

Copyright

by

Joshua Harold Dooms

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211334883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Joshua Harold Dooms

Certifies that this is the approved version of the following report:

SQL Database Design Static Analysis

APPROVED BY

SUPERVISING COMMITTEE:

Dewayne Perry

Herb Krasner

Supervisor:

Co-Supervisor

SQL Database Design Static Analysis

by

Joshua Harold Dooms, B.A.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2010

 Dedication

This project is dedicated to my parents without whom; I would never have been able to

get through life much less get a master’s degree.

 v

Acknowledgements

I’d like to acknowledge Dr. Herb Krasner who was kind enough to guide me

through the process of producing this report and Dr. Dewayne Perry who was patient

enough to read and advise on this report.

November 22, 2010

 vi

Abstract

SQL Database Design Static Analysis

Joshua Harold Dooms, M.S.E.

The University of Texas at Austin, 2010

Supervisors: Herb Krasner, Dewayne Perry

 Static analysis of database design and implementation is not a new idea. Many

researchers have covered the topic in detail and defined a number of metrics that are well

known within the research community. Unfortunately, unlike the use of metrics in code

development, the use of these metrics has not been widely adopted within the

development community. It seems that a disjunction exists between the research into

database design metrics and the actual use of databases in industry. This paper describes

new metrics that can be used in industry to ensure that a database’s current

implementation supports long term scalability, to support easily developed and

maintainable code, or to guide developers towards functions or design elements that can

be modified to improve scalability of their data systems. In addition, this paper describes

the production of a tool designed to extract these metrics from SQL Server and includes

 vii

feedback from professionals regarding the usefulness of the tool and the measures

contained within its output.

Keywords: SQL, Metric, Software, RDBMS, ORDBMS

 viii

Table of Contents

List of Tables ...x

List of Figures .. xi

DATABASE DESIGN PATTERNS AND METRICS 1

Chapter 1: Introduction ..1

Chapter 2: RDBMS Design Patterns and Anti-Patterns2

The “one size fits all” pattern ..2

The “put the logic in the database” pattern ...4

The “the loose design” pattern ..6

Chapter 3: Currently Proposed Metrics ...10

Attribute and type metrics ...10

Column metrics ...11

Table metrics ...11

Schema metrics ...12

Challenges with currently proposed metrics ...13

Chapter 4: New Metrics Suited to Reinforcing Helpful Design Patterns14

Stored procedure metrics ..15

Table oriented metrics...18

Schema oriented metrics ...20

Schema oriented metrics ...21

 ix

A TOOL FOR GATHERING DATABASE DESIGN METRICS 22

Chapter 5: Introduction ..22

Chapter 6: The Console Tool ...23

Chapter 7: The Output Files ...25

Chapter 8: The Windows User Interface ..27

FEEDBACK FROM INDUSTRY PROFESSIONALS 30

Chapter 9: Introduction ..30

Chapter 10: The feedback form ..31

Chapter 11: The feedback data ..34

Chapter 12: Conclusions ..37

References ..40

Vita ………………………………………………………………………………41

 x

List of Tables

Table 1: Statistical data for each metric. ...36

 xi

List of Figures

Figure 1: Acme Widgets database design. ...3

Figure 2: Person phone number design example. ...8

Figure 3: Stored procedure body. ...16

Figure 4: Complexity stored procedure body. ..17

Figure 5: Running the console tool from the command line.23

Figure 6: An example of the xml configuration file. ..24

Figure 7: The html output file. ...25

Figure 8: The metric definitions. ..26

Figure 9: System configuration and progress controls.27

Figure 10: The databases configuration control. ..28

 xii

List of Illustrations

No table of contents entries found.

 1

DATABASE DESIGN PATTERNS AND METRICS

Chapter 1: Introduction

Relational databases and database management systems serve an integral role in

many modern software systems. Their use can greatly simplify the software effort or

cause major issues depending on how the database is designed and then subsequently

used. Frequently, developers will design their database without considering long term

scalability of the application or systems they support. They often see the database as just

a tool to store and retrieve data for an application or group of applications. Over the life

of the database, as the amount of data increases, the demands on the database increase,

and the expectations of the users for performance remain relatively stable, the database

can become a serious point of pain for the development organization.

This section has several purposes. The first is to describe database and data

system design patterns that can be used to prevent developer and user pain. Next, is

describing the current state of RDBMS related metrics and describe why they are not

helpful for avoiding poor database design. Following the description of currently defined

metrics, this paper defines new metrics that measure how closely a database

implementation reflects helpful design patterns. It concludes by describing a process to

gather those metrics and describes a plan to confirm that the use of tools for gathering

this information are helpful for improving database design practices in industry.

Subsequent sections will describe a tool designed to extract these metrics, feedback from

industry professionals regarding the tool’s use, and conclusions that can be drawn from

the feedback.

 2

Chapter 2: RDBMS Design Patterns and Anti-Patterns

In order to describe good database design patterns, it may be easier to begin by

describing designs that cause long term database scalability issues or anti-patterns. Each

anti-pattern description is addressed initially by describing how it causes problems in the

system. Then, for each anti-pattern, an alternative pattern is described to address the

functional requirement while avoiding the problems.

