wikipedia) in addition to or instead of the smaller amount of in-

domain labeled data available. My experiments show that purely using Wikipedia with no in-domain

labeled data performs surprisingly well. Judiciously combining the two sources of labeled data
4http://www.twitter.com/
5http://www.wikipedia.org/

4



can produce learning curves (curves showing performance over differing amounts of training

data) that significantly outperform only in-domain data when only a small amount of in-domain

data is available, and at least do no worse when a larger amount is available. This produces a curve

that is flatter and with greater averaged accuracy over differing amounts of training data. Such curves

can be computed dynamically while annotation is taking place to determine how much data needs

to be annotated.

Another avenue I explore is using document-geolocation techniques to inform and im-

prove upon toponym resolution, expanding upon the work of Speriosu (2013). Among other

things, I demonstrate a means of using co-training to simultaneously train a document geolocator

and a toponym resolver on a combination of document-geolocated Wikipedia text and toponym-

resolved Civil War text. The potential advantages of this method are great; as in other methods

for joint inference, the two knowledge sources can inform each other, each with their own separate

training data and each one potentially providing separate sets of constraints. (For example, some of

Speriosu’s toponym resolution methods, such as SPIDER (§6.2), do joint inference over toponyms.)

I produce improvements on a metric that generates a document-geolocation-inspired error distance

from a set of toponym resolutions. In addition, I develop some new toponym-resolution techniques,

variants on existing techniques which incorporate feedback from document-level annotations when

it is available. It is hoped that this work will serve as a springboard for further research in the

combination of document geolocation and toponym resolution.

1.2 Structure of a text-based geolocation system

Geocoordinates are real-valued latitude/longitude pairs, and thus theoretically geolocation should

be treated as a regression problem. However, the function that needs to be predicted is highly

complex and irregular, and for this reason it is common to discretize the Earth’s surface into grid

cells, which allows the task to be treated as a classification problem. This is the approach followed

in this dissertation, and it allows for geolocation techniques that fall under the rubric of language

modeling approaches in information retrieval (Ponte and Croft, 1998; Manning et al., 2008). The

general strategy is to associate each training set document with the discrete grid cell that contains

5



Figure 1.3: Ranking of a test document in a uniform 0.1◦ grid. Relative Naive Bayes rank is shown
for cells for test document Pennsylvania Avenue (Washington, DC) in ENWIKI13 (§2.2.2), sur-
rounding the true location. (Constructed with assistance from Grant DeLozier.)
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it. The set of training documents associated with a cell is concatenated into a pseudo-document, and

the language model of this pseudo-document (i.e. the statistical description of the distribution of

words in the document) computed. The language model of the test document is likewise computed,

and some method (e.g. Naive Bayes) is then used to compare the two, generating a score. The

centroid of the highest-scoring cell is then chosen as the predicted location of the test document.

Figure 1.3 shows an example of this process for a document in the English Wikipedia that describes

Pennsylvania Avenue in Washington, DC.

The location that a document geolocation system associates with a document can be spec-

ified at various levels of resolution, for example an exact point in space, an address, a city, or a

higher-level administrative region (e.g. a state, province or country), and can be identified by name

(i.e. in the form of a toponym), by latitude/longitude coordinate, or by a polygon of such coordi-

nates. Such a polygon can be either in the form of a bounding box (a rectangle in latitude/longitude

space, identified by the coordinates of two opposite corners) or a more complex shape. It should

be understood that the identification of a location by coordinates does not necessarily indicate that

the level of resolution of this location should be taken as an exact point. For example, a document

whose focus is on a state or other higher-level administrative region may nonetheless be geotagged

in a corpus with a point coordinate, typically chosen as either the geographic center, population cen-

troid, or location of the seat of government. In this dissertation, I typically identify locations by point

coordinates, but it should be understood that this can be problematic for large administrative regions

(e.g. treating the United States as a point in Kansas or Washington, D.C.). An alternative, suggested

by Speriosu (2013), is to treat administrative regions as sets of representative points derived from a

gazetteer (a list of named locations and associated coordinates), spanning the entire region.

Document geolocation makes the assumption that a document can be adequately associated

with a single location—akin to the one sense per discourse assumption commonly used in word

sense disambiguation (Yarowsky, 1995). This is only a well-posed problem for certain documents,

generally of fairly small size. Nonetheless, there are many natural situations in which such collec-

tions arise. For example, a great number of articles in Wikipedia have been manually geotagged with

a coordinate; this allows those articles to appear in their geographic locations while geobrowsing in

7



an application like Google Earth. Images in social networks such as Flickr6 may be geotagged by

a camera and their textual tags can be treated as documents. Likewise, tweets in Twitter are often

geotagged, particularly when sent from a mobile phone in which the geotagging feature has been

enabled. In this case, it is possible to view either an individual tweet or the collection of tweets for a

given user as a document, respectively identifying the document’s location as the place from which

the tweet was sent or the home location of the user (assumed to be nearby the tweets sent by that

user). In the case of a long document, e.g. a book, the treatment normally used in this dissertation is

to break up the document into chunks, either at the paragraph level or a fixed number of sentences

in length (e.g. 10 or 20).

The document geolocation methods used in this dissertation break the Earth into a geodesic

grid, i.e. a grid of cells that tile the Earth into regions. This allows geolocation to be treated as a type

of classification problem, as discussed in §1.1. An algorithm is used to provide a ranking of the cells

based on the document being geolocated, and the top-ranked cell is used to predict the document’s

location. In particular, the predicted location is the centroid of the training documents in the cell,

where the centroid is computed by separately averaging the latitudes and longitudes of the training

documents. (This was shown by Roller et al. (2012) to be superior to using the geographic center,

as was done in Wing and Baldridge (2011), because it better handles the situation where the training

documents—and hence, by assumption the test document—are bunched near one of the edges of the

cell in question.)

The ranking of a cell is determined by scoring each cell separately, comparing the language

model of the test document with the language model of the concatenation of the training documents

in a given cell. Simple unigram (bag-of-words) language models are generally used. (Experiments

using bigram models performed by me and by Han et al. (2014), yielded little gain, but van Laere et

al. (2014) was able to demonstrate improvements.) The technique used to compute the ranking may

be Naive Bayes (Lewis, 1998), Kullback-Leibler (KL) divergence (Zhai and Lafferty, 2001), logistic

regression (Hosmer Jr. and Lemeshow, 2004), a hierarchical classifier (Silla Jr. and Freitas, 2011),

or other strategies.

In some situations, the actual scores of cells other than the top-ranked are used. For exam-
6http://www.flickr.com/
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ple, an alternative to simply using the centroid of the top-ranked cell as the predicted cell is to use

the mean shift algorithm. The motivation is that the cells near the top in rank may tend to cluster

in a particular region whereas the top-ranked cell may happen to be located elsewhere; in this case

the weight of evidence may be taken to be in favor of the cluster. (However, experiments I per-

formed using mean shift did not produce improvements.) More generally, the set of scores of cells

can be viewed as a probability distribution over the cells—an approximation to a continuous prob-

ability distribution over the Earth. Some applications, for example some of the toponym-resolution

techniques discussed in §6.2, make use of this entire distribution.

The layout of the grid is an important component of the document-geolocation process.

Perhaps the simplest layout is a uniform grid of cells, each of which forms a square in latitude-

longitude space (for example, having 1◦ per side). Such squares are not all of equal area, because

longitude lines move closer together as one moves away from the Equator towards either pole.

Equal-area alternatives, such as the quaternary triangular mesh, have been considered (Dias et al.,

2012). A different issue with uniform grids is that they over-represent rural areas at the expense of

urban areas, which I handle through the use of an adaptive k-d grid (§3.2.2). Another alternative is

to directly use a grid constructed from a gazetteer of cities (Han et al., 2014).

Measurement of the accuracy of a particular geolocation prediction can be done in various

ways. A simple possibility, used by some researchers, is cell accuracy, i.e. the fraction of correctly

predicted cells. However, this has the disadvantage that the metric cannot easily be used to compare

different grid layouts, particularly with different-sized cells. I use alternative metrics based on error

distance (the distance between the predicted and correct location), namely mean and median. I also

use acc@161, the fraction of documents where the error distance is within 161 km (100 miles), from

Cheng et al. (2010) and approximating the concept of “within the same metro area”.

It is possible to do away entirely with a grid and directly model the continuous nature of

the Earth’s surface. For example, Eisenstein et al. (2010) use Gaussian distributions and variational

Bayes methods to model the locations of Twitter users in the United States of America. How-

ever, there are two problems with this. One is that Gaussian distributions are unsuited to modeling

spherical surfaces, which have no natural endpoints; instead, spherical distributions like the von
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Mises-Fisher distribution (Dhillon and Sra, 2003) would need to be employed. More fundamentally,

however, this and related works (Ahmed et al., 2013; Hong et al., 2012; Eisenstein et al., 2011b)

have been tested only on quite small corpora, and there are serious questions as to whether the meth-

ods can be scaled to large corpora of the sort I consider in this dissertation. Grid-based models, on

the other hand, are simpler to construct and are known to have good performance over large datasets.

1.3 Toponym identification, toponym resolution and document

geolocation

Closely related to document geolocation are toponym identification and toponym resolution. All

three fall under the general rubric of georeferencing. It is important to understand how document

geolocation differs from the other two, and why it is not sufficient to simply identify and resolve the

toponyms in a text.

Toponym identification is the extraction of place names in text, such as identifying the

place name “Springfield” and determining that it is, in fact, a place name rather than e.g. a personal

name. This is normally viewed as a subtask of named entity recognition (NER). Toponym resolution

(Leidner, 2008; Yuan, 2010; Speriosu, 2013; Rupp et al., 2013) is the attachment of coordinates to

place names, including the resolution of ambiguous place names, such as disambiguating the textual

mention “Springfield” to the city of Springfield, Massachusetts.

Document geolocation is clearly related to toponym resolution in that both seek to resolve

text to a location, but the scope is quite different. Toponym resolution often occurs with the aid of

a gazetteer, which lists, for each ambiguous toponym, the possible locations that it can be mapped

to. The resolution step then boils down to a choice among fixed alternatives, making use of various

sorts of context information such as the surrounding text or the possible or actual identities of other,

nearby toponyms. (Muddying the waters somewhat is the fact that it is possible to do toponym

resolution without a gazetteer, making use of document-level geolocation annotations, such as in

DeLozier et al. (2015).)

Document geolocation is much less constrained, in that it seeks to identify the location that
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forms the primary focus of an entire document. That document may well contain toponyms, which

may be a strong hint as to the location of the document. Thus, toponym resolution could serve as

an ancillary component of a document geolocation system. However, toponym resolution by itself

is insufficient for document geolocation, both because there are often non-toponym words that are

highly geographically indicative and because some or all of the toponyms in a text may not be near

the actual location of the document.

The relation between them can be seen in the following text from John Beadle, Western

Wilds (§2.3.1):

From this region goes most of the lumber used along the road, as far as Salt Lake City;

but over all that interior there is an ever increasing scarcity of good timber. Woods

are found only upon the mountains; the inner plains of the Great Basin are as bare

of trees as if blasted by the breath of a volcano. At Verdi Station, 5,000 feet above

sea-level, we pass the State line and enter California. Crossing the Truckee, we take

an additional locomotive and enter upon the steepest ascent of the Sierras. The first

large curve brings us above Donner Lake, so named in memory of those unfortunate

emigrants from Quincy, Illinois, who here starved and froze and suffered away the long

cold winter of 1846. Next we look down upon Lake Bigler, and another hour brings

us to Summit Station, highest point on the Central Pacific, 7,042 feet above sea-level,

1,669 miles from Omaha, and 105 from Sacramento.

This text is discussing an area in the Sierra Nevada mountains of eastern California, along the Central

Pacific railroad, but includes toponyms corresponding to several locations in the United States, some

of which are directly relevant to the subject at hand and some of which are not, and some of which

are ambiguous (e.g. “Truckee” and “Sacramento” are both towns and rivers, and there are in fact

several places in the United States named “Omaha” and “Sacramento”).

Toponym resolution rather than whole-document geolocation is more common in real-world

georeferencing tools, perhaps because document-level geolocation isn’t always a well-defined task

for a given document, even when divided up into small chunks such as paragraphs. However, to

the extent that it is applicable, I assert that document geolocation is more useful than toponym
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resolution because of its ability to summarize the whole topic of the document (or document

chunk) in one location. Examples of these summaries are found elsewhere in this dissertation; see,

for example, Figure 1.1 and Figure 5.11.

1.4 Previous work

Early work on document geolocation used heuristic algorithms, predicting locations based on to-

ponyms in the text (Ding et al., 2000; Smith and Crane, 2001). More recently, various researchers

have used topic models for document geolocation (Ahmed et al., 2013; Hong et al., 2012; Eisen-

stein et al., 2011b; Eisenstein et al., 2010) or other types of geographic document summarization

(Mehrotra et al., 2013; Adams and Janowicz, 2012; Hao et al., 2010). More recent work in doc-

ument and/or user geolocation tends to make use of either the text of the document in the form of

a language model—as this dissertation does—or metadata of various sorts, such as document links

and social network connections. This research has sometimes been applied to Wikipedia (Overell,

2009; van Laere et al., 2013), Facebook (Backstrom et al., 2010) or Flickr (Serdyukov et al., 2009;

O’Hare and Murdock, 2013), but more commonly to Twitter (see below). Some work involving

domain adaptation has been done, such as applying data from Twitter to Flickr estimation (C. Hauff,

2012) and data from both Twitter and Flickr to Wikipedia (van Laere et al., 2014).

Much work on Twitter makes use of the extensive metadata provided with tweets and users,

focusing on features such as time zone (Mahmud et al., 2012), declared location (Hecht et al.,

2011), language identification (Graham et al., 2014), or a combination of these (Schulz et al., 2013).

A recent, fruitful area of research has been the creation of network-based models that make use of

either the friends and followers (Compton et al., 2014; McGee et al., 2013; Sadilek et al., 2012) or

the unidirectional or reciprocal @-mentions in tweets, i.e. cases where one user refers to another user

in a tweet (Jurgens, 2013; Rahimi et al., 2015b). This makes the assumption that the ego network

of users directly connected to a given user tend to be located nearby that user, an assumption that

has been demonstrated in the case of mutual friend/follower relationships (Takhteyev et al., 2011;

McGee et al., 2011). Using this assumption, a global distribution of locations can be computed using

techniques such as label propagation (Talukdar and Crammer, 2009) and total variation minimization
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(Rudin et al., 1992).

The primary alternative line of research, followed by this dissertation, focuses on text-based

geolocation using language models. The overall structure of such a system is described in detail in

§1.2. Earlier models (Wing and Baldridge, 2011; Serdyukov et al., 2009; O’Hare and Murdock,

2013) used Naive Bayes models over a uniform grid, which was then extended to an adaptive k-d

grid (Roller, Speriosu, Rallapalli, Wing and Baldridge, 2012) and to the use of logistic regression

(Wing and Baldridge, 2014; Han et al., 2014), and further to hierarchical logistic regression (Wing

and Baldridge, 2014). An additional area of research has been the use of smoothing of neighbor-

ing areas to increase geolocation accuracy, such as through kernel density methods (Hulden et al.,

2015; Lichman and Smyth, 2014; Thom et al., 2012). van Laere et al. (2013) proposed a two-step

process for geolocating Flickr images in which a language-model-based approach is followed by a

similarity search within a given grid cell, greatly improving the accuracy. Current research involves

the combination of network-based and language-model-based methods (Rahimi et al., 2015a).

1.5 Applications of document geolocation

Document-level geolocation has numerous applications. It is a critical component of location-based

services, which are concerned more generally with locating users of cell phones, social networks,

etc. and directing location-specific content to them, for example navigational directions; recommen-

dations for local social events or restaurants (Quercia et al., 2010); directions to nearest businesses

of various types; alerts of traffic, adverse weather, or local sales; person-to-person location services;

and targeted advertisements. Other applications are possible as well given the ability to locate the

source of a document in geographic space, e.g. trend detection of epidemic dispersion (Lampos et

al., 2010; Paul and Dredze, 2011), earthquake prediction (Sakaki et al., 2010), or election forecasting

(Tumasjan et al., 2010).

Numerous applications of document-level geolocation focus specifically on the text of the

document in question. One major issue is the grounding of word meaning and language usage

in geography. For example, distributions of words in geographic space can be generated using a

method similar to the Average Cell Probability (ACP) inference algorithm (§3.4.4), as in Figure 1.4
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Figure 1.4: Wikipedia distribution of mountain in geotagged articles, plotted using Google Earth.

Figure 1.5: Geographic topics found in a food dataset based on geotagged, term-tagged images,
from Yin et al., 2011.
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Figure 1.6: Usage of vague geographic terms to refer to areas of Chicago, based on geotagged,
term-tagged images from Flickr. From Hollenstein and Purves, 2010.

(Baldridge et al., 2012). These can be viewed as representations of word meaning complementary

to the context-based vector space models of word meaning in distributional semantics (Erk, 2013).

Topic models can also be adapted to geographic space, as in Figure 1.5 (Yin et al., 2011).

Geolocation, especially of social media, can also serve in sociological studies of word

meaning and usage (Eisenstein et al., 2011a). Examples are the prevalence of different second

languages across a metropolitan area (Mocanu et al., 2013) (Figure 1.7) or the extent of use of vague

geographic terms such as “downtown” to refer to particular neighborhoods in a city (Hollenstein and

Purves, 2010) (Figure 1.6).

Only about 2.02% of tweets are geotagged with a location, either a city or neighborhood

chosen from a list (1.8%) or exact latitude-longitude coordinates (1.6%); these numbers do not add

up to the total of 2.02% because many tweets have both types of geotags (Leetaru et al., 2013). Only

8.2% of all users in the period studied by Leetaru et al. produced any geotagged tweets, with over

half sending only one geotagged tweet. This suggests that there is a great deal of room for automatic

geolocation techniques that make use of other information.

As an example, Leetaru et al. describe a fairly simple algorithm to deduce a location from

the free-form user-declared location in users’ profiles, along with related profile information. They

claim this allows 34% of tweets to be geolocated, although only at the level of a user rather than
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Figure 1.7: Prevalence of second languages in the New York metropolitan area, based on geotagged
tweets. Blue = Spanish, Light Green = Korean, Fuchsia = Russian, Red = Portuguese, Yellow =
Japanese, Pink = Dutch, Grey = Danish, Coral = Indonesian. From Mocanu et al., 2013.
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an individual tweet. In practice, of course, there will be some loss of both precision and accuracy

in such a technique compared with annotated tweet-level geotags, especially exact coordinates, al-

though in this case the loss may be acceptable: a 0.72 correlation—generally considered high—is

claimed between the new predicted locations and the annotated tweet-level geotags.

An additional factor arguing for automatic geolocation is that the set of geotagged tweets

may not follow the same word/topic/etc. distribution as the overall set of tweets (Pavalanathan and

Eisenstein, 2015). Tweets geotagged with exact coordinates come primarily from cell phones, as

opposed to the various other ways of creating tweets (e.g. desktops, laptops, pads), and only when

the cell phone user has explicitly enabled this feature, which is not on by default. This suggests that

the average user producing geotagged tweets is more likely to use his/her cell phone as the primary

means of digital communication and is less concerned about privacy than others. Together they

point to young “digital natives”, and anecdotal investigations of geotagged tweets bear this out, with

high-school students and Internet slang heavily represented (Pavalanathan and Eisenstein, 2015).

There are significant ethical issues involved in social media geolocation. This is especially

the case with methods such as text-based geolocation that are capable of recovering a latent signal

representing location that a user might want to hide but has no clear means of doing so. Geolocation

techniques that rely on settings over which the user has control, such as explicit latitude/longitude

geotags or a voluntarily provided location field, are less problematic, but there is often no way to

defeat a text-based or network-based geolocation algorithm other than not to use social media at all.

Most users in fact greatly value the privacy of their location (Junglas and Spitzmuller, 2005). Smith

et al. (1996) identify four areas of privacy that usually trigger concerns in users:

1. the collection of personal information;

2. the unauthorized use of that information;

3. unauthorized access to that information;

4. errors in the information.

Item #2, unauthorized use, is the most worrisome per the authors, leading to negative outcomes

ranging from mildly annoying (e.g. receiving spam) to potentially life-threatening. For this reason, it
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is considered critically important to develop standards to protect the privacy of location information

(McMullan, 2014). Various researchers have sought to develop such standards (Michael et al., 2008;

Anuar and Gretzel, 2011; ISACA, 2011), but laws to enforce these standards are still in the process

of being developed.7

1.6 Application to digital humanities

Millions of historical documents exist, and humanities researchers traditionally faced a prohibitive

task doing large-scale analyses of such primary sources. As a result, they had to be content with

close reading and analysis of a small set of carefully selected sources. However, the development of

accurate optical character recognition (OCR) software, combined with computational data analysis

techniques, has recently facilitated the development of the field of digital humanities (Burdick et

al., 2012), allowing such large-scale analyses to be done. Geolocation can be of great assistance

in quickly extracting and summarizing the geographic data available in such datasets, and in fact

an entire field, known as the spatial humanities (Bodenhamer et al., 2010), has developed around

the marriage of geographic information systems (GIS) and the digital humanities. The quantitative

methods in this field have allowed for a revolution in the detailed and large-scale understanding

of historical and literary phenomena that heretofore had resisted analysis. The techniques pursued

in this dissertation are of particular interest to this field because the documents used in the field

typically lack the metadata common to social media datasets, forcing geolocation to rely primarily

or exclusively on the text itself.

Mapping has long been important to the humanities due to its ability to compactly repre-

sent large amounts of data. In the mid 19th century, Charles Joseph Minard produced a series of

such maps variously representing the movement of goods and people across Europe, including what

“may well be the best statistical graphic ever drawn” (Tufte, 1986) — Minard’s famous 1869 map

depicting Napoleon’s disastrous 1812 invasion of Russia (Figure 1.8). At the end of the 19th century,

Charles Booth produced a famous series of maps of poverty and crime in London (Booth, 1902).

7In the United States, as of September, 2015 there are laws in various states to protect the privacy of location information
but no federal law, although congressional bills have been introduced to this effect, such as S. 237 and H.R. 491 in 2015, S.
2171 in 2014 and H.R. 983 in 2013.
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Figure 1.8: Charles Joseph Minard’s famous 1869 map of Napoleon’s Russia Campaign.

However, before the so-called “spatial turn” in the humanities beginning in the 1990’s (Guldi, 2009)

that led to the emergence of the spatial humanities, such maps were difficult and time-consuming

to produce. Recent years have seen an explosion of map-related research projects in the humanities

(Cohen, 2011). Through mining historical texts, researchers have mapped topics as disparate as

the spread and retreat of cholera and other diseases in 19th century Britain, as shown in Figure 1.9

(Murrieta-Flores et al., in press); the maritime transmission of Buddhism from India to China along

trade routes (Lancaster, 2014); Robert E. Lee’s knowledge (or lack thereof) of troop movements

during the Battle of Gettysburg (Knowles, 2013); the spread of accusations of witchcraft during the

Salem witch trials of the late 1600’s (Ray, 2002); the reasons underlying the Dust Bowl of the 1930’s

(Cunfer, 2008); and other issues. Current work is focused on moving beyond simply connecting GIS

and the humanities to incorporate advances in computational linguistics (Gregory et al., 2013).

To aid the digital humanities, I have defined a new task—text-based historical-corpus docu-

ment geolocation. For use with this task I annotated, or supervised the annotation of, two historical

digital humanities corpora, a larger one (War of the Rebellion or WOTR, based on U.S. Civil War

archives) and a smaller one (Western Wilds or BEADLE, a 19th-century travel log). These corpora

come with careful annotations as well as a larger set of unannotated data from the same distribu-

tion. I demonstrate good accuracy using the same methods I developed earlier in my dissertation,
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Figure 1.9: Map of the occurrence of cholera, diarrhea and dysentery in 19th century Britain, from
Murrieta-Flores et al. (in press).
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achieving 72% accuracy with a median of less than 50 km error on WOTR, and 59% accuracy and

less than 100 km median error on the smaller BEADLE data set. I also investigate various types of

domain adaptation using Wikipedia as an out-of-domain training corpus, and I show with learning

curves the additional benefit that out-of-domain data yields.

Researchers in the digital humanities often make use of topic models (Blei and Lafferty,

2009), particularly those derived using latent Dirichlet allocation (Blei et al., 2003). Topic models

are automatically derived collections of statistically related words, where words that tend to co-occur

in the same contexts are grouped together into “topics” that frequently (although not always) can be

identified with a coherent, real-world subject. Topic models, when properly analyzed — often with

the aid of well-designed visualizations — can reveal a great deal about the a data set. In §5.5, I

compute topic models segmented in various ways by geography, which is possible through taking

my geolocation models trained on the annotated portion of the data (possibly in conjunction with

out-of-domain data in a domain adaptation setting), applying them to the full set of unannotated data

(§2.3), and dividing up the unannotated text according to the predicted location. This allows me to

compute dynamic topic models (Blei and Lafferty, 2006) that show the change in topic membership

of particular words over geography and/or over time, producing a detailed picture of differences in

subject matter and approach over time and space. This in turn allows for careful variationist analysis

to be performed (§5.5.2). The results reveal a mixture of expected and unexpected results, where the

expected results can be used to calibrate the accuracy of the topic model and the unexpected results

used to produce genuine new insights.

Finally, in Chapter 6 I develop a new text-based document geolocation method based on

co-training between document-level annotations and toponym identification and resolution. This

method works on text-only corpora, such as the digital humanities corpora described above, and

allows me to introduce additional, outside domain knowledge (in the form of a gazetteer) while still

remaining within a pure-text scenario. Co-training has many variants; I include careful analysis of

the relative strengths and weaknesses of different approaches. I also develop and justify a metric for

evaluating the success of my co-training algorithm.
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1.7 Outline

Chapter 2 describes my sources of data, including three separate Twitter corpora (originally con-

structed by Eisenstein et al. (2010), Roller et al. (2012) and Han et al. (2014)); recent processed

dumps of the English, German and Portuguese versions of Wikipedia; the COPHIR corpus of tagged

Flickr images (Bolettieri et al., 2009); the BEADLE corpus derived from the 19th century travel log

Western Wilds by John Beadle, which I annotated myself; and WOTR, derived from the official

Civil War archives (War of the Rebellion), whose annotation I supervised. In addition, I describe

three toponym-resolution corpora that are used for applying document geolocation techniques to

toponym resolution.

Chapter 3 describes in detail the construction of a grid of cells and the supervised models

used for document geolocation that are built on them. The cells can be constructed using either uni-

form or adaptive (k-d tree) grids. The various models described include those based on information

retrieval techniques, as well as higher-accuracy techniques that rely on logistic regression, either

by itself or as part of a hierarchical process that uses multiple logistic-regression classifiers. I also

implement a feature-selection technique based on information gain ratio (IGR), for comparison with

Han et al. (2014).

Chapter 4 describes the experiments I carried out on the various modern corpora (from

Wikipedia, Twitter and Flickr) and the results I obtained. Hierarchical classification is the clear

winner, beating the other methods on all of the large corpora I evaluate. Flat logistic regression is

also fairly effective and able to beat Naive Bayes on many of the corpora, while IGR works only on

the Twitter corpora. Naive Bayes and KL divergence are of comparable performance.

Chapter 5 investigates applications of document geolocation to some 19th-century digital

humanities corpora that I either annotated myself or supervised the annotation of. I show how my

methods can be extended to work well in this context, with improved results obtained using domain

adaptation with the English Wikipedia as an out-of-domain source of labeled data. I then take the

predicted locations of the documents in the full set of Civil War documents (§2.3), group them

according to membership in a set of hand-drawn “theater of war” regions, and apply dynamic topic

models to these regions, which allows for careful, variationist analysis across the geographic and
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temporal scope of the Civil War.

Chapter 6 describes experiments in informing toponym resolution with document-level ge-

olocation, expanding upon the work of Speriosu (2013). I develop a means of using co-training to

simultaneously train a document geolocator and a toponym resolver on a combination of document-

geolocated Wikipedia text and toponym-resolved Civil War text. This allows me to jointly exploit

the complementary knowledge contained in both sources of geographic information, including the

outside knowledge contained in a gazetteer of toponyms and their possible resolutions.

Chapter 7 summarizes the work performed for this dissertation and further directions to take

the research.

1.8 Contributions

This dissertation includes the following contributions to the field of natural language processing:

• An investigation of various effective methods for supervised geolocation of a test document,

i.e. associating the document with a particular set of latitude/longitude coordinates on the

Earth. I consider methods that divide the Earth’s surface into rectangular grid cells—either

of constant degree size or using an adaptive k-d tree (Bentley, 1975)—and find the single

best grid cell, relying exclusively on the text of a document. Many of these methods are

simple to implement and fast to run, but give comparable accuracy to more complicated and

slower Bayesian methods. These methods are fast enough to be scaled up to a large amount

of training material, even with a fine-scale grid mesh, and easy to parallelize. Among these

methods are Naive Bayes, KL divergence, Average Cell Probability (which involves inverting

unigram distributions to determine a distribution of cells for a given word) and a few different

baselines.

• An application and careful analysis of the performance of these methods, along with various

smoothing techniques as well as the information gain ratio (IGR) feature selection technique

of Han et al. (2014), to several different corpora: Three corpora of Twitter user feeds of dis-

tinct natures; dumps of the English, German and Portuguese versions of Wikipedia, processed
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by custom-written software; and a large set of image tags corresponding to geotagged Flickr

images. I consider a number of different evaluation metrics and show that none of the ge-

olocation techniques consistently outperforms Naive Bayes on all the corpora, including IGR,

which performs well on the Twitter corpora for which is was designed, but not on the other

corpora.

• The application of logistic regression to geolocation. Contrary to the claims of Han et al.

(2014), I show that logistic regression can be more accurate than Naive Bayes and KL di-

vergence (including variants incorporating feature selection) and fast enough to run on large

corpora. Logistic regression itself very effectively picks out words with high geographic sig-

nificance. In addition, because logistic regression does not assume feature independence,

complex and overlapping features of various sorts can be employed.

• A new method for supervised geotagging, which involves a hierarchical discriminative classi-

fier that creates multiple individual classifiers at different grid resolutions and combines them

to achieve better results than could be done using a classifier at a single level. This method

scales well to large training sets and greatly improves results across a wide variety of corpora.

In fact, I am able to achieve state-of-the-art results on all of the large corpora I evaluate on. Im-

portantly, this is the first method that improves upon straight uniform-grid Naive Bayes on all

of these corpora, in contrast with k-d trees (Roller et al., 2012) and the current state-of-the-art

technique for Twitter users of geographically-salient feature selection Han et al. (2014).

• The development of a new NLP task, text-based document geolocation of historical corpora,

to assist the application of document geolocation techniques to the digital humanities. I apply

my techniques to two new corpora (see below), establishing a baseline for further research

and showing how good accuracy can be achieved even with text-only documents and with

relatively little training material. I further show how domain adaptation techniques that make

use of the large amount of geographic annotation available in the English Wikipedia can dra-

matically reduce the amount of annotated training data required to achieve equivalent levels

of performance. I create learning curves to investigate the minimal amount of annotation re-
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quired to achieve a given level of performance, to assist further researchers in deciding how

much money and effort to spend on annotation.

• Two new annotated historical corpora for use with the new NLP task I developed (see above).

These two corpora are of significantly different size and subject matter—a 19th-century Amer-

ican travel log (Western Wilds by John Beadle) and a large set of primary-source documents

from the American Civil War archives (War of the Rebellion). The annotations on the Civil

War archives are in the form of polygons or multipoints when appropriate, allowing for more

sophisticated analyses than can be achieved with typical single-point annotations. I put a sig-

inificant amount of work into cleaning up the entire set of Civil War archives (not just the

annotated portion) and dividing it into individual documents—some 255,000 in all, spread

over 126 volumes. This alone should be of great benefit to digital humanities researchers in-

terested in further work on War of the Rebellion. All the data will be released publicly, along

with the source code required to process the data and detailed instructions on how to operate

it.

