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TIMING CONTROL FOR PAIRED

PLASTICITY

PRIORITY CLAIM

Thepresentapplication is a continuation ofapplication Ser.

No. 13/941,986,filed Jul. 15, 2013, entitled TIMING CON-
TROL FOR PAIRED PLASTICITY, whichis a division of

application Ser. No. 12/485,857, filed Jun. 16, 2009, entitled
TIMING CONTROL FOR PAIRED PLASTICITY, whichis

a continuation application of U.S. Utility patent application

Ser. No. 12/485,040,filed Jun. 15, 2009 and claimspriority
benefits under 35 U.S.C. §119(e) from Provisional Applica-

tion No. 61/077,648,filed on Jul. 2, 2008 and entitled “Treat-
ment of Tinnitus withVagus Nerve Stimulation”; U.S. Provi-

sional Application No. 61/078,954, filed on Jul. 8, 2008 and
entitled “Neuroplasticity Enhancement”; U.S. Provisional

Application No. 61/086,116, filed on Aug. 4, 2008 and

entitled “Tinnitus Treatment Methods and Apparatus”; and
USS. Provisional Application No. 61/149,387, filed on Feb.3,

2009 andentitled “Healing the Human Brain: The Next Medi-
cal Revolution.” The present application incorporates the

foregoing disclosures herein by reference.

BACKGROUND

The present disclosure relates generally to therapy, reha-

bilitation and training including inducedplasticity. More par-
ticularly, the disclosure relates to methods and systems of

enhancing therapy, rehabilitation and training using nerve
stimulation paired with training experiences.

SUMMARY

For purposes of summarizing the invention, certain
aspects, advantages, and novelfeatures ofthe invention have

been described herein.It is to be understood that not neces-
sarily all such advantages may be achieved in accordance

with any particular embodimentof the invention. Thus, the
invention may be embodiedor carried out in a mannerthat

achieves or optimizes one advantage or group of advantages

as taught herein without necessarily achieving other advan-
tages as may be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed inventions will be described with reference

to the accompanying drawings, which show important
sample embodiments ofthe invention and whichare incorpo-

rated in the specification hereof by reference, wherein:

FIG. 1 is a block diagram depicting a paired training sys-
tem, in accordance with an embodiment;

FIG.2 is a block diagram depicting a paired training sys-
tem affecting a sub-cortical region, in accordance with an

embodiment;
FIG.3 is a block diagram depicting a paired training sys-

tem affecting the nucleus basalis, in accordance with an

embodiment;
FIG.4 is a block diagram depicting a paired training sys-

tem affecting the locus coeruleus, in accordance with an
embodiment;

FIG. 5 is a block diagram depicting a paired training sys-
tem affecting the amygdala, in accordance with an embodi-

ment;

FIG.6 is a block diagram depicting a paired training sys-
tem affecting the nucleusofthe solitary tract (NTS), in accor-

dance with an embodiment;
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FIG.7 is a block diagram depicting a paired training sys-

tem affecting the cholinergic system, in accordance with an

embodiment;

FIG.8 is a block diagram depicting a paired training sys-
tem affecting the noradrenergic system, in accordance with

an embodiment;
FIG. 9 is a simplified diagram depicting a stimulator, in

accordance with an embodiment;

FIG. 10 is a simplified diagram depicting a wireless stimu-
lator, in accordance with an embodiment;

FIG. 11 is a simplified diagram depicting a dual stimulator
configuration, in accordance with an embodiment;

FIG. 12 is a simplified diagram depicting a multi-stimula-
tor configuration, in accordance with an embodiment;

FIG.13 is a graph depicting a constant current stimulation

pulse, in accordance with an embodiment;
FIG. 14 is a graph depicting an exponential stimulation

pulse, in accordance with an embodiment;
FIG. 15 is a graph depicting a train of constant current

stimulation pulses, in accordance with an embodiment;
FIG.16 is a block diagram depicting a synchronizing con-

trol system, in accordance with an embodiment;

FIG. 17 isa graph depicting synchronized pairing,in accor-
dance with an embodiment;

FIG. 18 is a block diagram depicting a response control
system, in accordance with an embodiment;