THE “ONE SIZE FITS ALL” PATTERN

In this pattern, an organization uses a single database design to address the needs

of all of its users. An example may help illustrate this point: the Acme Better Widgets

Company’s ecommerce site. At Acme, they have a need to record their customer and

sales data. They have a website for customers to enter their contact, billing, and shipping

information and purchase widgets. So, the Acme development team designs the database

to support the purchase and shipment of widgets to their customers. This database is

designed in BCNF to reduce duplicate data entry. Figure 1 below shows the database

design.

 3

Figure 1: Acme Widgets database design.

For a while, that’s all that’s needed, but after a few months, upper management

realizes that in addition to adding the data to the database for support of online purchases,

they also need to analyze the data to help their marketing staff, production staff, and

middle management. Acme then produces a web application to support the reporting

needs of its internal uses and writes queries that pull from their original database design.

At this point, everybody at Acme is happy. The users can enter data and the ecommerce

website is responsive while the internal reporting site is also running like a gazelle.

Move forward a couple of years and the number of purchases in the database gets

rather large as widgets have been selling like hotcakes. The ecommerce site is still

running quickly, but the reports for internal users are taking longer and longer to produce.

The development team says “no problem, we’ll just add some indices to the tables to

support faster querying of the reports” and viola, the reports are now running fast again.

Unfortunately, they’re now getting reports that the ecommerce site is unresponsive.

A ddress

AddressId

Address1

Address2

StateProvinceId

PostalCode

Payment

PaymentId

PurchaseId

Amount

PaymentTypeId

PaymentDetails

Country

CountryId

CountryName

CountryCode

Person

PersonId

FirstName

LastName

MiddleInitial

AddressId

StateProvince

StateProvinceId

StateProvinceName

CountryId

WidgetType

WidgetTypeId

WidgetTypeName

Cost

Purchase

PurchaseId

CustomerPersonId

WidgetTypeId

Quantity

PurchaseDate

Cost

ShippingAddressId

PaymentType

PaymentTypeId

PaymentTypeName

 4

Whether or not they realize it, the development team has just encountered one of

the biggest issues regarding relational databases. Any design change you make to

support fast querying for reporting applications such as more indexing or

denormalization, makes data entry and modification slower and vice versa. In order to

avoid this pattern, developers need only separate the concerns of data entry (transactional

processing) from data retrieval (analytic processing). In order to do this, it could be as

simple as creating a copy of the original database when a reporting application is

requested and copying the data to the new “reporting” database at predetermined

intervals. This allows each of database designs to diverge over time without impacting

the performance of the other. As the systems mature, the online transactional processing

(OLTP) database will contain more design features that optimize data entry while the

online analytical processing (OLAP) database will contain more design features that

optimize data retrieval, reporting, and analysis.

THE “PUT THE LOGIC IN THE DATABASE” PATTERN

When designing applications, deployment strategies, and databases, developers

will often fall into this trap. Normally, the arguments for designing business logic into

the database take one of two forms. The first form is “if we put the logic in a stored

procedure (aka sproc) and force the application developers, by reducing database

permissions, to use the sproc, we know that the business logic will always be used and

the data’s integrity will be preserved”. The second form is “if we put the logic in the

sproc, we can change the behavior of all our applications without having to deploy the

software to the servers or clients”. By themselves, these are very reasonable claims.

 5

Unfortunately, what they fail to account for is the fact that most relational

database systems preserve the properties of atomicity, consistency, isolation, durability

(ACID) for transactional processing by serializing incoming requests. What that means

is each process making a request to the database may block the requests of any other

process until it completes if certain conditions occur. This happens in cases where the

reordering of the processes’ requests could affect the values persisted in the database or

in cases where the values returned to the processes would change depending on ordering.

As more processing demands are placed on a database, this effect is increased. In order

to avoid this type of blocking, database calls should be kept short and focused on calls

that perform only add, update, delete, and select operations. Any other type of logic

including flow control, triggers, cursor operations, or dynamic query construction and

execution should be placed in a layer of code outside the database to reduce the

likelihood that one process will block another.

If developers avoid placing business logic in their database’s stored procedures,

they can easily add more machines to run the business logic. If these machines aren’t

concerned with maintaining serial transactional processing and leave that to the database,

the cost of scaling the operations will be minimal. Because of this, in a mature database

system, the databases’ procedures only execute the actions they must to fill their

respective roles in the system. Either Create, Read, Update and Delete (CRUD) actions

in an OLTP system or Read operations in an OLAP system.

 6

THE “THE LOOSE DESIGN” PATTERN

The last pattern occurs not from any deliberate action, but from a lack of mature

processes during the evolution of the database design. Many databases in use today

evolved over years and under the hands of many, many developers. Developers can be a

crusty lot and can hold onto habits both good and bad like glaciers hold onto water.

Because of this, things like naming conventions, the amount of documentation,

maintenance of foreign key relationships, and the use of constraints frequently varies

greatly depending on the era and/or developer under which the design was produced.

While this won’t always directly affect the performance of the database, it almost

always affects the code used to consume or add data to the database. An example will

help illustrate the point. Imagine that one database developer names their primary keys

using the pattern of the table name followed by underscore and the text “KEY” (e.g.