• A new technique for creating geographic topic models, based on David Blei’s dynamic topic

models (Blei and Lafferty, 2006) and applied to the above Civil War archives. This involves

identifying, using a domain expert, a set of regions corresponding to coherent theaters of war.

These are then linearized and treated similarly to the timeslices of a standard dynamic topic

model. This has the effect of creating topics that vary over geography, allowing for broad-

ranging variationist analyses to be performed.

• A new geolocation technique for text-only corpora involving co-training between document

geolocation and toponym resolution, building on the toponym resolution methods previously

investigated by Speriosu (2013). This has the effect of introducing external information into

the process in the form of a gazetteer of locations, yielding the potential to significantly in-

crease the geolocation accuracy beyond what can be extracted from the text alone. This

demonstrates superior results on some metrics, and can serve as a branching-off point for

further research in this area.
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• A program that implements the methods described above.

• Processed versions of all the corpora I use for evaluation (to the extent this is legally possible),

and programs for recreating them. (This includes the various modern and toponym-resolution

corpora I make use of, not just the two new historical corpora I annotated.) Similarly processed

versions from other sources can also be created (e.g. different dumps of Wikipedia, different

sets of tweets). These programs are written in a modular fashion, so that the components that

do various types of processing can be reused in other programs needing such processing, and

new components can be created to do similar operations, e.g. as might be required to analyze

the dump of a foreign-language Wikipedia.
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Chapter 2

Data

2.1 Introduction

I work with a number of datasets annotated with document-level geotags (locations in the form of

latitude/longitude coordinates).1 I have nine such datasets available for evaluation — seven modern

(three of tweets, three of Wikipedia articles, and one of Flickr photos) and two historical (a single-

book travel log and a multi-volume collection of Civil War archives). Of the modern corpora, one of

the Twitter datasets is fairly small, but all of the others are much larger, consisting of at least several

hundred thousand training instances. The two historical corpora were annotated manually and as a

result consist of fewer annotations than the large modern corpora, but still differ significantly among

each other in size. Two of the three Twitter datasets and the two historical datasets are primarily

localized to the United States, while the remaining datasets cover the whole world. See Table 2.1

for a summary of the datasets.

For the toponym-resolution work described in Chapter 6, I also make use of various other

datasets, which are generally not annotated with document-level geotags but usually do have indi-

vidual toponyms annotated. This is documented more below.

1This chapter is partly based on Wing (2011), Wing and Baldridge (2011) and Wing and Baldridge (2014). Jason
Baldridge was my advisor for these works and helped edit the papers.
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Dataset Corpus Document Scope #Docs #Tweets #Types #Tokens #Tokens
Source Source (Training) (Total) (Training) (Training) /Doc

GEOTEXT Twitter User feed US 5.69K 378K 114K 1.58M 277.3
TWUS Twitter User feed US 430K 38M 4.75M 244M 568.8

TWWORLD Twitter User feed World 1.37M 12M 95.4K 41.8M 30.6
ENWIKI13 English Wikipedia Article World 691K — 4.32M 174M 251.7
DEWIKI14 German Wikipedia Article World 259K — 4.09M 129M 497.5
PTWIKI14 Portuguese Wikipedia Article World 105K — 608K 18.4M 175.3
COPHIR Flickr Single image tags World 2.27M — 629K 20.5M 9.04
BEADLE Western Wilds Paragraph US 244 — 6.16K 16.6K 67.8
WOTR War of the Rebellion Article US 4008 — 25.9K 526K 131.3

Table 2.1: Summary of datasets with document-level geotags used in the dissertation. Note that type
and token counts exclude stopwords, and TWWORLD was pre-filtered to exclude non-alphabetic
words, words shorter than 3 characters in length and words occurring less than 10 times in the entire
corpus.

2.2 Modern geolocation datasets

2.2.1 Twitter datasets

This dissertation uses a number of datasets collected from Twitter. These datasets are taken from

tweets collected using one of the public streaming API’s. Some of these API’s yield a sample of

all publicly-available tweets created (e.g. the Spritzer and Gardenhose API’s). Others allow for

tweets to be searched using particular characteristics; for this dissertation, tweets were requested

that were geotagged with a specific latitude/longitude coordinate, generally derived from a GPS

device embedded in the cell phone used to send the tweet.

Because tweets are so short (at most 140 characters), documents serving as training in-

stances are constructed by amalgamating the tweets of a given user. The location of a user is deemed

to be the earliest tweet with specific, GPS-assigned latitude/longitude coordinates. This choice fol-

lows Eisenstein et al. (2010). It is possible that other methods (e.g. choosing the centroid of all

available coordinates) may prove to be more appropriate.

An additional issue to be considered is that the distribution of tweets created by users who

post to Twitter through cell phones and allow tweet geotagging may not be the same as the overall

distribution. For example, casual inspection reveals that these are generally young users, often in

high school, who use a great deal of Internet slang (see example below).

The following is an example of some tweets from a particular user (with references to other

users anonymized):
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Date/time Coordinates Text

2010-03-03T02:02:04 40.2015,-74.806535 Watching LOST

2010-03-03T12:01:41 40.221968,-74.734795 @USER_89a3500b i did

2010-03-03T20:06:19 40.221968,-74.734795 Maneuver so that I can put my team on, hopefully sooner so that we can live our dreams on

2010-03-03T23:30:45 40.221333,-74.732688 Darko was eating hamburgers in the locker room before they played the knicks. Lol

2010-03-04T02:58:43 40.220681,-74.758761 Girl pack ya bags i’m bout to take you on a ride!

2010-03-04T15:26:50 40.194523,-74.756427 @USER_a9cf8f82 lol, yeah check it out bro

2010-03-04T20:03:07 40.289891,-74.678256 RT @USER_5eae722d: #inhighschool me & Mr. Stavisky dnt lk each other, his breath

smelled lk straight ass! - lmao he use 2 chase us dn the hall

2010-03-04T23:57:58 40.221968,-74.734795 #inhighschool trenton high girls basketball team always had the best record out of all

the highschool sports teams. Nothing has changed

2010-03-05T00:17:13 40.221968,-74.734795 The cheerleading team need Mrs. Grady back

2010-03-05T00:39:56 40.221968,-74.734795 This girl Ashley Hines from is a beast. They can’t stop her

2010-03-05T01:02:32 40.221968,-74.734795 Da High always had the best fans. Going way back before I was #inhighschool

...

The same user, with tweets amalgamated and converted to a unigram distribution, appears

as follows:

USER_6197f95d 40.2015,-74.806535 had:4 everybody:1 we:1 bub:2 funk:1 lights:1 u:1 said:1 he:3 who:1 to:6 of:1 lol:3 she:1 knicks:1

pack:1 room:1 played:1 nothing:1 #inhighschool:3 bags:1 ride:1 &:1 mr:1 be:2 changed:1 any:1

or:1 is:3 i’m:2 if:1 reopen:1 up:2 can’t:1 that:5 eating:1 darko:1 dreams:1 our:1 live:1 sooner:1

hopefully:1 team:3 did:1 locker:1 hamburgers:1 needs:1 union:1 repaired:1 hurry:1 ewing:1 da:1

looking:2 pause:1 down:2 dj:3 life:1 does:2 all:2 see:1 from:1 has:1 2:1 em:1 bro:1 they:2 one:1

so:3 and:1 oh:1 new:2 freezer:1 watching:1 lost:1 ass:1 yo:2 there:1 maneuver:1 put:1 looks:1 cheer:1

sound:1 approach:1 caution:1 burger:1 hit:1 jack:1 daniels:1 stop:1 liquor:1 credit:1 hard:1 best:2

...

GEOTEXT is a small dataset consisting of 377,616 tweets from 9,475 users tweeting inside

of a bounding box consisting of the 48 American states (and some parts of Canada and Mexico),

compiled by Eisenstein et al. (2010). It was compiled from tweets collected using the Gardenhose

API during the first week of March 2010. Tweets without geotags (GPS-assigned latitude/longitude

coordinates) were discarded, as were users with fewer than 20 geotagged tweets. Also discarded

were users following or followed by 1,000 or more other users, in order to eliminate marketers,

celebrities, news media sources, etc. (Kwak et al., 2010).

TWUS is a dataset of tweets compiled by Roller et al. (2012), designed to address the

sparsity problems resulting from the small size of GEOTEXT. Tweets were collected using both

the Spritzer and location-search API’s over the period from September 4 to November 29, 2011.
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Filtering and amalgamation were done similar to GEOTEXT. However, tweets without geotags were

not discarded; instead all users with at least one geotagged tweet were considered. (This may have

the effect of lessening somewhat the potential distribution mismatch between geolocated and non-

geolocated tweets.) The resulting dataset contains 38M tweets from 450K users, of which 10,000

each are reserved for the development and test sets.

TWWORLD is a dataset of tweets compiled by Han et al. (2012). It was collected using

the Spritzer API over the period from September 21, 2011 to February 29, 2012 and differs from

TWUS in that it covers the entire Earth instead of primarily the United States, and consists only of

geotagged tweets. Non-English tweets and those not near a city were removed, and non-alphabetic,

overly short and overly infrequent words were filtered. The resulting dataset consists of 12M tweets

from 1.4M users, with 10,000 each reserved for the development and test sets. Note that, even

though this dataset contains more users than TWUS, it consists of fewer tweets, meaning that the

average document size is significantly smaller (8.6 tweets/user, vs. 84.4 tweets/user for TWUS).

2.2.2 Wikipedia datasets

As of November 2014, Wikipedia has some 34.0 million content-bearing articles in 241 language-

specific encyclopedias.2 Among these, 52 have over 100,000 articles and 12 have over 1 million

articles, including 4.8 million articles in the English-language edition alone. Wikipedia articles

generally cover a single subject; in addition, most articles that refer to geographically fixed subjects

are geotagged with their coordinates. Such articles are well-suited as a source of supervised content

for document geolocation purposes. Furthermore, the existence of versions in multiple languages

means that the techniques in this paper can easily be extended to cover documents written in many

of the world’s most common languages.

Wikipedia’s geotagged articles encompass more than just cities, geographic formations and

landmarks. For example, articles for events (like the shooting of JFK) and vehicles (such as the

frigate USS Constitution) are geotagged. The latter type of article is actually quite challenging to

geolocate based on the text content: for example, though the USS Constitution is moored in Boston,

2http://stats.wikimedia.org/EN/Sitemap.htm
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most of the page discusses its role in various battles along the eastern seaboard of the USA. However,

such articles make up only a small fraction of the geotagged articles.

For the experiments in this paper, we used full dumps of versions of Wikipedia in three

different languages:3

1. English (ENWIKI13) from November 4, 2013, with 864K geotagged articles out of 4.44M

total

2. German (DEWIKI14) from July 5, 2014, with 324K geotagged articles out of 1.71M total

3. Portuguese (PTWIKI14) from June 24, 2014 131K geotagged articles out of 817K total

These dumps include not only the content-bearing articles but various types of special-purpose ar-

ticles used primarily for maintaining the site (specifically, redirect articles and articles outside the

main namespace), which were filtered out. For example, although the English Wikipedia version

mentioned above has 4.44M content-bearing articles, the dump actually has 14.0M articles in it—

i.e. almost 10M of the articles in the dump are special-purpose, non-content-bearing articles.

It is necessary to process the raw dump to obtain the plain text, as well as metadata such

as geotagged coordinates. Extracting the coordinates, for example, is not a trivial task, as coordi-

nates can be specified using multiple templates and in multiple formats. Automatically-processed

versions of the English-language Wikipedia site are provided by Metaweb,4 which at first glance

promised to significantly simplify the preprocessing. Unfortunately, these versions still need signifi-

cant processing and they incorrectly eliminate some of the important metadata. In the end, we wrote

our own code to process the raw dump, involving about 4,600 lines of Python code and 1,200 lines

of shell script. It should be possible to extend this code to handle other languages with little diffi-

culty. (An alternative strategy, perhaps better in hindsight, would have been to download and run the

MediaWiki software used to process the Wikipedia article source code into HTML, and parse the

resulting HTML.) See Lieberman and Lin (2009) for more discussion of a related effort to extract

and use the geotagged articles in Wikipedia.

3http://download.wikimedia.org/
4http://download.freebase.com/wex/
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The entire set of articles was split 80/10/10 in round-robin fashion into training, develop-

ment, and testing sets after randomizing the order of the articles, which preserved the proportion of

geotagged articles.

2.2.3 Flickr datasets

COPHIR (Bolettieri et al., 2009) is a large dataset of images from the photo-sharing social net-

work Flickr. It consists of 106M images, of which 8.7M are geotagged. Most images contain

user-provided tags describing them. I follow algorithms described in O’Hare and Murdock (2013)

in order to make direct comparison possible. This involves removing photos with empty tag sets

and performing bulk upload filtering, retaining only one of a set of photos from a given user with

identical tag sets. The resulting reduced set of 2.8M images is then divided 80/10/10 into training,

development and test sets. The tag set of each photo is concatenated into a single piece of text (in the

process losing user-supplied tag boundary information in the case of multi-word tags). The resulting

documents tend to be extremely short (often less than 10 words) but consist of words that tend to

have high geographic salience.

2.3 Historical texts

No document-level annotations exist for the historical texts I am interested in studying. For this

reason, I annotated part of a book-length historical travel log, John Beadle’s Western Wilds, and the

Men Who Redeem Them, published in 1878. In addition, as part of a project funded by the New

York Community Trust (NYCT), I supervised the annotation of parts of The War of the Rebellion:

a Compilation of the Official Records of the Union and Confederate Armies,5 a set of over 100

volumes of archives of the American Civil War.6

I use these texts to demonstrate the feasibility of text-based geolocation with smaller

amounts of annotated material, especially in conjunction with domain adaptation (Chapter 5) in-

volving additional training on the English Wikipedia (ENWIKI13, §2.2.2).

5http://ehistory.osu.edu/books/official-records
6This work was done in conjunction with Professors Scott Nesbit and Jason Baldridge, as well as a colleague, Grant

DeLozier.
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2.3.1 Western Wilds

Western Wilds by John Beadle is one of the books from the PCL Travel collection of 19th-century

travel texts.7 This book is an account of Beadle’s travels over a seven year period throughout the

Western part of the United States. It includes both direct descriptions of Beadle’s travels and inter-

polated travel stories of people that Beadle encountered. Because it is in the form of a travelogue, it

is generally possible to identify a location with each stretch of text—for example, the location that

the narrator is assumed to have been at when a story is being narrated, or the geographic topic of

interest when a description of a location is interpolated into the narrative. The resulting corpus is

termed BEADLE.

I annotated both at the paragraph and sub-paragraph level. For the latter type of annotation,

I subdivided the paragraph into chunks (as large or as small as necessary) covering a unified geo-

graphic topic, whether a political feature (e.g. city, county, state or Indian reservation) or a natural

feature (e.g. a lake, river, mountain or mountain range).

All annotations were done in the form of single points, even when the topic of the paragraph

was more naturally described by a polygon (e.g. regions, states or rivers). This was done for con-

sistency with the automatic annotations of the various modern datasets previously described in this

chapter, and for computational convenience. This is admittedly not an ideal situation; however, both

the algorithms and their evaluation get significantly more complex when polygonal or even rectan-

gular annotations are introduced. Note that in the other text annotated as part of this dissertation,

War of the Rebellion (§2.3.2), textual spans were in fact annotated with polygons when appropriate,

but I still derived a point location from the polygons for use in training and testing.

My actual mechanism for annotating a span of text with a location was in most cases to

specify the name of a geolocated feature in Wikipedia, so that I could then use a script to automati-

cally tag each such feature with the appropriate coordinates as found in Wikipedia. However, when

doing this I avoided specifying a linear feature such as a river or mountain range in favor of using the

point feature in Wikipedia (e.g. a city or landmark) that is as close as possible to the portion of the

river or mountain range that the text in question is about. This was done to maximize the accuracy of

7This corpus consists of 94 books and approximately 7.7M words, and was collected by the Perry-Castañeda Library at
the University of Texas at Austin.
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the geolocations given the large geographic scope of many rivers and mountain ranges. (Rivers are

especially problematic since they are tagged in Wikipedia by the coordinates of their mouth, rather

than something more desirable such as a point along their middle stretch.)

Similarly, I avoided choosing a state as an annotation if the geographic topic could be

identified as a sub-region of the state, instead using the point feature as close as possible to the

middle of the sub-region in question. When no such sub-region could be identified, I went ahead

and annotated using the name of the state. Note, however, that this is problematic because of the

need to map the state to a single point, which introduces a large, unavoidable source of error when

using a distance-based, point-based evaluation metrics derived from the error distance between the

predicted and true locations (§4.1.2, §7.7). Regions larger than a state (e.g. the Western United

States or the United States as a whole) are even more problematic in this respect, and for this reason

I refused to annotate any paragraphs in such a fashion, instead annotating them as “various”, which

leaves them without coordinates.

In some cases, it was not possible to find a point feature in Wikipedia that was close enough

to the desired location, either because no such feature exists at all, because there is no Wikipedia

article corresponding to the feature, or because such an article exists but lacks a geolocation. In these

cases I manually entered a latitude/longitude coordinate. In some cases, this was obtained elsewhere

on the Internet (e.g. the location of the ghost town of Benton, Wyoming, a place not in Wikipedia).

In other cases, I estimated approximate coordinates using a map. (An example of this is a paragraph

whose location was identified through context as being between the ends (sinks) of the Humboldt

and Truckee Rivers in Western Nevada. For this paragraph, I chose a point halfway between the two

river sinks.) Some stretches of text without clear geographic focus were annotated as “unclear” and

left without coordinates.

When annotating a paragraph with multiple sub-paragraph annotations, one of these annota-

tions was chosen as the paragraph annotation if it appeared to apply to the majority of the paragraph;

else, the union of the annotations was determined and the above considerations applied to chose the

actual coordinates.

All in all, Western Wilds consists of 37 chapters plus a preface, for a total of 1,437 para-
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graphs. The preface and the first 10 chapters were annotated in their entirety, up through paragraph

408, as well as the first part of several more chapters XI through XVI: paragraphs 409-414 (chapter

XI), 439-458 (chapter XII), 486-496 (chapter XIII), 539-547 (chapter XIV), 576-594 (chapter XV),

620-625 (chapter XVI). This is a total of 479 paragraphs annotated, but this produced only 408

data instances because some paragraphs could not be assigned coordinates (e.g. those annotated as

“various”, “unclear” or “Western United States”, as described above).

An example of a paragraph from Western Wilds is shown in §1.3; this paragraph was anno-

tated with latitude 39.3422, longitude -120.2036 (the coordinates of Truckee, California). A sum-

mary plot of the locations in the book is shown in Figure 1.1. Each location is labeled by the chapter

it occurs in (using a Roman numeral), and lines are drawn connecting adjacent paragraphs within a

given chapter, with different colors for each chapter. As can be seen, the narrative jumps around a

good deal both within a given chapter and across chapters. This partly reflects the multiple times

that Beadle traveled across the country and back, and partly reflects stories of other adventurers that

Beadle interpolated into his own narrative.

2.3.2 Official Records of the War of the Rebellion

The Official Records of the War of the Rebellion (officially titled The War of the Rebellion: a Com-

pilation of the Official Records of the Union and Confederate Armies and henceforth abbreviated as

WOTR) is a large set of American Civil War archives.8 It was published in 128 books (grouped into

70 volumes, which are further grouped into four series) by the United States Government between

1881 and 1901. The archives consist of military orders and reports, governmental correspondence,

proclamations, court reports, maps, and other primary sources generated during the war. Each vol-

ume is about 1,000 pages, for a total of 138,579 pages.9

Annotators were hired to note the individual documents within the archives and attach

document-level geometries to them, which are intended to encode the geographic theme of the

content of the document. The theme of a document is the primary location or locations that the

document concerns. For example, if the document describes a battle, skirmish or other military ac-

8http://ehistory.osu.edu/books/official-records
9See http://en.wikipedia.org/wiki/Official_Records_of_the_American_Civil_War.
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Annotated subset Full data
Total tokens 1,743,331 57,557,037
Total types 40,416 315,564
Number of volumes 118 126
Number of documents 7,533 254,744
Average tokens per volume 14,773.99 453,205.02
Average tokens per document 231.43 225.94
Average documents per volume 63.84 2,005.86
Average types per volume 2,402.57 16,943.35
Average types per document 125.50 118.53
Number of geometries 5,010 0
Average geometries per volume 42.46 0
Fraction of documents with geometries 0.665 0

Table 2.2: Statistics on WOTR, annotated subset and full data (using documents predicted based on
a sequence model derived from the annotated data).

tion, the location of that action is the document’s geography. Most correspondence is headed by the

location at which it was written, which is often, although not always, the same as the geographic

theme; it depends on what the content of the correspondence says. Annotators were allowed to mark

multiple locations or to draw a polygon around an area of the map, which is useful when for example

the geographic theme is logically a body of water or a section of a state rather than a single point.

However, in the interests of achieving as many annotations as possible, annotators were encouraged

to not overly make use of polygons or multiple points, preferring a single point when possible. In

particular, the mere mention of a place name in a document is not sufficient for it to be included in

the geographic theme; it must be of primary relevance to the subject of the document.

The total number of documents resulting from this process is 254,744. Statistics on the full

WOTR corpus and the annotated subset are shown in Table 2.2.

Data preparation

Preparation of the data required multiple steps. The source data was taken from an OCR (opti-

cal character recognition) scan of the pages of the original printed books, hand-corrected and then

dumped directly into a Drupal-based web site, with one HTML document per physical printed page.

The web site was then crawled and provided to me as-is. No attempt was made to eliminate the

page breaks resulting from this process, which often fall in the middle of a hyphenated word, with

lengthy footnotes frequently intervening between the two halves of the separated word.
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...

2. While congratulating the troops on their glorious success, the commanding general desires to impress upon all officers as
well as men the necessity of greater discipline and order. These are as essential to the success as to the victorious; but with
them we can march forward to new fields of honor and glory, till this wicked rebellion is completely crushed out and peace
restored to our country.

3. Major-Generals Grant and Buell will retain the immediate command of their respective armies in the field.

By command of Major-General Halleck:

N. H. McLEAN,

Assistant Adjutant-General.

HEADQUARTERS DEPARTMENT OF THE MISSISSIPPI,
Pittsburg, Tenn., April 14, 1862.

Major General U. S. GRANT,

Commanding District and Army in the Field:

Immediate and active measures must be taken to put your command in condition to resist another attack by the enemy.
Fractions of batteries will be united temporarily under competent officers, supplied with ammunition, and placed in position
for service. Divisions and brigades should, where necessary, be reorganized and put in position, and all stragglers returned
to their companies and regiments. Your army is not now in condition to resist an attack. It must be made so without delay.
Staff officers must be sent out to obtain returns from division commanders and assist in supplying all deficiencies.

H. W. HALLECK,

Major-General.

NEW MADRID, April 14, 1862.

J. C. KELTON:

General Pope received message about Van Dorn and Price. Do you want his army to join General Halleck’s on the Tennessee?
His men are all afloat. He can be at Pittsburg Landing in five days. Fort Pillow strongly fortified. Enemy will make a decided
stand. May require two weeks to turn position and reduce the works. Answer immediately. I wait for reply.

THOMAS A. SCOTT,

Assistant Secretary of War.

SPECIAL ORDERS, HDQRS. DIST. OF WEST TENNESSEE,
No. 54. Pittsburg, Tenn., April 14, 1862.

II. Brigadier General Thomas A. Davies, having reported for duty to Major-General Grant, is hereby assigned to the command
of the Second Division of the army in the field.

By order of Major-General Grant:

[JNumbers A. RAWLINS,]

Assistant Adjutant-General.

CAIRO, ILL., April 14, 1862.

H. A. WISE, Navy Department:

...

Figure 2.1: Example of WOTR source text, after stitching up text across page breaks, removing
extraneous headers/footers/footnotes, etc.

37



The original volumes are highly structured, with multiple maps, diagrams and tables, and

heavy use of typographical conventions (italics, indentation, horizontal rules, etc.) to provide struc-

ture, such as to notate the beginning and end of source documents (letters, reports, proclamations,

etc.), to offset salutations, closings and headers, and to indicate quoted text embedded in a document.

Almost all of this information was lost in the OCR scan, and only sporadic and highly inconsistent

attempts were made to recover some of this structure during the hand correction process. The result

is that the text of the various source documents runs together, and it is often difficult to determine

where one document starts and ends.

The following steps were necessary to produce the final annotated corpus:

1. Remove page breaks and stitch up paragraphs divided across the breaks.

2. Create a GUI annotation tool to allow annotators to quickly note the extent of documents

(which we term spans) and indicate the document locations on a map.

3. Hire annotators to create the geographic annotations.

4. Create a sequence model using a CRF (conditional random field) to automatically split up

the continuous text into documents, training it on the documents manually marked up by the

annotators.

Figure 2.1 is an example of part of the source text of a volume, after preprocessing to stitch

up page breaks and remove footnotes, headers, footers, etc., but before splitting into individual

documents.

Stitching up page breaks As mentioned above, the source text is in the form of individual pages

scanned from the published books, with page breaks often interrupting a paragraph in the middle

of a word (broken with a hyphen), interposed with further text such as footnotes, stray headers

and footers and the like, often in an inconsistent fashion. In order to derive a set of uninterrupted

documents, it was first necessary to rejoin the text across these page breaks. Given that there are

over 100,000 pages of text, doing this by hand was out of the question. A program was written that
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Figure 2.2: Screenshot of annotation tool used for adding geometries to document spans.

used various heuristics to do the majority of work, although several more steps and a good deal of

manual editing was required to achieve satisfactory results.

GUI annotation tool In conjunction with my colleague Grant DeLozier, I wrote a GUI annotation

tool that allows document spans to be selected in a text box and points or polygons added on a map.

Figure 2.2 shows a screenshot of the tool at work. Spans of text are indicated with inward-pointing

red arrows at their edges and are colored yellow (a marked span without geometry), green (a span

with geometry) or cyan (currently selected span for adding or changing the geometry). As shown,

the blue span has a point geometry, indicated as a large cross on the map at a point in extreme

southeast Missouri (slightly to the south of Cairo, Illinois). Points can be added directly on the map,

by entering a latitude/longitude coordinate into the text box and clicking Set Lat/Long, or by using

the list of recent locations below the map.

The annotation tool is written in JavaScript, with data stored using Parse, a backend-as-a-

service (BAAS) which allows for free data storage within certain storage and bandwidth limits.

Hiring annotators 5 annotators were hired, with the intention of having each work for about 50

hours. Detailed instructions were given as to how to correctly divide spans and how to decide what
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Figure 2.3: Graph of number of annotated articles as a function of time.

counts as the geographic theme. 100 pages (pages 100-199) were selected from each volume, and

each annotator was originally assigned 10 volumes, based on an assumed annotation time of 5 hours

per volume. This was eventually changed so that 25 pages of each volume were annotated, in an

attempt to get at least some annotations on every volume, to increase the geographic and temporal

diversity of the annotations.

In the end, 118 out of 126 volumes had annotations provided for them. As it turned out,

nearly all of the annotations were done by one annotator, who was responsible for about 200 of the

250 total hours. This was because this annotator was the only one willing to work consistently; the

others worked for a few hours and then become unresponsive.

Figure 2.3 shows a graph of the number of annotated articles as a function of time. During

the first 25 days or so, a number of annotators were working, but fitfilly, leading to the bumps in the

graph. After this, all work was done by the single annotator. His output accelerated slightly over

time as we gradually increased the number of hours he worked.

See below for more discussion on how the annotation process was guided.
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Automatically locating document spans As mentioned above, there is no indication in the source

text where one document ends and another one begins. In a letter, for example, sometimes the

destinee appears near the beginning of the letter, following a heading describing the location and

date, while in other cases the destinee appears at the very end, after the salutation. Both examples

can be seen in the text box in the annotation tool screenshot in Figure 2.2, along with the way that

successive documents directly abut each other. Because the unit of analysis is a single document, it

is necessary to locate the beginning and end of each document, and this must be done automatically

since only a fraction of the text is manually annotated.

To do this, a sequence model was created using a CRF (conditional random field) in MAL-

LET (McCallum, 2002). Each successive paragraph was considered a unit in the sequence labeling

task, and labeled with one of the following: B (beginning), I (inside), L (last), or O (outside), similar

to how named entity recognition (NER) sequence labeling is normally handled. CRF’s have the ad-

vantage over HMM’s (hidden Markov models) in that they can be conditioned on arbitrary features

of the visible stream of paragraphs, including the neighbors of the actual paragraph being labeled.

This allowed for various features to be engineered, such as

• the presence of a date at the end of a line, possibly followed by a time;

• the presence of certain place-related terms typically indicating a header line, such as HEAD-

QUARTERS, HDQRS or FORT;

• the presence of a rank-indicating word (e.g. Brigadier, General or Commanding) at the be-

ginning of or within a line;

• the presence of a line beginning with a string of capital letters, typically indicating a header

line;

• the presence of certain words (e.g. obedient servant) typically indicating a salutation;

• the combination of the above features with certain punctuation at the end of the line (comma,

period, or colon);

• the length of a line;
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Figure 2.4: KML distribution of the annotated corpus on May 3rd.

• all of the above features for the actual paragraph in question as well as the previous, second-

previous, next, second-next, and combinations thereof;

• the first and last words of the paragraph, after stripping out punctuation.

The resulting model performed rather well, but did not consistently handle correctly the

cases where the destinee is at the end of the letter, and so a postprocessing step was added to adjust

the spans whenever such a situation was detected.

Guiding the annotation process

To guide the annotation process, I selected individual volumes from among the 126 total volumes

in approximately ten batches, informed by the distribution of articles produced so far. As new

annotations came in, I generated KML graphs of the article distributions and used them to choose

both the next set of volumes and which section of each volume to annotate, to maximize the spread

of annotations. Three stages are shown in Figure 2.4, Figure 2.5 and Figure 2.6. The most dramatic

change is apparent from Figure 2.4 to Figure 2.5, where the entire middle of the graph (particularly
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Figure 2.5: KML distribution of the annotated corpus on May 18th.

Figure 2.6: KML distribution of the annotated corpus on Jun 10th.
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Tennessee and Georgia) starts to fill in. The differences are less apparent in Figure 2.6, but by

comparing the two it can be seen that Alabama (especially Northern Alabama), South Carolina,

North Carolina, and West Virginia have been significantly filled in. (Keep in mind also that the June

10th graph has been rescaled to keep the highest bar at the same place, causing the heights of all

bars to drop by a factor of about 1.5. The total number of annotations increased from approximately

2,500 to 5,000 during this time period.)

2.4 Toponym resolution datasets

The following is a description of the datasets used in Chapter 6. These corpora have individual

toponym annotations, but most do not have document-level geotags.

CWAR is the Perseus Civil War and 19th Century American Collection, a corpus of 341

books (2.5M lines and 58M words of text) from the Perseus Digital Library project (Crane, 2012),

primarily concerning the American Civil War. It contains toponym-level annotations, which were

generated by a named entity recognizer and then hand-corrected. Approximately 1.1M toponym

instances (comparable to word tokens) are annotated with TGN codes (from the Getty Thesaurus

of Geographic Names10), corresponding to about 56K distinct toponym types. Figure 2.7 shows an

example of resolved toponyms in one of the Perseus texts.

Prior to mid-2014, obtaining the full list of latitude/longitude coordinates for TGN codes

was difficult, requiring scraping a large number of web pages. As a result, Speriosu (2013) used

a partial list of approximately 2,000 common toponyms with both TGN codes and coordinates,

corresponding to locations where Union Army units were organized or posted at; with these, he was

able to attach coordinates to around 240K toponym instances.

I proceeded to download the full set of TGN codes and produce a new version with all 1.1M

toponym instances tagged with coordinates. This was used to produce updated experimental values

for the various methods described in Speriosu (2013).