FIG. 19 is a graph depicting response pairing, in accor-
dance with an embodiment;

FIG. 20 is a block diagram depicting a manual control

system, in accordance with an embodiment;
FIG.21 is a graph depicting manual pairing, in accordance

with an embodiment;
FIG.22 is a block diagram depicting a closed loop control

system, in accordance with an embodiment;

FIG.23 is a graph depicting closed loop pairing, in accor-
dance with an embodiment;

FIG. 24 is a block diagram depicting an initiated control
system, in accordance with an embodiment;

FIG. 25 is a graph depicting initiated pairing, in accordance
with an embodiment;

FIG. 26 is a block diagram depicting a delayed response

timing control system, in accordance with an embodiment;
and

FIG. 27 is a graph depicting delayed response pairing, in
accordance with an embodiment.

DETAILED DESCRIPTION OF THE DRAWINGS

The numerousinnovative teachingsofthe present applica-

tion will be described with particular reference to presently

preferred embodiments (by way ofexample, and not of limi-
tation). The present application describes several inventions,

and noneofthe statements below should be taken as limiting
the claims generally. Where block diagrams have been used to

illustrate the invention,it should be recognizedthat the physi-
cal location where described functions are performedare not

necessarily represented by the blocks. Part of a function may

be performed in one location while anotherpart of the same
function is performed at a distinct location. Multiple func-

tions may be performedat the same location.
With referenceto FIG.1, a pairedtraining system is shown.

A timing control system 106 is communicably connected to a
neural stimulator system 108 and a training system 110.

Receiving timing instruction from the timing control system

106, the neural stimulator system 108 provides stimulation to
a nerve 104. Similarly receiving timing instruction from the

timing control system 106, or providing timing instruction to
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the timing control system,the training system 110 generates
desired mental images, ideas, formationsorstates in the brain

102. The stimulation ofthe nerve 104 affects the brain 102 by

inducing plasticity. The temporally paired combination of
training and stimulation generates manifestations ofplastic-

ity in the brain 102 that may be measuredby aplasticity
measure system 112.

The timing controls system 106 generally provides the
simultaneous nature of the pairing. The stimulation and the

training are simultaneousin that they occur at the same time,

that is, there is at least some overlap in the timing. In some
embodiments, the stimulation mayleadthe start of the train-

ing while in other embodiments, the stimulation may follow
the start of the training. In many cases, the stimulation is

shorter in duration than the training, suchthat the stimulation
occurs near the beginning ofthetraining.Plasticity resulting

from stimulation has been shownto last minutes or hours, so

a single stimulation pulse may suffice for the whole duration
of extendedtraining.

In the treatmentof tinnitus, for example, the training may
consist ofbriefaudible sounds including selected therapeutic

frequencies, paired with stimulations. Because the duration
ofthe sounds maybeshort, the timing may be controlled very

precisely so that the sound coincides temporally with the

stimulation. This kind of precision may typically require
some form of computer control. In other forms of rehabilita-

tion or education, the timing ofthe training and/orthe stimu-
lation may be controlled manually. Further therapies and

training may include training triggered timing or physical
condition feedback to provide a closed-loop system.

The neural stimulation system 108 may provide stimula-

tion of the nerve 104 using electrical stimulation, chemical
stimulation, magnetic stimulation, optical stimulation,

mechanical stimulation or any other form of suitable nerve
stimulation. In accordance with an embodiment, an electrical

stimulation is provided to the left vagus nerve. In anelectrical

stimulation system, suitable stimulation pulses may include a
variety ofwaveforms, including constant current pulses, con-

stant voltage pulses, exponential pulses or any other appro-
priate waveform.An electrical stimulation system may use a

single stimulation pulse or a train of stimulation pulses to
stimulate the nerve 104. Stimulation parameters are selected

to affect the brain 102 appropriately, with reference to the

affected brain regions or systems,plasticity measures, desyn-
chronization or any other appropriate stimulation parameter

measure. A half second train of biphasic stimulation pulses,
with a pulse width of 100 microseconds,at 0.8 milliamps and

at 30 Hz has been usedeffectively in the treatmentoftinnitus.
Paired stimulation could be accomplished using deep brain