WidgetTypes_KEY) while another developer names his keys with the pattern of the table

name followed by the text “Id” (e.g. WidgetSoldId) . Notice also that the one database

designer pluralized their table name, while the other didn’t. While that won’t directly

affect the performance of the database, any developer writing the code consuming or

editing the data in the database has to account for this variation and can’t use convention

to reduce the complexity of the code. The application developer has to hard code or use

data itself to drive the consumption of the data in the database. If convention had been

followed relating table name and primary key column name, a simple function like

“GetDataByKey(string tableName, object keyValue)” could be used to retrieve any row

from any table simply by providing the table name and the key data. Without a

consistent convention, the column name(s) defining the key of the table would also have

to be passed to the function GetDataByKey.

 7

In addition to the naming conventions, documentation can be added to many

database designs directly and can be subsequently read in the database management

system (DBMS). This would follow the convention of marrying the implementation and

the documentation. When each table has a description of its purpose in the system and

each column has a description of its role in the table, subsequent coding of the application

becomes much simpler and less error prone. Without this documentation, it’s easy for an

application developer to misunderstand the role of a table in a system.

For instance, if a table named Person has amongst others, columns named

PhoneNumberID and PersonID, there’s also table named PersonPhoneNumber with only

columns PersonID and PhoneNumberID, and there’s also a table named PhoneNumber

with columns PhoneNumberID, PhoneNumberTypeID, and Number, it may be hard to

figure out what the role is fulfilled by each column in a table. Even given the strict

convention followed, while it may seem obvious that the PhoneNumber table holds

phone number data, the Person table holds person data, and the two are related to each

other through the PersonPhoneNumber table, it’s not at all obvious what the

PhoneNumberID column in the person table represents. Figure 2 below displays the

design described above.

 8

Figure 2: Person phone number design example.

The PhoneNumberID column could be a legacy column before multiple phone

numbers were common that hasn’t been deleted; the home phone or business phone for

the person; the preferred contact phone. Without the documentation, there’s really no

way to know what the column represents. With a simple description though, it would all

be clear and the application developer wouldn’t have to scour code to find out what role

that column really plays in the system if any.

Consistent use of foreign keys and constraints in the data design greatly reduce

the complexity of application code used to produce and consume the data. In general, the

more assumptions an application developer can make about the data and its relationships

to other data, the simpler the code for consuming the data becomes. One good example is

constraining data to be non-null in a column. It may seem like a relatively simple thing,

but it’s the difference between simply being able to perform operations on a columns data

or having to check for null each time data from that column is to be consumed. Another

important point to make about the constraints is that they are much easier to apply when a

Person
PersonId

First

Last

PhoneNumberId

PersonPhoneNumber
PersonPhoneNumberId

PersonId

PhoneNumberId

PhoneNumber
PhoneNumberId

AreaCode

Exchange

Number

PhoneNumberTypeId

PhoneNumberType
PhoneNumberTypeId

TypeName

 9

table or column is first created. If a database designer waits until the design is in use,

there may be a considerable cleanup effort necessary before the constraints can be

applied.

 10

Chapter 3: Currently Proposed Metrics

A number of metrics have been proposed for relational database systems, though

the majority seems to focus on object-relational database management systems

(ORDBMS). The metrics currently proposed seem to focus mostly on gathering

objective data during static analysis of the design without considering on how the data

gathered can actually be used to help in the database design or maintenance process. In

addition, many of the metrics specific to ORDBMS rather than traditional relational

database systems (RDBMS) while much of the industry currently uses RDBMS

capabilities with object-relational mapping (ORM) software to serve much of their

database need.

ATTRIBUTE AND TYPE METRICS

The metrics themselves can be separated into a hierarchy using the ORDBMS

object type to which they relate: attributes, types, columns, tables, or schemas. Among

the metrics suggested for attributes are simple attribute size (SAS) which is always one

and complex attribute size (CAS) which is the data type size (DTS) of the attribute. For

the types, the metrics suggested are the size of the methods in the class (SMC) which is

defined in Formalizing Object-Relational Structural Metrics[5] as:

The SMC function can be obtained in different ways. Possibilities include the use

of the fan-in and fan-out metrics proposed by Li and Henry [Li and Henry, 1993],

or to consider the method size to be unitary. Our ontology would have to be

extended for using the metrics of Li and Henry, since the class Method

Specification does not hold all the required information to obtain such metrics.

 11

An additional metric defined for types is the number of hierarchies (NHC) which is either

1 or the number of types that directly inherit from the type. With NHC, SMC, and the

sum of the size of the attributes of the class, SAC, defined, the data type size is then

defined as the sum of SMC and SAC of the type divided by the NHC of the type. Since

DTS is used in defining the complex attribute size, CAS is used in defining the size of the

attributes of the class, and SAC is used to define data type size (DTS), data types size is a

recursive calculation that requires the size of all types used as attributes in the type be

calculated before the type’s size can be calculated. That operation recurses until all types

resolve to the base types of the system.

COLUMN METRICS

The column oriented metrics are the size of a complex column (CCS) which is

defined as the size of a class hierarchy (SHC) divided by the number of columns using

the class hierarchy (NCU). “SHC is the Size of the Class Hierarchy (formed by the user-

defined data types and their ascendants) upon which the column is defined…”[5] What is

meant by this is the sum of the size of every class in the hierarchy from the base class to

the class used to define the column.[4] The definition of NCU remains unclear as it may

be the number of columns defined upon any type in the entire hierarchy or the number of

columns defined with the same data type as the current column.

