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Specification of hydraulic conductivity as a model parameter in ground-

water flow and transport equations is an essential step in predictive simula-

tions. It is often infeasible in practice to characterize this model parameter

at all points in space due to complex hydrogeological environments leading to

significant parameter uncertainties. Quantifying these uncertainties requires

the formulation and solution of an inverse problem using data correspond-

ing to observable model responses. Several types of inverse problems may be

formulated under various physical and statistical assumptions on the model

parameters, model response, and the data. Solutions to most types of inverse

problems require large numbers of model evaluations. In this study, we in-

corporate the use of surrogate models based on support vector machines to

increase the number of samples used in approximating a solution to an inverse

problem at a relatively low computational cost. To test the global capabil-

ities of this type of surrogate model for quantifying uncertainties, we use a
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der minimal statistical assumptions. Additionally, we demonstrate that it is

possible to build a support vector machine using relatively low-dimensional

representations of the hydraulic conductivity to propagate distributions. The
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to data not used in the solution to the inverse problem.
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Chapter 1

Introduction1

1.1 Motivation

In the past century, demand for clean groundwater has soared due

to population growth and pollution of surface water. In some areas of the

world, groundwater has become the main drinking water supply or even the

sole source of water. Unfortunately, contrary to the popular impression that

pumping groundwater from wells and spring water is untainted, we find con-

tamination of aquifers and groundwater a serious problem in many parts of

the world [21, 50, 60].

Several years ago, a hexavalent chromium plume was present above

the New Mexico groundwater standard of 50 parts per billion in 4 monitoring

wells in the regional aquifer beneath Los Alamos National Laboratory (LANL).

There is an urgent need for migration control of the chromium plume and best

cleanup method assessment. Many theoretical and computational frameworks

have been developed to model subsurface flow and contaminant transport [4,

22, 63, 65]. A lot of research also has been done to advance critical decision-

1This chapter is based on the article entitled Data-driven uncertainty quantification for
predictive flow and transport modeling using support vector machines by Jiachuan He, Steven
Mattis, Troy Butler and Clint Dawson [32].
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making related to remediation strategies with uncertainties in models [8, 31,

37, 54]. Overall, prediction and remediation of subsurface require us to solve

a series of mathematical problems among which we first wish to estimate

unknown parameter field, e.g., hydraulic conductivity, that characterizes a

model of the system. In other words, given experimental or observable data,

we need to solve an inverse problem.

1.2 Background

Mathematical models for groundwater contaminant transport simula-

tion often contain parameters that cannot be directly measured. Instead, we

must often infer parameter values by formulating and solving an inverse prob-

lem using data corresponding to observable model responses. However, a main

theoretical difficulty is that most inverse problems are not well-posed in the

sense of existence, uniqueness, and stability of the solution. Complicating

matters further is the practical issue that solving inverse problems is often

computationally intensive.

The high computational cost in solving an inverse problem may arise

from many sources including the thousands or millions of forward simula-

tions required, inverting large dense operators, or strong nonlinearities in the

parameter-to-observable map even when the forward problem is linear. A

number of recently developed methods have focused on constructing surrogate

models for improved computational efficiency. A surrogate model can be re-

garded as a response surface approximation of the parameter-to-observables
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map defined by the composition of an observation operator with the solution

operator to the model. There are many ways to construct surrogate models.

For example, some popular surrogate models are based on Polynomial Chaos

Expansions [46, 68], the Probabilistic Collocation Method [62, 71], Kriging [6],

or Radial Basis Functions [57, 58], to name just a few. In this work, we in-

corporate the use of a Support Vector Machine (SVM) which has found a

wide range of applications in the fields of classification and regression analysis

[5, 30]. There are also a few applications of SVM in hydrology [1, 27, 38, 43, 69].

We apply SVM to approximate the parameter-to-observable map using sets of

input-output pairs of sampled model parameters and simulated model observ-

ables, where the sampled model parameters define a parameterization of an

unknown hydraulic conductivity field and model observables correspond to a

sparse set of spatially sampled contaminant concentrations.

Using an SVM, like any surrogate, to quantify uncertainties, repre-

sents a trade-off in errors where stochastic sources of error (e.g., due to finite

sampling) are reduced while deterministic sources of error (e.g., due to ap-

proximation errors) may be significantly increased. It is therefore important

to study how accurately any surrogate can be used in quantifying uncertain-

ties in both inverse and forward uncertainty quantification (UQ) problems. In

general, we first solve inverse UQ problems to quantify uncertainties in model

parameters, which are subsequently used to inform forward UQ problems to

quantify uncertainties in model predictions. Thus, we focus first on the ability

of the SVM to solve a data-to-parameter (i.e., inverse) UQ problem.
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In the hydrology community, many inversion methods have been pro-

posed and developed independently [72] for characterizing hydraulic conduc-

tivity K [19, 36, 52], which is often the most dominant hydraulic property. The

earliest method is the so-called direct method, which is relatively straightfor-

ward and has been widely used [48, 49]. Assuming hydraulic head is known,

one can substitute head into the forward problem and then solve the inverse

problem in terms of a partial differential equation in K. However, this approach

has two main shortcomings. First, this method requires the information of hy-

draulic head over the entire domain. Although values of head can be achieved

through interpolation of observations, it inevitably introduces smoothing of

the data and errors. Second, this method is unstable due to the ill-posedness

of inverse problems that small errors in head may result in large changes in

the solution. To overcome these problems, indirect methods were developed

to handle limited numbers of observations. Optimal parameters are found by

minimizing an objective function which includes a regularization term to en-

sure stability of the optimization problem. Recently, Bayesian inversion meth-

ods have gained popularity in hydrologic studies [7, 24, 41, 51, 64, 67]. This

approach allows a flexible integration of prior knowledge about parameters

into the solution. Such a probabilistic approach is often preferable in practical

problems since its solution also quantifies the uncertainties in the reconstruc-

tion. However, such an approach requires additional statistical assumptions

(e.g., the specification of a prior and the likelihood function, etc.), which may

influence solutions, sometimes in undesirable ways [56]. Moreover, these ap-
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proaches are generally focused on parameter estimation under uncertainty, and

surrogate models generally need to be point-wise accurate only near a nominal

parameter value (e.g., the maximum likelihood parameter) in order to obtain

accurate posterior distributions, e.g., see [46].

In this work, we consider a general framework for constructing pullback

and push-forward probability measures. Since constructing these measures re-

quires global accuracy in the SVM, this serves as a robust test of the ability

of an SVM to quantify uncertainties for other types of inverse problems. This

framework is based upon the general measure-theoretic framework for the for-

mulation and solution to stochastic inverse problems studied in [10]. The

methodology has been successfully applied to a variety of UQ problems in

storm surge modeling [28], subsurface contaminant transport [47], and struc-

tural damage of vibrating beams[14]. In this study, we specify a probability

measure on the observable contaminant concentration data, and through global

sampling of the parameter space, we construct a pullback probability measure

on the parameters defining hydraulic conductivity. We can verify that a pull-

back measure was accurately computed by using the parameter-to-observable

map to compute its push-forward measure and comparing it to the specified

probability measure on these observables. Then, we may use this measure to

construct other push-forward measures for quantities of interest (QoI) to be

predicted by the model, e.g., contaminant levels at spatial locations not used

in the construction of the pullback measure.

The rest of the dissertation is organized as follows. In Chapter 2
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and Chapter 3, we describe the groundwater flow and contaminant transport

model, and the parameterization of the hydraulic conductivity field which is

the unknown parameter in the model. We provide a brief description of the

fundamental principle of SVM for constructing surrogate models in Chapter 4

followed by details for constructing the SVM used in this particular work. The

UQ framework for constructing pullback and push-forward probability mea-

sures is summarized in Chapter 5. We present numerical examples in Chapter 6

to demonstrate the effectiveness of the proposed methodology. Finally, some

concluding remarks are provided in Chapter 7.
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Chapter 2

Groundwater Flow Model

Groundwater often refers to the water held underground in soils or

pores that are fully saturated. Since the natural subsurface system cannot be

analyzed directly because of the complex hydrogeological environment, scien-

tist and engineers often use models to describe it. In this chapter, we present

the mathematical model that governs groundwater flow based on mass con-

servation and Darcy’s law. To solve the model, hydraulic properties including

specific storage and hydraulic conductivity, which can be highly variable some-

times, need to be assigned. However, in practice it’s infeasible to have direct

measurements of the whole hydraulic property field. Many techniques have

been proposed which can be categorized into two main approaches: Empir-

ical and Experimental. The empirical approach is based on the correlation

between hydraulic conductivity and known soil properties from other stud-

ies. It calculates the hydraulic conductivity using empirical formulae such as

Kozeny-Carman equation [2, 18], Hazen equation [17, 39], Breyer equation [53],

etc. The experimental approach determines hydraulic conductivity through

hydraulic experiments, e.g., laboratory tests and field tests. Having some

sparse observations from the tests, we try to infer the hydraulic properties

such that the mathematical model reproduces the observed behavior. In this
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work, assuming covariance functions characterizing the hydraulic conductiv-

ity field are obtained from measurements, we treat the conductivity field as a

random function and decompose it with a Karhunen-Loève Expansion (KLE).

Eigenvalues and eigenfunctions in KLE can be derived analytically in some

special case or computed numerically more generally. We discretize and solve

the groundwater flow model by a mixed finite element method. After solv-

ing the set of equations, the hydraulic heads and flow rates can be obtained

and further coupled with transport models to study contaminant transport

problems.