stimulation, cortical stimulation, transcranial magnetic

stimulation and any other suitable neural stimulation.
One indication of appropriate stimulation may be desyn-

chronization of the cortical EEG. A 0.8 milliamp pulse has
been shown to cause cortical desynchronization at frequen-

cies between 30 and 150 Hz.0.4 milliamp pulses desynchro-
nizethe cortex at higher frequencies of 100 to 150 Hz. Desyn-

chronization has been shownto last for at least four seconds

in response to stimulation of the vagus nerve.
The simultaneoustraining system 110 generates the sen-

sory input, motor sequences, cognitive input, mental images,
ideas, formationsor states that are to be retained by the brain

102. A training system 110 may provide sensory information,
such asvisual, auditory, olfactory, tactile or any other suitable

sensory information. Training system 110 mayinclude physi-

cal therapies, cognitive therapies, emotional therapies,
chemical therapies, or any other suitable therapies. Training

system 110 may present educational information. Training
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system 110 may include the subject, physically, mentally,
emotionally or in any other suitable fashion. Training system

110 may include teachers, doctors, therapists, counselors,

instructors, coaches or any other suitable training provider.
Training system 110 may evoke specific patterns of neural

activity by direct brain stimulation, for example byelectrical,
magnetic, optical, or any other suitable pattern evocation

systems. Training system 110 mayinactivate specific brain
regions via chemical agents, cooling, magnetic stimulation,

or other suitable methods.

The paired training system of FIG. 1 affects the brain 102
to generate plasticity that can be measured by aplasticity

measure system 112. In the treatment of tinnitus, a cortical
map maybe used to measure the map distortion and correc-

tion that accompanies the successful treatment of tinnitus.
Less invasively, the plasticity can be measured by behavior-

ally reactions to stimuli, such as astartle test for tinnitus.

Further, plasticity can be measured by inquiring about the
subjective experience of a subject. If a tinnitus patient no

longer experiencesa persistent noise, plasticity has beenmea-
sured.

With reference to FIG.2, a paired training system affecting
a subcortical region 114 of the brain 102, in accordance with

an embodiment is shown. The stimulation of nerve 104

affects a subcortical region 114. The subcortical region 114,
in turn, affects the brain to induce plasticity. Stimulation of

nerves 104 such as the trigeminal nerve and other cranial
nerves are knownto affect the subcortical region 114.

With reference to FIG.3, a paired training system affecting
the nucleus basalis 116, in accordance with an embodiment,

is shown. The stimulation of nerve 104 affects the nucleus

basalis 116. The nucleus basalis, in turn, affects the brain 102
to induceplasticity.

With reference to FIG.4, a paired training system affecting
the locus coeruleus 118, in accordance with an embodiment,

is shown. The stimulation of nerve 104 affects the locus

coeruleus 118. The locus coeruleus 118, in turn, affects the
brain 102 to induceplasticity.

With reference to FIG.5,a paired training system affecting
the amygdala 120, in accordance with an embodiment, is

shown. The stimulation of nerve 104 affects the amygdala
120. The amygdala 120, in turn, affects the brain 102 to

induceplasticity.

With reference to FIG.6, a paired training system affecting
the NTS 122, in accordance with an embodiment, is shown.

Thestimulation of nerve 104 affects the NTS 122. The NTS
122, in turn, affects the brain 102 to induceplasticity.

With reference to FIG.7, a paired training system affecting
the cholergenic system 124, in accordance with an embodi-

ment, is shown. The stimulation of nerve 104 affects the

cholergenic system 124. The cholergenic system 124 releases
acetylcholine (ACh) into the brain 102 inducingplasticity.

With reference to FIG.8, a paired training system affecting
the noradrenergic system 126, in accordance with an embodi-

ment, is shown. The stimulation of nerve 104 affects the
noradrenergic system 126. The noradrenergic system 126

releases noradrenaline (NE) into the brain 102 inducing plas-

ticity.
With reference to FIG. 9, a neural stimulator system, in

accordance with an embodiment, is shown. A neural stimu-
lator control 109 is communicably connected to a neuro-

stimulator 128. Neurostimulator 128 provides a stimulation
pulse to a nerve 104 via a pair of electrodes 130a and 1305.