TABLE METRICS

Unlike the type and column metrics, the table metrics are relatively

straightforward. The size of the table (TS) is defined as the sum of the size of the simple

columns (TSSC) plus the sum of the size of the complex columns (TSCC). The depth of

 12

the relational tree of the table DRT(T) is defined as the longest relationship tree from

table T to any other table in the database.[4] For recursive trees, the depth is only

counted until it recurses. The depth of the relational tree of the table should not be

confused with the referential degree of the table which is synonymous with the number of

foreign keys (NFK) in the table. A few of the table level metrics are self explanatory.

Among these are the percentage of complex columns (PCC) and the number of attributes

(NA). Unlike these metrics, the number of involved classes (NIC) and the number of

shared classes (NSC) require more explanation. NSC(T) is the number of classes used to

define columns of table T that are also used to define columns of any other table, while

NIC(T) is defined as “This measures the number of all classes that compose the types of

the complex columns of T using the generalization and the aggregation relationships.”[4].

SCHEMA METRICS

Having defined all of the metrics of the objects that compose the schema, the

definition of the schema oriented metrics is relatively straight forward. The size of a

system (SS) is the size of all the tables composing the system. The number of attributes

(NA) is the sum of all attributes in all tables. The referential degree (RD) is the sum of

all foreign keys in all tables. The depth of the referential tree (DRT) is just the longest

continuous referential tree defined in the system. The cohesion of the schema (COS)

metric is the only exception. COS is defined as the sum of the squares of the number of

tables in each unrelated subgraph in the database.[6] How exactly this represents the

cohesion of the schema or how this number can be compared across designs is not

described in the paper. It would seem difficult to compare across designs given the

calculations unbounded nature.

 13

CHALLENGES WITH CURRENTLY PROPOSED METRICS

Many of these metrics were defined as far back as 1999, but are still not

commonly used in practice.[6] A number of factors have prevented their widespread

adoption over ten years later. The first of challenge with the currently proposed metrics

is that many are specific to object-relational database management systems. In practice,

databases are best used only for the tasks to which they are best suited: namely,

transactional support, data persistence, and data retrieval. By pushing domain and

business logic development into layers of software that then interact with the database,

practical developers open up new avenues of scalability that would be closed if they used

the full object-oriented features of object-relational systems.

In addition, the currently defined metrics, while descriptive, don’t seem to have

any particular use for which they are well suited. A well designed database is exactly as

large and as complex as it needs to be to represent the real world entities to which it

refers. Knowing how large or complex the database design is only provides a discrete

description of the complexity of the real world referents and the complexity of the real

world is likely to be understood before designing the database to represent it. The

currently proposed metrics are also not predictive of the time it would take to integrate

data from the database into an application since that is often done as piece at a time as

needed. The currently proposed metrics also do not provide any insight into how a

database design may be improved. In the end, it seems that the currently defined metrics

are not used because there is no clear purpose for their existence and the technology that

they help describe is unlikely to be widely adopted in the near future.

 14

 Chapter 4: New Metrics Suited to Reinforcing Helpful Design Patterns

Any new metrics proposed for database design should be defined for currently

accepted technology, with specific purpose, and with examples to provide clarity when

the meaning is not immediately clear by the definition. In order to begin, it’s necessary

to define what is meant by currently accepted technology. Over time, this can change,

but currently databases are used primarily with native types used for column definitions

and methods stored in procedures rather than complex objects. They are currently used

to aid in transactional data processing, to preserve integrity of data, to transform data

from one form to another, and ultimately to aid in the analysis of the data stored.

The metrics that are proposed here can be separated by the objects to which they

pertain: stored procedures, tables, schemas, and systems. While the stored procedures,

tables, and schemas are commonly used concepts when talking about relational database

management systems, the concept of system is not often discussed or defined. For the

purpose of this paper, we can define a system as a group of databases existing on or

across servers that provide support to an organization. The data in a system may be

related or unrelated and may exist on a single type of database or across multiple types of

RDBMS (e.g. sales transactional Oracle database, sales analysis Microsoft SQL database,

customer resource management MySQL database). What unifies the databases into a

system is the organization that maintains and/or consumes the data is the same

organization. By this definition, a single database may be used by multiple organizations

and therefore can be a member of multiple systems concurrently.

 15

STORED PROCEDURE METRICS

Length (SPL): the length of a procedure is the number of statements made in the specific

RDBMS’ query language contained in the procedure. Each SELECT, UPDATE,

CREATE, DELETE, INSERT, DROP, DECLARE, and IF statement is included

in the count. The prior list is not intended to be exhaustive as much as descriptive

of the elements that would be counted. Ultimately, the definition of a statement is

left to the RDBMS itself and the values of length will be consistently defined and

comparable across designs developed in the same RDBMS. The purpose of this

metric is to identify procedures of excessive length. Any procedure of length

greater than one could indicate a procedure that could be simplified, but in any

given design, the goal would be to focus on the larger most complex procedures

first working towards simplifying each until the simplest possible design given

the problem space is reached. Given the following pseudo-SQL statement in

Figure 3 below, the IF statement counts as one, the DROP counts as well, the

CREATE table is the third counted statement, the INSERT INTO followed by the

select is the fourth statement, and the final select is the last statement for an SPL

of 5. The INSERT INTO followed by the SELECT is not counted as two

statements because they are really part of a single insert statement rather than an

INSERT and then a SELECT.