2.1 Mass Conservation

The law of conservation of mass states that for a saturated porous

medium the net mass flow rate of fluid into a control volume along with sources

or sinks inside is equal to the change in fluid mass storage for a given increment

of time. The resulting continuity equation can be written as

∂(ρφ)

∂t
= −∂(ρqx)

∂x
− ∂(ρqy)

∂y
− ∂(ρqz)

∂z
+ ρg, (2.1)

where qx, qy and qz are components of flux q in three dimensions, ρ is den-

sity of fluid, φ is porosity, and g is sources or sinks. The left-hand side of

Equation (2.1), ∂(ρφ)
∂t

, can be expanded as the sum of φ∂ρ
∂t

and ρ∂φ
∂t

. These

two terms represent the produced mass rate of fluid caused by a change in hy-

draulic head that leads to fluid density change and the porosity change of the

porous medium, respectively. The first term is determined by the compress-

ibility of the fluid while the second term is controlled by the compressibility
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of the porous media. To simplify φ∂ρ
∂t

on the left of Equation (2.1), we define

the specific storage, Ss, as the volume of fluid produced under unit decline in

head due to the fact that both fluid density and porosity changes are caused

by the change in hydraulic head. Therefore, the mass rate of fluid produced

can be written as ρSs
∂h
∂t

, and Equation (2.1) becomes

ρSs
∂h

∂t
= −∇ · (ρq) + ρg. (2.2)

By the chain rule, the first term on the right-hand side is the sum of−∇ρ·q and

−ρ∇ · q. Since the magnitude of the variation in density of fluid is negligible

compared to the flux divergence term, Equation (2.2) can be simplified to

Ss
∂h

∂t
= −∇ · q + g. (2.3)

2.2 Darcy’s Law

Darcy’s law is an empirical law that describes flow through a porous

media. The experiment on water filtration through sand beds carried out by

Darcy in 1856 showed that the gradient of hydraulic head drives the fluid from

high hydraulic head to low hydraulic head. Darcy’s law can be written in

differential form as

q = −K∇h, (2.4)

where q is the Darcy flux, K is hydraulic conductivity, and h is hydraulic

head.

9



2.3 Hydraulic Conductivity Field

Hydraulic conductivity is a property of a porous medium that describes

how easily a fluid can move through it. For example, hydraulic conductivity

has higher values for sand or gravel compared with that for clay. In a heteroge-

neous geologic formation, hydraulic conductivity is a function of position. We

treat the hydraulic conductivity, K, in Equation (2.4) as a random function.

In other words, nominally, the parameter K belongs to an infinite-dimensional

space.

Truncating a Karhunen-Loève Expansion (KLE) is a classical option

for deriving finite-dimensional parameterizations for lnK. Here, we summa-

rize some of the pertinent details and refer the interested reader to [26, 44]

for more information. Constructing the KLE first requires specification of a

covariance function. This may be obtained, for instance, assuming a station-

ary random field and using a variogram on available data from a sparse set

of boreholes. To ensure positive definiteness of the hydraulic conductivity, we

often construct the KLE of Y (x, ω) where Y (x, ω) := ln[K(x, ω)], x is the po-

sition vector defined over the domainD, and ω belongs to the space of random

events Ω. Let Ȳ (x) denote the expected value of Y (x, ω) over all possible real-

izations of the process, and C(x1,x2) denote its covariance function (not to be

confused with the contaminant concentration c(x, t) in Equation (3.2)). Being

an autocovariance function, C(x1,x2) is bounded, symmetric, and positive

10



definite. Thus, it has the spectral decomposition

C(x1,x2) =
∞∑
n=1

λnfn(x1)fn(x2) (2.5)

where λn and fn(x) are the solutions to the homogeneous Fredholm integral

equation of the second kind:∫
D

C(x1,x2)fn(x1)dx1 = λnfn(x2). (2.6)

The eigenfunctions are orthogonal and form a complete set. They can be

normalized according to the following criterion∫
D

fn(x)fm(x) = δnm. (2.7)

Hence, Y (x, ω) can be written as

Y (x, ω) = Ȳ (x) +
∞∑
n=1

ξn(ω)
√
λnfn(x), (2.8)

where λn and fn(x) are determined by C(x1,x2), and {ξn(ω)} is a set of ran-

dom variables that can be inferred from observations. The KLE of a Gaussian

field has the further property that ξn(ω) are independent standard normal ran-

dom variables [40]. Truncating the series in Equation (2.8) at the Nth term

gives the finite-dimensional approximation

Y (x, ω) ≈ Ȳ (x) +
N∑
n=1

ξn(ω)
√
λnfn(x). (2.9)

The uncertain log hydraulic conductivity field is represented as weighted sums

of predefined spatially variable basis functions. The truncated KLE provides

a flexible and effective method for describing a spatially distributed hydraulic

conductivity field. It reduces redundancy while capturing the most important

features of the field.
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2.3.1 Analytical Solution to KL expansion

The integral eigenvalue problem can be solved analytically for some

special types of covariance functions defined on domains of simple geometric

shape. Here we consider a one-dimensional random field characterized by an

exponential covariance function. If we choose a separable covariance func-

tion, the following method can be extended to multidimensional rectangular

domains as Equation (2.6) can be solved in each dimension independently.

Assuming the covariance function has the form of:

C(x1, x2) = σ2
Y e
− |x1−x2|

η , (2.10)

Equation (2.6) becomes

σ2
Y

∫ L

0

e−
|x1−x2|

η f(x2)dx2 = λf(x1). (2.11)

After differentiating Equation (2.11) with respect to x1 by Leibniz rule, we

have

−σ
2
Y

η

∫ x1

0

e
x2−x1
η f(x2)dx2 +

σ2
Y

η

∫ L

x1

e
x1−x2
η f(x2)dx2 = λf ′(x1). (2.12)

Taking the derivative with respect to x1 again, we obtain the following equa-

tion:

f ′′(x1) +
2ησ2

Y − λ
λη2

f(x1) = 0. (2.13)

To find the boundary condition of Equation (2.13), we let x1 = 0 in Equa-

tion (2.11) and Equation (2.12). It is then obvious that

ηf ′(0) = f(0). (2.14)
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Similarly, we can determine the other boundary condition at x1 = L

ηf ′(L) = −f(L). (2.15)

The general solution of Equation (2.13) has the form of

f(x) = acos(βx) + bsin(βx), where β2 =
2ησ2

Y − λ
λη2

. (2.16)

The boundary conditions require that

a− ηβb = 0 (2.17)

[−βηsin(βL) + cos(βL)]a+ [βηcos(βL) + sin(βL)]b = 0 (2.18)

The homogeneous system of linear equations has a unique trivial solution if

and only if the determinant of the coefficient matrix is non-zero. In order for

non-trivial solutions to exist, the determinant vanishes,

(η2β2 − 1)sin(βL) = 2ηβcos(βL). (2.19)

There are infinitely many solutions, βn, n = 1, 2, 3... to Equation (2.19) in

increasing order. The corresponding eigenvalues are

λn =
2ησ2

Y

η2β2
n + 1

. (2.20)

Since fn are normalized eigenfunctions and Equation (2.16) holds, we can

compute an and bn:

an = ηβn
1√

(η2β2
n + 1)L/2 + η

, (2.21)

bn =
1√

(η2β2
n + 1)L/2 + η

. (2.22)
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2.3.2 Numerical Solution to KL expansion

More often, the integral equation can’t be solved analytically due to

a complex geometry or a more general covariance function. Therefore, we

need numerical methods for the solution of the integral eigenvalue problem.

The quadrature method and Galerkin’s method are two very commonly used

methods. The resulting KL expansion takes the form as:

Ŷ (x, ω) = Ȳ (x) +
N∑
n=1

ξ̂n(ω)

√
λ̂nf̂n(x), (2.23)

where λ̂n and f̂n(x) are approximations to the true eigenvalue and eigenfunc-

tions. ξ̂n(ω) are standard uncorrelated random variables.

2.3.2.1 Quadrature Method

We discretize the integral on the left-hand side of Equation (2.6) as

needed for computations. The integral is approximated by numerical integra-

tion:
M∑
l=1

wlCov(x,xl)f̂n(xl), (2.24)

where xl, l = 1, ...,M are a finite set of M quadrature points in the domain, wl

is the corresponding integration weight, and f̂n, n = 1, ..., N are approxima-

tions to the true eigenfunctions fn. Therefore, Equation (2.6) can be written

as:
M∑
l=1

wlCov(x,xl)f̂n(xl) = λ̂nf̂n(x), (2.25)
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If we solve Equation (2.24) at the quadrature points, a set of equations

can be formulated as:

M∑
l=1

wlCov(xm,xl)f̂n(xl) = λ̂nf̂n(xm), m = 1, ...,M (2.26)

They can be expressed in matrix form:

CWf̂n = λ̂nf̂n, (2.27)

where C is an M ×M symmetric positive semi-definite matrix in which cml =

Cov(xm,xl), W is a diagonal matrix with nonnegative elements wll = wl, and

f̂n = (f̂n(x1), ..., f̂n(xM))′ is an M dimensional vector. We can then solve

Equation (2.25) for the interpolation formula of the eigenfunction f̂n(x):

f̂n(x) =
1

λ̂n

M∑
l=1

wlf̂n(xl)C(x,xl). (2.28)

The KL expansion of the random field is approximated as:

Ŷ (x, ω) = Ȳ (x) +
N∑
n=1

ξ̂n(ω)√
λ̂n

M∑
l=1

wlf̂n(xl)C(x,xl) (2.29)

2.3.2.2 Galerkin Method

Galerkin methods can also be used to solve the integral equation. We

let ϕl(x) be a finite set of basis functions, and expand fn(x) with respect to

this basis as:

fn(x) ≈ f̂n(x) =
M∑
l=1

dnl ϕl(x). (2.30)
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Therefore, the residue of Equation (2.6) resulting from the truncated approx-

imation of the eigenfunctions in Equation (2.30) is

r =
M∑
l=1

dnl [

∫
D

C(x1,x2)ϕl(x2)dx2 − λnϕl(x1)]. (2.31)

According to Galerkin orthogonality, it yields a set of equations:

(r, ϕl(x)) = 0, l = 1, ...,M. (2.32)

Equivalently, they can be written in matrix form:

Gdn = λnBd
n, (2.33)

where G is an M ×M matrix in which

Gml =

∫
D

∫
D

C(x1,x2)ϕl(x2)dx2ϕm(x1)dx1, (2.34)

B is M ×M with elements

Bml =

∫
D

ϕm(x)ϕl(x)dx. (2.35)

We solve the generalized eigenvalue problem Equation 2.33 for dn and λn.