CWARPORTAL consists of the subset of articles from the November 4, 2013 English

Wikipedia that belong to the Civil War Portal and are in the main namespace. It consists of 4,149

10http://www.getty.edu/research/tools/vocabularies/tgn/

44



Figure 2.7: KML visualization of predicted locations, situated primarily in the North, for toponyms
found towards the end of Abraham Lincoln: The True Story of a Great Life (1892), from Speriosu
(2013).
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articles comprising approximately 4,475,000 words. Of these, only 218 are geotagged. A toponym

resolution corpus was created by treating links from a given article to another geolocated article as a

toponym, with its candidate set determined by matching the link’s anchor text to a gazetteer and the

resolved candidate for the toponym determined by the toponym candidate closest to the location of

the linked article, as long as it is within 100km (or 500km if the candidate is a state or other higher-

level administrative entity, since all such entities are identified by points that may differ between

Wikipedia and the gazetteer). Other stretches of text in the same article that match the anchor text

of the link are taken as further instances of the same toponym with the same resolution. In addition,

links whose anchor text is in the form CITY, STATE for states within the United States are converted

into two toponyms, one for the city and one for the state, where the correct candidate for the city

must be identified in the gazetteer as belong to the state in question, and the correct candidate for

the state must be identified as a state within the United States.

TOPOWIKI13 is a combined document geolocation/toponym resolution dataset that uses

the same methods used to create CWARPORTAL, but applied to the entire November 4, 2013 English

Wikipedia.
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Chapter 3

Document geolocation models

3.1 Introduction

I implement a number of different ranking models of various levels of complexity and requiring

varying degrees of training.1

During the evaluation stage, I consider each document in the evaluation set in turn, and

produce a ranking of all the grid cells. Normally, I then choose the top-ranked cell and identify its

centroid (§3.3) as the “correct” location of the document. In general, given a ranking over all grid

cells, it is possible to make use of cells other than the top-ranked to choose the location, and in fact

I have implemented the mean shift algorithm, which selects the top K-ranked cells for some value

K, and then attempts to cluster them. The idea is that it is possible the top-ranked cell is simply

incorrect but the majority of cells near the top are clustered around the correct cell. Preliminary

experiments, however, produced results worse than simply selecting the top-ranked cell.

My methods use only the text in the documents; predictions are made based on the distri-

butions θ, κ, and γ introduced in the previous chapter. No use is made of metadata, such as links,

followers/friends, or user-declared location (§1.1).

Table 3.1 lists the distributions and other symbols used in the formulas presented in this

1This chapter is partly based on Wing (2011), Wing and Baldridge (2011) and Wing and Baldridge (2014). Jason
Baldridge was my advisor for these works and helped edit the papers.
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θcij P (wj |ci) = probability of word wj occurring in cell ci
θdkj P (wj |dk) = probability of word wj occurring in document dk
θDj P (wj) = overall probability of word wj occurring across all documents

θ
(−dk)
Dj similar to θDj but the words in document dk have been assigned zero probability and the

remaining probabilities renormalized
θ̃·j unsmoothed (maximum likelihood) estimate of word wj occurring in some context

κji P (ci|wj) = for a given token of word type wj , probability that ci is the cell where it occurs

γi P (ci) = prior probability of cell ci occurring, based on the number of documents in the cell

G a geodesic grid, i.e. a division of the Earth’s surface into non-overlapping cells

ci cell number i in grid G

D the set of all documents

dk document number k in the set of all documents D

V the set of observed vocabulary items

wj word type (i.e. vocabulary item) number j in vocabulary V

ĉ the cell predicted for a given test document

αdk Good-Turing-style smoothing factor: amount of mass reserved for words unseen in dk
Vdk the set of observed vocabulary items for document dk

Table 3.1: Symbols used in the formulas describing the various geolocation strategies in this chapter.

dissertation.

3.2 Grid types

In the context of the general grid-based approach to geolocation followed by this dissertation and

described in §1.2, there are several options for constructing the grid and for modeling.

3.2.1 Uniform grid

The simplest grid is a uniform grid with rectangular cells of equal-sized degrees, such as 1◦ by 1◦

or 100 km by 100 km, a strategy followed by Serdyukov et al. (2009) and O’Hare and Murdock

(2013) for Flickr, Cheng et al. (2010) and Wing and Baldridge (2011) for Twitter, and Wing and

Baldridge (2011) for Wikipedia. Compared to a grid that takes document density into account, it

over-represents rural areas at the expense of urban areas. Furthermore, the rectangles are not equal-
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area, but shrink in width away from the Equator. (However, the shrinkage is mild until near the

poles. For example, at 45◦ latitude, the ratio of width to height is better than 0.7 to 1.)

Figure 1.3 in Chapter 1 shows a choropleth map demonstrating the uniform grid construc-

tion. The rank of cells for the test document Pennsylvania Avenue (Washington, DC) in ENWIKI13

is plotted, for a uniform 0.1◦ grid. The top-ranked cell is the correct one. The highest-ranked

cells are near Washington, DC, but other culturally similar areas — nearby large cities (Baltimore,

Philadelphia, New York City, Pittsburgh) and suburban northern Virginia — are also highly ranked.

The importance of certain words in the article is visible in the delineation of the states of Penn-

sylvania (due to “Pennsylvania” occurring in the article’s topic) and Maryland (three-fourths of

Pennsylvania Avenue is in Maryland).

A truly equal-area grid can be constructed by means of a quaternary triangular mesh (Dut-

ton, 1996). Dias et al. (2012) used such a construction for Wikipedia, but it did not yield consistently

better results. For this reason, as well as ease-of-implementation reasons and the fact that most of the

populated regions of interest for this dissertation are far from the poles (where the worst distortion

occurs), I construct rectangular grids.

3.2.2 Adaptive k-d tree grid

Roller, Speriosu, Rallapalli, Wing and Baldridge (2012) introduced an adaptive grid based on k-d

trees (Bentley, 1975), which I make use of in this dissertation. The idea is to use variable-sized cells

so that the number of documents per cell is approximately the same. A k-d tree in 2 dimensions

starts out with a single grid cell and adds documents to this cell one by one. When the number of

documents reaches a threshold termed the bucket size, the cell is split in two along the dimension

with the greatest range of points seen, following Friedman et al. (1977). Roller et al. (2012) con-

sidered splitting at either the midpoint of the range of points or at the median of the dimension in

question for all points in the cell, and found that neither method was clearly superior. In my prelimi-

nary experiments I found midpoint splitting to work at least as well, and I use that in my subsequent

experiments.2

2But see Figure 5.5 for learning-curve experiments performed using median splitting.
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Figure 3.1: k-d tree grid construction. Relative Naive Bayes rank is shown for cells for ENWIKI13
test document Pennsylvania Avenue (Washington, DC), surrounding the true location. (Constructed
with assistance from Grant DeLozier.)
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Figure 3.1 shows a sample k-d tree grid in the form of a choropleth map. Increased cell

density with correspondingly smaller cells occurs on land compared with over the sea, especially in

coastal regions of the Northeast of the United States. Map callouts zoom in on Washington, DC and

New York City, showing the particularly increased concentration of cells in city centers.

3.2.3 City-based grid

Some researchers have used a city-based representation, either with a full set of cities covering the

Earth and taken from a comprehensive gazetteer (Han et al., 2014) or a limited, pre-specified set of

cities (Kinsella et al., 2011; Sadilek et al., 2012). This is somewhat comparable to k-d trees in that it

adapts to areas of greater population. Han et al. (2014)’s construction, for example, determines a set

of city attractors by reducing the total set of cities in a gazetteer through amalgamating cities into

nearby larger cities in the same second-level administrative district (in the same state, in the case of

the United States). Training documents are then assigned to a pseudo-document corresponding to

the nearest city. An even more direct method would use census-tract boundaries when available.

An advantage of city-based grids compared especially with coarser-scale rectangular grids

is that in the latter, the boundary between cells may run through the middle of a city. This has

the effect of splitting a presumably unitary linguistic area, and grouping the different parts of the

city with the heterogeneous linguistic areas of other cities. For example, a coarse grid that passes

through the middle of Austin, Texas might group one half with San Antonio and the other half with

Houston, making it more difficult to correctly geolocate a document whose location is in Austin.

The resulting statistical bias is known as the modifiable areal unit problem (Gehlke and Biehl, 1934;

Openshaw, 1983). With finer grids, however, this is less likely to be an issue. It is also possible to

mitigate this issue in k-d trees by dividing a cell in such a way as to produce the maximum margin

between the dividing line and the nearest document on each side. (This was implemented in Roller

et al. (2012)’s code but not investigated in their paper.)

A disadvantage of city-based grids is that they are unable to resolve locations at a finer

scale than an entire city, whereas rectangular grids can be made as fine-scale as desired. This is

a particular advantage of k-d trees, which will naturally increase their resolution in the vicinity
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of populated regions, leading to grids that may be able to distinguish cities from suburbs or even

identify individual neighborhoods in a city, as shown in Figure 3.1.

Other disadvantages of these methods are the dependency on time-specific population data,

making them unsuitable for some corpora (e.g. 19th-century documents); the difficulty in adjusting

grid resolution in a principled fashion; and the fact that not all documents are near a city. Han et al.

(2014) in fact find that 8% of tweets are “rural” and cannot predicted by their model. This may be

worse for Wikipedia, which includes coverage of many small towns and villages.

For these reasons, I do not consider city-based grids in my experiments.

3.3 Grid construction

With such a discrete representation of the earth’s surface, there are four distributions that form

the core of all my geolocation methods. The first is a standard multinomial distribution over the

vocabulary for every cell in the grid. Given a grid G with cells ci and a vocabulary V with words

wj , we have θcij = P (wj |ci). The second distribution is the equivalent distribution for a single test

document dk with vocabulary Vdk , i.e. θdkj = P (wj |dk). The third distribution is the reverse of the

first: for a given word, its distribution over the earth’s cells, κji = P (ci|wj). The final distribution

is over the cells, γi = P (ci).

The first and second distributions are in fact particular types of language models, i.e. meth-

ods of assigning a probability to a sequence of words. Specifically, the first distribution is a language

model of a document, and the second one is a model of the concatenation of all training documents

within a given cell. For the purposes of this dissertation, I use a simple unigram model that ignores

word ordering. As a result, it will have difficulty when presented with a multiword toponym such as

the Texas city of College Station. In Chapter 7 this issue is addressed further.

The grid representation I use ignores all higher level regions, such as states, countries,

rivers, and mountain ranges, but is consistent with the geocoding in both the Wikipedia and Twitter

datasets. Note that the κji for words referring to such regions is likely to be quite flat (spread out)

but with most of the mass concentrated in a set of connected cells. Those for highly focused point-

locations will jam up in a few disconnected cells—in the extreme case, toponyms like Springfield
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which are connected to many specific point locations around the earth.

I use grids with cell sizes of varying granularity d×d. For example, with d=0.5◦, a cell at

the equator is roughly 56x55 km and at 45◦ latitude it is 39x55 km. At this resolution, there are a

total of 259,200 cells, of which 35,750 are non-empty when using the ENWIKI13 training set. For

comparison, at the equator a cell at d=5◦ is about 557x553 km (2,592 cells; 1,747 non-empty) and

at d=0.1◦ a cell is about 11.3x10.6 km (6,480,000 cells; 170,005 non-empty).

The geolocation methods predict a cell ĉ for a document, and the latitude and longitude of

the centroid of the cell (the mean of all observed points in the cell in the training data) is used as the

predicted location. (Wing and Baldridge (2011) used the midpoint of the cell, but better results stem

from using the centroid, which often reflects the location of the major city or area of concentration

within the grid cell, as shown by Roller et al. (2012).) Prediction error is the great-circle distance

from these predicted locations to the locations given by the gold standard. This differs from the

evaluation metrics used by Serdyukov et al. (2009), which are all computed relative to a given grid

size. With their metrics, results for different granularities cannot be directly compared because using

larger cells means less ambiguity when choosing ĉ. With distance-based evaluation, large cells are

penalized by the distance from the centroid to the actual location even when that location is in the

same cell. Smaller cells reduce this penalty and permit the word distributions θcij to be much more

specific for each cell, but they are harder to predict exactly and suffer more from sparse word counts

compared to courser granularity. For large datasets like the English Wikipedia, fine-grained grids

work very well, but the trade-off between resolution and sufficient training material shows up more

clearly for GEOTEXT (the small Twitter dataset). See §4.1.2 for a fuller discussion of evaluation

metrics.

3.4 Information retrieval models

A geodesic grid of sufficient granularity creates a large decision space, when each cell is viewed

as a label to be predicted by some classifier. This situation naturally lends itself to simple, scalable

language-modeling approaches, motivated by the techniques used in information retrieval. For this

general strategy, each cell is characterized by a pseudo-document constructed from the concatenation
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of the training documents that it contains. A test document’s location is then chosen based on the

cell with the most similar language model according to standard measures such as Kullback-Leibler

(KL) divergence (Zhai and Lafferty, 2001), which seeks the cell whose language model is closest to

the test document’s, or Naive Bayes (Lewis, 1998), which chooses the cell that assigns the highest

probability to the test document, according to Bayes’ Law.

These models are quick to train, which allows them to expand to encompass fine-scale grid

resolutions with potentially thousands or even hundreds of thousands of non-empty grid cells to

choose among.

Other scalable models I implemented are what I term Average Cell Probability (ACP),

which inverts the set of grid-cell language models to produce distributions over grid cells for a given

word and averages the distributions of the test document’s words; cosine similarity; TF/IDF; and

some very basic baselines, such as selecting a random cell or always choosing the cell containing

the greatest number of training documents. In preliminary experiments, I did not get good results

from cosine similarity or TF/IDF, and do not consider them further.

3.4.1 Training

The training material specifies the location of each document. Using that, I aggregate documents

into grid cells, from which I acquire θ and κ straightforwardly.

Word distributions

The unsmoothed estimate of word wj’s probability in a test document dk is:3

θ̃dkj =
#(wj , dk)∑

wl∈V
#(wl, dk)

(3.1)

Similarly for a cell ci, I compute the unsmoothed word distribution by aggregating all of the docu-

ments located within ci:
3I use #() to indicate the count of an event.
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θ̃cij =

∑
dk∈ci

#(wj , dk)∑
dk∈ci

∑
wl∈V

#(wl, dk)
(3.2)

I compute the global distribution θDj over the set of all documents D in the same fashion.

To compute the smoothed word distribution of a document dk, I can either interpolate the

global distribution θDj , or back off to it when a word is not seen in the document’s distribution. A

general interpolation model looks like

θdkj = (1−λdk)θ̃dkj + λdkθDj (3.3)

where the discount factor λdk indicates how much probability mass to reserve for unseen words. I

consider two possibilities. Jelinek smoothing simply sets λdk to a constant value, while Dirichlet

smoothing assigns it as follows:

λdk = 1− |dk|
|dk|+m

(3.4)

where |dk| is the size of the document and m is a tunable parameter. This has the effect of relying

more on dk’s distribution and less on the global distribution for larger documents that provide more

evidence than shorter ones.

A general back-off model looks like

θ
(−dk)
Dj =

θDj
1−

∑
wl∈dk

θDl
(3.5)

θdkj =


αdkθ

(−dk)
Dj , if θ̃dkj = 0

(1−αdk)θ̃dkj , o.w.
(3.6)
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where θ(−dk)Dj is an adjusted version of θDj that is normalized over the subset of words not found in

document dk. This adjustment ensures that the entire distribution is properly normalized.

αdk is the probability mass reserved for unseen words. I set it using a non-parametric

method I devised called pseudo-Good-Turing. Motivated by Good-Turing smoothing, I determine

αdk by the empirical probability of having seen a word once in the document:

αdk =
|wj ∈ V s.t.#(wj , dk)=1|∑

wj∈V
#(wj , dk)

(3.7)

(3.8)

For whichever smoothing method I use, the cell distributions are treated analogously.

Cell distributions

The distributions over cells for each word simply renormalize the θcij values to achieve a proper

distribution:

κji =
θcij∑

ci∈G
θcij

(3.9)

A useful aspect of the κ distributions is that they can be plotted in a geobrowser using thematic

mapping techniques (Sandvik, 2008) to inspect the spread of a word over the earth. I used this as

a simple way to verify the basic hypothesis that words that do not name locations are still useful

for geolocation. Figure 3.2 is an example of the Wikipedia distribution for mountain, plotted using

Google Earth4; Figure 3.3 is a similar plot for beach. Not surprisingly, it shows high density over

the Rocky Mountains, Smokey Mountains, the Alps, and other ranges.5 Similarly, beach has high

density in coastal areas. Words without inherent locational properties also have intuitively correct

4http://earth.google.com
5The red line in the upper right corresponds to Little Hall Island off the coast of Baffin Island, in northern Canada. The

color stems from Google Earth’s lighting algorithm, but it is unclear why this particular location is so significant for the word
mountain.
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Figure 3.2: Wikipedia distribution of mountain, plotted using Google Earth.

Figure 3.3: Wikipedia distribution of beach, plotted using Google Earth.
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distributions: e.g., barbecue has high density over the south-eastern United States, Texas, Jamaica,

and Australia, while wine is concentrated in France, Spain, Italy, Chile, Argentina, California, South

Africa, and Australia.6

Finally, the cell distributions are simply the relative frequency of the number of documents

in each cell: γi =
|ci|
|D| .

A standard set of stopwords are ignored. Also, all words are lowercased except in the case of

the most-common-toponym baselines, where uppercase words serve as a fallback in case a toponym

cannot be located in the article.

3.4.2 Kullback-Leibler divergence

Given the distributions for each cell, θci , in the grid, I use an information retrieval approach to

choose a location for a test document dk: compute the similarity between its word distribution θdk

and that of each cell, and then choose the closest one. Kullback-Leibler (KL) divergence is a natural

choice for this (Zhai and Lafferty, 2001). For distribution P and Q, KL divergence is defined as:

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(3.10)

This quantity measures how good Q is as an encoding for P—the smaller it is the better. The best

cell ĉKL is the one which provides the best encoding for the test document:

ĉKL = argmin
ci∈G

KL(θdk ||θci) (3.11)

The fact that KL is not symmetric is desired here: the other direction, KL(θci ||θdk), asks which cell

the test document is a good encoding for. With KL(θdk ||θci), the log ratio of probabilities for each

word is weighted by the probability of the word in the test document, θdkj log
θdkj

θcij
, which means

that the divergence is more sensitive to the document rather than the overall cell.

As an example for why non-symmetric KL in this order is appropriate, consider geolocating

a page in a densely geotagged cell, such as the page for the Washington Monument. The distribution

6This also acts as an exploratory tool. For example, due to a big spike on Cebu Province in the Philippines I learned that
Cebuanos take barbecue very, very seriously.
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of the cell containing the monument will represent the words from many other pages having to

do with museums, US government, corporate buildings, and other nearby memorials and will have

relatively small values for many of the words that are highly indicative of the monument’s location.

Many of those words appear only once in the monument’s page, but this will still be a higher value

than for the cell and will weight the contribution accordingly.

Rather than computing KL(θdk ||θci) over the entire vocabulary, I restrict it to only the

words in the document to compute KL more efficiently:

KL(θdk ||θci) =
∑

wj∈Vdk

θdkj log
θdkj
θcij

(3.12)

Early experiments showed that it makes no difference in the outcome to include the rest of the

vocabulary. Note that because θci is smoothed, there are no zeros, so this value is always defined.

3.4.3 Naive Bayes

Naive Bayes is a natural generative model for the task of choosing a cell ci, given the distributions

θci and γ. To generate a document dk, choose a cell ci according to γ and then choose the words in

the document according to θci :

ĉNB = argmax
ci∈G

PNB(ci|dk)

= argmax
ci∈G

P (ci)P (dk|ci)
P (dk)

= argmax
ci∈G

γi
∏

wj∈Vdk

θ
#(wj ,dk)
cij

(3.13)

This method maximizes the combination of the likelihood of the document P (dk|ci) and the cell

prior probability γi.

59



3.4.4 Average cell probability

For each word, κji gives the probability of each cell in the grid. A simple way to compute a

distribution for a document dk is to take a weighted average of the distributions for all words to

compute the average cell probability (ACP):

ĉACP = argmax
ci∈G

PACP (ci|dk)

= argmax
ci∈G

∑
wj∈Vdk

#(wj , dk)κji∑
cl∈G

∑
wj∈Vdk

#(wj , dk)κjl

= argmax
ci∈G

∑
wj∈Vdk

#(wj , dk)κji (3.14)

This method, despite its conceptual simplicity, works well in practice. It could also be easily

modified to use different weights for words, such as TF/IDF or relative frequency ratios between

geolocated documents and non-geolocated documents.

3.5 Logistic regression

The use of discrete cells over the Earth’s surface allows any classification strategy to be employed,

including discriminative classifiers such as logistic regression (also known as maximum entropy

modeling). Logistic regression does not assume that the set of features are independent, as does

Naive Bayes, but instead learns how to properly weight the features, automatically down-weighting

those that largely duplicate the evidence supplied by other features. As a result, logistic regression

often produces better results than generative classifiers at the cost of more time-consuming training,

which limits the size of the problems it may be applied to. Training is generally unable to scale to

encompass several thousand or more distinct labels, as is the case with fine-scale grids of the sort I

employ in various models. Nonetheless I find flat logistic regression to be effective on most of my

large-scale corpora, and the hierarchical classification strategy discussed in §3.7 allows me to take

advantage of logistic regression without incurring such a high training cost.
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Logistic regression, when operating as a binary classifier, models the log-odds of the proba-

bility of a positive response as a linear combination of the input features and a set of learned weights.

When doing multi-way classification, the normal procedure is to identify one of the possible labels

as a pivot and model the log of the probability ratio of seeing each of the other classes relative to the

pivot as a linear combination of features and separate sets of weights.

A K-way logistic regression classifier is normally written as

ln p(yi = 1) = β1 · xi − lnZ

ln p(yi = 2) = β2 · xi − lnZ

. . .

ln p(yi = K) = βk · xi − lnZ (3.15)

for a multinomial label yi, with a set of weights βk for k = 1 . . .K, where each choice has its own

weight vector, and a normalizing constant Z is introduced so that the probabilities all sum to 1:

K∑
k=1

p(yi = k) = 1 (3.16)

3.6 Feature selection

Naive Bayes assumes that features are independent, which penalizes models that must accommo-

date many features that are poor indicators and which can gang up on the good features. Large

improvements have been obtained by reducing the set of words used as features to those that are

geographically salient. Cheng et al. (2010; 2013) model word locality using a unimodal distribution

taken from Backstrom et al. (2008) and train a classifier to identify geographically local words based

on this distribution. This unfortunately requires a large hand-annotated corpus for training. Han et

al. (2014) systematically investigate various feature selection methods for finding geo-indicative

words, such as information gain ratio (IGR) (Quinlan, 1993), Ripley’s K statistic (O’Sullivan and

Unwin, 2010) and geographic density (Chang et al., 2012), showing significant improvements on
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TWUS and TWWORLD (Chapter 2).

Both papers use information retrieval methods for doing the actual geolocation. Han et al.

(2014) compare Naive Bayes with KL divergence, while Cheng et al. use a method similar to my

ACP method (§3.4.4).

For comparison with Han et al. (2014), I test against an additional baseline: Naive Bayes

combined with feature selection done using IGR. Following Han et al., I first eliminate words which

occur less than 10 times, have non-alphabetic characters in them or are shorter than 3 characters. I

then compute the IGR for the remaining words across all cells at a given cell size or bucket size,

select the top N% for some cutoff percentage N (which I vary in increments of 2%), and then run

Naive Bayes at the same cell size or bucket size.

3.7 Hierarchical classification

To overcome the limitations of discriminative classifiers in terms of the maximum number of cells

they can handle, I introduce hierarchical classification (Silla Jr. and Freitas, 2011) for geolocation.

Dias et al. (2012) use a simple two-level generative hierarchical approach using Naive Bayes, but to

my knowledge no previous work implements a multi-level discriminative hierarchical model with

beam search for geolocation.

To construct the hierarchy, I start with a root cell croot that spans the entire Earth and from

there build a tree of cells at different scales, from coarse to fine. A cell at a given level is subdivided

to create smaller cells at the next level of resolution that altogether cover the same area as their

parent.

I use the local classifier per parent approach to hierarchical classification (Silla Jr. and

Freitas, 2011) in which an independent classifier is learned for every node of the hierarchy above

the leaf nodes. The probability of any node in the hierarchy is the product of the probabilities of that

node and all of its ancestors, up to the root. This is defined recursively as:

P (croot) = 1.0

P (cj) = P (cj |↑cj)P (↑cj)
(3.17)
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where ↑cj indicates cj’s parent in the hierarchy.

In addition to allowing one to use many classifiers that each have a manageable number of

outcomes, the hierarchical approach naturally lends itself to beam search. Rather than computing

the probability of every leaf cell using equation 3.17, I use a stratified beam search: starting at the

root cell, keep the b highest-probability cells at each level until reaching the leaf node level. With

a tight beam—which I show to be very effective—this dramatically reduces the number of model

evaluations that must be performed at test time.

For example, if I have 40 cells at level 1, and each level-L cell subdivides into 4 cells at

level L+ 1, and I have a beam size of 8, then I proceed as follows:

1. Run the top-level classifier over the 40 level-1 cells.

2. Select the 8 highest-probability cells at level 1.

3. For each such cell, run the classifier associated with this cell, which yields probabilities over

the 4 subdivided cells at level 2; combine them with the level-1 cell’s probability to get a total

probability for 32 level-2 cells.

4. Select the 8 highest-probability cells at level 2.

5. Repeat if there are any more levels.

Grid size parameters Two factors determine the size of the grids at each level. The first-level grid

is constructed the same as for Naive Bayes or flat logistic regression and is controlled by its own

parameter. In addition, the subdivision factor N determines how I subdivide each cell to get from

one level to the next. Both factors must be optimized appropriately.

For the uniform grid, I subdivide each cell into NxN subcells. In practice, there may actu-

ally be fewer subcells, because some of the potential subcells may be empty (contain no documents).

For the k-d grid, if level 1 is created using a bucket size B (i.e. I recursively divide cells as

long as their size exceeds B), then level 2 is created by continuing to recursively divide cells that

exceed a smaller bucket size B/N . At this point, the subcells of a given level-1 cell are the leaf
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Figure 3.4: Relative hierarchical LR rank of cells for ENWIKI13 test document Pennsylvania Av-
enue (Washington, DC), surrounding the true location. The first callout simply expands a portion of
level 1, while the second callout shows a level 1 cell subdivided down to level 2.

cells contained with the cell’s geographic area. The construction of level 3 proceeds similarly using

bucket size B/N2, etc.

Note that the subdivision factor has a different meaning for uniform and k-d tree grids.

Furthermore, because creating the subdividing cells for a given cell involves dividing by N2 for the

uniform grid but N for the k-d tree grid, greater subdivision factors are generally required for the

k-d tree grid to achieve similar-scale resolution.

Figure 3.4 shows the behavior of hierarchical LR using k-d trees for the test document

Pennsylvania Avenue (Washington, DC) in ENWIKI13. After ranking the first level, the beam zooms

in on the top-ranked cells and constructs a finer k-d tree under each one (one such subtree is shown

in the top-right map callout).
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3.8 Simple baselines

There are several natural baselines to use for comparison against the methods described above.

Random Choose ĉrand randomly from a uniform distribution over the entire grid G.

Cell prior maximum Choose the cell with the highest prior probability according to γ: ĉcpm =

argmaxci∈G γi.

Most frequent toponym Identify the most frequent toponym in the article and the geotagged

Wikipedia articles that match it. Then identify which of those articles has the most incoming links

(a measure of its prominence), and then choose ĉmft to be the cell that contains the geotagged

location for that article. This is a strong baseline method, but can only be used with Wikipedia.

Note that a toponym matches an article (or equivalently, the article is a candidate for the

toponym) either if the toponym is the same as the article’s title, or the same as the title after a

parenthetical tag or comma-separated higher-level division is removed. For example, the toponym

Tucson would match articles named Tucson, Tucson (city) or Tucson, Arizona. In this fashion, the set

of toponyms, and the list of candidates for each toponym, is generated from the set of all geotagged

Wikipedia articles.

I implemented a fourth baseline, but ended up not using it in my final experiments. It

chooses the most frequent toponym in the article and then chooses the grid cell with the maximum

probability for this word, according to κji (see §3.4.4 above). If no toponym is found in an arti-

cle, it falls back to the most frequent capitalized word. In my early experiments on Wikipedia, it

consistently performed worse than the most frequent toponym strategy described above that uses

incoming-link prominence. However, this strategy might be useful as a baseline for a corpus where

such a prominence measure is unavailable, as in the Twitter corpus I use for evaluation.
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Chapter 4

Experiments on modern corpora

The eventual goal of this dissertation is to apply the methods of the previous chapter to historical

corpora in the digital humanities.1 These corpora, however, tend to be small and to lack document-

level or paragraph-level annotations, which makes it difficult to evaluate their performance and

requires us to develop domain-adaptation techniques for the annotated material that we do have.

We first need to understand the performance of these methods standing by themselves, and we do so

by training and evaluating them on modern corpora where we have plenty of in-domain material. As

described in Chapter 2, we evaluate on three types of corpora: Twitter user feeds, Wikipedia articles,

and Flickr image tags.

4.1 Experimental setup

4.1.1 Configurations

The most important parameters in my experiments are those related to grid construction and grid

scoring. Additional parameters cover choice of representative point, smoothing, filtering and logistic

regression.

1This chapter is partly based on Wing (2011), Wing and Baldridge (2011) and Wing and Baldridge (2014). Jason
Baldridge was my advisor for these works and helped edit the papers.
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Grid construction For grid construction, the possibilities are either a uniform or k-d tree grid.

For uniform grids, the main tunable parameter is grid size (in degrees), while for k-d trees it is

bucket size (BK), i.e. the number of documents above which a node is divided in two.

Grid scoring For grid scoring, the options are:

• RAND: Random baseline

• PRIOR: Cell prior maximum

• NB: Naive Bayes

• KL: KL divergence

• ACP: Average cell probability

• IGR: Naive Bayes using features selected by information gain ratio

• FLATLR: Logistic regression model over all leaf nodes

• HIERLR: Product of logistic regression models at each node in a hierarchical grid (eq. 3.17)

Some of these methods are associated with additional parameters, which must be tuned on

the dev set:

• For IGR, there is one additional parameter, the cutoff (CU), a percentile. For a given value c,

we eliminate the bottom (100− c)% of words, as measured by information gain ratio.

• For HIERLR, there are three additional parameters: subdivision factor (SF), beam size (BM),

and hierarchy depth (D). See §3.7 and §4.2.5 for more discussion. All of our test-set results

use a depth of three levels.

Choice of representative point Once grid cells have been scored, a single point representing the

top-ranked cell needs to be chosen. This can be done using the geographic center of a cell or the

centroid of the training documents in the cell. The latter produces consistently better results and is

used in further experiments (§3.3), but has a significant dependence on the particular set of training
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documents, which especially matters when this set is small (§5.2.2). Another possibility is to take

into account cells further down in the ranking, using an algorithm such as mean shift (§1.2, §7.2.2),

although preliminary experiments with this algorithm were not promising.

Smoothing As discussed in §3.4.1, I consider three types of smoothing of language models:

Dirichlet, Jelinek, and my own method pseudo-Good-Turing. Based on preliminary experiments,

I choose Dirichlet smoothing in conjunction with Naive Bayes, with the Dirichlet parameter set to

m = 1, 000, 000. For KL divergence, I did not have good luck with Dirichlet smoothing, and instead

use pseudo-Good-Turing, which has no tunable parameter.

Filtering For the most part, I do not pre-filter words out of a language model, except for applying

standard language-dependent sets of stopwords. Some methods that I compare against, however

(e.g. GEOTEXT, §4.2.1), do pre-filter words, and I investigate whether this is needed.