 16

Figure 3: Stored procedure body.

Transactional Orientation (SPTO): transactional orientation is defined as the number of

statements, as defined in the RDBMS, that are INSERT, UPDATE, or DELETE

divided by the SPL. The purpose of this measure is to help determine where on

the continuum between OLTP and OLAP the database falls and will be used when

defining schema oriented metrics. Using the statement defined in Figure 3 above,

the transactional orientation is 1/5.

Analytic Orientation (SPAO): analytic orientation is defined as the number of statements,

as defined in the RDBMS, that are SELECT divided by the SPL. The purpose of

this measure is to help determine where on the continuum between OLTP and

OLAP the database falls and will be used when defining schema oriented metrics.

Using the statement defined above, the analytic orientation is 1/5.

Cyclomatic Complexity (SPCC): cyclomatic complexity was defined by McCabe in 1976

[7] and further refined by Harrison [9]. Because a stored procedure can have

multiple exit points, we will use Harrison’s definition which is the number of

decision points in the program minus the number of exit points plus two. The

purpose of defining the complexity of the procedure is to find procedures where

flow control is used extensively. Any procedure with a complexity greater than 1

would be a candidate for improvement as the use of flow control statements in

procedures is pushes load to the database that would scale more easily if included

 17

in the consuming application code rather than in the database. Given the

following stored procedure body below in Figure 4, any RETURN statement as

well as the main code body count as an exit point. Since there are no RETURN

statements, there is only the one exit point represented by the main code body’s

exit point. For flow control points in SQL Server, we count any IF, WHILE, or

TRY statement as a decision point. TRY blocks are included because the TRY

block executes completely or passes control to the CATCH block if a statement

produces an error. In the case of the code below, there is one TRY and one IF

statement for two total. The complexity of the procedure is therefore 2-1+2=3.

Figure 4: Complexity stored procedure body.

 18

TABLE ORIENTED METRICS

Recursive Relationships (TRR): the number of recursive relationships defined on the

table. The purpose of this metric is to identify any table with a recursive

relationship. Recursive relationships are in themselves complex and in turn,

cause complexity in the consuming code. Whenever possible, recursive

relationships should be replaced by the use of nested sets. [8]

Percentage of Nullable Columns (TNC): the number of nullable columns in the table

divided by the total number of columns in the table. Nullable columns increase

the complexity both of the consuming code and the select statements used to

access the data. When possible, columns should be made non-null.

Non-commented columns (TNCC): the number of non-commented columns if applicable

in the RDBMS. In the case that the RDBMS supports documentation of columns

in the database, this is the number of columns that have no documentation.

Whenever available, the databases support for integrated documentation should be

used.

Not commented (TC): a Boolean indicating whether or not the table is commented if

applicable in the RDBMS. In the case that the RDBMS supports documentation

of tables in the database, this is whether or not the table has documentation.

Whenever available, the databases support for integrated documentation should be

used.

Adherence to commenting (TCC): the percentage of columns commented divided by two

plus .5 if the table is commented. Essentially, consistently commenting the tables

establishes half of the adherence to commenting. Following column commenting

conventions establishes the other half of the adherence.

 19

User defined type columns (TUDT): the number of columns using a user defined type as

the type of the column. While the RDBMS may support user defined types, use

of them can greatly complicate the code used to consume or analyze the data later

in the process. Where possible, avoid user defined types.

Percentage of columns without constraints (TCWC): the number of columns with no

constraints applied divided by the total number of columns. With few exceptions,

there is some expectation about the form of the data in a column and what it

means. Whenever possible, constraints should be applied not only to ensure the

integrity of the data, but also as a means of documenting the database. This in

turn helps to ensure that the code developed to consume the data is as simple as it

can be.

Transactional orientation (TTO): the one minus the analytic orientation of the table.

Analytic orientation (TAO): the sum of one plus the number of columns that is a key or

datetime then divided by the number of columns or one if all the columns are

datetimes or keys. A purely analytic table will be composed of foreign keys or

datetime columns and a single data field. A table with that form will have an

analytic orientation of one. The further a table diverges from that form, the

smaller the analytic orientation value.

Column names violating convention (TVCC): the number of columns that violate the

naming convention. This helps identify tables where renaming the tables will

help improve the consistency of the design and hence help increase the usability

of the design while decreasing the complexity of the consuming code.

Violates naming convention (TVC): a Boolean indicating whether or not the table name

follows the established naming convention. Whenever possible, the naming

 20

conventions should be used to increase the design’s usability and decrease the

complexity of the consuming code.

Adherence to convention (TAC): the percentage of columns following convention divided

by two plus .5 if the table name follows convention. Essentially, consistently

naming the tables establishes half of the adherence to convention. Following

column naming conventions establishes the other half of the adherence.

SCHEMA ORIENTED METRICS

Transactional orientation (STO): twice the mean stored procedure transactional

orientation plus the mean table transactional orientation divided by three. This is

essentially a weighted average of the transactional orientation of the stored

procedures and the tables with twice as much weight given to the stored

procedures.

Analytic orientation (SAO): twice the mean stored procedure analytic orientation plus the

mean table analytic orientation divided by three. This is essentially a weighted

average of the analytic orientation of the stored procedures and the tables with

twice as much weight given to the stored procedures.

Number of stored procedures (SNSP): the number of user defined stored procedures in

the schema.