Next, dn can be substituted into Equation 2.30 to obtain the approximated

eigenfunctions of the covariance kernel.

2.4 Groundwater Flow Equation

Combining mass conservation and Darcy’s law, the groundwater flow

model can be written as

Ss
∂h

∂t
+∇ · q = g (2.36)
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q = −K∇h (2.37)

subject to initial and boundary conditions, where Ss is specific storage, h is

hydraulic head, q is flux, g is source or sink, and K is hydraulic conductivity.

We consider steady groundwater flow over domain Ω with boundary,

∂Ω = Γ, that is decomposed into two parts in an incompressible saturated

aquifer. The model can be simplified as:

∇ · q = g in Ω (2.38)

q = −K∇h in Ω (2.39)

h = hD on ΓD (2.40)

q · n = f on ΓN (2.41)

Γ = Γ̄D ∪ Γ̄N ,ΓD ∩ ΓN = ∅,ΓD 6= ∅ (2.42)

2.4.1 Variational Formulation

We define a Hilbert space

H(div) = H(div,Ω) = {τ ∈ L2(Ω;R2) | ∇ · τ ∈ L2(Ω)}. (2.43)

We let

Σg = {τ ∈ H(div) | τ · n = g on ΓN}, (2.44)

V = L2(Ω). (2.45)

Multiplying Equation (2.38) by a scalar test function v and Equation

(2.39) by a vector-valued test function τ , and then integrating over the domain

Ω, we obtain a weak formulation: find q ∈ Σg and h ∈ V such that
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∫
Ω

∇ · qvdx =

∫
Ω

gvdx ∀v ∈ V, (2.46)∫
Ω

K−1q · τdx−
∫

Ω

h∇ · τdx = −
∫

ΓD

hDτ · nds ∀τ ∈ Σ0. (2.47)

The boundary condition for the flux is now an essential boundary con-

dition and should be enforced in the function space, while the other boundary

condition becomes a natural boundary condition, which is applied to the vari-

ational form.

2.4.2 Mixed Finite Element Method

We choose finite dimensional subspaces Σh ⊂ Σ and V h ⊂ V , and the

statement of the problem becomes: Find qh ∈ Σh
g , h

h ∈ V h such that

∫
Ω

∇ · qhvhdx =

∫
Ω

gvhdx ∀vh ∈ V h, (2.48)∫
Ω

K−1qh · τ hdx−
∫

Ω

hh∇ · τ hdx = −
∫

ΓD

hDτ
h · nds ∀τ h ∈ Σh

0 . (2.49)

Several mixed finite element spaces may be considered, including the

RTN spaces, BDM spaces, BDFM spaces, BDDF spaces, or CD spaces, to

obtain a stable method.

2.4.3 Convergence Test

We consider the problem on a square domain, Ω = (0, 10)× (0, 10). We

construct a triangular mesh of D with n elements in each direction. We let

K(x, y) = 3.0 + sin(πx) + cos(2πy), (2.50)
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f =− 1

4
π2sin(

π

2
y)(8cos(πx)cos(2πx)

− 17sin(2πx)sin(πx)

− 8sin(2πx)cos(πy)

− 21sin(2πx)cos(2πy)

− 55sin(2πx)).

(2.51)

We impose Dirichlet conditions of hD = 0 on the left and right boundaries.

On the top and bottom boundaries

q · n = 0 (2.52)

and

q · n = −π
2

(3.0 + sin(πx) + cos(2πy))sin(2πx), (2.53)

respectively. The exact solutions to this simple case are:

he = sin(2πx)sin(
π

2
y), (2.54)

and qe = K∇he.

We choose Raviart-Thomas elements of order 1 for Σh, and piecewise

constant for V h. The numerical solution is obtained by using the FEniCS

package. We plot the computed head and flux in Figure 2.1 and Figure 2.2.

Figure 2.3 shows the discretization errors in L2 as a function of the mesh size

h. We observe that the numerical results are consistent with the finite element

convergence theory that

‖qe − qh‖L2 ≤ Ch, (2.55)

‖he − hh‖L2 ≤ Ch. (2.56)
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Figure 2.1: Hydraulic head

Figure 2.2: Flux
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Figure 2.3: Error against mesh size

21



Chapter 3

Transport Model

Non-reactive subsurface contaminant transport in a single fluid phase

can be described by a simple scalar advection-diffusion equation. However,

the numerical solution to the model is still a challenge when advection is

dominant. Many methods have been developed to avoid spurious oscillations.

In this chapter, we first use the streamline upwind Petrov Galerkin (SUPG)

method which stabilizes the numerical solution but still exhibits local oscilla-

tions in crosswind directions when gradients of the contaminant concentration

are large. A nonlinear crosswind dissipation is then added to the SUPG for-

mulation as an additional stabilization. The resulting nonlinear scheme can be

solved by using linearizion through simple iteration. We show a numerical ex-

ample to demonstrate the additional crosswind diffusion damps the overshoots

of the SUPG solution.

3.1 Advection Diffusion Equation

Transport of solutes in porous medium can be described by conservation

of mass. It states that the net rate of change of mass of solute within a

control volume equals sum of the net flux of solute into the control volume
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and sources/sinks inside the control volume. Advection and diffusion are two

components of solute movement. The former is the transport of solute caused

by the flowing groundwater that carries the solute. The latter describes the

process of dispersion due to molecular diffusion. Mathematical descriptions of

solute transport can be written as

u =
q

φ
(3.1)

∂c

∂t
+∇ · (uc)−∇ · (κ∇c) = f in Ω, (3.2)

where c is the solute concentration, u is the velocity field, κ is the diffusivity

and f is the source. We assume the following boundary conditions associated

with Equation (3.2)

c = g on ΓD, (3.3)

κ∇c · n = 0 on ΓN , (3.4)

where g is a given function, and n is the unit normal vector at the boundary.

The initial condition is imposed as:

c(x, 0) = c0(x) in Ω. (3.5)

3.1.1 Semi-Discrete Galerkin Method

We define the space of trial solutions S and the space of weighting

functions V as:

S = {c(·, t) ∈ H1(Ω) | c = g on ΓD} (3.6)
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V = {w ∈ H1(Ω) | w = 0 on ΓD} (3.7)

Multiplying Equation (3.2) by a test function w and integrating by parts, we

have the variational formulation of Equation (3.2): Find c ∈ S, such that∫
Ω

w
∂c

∂t
dΩ−

∫
Ω

∇w · uc+∇w · (κ∇c)dΩ =

∫
Ω

wfdΩ ∀w ∈ V (3.8)

Assume we have a finite element partition of the domain Ω. Let Sh ⊂ S

and V h ⊂ V be finite-dimensional trial solution and test function spaces.

Sh = {ch(·, t) ∈ H1(Ω) | ch = g on ΓD} (3.9)

V h = {wh ∈ H1(Ω) | wh = 0 on ΓD} (3.10)

The Galerkin approximation formulation of Equation (3.8) can be stated as:

Find ch ∈ Sh, such that∫
Ω

wh
∂ch

∂t
dΩ−

∫
Ω

∇wh · uhch +∇wh · (κh∇ch)dΩ

=

∫
Ω

whfhdΩ ∀wh ∈ V h

(3.11)

or, in an abstract compact form,

(wh, cht ) +BG(wh, ch) = L(wh) ∀wh ∈ V h (3.12)

where

BG(wh, ch) := −
∫

Ω

∇wh · uhch +∇wh · (κh∇ch)dΩ (3.13)

L(wh) :=

∫
Ω

whfhdΩ (3.14)
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The trial solution and weighting function are continuous functions written as:

ch(x, t) =
N∑
i=1

ci(t)Ni(x), (3.15)

wh(x)
N∑
i=1

wiNi(x), (3.16)

where Ni is the standard nodal basis of Sh.

The problem above can be formulated in matrix form:

Mċ(t) +Kc(t) = f(t), (3.17)

where the dot represents the time derivative. c is the vector of time-dependent

nodal values of ch.

Mij = (Ni, Nj), (3.18)

Kij = BG(Ni, Nj), (3.19)

fi = L(Ni). (3.20)

Various numerical schemes can be applied to solve the above ordinary

differential equation.