Logistic regression Due to its speed and flexibility, I use Vowpal Wabbit (Agarwal et al., 2014)

for logistic regression.2 I estimate parameters with limited-memory BFGS (Nocedal, 1980; Byrd

et al., 1995), as I found that stochastic gradient descent (SGD) (Bottou, 2010) yielded significantly

worse results.3 Unless otherwise mentioned, I use 26-bit feature hashing (Weinberger et al., 2009)

and 40 passes over the data (optimized based on early experiments on development data). For the

subcell classifiers in hierarchical classification, which have fewer classes and much less data, I use

24-bit features and 12 passes.

Vowpal Wabbit has a hold-out mechanism, which holds out a portion of the training data

and uses it to determine when to stop training, to avoid potential overfitting problems. I turn this

mechanism off due to poor performance with it enabled. This means I have to carefully optimize the

number of passes using the dev set, to avoid both underfitting (not enough passes) and overfitting

(too many passes), both of which cause significant decreases in accuracy. This is in contrast to the

2I also investigated some other tools, including the mlogit package of R (Croissant, 2013) and Rob Malouf’s TADM
(Tools for Advanced Data Modeling) package (Malouf, 2002).

3SGD holds out the promise of being faster than BFGS. However, I found that attempting to tune SGD to achieve similar
results to BFGS produced even slower running times than BFGS. One possibility I did not consider, which may produce
comparable accuracy and faster running time, was to use SGD to produce a preliminary solution and optimize further with
BFGS.
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Feature bits
Passes 22 23 24 25 26 27

16 394 355 363 380 390 391
24 346 309 287 302 299 287
32 277 266 250 259 254 257
40 267 259 256 247 249 255
48 275 266 267 254 254 253
64 301 281 286 286 276 277

Table 4.1: Median prediction error (km) on the TWUS dev set for various combinations of feature-
hashing bit size and number of BFGS passes.

number of bits used for feature hashing, where it is merely necessary to use a large enough feature

space to avoid clashes, and using more bits than necessary does not materially hurt performance.

The effect of different numbers of feature bits and passes can be seen in Table 4.1, which

shows median prediction error on TWUS-LARGE with a uniform 5◦ grid under FLATLR. In this

case 25 bits is slightly better than 26, but in other experiments (e.g. in HIERLR, and for ENWIKI13,

which has more features) I found better performance from 26 bits, which is what I ultimately se-

lected.

4.1.2 Evaluation metrics

A number of different evaluation metrics have been used by various authors to gauge the perfor-

mance of geolocation. Serdyukov et al. (2009) used various cell-based accuracy metrics, measuring

the fraction of documents successfully geolocated to the correct cell, or to a square of K cells sur-

rounding the correct cell. This is a simple and accessible metric but has the disadvantage that it is

sensitive to the size of the cell grid, making comparisons across different-sized grids difficult.

Serdyukov et al. (2009) also use mean reciprocal rank, commonly used in the learning-to-

rank community (Liu, 2011), which measures the accuracy of an entire ranking, including those

cells ranked below the best cell. This measure has the same flaws as cell accuracy. In addition, its

emphasis on the entire ranking makes it fundamentally different from the other metrics considered

here. This would be useful in e.g. a context where the user is presented with a number of possible

locations and asked to select one; typically, however, the goal is to find the correct location. This

minimizes the need for user-based assistance and allows for a much wider range of applications,
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e.g. local content (where limited space typically does not allow display of content from multiple

locations) or indications of the current distance or time to the user’s home. This suggests that

metrics that only consider the top-ranked cell are more appropriate.

Eisenstein et al. (2010) and Cheng et al. (2010) use metrics based on error distance, i.e.

the distance between the correct location and the chosen location. (As mentioned above, for cell-

based methods the chosen location methods is normally the centroid of the training documents in the

chosen cell.) Either the mean or median error distance can be calculated. This has the advantage

over cell accuracy in that it allows comparisons across distinct grid sizes. Furthermore, performance

at greater precision than the size of a cell can be measured. This metric is also not tied to a cell-

based representation, and can be employed e.g. when the mean shift algorithm is used to select a

geolocated location other than a cell centroid.

A potential issue with error distance, however, is that at a fine grain the metric becomes

dependent on the exact location chosen for a given evaluation document (which may not be accurate

to more than city-level granularity). In addition, in some cases geolocation to a metro area is suffi-

cient, and in these cases a measure like "accuracy within the metro area" might be desired. A proxy

for this is accuracy at 161 km (acc@161), introduced by Cheng et al. (2010), which measures the

fraction of documents whose error distance is at most 161 km (originally chosen as 100 miles).

In the rest of my experiments, I use mean and median error distance and accuracy at 161

kilometers (acc@161). As noted above, all of these metrics allow for direct comparison across

different cell sizes. Following Han et al. (2014), I use acc@161 on development sets when choosing

algorithmic parameter values such as cell and bucket sizes.

4.2 Results

4.2.1 Small Twitter corpus

In Eisenstein et al. (2010)’s experiments, all vocabulary items that appear in fewer than 40 users

were ignored. This thresholding takes away a lot of very useful material, including many relatively

rare but highly indicative toponyms. This suggests that a lower threshold would be better, and this
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Method Parameters A@161 Mean Med.
KL Uniform 1◦ 35.4 954 546
KL k-d BK250 32.9 910 539
NB Uniform 1◦ 36.1 1009 552
NB k-d BK100 33.9 1007 598
IGR Uniform 2.5◦, CU88% 36.7 972 496
IGR k-d BK250, CU100% 33.1 968 570
FLATLR Uniform 2.5◦ 42.0 837 312
FLATLR k-d BK250 38.4 860 425
HIERLR Uniform 5◦, SF3, BM1 41.6 808 317
HIERLR k-d BK250, SF2, BM2 38.7 877 460
Eisenstein et al. (2010) Geographic topic model — 900 494
Hong et al. (2012) Full model — — 373
Hulden et al. (2015) NBkde2d — 765 357
Hulden et al. (2015) KL — 802 333

Table 4.2: Performance on the test set of GEOTEXT for different methods and metrics.

is borne out by my experiments, where a threshold of 5 is best.

Test set results are shown in Table 4.2 and are compared with a number of other papers

that evaluate on the same dataset. Best acc@161 and median come from FLATLR. This is contrary

to all the other corpora I consider, for which HIERLR is consistently better — although even for

this corpus, HIERLR’s value for mean beats all my other methods.4 Mean is the only metric that

considers the performance of points for which the predicted location is significantly inaccurate, and

the take-home significance of this is that HIERLR is doing a better job than all my other methods at

reducing the likelihood of more extreme errors.

IGR outperforms NB with a uniform grid, similarly to the other Twitter datasets (and unlike

the remaining datasets in this chapter), but in this case the gain is fairly slight, and IGR is actually

worse than NB with a k-d grid.

Both FLATLR and HIERLR manage to beat all values for median error distance reported in

other papers. However, Hulden et al. (2015) report a mean value that is better than all my methods,

using a kernel density estimation (KDE) technique. What is surprising about their results is the

values they report for plain KL divergence, which differ drastically from the KL divergence figures

that I obtain, with a median that even beats their own KDE method. I have no explanation for this

4For this dataset, FLATLR and HIERLR were run with 15 BFGS passes for uniform and 12 passes for k-d, and HIERLR
was run with 9 passes and 22-bit features in sublevels.
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discrepancy. Their figures are reported for a threshold of 5, just like my figures. The only other

possible difference is in smoothing methods, yet they report using simple add-n smoothing, and it

is hard for me to believe that this can account for the difference in values.

4.2.2 Large Twitter corpora

I show the effect of varying cell size in Table 4.3 and k-d tree bucket size in Figure 4.1. The number

of non-empty cells is shown for each cell size and bucket size. For NB, this is the number of cells

against which a comparison must be made for each test document; for FLATLR, this is the number

of classes that must be distinguished. For HIERLR, no figure is given because it varies from level

to level and from classifier to classifier. For example, with a uniform grid and subdivision factor of

3, each level-2 subclassifier will have between 1 and 9 labels to choose among, depending on which

cells are empty.

Method Cell Size #Class Acc. Mean Med.
(Deg) (km) @161 (km) (km)

NB 0.17◦ 18.9 11,671 36.6 929.5 496.4
0.50◦ 55.6 2,838 35.4 889.3 466.6

IGR, CU90% 1.5◦ 167 501 45.9 787.5 255.6

FLATLR

5◦ 556 59 35.4 727.8 248.7
4◦ 445 99 44.4 718.8 227.9
3◦ 334 159 47.3 721.3 186.2

2.5◦ 278 208 47.5 743.9 198.9
2◦ 223 316 46.9 737.7 209.9

1.5◦ 167 501 46.6 762.6 226.9
1◦ 111 975 43.0 810.0 303.7

HIERLR, D2, SF2, BM5 4◦ – – 48.6 695.2 182.2
HIERLR, D2, SF2, BM2 3◦ – – 49.0 725.1 174.6
HIERLR, D3, SF2, BM2 3◦ – – 49.0 718.9 173.8
HIERLR, D2, SF2, BM5 2.5◦ – – 48.2 740.9 187.7

Table 4.3: Dev set performance for TWUS, with uniform grids. HIERLR and IGR parameters
optimized using acc@161. Best metric numbers for a given method are underlined, except that
overall best numbers are in bold.

FLATLR does much better than NB and IGR, and HIERLR is still better. This is despite

logistic regression needing to operate at a much lower resolution.5 Interestingly, uniform-grid 2-

level HIERLR does better at 4◦ with a subdivision factor of 2 than the equivalent FLATLR run at

5The limiting factor for resolution was the 24-hour per job limit on my computing cluster.
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Figure 4.1: Dev set performance for TWUS, with k-d tree grids.

2◦.

Table 4.4 shows the test set results for the various methods and metrics described in §4.1,

on both TWUS and TWWORLD.6 HIERLR is the best across all metrics; the best acc@161km and

median error is obtained by HIERLR with a uniform grid, while HIERLR with k-d trees obtains the

best mean error.

Compared with vanilla NB, my implementation of NB using IGR feature selection obtains

large gains for TWUS and moderate gains for TWWORLD, showing that IGR can be an effective

geolocation method for Twitter. This agrees in general with Han et al. (2014)’s findings. I can only

compare my figures directly with Han et al. (2014) for k-d trees—in this case they use a version of

the same software I use and report figures within 1% of mine for TWUS. Their remaining results

are computed using a city-based grid and an NB implementation with add-one smoothing, and are

significantly worse than my uniform-grid NB and IGR figures using Dirichlet smoothing, which is

6Note that for TWWORLD, it was necessary to modify the parameters normally passed to Vowpal Wabbit, moving up to
27-bit features and 96 passes, and 24-bit features with 24 passes in sublevels of HIERLR.
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Corpus TWUS TWWORLD

Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 0.17◦ 36.2 913.8 476.3 1◦ 30.2 1690.0 537.2
NB k-d BK1500 36.2 861.4 444.2 BK500 28.7 1735.0 566.2
IGR Uniform 1.5◦, CU90% 46.1 770.3 233.9 1◦, CU90% 31.0 2204.8 574.7
IGR k-d BK2500, CU90% 44.6 792.0 268.6 BK250, CU92% 29.4 2369.6 655.0
FLATLR Uniform 2.5◦ 47.2 727.3 195.4 3.7◦ 32.1 1736.3 500.0
FLATLR k-d BK4000 47.4 692.2 197.0 BK12000 27.8 1939.5 651.6
HIERLR Uniform 3◦, SF2, BM2 49.2 703.6 170.5 5◦, SF2, BM1 32.7 1714.6 490.0
HIERLR k-d BK4000, SF3, BM1 48.0 686.6 191.4 BK60000, SF5, BM1 31.3 1669.6 509.1

Table 4.4: Performance on the test sets of TWUS and TWWORLD for different methods and metrics.

Corpus ENWIKI13 COPHIR
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1.5◦ 84.0 326.8 56.3 1.5◦ 65.0 1553.5 47.9
NB k-d BK100 84.5 362.3 21.1 BK3500 58.5 1726.9 70.0
IGR Uniform 1.5◦, CU96% 81.4 401.9 58.2 1.5◦, CU92% 60.8 1683.4 56.7
IGR k-d BK250, CU98% 80.6 423.9 34.3 BK1500, CU62% 54.7 2908.8 83.5
FLATLR Uniform 7.5◦ 25.5 1347.8 259.4 2.0◦ 60.6 1942.3 73.7
FLATLR k-d BK1500 74.8 253.2 70.0 BK3000 57.7 1961.4 72.5
HIERLR Uniform 7.5◦, SF3, BM5 86.2 228.3 34.0 7◦, SF4, BM5 65.3 1590.2 16.7
HIERLR k-d BK1500, SF12, BM2 88.9 168.7 15.3 BK100000, SF15, BM5 66.0 1453.3 17.9

Table 4.5: Performance on the test sets of ENWIKI13 and COPHIR for different methods and
metrics.

known to significantly outperform add-one smoothing (Smucker and Allan, 2006). For example, for

NB they report 30.8% acc@161 for TWUS and 20.0% for TWWORLD, compared with my 36.2%

and 30.2% respectively. I suspect an additional reason for the discrepancy is due to the limitations

of their city-based grid, which has no tunable parameter to optimize the grid size and requires that

test instances not near a city be reported as incorrect.

My NB figures also beat the KL divergence figures reported in Roller et al. (2012) for

TWUS (which they term UTGEO2011), perhaps again due to the difference in smoothing methods.

4.2.3 Wikipedia

Table 4.5 shows results on the test set of ENWIKI13 for various methods. Table 4.7 shows the

corresponding results for DEWIKI14 and PTWIKI14. In all cases, the best parameters for each

method were determined using acc@161 on the development set, as above.

HIERLR is clearly the stand-out winner among all methods and metrics, and particularly

so for the k-d tree grid. This is achieved through a high subdivision factor, especially in a 2-level
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Figure 4.2: Plot of subdivision factor vs. acc@161 for the ENWIKI13 dev set with 2-level k-d tree
HIERLR, bucket size 1500. Beam sizes above 2 yield little improvement.

hierarchy, where a factor of 36 is best, as shown in Figure 4.2 for ENWIKI13. (For a 3-level

hierarchy, the best subdivision factor is 12.)

Unlike for TWUS, FLATLR simply cannot compete with NB in the larger Wikipedias

(ENWIKI13 and DEWIKI14). ENWIKI13 especially has dense coverage across the entire world,

whereas TWUS only covers the United States and parts of Canada and Mexico. Thus, there are a

much larger number of non-empty cells at a given resolution and much coarser resolution required,

especially with the uniform grid. For example, at 7.5◦ there are 933 non-empty cells, comparable

to 1◦ for TWUS. Table 4.6 shows the number of classes and runtime for FLATLR and HIERLR at

different parameter values. The hierarchical classification approach is clearly essential for allowing

me to scale the discriminative approach to handle a large, dense dataset covering the whole world.

Moving from larger to smaller Wikipedias, FLATLR becomes more competitive. In partic-

ular, FLATLR outperforms NB and is close to HIERLR for PTWIKI14, the smallest of the three

(and significantly smaller than TWUS). In this case, the relatively small size of the dataset and

its greater geographic specificity (many articles are located in Brazil or Portugal) allows for a fine

enough resolution to make FLATLR perform well—comparable to or even finer than NB.
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Method Param #Class A@161 Med. Runtime

FLATLR
Uniform

10◦ 648 19.2 314.1 11h
8.5◦ 784 26.5 248.5 16h
7.5◦ 933 30.1 232.0 19h

FLATLR
k-d

BK5000 257 57.1 133.5 5h
BK2500 501 67.5 94.9 9h
BK1500 825 74.7 69.9 16h

HIERLR
Uniform

7.5◦,SF2,BM1 — 85.2 67.8 23h
7.5◦,SF3,BM5 — 86.1 34.2 27h

HIERLR
k-d

BK1500,SF5,BM1 — 88.2 19.6 23h
BK5000,SF10,BM5 — 88.4 18.3 14h
BK1500,SF12,BM2 — 88.8 15.3 33h

Table 4.6: Performance/runtime for FLATLR and 3-level HIERLR on the ENWIKI13 dev set, with
varying parameters.

In all of the Wikipedias, NB k-d outperforms NB uniform, and HIERLR outperforms both,

but by greatly varying amounts, with only a 1% difference for DEWIKI14 but 12% for PTWIKI14.

It’s unclear what causes these variations, although it’s worth noting that Roller et al. (2012)’s NB k-d

figures on an older English Wikipedia corpus were noticeably higher than my figures: They report

90.3% acc@161, compared with our 84.5%. I verified that this is due to corpus differences: I obtain

their performance when I run on their Wikipedia corpus. This suggests that some of the differences

between methods may be due to vagaries of the individual corpora, e.g. the presence of differing

numbers of geotagged stub articles, which are very short and thus hard to geolocate.

As for IGR, though it is competitive for Twitter, it performs badly here—in fact, it is even

worse than plain Naive Bayes for all three Wikipedias (likewise for COPHIR, in the next section).

4.2.4 CoPhIR

Table 4.5 shows results on the test set of COPHIR for various methods, similarly to the ENWIKI13

results. HIERLR is again the clear winner. Unlike for ENWIKI13, FLATLR is able to do fairly well.

IGR performs poorly, especially when combined with k-d.

In general, as can be seen, for COPHIR the median figures are very low but the mean figures

very high, meaning there are many images that can be very accurately placed while the remainder

are very difficult to place. (The former images likely have the location mentioned in the tags, while
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Corpus DEWIKI14 PTWIKI14
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1◦ 88.4 257.9 35.0 1◦ 76.6 470.0 48.3
NB k-d BK25 89.3 192.0 7.6 BK100 77.1 325.0 45.9
IGR Uniform 2◦, CU82% 87.1 312.9 68.2 2◦, CU54% 71.3 594.6 89.4
IGR k-d BK50, CU100% 86.0 226.8 10.9 BK100, CU100% 71.3 491.9 57.7
FLATLR Uniform 5◦ 55.1 340.4 150.1 2◦ 88.9 320.0 70.8
FLATLR k-d BK350 82.0 193.2 24.5 BK25 86.8 320.8 30.0
HIERLR Uniform 7◦, SF3, BM5 88.5 184.8 30.0 7◦, SF2, BM5 88.6 223.5 64.7
HIERLR k-d BK3500, SF25, BM5 90.2 122.5 8.6 BK250, SF12, BM2 89.5 186.6 27.2

Table 4.7: Performance on the test sets of DEWIKI14 and PTWIKI14 for different methods and
metrics.

the latter do not.)

My NB results are not directly comparable to O’Hare and Murdock (2013)’s results on

COPHIR because they use various cell-based accuracy metrics while I use cell-size-independent

metrics. The closest to my acc@161 metric is their Ac1 metric, which at a cell size of 100 km

corresponds to a 300km-per-side square at the equator, roughly comparable to my 161-km-radius

circle. They report Ac1 figures of 57.7% for term frequency and 65.3% for user frequency, which

counts the number of distinct users in a cell using a given term and is intended to offset bias resulting

from users who upload a large batch of similar photos at a given location. My term frequency figure

of 65.0% significantly beats theirs, but I found that user frequency actually degraded my dev set

results by 5%. The reason for this discrepancy is unclear.

4.2.5 Summary and discussion

Summary of results. HIERLR is the clear winner, outperforming Naive Bayes, KL Divergence,

IGR (information gain ratio) and all other methods on all the large corpora, typically by a significant

margin. This is a strong result, especially given the highly disparate nature of the various corpora.

Among these corpora, FLATLR is able to beat NB on some of these corpora (PTWIKI14, TWUS,

and TWWORLD), but fails badly on others—in particular, those that are large and with worldwide

scope—due to its inability to scale down to fine enough grid sizes. Investigation reveals clearly

that this is because Vowpal Wabbit cannot easily handle more than about 1,000 distinct classes (i.e.

non-empty grid cells), whereas NB has no problem with even 100,000+ classes due to its linear

dependence on the number of classes. (A potential trade-off here is that HIERLR requires more
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careful optimization than NB, with 3–4 parameters needing tuning.)

Feature selection through IGR, introduced in geolocation by Han et al. (2014) for Twitter,

appears to perform well only for Twitter, but not for Wikipedia or COPHIR. Han et al.’s method

involves both filtering low-frequency words and cutting out words with low IGR. In their method,

only the latter step is associated with a tunable parameter. However, it is possible to separate the

two steps. Indeed, if no filtering of uncommon words is done, IGR should never perform worse

than Naive Bayes, since one possible setting for the cutoff value is not to cut any words, making the

method equivalent to Naive Bayes.

For COPHIR, and also TWWORLD (and partly for GEOTEXT), HIERLR performs best

when the root level is significantly coarser than the cell or bucket size that is best for FLATLR. The

best setting for the root level appears to be correlated with cell accuracy, which in general increases

with larger cell sizes. The intuition here is that HIERLR works by drilling down from a single top-

level child of the root cell. Thus, the higher the cell accuracy, the greater the fraction of test instances

that can be improved in this fashion, and in general the better the ultimate values of the main metrics.

(The above discussion isn’t strictly true for beam sizes above 1, but these tend to produce marginal

improvements, with little if any gain from going above a beam size of 5.) The large size of a coarse

root-child cell, and correspondingly poor results for acc@161, can be offset by a high subdivision

factor, which does not materially slow down the training process.

Optimizing for median. Note that better values for the other metrics, especially median, can be

achieved by specifically optimizing for these metrics. In general, the best parameters for median

are finer-scale than those for acc@161: smaller grid sizes and bucket sizes, and greater subdivision

factors. This is especially revealing in ENWIKI13 and COPHIR. For example, on the ENWIKI13

dev set, the “best” uniform NB parameter of 1.5◦, as optimized on acc@161, yields a median error

of 56.1 km, but an error of just 16.7 km can be achieved with the parameter setting 0.25◦ (which,

however, drops acc@161 from 83.8% to 78.3% in the process). Similarly, for the COPHIR dev set,

the optimized uniform 2-level HIERLR median error of 46.6 km can be reduced to just 8.1 km by

dropping from 7◦ to 3.5◦ and bumping up the subdivision factor from 4 to 35—again, causing a drop

in acc@161 from 68.6% to 65.5%.
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Salt Lake San Francisco New Orleans Phoenix Denver Houston Montreal Seattle Tulsa Los Angeles
utah sacramento orleans tucson denver houston montreal seattle tulsa knotts
slc hella jtfo az colorado antonio mtl portland okc sd
salt sac prelaw phoenix broncos texans quebec tacoma oklahoma pasadena
byu niners saints arizona aurora sa magrib wa wichita diego
provo berkeley louisiana asu amarillo corpus rue vancouver ou ucla
ut safeway bourbon tempe soopers whataburger habs bellevue kansas disneyland
utes oakland kmsl scottsdale colfax heb canadian oregon ku irvine
idaho earthquake uptown phx springs otc ouest seahawks lawrence socal
orem sf joked chandler centennial utsa mcgill pdx shaki tijuana
sandy modesto wya fry pueblo mcallen coin uw ks riverside
rio exploit canal glendale larimer westheimer gmusic puyallup edmond pomona
ogden stockton metairie desert meadows pearland laval safeway osu turnt
lds hayward westbank harkins parker jammin poutine huskies stillwater angeles
temple cal bayou camelback blake mayne boul everett topeka usc
murray jose houma mesa cherry katy est seatac sooners chargers
menudito swaaaaggg lawd gilbert siiiiim jamming je ducks straighht oc
mormon folsom gtf pima coors tsu sherbrooke victoria kc compton
gateway roseville magazine dbacks englewood marcos pas beaverton manhattan meadowview
megaplex juiced gumbo mcdowell pikes laredo fkn hella boomer rancho
lake vallejo buku devils rockies texas centre sounders sooner ventura

Table 4.8: Top 20 features selected for various regions using logistic regression on TWUS with a
uniform 5◦ grid.

Hierarchy depth. We use a 3-level hierarchy throughout for the test set results. Evaluation on

development data showed that 2-level hierarchies perform comparably for several datasets, but are

less effective overall. We did not find improvements from using more than three levels. When

using a simple local classifier per parent approach as we do, which chains together spines of related

but independently trained classifiers when assigning a probability to a leaf cell, most of the benefit

presumably comes from simply enabling logistic regression to be used with fine-grained leaf cells,

overcoming the limitations of FLATLR. Further benefits of the hierarchical approach might be

achieved with the data-biasing and bottom-up error propagation techniques of Bennett and Nguyen

(2009) or the hierarchical Bayesian approach of Gopal et al. (2012), which is able to handle large-

scale corpora and thousands of classes.

4.3 Feature selection

The main focus of Han et al. (2014) is identifying geographically salient words through feature

selection. Logistic regression performs feature selection naturally by assigning higher weights to

features that better discriminate among the target classes.

Table 4.8 shows the top 20 features ranked by feature weight for a number of different cells,

labeled by the largest city in the cell. The features were produced using a uniform 5◦ grid, trained
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using 27-bit features and 40 passes over TWUS. The high number of bits per feature were chosen

to ensure as few collisions as possible of different features (as it would be impossible to distinguish

two words that were hashed together).

Most words are clearly region specific, consisting of cities, states and abbreviations, sports

teams (broncos, texans, niners, saints), well-known streets (bourbon, folsom), characteristic features

(desert, bayou, earthquake, temple), local brands (whataburger, soopers, heb), local foods (gumbo,

poutine), and dialect terms (hella, buku).

Top-IGR words Bottom-IGR words
1–10 11–20 21–30 31–40 1–10 11–20 21–30 31–40
lockerby ghibran presswiches curtisinn plan black times true
killdeer briaroaks haubrich guymon party dream end found
fordville joekins yabbo dakotamart men hey twitter drink
azilda numerica presswich missoula happy face full pay
ahauah bemidji pozuelo mimbres show finally part meet
hutmacher amn akeley shingobee top easy forget lost
cere roug chewelah gottsch extra time close find
miramichi pbtisd computacionales uprr late live dead touch
alamosa marcenado bevilacqua hesperus facebook wow cool birthday
multiservicios banerjee presswiche racingmason friday yesterday enjoy ago

Table 4.9: Top and bottom 40 features selected using IGR for TWUS with a uniform 1.5◦ grid.

As a comparison, Table 4.9 shows the top and bottom 40 features selected using IGR on the

same corpus. Unlike for logistic regression, the top IGR features are mostly obscure words, only

some of which have geographic significance, while the bottom words are quite common. To some

extent this is a feature of IGR, since the denominator of the IGR formula contains the binary entropy

of each word, which is directly related to its frequency. However, it shows why cutoffs around 90%

of the original feature set are necessary to achieve good performance on the Twitter corpora. (IGR

does not perform well on Wikipedia or COPHIR, as shown above.)
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Chapter 5

Document geolocation for the digital

humanities

The previous chapters developed techniques for text-based document geolocation and demonstrated

their feasibility on a number of modern-day corpora. In this and the subsequent chapter, I extend

these techniques for use with historical documents in the digital humanities. There is little or no work

applying document geolocation to historical corpora in the digital humanities, and no corpora avail-

able for evaluation. To facilitate further research in the field, I develop a new NLP task, text-based

document geolocation of historical corpora, and provide two new annotated corpora for evaluation

purposes. These two corpora are of significantly different natures: a 19th-century travel log (John

Beadle’s Western Wilds, aka BEADLE, §2.3.1) and a large collection of primary sources covering the

American Civil War (the War of the Rebellion, aka WOTR, §2.3.2). This makes it possible to gen-

eralize the performance of different methods beyond a single corpus. I apply my existing methods

to these corpora, yielding good accuracy despite their smaller size and significantly different nature

compared with the modern-day corpora, and demonstrate further improvements through Wikipedia-

based domain adaptation. These results should serve as a strong baseline for the development of

further text-based geolocation techniques.

I then demonstrate the power and real-world applicability of geolocation models by combin-
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ing their predictions with a dynamic topic model (Blei and Lafferty, 2006) to generate a geographic

topic model—another thing that has not previously been done in the digital humanities—and show

how it can be used to yield useful insights about the U.S. Civil War. The significance of this lies in

the special place that topic models serve in the digital humanities. The typical use of NLP in the

digital humanities is as a tool for exploratory data analysis of large-scale textual datasets consisting

of primary sources in the humanities. Among the tools used, topic modeling is one of the most

frequently used, if not the single most frequently used tool (Meeks and Weingart, 2012).

In the following chapter, I develop an entirely new geolocation method that specifically

targets text-only historical corpora, using co-training between a toponym resolver and a document

geolocator. The toponym resolver works in conjunction with a gazetteer of potentially ambiguous

place names and possible resolutions to latitude/longitude coordinates. This has the effect of inject-

ing outside knowledge into the training process beyond what can be learned from the text alone.

This is somewhat analogous to how the ego network of friends, followers, and/or direct communi-

cation paths leading from a Twitter user to other Twitter users provides additional information that

facilitates the creation of network-based models that greatly improve the accuracy of Twitter user

geolocation.

It should now be clear why I have deliberately restricted my geolocation techniques to be

text-only. In the context of social media corpora, this feels a bit like fighting with one hand tied

behind one’s back because of the wealth of metadata available; even a largely textual resource such

as Wikipedia provides hyperlinks between pages that can enable similar network-based methods

such as label propagation. Historical corpora in the humanities, however, typically come as text-

only sources, rendering non-text-based methods largely inapplicable.

As mentioned above, there has been little or no previous work in applying document geolo-

cation to historical corpora, although some authors (e.g. Dias et al. (2012), in addition to the various

papers I have authored or coauthored) allude to it as one of the use cases of text-based document

geolocation. Some authors have applied other sorts of geolocation or geocoding to historical docu-

ments. A number of authors have designed tools that interface a GIS with historical maps (Chias and

Abad, 2009; Bollini et al., 2013; Ferrighi, 2015) or audiovisual resources (Zurcher, 2013). Perhaps

82



the most relevant is Chasin et al. (2013), who geolocate individual toponyms using named entity

recognition (NER) combined with toponym resolution. This is not the same as document geoloca-

tion and in fact is not actually applied to historical documents at all but to modern documents (from

Wikipedia) that are about historical topics.

In this chapter, §5.1 describes how domain adaptation with Wikipedia as an out-of-domain

training source can be effective given the relatively small amount of annotated data (in particular

as compared with the large modern Twitter, Wikipedia and Flickr corpora described in Chapter 2).

In §5.2 and §5.3 I do experiments on BEADLE and WOTR, respectively, of the same sort as was

previously done in Chapter 4 on the modern corpora, to show the feasibility of my methods even

on somewhat smaller corpora. Here I also apply domain adaptation techniques and discuss various

issues involved in guiding an annotation process, including learning curves that show the tradeoff

between annotation time and geolocation accuracy.

In the rest of the chapter I investigate the full set of data in WOTR, which is much larger

than the annotated subset of data. (There are 5,010 annotated documents and approximately 255,000

total documents.) §5.4 discusses in detail the distribution of the full set of WOTR documents and

various ways of evaluating that distribution, comparing the distribution yielded by a model trained of

the annotated documents with a technique of geolocating through toponym resolution and a separate

corpus of military actions. Building on the geolocation techniques in this dissertation, §5.5 includes

various topic-model-based analyses, including a simple scheme for geographic topic models and an

analysis based on dynamic topic models, which are designed for sets of auto-correlated topic models

that vary over time or space.

5.1 Extending geolocation to historical corpora

The difficulty with applying the techniques of the previous chapters to the historical corpora of this

chapter is the relatively small amount of annotated material. BEADLE has only 408 annotated para-

graphs (with each paragraph corresponding to a data instance), while WOTR has 5,010 annotated

articles. However, given the availability of the large ENWIKI13 corpus of Wikipedia articles, the

framework of domain adaptation can be applied. Domain adaptation refers to a situation where only
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a small amount of in-domain but a large amount of out-of-domain training material is available. The

in-domain training material is assumed to be drawn from the same distribution as the test instances.