Electrodes 103a and 1306 could be cuff electrodes, conduc-

tive plates or any other suitable neural stimulation electrode.
The neurostimulator may be poweredby a piezoelectric pow-

ering system as well as near field inductive powertransfer,
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far-field inductive powertransfer, battery, rechargeable bat-

tery or any other suitable neurostimulator power system.

When neural stimulator control 109 receives timing instruc-

tions from a timing control system (not shown), the neural

stimulator control 109 initiates a stimulation pulse from the

neurostimulator 128 via electrodes 130a and 1308.

With reference to FIG. 10, a wireless neural stimulator

system, in accordance with an embodimentis shown. Neuro-

stimulator 128 communicates with the neural stimulation

system 109 using an inductive transponder coil 132. The

neural stimulator system 109 includes an external coil 134.

Information may be communicated betweenthe neural stimu-

lator system 109 and the neurostimulator 128. Power may be

transferred to the neurostimulator 128 by the neural stimula-

tor system.

With reference to FIG. 11, a dual neurostimulator system,

in accordance with an embodiment, is shown. Two neuro-

stimulators 128 may stimulate neural 104. The neurostimu-

lators may be controlled to reinforce each other, as redun-

dancy, or to prevent efferent signals from projecting away

from the brain.
With reference to FIG. 12, a multi-neurostimulator system,

in accordance with an embodiment, is shown. A plurality of

neurostimulators 128 may stimulate nerve 104. The neuro-
stimulators may be controlled to reinforce each other, as

redundancy, or to prevent efferent signals from projecting
away from the brain.

With reference to FIG. 13, a graph shows a constant current
stimulation pulse, in accordance with an embodiment.

With reference to FIG. 14, a graph shows an exponential

stimulation pulse, in accordance with an embodiment.
With reference to FIG. 15, a graph showsa train ofconstant

current stimulation pulses, in accordance with an embodi-
ment.

With reference to FIG. 16, a synchronized timing control

system, in accordance with an embodiment, is shown. The
synchronized timing control system includes a synchronizing

timing control 186. The synchronizing timing control 186 is
communicably connected to the neural stimulation system

108 and the training system 110. The synchronizing timing
control 136 provides timing instructions to the neural stimu-

lation system 108 and the training system 110 so that the

stimulation and training occur simultaneously. In the treat-
ment of tinnitus, the stimulation of the nerve may slightly

precedes each training sound,to give the stimulation time to
affect the brain whenthe training soundis presented. Further

embodiments may include other suitable timing variations.
With reference to FIG. 17, a graph showsa possible timing

relationship between event and stimulation for a synchro-

nized timing control system.
With reference to FIG. 18, a response timing control sys-

tem, in accordance with an embodiment, is shown. The
response timing control system includes a response timing

control 138. The response timing control 138 is communica-
bly connected to the neural stimulation system 108 and a

simultaneous event monitor 140. The response timing control

138 receives timing instructions from the event monitor 140
and provides timing instructions to the neural stimulation

system 108, so that the stimulation and training occur simul-
taneously. Becausethe stimulation 1s generated in response to

an event, the stimulation will generally lag the event by some
finite time delta t. In cases where there is an event precursor

that can be monitored, the timing can be made moreexact.

With reference to FIG. 19, a graph showsa possible timing
relationship between a monitored event and a nerve stimula-

tion.
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With reference to FIG. 20, a manualtiming control system,

in accordance with an embodiment, is shown. The manual

timing control system includes a response timing control 138.

The response timing control 138 is communicably connected
to the neural stimulation system 108 and a manualinput 142.

The response timing control 138 receives timing instructions
from the manualinput 142 and providestiming instructions to

the neural stimulation system 108,so that the stimulation and
training occur simultaneously.

With reference to FIG. 21, a graph showsa possible timing

relationship between an event, a manual input and a neural
stimulation.

With reference to FIG. 22, a closed loop timing control
system, in accordance with an embodiment, is shown. The

closed loop timing control system includes a closed loop
timing control 144. The closed loop timing control 138 is

communicably connected to the neural stimulation system

108 and a sensor 146. The closed loop timing control 144
receives timing instructions from the sensor 146 and provides

timing instructions to the neural stimulation system 108, so
that the stimulation and training occur simultaneously.