3.1.2 Semi-Discrete Stabilized Method

When the Peclet number increases, the flow becomes advection dom-

inated. Solving the advection-diffusion equation by the standard Galerkin

method results in unphysical oscillation of the numerical solution. To remedy

the spurious oscillations, we use Steamline Upwind Petrov-Galerkin (SUPG)
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method to solve the equation. In SUPG, artificial diffusion is added over el-

ement interiors along the steamline direction to increase the stability of the

solution. The resulting scheme can be written as: Find ch ∈ Sh, such that∫
Ω

wh
∂ch

∂t
dΩ−

∫
Ω

∇wh · uch +∇wh · (κ∇ch)dΩ

+

Nel∑
e=1

∫
Ωe
τSUPGu · ∇whR(ch)dΩ

=

∫
Ω

whfdΩ ∀wh ∈ V h

(3.21)

or,

(wh, cht ) +BG(wh, ch) +

Nel∑
e=1

(τSUPGu · ∇wh, R(ch))Ωe = L(wh) ∀wh ∈ V h,

(3.22)

where

R(ch) :=
∂ch

∂t
+∇ · (uch)−∇ · (κ∇ch)− f, (3.23)

τSUPG =
αh

2 |u|
(3.24)

α = cothγ − 1

γ
(3.25)

γ =
|u|h
2κ

(3.26)

This method has strong consistency as the terms added to the standard

Galerkin method vanish for all sufficiently smooth solutions.

The semidiscrete equation is a system of ODE’s

Mċ(t) +Kc(t) = F (t) (3.27)
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where

Mij = (Ni, Nj) +
Nel∑
e=1

(τSUPGu · ∇Ni, Nj), (3.28)

Kij = BG(Ni, Nj) +
Nel∑
e=1

(τSUPGu · ∇Ni,∇ · (uNj)−∇ · (κ∇Nj)), (3.29)

fi = L(Ni) + (τSUPGu · ∇Ni, f). (3.30)

3.1.3 Time Integration

There are many numerical methods available to solve the following sys-

tems of ordinary differential equations by advancing transient solutions step-

by-step,

Mċ(t) +Kc(t) = f(t). (3.31)

Linear multistep methods and Runge-Kutta methods are two main categories

of numerical methods for solving first-order initial value problem. Further-

more, we can divide them into two groups that are explicit or implicit. For ex-

ample, Adams-Moulton methods and backward differentiation methods (BDF)

are implicit linear multistep methods, whereas diagonally implicit Runge-

Kutta (DIRK), singly diagonally implicit runge kutta (SDIRK), and Gauss-

Radau (based on Gaussian quadrature) numerical methods are implicit Runge-

Kutta methods. Explicit linear multistep methods include the Adams-Bashforth

methods. The most well known member of the Runge-Kutta family, RK4, and

a generalization of the RK4 method are explicit methods. In this work, we use

the standard θ− method to fully discretize the Equation (3.31) into a linear
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system of algebraic equations as

(M + θ∆tK)cn+1 = θ∆tfn+1 + (1− θ)∆tfn + (M − (1− θ)∆tK)cn (3.32)

where ∆t = tn+1 − tn is the time step, and 0 ≤ θ ≤ 1 is a real parameter.

When θ = 0 and θ = 1, the scheme becomes the explicit forward Euler and

implicit backward Euler scheme, respectively, which both give the first-order

accuracy. For θ = 1
2
, it is the second-order unconditionally stable Crank-

Nicolson method.

3.1.4 Crosswind-dissipation

3.1.4.1 Discontinuity-capturing crosswind-dissipation

In some cases where the solution has sharp gradients, the SUPG formu-

lation alone does not completely remove the oscillations. The discontinuity-

capturing technique, also known as the shock-capturing, is proposed to cir-

cumvent this problem by introducing more numerical diffusion into the system

besides the streamline diffusion. In the literature, various researchers have de-

veloped several shock-captureing methods [33, 42, 55, 61]. In this work, we use

the method proposed in [20] which is less diffusive than other such methods. It

keeps the artificial diffusion the same as that in the SUPG formulation along

the direction of the steamlines, and adds extra modified crosswind diffusion

properly. Specifically, we let u‖ be the projection of u onto ∇ch, which is

defined as

u‖ =
u · ∇ch
|∇ch|2

∇ch (3.33)

28



when |∇ch| is nonzero. The corresponding element Peclet number can be

computed as

γe‖ =

∣∣u‖∣∣h
2κ

(3.34)

γe‖ is small in the regions where |u · ∇ch| is small.

The crosswind diffusion added to the left-hand side of Equation SUPG

can be described as

ASC(ch;wh, ch) :=

Nel∑
e=1

∫
Ωe

1

2
αech

e |R(ch)|
|∇ch|

∇wh · (I−
1

|u|2
u⊗u) ·∇chdΩ (3.35)

where I is the unit tensor. The function αec is defined as

αec = max{0, C − 1

γe‖
}, (3.36)

where C is an empirical constant which is often set to be 0.7 in 2D problems

for linear elements. It is obvious that the crosswind diffusion is proportional to

the residual defined within each element. Therefore, the consistency property

still holds. Moreover, when |u · ∇ch| is small, αec will take a value close or

equal to 0. That means less or no crosswind diffusion will be add to the

regions where the convective term of the residual is small, which improves the

accuracy of this method. In Figure 3.1, we show the artificial diffusion added

in the streamline and crosswind directions in a 2D case.

The crosswind diffusion defined in Equation (3.35) is nonlinear. Non-

linear methods like Newton-GMRES can be applied to solve the resulting

nonlinear algebraic system.
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Figure 3.1: A schematic figure showing streamline diffusion and crosswind
diffusion where κ1 = κ+ 1

2
αh |u| and κ2 = κ+ 1

2
αech |R(ch)| / |∇ch|.

3.1.4.2 Linearization of the nonlinear problem

As noted, the crosswind diffusion defined in Equation (3.35) is nonlin-

ear. As an alternative to the nonlinear methods used in [61], we use a simple

two-iteration method to solve the nonlinear equation at a low computational

cost. At each time step, we first solve the transport equation by SUPG for

chSUPG:

(wh,
∂chSUPG
∂t

) +BG(wh, chSUPG)

+

Nel∑
e=1

(τSUPGu · ∇wh, R(chSUPG))Ωe

=L(wh) ∀wh ∈ V h

(3.37)
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In the second iteration, we determine the magnitude of the crosswind diffusion

based on the solution chSUPG and solve the linearized equation for ch:

(wh,
∂ch

∂t
) +BG(wh, ch)

+

Nel∑
e=1

(τSUPGu · ∇wh, R(ch))Ωe + ASC(chSUPG;wh, ch)

=L(wh) ∀wh ∈ V h

(3.38)

where

ASC(chSUPG;wh, ch) =

Nel∑
e=1

∫
Ωe

1

2
αech

e

∣∣R(chSUPG)
∣∣∣∣∇chSUPG∣∣ ∇wh · (I − 1

|u|2
u⊗u) · ∇chdΩ

(3.39)

3.1.4.3 Numerical example

We consider a transport problem in Ω = (0, 1)×(0, 1) with homogeneous

Dirichlet boundary conditions. We assume the solute concentration is zero

everywhere at the initial time. The model parameters are taken as u = (0, 1),

κ = 10−8, and f = 1. We solve the problem within FEniCS using continuous

piecewise linear elements for spatial discretization on a uniform triangular

mesh of 65× 65 and the backward Euler method with a uniform time step of

10−2 for time integration. We integrate in time until T = 0.3.

Figure 3.2 and Figure 3.3 show contours of the solutions at T = 0.3

which are computed using SUPG with and without crosswind diffusion. From

the figures, it is observed that in the SUPG solution there are localized os-

cillations near the boundaries where the gradient of the solution is sharp. In
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Figure 3.4 and Figure 3.5, we see that those spurious oscillations are suppressed

with the application of the crosswind diffusion.

Figure 3.2: SUPG solution at T = 0.3
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Figure 3.3: Slice of SUPG solution at y = 0.5 at T = 0.3

Figure 3.4: SUPG with crosswind diffusion solution at T = 0.3
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Figure 3.5: Slice of SUPG with crosswind diffusion solution at y = 0.5 at
T = 0.3
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Chapter 4

Surrogate Model1

It is often computationally expensive to solve an inverse problem. One

of the high computational cost may come from thousands of forward simula-

tion evaluations. To improve the efficiency, several types of surrogate models

have been studied to replace expensive physics model simulations. In this

chapter, we use Support Vector Machine (SVM) to build surrogate models to

approximate a response surface between model parameters and a quantity of

interest. Based on a small set of sampled data obtained by solving the forward

problem with randomly chosen inputs, SVM surrogate models can be built to

predict model output (quantity of interest) of an unseen input (model param-

eters). Compared with a true model solve, computational cost associated with

a surrogate model evaluation is negligible.

4.1 Surrogate Modeling with Support Vector Machines

The theory of SVM was developed based on statistical learning theory

for the purpose of classification, and later extended for regression [66]. Suppose

1This chapter is based on the article entitled Data-driven uncertainty quantification for
predictive flow and transport modeling using support vector machines by Jiachuan He, Steven
Mattis, Troy Butler and Clint Dawson [32].
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we are given a set of l training points, {(x1, y1), ..., (xl, yl)}, where xi ∈ Rn

is an input vector and yi ∈ R1 is the target output. The solution to the

regression problems define the SVM to approximate the relation between the

input vector and the output, thereby estimating the values of the output at

unsampled points in the space of the input domain.