The out-of-domain material is not, but is assumed to have some properties in common that can be

taken advantage of.

5.1.1 The applicability of domain adaptation

Why would domain adaptation be beneficial? In this case, for example, the assumption would

be that many of the words that are geographically indicative of certain places in Wikipedia are

indicative of those same places in BEADLE or WOTR. This assumption appears reasonable in

many instances. For instance, many of the most geographically indicative words are toponyms or

other geographically-salient proper nouns, such as names of Native American tribes or groups such

as the Mormons.

It is true that some of these names have changed. For example, Beadle refers to the Hopi

tribe as the “Moqui”, and collectively terms the mountains of New Mexico the “Sierra Madre”,

whereas nowadays there is no collective term for those mountains and the term “Sierra Madre” itself

normally refers to a different mountain range in Mexico. Beadle also terms the Purgatoire River in

Colorado the “Las Animas River”, whereas the modern-day ”Animas River” is a different Colorado

river. Furthermore, none of these older usages can be found in Wikipedia. A similar situation obtains

in WOTR with places such as “Keatsville, Missouri” (modern-day “Keytesville”, whose Wikipedia

entry does not list the older spelling).

A different issue comes from toponyms referring to places that no longer exist. Beadle, for

example, mentions a number of railroad ghost towns that had already ceased to exist in his time, such

as Deadfall, Last Chance, Murder Gulch and Painted Post in Utah, and Benton, Wyoming. Of these,

only Benton can be found in Wikipedia (and not in its own article but in the article concerning the

nearby town of Sinclair). Other towns are mentioned that existed at the time but no longer do, such

as Red Dog, California (has its own Wikipedia article) and Hazard Station, Wyoming (no mention

in Wikipedia).

WOTR is full of such toponyms. Many of them refer to temporary places such as “McCul-
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lan’s Store” in Missouri (apparently a settlement containing a store) or various army camps. These

camps may be given names such as “Camp McIntosh” (named after the commander James McIn-

tosh) and may appear in the bylines of letters in WOTR, but have a strictly temporary existence

and disappear as soon as the army occupying them moves on. Only somewhat less temporary are

numerous forts such as Fort Lyon in Missouri and Fort Jackson in Arkansas, which existed only for

a few years during the Civil War. (Beadle similarly mentions a Fort Lancaster in Colorado, which

existed only from 1837-1844.) For the most part none of these places can be found in Wikipedia.

However, this is less of an issue than it may appear. For one thing, the large majority of

places mentioned in both BEADLE and WOTR still exist with the same names they had 150 years

ago. This includes places that may have changed their nature, such as the former territories of

Arizona, Utah, Colorado and Dakota, which have since transitioned into states but largely kept the

previous names. Similarly, most ethnonyms, such as the Mormons, Navajos, Apaches and Utes

have remained the same. In many cases where names have changed (e.g. Davisville, California was

renamed to Davis in 1907, and City Point, Virginia was annexed into Hopewell, Virginia in 1923),

the old names are prominently mentioned in Wikipedia. Some civil war forts, and most places

associated with battles, likewise are either featured in their own Wikipedia articles or mentioned

prominently in other articles, often the article describing the battle taking place at that location.

A different and perhaps more significant issue comes with terms that have distributions that

differ significantly in Wikipedia vs. BEADLE and WOTR. One issue is with names that may have

a most prominent sense in Wikipedia that is different from the usage in BEADLE or WOTR. Some

examples:

1. Many forts that existed during the 19th century bear the same names as modern forts in differ-

ent locations (e.g. the modern-day Fort Lyon in Colorado, Fort Lancaster in Texas, and Fort

Jackson in South Carolina, compared with the above-mentioned forts of the same names in

Missouri, Colorado and Arkansas, respectively).

2. The place name “Columbus” tends to refer in Wikipedia to Columbus, Ohio, but in WOTR to

Columbus, Kentucky, which saw significant fighting, whereas Columbus, Ohio did not.

3. “Grant” in WOTR is likely to refer to General Ulysses S. Grant, whereas its distribution in
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Wikipedia is due not only to General Grant but to numerous other people and places with the

same name. It is also affected by lowercase “grant”, due to case-folding in the algorithm I use;

this is done due to many inconsistencies in case usage, such as all-lowercase text in Twitter,

all-capital text in WOTR, and of course capitalized words at the beginning of a sentence.

Even if all occurrences of “Grant” in Wikipedia that refer to General Grant could be separated

out, there still remains the issue that at least half of Grant’s Civil War service, and hence

mention in WOTR, was in the Western Theater (e.g. in Missouri and Tennessee), whereas the

majority of the text in Wikipedia on Grant appears to covers his two terms as a U.S. President,

during which he was located in Washington, D.C.

4. “Sherman” in Wikipedia (and WOTR) concerns General William T. Sherman, whereas “Sher-

man” in BEADLE is primarily the name of a town in Wyoming.

5. Most mentions of “Washington” in Wikipedia actually refer to Washington State (the term

“Washington” is linked 17,127 times in the November 4, 2013 Wikipedia to the article on

Washington State, but only 3,581 times to the article on Washington, D.C.), whereas nearly

all mentions of “Washington” in WOTR refer to Washington, D.C.

Note that all of the above examples concern the U.S. Things get even worse when the possibility of

terms referring to places, people, etc. across the whole world is considered. In practice, however,

this isn’t an issue: When using Wikipedia as a source I limit the regions considered to those within a

bounding box surrounding the United States, due to the fact that nearly all locations in both BEADLE

and WOTR are within the U.S.

5.1.2 Domain adaptation techniques

Daumé III (2007) has a discussion of a number of domain adaptation methods, including various

baselines that are “surprisingly difficult to beat”:

1. SRCONLY, which trains only using the “source” (out-of-domain) material.

2. TGTONLY, which trains only using the “target” (in-domain) material.
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3. ALL, which trains on the union of the two domains.

4. WEIGHTED, which downweights examples from the out-of-domain material to avoid it

swamping the in-domain material, with the weight optimized by cross-validation or a dev

set.

5. PRED, which trains a SRCONLY model and uses it to generate predictions on the full set

of annotated in-domain material (training, dev and test sets), which then serve as additional

features in a model trained on the in-domain training data.

6. LININT, which linearly interpolates between the predictions of the SRCONLY and TGTONLY

models, with the interpolation factor optimized by cross-validation or a dev set. (Note that we

also discuss interpolation in the context of co-training in §6.3.3.)

Daumé III (2007) also proposes a new domain adaptation method, EASYADAPT, which

works by expanding the feature space to include a combined space of features that fire only for in-

domain training examples, features that fire only for out-of-domain training examples, and features

that fire for both. This method is easy to implement and works well in experimental results on

various domains, such as named-entity recognition, part-of-speech tagging and shallow parsing. A

major limitation of this model is that it is fully supervised, meaning that we cannot take advantage of

the remainder of the paragraphs in the original Beadle document that have not been annotated. This

is rectified by Daumé III et al. (2010), a semi-supervised version of EASYADAPT termed EA++,

although I did not perform experiments using this latter method.

5.2 Geolocation experiments on BEADLE

BEADLE was split 60/20/20 in a round-robin fashion into training, dev and tests. (The small size of

the corpus makes it a good candidate for cross-validation, something that could be done in future

research.)
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5.2.1 Cross-domain geolocation

My first experiments involved simply training on ENWIKI13 and testing on BEADLE (Daumé’s

SRCONLY model), as a baseline for further work, on the assumption of similarity in the geographic

word distribution of the Wikipedia and Beadle documents.

Naive Bayes

Early experiments using Naive Bayes showed that predictions were significantly harmed by the need

to make world-wide predictions when nearly all locations in Beadle were in the United States, so a

bounding box was applied consisting of latitudes in the range [25, 49] and longitudes in the range

[−126,−60]. Although this includes parts of Canada and Mexico as well as the entire contiguous

United States, it resulted in significant improvements, especially in mean and median, although less

so for accuracy@161, as can be seen in Figure 5.1.

Note that these and other results with Naive Bayes in this chapter are computed using a

uniform Naive Bayes prior rather than the more standard prior based on the number of training

documents in a cell. Experiments comparing the two did not yield benefits from the latter type of

prior, and the results were in fact significantly worse for in-domain data (§5.2.2); in that case, at

least, it appears that the use of such a prior swamps the likelihood term.

Both median and accuracy bounce around a good deal, and are somewhat uncorrelated

(r = −0.52 when unrestricted, r = −0.37 when restricted). This may well be an effect of the

small corpus. With just 82 data points in each of the dev and test sets, a 1% difference in accuracy

corresponds to less than 1 data point. (This definitely suggests using cross-validation in general,

which I did in producing learning curves for WOTR.)

Logistic regression

Initial experiments using flat and hierarchical logistic regression were not promising. Eventually I

realized that the regression models were overfitting to Wikipedia and were highly sensitive to the

number of BFGS passes. The number of passes used for Wikipedia and most other corpora above

was 40, which worked well. However, the optimal number of passes for Beadle was less, and
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Figure 5.1: Plot of results of doing Naive Bayes on the dev set of BEADLE, training on ENWIKI13,
with and without a restriction to the contiguous United States. Note that median error (in kilometers)
is on a reversed scale, since smaller values are better.
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Figure 5.2: Plot of FLATLR accuracy as a function of grid size (degrees) and number of passes.

furthermore varied depending on the grid size, as shown in Figure 5.2. As can be seen, the optimal

number of passes increases from 17 to 20 to 29 as the degree size decreases from 5 to 2.5 to 1. The

best dev set result was slightly worse than Naive Bayes in accuracy but slightly better in median (see

Table 5.1).

These runs were done without any l1 or l2 regularization. Varying l2 parameters over a wide

range from [0.0001, 10] showed essentially no effect at l2 < 1 and somewhat worse results at higher

values. l1 regularization is tricky to do using the particular logistic regression package and settings

I used (BFGS under Vowpal Wabbit); when this was done for WOTR, there was no effect.

Hierarchical classification

A similar procedure was used as in previous corpora to find optimal parameters for hierarchical lo-

gistic regression. A 3-level hierarchy was trained at 2.5◦and 5◦, the former because it produced close

to the optimal results for FLATLR and the latter because previous experience showed that HIERLR

often performed better given a coarser first-level grid size (§4.2.5). Consistent with previous exper-

iments, subdivision factors of 2, 3 and 4 and beam sizes of 1, 2, 5 and 10 were tried. In addition,

because of the clear dependency in FLATLR on the number of BFGS passes, the number of passes
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Method Parameters A@161 Mean Med.
RAND 5◦ 1.5 1963 1614
PRIOR 2.75◦ 0.0 2599 2606
ACP 2.5◦ 31.4 1006 568
KL 1◦ 21.1 1157 1000
NB 1.25◦ 33.8 905 532
IGR 2.5◦, CU82% 34.3 924 495
FLATLR 1.75◦, 20 passes 30.9 997 500
HIERLR 5◦, SF3, BM10, 15 passes, 9 subpasses 31.4 883 422

Table 5.1: Performance of cross-domain training (training on ENWIKI13, testing on BEADLE’s dev
set), uniform grid, for different methods and metrics.

used for lower-level classifiers was varied from the previously-determined optimal value of 12, with

6, 9, 12 and 15 passes tried. Best results turned out to come from 9 passes, although the effect of

varying this parameter was less dramatic than the corresponding setting for the top-level classifier.

Results

Results for all ranking methods are shown in Table 5.1. In this case, IGR outperforms for acc@161,

but HIERLR wins on mean and median, as it does with most other corpora. KL does quite poorly,

for reasons not completely understood (unlike in previous experiments, where KL and Naive Bayes

tended to perform similarly).

5.2.2 Within-domain geolocation

Results

Pure within-domain geolocation was also done on BEADLE, corresponding to Daumé’s TGTONLY

model. Similarly to above, when running logistic regression a search was done to find the optimal

number of BFGS passes. The results are shown in Table 5.2.

It was suspected that results would be poor due to the small number of training instances

(244), but in fact the results were significantly better than when training on Wikipedia, as can be seen

in Table 5.2. It is clear that this is due to the relatively small number of distinct locations occurring

in the data, and their frequent repetition. In essence, many locations in the test set have already been

seen in the training set. This is made clear by the 11% accuracy figure of RAND and especially
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Method Parameters A@161 Mean Med.
RAND 0.1◦ 11.0 1235 962
PRIOR 2.5◦ 15.8 1535 1428
ACP 0.5◦ 54.9 561 111
KL 2.5◦ 58.5 606 99
NB 1◦ 54.9 552 108
IGR 2.5◦, CU88% 46.3 673 197
FLATLR 2.5◦, 6 passes 56.1 461 107
HIERLR 5◦, SF2, BM1, 8 passes, 3 subpasses 59.8 513 83

Table 5.2: Performance of within-domain training on BEADLE’s dev set, uniform grid.

the 16% accuracy figure of PRIOR, which simply selects the most commonly-occurring cell. In this

case, this cell is due to a stretch of 34 adjacent paragraphs, crossing two chapters, which I notated as

“somewhere along a watershed divide near Taos Mountains” and annotated with the town of Eagle

Nest, New Mexico. 24 of them appear in the training data, making up 10% of the total training data.

The second most common location is Salt Lake City and environs, appearing 13 times in the training

set, due to the author’s frequent dealings with the Mormons.

In this case, unlike in the previous section, KL actually beats Naive Bayes and IGR does

terribly. Best results come from HIERLR and FLATLR, with the latter having the best mean and the

former the best acc@161 and median. Recall that the mean is penalized according to the magnitude

of large errors while acc@161 and median are not; in this case, FLATLR is doing slightly better at

reducing the error of inaccurate choices but slightly worse at making accurate choices.

Word vs. location distributions

An important issue with document geolocation is what it means for training data to be “in-domain”,

i.e. drawn from the same probability distribution as the test data. In fact, there are at least two

separate issues: that the words come from the same distribution and the locations come from the

same distribution. For grid-cell geolocation, the distribution of locations influences the choices

made in at least two ways, even without using a prior over locations (e.g. according to the number

of documents in a cell). Only grid cells containing at least one training instance will be selected,

which in the case of a sparse dataset such as BEADLE greatly restricts the set of possible choices,

much beyond the simple bounding-box restriction to the contiguous United States that I use. In
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Figure 5.3: Plot of accuracy@161 as a function of grid size (degrees) for center vs. centroid.

addition, once a given grid cell is chosen, the actual point used as the predicted location (the cell’s

representative point) is based on the centroid of training points in the cell.

Figure 5.3 investigates the use of the centroid as representative point, rather than the cell’s

geographic center (§3.3). The choice of centroid has no effect at grid sizes of 0.5◦ or less, but has

a progressively greater benefit at larger grid sizes, especially above 3.5◦, where a huge drop-off

in accuracy occurs when using the geographic center as representative point. This corresponds to

the point at which a grid cell becomes significantly larger than a 161-km circle, meaning there is

a high chance that, even if the correct cell is chosen, the correct point will lie more than 161 km

from the center and will be considered a “miss”. No such drop-off occurs when using the centroid

method, and the accuracy actually increases going from 7◦ to 10◦ (at which point a grid cell at

typical mid-latitudes is over 700 by 1,000 km in size). This shows the huge benefit gained by having

the distribution of locations in the training data closely match that of the test data.
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Method Parameters A@161 Mean Med.
NB 2.0◦ 72.6 186.9 78.0
FLATLR 1◦, 15 passes 72.8 182.7 54.4
HIERLR 1◦, SF2, BM2, 15 passes, 9 subpasses 73.8 181.1 49.2

Table 5.3: Performance of within-domain training on WOTR’s dev set, uniform grid.

5.3 Geolocation experiments on WOTR

5.3.1 Within-domain geolocation

As with BEADLE, within-domain geolocation was done using the standard methods developed in

Chapter 3. Because of the larger number of annotated documents (5,010 vs. 408 for BEADLE), it

was possible to do an 80/10/10 split. It was expected that accuracy would be greater for this corpus

than for BEADLE due to the larger training set, and this is indeed borne out in Table 5.3. Here Naive

Bayes performs fairly well, yielding an accuracy at 161km of nearly 73% and a median error of only

78 km. Further gains come from flat logistic regression and especially from hierarchical LR, which

increases the accuracy by over a percentage point and drops the median error significantly, to below

50 km.

Learning curves

An important issue when considering the annotation of a large resource such as WOTR is the amount

of annotation necessary to achieve a given result. This is due to the high cost of annotation, and

applies especially to the digital humanities, where budgets are typically not as much as are available

in the sciences, are are frequently shrinking. One way to quantify this is through learning curves,

which show the tradeoff between amount of annotation and performance. Figure 5.4 shows such

curves for median error and accuracy at 161km, for uniform and k-d grids and various grid sizes.

As can be expected, the steepest part of the curve is near the beginning, where there is the

least amount of data; but performance continues to improve for quite a ways. Performance improve-

ment in median error tapers off around 50% of the total training data (around 2,000 instances) and

plateaus at around 75%, but accuracy starts to taper around 75% and continues to improve almost

up to 100%.
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Figure 5.4: Graph of learning curves over annotated subset of WOTR, randomized 80/10/10 over
individual data instances.
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The point at which “enough” data produced and “sufficient” performance reached is of

course subjective. It could be argued, for example, that the point at which the curve tapers off is the

place to stop; however, this can’t be determined without annotating significantly beyond the point at

which tapering is first observed, to ensure that the tapering is a real phenomenon. Alternatively, one

could pick a particular performance level and annotate up until that level is achieved. For example, it

could be argued that a median error of 100km is sufficient for making reasonable conclusions given

the scale of the Civil War, which covered an area of well over 1,000km by 2,000km.

In reality, however, the necessary accuracy depends on the application in question. For

distinguishing North from South, a 100 km error might be more than accurate enough, but for

distinguishing Washington, DC from Virginia, it is completely insufficient. In fact, if you need to

distinguish both at the same time, then the entire concept of measuring error by distance may be

inappropriate. (For this reason, the geographic topic models discussed in §5.5.1 make use of k-d

trees, even though their performance in both median error and accuracy@161 is worse than uniform

grids. k-d trees allow for an adaptive error rate that depends on the density of data in a particular

place. The geographic topic models make use of hand-drawn regions whose most critical boundaries

occur in areas of high document density, which correspond with areas where k-d trees will perform

with significantly greater accuracy than uniform grids. )

It is also important to notice that the best grid size varies somewhat depending on the portion

of the graph in question and on whether median or accuracy is considered. For the uniform-grid

median, for example (lower-left graph in Figure 5.4), the coarsest grid size of 2◦ performs the best

at points along the learning curve less than 50% of the total training data but the worst above this,

while the pattern is reversed for the finest grid size of 0.7◦. To the extent that a similar pattern can

be observed for the k-d tree grid, it is much less consistent, if present at all.

The reason for this is the tradeoff in the uniform grid between the increased resolution that

comes from a finer grid with smaller cells and the more accurate per-cell language models that come

from a coarser grid with more training documents per cell. With comparatively little training data,

the finer grids have too few training documents per grid cell and performance suffers, whereas with

more training data the finer grid cells have sufficiently accurate language models that their smaller
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size ensures a lower median. The lack of a similar pattern in the k-d grid is due to the fact that this

grid by its nature tries to keep the number of documents per cell relatively constant, instead scaling

the cells as necessary.

The increased jumpiness of the k-d tree results presumably reflects the nature of the k-d

division algorithm, which operates in a greedy fashion and divides a cell above the bucket size into

two equal-sized smaller cells, which may have an unbalanced number of documents in them. (For

example, the worst case for a bucket size of 25 is a division that leaves 24 documents in one subcell

and 1 document in the other.) In general, these unbalanced cells will get balanced out by later points

added to the cell, but this will not happen for the last few cell divisions. The additional points added

when going from e.g. 25% to 30% of the total might by chance trigger a number of unbalanced cell

divisions, which then get balanced when going from 30% to 35%; this would explain, for example,

the temporary flattening in the median error at 30% along the learning curve for a bucket size of

100, followed by a sudden drop at 35% (upper left graph in Figure 5.4).

Note that my k-d code has an alternative splitting mechanism (termed median rather than

halfway), which equalizes the number of documents per subcell rather than the size of the subcells

when a cell division is made. However, this won’t necessarily help the jumpiness issue, as it has its

own worst case, where the two subcells are of extremely different sizes, with one taking up nearly all

the area of the parent cell. As this cell has effectively the same area as its parent but half the number

of documents, its language model is likely to be of lower quality and the overall performance will

decrease, producing a spike or temporary flattening just as above. Indeed, exactly this pattern is in

fact observed in Figure 5.5, and furthermore the overall performance is slightly worse, something

that I observed in previous experiments as well.

An additional pattern of interest can be seen in the fact that the finest uniform grid size of

0.7◦is tied for the best at the 100% point along the learning curve under median error, but consis-

tently does the worst under accuracy at 161km, for reasons that are not completely clear.

Split by volume All of the above results were achieved with a split by individual document.

Specifically, the full set of annotated articles was permuted randomly and then document assigned

to training, dev and test in a round-robin fashion. This was the simplest way to perform the split.
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Figure 5.5: Graph of learning curves over annotated subset of WOTR, randomized 80/10/10 over
individual data instances, for k-d trees using median cell-division method.

However, a potential criticism is that it is more realistic to keep complete volumes together when

splitting. Each volume has somewhat different properties from the other, and thus a split by individ-

ual document is likely to perform significantly better than a split by volume. This is especially the

case given that only a fraction of each volume was annotated, consisting of a set of sequential docu-

ments (typically stretching about 25 pages in length, for each of the 126 volumes). This means that

the training data may be effectively representing the distribution of the test data but not necessarily

that of the WOTR corpus as a whole, including the annotated data.

This especially applies when considering the perspective of using a trained model to do

predictions on some of the remaining unannotated data, and also when deciding what volume to

annotate next and whether enough data has been annotated.

To address this criticism, I did additional runs with a split by volume. Because these are

different splits, direct comparison of results is tricky. Preliminary investigations revealed that there

was significant variation in the results with different permutations, particularly with the splits by

volume. As a result, both the split by document and split by volume were computed 10 times over

10 random permutations and averaged. A further comparison was done using a split by volume with

the order of volumes along the learning curve following the actual order that data was received from
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Corpus Uniform k-d
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB 2.25◦ 51.3 438.0 148.8 BK300 54.5 396.7 123.0
FLATLR 1.5◦, 25 passes 48.1 402.8 173.6 BK1000, 10 passes 48.7 380.0 169.0
HIERLR 1.5◦, SF2, BM1, 25 passes, 12 subpasses 48.7 395.6 169.3 BK1000, SF6, BM1, 10 passes, 5 subpasses 48.7 376.3 165.1

Table 5.4: Performance of cross-domain training (training on ENWIKI13, testing on WOTR’s dev
set), split by data instance.

the annotators. It was thought that this would produce better results than simply randomly choosing

volumes, since the volumes were hand-selected to produce as wide-ranging a distribution of data

as possible as early as possible (see §2.3.2). However, doing this ended up yielding no benefits

compared with a random permutation of volumes. See Figure 5.6 for the results.

5.3.2 Cross-domain geolocation and domain adaptation

Domain adaptation

Interpolation between pure in-domain and pure out-of-domain models was performed. These results

are for uniform Naive Bayes, where the uniform grid eliminates many issues that would otherwise

appear when matching up the grid cells. Results are shown in Figure 5.7.

Note in particular how much gain is yielded from very little in-domain training data. In this

case, with only 10% of the total training data, the accuracy already jumps up from 49% to 62% for

interpolation factor 0.5, more than halfway to the maximum possible accuracy of 73%. Already,

70% accuracy is reached with only 30% of the total training data. Contrast the results from pure

in-domain data, which needs 30% of the total just to reach 62% accuracy, and doesn’t reach 70%

accuracy until close to 65% of the total has been processed. (Note that e.g. an interpolation factor

of 0.3 means a weight of 0.3 for Wikipedia, and a weight of 0.7 for the in-domain data).

Domain adaptation was also performed using various types of concatenation, including

Daume’s EASYADAPT (§5.1.2), with various weightings between the in-domain and out-of-domain

data (i.e. Wikipedia). Results all along the learning curve were consistently disappointing, and were

unable to exceed the values computed on pure in-domain data. (This result is puzzling.)

It is also interesting that domain adaptation was unable to exceed the best overall values

reached using pure in-domain data when all the data was used. It is possible that this reflects the dif-
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Figure 5.6: Graph of learning curves comparing different methods of creating the training/dev/test
splits, averaged over ten permutations.
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ference in distribution between the in-domain and out-of-domain data, which is significant enough

that it cancels out the boost that the extra information contained in the out-of-domain data would

otherwise provide. This suggests that better results might be obtained, for example, by reweighting

Wikipedia using the distribution of the in-domain data. This could be done purely using the anno-

tated portion of the data. However, it is also possible to imagine using the unannotated portion of

the data, in connection for example with the distribution of toponyms found in that portion of the

data. §5.4, following, discusses using such distributions as proxies for the actual distribution of the

unannotated portion of WOTR.

5.4 Investigation of the data in the War of the Rebellion

One of the main purposes of annotating WOTR is to be able to use the annotations to geolocate

the remainder of the data and investigate the data to make conclusions applicable to the digital

humanities.

The actual distribution of the full data of WOTR, including the unannotated portion, may

not match the distribution of the data as predicted by a model trained on the annotated portion. In

this section I investigate the distribution of the data as produced by this model. When plotted on

a KML graph, it appears very similar to the distribution of the training data, as can be seen by

comparing Figure 5.8 and Figure 5.9. This seems somewhat suspect, suggesting that the distribution

of the training data is overly biasing the predictions made by the model. As a result, I look for other

ways of deriving an approximate distribution of the full data. I propose the following:

1. One simple way is to do toponym resolution, and pick the first toponym that appears in the

document; this is in many cases the location found in the header, which is often correct.

(Actually I do something slightly more sophisticated, preferring cities over states and states

over the toponym Washington. I justify this in §5.4.2.) For toponym resolution I use a simple

but effective method using Wikipedia prominence. This serves a bit like a population baseline

but is better because it reflects a broader concept of prominence than simply population at a

particular point in time. (Future research could repeat these results using modern toponym
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Figure 5.8: Graph of distribution of locations for annotated subset of WOTR.

resolution methods such as in (Speriosu, 2013; DeLozier et al., 2015).)

2. I also use another corpus of military actions developed by Scott Nesbit from War of the Re-

bellion. This is a different corpus but has the same source so in some way should reflect the

distribution of the source.

I then compare these alternative distributions to the actual distribution derived, as a rough

way of “evaluating” the accuracy of the distribution produced from the training-data model.

I discuss the possibility of then combining these distributions, especially the toponym-

resolution one, with the training-data distribution, perhaps (e.g.) by using the toponym-resolution

distribution as a Naive Bayes prior for the training-data model.

5.4.1 Evaluating the unannotated portion using the annotated portion

Figure 5.9 shows the geographic distribution of these documents as predicted using Naive Bayes run

over 100% of the annotated material at 1◦, with the height of a cell indicating the relative density of

documents in that cell.

As mentioned above, the two distributions are quite similar, and both quite peaked. If any-

thing, the distribution of predicted locations is even more peaked than that of the annotated locations.
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Figure 5.9: Graph of distribution of predicted locations for articles in WOTR.

(This phenomenon was also observed with Twitter, for example when investigating GEOTEXT,

where logistic regression resulted in even more peaked distributions as compared with Naive Bayes.)

Another way to graph the distribution of locations in the annotated subset is to display the

distribution of grid cells computed when using a k-d tree to do prediction. Figure 5.10 shows this

distribution, and Figure 5.11 shows a zoomed portion of the distribution for the main area of fighting

during the Civil War. The centroids of the cells are shown as blue dots, and the theaters of war that

are used for constructing geographic topic models (§5.5.1) are shown with heavy red lines. Certain

things can be seen in this view that are not apparent in the Google Earth distributions shown above.

For example, the density of documents in parts of Virginia (but not other parts) can clearly be seen,

along with Sherman’s march across northwest Georgia and various major cities (e.g. Washington

DC, Richmond, Charleston, Mobile, St. Louis).

5.4.2 Other ways of evaluating full data

Corpus of military actions

One way to further investigate the predicted geographic distribution is to compare to an outside re-

source consisting of a list of military actions (skirmishes, battles, etc.) annotated with latitude and
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Figure 5.10: Graph of k-d tree grid cells derived from the annotated subset of WOTR with a bucket
size of 15.
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Figure 5.11: Graph of k-d tree grid cells derived from the annotated subset of WOTR with a bucket
size of 15, zoomed in to cover the main area of fighting during the Civil War.

105



Figure 5.12: Graph of distribution of military actions in CWRED.

longitude. Such a corpus was provided to me by Professor Scott Nesbit of the University of Georgia,

and was extracted from War of the Rebellion and from Dyer’s Compendium (more properly, A com-

pendium of the War of the Rebellion, written by Frederick H. Dyer and published in 1908). I term

this corpus CWRED. The distribution is shown in Figure 5.12. As can be seen, the distributions

are quite different, with much more sparseness in the predicted distribution of the WOTR text over

much of the East (except for parts of Virginia, coastal South Carolina, and the Mississippi River),

but with relatively more coverage of the West. This can be seen further in Figure 5.13, which plots

a heatmap comparing the two distributions, with areas of higher density in CWRED indicated in

green, while areas of higher density in WOTR appear in red. Those near white (and surrounded by

a solid white border) are those with approximately equal density, while areas in gray without a solid

white border lack any documents in either distribution.

Toponym resolution as a proxy for document geolocation

Another way to get a different measure of the true distribution of locations in the WOTR documents

is to use toponym resolution. Toponyms are often highly indicative of the location of a document,
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Figure 5.13: Heatmap comparing relative density of military actions in CWRED vs. geolocated
documents in WOTR; green indicates areas with higher density in CWRED, and red indicates the
same for WOTR.
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and algorithms exist for finding toponyms in a document and resolving them to a latitude/longitude

coordinate. I proceed as follows:

• I run a named entity recognizer (NER) on the volumes in WOTR.1

• I then use the prominence of locations in Wikipedia to resolve ambiguous toponyms. Promi-

nence in Wikipedia is measured by counting the number of links from an ambiguous toponym

such as Springfield to each distinct geolocated article; the article with the most number of such

links is considered the resolution of that toponym. The set of allowable locations is restricted

to a bounding box covering the U.S.—specifically, from (25,−126) to (49,−60), as is used

elsewhere this dissertation. This eliminates many potential mappings likely to be spurious in

a text focused on the U.S. (e.g. Cairo, Egypt in place of Cairo, Illinois or Paris, France in

place of Paris, Texas).

• I then choose the first resolvable toponym in a given document, while dispreferring toponyms

referring to states and dispreferring the toponym Washington even more. Specifically, the

first resolvable toponym that is not the name of a U.S. state is chosen; if there is no such

toponym, I fall back to the first name of a state, excluding the toponym Washington; finally,

finally, Washington is used if it exists (and is manually mapped to Washington, D.C., since the

highest-prominence Washington in Wikipedia is the U.S. state of Washington). The reason

for choosing the first resolvable toponym is that the location of the sender is normally named

in the header of each document, and this very often corresponds to the overall location of the

document. The reason for dispreferring states is due both to their inherent inaccuracy when

using a point-based mapping (typically states are “resolved” to their capitals) as well as the

frequent mention of state-based militias (e.g. the 3rd Illinois or 20th Pennsylvania), which

are often found serving in locations nowhere near their home state. The reason for especially

dispreferring Washington is that a great deal of documents concern communication to or from

the central government in Washington, D.C., which is frequently mentioned in the header or

greeting of the document but is rarely the geographic subject of the document.