With reference to FIG. 23, a graph showsa possible timing
relationship between an sensed training event and a neural

stimulation is shown.

Sensor 146 may monitor externalor internal events, includ-
ing heart-rate, blood pressure, temperature, chemical levels

or any other parameter that may indicate a training event.
With reference to FIG. 24, a initiated timing control sys-

tem, in accordance with an embodiment, is shown. Theiniti-
ated timing control system includes an initiated timing con-

trol 148. The initiated timing control 148 is communicably

connected to a neural stimulation system 106 and an event
generator 150. Theinitiated timing control 148 receives tim-

ing information from the neural stimulation system 106, indi-
cating that a nerve has been stimulated. The initiated timing

control 148 provides timing instructions to the event genera-

tor 150, such as a therapeutic sound generator connected by
Bluetooth, such that the event generator 150 generates an

event during the stimulation pulse.
With reference to FIG. 25, a graph showsa possible timing

relationship between a neural stimulation and an event gen-
eration.

With reference to FIG. 26, a delayed response timing con-

trol system, in accordance with an embodiment, is shown.
The delayed response timing control system includes an

delayed response timing control 152. The delayed response
timing control 152 is communicably connected to a neural

stimulation system 106 and a preliminary event sensor 154.
The preliminary event sensor 154 detects a preliminary event

that anticipates a pairing event. The delayed response timing

control 148 receives timing information from the preliminary
event sensor 154,indicating that a preliminary event has been

detected. The delay response timing control 148 provides
timing instructions to the neural stimulation system 106 to

initiate nerve stimulation. In the depicted embodiment, the
timing control 152 initiates the stimulation before the begin-

ning of the pairing event, giving a negative delta t. A delay

response timing system mayinitiate stimulation at the same
time as the beginning ofthe pairing event, or after the begin-

ning of the pairing event.
With reference to FIG. 27, a graph showsa possible timing

relationship between a neural stimulation, a preliminary
event and a pairing event.

Theplasticity induced by neural stimulation can be paired

with a variety of therapies, rehabilitation, training and other
formsofpersonal improvement. Each therapyacts asa train-

ing source. The specific timing requirements associated with
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each therapy are derived from the specifics of the therapy,

such thatthe stimulation occurs during the training, and most

effectively near the beginningofthe training. Somepossible

therapies may include behavioral therapies such as sensory

discrimination for sensory deficits, motor training for motor

deficits, with or without robotic assistance and cognitive

training/rehabilitation for cognitive deficits. Exercise and

motor therapy could be paired to treat motor deficits arising

from traumatic brain injury, stroke or Alzheimer’s disease

and movement disorders. Constraint induced therapy could

be paired to help prevent the use of alternative strategies in

order to force use ofimpaired methods. Speech therapy could

be paired for speech and language deficits. Cognitive thera-

pies could be paired for cognitive problems.

Sensory therapies, such as tones, could be pairedto treat

sensory ailments such as tinnitus. In treating tinnitus, the

paired tones may beat frequencies distinct from the frequen-

cies perceived by the tinnitus patient.

Exposure or extinction therapy could be paired to treat

phobiasor post-traumatic stress disorder.

Computer-based therapies such as FastForward for dys-

lexia, Brain Fitness Program Classic or Insight, could be

paired to enhance their effects. Psychotherapy could be

paired, as well as other therapeutic activities in the treatment

of obsessive-compulsive disorder, depression or addiction.

Biofeedback therapy could be paired. For example, tem-

perature readings or galvanic skin responses could be paired

to treat anxiety or diabetes. An electromyograph could be

paired to improve motor control after brain spinal or nerve

damage. A pneumographcould be paired to improvebreath-

ing control in a paralyzed patient. A real-time {MRI could be

paired to improve pain control or treat OCD. An electroder-

mograph, EEG, EMGorelectrocardiograph could be paired

to treat disorders such as anxiety. An electroencephalograph

could be paired to treat epilepsy. An hemoencephalography

could be paired to treat migraines. A photoplethysmograph

could bepaired to treat anxiety. A capnometer could be paired

to treat anxiety. Virtualreality therapy could be paired to treat

disorders such as addiction, depression, anxiety or posttrau-

matic stress disorder. Virtual reality therapy could also be

paired to enhance cognitive rehabilitation or performance.