As a first step, the input vector x is mapped to a higher dimensional

feature space by a map, Φ(x). Then, the regression tries to find a function

f(x) that is within an error tolerance of ε away from the given outputs in the

feature space. The regression function takes the general form:

f(x) = 〈w,Φ(x)〉+ b, (4.1)

where w is a vector in the feature space. In this case, the norm of w indicates

the flatness of the function. The regression problem can be mathematically

expressed in terms of the following optimization problem:

min
1

2
‖w‖2 + P

l∑
i=1

(ζi + ζ∗i )

subject to


yi − f(xi) ≤ ε+ ζi

f(xi)− yi ≤ ε+ ζ∗i
ζi, ζ

∗
i ≥ 0

i = 1, ..., l

(4.2)

where the positive constant P determines the trade-off between the flatness

of f and the amount up to which deviations larger than ε are tolerated. In

other words, P determines how much large deviations are penalized in the
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regression. The slack variables ζ and ζ∗ are described as

ζi, ζ
∗
i =

{
0, if |yi − f(xi)| ≤ ε

|yi − f(xi)| − ε, otherwise
(4.3)

In other words, points inside the margin (dotted lines in Figure 4.1) do not

contribute to the cost function.

The above optimization problem is usually solved in its Lagrangian

dual form:

max−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )〈Φ(xi),Φ(xj)〉 − ε
l∑

i=1

(αi + α∗i ) +
l∑

i=1

yi(αi − α∗i )

subject to


∑l

i=1(αi − α∗i ) = 0,

0 ≤ αi, α
∗
i ≤ P,

i = 1, ..., l,

(4.4)

where αi and α∗i are Lagrange multipliers. In the derivation of Equation (4.4),

by setting the derivatives of the Lagrangian with respect to w to zero, we have

w =
l∑

i=1

(αi − α∗i )Φ(xi). (4.5)

Thus, the regression function can be rewritten as

f(x) =
l∑

i=1

(αi − α∗i )k(xi,x) + b, (4.6)

where k(xi,x) = 〈Φ(xi),Φ(x)〉 is the kernel function (not to be confused with

the hydraulic conductivity K in Equation (2.37)). The values of {αi}li=1 and

{α∗i }li=1 are obtained by solving the dual problem, and b can be computed by

exploiting the so called Karush-Kuhn-Tucker (KKT) conditions. Also, from
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the KKT condition, it follows that for all points inside the margin, the corre-

sponding αi and α∗i vanish. In general, when the dimensionality of w is higher

than the number of data points, it is easier to solve the optimization problem

in its dual formulation. Once the dual problem is solved, the function value

at any unsampled point depends only on the inner product between Φ(x) and

the points in the training set with non-zero αi values. Moreover, working with

the dual problem enables us to perform the kernel trick method. Rather than

mapping the input vectors through an explicit Φ and working in the enlarged

feature space, it is sufficient to know k(xi,xj). This is important because in

many applications of SVMs, the dimensionality of the feature space is so high

that it can easily become computationally infeasible. By using kernels, one

only needs to compute K(xi,xj) for all
(
l
2

)
distinct pairs i, j in Equation (4.4).

Therefore, the dimensionality of the feature space does not affect the compu-

tation. Note that w is no longer given explicitly this way. Algorithmic details

for computing the values needed to evaluate Equation (4.6) are discussed by

[23].

Some commonly used kernel types in SVM are linear, polynomial, sig-

moid and radial basis functions; see [35] for more information. The penalty

parameter P and kernel parameters are then often determined using grid search

with cross-validation.
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Figure 4.1: A schematic of ε-insensitive loss function
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4.2 SVM for Subsurface Flow Models

In this section, a two-dimensional model of saturated flow is used to

construct the SVM surrogate models used in this study. This model is also

used for numerical examples in Chapter 6.

We consider steady groundwater flow over domain D = (0, 10) ×

(0, 10)[L2] in heterogeneous porous media; see Figure 4.2 for an illustration.

We impose Dirichlet conditions of hL = 15[L] and hR = 10[L] on the left and

right boundaries, respectively. On the top and bottom boundaries, q · n =

0[LT−1], where n denotes the outward directed boundary normal. We assume,

for simplicity, that Y (x, ω) = ln[K(x, ω)] is Gaussian [25, 34] with zero mean

and a separable exponential covariance function,

C(x1,x2) = C(x1, y1;x2, y2) = σ2
Y e

[− |x1−x2|
η1

− |y1−y2|
η2

]
, (4.7)

where σ2
Y = 2, η1 = 10[L] and η2 = 4[L] are the variance and the correlation

lengths of the random field. Consequently, lnK can be expanded with the form

of Equation (2.8) where eigenvalues and the corresponding eigenfunctions can

be analytically determined in this case according to [70]. We use the FEniCS

package [3, 45] to solve the groundwater flow and transport models for the

concentration. Equation (2.36) is solved using the Raviart-Thomas mixed

method on a 64 × 64 mesh with triangular elements. For Equation (3.2),

suppose we have geophysically reasonable parameters φ = 0.1, D = 5[L2T−1].

There is no contaminant in the domain at the initial time. The concentration

is prescribed on the left boundary as the contaminant source, CL = 50[ML−3],
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Figure 4.2: The flow domain. 8 green + are the only measurement locations
where contaminant concentrations are available; Blue × is the prediction lo-
cation where concentration is predicted.

and no-flow (i.e., zero Neumann) otherwise. The system is discretized in time

using the Crank-Nicolson method with a time step of dt = 0.05[T ], and then

solved by the streamline upwind Petrov Galerkin method on the same mesh.

We use the inverse transformation method (see Chapter 2 in [59])

to transform the N(0, 1) distributed random variables, ξi(ω), to U(0, 1) dis-

tributed random variables, so that we can define the parameter domain as the

unit hypercube Ξ = [0, 1]9. For the sake of notational simplicity, we also let ξi

denote the transformed uniform random variables. Then, any inverse transfor-

mation of a point ξ = (ξ1, ξ2, ..., ξ9) ∈ Ξ realizes a log hydraulic conductivity

field via Equation (2.9), and the nine-dimensional domain is mapped to an
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eight-dimensional output space via the parameter-to-observables map

Q(ξ) = [q1(ξ), q2(ξ), q3(ξ), q4(ξ), q5(ξ), q6(ξ), q7(ξ), q8(ξ)],

which involves solving the flow and contaminant transport models with the

corresponding K and calculating the solution at the eight observation loca-

tions in the physical domain (see Figure 4.2) at T = 2[T ]. We draw 5000

independent identically distributed (i.i.d.) sample points in Ξ, and compute

the corresponding concentrations in D.

We use the open-source software LIBSVM [16] to construct a response

approximation between ξ (input) and the contaminant concentration at each

observation/prediction location, qi(ξ) (output) for i = 1, ..., 8, using the 5000

model evaluations as a training set. We let ε = 0.1 in the loss function

Equation (4.2).

Since the dimension of input parameters is low, the RBF kernel,

k(xi,xj) = e−γ‖xi−xj‖
2

, (4.8)

is naturally a good choice since it can handle the nonlinear relation between

input and output with less hyper-parameters compared with other kernels, e.g.,

polynomial kernel, see [35] for more information regarding choosing kernels.

The feature space in this case is implicitly defined and infinite-dimensional.

Two hyper-parameters, the penalty parameter P and γ in the RBF kernel,

must be determined to construct the SVM. We use a straightforward two-step

grid-search method to find the optimal hyper-parameter pair (P, γ). A coarse
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and fine grid search with 10-fold cross-validation are performed on a subset of

size 1000 from the training set to determine the optimal hyper-parameter pair.

Using an appropriate subset of data that has similar range and distribution of

target outputs as the larger training set can drastically speed up the process

of hyper-parameters tuning through cross-validation. In Figure 4.3, we show

plots of the range and distribution of q1(ξ) from 1000 sample points and the

whole training set. Scatter plots of contaminant concentration observations at

qi are shown in Figure 4.5.

Specifically, we first consider various pairs of (P, γ) values in which

P = 2−5, 2−3, ..., 215, and γ = 2−5, 2−3, ..., 215 (see Figure 4.4) on a coarse

grid. For each (P, γ), we quantify its quality by performing a 10-fold cross-

validation. The 1000 sample points are divided into 10 subsets of equal size.

We train the model based on 9 subsets, and treat the remaining subset as

an “unknown” set. The mean square error (MSE) can be computed on the

“unknown” set to measure the quality of the prediction,

MSE =
1

l

l∑
i=1

(f(xi)− yi)2, (4.9)

where l is the number of samples in the “unknown” set. The procedure is re-

peated 10 times until each subset has been predicted once. The average of the

10 resulting MSE estimates indicates how accurate the model can predict un-

known data. The pair that leads to the highest cross-validation accuracy (the

smallest value of the average MSE) is found in Table 4.1. We then repeat the

search process on a fine grid in the neighborhood of the optimal (P, γ) obtained
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Figure 4.3: Range and distribution of q1. Dataset of 5000 samples (top) and
dataset of 1000 samples (bottom).
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Figure 4.4: Illustration of grid search on (P, γ). Pairs of values at the grid
nodes are tried, and the one with the best cross-validation accuracy is picked
to train the whole training set.

from the previous coarse grid search. For example, the grid-search is performed

in the region of P = 211, 211.5, ..., 213, ..., 215, and γ = 2−5, 2−4.5, ..., 2−3, ..., 2−1

to determine the optimal parameters for the SVM to approximate the relation

between q1(ξ) and ξ. The optimal hyper-parameters are listed in Table 4.2.