1Due to resource limitations, this was done only on pages 100–199 of each volume, and it was this subset that was used
for these experiments.
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Location Link Count
Springfield, Massachusetts 1292
Springfield, Illinois 746
Springfield, Missouri 662
Springfield, Ohio 290
Springfield, Oregon 191
Springfield, Virginia 108
Springfield, Kentucky 101
Springfield, Vermont 87
Springfield Township, Union County, New Jersey 84
Springfield, West Virginia 82
Springfield, IL 63
Springfield Township, Delaware County, Pennsylvania 60
Springfield, Tennessee 59
Springfield College 45
Springfield, Georgia 40
Battle of Springfield (1780) 34
Springfield, Colorado 34
Springfield, MO 31
Springfield, South Dakota 31
Springfield, New Hampshire 30
Springfield, New York 29
Springfield Township, Montgomery County, Pennsylvania 27
Springfield, Minnesota 25
Roman Catholic Diocese of Springfield in Massachusetts 23
... ...

Table 5.5: Wikipedia link-based prominence of different resolutions of the toponym “Springfield”.

Using Wikipedia prominence as a toponym resolution technique is similar to the standard

technique of using population to resolve locations but is potentially better. The idea behind using

population figures is that it serves as a proxy for the likelihood that a given ambiguous toponym

in an arbitrary text will resolve to a given location. This is similar to Wikipedia prominence, but

has some well-known pitfalls, some of which are avoided when using prominence. For example,

population figures may change significantly over time, and among a set of locations, the one with

current highest population may be different from the one with the highest population in the 1860’s.

Furthermore, some low-population places may have historical importance disproportionate to their

population. Although it is true that the prominence of a location may also change over time, the

presence of large amounts of history-related articles in Wikipedia is likely to mitigate this.

An example of the relative prominence of different resolutions of the toponym “Springfield”

is shown in Table 5.5.
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Figure 5.14: Graph of distribution of locations for documents in WOTR using toponym resolution
as a proxy for document geolocation.
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Figure 5.15: Heatmap comparing relative density of toponym resolution as proxy for document
geolocation vs. actual document geolocation.
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Figure 5.16: Heatmap showing the distributions of CWRED, toponym resolution as proxy for doc-
ument geolocation, and actual document geolocation.

Figure 5.14 shows the distribution of locations using toponym resolution as a proxy for

document geolocation, and Figure 5.15 is a subtractive heatmap comparing this distribution to the

distribution of locations predicted directly with document geolocation. As can be seen by com-

paring the graphs in Figure 5.14 and Figure 5.8 and the subtractive heatmaps in Figure 5.15, the

distributions are not all that different.

Examining the KML distribution of using toponym resolution as a proxy for document ge-

olocation, some patterns can be noticed. The overall distribution with a big peak in eastern Virginia

and Washington DC, and a smaller peak in Tennessee/Northern Georgia, with a few other peaks

(e.g. near Fort Sumter), looks reasonable, as it tracks the known locations which saw heavy battle

activity during the Civil War. However, the distribution across the Northern states is probably spuri-

ous (presumably due to Northern towns with higher prominence than same-named Southern towns),

especially the two spikes in northern Minnesota and Lake Superior (see below). Possible reasons

for spuriousness:

• non-toponym words getting treated as toponyms by the NER, which then are mapped to loca-

tions due to appearing in anchor text pointing to a geolocated Wikipedia article (e.g. words

111



like “island”—I tried to exclude a lot of those manually, but I don’t think “island” was in my

list);

• states getting resolved to their capitals;

• mention of state-based army divisions getting treated as toponyms (e.g. “Illinois” in “3rd

Illinois”);

• confusion of river names and states (e.g. “Mississippi” marked as a toponym in the phrase

“the Mississippi”);

• weirdness in the Wikipedia-assigned prominence (e.g. “Saint Louis” has “St. Louis County,

Minnesota” as its most prominent entry, which probably explains the spike in Minnesota; the

spike in Lake Superior is explained by “America” and “Cumberland” mapping to ships in

Lake Superior for various weird and fixable reasons).

Improving the prediction distribution over the unannotated corpus

It should be possible to make use of these other distributions when doing document geolocation.

One possibility is as a prior distribution, at least when doing Naive Bayes. This would serve to

bias the document geolocation choice without completely forcing it to conform to the distribution

of the toponym resolution proxy, which may in itself have errors. One potential issue is that this

may overweight in favor of the prior distribution. This is what happens, for example, when you do

normal document geolocation and use a standard prior based on the number of training documents

in a cell, with the result that the prediction accuracy gets much worse than just using a uniform prior

(see §5.2.2).

Another possibility that may work is simply to use a domain adaptation model, one that

mixes (interpolates) the training and Wikipedia data sets. It would seem that this model might

produce better accuracy on the full data set even if it doesn’t produce better accuracy on the test set

because it will simply have more data available on more locations and people.

A basic issue here in determining the efficacy of these suggestions is that it is not easy to

measure their predictive accuracy. The fundamental reason for doing them is due to the assumption
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that the distribution of the training data, due to its small size and possibly other biases, doesn’t

accurately reflect the actual distribution of the full data. Because the dev and test sets are drawn

from the same set of data and produced using the same process as the training set, they are likely

to share its distribution, and thus any attempt to “broaden” the predictive distribution beyond what

is found in the training data is thus likely to cause results to be worse on the dev and test sets, or

at least not to improve. (Compare the results in §5.3.2, where domain adaptation improved results

along the learning curve but not when all data was used.) One possible exception might come from

split-by-volume experiments (§5.3.1), which more closely mimic a situation where the training and

test data are drawn from different distributions.

5.5 Application of topic models to War of the Rebellion

As noted in §1.6 and in the introduction to this chapter, one of the main concerns of the digital

humanities is exploratory data analysis of large-scale textual datasets consisting of primary sources

in the humanities. This allows for distant reading, the large-scale analysis of entire corpora in order

to glean patterns inside them, and produces conclusions of a sort that are difficult or impossible to

achieve with traditional techniques involving close reading and analysis of a small set of primary

sources (Rhody, 2012). Among NLP tools, one of the most frequently used is topic modeling (Meeks

and Weingart, 2012). Topic modeling in the digital humanities is primarily done using MALLET

(McCallum, 2002) along with postprocessing tools such as Paper Machines (Johnson-Roberson and

Guldi, 2014; Crymble, 2012).

Some subjects of digital humanities analyses done using topic models are figurative lan-

guage in ekphrasis poems, i.e. poems about the visual arts (Rhody, 2012); the history of literary

scholarship as seen in PMLA, the primary literary journal of the Modern Language Association of

America 2 (Goldstone and Underwood, 2012); and the patterns of publication in a Virginia Civil War

newspaper—the Mining the Dispatch project from the Digital Scholarship Lab at the University of

Richmond (Nelson, 2015). This project applies topic modeling to the Civil War-era issues of the

Richmond Daily Dispatch newspaper, in order to explore the political and social life of wartime

2https://www.mla.org/pmla
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Figure 5.17: Sample of the web site Mining the Dispatch, with a topic from a topic model applied
to the Richmond Daily Dispatch, hand-labeled as Fugitive Slave Ads.

Richmond. Specifically, a topic model was applied to the newspaper articles in question, the top-

ics were manually labeled, and a web application was created allowing the topics to be browsed,

including the top words of each topic, the relative frequency over time of the topic among all the

articles, and the most representative articles for the topic. Figure 5.17 shows a sample of the web

application, for the topic Fugitive Slave Ads. As suggested by the example of this project, many of

the analyses tend to be qualitative in nature.

Other related work has applied mixed-membership models that are analogues of the LDA

(Latent Dirichlet Allocation) algorithm underlying topic models to digital humanities task as var-

ied as reconstructing the contents of rooms in ancient Pompeian households (Mimno, 2009) and
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inferring social rank in Old Assyrian trade networks (Bamman et al., 2013).

Geography is an important part of the digital humanities, especially in the subfield known

as the spatial humanities (see §1.6, where a number of large-scale mapping projects in the digital

humanities are described). An example of the importance of geography in the context of the Civil

War can be found in the Valley of the Shadow project (Ayers, 2007), which traces the daily life of two

American communities, one in Pennsylvania (in the North) and one in Virginia (in the South), across

the entire Civil War, including some years before and after. It includes an extensive series of maps,

which help to contextualize the letters, diaries, newspaper articles, census and tax records, and other

information contained in the project’s online archive. One example is an animated map of battles

shown in Figure 5.18. This map shows the movement over time of the Confederate 5th Virginia

Infantry, from its formation in April 1861 in Augusta County, Virginia to its final engagement at

Appomattox Court House in April 1865, where Robert E. Lee surrendered to Ulysses S. Grant. The

particular snapshot shows a period in mid 1863, between the battles of Gettysburg and Culpeper

Court House. Large yellow/red stars show previous and in-progress battles, while smaller stars

show other military engagements.

From what I can tell, however, there has not been too much combination of topic models

with geography in the digital humanities. The existing work on geographic topic models is primarily

applied to social media (Hong et al., 2012; Ahmed et al., 2013) or news articles (Chang and Blei,

2010). Much of the NLP-related digital humanities work concerning geography has simply involved

extracting and plotting toponym mentions in document corpora (Crymble, 2012), using a geoparsing

tool such as geodict 3.

However, an innovative attempt to apply topic models directly to geographic references is

found in Schmidt (2012). This work takes latitude/longitude coordinates of ship movements as found

in the ICOADS Maury Collection (National Climatic Data Center, 1998) and treats them directly as

“words”, with e.g. a ship spending two days in Boston mapping to the two-“word” sequence 42.4,-

72.1 42.4,-72.1 and a log of ship movements over time mapping to a “document”. Transformed

this way, the Maury data produced around 600,000 “words” across 11,000 “documents”, which

according to the author roughly follow a Zipfian distribution (Adamic, 2000). LDA topic modeling
3https://github.com/petewarden/geodict
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Figure 5.18: Snapshot of an animated battle map for the Confederate 5th Virginia Infantry, showing
movement of the unit from the Battle of Gettysburg (July 1–3, 1863) to the Battle of Culpeper Court
House (September 13, 1863). From Valley of the Shadow.
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Figure 5.19: Result of applying LDA to ship logs whose “words” consist of regularized lati-
tude/longitude pairs, based on the ICOADS Maury Collection.

was applied directly to this data, with results shown in Figure 5.19. The resulting topics, colored

according to the density of points within a 1-degree square, represent typical 19th-century ship

trajectories, with some (according to the author) specifically identifiable as whaling paths, e.g. topics

1, 4 and 5. (Nevertheless, according to the author there are better and simpler techniques for this

task, such as K-means clustering.)

In the following sections I show some applications of topic models in the context of WOTR.

Because this dissertation focuses on geography, I mostly describe ways of geographically segment-

ing topic models so as to determine the different ways that people in different regions are talking

about various topics. In §5.5.1 I demonstrate a relatively simple but revealing method of geograph-

ically tallying up the topics in a topic model to determine which topics are being talked about in

which regions. In §5.5.2 I compute dynamic topic models both over time and space, showing how

a conceptually unified topic can evolve over timeslices or regions, with some terms present only

in some slices and other terms present in multiple slices but with different prominence. Expressed
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differently, §5.5.1 provides a way of determining which topics are talked about in which regions, and

§5.5.2 shows how to determine how particular topics are being talked about in those same regions.

I compute topic models over two subsets of WOTR: One consisting of the full set of

255,000 documents, and another consisting of those documents that in some ways reference African-

Americans (approximately 11,000 documents). This subset was chosen because it is one of the

primary interests of Professor Scott Nesbit, who assisted me in interpreting the output of the topic

models. This subset was determined by selecting documents containing the terms colored, slave

(including terms such as slavery, slaveholding, etc.), freedman, freedmen and contraband (which in

the context of the Civil War tends to refer to runaway slaves), along with carefully tailored expres-

sions involving the word black (e.g. blacks plural as a whole word, black man, black men, black

soldier(s), black population, black labor, etc.).

5.5.1 Geographic distribution of topics in topic models

One question of interest when exploring the geography of the WOTR corpus is whether documents

in different regions talk about different topics. To answer this question, I created topic models from

the full set of documents in WOTR and divided up the documents according to the locations as

predicted using Naive Bayes. The documents were assigned to regions reflecting differing theaters

of war, approximately as shown in Figure 5.20. (The rest of the United States was divided up into

regions as well, with one region covering the Pacific West, another the Union Midwest, and a third

for the Union Northeast.)

Note that an alternative possibility is to jointly infer geographies and topics, as described

in Hong et al. (2012) for single-level geographic regions and Ahmed et al. (2013) for hierarchical

regions. I do not do this because I think the pre-specified theaters I use are more likely to be mean-

ingful than any automatically-determined regions. Furthermore, the regions inferred by the methods

of these papers are represented as multivariate Gaussians and thus will be approximately elliptical,

which is insufficient to represent the irregularly-shaped theaters of war as seen in Figure 5.20. This

is especially the case in theaters such as the Atlantic seaboard, the Mississippi River, and the Vir-

ginia/Maryland border, whose specific, manually-chosen boundaries are very important to ensure
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Figure 5.20: Approximate map of theaters of war used to create geographic-based topics in WOTR.

coherency of interpretation.

k-d vs. uniform grids The best results were achieved in §5.3.1 using a uniform 1◦ grid. However,

I choose instead to use a grid based on k-d trees (§3.2.2), using a bucket size of 20, which produces

approximately the same total number of cells (371) as a 1◦ uniform grid does (316). This is because

k-d trees have a number of advantages over uniform grids when using the map of theaters as shown.

For one thing, k-d trees do not have problems with regions that are narrow and/or have carefully

drawn boundaries that do not follow latitude/longitude parallels, such as the Mississippi River and

Atlantic Seaboard regions. Provided that there is sufficient density of data within these narrow

regions (which is to be expected, otherwise there would be no point in drawing these regions in

this fashion), k-d trees will automatically shrink the size of their grid cells, allowing for cells that

approximately track the border of these regions.

This advantage is even more pronounced in cases of important cities that occur right along

a border, for example Washington, DC at the border of Virginia, with the boundary between the

Virginia and Union Borderlands regions directly following the Virginia state border. Given the im-
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Figure 5.21: Comparison of two sets of grids for the Virginia/Maryland area, with theater divisions
shown. Blue dots show the centroids of the rectangles.

portance of Washington, DC and Virginia in the Civil War, it is not at all surprising that there is quite

a high density of documents in this region. This means that the k-d tree grid will correspondingly

have quite small cells—small enough, in fact, that four or five cells are allocated for Washington, DC

alone, and many more for nearby areas of Virginia. As a result, the grid is able to place documents

in the vicinity accurately enough to ensure that they fall on the correct side of the theater region

boundary.

Contrast this situation with that of the uniform grid, with fixed-size, relatively large 1◦ cells.

The border is irregular and does not follow latitude/longitude parallels. Hence those cells along the

border, including the one containing Washington, DC, are likely to include significant chunks of both

regions. This means that they will be unable to place documents very accurately, with consequent

smearing of the regions. In particular, Washington, DC, which is the most critical part of the Union

Borderlands region, is likely to have all of its documents grouped in with the Virginia region.

This situation is clearly shown in Figure 5.21, which shows a comparison of the Vir-

ginia/Maryland theater for a k-d tree and a uniform grid. The graph in Figure 5.22 shows a similar

comparison across the Southern United States. The blue dots in the graphs show the centroids of

each of the cells, indicating where a test document geolocated to a given cell would be placed. As

can be seen on the right side of Figure 5.21, Washington, DC is in fact placed in a uniform cell that

is primarily located in Virginia and has its centroid in Virginia, whereas on the left side it can be

seen that Washington, DC is divided up into multiple small k-d tree cells.
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Figure 5.22: Comparison of two sets of grids for the Southern United States, with theater divisions
shown. Blue dots show the centroids of the rectangles.

There are no easy ways to avoid this issue while maintaining the uniform grid. For example,

one could imagine moving the entire grid slightly south and west so that Washington, DC ends up

in the southwest corner of a cell; but doing this puts certain other cells, such as those overlapping

the Mississippi River, in a worse position. (This is an instance of the modifiable areal unit problem

(Gehlke and Biehl, 1934; Openshaw, 1983), where statistical bias is inevitably introduced by trying

to divide a continuous space up into cells. The adaptive nature of the k-d grid means it is much less

affected by this source of bias than a uniform grid.)

One could also imagine shrinking the size of uniform cells, but that would introduce sparsity

issues. On the other hand, the k-d tree, by its construction, manages to have smaller cells where it

counts while still avoiding problems with sparsity. (Recall that the k-d tree bucket size used for this

work was chosen so that k-d tree cells on average have the same number of documents in them as

uniform cells.) The way this is achieved is by having very large k-d cells in low-density areas, which

are usually far away from theater boundaries. Even when such cells cross a theater boundary, this is

not much of an issue because those cells by construction do not have very many documents in them.

Computing topic distributions Topic distributions were computed for each region by adding up

the partial counts of topics for each document in the region and normalizing the resulting values.

The top 4 topics are shown for each region in Table 5.6. A similar region-specific distribution of

topics was computed for the African-American subset of documents, as shown in Table 5.7.
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Topic Prop% Top words
Region: Confederate Interior (62299 spans, 25.89%)

15 4.06
general tennessee kentucky nashville tenn chattanooga thomas cumberland ky
ohio east morgan gap sherman louisville november knoxville major railroad

12 3.23
miles river road bridge creek camp march marched railroad crossed
crossing roads night moved day side encamped cross distance

1 3.22
general mississippi major la west miss jackson vicksburg memphis orleans
smith mobile river corinth sherman louisiana grant bayou ala

16 3.08
general commanding adjutant assistant brigadier major headquarters directs respectfully
brevet desires acting wm november december wishes hdqrs february indorsement

Region: Union Borderlands (60950 spans, 25.33%)

2 3.47
missouri fort district saint mo indians louis post arkansas kansas
militia indian california state price rock ark san curtis

24 3.34
regiment enemy wounded men fire left killed ordered field battle
position back time line rear order front woods forward

14 3.12
war secretary department washington prisoners honorable exchange stanton office
fort governor letter city parole sir commissary january exchanged edwin

4 2.89
general virginia ferry va brigadier major valley west baltimore winchester
harper september md mountain maryland washington gap july jackson

Region: Virginia (46838 spans, 19.47%)

23 4.25
line brigade left enemy position front moved works night division
morning rear day road advanced remained skirmishers ordered lines

29 4.12
road house general ford corps station railroad run court division left
bridge morning church night junction side fredericksburg plank

37 4.11
general major chief army staff headquarters corps potomac halleck burnside
meade geo humphreys warren commanding wright hancock washington grant

24 3.45
regiment enemy wounded men fire left killed ordered field battle
position back time line rear order front woods forward

Region: Atlantic Seaboard (20945 spans, 8.70%)

19 4.30
states state united confederate president government military act war governor
law excellency congress authority authorities power laws public executive

9 4.09
people country great government hope letter good dear feel make
matter desire power policy men respect doubt confidence long

8 3.73
general north carolina south virginia georgia charleston brigadier major district
florida anderson savannah beauregard wilmington island johnson james january

27 3.62
battery guns artillery batteries fire enemy pounder gun position inch
captain firing pieces fort section ammunition fired shot opened
Region: Trans-Mississippi Confederacy (20381 spans, 8.47%)

2 3.52
missouri fort district saint mo indians louis post arkansas kansas
militia indian california state price rock ark san curtis

32 3.37
orders command general adjutant numbers assistant department order special hdqrs
duty report headquarters brigadier proceed assigned officer relieved dept

1 3.37
general mississippi major la west miss jackson vicksburg memphis orleans
smith mobile river corinth sherman louisiana grant bayou ala

36 3.32
river boats fort boat island point steamer navy landing flag
board vessels city land gunboats transports fleet port gun

Region: Mississippi River (14707 spans, 6.11%)

1 5.32
general mississippi major la west miss jackson vicksburg memphis orleans
smith mobile river corinth sherman louisiana grant bayou ala

32 3.67
orders command general adjutant numbers assistant department order special hdqrs
duty report headquarters brigadier proceed assigned officer relieved dept

16 3.21
general commanding adjutant assistant brigadier major headquarters directs respectfully
brevet desires acting wm november december wishes hdqrs february indorsement

36 3.01
river boats fort boat island point steamer navy landing flag
board vessels city land gunboats transports fleet port gun

Table 5.6: Top topics for different regions in WOTR.
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Topic Prop% Top words
Region: Union Borderlands (2725 spans, 24.45%)

36 3.91
general orders department assistant command adjutant order duty officer officers headquarters
commanding special quartermaster numbers provost hdqrs report district

4 3.76
war government military citizens property law united authorities authority
loyal persons country rebellion civil soldiers laws acts protection army

34 3.68
service number men regiments officers state office draft recruiting total
call recruits district states enrollment military organization july years

3 3.58
negroes slaves labor negro slave free white employed soldiers number owners
children work plantations persons families service laborers population

Region: Confederate Interior (2594 spans, 23.28%)

11 4.12
miles road march marched river bridge camp creek railroad day roads
night moved train encamped crossed crossing left distance

7 4.04
general tennessee railroad nashville tenn memphis forrest chattanooga river
atlanta major cumberland east north thomas hood ala kentucky sherman

6 3.78
enemy cavalry command colonel force back miles artillery loss prisoners
captured advance morning river infantry killed ordered moved creek

1 3.51
enemy line left position brigade front rear road ordered fire advance
forward skirmishers moved advanced back regiment formed colonel

Region: Virginia (1743 spans, 15.64%)

1 5.75
enemy line left position brigade front rear road ordered fire advance
forward skirmishers moved advanced back regiment formed colonel

33 5.74
corps june division army house line general july petersburg
left brigade point road james works station moved night va

19 5.31
general cavalry enemy richmond virginia va lee potomac road court house
yesterday left side hill information point force fredericksburg

30 4.10
colonel lieutenant captain major john st william brigade light brigadier
general company companies george james charles colored henry thomas

Region: Atlantic Seaboard (1440 spans, 12.92%)

22 5.63
states state people government union united power constitution south president
slavery rights peace federal congress war southern confederacy country

27 5.38
battery fort guns island enemy fire batteries day night pounder
gun inch fired shells morris sumter shots shell rifled

17 4.21
state letter make hope governor give subject matter present desire great
regard people excellency opinion leave feel attention respectfully

4 4.05
war government military citizens property law united authorities authority
loyal persons country rebellion civil soldiers laws acts protection army

Region: Trans-Mississippi Confederacy (1132 spans, 10.16%)

8 4.44
mississippi la orleans river vicksburg bayou west louisiana mobile
gulf april miss texas port jackson march major banks hudson

36 3.76
general orders department assistant command adjutant order duty officer officers headquarters
commanding special quartermaster numbers provost hdqrs report district

37 3.71
force general enemy troops army forces movement attack river operations
lines point hold command country position move movements time

17 3.50
state letter make hope governor give subject matter present desire great
regard people excellency opinion leave feel attention respectfully

Region: Mississippi River (1111 spans, 9.97%)

8 7.05
mississippi la orleans river vicksburg bayou west louisiana mobile
gulf april miss texas port jackson march major banks hudson

36 4.82
general orders department assistant command adjutant order duty officer officers headquarters
commanding special quartermaster numbers provost hdqrs report district

20 3.58
respectfully servant obedient commanding honor report colonel instant headquarters
adjutant sir negroes assistant hdqrs general negro submit information asst

16 3.52
men force horses rebel rebels command cavalry camp country citizens captured
mounted information place miles guerrillas scout small returned

Table 5.7: Top topics for different regions in WOTR, African-American documents only.
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5.5.2 Dynamic topic models

Dynamic topic models (Blei and Lafferty, 2006) are variants of topic models designed for observing

topics that change over time or over a similarly autocorrelated dimension. In such a model, the

topic proportions are allowed to vary from one time slice to the next. Specifically, when the topic

proportions are transformed into the natural parameters of the multinomial distribution, these natural

parameters evolve using Gaussian noise, controlled by a top-chain variance parameter.

I computed dynamic topic models both across both time, in half-year intervals, and across

regions in Figure 5.20, starting from the Trans-Mississippi Confederacy in the southwest and moving

east and northeast through the Mississippi River, Confederate Interior, Atlantic Seaboard, Virginia,

and Union Borderlands regions.

As above, runs were done using predicted coordinates computed using k-d trees with a

bucket size of 20. For computational reasons it was impossible to run on the entire set; thus, it was

run only on the subset of documents that mention African-Americans, according to the procedure

described above. Words were lowercased and canonicalized to remove extraneous punctuation, and

stopwords were ignored, along with words occurring fewer than five times in the African-American

subset. Runs were done using 40 topics, which seemed to work well in producing topics that were

fairly specific but without too much redundancy.

Region topics

Table 5.8 and Table 5.9 show the results for 6 of the region-based topics. Some words of interest are

highlighted in blue.

• Topic 7 is a political topic, presumably reflecting high-level planning of war efforts, with

words like president, secretary, congress, confederate, united and states. The word slaves here

is of particular interest, increasing steadily across the regions with a particular jump in the last

two regions, Virginia and the Union Borderlands. These two regions are where the respective

seats of government of the North and South were located, and the high position of the word

slaves may reflect the importance of slavery—its preservation or end—as a motivating factor

for keeping the war going, and a frequent topic of political discussion in both governments.
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Topic 7
trans-miss. miss. conf. int. atlantic virginia borderlands

war states states states states slaves
states war state state act act
state state act act state states
act act war president slaves service

secretary president president confederate war state
service secretary congress congress service war

congress congress confederate united confederate persons
united united united war president united

president confederate secretary service united confederate
governor service service secretary congress president

confederate governor governor slaves secretary secretary
law law slaves persons persons slave

persons slaves law law governor congress
slaves persons persons governor law person
office impressment military military military military

military military african sec person law
officers office court court sec sec

impressment officers sec officers provided governor
authorized provided office office section section
department authorized officers person office provided

Topic 19
trans-miss. miss. conf. int. atlantic virginia borderlands

white white white white white white
colored colored colored colored colored number
black black black population population population

population population population black number colored
number number number number years years
whites slaves slaves slaves slaves cases
slaves whites whites years black slaves
negro negro negro whites cases slave

negroes negroes years negro slave negroes
years years negroes slave negroes cent
free free slave negroes negro black
slave slave free free whites disease
race cases cases cases free negro
cases race race race cent deaths
blacks blacks report cent report free
report report blacks report race report

average average cent deaths deaths hospital
cent cent average average disease diseases
year great deaths blacks total whites
great year great disease hospital total

Topic 26
trans-miss. miss. conf. int. atlantic virginia borderlands

cotton orders property property property orders
government order orders military orders department
department government order orders military persons

orders property military order department officers
order cotton government department order military

military department department government persons property
general military general persons officers order
property general persons general general general

trade persons officers officers government government
treasury officers cotton officer officer commanding
persons trade officer proper commanding officer
officers treasury trade commanding proper proper

plantations plantations treasury cotton numbers numbers
officer officer proper authority lines labor
army freedmen commanding treasury authority lines
lines army army trade labor authority

commanding commanding plantations army army made
articles lines lines lines headquarters army
supplies proper authority articles made headquarters

contraband articles articles numbers articles employed

Table 5.8: Top dynamic region topics in WOTR, African-American documents, topics 7, 19 and 26.
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Topic 29
trans-miss. miss. conf. int. atlantic virginia borderlands

states states states states states states
nation state state state state government

confederate confederate government government government state
state people people people people people

people government united war war war
united nation confederate united law law

government united war power united country
country country constitution law power military

art war power constitution country power
nations union union union military united
treaty power country country union congress
laws constitution law public congress property

cherokee laws convention great constitution laws
day convention made rights public public
war law rights military great union

made made nation confederate property south
law peace peace congress laws great

union day public made south slavery
power rights laws south made made
peace time south laws rights present

Topic 30
trans-miss. miss. conf. int. atlantic virginia borderlands

country country county county county county
cotton men men citizens men men
men cotton country men country country
texas citizens citizens country citizens citizens

citizens county people people people counties
people people counties counties counties people
county counties cotton horses union union

brownsville texas horses cotton horses guerrillas
horses horses negroes union soldiers property

counties negroes union property property horses
place place property soldiers negroes soldiers
tex soldiers soldiers negroes guerrillas good

soldiers property place good good loyal
bales good good home town negroes

negroes brownsville texas guerrillas loyal state
property union home town home town

bands state state families state home
state bales town state cotton protection
good home guerrillas place place place
rio bands families loyal families families

Topic 38
trans-miss. miss. conf. int. atlantic virginia borderlands

river river river river river river
bayou bayou boats boats boats boat
boats boats bayou point point boats
port port point boat boat point

transports point boat bayou landing board
la hudson landing landing board landing

point landing port board bayou shore
boat rouge transports transports steamer steamer

orleans baton board steamer shore bayou
landing boat gunboats gunboats transports transports
hudson transports water port gunboats gunboats
grand vicksburg enemy water land land

gunboats la steamer shore gun-boats gun-boats
steamer gunboats vicksburg land water bank

vicksburg enemy land enemy bank water
city lake general gun-boats port enemy

general general lake bank enemy port
water city gun-boats steamers steamers steamers

alexandria board city lake transport transport
enemy water shore general general side

Table 5.9: Top dynamic region topics in WOTR, African-American documents, topics 29, 30 and
38.
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In addition, the Union Borderlands overall was an area where slavery was of great political

importance, since these were areas that were part of the Union but where slavery was still

legal; this may be the reason for its particularly high position here. It is also possible that the

high position in Virginia and the Union Borderlands reflects the incidence of runaway slaves

in these border areas; however, if this was the case the word contraband might be expected to

appear more often, since this was the term used by the Union to describe runaway slaves.

• Topic 19 talks primarily about African-Americans. The high position of the word white here

presumably reflects the frequent occurrence of the collocations white and black (and occa-

sionally black and white) in sentences such as “Cause all women and children, both white and

black, who had not their homes within our lines ... to be excluded therefrom” and “Hereafter

proper medical attention will be given to all employees of this army, white and black ....”. Note

here that the word slaves does not show the same sort of jumps as in topic 7 above, which is

perhaps to be expected in a topic that is so concerned with slaves as such; this demonstrates

the importance of using topic models to identify and separate topics, and the insufficiency

of simple word frequency counts in examining patterns of discussion. (Note that there is a

moderate increase across the regions in the usage of the singular slave; it is unclear what to

attribute this to.)

The other words I have highlighted are those that concern death and disease, which appear

more in the eastern theaters of the South than in the west, with a big jump in the Union

Borderlands. Since this topic specifically concerns African-Americans, this may reflect the

much greater incidence of colored troops serving on the side of the North and the consequent

disease and death that was so much the lot of soldiers of the day. Colored troops served more

during the later stages of the war, and in this period the war effort was focused more in the

East, as the entire Mississippi had been captured by the North within the first two years of the

war, cutting off the West.

Some examples of this are (in a June 30, 1863 letter from the Surgeon General’s office in

Washington, D.C. to Secretary of War Stanton) “official information has been received at this

office relative to the combative liability of white and colored troops to diseases of malarious
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origin”; (in a report dated June 30, 1865) “In the casualties among the colored troops the

most striking circumstance is the enormous proportion of deaths by disease”; and (in a mem-

orandum dated August 31, 1863) “twenty-three prisoners (one white officer and twenty-two

colored and negro privates) were put to death in cold blood”. (Numerous letters and reports

note the increased susceptibility of colored troops to disease as compared with white troops,

and often attribute this to physical or moral defects of African-Americans, when in reality this

probably reflects the racism of the white officers, who undoubtedly treated and provisioned

colored troops worse than white ones.)

• Topics 26 and 30 indicate the importance of cotton in the Southern war effort. The nature of

these topics is less clear than the others. Topic 26 may partly be concerned with provisioning

the war effort, with words such as property, trade, supplies, articles, and treasury. Topic 30

may be concerned with the effect of the war on civilians and their property, with words such

as property, citizens, people, home, town and families. In both cases words related to cotton-

based agriculture (cotton, bales and plantations) occur primarily in the more southern areas

of the South, especially farther to the west, while hardly in Virginia and not at all in the North.