Drug therapies could be pairedto treat a variety ofconditions.
Amphetamine-like compounds could be paired to enhance

neuromodulators and plasticity. SSRI’s could be paired to
enhance neuromodulators and plasticity. MOA inhibitors

could be paired to enhance neuromodulators andplasticity.
Anti-coagulants could be paired to act as clot busters during

acute stroke. Various drugs couldbe paired to stop spasm after

nerve or brain damage such as Botulinum toxin, Lidocaine,
etc. Small doses of drugs of abuse could be paired to extin-

guish cravings in addicts.
Hormonetherapy could be paired. For example, progest-

erone, estrogen,stress, growth, or thyroid hormone,etc. could
be paired to treat traumatic brain injury or Alzheimer’sdis-

ease. Glucose therapy could be pairedto treat anxiety. Elec-

trical or magnetic stimulation of the central or peripheral
nervous system could be paired. For example, transcranial

magnetic stimulation could be used to enhance or reduce
activity in a specific brain area and thereby focus the directed

cortical plasticity. Transcutaneous electrical nerve stimula-
tion could be paired to treat chronic pain, tinnitus and other

disorders. Subcutaneouselectrical nerve stimulation could be

paired to treat chronic pain. Stem cell therapy could be paired
to treat disorders such as Parkinson’s disease. Gene therapy

could be paired to treat conditions such as Down’s syndrome,
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8
Huntington’s disease or fragile X syndrome. Hyperbaric oxy-
gen therapy could be pairedto treat carbon monoxide poison-

ing

Multiple therapies could be paired simultaneously or
sequentially.

Noneofthe description in the present application should be
read as implyingthat any particular element, step, or function

is an essential element which must be included in the claim
scope: THE SCOPE OF PATENTED SUBJECT MATTERIS

DEFINED ONLY BY THE ALLOWED CLAIMS. More-

over, none of these claims are intended to invoke paragraph
six of35 USC section 112 unless the exact words “meansfor”

are followed bya participle.
The claimsas filed are intended to be as comprehensive as

possible, and NO subject matter is intentionally relinquished,
dedicated, or abandoned.

Whatis claimedis:
1. A system comprising:

a therapeutic training interface configured to provide tone
based therapy to a patient;

a vagus nerve interface configured to provide electrical
stimulation to a vagus nerveofthe patient, wherein

the system is configured to determine the beginning ofthe

tone based therapy,
the system is configured to control stimulation to the vagus

nerve and controlthe providing ofthe tone based therapy
so that the stimulation to the vagus nerve and the pro-

viding ofthe tone based therapy is synchronized and the
stimulation occurs after the beginning of the tone based

therapy, and

the system is configured to control the therapeutic training
interface and the vagus nerve interface so that at least

one audible toneis providedto the patient followed by a
waiting period followed the providing of at least one

audible tone to the patient and wherein the respective at

least one vagusnerve stimulations are paired with the at
least one audible tones and so that at no audible tones

and no vagusnerve stimulations are provided during the
waiting period.

2. The system of claim 1, wherein:
the system is configured to control the therapeutic training

interface to apply aseries ofaudible tonesto the patient

in synchrony with the stimulation to the vagus nerve.
3. The system of claim 1, wherein:

the system is configured to control the therapeutic training
interface and the vagus nerve interface suchthat at least

one audible toneis providedto the patient followed by a
waiting period followed the providing of at least one

audible tone to the patient and so that respective at least

one vagus nerve stimulationsare paired with the at least
one audible tones.