Before we build surrogate models on the whole training set including

5000 data points, we plot learning curves for a sanity check on the training set

size. Learning curves plot the prediction accuracy on training and validation

set against the training set size to show how the model improves at predicting

the target output as we increase the number of sample points in the training

set. This helps diagnose whether the model suffers from high bias or variance,

and tells whether more training points will help in improving the model per-

formance on prediction. If two curves converge at a low accuracy, a predictive
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 4.5: Scatter plots of computed concentrations at pairs of qi
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Figure 4.6: Learning curves of the SVM surrogate for q4(ξ).

model is underfitting and is unable to capture the relationship between the in-

put and target output. Adding more training data is not helpful in this case.

A more complex model is needed. If the model performs well on the training

data but poorly on the validation set, i.e., there is a large gap between the

two learning curves, it is overfitting. In other words, the model memorizes the

data it has seen but doesn’t generalize for unseen data. We shuffle and split

the whole dataset 10 times into training and validation data in the ratio of 4

to 1. Subsets of the training set with varying sizes are used to train the SVM

with the hyper-parameters in Table 4.2, and MSE for each training subset size

and the validation set are computed. The MSE is then averaged over all 10

runs for each training subset size. In Figure. 4.6, we show the learning curves

of the surrogate model for q4. When the training set is small, the training
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Table 4.1: Optimum (P, γ) for RBF kernels from coarse grid search

P γ MSE R2

q1 213 2−3 0.185761369 0.957232
q2 213 2−3 0.242837426 0.952064
q3 213 2−3 0.628202705 0.966536
q4 27 2−1 1.86252441 0.964607
q5 29 2−1 3.88174606 0.957161
q6 213 2−3 4.27258069 0.967153
q7 29 2−1 5.50957803 0.971784
q8 213 2−3 5.25627116 0.975476
qprediction 213 2−3 2.27758075 0.975397

error is small too. As the training set size grows, the training error slowly

increases but still remains low. On the other hand, the validation error is high

due to overfitting when the model is trained on a small training set and does

not generalize. Also, the large gap between training error and validation error

indicates that the model trained with the given hyper-parameters in Table 4.2

exhibits high variance. In this situation, using more training points is helpful

to reduce high variance. However, the validation error starts to level off when

the training set size is around 4000. Including more points for training will

further reduce the validation error slightly at the expense of longer training

time. Therefore, in this work, we use 5000 training points to create reliable

surrogate models in low computational time.
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Table 4.2: Optimum (P, γ) for RBF kernels from fine grid search

P γ MSE R2

q1 212 2−3 0.179665488 0.960749
q2 212 2−2.5 0.238587029 0.953566
q3 214.5 2−3.5 0.626073890 0.968131
q4 28.5 2−1.5 1.76103827 0.967289
q5 29.5 2−1 3.69977373 0.961253
q6 214.5 2−3.5 4.23652222 0.969461
q7 28 2−1 5.22852799 0.973601
q8 212 2−3 5.18621775 0.976414
qprediction 212 2−2.5 2.20208775 0.976066
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Chapter 5

Measure-Theoretic Framework1

Different types of inverse problems may be formulated under various

physical and statistical assumptions on model parameters. In this chapter, we

use a set-approximation method to solve the stochastic inverse problem which

is formulated within a measure-theoretic framework. We consider a deter-

ministic model where the dimension of the observable output is smaller than

that of the model input parameters. The corresponding inverse problem then

has set-valued solutions. We present a numerical method to approximate the

set-valued solutions of probability measure of model input, given an assumed

probability distribution on the observations.

As mentioned in Chapter 1, we focus on constructing pullback and

push-forward probability measures through the surrogate defined by the SVM.

By not assuming prior distributions or likelihoods, the quality of computing

such probability measures is solely dependent upon the global accuracy of the

SVM and its ability to propagate probabilistic events accurately.

1This chapter is based on the article entitled Data-driven uncertainty quantification for
predictive flow and transport modeling using support vector machines by Jiachuan He, Steven
Mattis, Troy Butler and Clint Dawson [32].
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5.1 Pullback and push-forward measures

We briefly describe pullback and push-forward probability measures

using the notation of the previous sections. For a more thorough discussion

of pullback measures including a discussion of existence and uniqueness, we

direct the interested reader to A Measure-Theoretic Computational Method for

Inverse Sensitivity Problems III: Multiple Quantities of Interest [10] and the

references therein.

Let D = Q(Ξ) denote the range of the parameter-to-observable map

and PD a probability measure defined on D. In practice, this probability

measure may be obtained by either a statistical analysis of measured data,

engineering knowledge of the uncertainty in measured data, or imposed as

part of an engineering design (e.g., representing worst-case scenario analysis

or desired responses assuming some level of control/intervention of the model

parameters Ξ). Once PD is specified, a pullback measure PΞ on Ξ is any

measure satisfying the (consistency) condition,

PΞ(Q−1(A)) = PD(A), (5.1)

for every event A in D. Oftentimes, these probability measures are described

as densities ρΞ and ρD on Ξ and D, respectively, and consistency takes the

form of

PΞ(Q−1(A)) =

∫
Q−1(A)

ρΞdµΞ =

∫
A

ρDdµD = PD(A), (5.2)

for every event A in D, where µΞ and µD describe (volume) measures on Ξ

and D, respectively.
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In general, there is not a unique pullback measure PΞ since the consis-

tency condition only requires specification of this measure on events Q−1(A)

within Ξ. Thus, unless Q is a bijection between Ξ and D, for any event A in

D, we are free to make certain choices on how PΞ is evaluated on subsets of

Q−1(A). In Figure 5.1, we use a general two-to-one map as an example. If Q

is a mapping from Λ ⊂ R2 to D ⊂ R1, then through the inverse map there

is a set of values, Q−1(Q(λ)), in Ξ that are associated to a given value Q(λ)

where λ ∈ Λ. We call this inverse set a generalized contour. Any two points

in the same generalized contour are equivalent (not distinguishable) as they

correspond to the same value in D. The space of equivalence classes imposed

by Q−1 in Λ is denoted by L, so that each point in L identifies a generalized

contour. Therefore, Q−1 defines a bijection map between L and D. To com-

pute the probability measure of any event in Ξ, we can use the Disintegration

Theorem to decompose it into measures in L and along generalized contours

corresponding to points in L. However, the latter is not available by inverting

Q. An Ansatz needs to be incorporated to specify the probability measures

along the contours. In order to test the global accuracy of the SVM defining

Q, we use the standard Ansatz (see [10]) to proportion probabilities uniformly

in directions of Ξ not informed by the map Q, hence resulting in a unique

pullback measure PΞ.

Given any probability measure PΞ on Ξ, we may use the map Q to

define a push-forward of this measure on D defined by

P
Q(Ξ)
D (A) := PΞ(Q−1(A)), (5.3)
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for every event A in D. Comparing Equation (5.1) and Equation (5.3), we

observe that we can easily check if a pullback measure PΞ was constructed

by comparing P
Q(Ξ)
D with PD on D. Moreover, by considering other maps Q

(e.g., corresponding to QoI to be predicted), we can use a pullback measure

to easily construct other push-forward measures quantifying uncertainties in

predictions.
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Figure 5.1: Illustrations of the inverse problem for a general two-to-one map
Left: The set-valued inverse of a single output value. Middle: The represen-
tation of L as a transverse parameterization. Right: A probability measure
described as a density on D maps uniquely to a probability density on L.
Figures adopted from [9]

55



5.2 Numerical construction of pullback and push-forward
measures

Forward UQ problems involving the construction of push-forward mea-

sures are well-studied and the measures are typically approximated using

Monte Carlo or other sampling schemes. In Algorithm 1, we summarize a

basic sampling scheme for approximating a pullback measure with the stan-

dard Ansatz first introduced in [10]. The output of Algorithm 1 is an array of

probabilities {pΞ,j}Nj=1 associated with each sample {ξ(j)}Nj=1 ∈ Ξ. Using this

array of probabilities, we can approximate the probability of any event A in

Ξ using a counting measure

PΞ(A) ≈ PΞ,N(A) :=
∑
ξ(j)∈A

pΞ,j. (5.4)

Thus, we obtain an approximation to the pullback probability measure on Ξ.

This algorithm is implemented within the BET software package [29]. BET

stands for Butler Estep Tavener method.

In Algorithm 1, we approximate events, implicitly, with finite collec-

tions of Voronoi tessellations of Ξ. The error of implicit Voronoi approxima-

tions of Q−1(Dk) in Step 5 of the algorithm due to finite sampling effects the

counting measure estimates. Increasing the number of samples is one of the

approaches to reduce the error as shown in Figure 5.2, and with a sufficiently

large number of i.i.d. samples, we often use the Monte Carlo approximation

in Step 7 of the algorithm that Vj = µΞ(Ξ)/N (i.e., each Voronoi cell is ap-

proximated to have the same volume). However, errors in the SVM can lead
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Algorithm 1: Numerical Approximation of a Pullback Measure

1. Choose samples {ξ(j)}Nj=1 ∈ Ξ implicitly defining a Voronoi tessellation
{Vj}Nj=1 ⊂ Ξ.

2. Evaluate Q(j) = Q(ξ(j)) for all ξ(j), j = 1, .., N .

3. Choose a partitioning of D, {Dk}Mk=1 ⊂ D. Refer to each Dk as a bin.

4. Compute pD,k ≈ PD(Dk) for k = 1, ...,M .

5. Let Ck = {j|Q(j) ∈ Dk} for k = 1, ...,M denote a pointer indicating the
subset of {Vj}Nj=1 approximating Q−1(Dk).

6. Let Oj = {k|Q(j) ∈ Dk}, for j = 1, .., N denote a pointer indicating
where sample Q(j) is binned in D.

7. Let Vj be the approximate volume of Vj, i.e. Vj ≈
∫
Vj
dµΞ(Vj) for

j = 1, .., N .