Cyclomatic complexity sum (SSCC): the sum of the cyclomatic complexity of all user

defined procedures in the schema.

Sum of stored procedure length (SSPL): the sum of the lengths of all user defined

procedures in the schema.

 21

Complexity looseness (SCL): one minus the number of stored procedures divided by the

cyclomatic complexity sum.

Length looseness (SLL): one minus the number of stored procedures divided by the sum

of the stored procedure lengths.

Convention looseness (SACL): one minus the mean of the tables’ adherence to

convention.

Commenting looseness (SCCL): one minus the mean of the tables’ adherence to

commenting.

Looseness (SL): complexity looseness plus length looseness plus convention looseness

plus commenting looseness divided by four. This value will fall somewhere

between 0 and 1. A zero would indicate no looseness and a very clearly and

consistently defined schema with short simple procedures. Any value near one

would represent little adherence to convention, little commenting, and complex,

lengthy procedures.

Maturity (SCM): The sum of one minus the looseness, the absolute value of the

transactional orientation minus one half, and the absolute value of the analytic

orientation minus one half divided by two. A completely mature schema will have

zero looseness and will be either completely transactionally oriented or

analytically oriented. In that case, the maturity will be 1. A completely immature

schema will have near total looseness and will have neither transactional nor

analytic orientation. In that case, the value will be near zero.

SCHEMA ORIENTED METRICS

Maturity (SM): The mean maturity of all schemas in the system.

 22

A TOOL FOR GATHERING DATABASE DESIGN METRICS

Chapter 5: Introduction

Microsoft SQL 2008, Oracle, and MySQL database systems all allow for

querying a databases’ schema information. In order to gather the data, a program could

be written that extracts the info required for determining the value of each of the

aforementioned metrics from any of those three systems. With implementation for

gathering the data from those three systems and presenting the data in a concise report

format, the tool could then be distributed to a number of test companies for use. The

following describes the implementation of a tool that supports Microsoft SQL Server

analysis. Because feedback from professionals regarding the usefulness of the proposed

metrics could be strongly influenced by the quality of the tool used to gather those

metrics, a description of the tool’s implementation is included in addition to the feedback

gathered after its use.

 23

Chapter 6: The Console Tool

At the heart of the implementation is a Windows console or command line tool.

This means that the tool can be run without the use of a user interface. Because

development organizations can benefit from integrating the tool as part of their

development process, programmatic running and configuration of the tool are important

features. If the tool were only able to be run manually through the use of a user interface,

it would provide much less value to software development organizations. Figure 5 below

shows the tool being run without the use of a GUI.

Figure 5: Running the console tool from the command line.

In addition to being executed programmatically, the console tool can be

configured programmatically by modifying an xml file that exists in the same directory as

the executable. The xml file contains descriptions of data systems including their

connection strings, databases, naming conventions and optional filters that allow

schemas, tables or procedures to be excluded from the analysis of the system. Also

 24

specified in the xml configuration is the intended location of the output files. Figure 6

below is an example of the xml configuration file.

Figure 6: An example of the xml configuration file.

 25

Chapter 7: The Output Files

The output of the tool is contained in two files. Both files contain the previously

discussed metric data, but one file contains the output in xml form for programmatic

consumption while the other contains an html, user-friendly report. One use of the xml

data file could be as a trigger for notifications if the databases design falls below certain

thresholds determined by the development organization. The html is used primarily as a

means to make the use of the program’s output more intuitive for new users. The html

report is composed of the data in table format with links from the headers to definitions

for each metric included at the bottom of the report. In addition to links to the definitions

links are used to represent the hierarchical nature of the data. Children of the entity

presented in a row are connected to their parent through the use of html page links. In

Figure 7 below, any text presented in orange as well as the white text under the cursor

represent links to metric definitions or child entity data respectively.

Figure 7: The html output file.

 26

Figure 7 above displays a user clicking on the link for the cyclomatic complexity

sum header in a table representing schema data. Clicking on the link will cause the page

to navigate the definition of the data contained in the column. Figure 8 below is an

example of what the user would see after clicking on the link.

Figure 8: The metric definitions.

 27

Chapter 8: The Windows User Interface

While the tool is completely functional without the user interface, it was included

to make the tool’s configuration and operation more intuitive and increase the likelihood

that developers would adopt it as a part of their development process. The user interface

is composed of four controls: the system configuration control, the databases

configuration control, the reports control, and the progress control. At any given time,

the interface will display the progress control on the bottom pane and one of the other

three controls in the top pane. The navigation between the three panes is implemented

through links that function to toggle the pane between the three controls.

Figure 9: System configuration and progress controls.

Figure 9 above shows the user interface with the system configuration control in

the top pane and the progress control in the bottom pane. The system configuration

 28

control allows the user to add, edit or delete systems by name, configure the naming

conventions and filters to be used for that system, and edit the location of the output files.

The progress control shows the progress of the console tool as a green bar and any output

from the console as text below the progress bar. This is the view a user would see after

configuring their systems and clicking on the “Begin Analysis” link to the left of the

progress bar.

After configuring a system, the user can click on the “Go To Databases” link in

the upper right corner of the system configuration control to add and configure

connection strings, their child databases, and overrides if needed of the systems level

conventions. When finished configuring the databases, the user can either begin analysis

since the progress control still populates the lower pane or return to the system

configuration by clicking the “Go To Systems” link at the right in Figure 10.