4. The system of claim 1, wherein:
the system is configured to control the therapeutic training

interface and the vagus nerve interface suchthat at least
one audible toneis providedto the patient followed by a

waiting period followed the providing of at least one

audible tone to the patient and so that respective at least
one vagus nerve stimulationsare paired with the at least

one audible tones and suchthatat least one ofno audible
tones and no vagus nerve stumulations are provided

during the waiting period.
5. The system of claim 1, wherein:

the system is configured to control the therapeutic training

interface and the vagus nerve interface so that stimula-
tion ofthe vagus nerve and providing ofthe audible tone

temporally overlap.
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6. The system of claim 1, wherein:
the system is configured to control the therapeutic training

interface and the vagus nerve interface such that stimu-

lation of the vagus nerve and providing of the audible
tone are paired, and so that the temporal length of the

stimulation of the vagus nerveis different than the tem-
poral length ofthe providing ofthe audible tone to which

the stimulation of the vagus nerveis paired.
7. The system of claim 1, wherein:

the system is configured so that stimulation of the vagus

nerve by the vagus nerve interface is an exponential
stimulation pulse.

8. The system of claim 1, wherein:
the system is configured so that stimulation of the vagus

nerve by the vagus nerve interfaceis a train of discrete
constant current stimulation pulses having a fixed dura-

tion and spacedat fixed intervals.

9. The system ofclaim 1, wherein the system is configured
to control stimulation to the vagus nerve suchthat stimulation

overlaps with the provided tone based therapy.
10. A system comprising:

atiming control system configuredto treat tinnitus therapy
comprising:

a sound generator configured to generate a plurality of

sounds;
a vagus nerve stimulator configured to electrically

stimulate a vagus nerve of a patient, wherein
the timing control system is configured to synchronize

stimulation ofthe vagus nerve with the generation ofthe
plurality of sounds,

the system is configured to identify the respective begin-

nings of the respective generated sounds,
wherein the system configured to provide electrical stimu-

lation of the vagus nerve that respectively begins after
the respective beginnings of the respective generated

sounds, and wherein

the system is configured to synchronize the sounds with
the vagus nerve stimulation so thatat least one sound

is providedto the patient followed by a waiting period
followedbythe providing ofat least one soundto the

patient and wherein respective at least one vagus
nerve stimulations are paired with the at least one

sound and wherein no sound is provided during the

waiting period.
11. The system of claim 10, wherein:

the sound generator is configured to generate sounds,
wherein each sound consists of only one frequency.

12. The system of claim 10, wherein:
the system is configured to control the sound generator to

generate sound randomly.
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13. The system of claim 10, wherein:

the system is configured to control an intensity ofthe sound

generated by the sound generator.

14. The system of claim 10, wherein:

the system is configured to control a duty cycle of a pulse

train of the vagus nerve stimulator so that the vagus

nerve stimulation is followed by a period of non-stimu-

lation at least as long as the length of time of the vagus

nerve stimulation precedent the period of non-stimula-

tion.

15. The system of claim 10, wherein:

the vagus nerve stimulator includes an electrode and a

pulse generator connectedto the electrode.

16. The system of claim 10, wherein the timing control

system is configuredto provide stimulation ofthe vagus nerve

that overlaps with the generation of sound.

17. The system of claim 10, wherein the system is config-

ured to senda seriesofstimulation trigger signals to the vagus

nerve stimulator sothatan electrical pulse train is provided so

that the vagus nerve is stimulated with the electrical pulse

train at the same time as the generation of the plurality of

sounds.

18. The system of claim 10, wherein the system is config-

ured to cause the sound generator to generate the plurality of

sounds randomly.

19. A system, comprising:

a therapeutic training interface configured to provide

soundto a patient;

a vagus nerve interface configured to provide electrical

stimulation to a vagus nerveofthe patient, wherein

the system is configured to control the electrical stimula-

tion to the vagus nerve and control the providing of the

soundso that the stimulation to the vagus nerve and the
providing of the sound is synchronized,

the system is configured to identify the beginning of the
providing of soundto the patient,

the system configured to provide stimulation of the vagus

nerve that begins after the beginning of the provided
sound, and

the system is configured to synchronize the sounds with the
vagus nerve stimulation so thata plurality of respective

sounds are providedto the patient, and wherein the sys-
tem is configured to provide a waiting period between

the respective provided sounds defined by a period

where no sound is provided, and wherein respective at
least one vagus nerve stimulations are paired with the

respective sounds.

* * * * *