8. Set pΞ,j = (Vj/
∑

i∈COj
Vi)pD,Oj , j = 1, .., N .
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to incorrect binning of samples in Step 6 of the algorithm. These errors sub-

sequently impact both pointer Ck and Oj in Steps 5 and 6 of the algorithm,

respectively. Such errors propagate directly to the array of computed proba-

bilities in Step 8 of the algorithm.
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Figure 5.2: The error in the µΞ−volume of a Voronoi coverage of Q−1(Dk)
affects PΞ estimation. For any fixed partitioning of D, PΞ,N converges to PΞ

as N −→∞.

5.3 Comparison to Bayesian posterior and computa-
tional complexity

Here, we use some simplifying assumptions in order to provide a rea-

sonable comparison between the solutions and computational complexity for

inverse problems formulated in either the measure-theoretic or Bayesian frame-

works. We first assume that there are no hyperparameters used in the def-

initions of the prior distribution for the Bayesian formulation and that this

prior is also used to formulate the Ansatz for distributing probabilities along

the contour events in the measure-theoretic formulation. If we further assume

that the likelihood function is defined in such a way that it matches the distri-
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bution we use to invert for the same parameter-to-observables map, then the

solutions to either problem formulation are probability measures on the (same)

parameter space that have the same conditional probability distributions on

the generalized contours of the parameter-to-observables map. However, the

probability measures will still be different in directions (locally) orthogonal to

the generalized contours. This difference is due to the influence of the prior

distribution in the Bayesian setting in all directions of parameter space in-

cluding those directions informed by the data, which is not the case in the

measure-theoretic approach. See [11] for a simple 1-D example highlighting

this difference, which emphasizes the fact that the Bayesian formulation is not

attempting to construct a pullback measure. In other words, even when the

setup of the problems are effectively identical in either formulation, the actual

problem being solved is based on fundamentally different perspectives so that

the solutions have different structures.

To compare the computational complexities, assume that the goal of

generating samples from the Bayesian posterior distribution is to approximate

probabilities of events. If a Monte Carlo sampling scheme is used in a Bayesian

framework, then the convergence of the Monte Carlo estimates of probabilities

of events is subject to the well-known Central Limit Theorem. Algorithm 1

can be interpreted as a Monte Carlo approximation to probabilities of events

if samples in Step 1 are drawn in the parameter space according to a prior

density (although a prior density is not necessary to apply Algorithm 1). The

convergence then follows from results in stochastic geometry that rely on the
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Strong Law of Large Numbers [12], which is a key result used in proving

the Central Limit Theorem. In other words, the rates of convergence for

either method using similar statistical tools for generating random samples

should generally be similar in practice. Since the measure-theoretic approach

involves estimation of the discretized contour events, it is possible to define

non-random sets of samples to reduce errors in probability for any contour

event to a desired level of accuracy [13]. We note that much work has been

done over the last decade in accelerating sampling of the Bayesian posterior

using methods primarily based upon Markov Chain Monte Carlo sampling.

Leveraging such sampling approaches for the measure-theoretic inversion is

the topic of future research.
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Chapter 6

Numerical Examples1

In this chapter, a probability measure on the observable data is specified

to account for measurement uncertainty, and a pullback probability measure

on the parameters that characterizes hydraulic conductivity is constructed.

In the first three examples, contaminant concentration is used as observation.

In Example 4 and 5, we derive hydraulic conductivity by conditioning on hy-

draulic head data. The estimated hydraulic conductivity is then used in models

to predict head or contaminant concentration values where measurements are

not available. In these examples, we draw samples from the parameter do-

main and solve the physics-based models with hydraulic conductivity fields

characterized by those samples to obtain training sets. The evaluations of

physics-based models are replaced by SVMs which are learned on the training

sets.

1This chapter is based on the article entitled Data-driven uncertainty quantification for
predictive flow and transport modeling using support vector machines by Jiachuan He, Steven
Mattis, Troy Butler and Clint Dawson [32].
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6.1 Construction of a pullback measure from concen-
tration observation

Example 1: In this example, we construct and analyze a pullback mea-

sure with the SVM given in Chapter 4. We describe the impact of Steps 5

and 6 in Algorithm 1 in identifying highly probable, but spatially disparate,

hydraulic conductivity fields. This demonstrates how the pullback measure is

defined globally on Ξ in terms of inverse sets that may stretch across large

portions of Ξ.

A realization of 9-term truncated KLE is randomly chosen to be the

reference field considered as the true underlying hydraulic conductivity field

(see Figure 6.1). We solve the flow and contaminant transport models based

on the reference field using the discretization described in Chapter 4. The

simulated contaminant concentration at time T = 2 at the measurement lo-

cations marked qi for i = 1, 2, . . . , 8 in Figure 4.2 yields the reference output

data (observations) Qobs = [q̂1, q̂2, . . . , q̂8] given by the vector

[44.95, 45.37, 37.58, 31.35, 24.39, 16.79, 11.96, 8.06],

where q̂i denotes the concentration datum at the observation location qi for

i = 1, 2, ..., 8. A probability measure PD on D is then defined in terms of a

multivariate normal probability density function ρD centered at Qobs with a

standard deviation of 0.01 × Qobs to reflect the measurement uncertainty in

the observation data. In other words, we take the measurement uncertainty

as a Gaussian distribution over all possible values that could be attributed to
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Figure 6.1: The reference lnK field approximated by a truncated KLE with 9
terms.

the uncertain concentration measurement. The relative measurement uncer-

tainty, the measurement uncertainty divided by the single absolute value of

the measured concentration, is 0.01 here.

Given ξ, qi(ξ) for i = 1, 2, ...8 can be efficiently evaluated by the SVM

using Equation (4.6) based on 5000 training points. Then, 5× 105 points in Ξ

are evaluated using the SVMs based on the hyper-parameters in Table 4.2. We

apply the 5× 105 samples in Algorithm 1 to approximate PΞ. We order all of

the samples by probability that is associated to each implicitly defined Voronoi

cell. In Figure 6.2 and Figure 6.3, we show some samples from the region of the

highest probability in the parameter space. It is clear that sample (a) in Fig-

ure 6.2 yields a hydraulic conductivity field that exhibits a pattern very similar

to the reference field. Since the solution to the deterministic inverse problem
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(a) (b)

(c) (d)

Figure 6.2: Samples of lnK from Voronoi cells with highest probability that
are qualitatively similar to the reference lnK
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(a) (b)

(c) (d)

Figure 6.3: Samples of lnK from Voronoi cells with highest probability that
are qualitatively different from the reference lnK
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is inherently set-valued, many hydraulic conductivity fields result in the same

or similar simulated values of measured contaminant concentrations. As a re-

sult, although samples shown in Figure 6.3 completely misrepresent the truth,

they correspond to Q(j) samples that are binned in a region of high probability

according to Algorithm 1. However, we in general have limited knowledge of

what the truth is, and unless more data or domain specific knowledge can

rule out the fields represented by samples in Figure 6.3, they should be used

in constructing push-forward measures and constructing conservative predic-

tions. The rest of the samples in Figure 6.2 capture the major features of the

reference profile, but they over/under predict the conductivity in some area.

It may be possible to use this non-parametric probability measure to define a

physically informed prior density in a Bayesian setting to further localize the

probability to small ranges, but this is beyond the scope of this work.

6.2 Validation with push-forward measure

Example 2: In this example, we verify the convergence of the pullback

measures and validate these results by assessing how well the pullback mea-

sures can be used to predict unknown data by leave-one-out validation. Specif-

ically, we use the observation from seven wells to “predict” the concentration

at the remaining observation well. A realization of a 100-term truncated KLE

is used to represent a more realistic reference hydraulic conductivity field (Fig-

ure 6.5) for practical applications. However, to demonstrate how well the SVM

constructed on low-dimensional representations of hydraulic conductivity per-
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forms, we use the same SVM based on the 9-term truncated KLE described

in Chapter 4, which only retains about 70% of the reference variance in the

infinite-term expansions of the hydraulic conductivity fields. Thus, with the

same model setup as the previous example except for the reference K, we

solve the flow and contaminant transport models to generate the observable

contaminant concentrations at T = 2, Qobs = [q̂1, q̂2, q̂4, q̂5, q̂6, q̂7, q̂8] given by

the vector

[49.71, 49.77, 47.40, 45.88, 42.76, 40.08, 35.88],

in the seven wells (note that q̂3 is not used). We again assume that ρD is a

multivariate normal distribution with mean at Qobs and standard deviation of

0.01×Qobs. To verify the convergence of the pullback measures, we construct

surrogate models for qi(ξ) based on training set of Nt training points, where

Nt = 1000, 2000, 3000, 4000, 5000. We use 5 × 105 i.i.d. sample points in

Algorithm 1 to compute the corresponding pullback probability measure on

the 9-dimensional parameter space, PNt
Ξ,5×105 . We estimate the change in the

probability measures in terms of total variation by

d(PNt
Ξ,5×105 , P

N ′t
Ξ,5×105) =

5×105∑
i=1

|PNt
Ξ (ξ(i))− PN ′t

Ξ (ξ(i))|. (6.1)

The total variation is a metric that ranges from 0 to 2. It is 0 if two probability

measures are idential; it is 2 if the probability measures have disjoint supports.