Figure 10: The databases configuration control.

The reports control is simply a web browsing window that displays the html

output file in the top pane after the report the analysis is executed. While the html report

can be viewed in any web browser, this prevents new users from having to hunt for the

 29

output of their analysis. While the user interface adds no functional value, including it

greatly increases the ease with which new users adapt to the use of the tool and may also

increase the perceive value of the tool and hence its adoption rate by developers.

 30

FEEDBACK FROM INDUSTRY PROFESSIONALS

Chapter 9: Introduction

While it is one thing to propose new metrics regarding database design, it is

another to know that the metrics proposed are of real value to professionals currently

working in the software development industry. In order to do that, the tool was released

to professionals currently working in the industry and their feedback was recorded in a

standard format. A summary of that feedback and conclusions based on that feedback are

included in this section.

 31

Chapter 10: The feedback form

As part of the installation of the previously mentioned tool, a feedback form is

added to the same directory as the console tool. The feedback from contains the

following questions:

1. Did the software install successfully?

2. Was the user interface intuitive?

3. Of the measures included in the report, on a scale from 1-5 (1 being very helpful

and 5 not at all helpful), how helpful are they?

a. System

i. Maturity –

b. Schema

i. Transactional Orientation (STO)—

ii. Analytic Orientation (SAO)—

iii. Number of Stored Procedures (SNSP)—

iv. Cyclomatic Complexity Sum (SSCC)—

v. Sum of Stored Procedure Length (SSPL)—

vi. Complexity Looseness (SCL)—

vii. Length Looseness (SLL)—

viii. Convention Looseness (SACL)—

ix. Commenting Looseness (SCCL)—

x. Looseness (SL)--

xi. Maturity (SCM)—

c. Table

 32

i. Recursive Relationships (TRR)—

ii. Percentage of Nullable Columns (TNC)—

iii. Nullable Foreign Keys (TNFK)—

iv. Non-commented Columns (TNCC)

v. Not Commented (TC)—

vi. Adherence to Commenting (TCC)—

vii. User Defined Type Columns (TUDT)—

viii. Percentage of Columns Without Constraints (TCWC)—

ix. Transactional Orientation (TTO)—

x. Analytic Orientation (TAO)—

xi. Column Names Violating Convention (TVCC)—

xii. Violates Naming Convention (TVC)—

xiii. Adherence to Convention (TAC)--

d. Procedure

i. Length (SPL)--

ii. Cyclomatic Complexity (SPCC)—

iii. Transactional Orientation (SPTO)—

iv. Analytic Orientation (SPAO)—

4. What measures, if any, that were not present in the report, would you like to see

included?

5. Could you see using the tool as part of your database development process?

6. What improvements would you suggest to the application?

7. How many systems and/or databases do you have in your organization?

8. Did you uncover any bugs while analyzing your databases?

9. Were any of the measures inaccurate? If so, which one(s)?

 33

10. Did you use the console tool without the user interface?

11. Did you use a programmatic process to build the configuration?

12. Overall, on a scale from 1-5 (1 being very helpful and 5 not at all helpful), how

helpful was the tool?

13. If there is any feedback not captured in this document that you’d like to provide,

please feel free to do so here.

The questions above were chosen so that the analysis could separate the professional’s

opinions about the metrics being collected from their opinions regarding the

implementation that gathered those metrics. For instance, if the professional couldn’t

even get the tool to install, that could reduce their perceived value of the metrics

presented. In the end, the goal is to evaluate the value of the metrics and not the tool.

The tool is simply a means of gathering the data regarding the metrics, so if a correlation

exists between the perceived value of the metrics and the perceived value of the tool, the

way the professional used the tool, the number of bugs encountered by the professional,

etc, the data presented below highlights those correlations.

 34

Chapter 11: The feedback data

Level Metric Mean Median
Standard

Deviation

System Maturity 1.4 1 .55

Schema Maturity 2 2 .71

Schema
Transactional

Orientation
1.8 2 .84

Schema
Analytic

Orientation
1.8 2 .84

Schema

Number of

Stored

Procedures

2.4 2 1.67

Schema

Cyclomatic

Complexity

Sum

3.6 3 .89

Schema

Sum of Stored

Procedure

Length

2.6 3 1.14

Schema
Complexity

Looseness
2.4 2 1.67

Schema
Length

Looseness
1.6 1 .90

Schema
Convention

Looseness
1.2 1 .45

 35

Level Metric Mean Median
Standard

Deviation

Schema
Commenting

Looseness
1.2 1 .45

Schema Looseness 1.8 2 .84

Table
Recursive

Relationships
2 2 1.22

Table

Percentage of

Nullable

Columns

2.2 1 1.79

Table
Nullable

Foreign Keys
2 1 1.41

Table

Non-

commented

Columns

2 2 1.23

Table
Not

Commented
2.2 2 1.30

Table
Adherence to

Commenting
1.8 2 .83

Table
User Defined

Type Columns
2 2 1.23

Table

% of Columns

Without

Constraints

1.6 1 .89

Table
Transactional

Orientation
1.2 1 .45

Table
Analytic

Orientation
1.2 1 .45

 36

Level Metric Mean Median
Standard

Deviation

Table

Column Names

Violating

Convention

2 1 1.73

Table

Violates

Naming

Convention

2 1 1.73

Table
Adherence to

Convention
1.2 1 .45

Procedure Length 2 1 1.42

Procedure
Cyclomatic

Complexity
3.4 4 1.52

Procedure
Transactional

Orientation
1.8 2 .84

Procedure
Analytic

Orientation
1.8 2 .84

Table 1: Statistical data for each metric.