This appears to reflect the distribution of cotton growing, as shown in Figure 5.23 (which

reflects cotton-growing regions as of 2007, but which is probably not significantly different

from the situation in the 1860’s except perhaps for the areas in West Texas and farther west,

which may not have been as developed at the time).

Also interesting is the distribution of the term guerrillas in topic 30, which is opposite to that

of cotton. Guerrilla fighting was particularly intense in Missouri, where most of the more than

1,000 battles fought by Northern troops were with guerrillas (Erwin, 2012). This is reflected

in the high position of the term guerrillas in the Union Borderlands, which includes Missouri.

Guerrillas also appeared more generally throughout the South in relatively unpopulated areas

with Unionist sentiment, and in many areas towards the end of the war where civil authority

had broken down (Bohannon, 2014). Sherman had many problems with guerrillas in northern

Georgia in the Confederate Interior region (Bohannon, 2014), and significant guerrilla warfare

also occurred in northwest Virginia (Sutherland, 2012). Fighting in the later stages of the war
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Figure 5.23: Primary cotton-growing regions of the United States, as of 2007, from the U.S. Depart-
ment of Agriculture.

was primarily in the East, which may be the reason why the term does not occur in the Western

regions (Mississippi River and Trans-Mississippi).

• Topic 29 is, like topic 7, a political topic, but of a different nature, and less focused specifically

on the war. Here, unlike in topic 7, the terms war and military are primarily limited to the more

Eastern regions and to the Union Borderlands, which saw the bulk of the fighting. Particularly

interesting is the occurrence of the terms nations (plural, as in phrasings such as “Indian na-

tions” and “Choctaw and Chickasaw nations”), treaty and cherokee in the Trans-Mississippi,

none of which occur in the top 20 terms of the topic among any of the other regions. This

reflects the fact that dealings with Native Americans occurred significantly more in this region

than elsewhere (indeed, Oklahoma was known at the time as the Indian Territory).

• Topic 38 clearly concerns water-based transport, with terms such as river, port, bayou, boats,

landing, gunboats, steamer, etc. Not surprisingly, various cities where important naval battles

took place are represented, namely Vicksburg, Baton Rouge and New Orleans. This topic

also shows, as expected, that geographic-specific terms are generally represented in the areas
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in which they are located and to some extent in neighboring areas. The term vicksburg, for

example, occurs in the Mississippi River region (the city of Vicksburg sits on the Mississippi),

but also occurs at a lower position in the two neighboring regions. This may partly reflect the

fact that the Mississippi River region is narrow, and the neighboring regions were involved

in sending troops to fight at the Battle of Vicksburg. However, it may also simply reflect

imprecise classification of documents, either due to limitations of the grid-based approach or

misclassification for other reasons (e.g. mentioning of place names in regions other than that

of the primary geographic topic of the document). In addition, it may partly be due to the

nature of the dynamic topic model algorithm, which has a (controllable) parameter that deter-

mines how “jumpy” the topics are allowed to be. (I set this parameter so as to allow moderate

but not extreme jumpiness, to ensure coherency of topics.) These latter two reaons may be

part of the explanation for the distribution of the term bayou, which occurs at the highest posi-

tion in the topics for the Mississippi and Trans-Mississippi areas, where bayous are normally

found (primarily in Louisiana, southern Arkansas and eastern Texas), but also occurs fairly

high in the topics for all the other regions. An example of why misclassification of this term

may occur is a letter dated April 21, 1863 written from Opelousas, Louisiana, which mentions

the term bayou 10 times but also speaks repeatedly of various militias stemming from far-

away regions, such as the 4th Wisconsin, the 8th New Hampshire, the 21st Indiana, and the

173rd New York. Another such example, with six mentions of bayou (capitalized or not), is

dated April 27, 1863 and identified in the header as being written “In camp on Bayou Boeuff,

beyond Washington, La.”, where the place name Washington will almost certainly bias the

predicted location towards Washington, DC.

Time-based topics

It’s also possible to compute dynamic topics across time, as dynamic topic models were originally

designed for. As described above, dynamic topic models were run on half-year intervals, using the

same parameters as were used for region-based topic models, including using k-d tree predictions

and producing 40 topics. Because of the highly uneven distribution of documents across the various
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half-year intervals, intervals with fewer than 50 documents were ignored. This had the effect of

excluding intervals before 1861 and after 1865. (This was unnecessary in the case of regions, all of

which had well over 50 documents.)

Because this dissertation is primarily concerned with geography, I focus less on time-based

than region-based dynamic topic models. For time-based models, I focus primarily on the distribu-

tion of the term colored, showing the 7 out of 40 topics where this word occurred significantly, in

Table 5.10, Table 5.11, and Table 5.12. All of the topics show a clear trend in that the word colored

occurs more in the later stages of the war than the earlier stages. This appears to reflect the fact that

mustering of colored troops primarily occurred later in the war, especially after the Emancipation

Proclamation took effect in January of 1863. This is visible most clearly in topic 13, where colored

appears around position 19 in the latter half of 1862, and then quickly jumps up starting in the first

half of 1863.

Note that in the topics other than topic 13, the term colored tends to appear later, often

not till 1864 or 1865. This may reflect that fact that topic 13 in particular, with terms like depart-

ment, headquarters, brigade, division, corps and especially adjutant-general, may reflect primarily

headings and salutations, such as “AR. C. BAILEY, / Captain, Commanding Eighth Regiment U. S.

Colored Troops. / Lieutenant E. L. MOORE, / Acting Assistant Adjutant-General.” and “GEORGE

L. STEARNS, / Major and Assistant Adjutant-General, U. S. Volunteers, / Commissioned for Or-

ganization U. S. Colored Troops.” As the latter example shows, some of these salutations refer to

organizations for mustering colored troops, which would have been active before the actual troops

themselves had been mustered. Topics 0, 16, 17 and 18 reflect a later time when such troops had

in fact been mustered; the frequent reference to state names is indicative of collocations such as

“Kansas Troops, 1st Regiment (Colored)”, referring to state-based colored militias (note the word

“militia” occurring prominently near the top of topic 18).

The topic with the latest instances of the term colored is topic 6; with terms like expedition,

captured, party, returned, and report, this topic appears to indicate military expeditions. The late

appearance of the term colored here appears to reflect the lag between when the colored troops were

mustered and when they saw significant military action.
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Finally, topic 27 shows a pattern different from all the others. It is similar to the others

in that the word colored doesn’t appear until 1863, but it peaks in position later in 1863 and then

drops steadily. This topic, with prominent mention of prisoners and war along with exchange and

captured, appears to reference prisoners of war and prisoner exchanges between the North and

South. (Note also the occurrence of united, states, confederate, washington, richmond and rebel,

which further suggest a discussion between the two sides.) These prisoner exchanges notably broke

down in July 1863 due to the refusal of the Confederates to return colored soldiers captured as

prisoners of war (or indeed, to treat such soldiers as prisoners of war at all) (Cloyd, 2010). Other

terms in the topic are also consistent with the theme of prisoner exchanges. The terms secretary

and stanton refer to U.S. Secretary of War Edwin Stanton. The term butler refers to Union general

Benjamin Butler, who was well-known for initiating in 1861 the policy of treating runaway slaves

as “contraband”, meaning that they did not need to be returned to their owners, as the Fugitive

Slave Act called for. He also served as the Union Commissioner of Exchange in charge of prisoner

exchanges (National Park Service, 2015) starting in 1864.
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Topic 0
01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865

captain captain captain captain colonel colonel colonel colonel colonel colonel
company company company colonel captain lieutenant lieutenant lieutenant lieutenant lieutenant
colonel colonel colonel company lieutenant captain captain captain captain captain

lieutenant lieutenant lieutenant lieutenant company major major major major major
john john john john john company battery battery company general

william william william major major john john john general company
major major major william william battery william company artillery artillery

companies companies companies companies battery william brigade brigade light light
james james james battery companies 1st 1st william battery brigadier
george george battery james 1st brigade general artillery john colored
artillery battery george 1st artillery artillery company light brigade battery
battery artillery artillery artillery james general light 1st colored john

1st 1st 1st brigade brigade companies artillery general william brigade
charles charles general general general james brigadier colored 1st william
light general brigade george light light york york brigadier 1st
henry light charles light george brigadier james brigadier york york

general brigade light charles 2nd george george james companies companies
brigade henry henry 2nd brigadier 2nd companies companies james charles
thomas thomas thomas brigadier charles york 2nd george charles james

2nd 2nd 2nd thomas henry charles charles charles george george
Topic 6

01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865
men men men men men men men men men men

captain captain captain captain captain captain captain captain captain captain
river river river river lieutenant river river river lieutenant lieutenant

lieutenant lieutenant lieutenant lieutenant river lieutenant lieutenant lieutenant river river
night boat party found miles miles miles miles report report
boat night found miles found report report report miles miles
mr mr night party report found found cavalry bayou bayou

party party miles report party party party horses cavalry found
found found boat horses boat morning horses found found cavalry
horses house horses night morning horses cavalry morning horses horses
house horses mr morning horses boat morning party morning boat

morning miles report boat night cavalry captured command boat morning
miles morning house expedition expedition captured boat captured command colored
place report morning place place command command boat colored command
report place place house command place place 1864 party party

o’clock o’clock proceeded mr cavalry night returned place captured captured
left proceeded o’clock proceeded left expedition 1864 bayou place place

proceeded left expedition command returned returned night commanding commanding commanding
expedition returned left left captured company commanding returned returned expedition
returned expedition returned returned company camp camp rebel expedition returned

Topic 13
01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865

general general general general general general colored colored colored colored
command command command orders orders colored general general general general

orders orders orders command regiments regiments troops troops orders 1865
regiment regiment regiment regiments regiment orders volunteers assistant assistant orders

army army army regiment command regiment command commanding command department
regiments regiments regiments army colored troops regiments command 1865 infantry

department headquarters commanding commanding department command orders orders infantry commanding
volunteers commanding headquarters adjutant-general adjutant-general volunteers commanding adjutant-general commanding assistant

headquarters volunteers division department volunteers department regiment infantry adjutant-general command
commanding division adjutant-general headquarters troops adjutant-general assistant 1864 department adjutant-general

adjutant-general brigade brigade volunteers commanding commanding adjutant-general headquarters headquarters major
division department department division army corps department regiments troops volunteers
brigade adjutant-general volunteers assistant corps assistant corps department major troops
officers officers officers officers headquarters colonel colonel regiment volunteers duty
colonel assistant assistant brigade assistant headquarters 1864 volunteers division headquarters
assistant colonel colonel troops officers army headquarters colonel duty division
troops troops troops corps colonel officers infantry report report report
report order order colonel division duty report division numbers numbers
order report corps colored brigade report army corps colonel regiments
officer officer report order order major duty major regiments brigadier

Table 5.10: Top terms across time in WOTR, African-American documents only, dynamic topics 0,
6 and 13.
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Topic 16
01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865

regiment regiment regiment regiment troops troops troops troops troops troops
troops troops troops troops regiment regiment regiment regiment regiment regiment

infantry infantry infantry infantry infantry infantry infantry infantry infantry infantry
cavalry cavalry cavalry cavalry cavalry cavalry cavalry cavalry cavalry cavalry

confederate confederate confederate confederate artillery artillery artillery union union union
artillery artillery artillery artillery confederate confederate confederate artillery artillery artillery
alabama alabama alabama alabama union union union confederate confederate confederate

union union union union battery battery john william william william
battery battery battery battery alabama 1st william john 1st battery

battalion john john john 1st john battery 1st battery 1st
john battalion 1st 1st john william 1st battery john john

mississippi 1st battalion mississippi william james james james 2nd battalion
1st mississippi mississippi william mississippi tennessee 2nd 2nd james 2nd

william william william battalion tennessee mississippi tennessee george colored colored
tennessee tennessee tennessee tennessee james 2nd george thomas battalion james

james james james james battalion illinois mississippi colored george george
2nd 2nd 2nd 2nd illinois alabama illinois battalion thomas thomas

illinois illinois illinois illinois 2nd battalion battalion charles charles charles
louisiana louisiana louisiana louisiana louisiana george alabama illinois 4th alabama
thomas thomas thomas thomas george 4th thomas 4th alabama 4th

Topic 17
01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865

york york york york york york york york york york
massachusetts massachusetts massachusetts massachusetts massachusetts massachusetts infantry brigade brigade brigade
pennsylvania pennsylvania pennsylvania pennsylvania pennsylvania pennsylvania pennsylvania pennsylvania total total

brigade brigade brigade artillery artillery infantry brigade infantry infantry artillery
artillery artillery artillery brigade island artillery massachusetts massachusetts artillery infantry

connecticut connecticut connecticut connecticut brigade island artillery artillery pennsylvania pennsylvania
battery island island island infantry brigade total total massachusetts massachusetts
island battery battery battery connecticut connecticut battery battery battery connecticut
maine maine maine infantry battery battery connecticut connecticut men battery

hampshire hampshire hampshire hampshire hampshire hampshire island men connecticut men
men jersey rhode maine maine men men island cavalry cavalry

jersey men men rhode rhode maine maine maine colored colored
infantry infantry infantry men men total hampshire cavalry division light
rhode rhode jersey jersey total rhode 1st hampshire island island

1st 1st 1st 1st 1st 1st heavy colored light division
total total total total jersey heavy rhode 1st maine maine

volunteers volunteers volunteers volunteers volunteers volunteers cavalry light heavy heavy
cavalry cavalry cavalry cavalry cavalry jersey jersey division 1st hampshire
officers officers officers officers heavy cavalry colored heavy hampshire 1st

light light light light officers colored general rhode rhode rhode
Topic 18

01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865
militia militia militia militia militia cavalry cavalry cavalry cavalry cavalry
texas texas texas texas missouri missouri missouri missouri missouri missouri

missouri missouri missouri missouri cavalry militia militia militia militia militia
troops cavalry cavalry cavalry texas union union union union union
cavalry troops troops troops state troops troops troops troops troops

state state state state troops texas regiment regiment 1st 1st
kansas kansas kansas kansas union state state texas texas texas

regiment regiment regiment union kansas regiment texas kansas regiment 2nd
union union union regiment regiment kansas kansas 1st kansas kansas

arkansas iowa iowa iowa iowa 1st 1st state 2nd regiment
iowa arkansas arkansas arkansas arkansas iowa 2nd 2nd state iowa

mexico mexico 1st 1st 1st arkansas arkansas enrolled iowa state
1st 1st 2nd 2nd 2nd 2nd iowa arkansas arkansas arkansas

indian 2nd indian enrolled enrolled enrolled enrolled iowa enrolled enrolled
2nd indian mexico indian colorado colorado john john wisconsin wisconsin

colorado colorado enrolled colorado indian 3rd 3rd colorado colored colored
california california colorado mexico 3rd john colorado 3rd 3rd colorado
enrolled enrolled california 3rd john indian colored colored colorado 3rd

3rd 3rd 3rd john wisconsin wisconsin wisconsin illinois john john
john john john california california provisional provisional wisconsin illinois illinois

Table 5.11: Top terms across time in WOTR, African-American documents only, dynamic topics
16, 17 and 18.
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Topic 27
01/01/1861 07/03/1861 01/01/1862 07/03/1862 01/01/1863 07/03/1863 01/01/1864 07/02/1864 01/01/1865 07/03/1865

war war war war war war prisoners war war war
secretary secretary secretary prisoners prisoners prisoners war prisoners prisoners prisoners
prisoners prisoners prisoners secretary officers general general secretary secretary secretary
honorable officers officers officers secretary officers secretary general general general

officers honorable honorable general captured exchange exchange exchange confederate confederate
department department department captured general secretary officers confederate exchange exchange

letter letter stanton states exchange captured confederate officers officers officers
president states states exchange states states captured states states states

washington washington general department stanton stanton states soldiers stanton honorable
states president letter stanton honorable colored stanton captured honorable stanton

captured captured captured honorable confederate rebel colored honorable captured captured
general general exchange confederate department confederate soldiers stanton authorities president
stanton stanton president letter rebel honorable honorable colored soldiers authorities

confederate exchange washington president government soldiers made authorities president soldiers
butler confederate confederate government authorities authorities rebel made richmond richmond

exchange butler butler rebel letter government authorities richmond colored rebel
united government government butler soldiers mr mr rebel mr received

government united united washington colored made government mr rebel colored
sir sir richmond authorities made department letter president received mr

received received authorities united army troops richmond government made washington

Table 5.12: Top terms across time in WOTR, African-American documents only, dynamic topic 27.
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Chapter 6

Document geolocation and toponym

resolution

6.1 Introduction

This chapter discusses work that ties together document geolocation with toponym resolution, build-

ing on Speriosu (2013) and Speriosu and Baldridge (2013). This work stems from the observation

that toponyms in a stretch of text are strong indicators of the overall location of that text. Docu-

ment geolocation will naturally pick up on these toponyms by assigning high weight to the words

comprising them. However, toponym resolution can still be of assistance, because

1. toponyms are potentially ambiguous, and document geolocation can benefit from working

with resolved, rather than unresolved, toponyms;

2. some toponym resolution methods, such as SPIDER (§6.2), can do joint inference over the

toponyms in an individual document or an entire corpus, taking advantage of dependence

relations among different toponyms in a document;

3. toponym resolvers can make use of distinct knowledge sources from document geolocators,

for example a gazetteer of known toponyms and their possible candidates.
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Toponym resolution can be used to inform document geolocation in various ways. For

example, a document geolocator could be constrained to making predictions that are near (within

some threshold of) one of the toponyms in the text. Alternatively, toponyms in a text can be used

as features, for example in a reranker (§7.2). Ideally, however, we would do joint inference over

toponyms and document geolocations, allowing each to inform the other. In this chapter, I describe

a method for doing such joint inference, using a variant of co-training (§6.3).

6.2 Toponym resolution techniques

Speriosu (2013) developed a number of methods for toponym resolution, some of which applied

document geolocation as one component. It is important to note that these methods are unsupervised

from the perspective of toponyms, in that they do not rely on an existing corpus marked up with

disambiguated toponyms. (WISTR is a partial exception, in that it synthesizes toponym annotations

from a document-geolocation corpus. WISTR∗ in §6.2.2 is even more of an exception.)

Some of these methods rely on outside knowledge:

• A corpus, such as Wikipedia, annotated with document-level geocoordinates.

• A document geolocator trained from such a corpus.

• A gazetteer listing known toponyms and possible candidates for their location.

The following are the methods relevant to this dissertation:

• TRIPDL directly uses a document geolocator to produce a probability distribution over a cell

grid covering the Earth. Each of the possible candidates for a given toponym in the document

is then assigned a probability in line with the document-geolocation probability of the cell

containing the candidate, and the highest-probability candidate chosen for the toponym.

• WISTR is a stronger method that uses document geolocations of Wikipedia in an indirect

fashion. A named-entity recognizer is run on a Wikipedia page, and the toponyms in the

page containing candidates within 10km of the document’s location are considered to resolve
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to those candidates. The textual context around those toponyms is used as features to train

classifiers to disambiguate those toponyms to their resolved candidates.

For example, the Wikipedia page on Widgery Wharf in Portland, Maine contains various

mentions of the toponym Portland, and the gazetteer entry for Portland contains the candidate

Portland, Maine whose location (presumably the city center) is within 10km of the location

of Widgery Wharf. Thus, the text surrounding each mention of Portland in this article serves

as classifier features to disambiguate a mention of Portland in some other article to Portland,

Maine. Combined with appropriate features to identify other Portlands (for example, mentions

of Portland in the article on the Portland Youth Philharmonic in Portland, Oregon), a strong

classifier can be created.

• TRAWL interpolates between WISTR and TRIPDL, and weights the result by a factor that

biases in favor of higher-level administrative entities when e.g. disambiguating between a city

and a country of the same name.

• SPIDER is a weighted-minimum-distance resolver than seeks to implement the heuristics of

spatial minimality (different toponyms in a text tend to be near each other) and one sense per

discourse (multiple instances of a toponym in a text tend to refer to the same location). At its

core is a basic minimum-distance resolver, which resolves each toponym to the candidate that

is, on average, closest to all other toponyms. (More specifically, for each toponym, it chooses

the candidate that minimizes the sum of the distances to the closest candidate of each other

toponym.) This has the effect of clumping all toponyms in a document together.

SPIDER builds on top of this basic resolver by attaching a weight to each candidate of a

toponym, reflecting its prominence in the corpus. The minimum-distance algorithm is then

modified so that all distances computed are divided by the weights of the candidates involved

(since smaller distances are better). Furthermore, multiple iterations are run, and at the end of

each iteration, the weights are recomputed, reflecting the proportion of times a given candidate

has been resolved across the entire corpus.

Unlike WISTR, TRIPDL and TRAWL, SPIDER does joint inference of toponyms both
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Geolocator−→ Naive Bayes uniform, 1◦ Hierarchical k-d
Toponym resolver ↓ Mean Median Precision Mean Median Precision
RANDOM 2397 933 23.4% 2397 933 23.4%
TRIPDL 1014 26 57.2% 1235 38 51.7%
TRAWL 1825 419 42.3% 827 15 70.5%
WISTR 665 0 74.5% 665 0 74.5%
SPIDER 675 0 74.7% 675 0 74.7%
TRAWL+SPIDER 673 0 74.8% 243 0 82.0%
WISTR+SPIDER 422 0 82.5% 422 0 82.5%

Table 6.1: Dev set performance on CWAR using various toponym resolution methods. Underlined
values are those that have changed from left to right (the others remain the same because their
method doesn’t use a geolocator).

across an individual document and the entire corpus. (TRIPDL takes advantage of an entire

document’s context through the use of a document geolocator, but still resolves each toponym

independently.)

• WISTR+SPIDER and TRAWL+SPIDER use WISTR and TRAWL, respectively, to ini-

tialize the weights of SPIDER. The underlying idea is that the weights in SPIDER can be

viewed as set of prior distributions, one per toponym, over the candidates of that toponym.

Both WISTR and TRAWL output probability distributions over the candidates of each to-

ponym and use outside knowledge sources to do so, and thus can be used to more intelligently

initialize SPIDER’s weights than simply initializing them uniformly, as SPIDER does by

itself. These combined methods are generally stronger than either of the component methods

standing alone.

6.2.1 Baseline toponym resolution results

As described in §2.4, I redid the CWAR dataset to include coordinates for all of the 56,000+ distinct

toponym types originally annotated in the corpus, as opposed to the only 2,000 or so types that were

assigned coordinates in Speriosu (2013)’s work. I reran the methods described above, producing the

updated results shown in Table 6.1.

In addition, I modified the code that implements these resolvers to allow for the use of the

new document geolocation techniques described in this dissertation.1 This allowed for new variants
1Speriosu’s original system used the geolocation methods of Wing and Baldridge (2011), in particular KL Divergence
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of TRIPDL, TRAWL and TRAWL+SPIDER, which were run with an underlying hierarchical k-d

tree classifier geolocator trained on ENWIKI13 using the optimal settings found in §4.2.3. These

results are shown on the right half of Table 6.1. Using a hierarchical classifier does not help with

TRIPDL (which is one of the weaker methods in any case), but definitely does with TRAWL and

TRAWL+SPIDER, making the latter the strongest method for mean, and very nearly as strong for

precision as WISTR+SPIDER. This suggests that a better geolocator can improve the performance

of a geolocation-based toponym resolver, a result that is perhaps expected but nonetheless pleasing.

6.2.2 New method WISTR∗ (variant of WISTR)

WISTR, as described above, identifies toponyms in Wikipedia using a named entity recognizer

(NER) and disambiguates them by looking for candidates that are very close (10km or closer) to the

document’s geolocation. This procedure would be unnecessary if Wikipedia were directly marked

up with toponyms and their resolutions, and in fact we can synthesize exactly such toponyms by

making use of the hyperlinks between Wikipedia articles. The idea is that

1. we can identify any stretch of text that is linked to a geolocated article and is also found in the

gazetteer as a toponym;

2. we can resolve the toponym by finding the candidate in the gazetteer that is closest to the

linked article’s geocoordinate, provided the distance does not exceed a threshold (I use 100km,

or 500km for candidates that are identified in the gazetteer as states or higher-level administra-

tive entities due to potential disagreements between Wikipedia and the gazetteer in identifying

the “representative point” of such a region);

3. we can identify further stretches of the same text in the article2 as toponyms, with the same

resolution (this is necessary because typically only the first mention of a given item in an

article is linked).

By doing this procedure, we can identify toponyms both more precisely (since we eliminate

NER errors) and in greater number (since we no longer rely on toponyms being close to the article’s

and Naive Bayes.
2Or more precisely, until we find another occurrence of the same text with an attached link.

140



Corpus Source
CWARPORTAL The Civil War Portal subsection of ENWIKI13
TOPOWIKI13 All of ENWIKI13

Table 6.2: New toponym resolution corpora for use with WISTR∗, derived from part or all of
ENWIKI13 using a new and better method to identify and resolve toponyms in Wikipedia.

Method Corpus Mean (km) Precision (%)
WISTR ENWIKI13 850 69.5
WISTR+SPIDER ENWIKI13 107 89.5
WISTR∗ TOPOWIKI13 713 80.8
WISTR∗+SPIDER TOPOWIKI13 85 91.3
WISTR∗ CWARPORTAL 183 86.8
WISTR∗+SPIDER CWARPORTAL 61 92.0
WISTR/WISTR∗ ENWIKI13+CWARPORTAL 463 83.1
WISTR/WISTR∗+SPIDER ENWIKI13+CWARPORTAL 87 91.1

Table 6.3: Results for WISTR and WISTR∗ on CWAR.

own geocoordinate). Finally, we can make use of articles that are not themselves geolocated, which

comprise more than 80% of the total, and nearly 95% of those in the Civil War Portal subsection

(§2.4).

Using this new procedure, I create two new toponym resolution corpora from ENWIKI13

(see Table 6.2).

I then create a variant of WISTR, which I term WISTR∗, that directly relies on the to-

ponyms in these corpora rather than finding toponyms in the former, more roundabout fashion.

Table 6.3 shows the results of running on the CWAR corpus. In addition, I investigate results using

a combination of WISTR∗ features from CWARPORTAL, and WISTR features extracted from all

of ENWIKI13.

Interestingly, WISTR∗ results are noticeably better using only CWARPORTAL than

TOPOWIKI13 (the entire Wikipedia). This demonstrates the importance of in-domain data.

6.2.3 Variants of SPIDER

I modified SPIDER to incorporate a document-level geotag when it is available. Such a geotag is

typically available in the toponym-resolution portion of co-training (§6.3), as the toponym resolver

is fed documents that have already been annotated by the document geolocator. There are two ways
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to do this:

WEIGHTED This method sets the initial weights of each toponym to be inversely related to the

distance from the document-level geotag.

ADDTOPO This method modifies SPIDER to add an additional toponym corresponding to the

document-level geotag, effectively containing only one possible candidate, which resolves to

the location of the document-level geotag. This biases SPIDER in favor of resolving other

toponyms nearby, in order to satisfy the spatial minimality component of the algorithm.

ADDTOPO can be combined with any of the WISTR variants, but WEIGHTED cannot, because its

settings for the initial weights would conflict with the WISTR settings.

6.3 Co-training

6.3.1 Introduction

Co-training is a semi-supervised strategy introduced by Blum and Mitchell (1998) that allows for

bootstrapping a classifier or other machine learning tool using only a small amount of labeled data

and a large amount of unlabeled data. It depends on the existence of two different views of the data,

described by two different feature sets that can be used to train distinct classifiers whose errors, in

the ideal case, are uncorrelated. Co-training proceeds iteratively in an alternating fashion. Each

classifier in turn is trained, beginning with the initial labeled data, and its most confident predictions

on the unlabeled data are added to the set of training data and used to train the other classifier.

The initial task considered by Blum and Mitchell involved classifying web pages from

computer science departments into one of four types, using the text of the pages themselves and

the text of the links to the pages as the two different views. Co-training has since been applied to

multiple domains, such as statistical machine translation (Callison-Burch, 2002), parsing (Sarkar,

2001), computer vision (Lu et al., 2011), and semantic role labeling (He and Gildea, 2006).

I propose here a variant of co-training that involves a combination of document geolocation

and toponym resolution. This is a natural fit because these two types of geographic annotation
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complement each other: One provides an individual view of the distinct geographic place names in

a text, and the other provides a holistic view of the overall geographic scope of the text.

The algorithm I describe here differs slightly from standard co-training, which uses the

availability of two views onto a single corpus. I instead use two corpora, one of which has document

geolocations while the other has toponym resolutions. One of the corpora is derived from the other,

allowing information to flow between the two.

6.3.2 Basic algorithm

When co-training, I proceed as follows. The basic algorithm described here and below follows

Abney (2007).

1. I begin with a corpus U (such as CWAR) that is unlabeled but has the toponyms and their pos-

sible candidates identified. (Alternatively, such toponyms and candidates could be identified

with the help of a gazetteer and named entity recognizer.) I also begin with a pre-trained

document geolocator (e.g. one trained on ENWIKI13). The goal is to produce: (1) toponym

annotations on the corpus; (2) a toponym resolver; (3) an improved document geolocator

taking advantage of information contained in the corpus.

2. I create two initially empty corpora, L (meant to contain documents labeled with both

toponym-level and document-level annotations) and Lw (meant to contain similarly labeled

document windows, i.e. small segments of text surrounding a toponym in a given document,

whose document-level annotation is derived from the toponym). Lw is derived from the to-

ponym annotations in L and is used to train a document geolocator, while L itself is used to

train a toponym resolver such as WISTR∗.

3. The document geolocator makes predictions on U . Those documents whose location is pre-

dicted with relatively high probability are passed to a toponym resolution mechanism.

4. This mechanism accepts documents for which one of the toponyms in the document has a can-

didate that is close to the resolved document location. (This serves as one means to pass infor-

mation from the document geolocator to the toponym resolver.) This produces an “accepted”
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corpus A which, in combination with L, is used to train a toponym resolver, if necessary (in

particular, if we are dealing with a variant of WISTR). We then use the toponym resolver to

resolve toponyms in A, in combination with L, if necessary (in particular, if we are dealing

with a variant of SPIDER). Finally, the documents in A are removed from L and added to U .

5. I then generate smaller document windows of a certain size (e.g. 20 words) surrounding each

toponym in A; see above. These are added to Lw, and used to train a document geolocator.

This document geolocator is then interpolated with the pre-trained document geolocator (see

above, and §6.3.3).

Figure 6.1 shows the basic algorithm. It has a number of subfunctions, whose purpose is as

follows:

TRAINDOCGEO Train a document geolocator given a corpus of documents—in this case, small

pseudo-documents that consist of a window (usually 20 words) surrounding a toponym, la-

beled with the coordinate of that toponym.

INTERPOLATE Interpolate between two document geolocators (§6.3.3).

LABEL Label a corpus using a document geolocator.

CHOOSEBATCH Select a subset of a corpus according to some criterion, e.g. the score exceeds

some threshold (§6.3.4).

FILTERCANDNEARLOC Select a subset of a corpus, choosing documents that have a toponym

with a candidate near the document geolocation, according to some threshold (§6.3.4).

TRAINTOPRES Train a toponym resolver. This is passed both L, which has toponym annotations,

and A, which does not. This step is only necessary for one of the WISTR variants. For

example, we may derive WISTR∗-style features from the toponyms inL and WISTR features

from the toponyms in A.