 37

Chapter 12: Conclusions

The results of the data only include 5 responders. Most of the metrics proposed in

this paper as well as the tool were valued by all of the developers. In addition, every

feedback document indicated that the responder would use the tool as part of their

development process.

A notable exception to the acceptance of the metrics was the cyclomatic

complexity of a stored procedure and the metrics primarily derived from that number.

During analysis, it seemed that the cyclomatic complexity varied very little between

procedures and most procedures had a complexity of one. When looking at the

individual procedures, it became apparent that flow control statements in stored

procedures are very often used as a means of directing the flow to specific return

statements.

Given that the cyclomatic complexity calculation is the number of decision points

minus the number of exit points plus 2, most of the flow control statements were paired

with return statements, and there’s an implicit default exit point for every stored

procedure the value of one returned for most stored procedures makes perfect sense. One

of the respondents noted that a different measure for stored procedure complexity was

probably necessary and suggested that some combination of number of decision points,

the number of parameters, and the stored procedure length would be more indicative of

the complexity of stored procedures.

While intuitively, it seems reasonable to treat procedures as code modules with

respect to metrics, it seems, based on the feedback, that the cyclomatic complexity metric

might not be the best fit for measuring the difficulty of developing and maintaining stored

procedures. In order to find the best metric, future research regarding these metrics

 38

would benefit from comparing a number of complexity measures against developer’s

own assessment of the difficulty of maintaining specific stored procedures and choosing

the metric that most closely correlates with those assessments. It’s possible that use of an

existing metric (e.g. Halstead’s Difficulty metric [10]) or a metric developed specifically

to address the idiosyncrasies of the SQL language would improve the usefulness of the

procedure complexity metric and those metrics including it in their calculation.

An additional commonality between the feedback documents is that every

developer thought the descriptions of the metrics while accurate lacked a certain

clarification. Each developer suggested that the description of the metrics include some

description of what the values for each metric actually meant. They wanted to know

what was indicated a “good” or “bad” value in addition to how the metric was actually

calculated. In retrospect, this seems like an obvious flaw in the design of the tool and

perhaps of this report as a whole.

In order to clarify, the maturity metric varies between zero and one. Values closer

to one indicate a well documented system of databases with clear separation of concern

between transactional and analytic use of individual databases. In addition, maturity

values closer to one indicate that the stored procedures are short, focused methods and

the tables and columns follow the specified naming conventions consistently. The

looseness metrics also vary between zero and one. Values closer to one indicate better

conformance to naming conventions and coding standards. In regard to the transactional

and analytic orientation, values also vary between zero and one, but values closer to one

or zero indicate a good separation of concerns while values closer to one half indicate

less separation between transactional and analytic concerns and are considered poorer

design.

 39

Ultimately, the metrics proposed by this report, with the exception of the

complexity metric were well received by the developers. Given the tools to easily extract

the measures and improvements to the stored procedure complexity metric, it seems quite

possible the metrics could become industry standards.

 40

References

1. Codd, E. F. 1974. "Recent Investigations into Relational Data Base Systems,"

IBM Research Report RJ1385 Republished in Proc. 1974 Congress (Stockholm,

Sweden, 1974).

2. Gray, J. September, 1981. "The Transaction Concept: Virtues and Limitations,"

Proceedings of the 7th International Conference on Very Large Databases.

Tandem Computers. pp. 144–154.

3. Baroni, A.L., Calero, C., Piattini, M., and Abreu, F.B. 2005. "A Formal Definition

for Object-Relational Database Metrics," In Proceedings of the 7th International

Conference on Enterprise Information System.

4. Piattini M., Calero C., Sahraoui H., Lounis H. March 2001. "Object-Relational

Database Metrics," L'Object.

5. Baroni, A. L., Calero, C., Ruiz, F., and Abreu, F. B. 2004. "Formalizing Object-

Relational Structural Metrics," 5ª Conferência da APSI, Lisbon.

6. Calero, C., Pascual, C., Serrano, and M., Piattini, M. 1999. "Measuring Oracle

Database Schemas,” IMACS/IEEE CSCC'99 Proceedings, pp. 7101-7107.

7. McCabe, T. J. December, 1976. "A Complexity Measure" IEEE Transactions on

Software Engineering, pp. 308-320.

8. Celko, J.J. 2004. "J. Joe Celko's Trees and Hierarchies in SQL for Smarties".

9. Harrison, W.A. October, 1984 "Applying Mccabe's complexity measure to

multiple-exit programs," Software: Practice and Experience.

10. Halstead, M.H. 1977. “Elements of Software Science”

 41

Vita

Joshua Harold Dooms received a Bachelor of Arts in Cognitive Science with a

focus in Neuroscience from the University of Virginia in 1997. Since 2001, he has

worked in the information technology industry as a business analyst, QA analyst,

requirements analyst, application developer, and application architect.

Email: joshuadooms@yahoo.com

This report was typed by the author.

mailto:joshuadooms@yahoo.com