RESOLVE Resolve toponyms in a corpus. We are passed in both L, which has existing toponym

annotations, and A, which does not. L is only used in one of the SPIDER variants, which do
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1: function TRAIN(DGw, U ) . On entry: Wikipedia document geolocator, unlabeled corpus
2: L← new empty corpus . Labeled corpus
3: Lw ← new empty corpus . Labeled corpus of “document windows”
4: DG← null . Document geolocator that will be trained
5: TR← null . Toponym resolver that will be trained
6: Loop
7: DG0 ← TRAINDOCGEO(Lw)
8: DG← INTERPOLATE(DGw, DG0)
9: DG.LABEL(U )

10: C ← CHOOSEBATCH(U ) . high-probability docs
11: A← FILTERCANDNEARLOC(C) . docs “accepted” by toponym resolver
12: if A is empty then
13: break
14: end if
15: TR← TRAINTOPRES(L,A)
16: R← TR.RESOLVE(L,A) . Resolved version of A
17: Rw ← GETDOCWINDOWS(R) . Document windows derived from R
18: for all d ∈ Rw do
19: Lw.APPEND(d)
20: end for
21: for all d ∈ R do
22: U.REMOVE(d)
23: L.APPEND(d)
24: end for
25: if U is empty then
26: break
27: end if
28: End Loop
29: return (DG,TR,L)
30: end function

Figure 6.1: Basic co-training algorithm
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joint annotation. We have a choice as to whether we re-resolve the toponyms inL or hold them

constant while resolving toponyms in A (§6.3.4). The algorithm as described in Figure 6.1

assumes that L is held constant.

GETDOCWINDOWS Create a corpus of document windows surrounding each resolved toponym

in a corpus (see above).

APPEND Append an item to the end of a list.

REMOVE Remove an item from a list.

6.3.3 Interpolation

Interpolation between a foreground document geolocatorDG0 trained onLw (see above) and a large

background document geolocator DGw pre-trained on Wikipedia is necessary because document

geolocation often requires a fairly significant amount of textual data to produce reasonable results,

and Lw will often be too small.

However, interpolation is complicated by the necessity to interpolate between the individual

cells of two sets of rankings over grids that may not be the same. There are two issues involved here:

• The grids will typically have different holes in them, due to the distinct datasets used to create

them.

• The grids may have different shapes. This necessarily happens, for example, when k-d tree

grids are used, although it can be avoided with uniform grids by using the same grid size for

both.

The first issue is perhaps the trickier one. One possibility is to ignore cells that don’t occur

in both rankings, but this causes many problems (e.g. it is possible that no cells are common to

both rankings). In reality it appears that it is necessary to hallucinate scores for cells that are lacking

them, similar to language models. This suggests that DGw should be viewed as comparable to a

global language model, which is either interpolated into the foreground document geolocator DG0

or backed off to.
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As with language models, a basic interpolation model can be defined as

DG = (1− λ)DG0 + λDGw

for a given cell. In the experiments I ran, I simply used a constant value of λ, comparable to Jelinek

smoothing. However, a better idea would be the analogue of Dirichlet smoothing, where λ varies

according to the relative sizes of the corpora, e.g.

λ =
|DGw|

|DGw|+m|DG0|

where |G| for some geolocator G is the number of documents used to build the geolocator, and m is

an “importance factor” indicating how much larger DG0 should be considered than its actual size.

The effect here is that λ gets smaller as DG0 gets larger (is built on more documents).

The second issue above, that of differently-shaped grids, can be solved in various ways.

One simple way is, for a given cell in DG0, to find its centroid and locate the corresponding cell

in DGw containing that centroid; this is what I currently do. More sophisticated solutions might

involve choosing a number of (equally spaced?) points within the cell in DG0, matching each one

up to a cell in DGw, interpolating between each pair, and averaging the results.

6.3.4 Additional considerations

Batch sizes and toponym acceptance rates As described above, the algorithm has two steps,

CHOOSEBATCH and FILTERCANDNEARLOC, both of which winnow down the size of the corpus

that is passed from the document geolocator to the toponym resolver.

The purpose of CHOOSEBATCH is to eliminate those documents that the document geolo-

cator is most unsure of, to provide a higher-quality set of documents to train the toponym resolver.

The hope is that later iterations will train a document geolocator that is able to better geolocate these

documents. In the most extreme case, exactly one new document is chosen each round (Nigam

and Ghani, 2000). Abney (2007) suggests selecting those documents whose prediction probability

is above some threshold, but it is unclear what threshold to use, and whether this threshold should
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change from round to round. A better idea is probably to select a given number of documents. This

is what I have implemented. (In my experiments, I set this number to 1000, on the assumption that

around this many documents would be necessary to train a reasonable geolocator. This number may

be too high; the experiments in Chapter 5 show that reasonably accurate geolocators can be trained

with many fewer documents.)

The motivation for FILTERCANDNEARLOC, which selects only documents containing a

toponym with a candidate near the document geolocation, is similar; presumably, a document with-

out toponyms that can be resolved near the document’s location is one that is more likely to have

an incorrect document location. This should especially help with the WEIGHTED and ADDTOPO

variants of SPIDER, which directly use the document location as part of the resolution mechanism.

(WISTR uses the document geolocation in its training mechanism, but already rejects toponyms

without a candidate near the document’s location.)

In my code, the threshold I use in FILTERCANDNEARLOC is 100km. Note that this means

that the process eventually terminates having only processed some fraction of the total documents.

One possibility I have implemented is an additional iterative loop, where the acceptance threshold

start outs small, e.g. 10km, and eventually increases up to some maximum, e.g. 500km. In this

fashion, the earlier runs are smaller, which should theoretically increase co-training accuracy, but

ultimately a greater fraction of the total set of documents is processed. (However, this variant did

not produce results better than simply using a fixed threshold.)

Whether to re-resolve the entire corpus at each step In the algorithm as I have described it

above, once a given toponym has been resolved, its value never changes. (If this were not the case,

for example, we would need to recompute Lw from scratch each round, rather than appending to it.)

This is a reasonable decision (Abney, 2007), and may lend the algorithm increased stability, but it

is not the only possible one. SPIDER, for example, does joint resolution over all the toponyms it

considers. It is for this reason that the RESOLVE step has bothL (the already-labeled documents) and

A (the not-yet-labeled documents) passed to it — so that SPIDER can make use of the toponyms in

Lwhen resolving those inA. This assumes that SPIDER does not change the labels on L. However,

it is quite possible that, given the additional set of toponyms in A to resolve, it can do a better job
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Corpus fraction Co-train-selected fraction Full corpus
Method/Geolocator Base Co-trainer Base Co-trainer

SPIDER 74% 84% 36% 42%
SPIDER (WEIGHTED) 79% 88% 37% 41%
SPIDER (ADDTOPO) 80% 90% 50% 57%

WISTR 76% 86% 54% 60%
WISTR+SPIDER 76% 86% 41% 46%

WISTR+SPIDER (ADDTOPO) 79% 90% 51% 58%

Table 6.4: Acc@161 for the CWAR dev set when evaluating using error distance to closest resolved
toponym with toponyms resolved by a co-trained toponym resolver, comparing a base geolocator
trained on Wikipedia and a co-trained geolocator.

relabeling L than it did when labeling L the first time around.

6.3.5 Results

One method for evaluating the performance of a document geolocator given a toponym-annotated

and resolved corpus is to look at the nearest resolved toponym to the document-level annotation and

treat the distance between the two as the error distance for the document. This allows for the use of

the same metrics as are used elsewhere in this dissertation to evaluate document geolocations.

By this metric, co-training yields noticeable increases in accuracy compared with a Naive

Bayes geolocator trained only on the base Wikipedia corpus, when both are evaluated on the CWAR

corpus. This is shown in Table 6.4. Note that the WEIGHTED and ADDTOPO variants of SPIDER

both perform better than standard SPIDER— a pleasing result.
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Chapter 7

Conclusion

In this dissertation I investigated geolocation of a document (automatically identifying its location)

solely using the document’s text. The basic thesis that I maintained throughout the dissertation was

that this was possible with sufficient accuracy to enable useful, real-world geographic investigations

of textual corpora. Although metadata is plentiful in some types of corpora (e.g. Twitter, where user

profiles provide home location, time zone, friends, followers, etc.), it is lacking in many corpora in

many other domains, such as the digital humanities, a major target of my methods.

In the first part of the dissertation I developed methods for accurate text-based geoloca-

tion, based on both uniform and adaptive (k-d tree) grids over the Earth’s surface and using vari-

ous machine-learning methods. These culminate in a new technique based on hierarchical logis-

tic regression, which achieves state of the art results on well-known corpora (Twitter user feeds,

Wikipedia articles and Flickr image tags).

In the second part of the dissertation I applied these methods to the digital humanities. To

my knowledge, I am the first to apply text-based document geolocation to historical text-only cor-

pora, and to this end I developed a new NLP task for this purpose. Because there are no existing

corpora to test on, I annotated two historical corpora of significantly different natures (BEADLE,

a travel log, and WOTR, a large set of Civil War archives) and showed how my methods produce

good geolocation accuracy even given the relatively small amount of annotated data available. I then
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used the predictions on the much larger unannotated portion of WOTR to generate and analyze geo-

graphic topic models, showing how they can be mined to produce interesting revelations concerning

various Civil War-related subjects. Finally, I developed a new geolocation technique for text-only

corpora involving co-training between document-geolocation and toponym-resolution models, us-

ing a gazetteer to inject additional information into the training process. To evaluate this technique

I developed a new metric, the closest toponym error distance, on which I showed improvements

compared with a baseline geolocator.

In the rest of this chapter I discuss avenues for further research and investigation.

7.1 Further corpus annotation

Both of the corpora I annotated are concentrated in the United States. It would be useful to annotate

another corpus that covers a world-wide domain. This would add a good point of comparison,

similar to the difference between the two large Twitter corpora I analyzed in the first part of my

dissertation (§2.2.1)—one North-America-specific and the other worldwide. This would require a

good deal of annotated material to get a reasonable distribution, perhaps significantly more than the

approximately 5,000 annotated articles in WOTR. On the other hand, my experimental results with

learning curves showed that the large majority of the benefit of the available annotated material was

gained using 50-75% of the total in a pure in-domain setting (§5.3.1) and closer to 25% using domain

adaptation with Wikipedia (§5.3.2), meaning that a corpus half or even a quarter the size might have

sufficed nearly as well. This suggests that the proportionately larger version of this smaller corpus

that would be required for worldwide scope might not need to be too much more than 5,000 articles

in size. Further annotation efficiencies could probably be achieved using active learning, directing

the annotator to the areas most in need of annotation material. (In fact, I employed a variant of

this technique while overseeing the annotation of the Civil War material (§2.3.2), creating frequent

KML maps of the corpus distribution so far and using these maps to inform my decisions about what

needed to be annotated next.)
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7.2 Improvements to the information-retrieval model

The information-retrieval model that underlies the methods described in this dissertation assume that

what is in reality a continuous space of latitude/longitude coordinates can be partitioned into a grid

of discrete cells, with independent language models constructed for each cell and the predictions of

all points that geolocate to a given cell resolved to the same location. In this dissertation I explored

various improvements to the basic uniform-grid Naive Bayes model that serves as the baseline,

such as adaptive grids, cell centroids, and flat and hierarchical logistic regression. Adaptive grids

such as k-d trees (§3.2.2) have the potential to improve results over uniform grids by efficiently

adapting the grid structure to the non-uniform geographic distribution of documents, avoiding the

wastage that comes from having some cells with very many documents and others with only a few.

Using the centroid of a cell rather than its geographic center further accounts for the non-uniform

distribution of documents within a cell and almost always yields improvements. It is well-known

that logistic regression generally outperforms Naive Bayes and KL-Divergence. The hierarchical

approach that I proposed solves a number of problems with the simpler flat grid approach, such as

resolving what I term the information/resolution tension, i.e. the tension between the opposing goals

of incorporating more information into each grid cell (through making larger grid cells with more

training documents per cell) and increasing the resolving power of each cell (through shrinking the

size of the cells, thereby reducing the minimum error distance).

Many further improvements are possible. In the following sections, I organize these im-

provements according to the algorithmic stage at which they apply: when creating the per-grid

language models, when choosing a grid cell, and when choosing the representative point for the grid

cell.

7.2.1 Improvements in language-model creation

At the language model creation level, one fairly simple method is to use a fine grid and smooth

over nearby cells when creating the language model for a grid cell, i.e. create language models that

interpolate in some fashion between the raw language model of the cell itself and those of its neigh-

bors. This allows for the resolving power of fine grid cells to combine with the effective informing
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power of coarser grid cells. This was done, for example, in Serdyukov et al. (2009) and O’Hare and

Murdock (2013), although it helped very little in their application to Flickr images, perhaps due to

the simplistic method they employed, which used a uniform grid and defined “neighbors” using a

small, fixed radius. In this case, smoothing with a wider cell radius and/or using k-d trees might

provide greater benefits. Another, more sophisticated method I could imagine would start with a

clustering step that would group together cells with similar distributions and use the resulting clus-

ters to condition smoothing. This has the effect of increasing the information content of each cell

while avoiding the diluting effect that comes from smoothing with dissimilar cells. The clustering

and/or smoothing could also be done independently for each word, which might be a superior (if

compute-intensive) approach as it would allow for finer-grained conditioning of the smoothing pro-

cess. (This is somewhat similar to an approach followed by a colleague of mine, Grant DeLozier,

for doing toponym resolution (DeLozier et al., 2015). In his case, he used per-word GI statistics, a

measure of local spatial autocorrelation, to smooth the geographic distributions of individual words

and derive effective clusters for the purpose of resolving toponyms without the need for a gazetteer.)

There is also the possibility of incorporating more sophisticated features than the unigram

models I made use of. One of the simplest improvements is the use of bigram or higher n-gram

features. In my preliminary experiments, I found little if any gain from bigram features, and did

not pursue them further. However, van Laere et al. (2014), using a hybrid textual geolocator on

Wikipedia, reported improvements from 67.05% to 69.71% on a particular accuracy measure using

bigrams vs. unigrams, and much smaller improvements from higher n-grams, which suggests that

more careful tuning could yield significant benefits.

Other more sophisticated features to consider are those based on morphological, part-of-

speech (POS), syntactic or named-entity-recognition (NER) analysis of the text. I suspect that NER

analysis may be the most fruitful, given its ability to recognize multi-word expressions with poten-

tial geographic scope (e.g. places, people). Twitter poses special problems, as linguistic analysis of

Twitter is known to be difficult (Foster et al., 2011). However, Twitter-specific packages have been

developed for some of these tasks, such as TweetNLP (Owoputi et al., 2013; Gimpel et al., 2011)

(POS tagging) and TwitIE (Bontcheva et al., 2013) (POS tagging, NER). For Wikipedia and histori-
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cal texts, standard off-the-shelf tools may be sufficient, either by themselves or in combination with

domain-adaptation techniques such as self-training.

One experiment worth considering with WOTR is to do runs with and without the header,

which frequently contains a location in it. Often, this location is the location of the overall document,

although sometimes it is not. It would be interesting to see how well a document geolocator can do

when the header is stripped out, and conversely, how well a simple toponym-based approach can do

when applied only to the first location in the header.

7.2.2 Improvements in grid-cell selection

At the level of choosing a grid cell, the approach I follow simply ranks the cells by score and

chooses the highest-scoring cell. There are other, potentially more sophisticated methods, such as

the mean shift algorithm (Comaniciu and Meer, 2002). The idea is that, especially with a fine grid,

if the topmost cell is geographically isolated and immediately below it in the ranking is a cluster

of cells located somewhere else, that cluster may be more likely to represent the correct location

than the top-ranked cell. The mean shift algorithm can be used to find this cluster. I implemented

this algorithm, but preliminary experiments did not yield improvements. However, it is possible that

careful tuning or or a more sophisticated implementation would work better.

Another approach is to rerank the topmost cells from the initial ranking on the theory that,

when the topmost cell is wrong, the correct cell (or at least a better cell) is likely to be among the top

few cells, and thus by reranking the cells with more information, a better ranking could be achieved.

The idea is that, given the limited number of cells to be reranked, a better ranking algorithm with

significantly more sophisticated features could be employed than was possible in the initial pass,

with the need to potentially rank thousands of cells. Reranking has been successfully used for pars-

ing (Collins and Koo, 2005), sentence boundary detection (Roark et al., 2006), grounded language

learning (Kim and Mooney, 2013), machine translation (Olteanu et al., 2006), and other areas.

I spent a good deal of effort implementing reranking, using a logistic-regression reranker

on top of an initial Naive-Bayes or KL-divergence ranker. I also evaluated, in place of logistic

regression, a passive-aggressive perceptron. One of the nice features of this technique is the ability
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to introduce a cost function into the algorithm to directly model the cost of making a wrong choice

rather than simply assuming all mistakes are equally bad. This allows the learner to directly target

the metric. In this case, the metric is the error distance and I set the cost to relate to the distance

between the correct and incorrect choice, reflecting the intuition that choosing an incorrect location

that is 10,000 km from the correct one is much worse than choosing a location 5 km from the correct

one. Unfortunately, I was consistently unable to beat the initial ranker. However, it is possible that

more sophisticated features (§7.2.1) will yield better results.

Yet another possibility would be to implement a variant of the k-nearest-neighbors (kNN)

algorithm (Altman, 1992). This is a nonparametric technique that chooses an output based on av-

eraging or voting among the k nearest training examples to the test document, for some small k.

In this case “nearest” is based on textual comparison, for example using the Hamming distance for

comparing two vectors of categorical variables (i.e. only consider the presence or absence of words),

or a measure such as KL-divergence. kNN can be used for both classification and regression, and in

this case it seems to make more sense to view the the geolocation task as one of regression, despite

the fact that I have generally set up geolocation as a classification problem. Geolocation in fact

is more naturally conceived of as regression over a continuous two-dimensional space; the use of

classification is for computational tractability, an issue that does not come up with kNN. Among

the reasons why kNN might work well in this problem is that the local and nonparametric nature of

kNN is well-suited for highly non-linear output spaces such as is the case with geolocation; on the

other hand, careful tuning will be necessary to avoid overfitting the training set. The requirement to

keep the entire training set around at evaluation time would not be a problem for the small historical

data sets I consider, but might be prohibitive with a large data set such as Wikipedia. To deal with

such a case, approximate nearest-neighbor techniques such as locality-sensitive hashing could be

used (Andoni and Indyk, 2008).

7.2.3 Improvements in choosing a representative point in a cell

Finally, at the bottom level of choosing a representative location for a document given a grid cell,

the approach I follow uses the centroid of the training documents. This is clearly superior to the
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approach used in Wing and Baldridge (2011), which used the geographic center of the cell, since it

takes advantage of the potentially non-uniform distribution of documents in the cell, as was men-

tioned above. This is especially advantageous with large grid cells, such as might be encountered

using k-d trees. In k-d tree distributions, cells over areas lacking training documents, such as the

ocean, will be extremely large, and it is quite possible (indeed, common in the WOTR corpus) for

such a cell to include a sliver of land in one corner containing most or all of the training documents.

In such a scenario, use of the geographic center would lead to very large, avoidable errors. (An

alternative to the centroid is the median location of the training documents, as used in Rahimi et al.

(2015b). Based on experience in k-d trees, where an analogous choice comes up, I suspect that the

difference will be small.)

Nonetheless, the use of the centroid still chooses a constant point for the cell, irrespective

of the test document. It seems logical that improvements could result from tailoring the result to

the particulars of the test document, e.g. through an additional search step to find the most sim-

ilar training document. A similarity search could enable a fairly coarse grid to be used, with the

two-step procedure of choosing a grid cell and then doing a similarity search within the cell anal-

ogous to a two-level version of the hierarchical approach described above, and finessing the infor-

mation/resolution tension in the same fashion. This approach was in fact followed by van Laere et

al. (2013) for Flickr, to great effect, and extended to Wikipedia in van Laere et al. (2014). Both pa-

pers used Jaccard similarity (Real and Vargas, 1996), although the second paper also considered the

Apache Lucene library (McCandless et al., 2010), and reported mixed results when comparing the

two, with neither obviously better than the other. Such an approach has the advantage of potentially

reducing the error distance to a much smaller quantity than a centroid or median-selection algo-

rithm. A potential disadvantage of such a method is that it is transductive and requires keeping the

entire training set available at test time; this could result in very large models for large training sets

such as Wikipedia, but should not be an issue for the relatively small annotated historical corpora I

developed.
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7.3 Grid partitioning

The issue of grid partitioning has already been discussed, in the context of uniform and k-d tree

grids. As mentioned, k-d grids adapt to the distribution of the training data and can potentially make

more efficient use of the typically non-uniform distribution of geographic information in real-world

corpora. In Wikipedia and in social-media-based corpora, for example, urban areas are likely to

be much better represented than rural areas, and in Civil War corpora such as WOTR, areas that

saw heavy fighting such as Virginia and the lower Mississippi River have many more associated

documents than areas with only sporadic fighting, such as the upper Midwest (see Figure 5.11).

Both grid-partitioning methods, however, still make use of rectangular grid cells in lat-

itude/longitude space, which have the undesirable property (especially from the perspective of a

uniform grid) that they become progressively less square and more elongated the closer the distance

to the poles, due to the convergence of all lines of longitude at the north and south pole. A truly

equal-area grid, the quaternary triangular mesh, does exist and was considered by Dias et al. (2012),

although their results do not directly compare with ours due to differing experimental methodology.

Grids in general, however, suffer from the modifiable areal unit problem (Gehlke and Biehl, 1934;

Openshaw, 1983), the inevitable anomalies caused by drawing grids through areas that are contin-

uous in distribution. A truly continuous distribution would alleviate that, and has been considered

by Eisenstein et al. (2010) and a number of other papers continuing in this vein (e.g. Eisenstein et

al. (2011b); Hong et al. (2012); Ahmed et al. (2013)), using complex Bayesian models generally

learned through variational inference (see also §1.2). However, these papers generally only evalu-

ated on the very small GEOTEXT corpus, and it’s unclear they can be expanded to larger corpora or

generalized beyond GEOTEXT to the digital humanities corpora I created.

Another alternative is to use clustering to create a perhaps more natural set of grid points.

This was done by Han et al. (2014) for cities in connection with Twitter, using a gazetteer to group

smaller cities with nearby larger cities occurring within the same administrative unit (e.g. state of the

U.S.) and geolocating specifically to the center of these “city attractors” rather than to the centroid

of any grid cells. This avoids various problems associated with grids but only works well if the

data is primarily city-based. Even with Twitter, where this is indeed the case, they were unable to
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geolocate the 8% of Tweets which were not near a city, thereby significantly decreasing accuracy;

for a data set like WOTR, detailing battles often fought nowhere near a city, such a restriction would

be catastrophic. A better compromise is found in van Laere et al. (2013), who used mean shift and

K-medoid clustering to create grids, comparing against uniform grids and finding K-medoid grids

the best of all. Although they didn’t specifically compare against k-d grids, the fact that their results

were significantly better with K-medoid grids vs. uniform grids is promising, since k-d grids do

not always beat uniform grids, and is the area I would explore first before considering the other

possibilities mentioned above.

7.4 Geographic topic model improvements

The geographic topic models I applied to the Civil War archive shoehorn the dynamic topic models

of Blei and Lafferty (2006), which were designed for a one-dimensional space such as time, into a

two-dimensional geographic space. In order to derive various topics and study their distribution over

a set of expert-defined geographic "theaters of war", it was necessary to linearize the theaters, which

is problematic in that a given theater typically comes into contact with multiple other theaters. A

better system would more directly model the connections between such regions, allowing a network

of connected regions to be defined and propagating statistical similarities between region-specific

variations of a given topic along those connections. Note that this model is general enough that

it can directly model a dynamic topic model over combined geographic areas and timeslices, and

thus simultaneously investigate variation over both time and space. It should be possible to extend

Blei’s variational inference algorithm to handle this more general connected network; it may also be

possible to use another algorithm such as label propagation.

There are also other possible ways of defining geographic topic models. For example, Yin

et al. (2011) define a number of such models, the most sophisticated of which simultaneously learns

topics and coherent geographic regions. However, these topics differ from the topics of a dynamic

topic model in that Yin’s model finds individual topics that are regionally coherent, whereas the

proposed extension of Blei’s model finds general topics (e.g. "reconnaissance") and examines how

those topics change over different geographic areas. The latter "variationist" approach may be more
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useful for the digital humanities researcher.

7.5 Statistical relations among document predictions

The basic mechanism I use to geolocate a document makes independent predictions for each doc-

ument. This greatly simplifies the prediction process and makes sense for Wikipedia articles and

Twitter users, which can be viewed as unordered collections of documents. However, in both of

the historical corpora I considered, there are heavy statistical dependencies between adjacent doc-

uments. Paragraphs in BEADLE are organized by narrative structure, and letters/reports/etc. in

WOTR are grouped by region and campaign and then ordered chronologically. This suggests that

significant improvements might result from a sequence model, which would work somewhat analo-

gously to a Hidden Markov Model (HMM, Ghahramani (2002)), with each grid cell corresponding

to a state in the model. There are too many grid cells to use a classic HMM with the transition

probability defined purely using a state table; instead, I could envision smoothing the state-based

transition probabilities and incorporating a distance-based transition probability, or more properly

an interpolation between a "dependent", distance-based probability of moving from the location of

the previous article to the location of the current article and an "independent" probability of making a

jump to a new location. The overall model would work similarly to e.g. Chen and Grauman (2011),

which defines an HMM-based model over the locations of chronological sequences of tourist photos.

Their model also implements "burstiness", assuming that there will be sequences of photos taken at

the same location, and they show that this better models their data than not including burstiness.

The analogous feature would probably be of benefit for both WOTR and BEADLE, and for WOTR

the date of the article (which can usually be extracted from the article’s text using pattern matching)

could be used to help predict the extents of individual "bursts".

There are other ways of taking advantage of statistical relationships among documents’ lin-

ear ordering. For example, if there are embedded links between documents that are likely to be sta-

tistically correlated, a network of such links can be created and techniques such as label propagation

(Rahimi et al., 2015b; Jurgens, 2013)) or total variation minimization (Compton et al., 2014) used to

statistically tie together documents that are nearby in the network. See also Jurgens et al. (2015) for
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a good recent overview of the state of the art in network-based geolocation. These network-based

techniques have proven to be especially useful for Twitter, with users connected in friend/follower

relationships (ego networks) and through textual references (@-mentions) to other users; these con-

nections have been shown to correlate with the physical proximity of the users (Takhteyev et al.,

2011). Additional such relationships can be found in Wikipedia (hyperlinks between documents)

and in image corpora such as Flickr (relationships between images authored by the same user).

For pure-text corpora such as the historical corpora considered here, the metadata neces-

sary to create such links is not available. However, it is possible to imagine creating links directly

based on words in the text. This could be especially useful in conjunction with semi-supervised

techniques that are able to learn from unannotated as well as annotated data. For example, it may

be possible to create a label propagation network for names, places and other terms, in conjunction

with a named-entity recognizer, toponym resolver, or similar resource making use of outside knowl-

edge. Contrast this with the information-retrieval model I use, which considers individual words

independently when finding their geographic distribution and is unable to learn from unannotated

text. As a motivating example, imagine we have two names, a common name A and a relatively

rare name B. Only A occurs often enough among our annotated documents to derive a reasonable

statistical distribution of associated locations, but we can observe from our unannotated documents

that B frequently co-occurs with A. (Possible values for A and B in WOTR are General William T.

Sherman and the name of one of the officers who served in his army.) We should then be able to

make conclusions about the location of a new document that mentions B but not A, and a technique

such as label propagation should make such indirect inferences possible.

7.6 Error analysis and significance testing

Error analysis More work could be done on error analysis. I did compute heatmaps of various

sorts, e.g. comparisons of the correct and predicted locations and the locations with the maximum

errors. I also generated lists of such locations and examined them. However, it was often difficult

to detect patterns in the errors. There is much that remains to be done. One important area is to

investigate what sorts of different errors occur in hierarchical logistic regression vs. plain logistic
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regression or Naive Bayes—does hierarchical LR do better in areas with more training data, for

example?

Significance testing and averaging So far I have done no significance testing on the various ac-

curacy, mean error and median error figures I have produced. Thus, I do not know for sure which

differences are statistically significant and which ones aren’t. This is important given that some of

the differences between geolocation methods are quite small. Furthermore, from the experiments

in §5.3.1 that involved averaging over several randomized permutations of training and test data, it

is clear that the variance of individual results is high. This suggests that results should be recalcu-

lated using multiple permutations and/or 10-fold cross validation, which would have the effect of

decreasing the variance and thereby increasing the confidence that a given difference is statistically

significant.

7.7 Remaining issues and final thoughts

There are many other directions that this research could be taken. Here I address a few points that I

haven’t previously touched upon.

Regions vs. points The data contained in the WOTR corpus has polygons as well as points, and

has multiple points per document. To make use of these annotations in my geolocation methods,

which were designed for single-point corpora such as Wikipedia and twitter, I reduce them to a

point reference by taking the centroid of the points and polygons in question. This works fairly well

for small polygons and for nearby points, but produces distortions when applied to larger regions

and widely-separated points. It is far from obvious, for example, that a state or country, which may

be hundreds or thousands of miles wide, can reasonably be approximated by a point in the middle.

Similarly, using the centroid of a set of widely separated points results in a location that may be

nowhere near any of those points, again far from optimal. Conceptually, a textual span annotated

with a large region or set of widely separated points has a vague reference, and can be equally well

represented by any location within the region, or by any one of the points; choosing a single “correct”
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point and using a point-based distance metric introduces a large source of error that is difficult or

impossible to avoid even with a perfect geolocation algorithm. (Note that the common practice in

Wikipedia of identifying a region by its capital city will result in even worse errors than using the

centroid. In the case of the United States, for example, the capital city of Washington, D.C. is near

the East Coast, introducing a built-in error nearly twice what would result from using the proverbial

“point in Kansas”, i.e. close to the country’s geographic center.) This built-in error may cause

a metric such as acc@161 (§4.1.2) to register an accuracy failure regardless of how accurate the

geolocation algorithm is, and will introduce significant distortions into mean and median error.

It is an open question how to properly handle polygons and point sets in a grid-based geolo-

cation system. At training time, for example, the probability mass associated with a given instance

could be spread over all the grid cells covered by a polygon. (Whether this would generalize to

multiple points is unclear.) It seems clearer what to do at evaluation time: use as the error distance

the smallest distance between the predicted point and any point in the polygon. This captures the

intuition that a textual span geolocated to a large region such as a state has a correspondingly vague

reference, so that any point within the region should be considered correct.

Further use of probabilities Methods such as Naive Bayes and logistic regression generate actual

probabilities. So far I use them only as a score, choosing the highest-scoring cell. However, it’s

possible to use the actual values, e.g. to estimate the confidence of the prediction. It would be

interesting, for example, to see which predictions are the most confident, and whether that correlates

with the presence of certain toponyms in the text or other identifiable features. (Keep in mind,

however, that the probability estimates from Naive Bayes at least are notoriously unreliable.)

North vs. South WOTR contains primary sources from both sides of the Civil War. It may be

useful to separate the sources in this fashion. This would allow, for example, creating topic models

to investigate differences in how the North and South viewed major battles between them. Whether

a given document was written by a Northerner or Southerner could also serve as a very useful feature

during geolocation. A classifier could be constructed to separate North from South based on features

such as language. It should be possible to quickly seed such a classifier with training data by using
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the fact that many of the volumes group the North-authored and South-authored documents together.

Tracking war participants Through a combination of geolocation, date parsing, and named entity

recognition, it should be possible to track the movements through time and space of individual Civil

War participants (e.g. soldiers, generals, politicians) and of larger military units. This would allow,

for example, the construction of maps that enable digital humanities researchers to get a better high-

level perspective of the progress of the war.

In conclusion, I have shown through my research how methods that are conceptually relatively

simple (such as hierarchical logistic regression) can yield innovative solutions to difficult problems.

I have also demonstrated how restricting the type of information that one can make use of—in this

case, text-only geolocation, ignoring metadata—can open up new avenues for NLP applications in

unexpected domains such as the digital humanities. Those researchers who make use of metadata

such as is provided by Twitter tend to focus only on Twitter—they have their hammer, so to speak,

and they ignore things that don’t look like nails. I hope that my research, and the discussion in this

final chapter, will enable others to take up where I have left off and continue to improve the state of

the art.
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