In Table 6.1, we verify the convergence of the pullback probability mea-

sures computed from SVMs with increasing training set sizes by computing
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Table 6.1: Total variations of pullback probability measures for example 2.

d(P 1000
Ξ,5×105 , P

5000
Ξ,5×105) 0.9673

d(P 2000
Ξ,5×105 , P

5000
Ξ,5×105) 0.7291

d(P 3000
Ξ,5×105 , P

5000
Ξ,5×105) 0.5776

d(P 4000
Ξ,5×105 , P

5000
Ξ,5×105) 0.4221

the total variation between these measures and the pullback probability mea-

sure constructed for the SVM with the full 5000 training samples. Note that

the total variation monotonically decreases as the number of samples in the

training set monotonically increases.

We next validate the results by constructing the push-forward prob-

ability measure on the space of predictions, q3(ξ). This prediction of the

push-forward probability measure on q3 is obtained by weighting simulated

concentrations of q3(ξ) using the SVM surrogate at the 5 × 105 samples of Ξ

where the weights come from the pullback probability measure P 5000
Ξ,5×105 . We

approximate the probability density function of the contaminant concentration

at q3 with the weighted histogram in Figure 6.4. The “true” observation (cor-

responding to the full 100-term reference KLE of the hydraulic conductivity

field) lies within the highest probability region of the predicted push-forward

distribution. This indicates that the low-dimensional representation of hy-

draulic conductivity can be used to define accurate SVM surrogates for both

probabilistic inversion and prediction.
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Figure 6.4: Predicted probability density function of concentration at q3 using
500000 samples. The true observation at q3 is illustrated by a black dot on
the x-axis.

6.3 Concentration data-to-parameter-to-concentration pre-
diction

Example 3: In this example, we consider the goal of estimating the

contaminant concentration in the domain where measurements are unavailable,

which is often needed for subsurface contaminant remediation or resources

management. The model setup is the same as the previous example except we

use the full observation vector Qobs = [q̂1, q̂2, . . . , q̂8] given by

[49.71, 49.77, 49.28, 47.34, 45.88, 42.76, 40.08, 35.88],

along with the entire set of observations as the QoI map, i.e., Q(ξ) = [q1(ξ),

q2(ξ), . . . , q8(ξ)] for all ξ ∈ Ξ. The same 5× 105 i.i.d. sample points are used

in Algorithm 1 to compute the probability measure on the 9-dimensional pa-
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Table 6.2: Total variations of pullback probability measures for example 3.

d(P 1000
Ξ,5×105 , P

5000
Ξ,5×105) 0.8708

d(P 2000
Ξ,5×105 , P

5000
Ξ,5×105) 0.5584

d(P 3000
Ξ,5×105 , P

5000
Ξ,5×105) 0.4718

d(P 4000
Ξ,5×105 , P

5000
Ξ,5×105) 0.3345

rameter space. Table 6.2 shows the how the total variation of this probability

measure converges numerically as the number of training points is increased.

We then propagate the probability measure on Ξ to define a push-forward

probability measure at qprediction in Figure 4.2. Specifically, we draw the same

training set of 5000 sample points in Ξ to solve the groundwater flow and

transport models for the concentrations qprediction(ξ) at the prediction location

in Figure 4.2. An SVM surrogate model is constructed on qprediction using this

training set. The remaining 5× 105 samples are evaluated using the SVM. We

approximate the probability density of the contaminant concentration at the

prediction location with the weighted histogram in Figure 6.6 where we agian

show the reference “true” value of qprediction based on the reference 100-term

KLE representation of hydraulic conductivity. The prediction quality of the

push-forward measure suggests the SVM can be used to both construct rea-

sonably accurate pullback measures and push-forward measures corresponding

to prediction QoI.
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Figure 6.5: Contours of the more realistic reference lnK field approximated
by a truncated KLE with 100 terms

Figure 6.6: Predicted probability density of concentration at the prediction
location using 500000 samples. The reference concentration is illustrated by a
black dot on the x-axis.
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6.4 Head data-to-parameter-to-head prediction

Example 4: Hydrogeologists often use field tests, e.g., pumping tests, to

characterize an aquifer, evaluate well performance and identify aquifer bound-

aries. From the tests, the hydraulic conductivity can be estimated from the

inversion of hydraulic head observations. In this example, we employ the

measured hydraulic head values to characterize the saturated hydraulic con-

ductivity field in the form of a 9-term KLE and use the computed measure

on the parameter space to construct a push-forward measure for head where

measurements are unavailable.

Assume instead of contaminant concentration we have hydraulic head

measurements at the wells. Specifically, we use the same reference hydraulic

conductivity field in Example 2 and Example 3 and generate hydraulic head

observation by solving the groundwater flow model. Evaluating the solu-

tion at the well locations, we have Qhead
obs = [q̂1, q̂2, . . . , q̂8] = [14.44, 14.09,

13.80, 11.73, 12.27, 11.54, 10.63, 10.62]. Similarly, we build SVMs to approxi-

mate the functions from ξ (input) to hydraulic head at each observation/prediction

location, qi(ξ) (output) for i = 1, . . . , 8. We use the 5000 training examples

in the previous examples, except now the target values being simulated are

hydraulic head data. To tune the hyper-parameters in the SVMs, we perform

two level grid-search with 10-fold cross-validations on a subset of 1000 train-

ing examples. In Figure 6.8, we show plots of the range and distribution of

hydraulic head values from 1000 sample points and the whole training set.

Similar ranges and distributions of target outputs are observed. In Figure 6.7,
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Table 6.3: Optimum (P, γ) for RBF kernels from coarse grid search for example
4

P γ MSE R2

q1 211 2−5 0.006244 0.952978
q2 211 2−5 0.006114 0.951013
q3 211 2−3 0.011611 0.971642
q4 211 2−3 0.013963 0.976434
q5 213 2−3 0.011322 0.983352
q6 213 2−3 0.011187 0.981586
q7 29 2−3 0.011448 0.969877
q8 29 2−5 0.005692 0.954962
qprediction 211 2−3 0.013577 0.978973

we show some scatter plots of the simulated output, qi. The optimal hyper-

parameters obtained from coarse and fine grid search are listed in Table 6.3

and Table 6.4. Learning curves are plotted in Figure 6.9 to make sure 5000

data points are reasonable to form a training set.

Before we use all head observation from eight wells to construct a

pullback measure and make head prediction at qprediction, we perform ver-

ification and leave-one-out validation as before. q̂3 is left out for valida-

tion; assumptions that ρD is a multivariate normal distribution with mean at

Qobs := [q̂1, q̂2, q̂4, q̂5, q̂6, q̂7, q̂8] and standard deviation of 0.01×Qobs are made.

In Table 6.5, we show the convergence of the pullback probability measures

computed from SVMs trained on 1000, 2000, 3000, 4000 and 5000 training

points. The total variation decreases as more training examples are used to

build the SVMs.

We approximate the probability density of the hydraulic head at q̂3
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(e) (f)

(g) (h)

Figure 6.7: Scatter plots of computed concentrations at pairs of qi
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Table 6.4: Optimum (P, γ) for RBF kernels from fine grid search for example
4

P γ MSE R2

q1 213 2−5.5 0.006168 0.953555
q2 211 2−6.5 0.006078 0.951237
q3 212.5 2−3.5 0.011276 0.972449
q4 213 2−3.5 0.013374 0.977410
q5 215 2−4 0.010575 0.984424
q6 215 2−4 0.010160 0.983221
q7 210 2−3.5 0.011093 0.970713
q8 211 2−5.5 0.005682 0.955030
qprediction 213 2−4 0.012480 0.980667

Table 6.5: Total variations of pullback probability measures for validation

d(P 1000
Ξ,5×105 , P

5000
Ξ,5×105) 0.7330

d(P 2000
Ξ,5×105 , P

5000
Ξ,5×105) 0.5985

d(P 3000
Ξ,5×105 , P

5000
Ξ,5×105) 0.4680

d(P 4000
Ξ,5×105 , P

5000
Ξ,5×105) 0.3606
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Figure 6.8: Range and distribution of hydraulic head at q1. Dataset of 5000
samples (top) and dataset of 1000 samples (bottom).

with the weighted histogram in Figure 6.10. Given the observation reference

value lies within the area close to the high probability region, we show that

propagating the computed measure derived from head observations via the

parameter-to-observable map offers solid prediction ability for hydraulic head

too. However, the prediction quality is not as good as that for concentra-

tion in Example 2. One possible reason is hydraulic heads observed from

wells that are close to the Dirichlet boundaries (q1, q2, q8) are influenced more

by the prescribed head condition than the underlying hydraulic conductivity.
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Figure 6.9: Learning curves of the SVM surrogate for hydraulic head data
q4(ξ).

Prescribing Dirichlet boundaries leads to smaller sensitivities [15].

Table 6.6 shows the total variation of probability measure constructed

from all eight head observations converges as the number of training points is

increased to build the SVMs.

The prediction of the push-forward probability measure at qprediction is

Table 6.6: Total variations of pullback probability measures for hydraulic head
prediction

d(P 1000
Ξ,5×105 , P

5000
Ξ,5×105) 0.8696

d(P 2000
Ξ,5×105 , P

5000
Ξ,5×105) 0.5336

d(P 3000
Ξ,5×105 , P

5000
Ξ,5×105) 0.4348

d(P 4000
Ξ,5×105 , P

5000
Ξ,5×105) 0.3331
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Figure 6.10: Predicted probability density function of head at q3 using 500000
samples. The true observation at q3 is illustrated by a black dot on the x-axis.

shown in Figure 6.11.
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Figure 6.11: Predicted probability density of head at the prediction location
using 500000 samples. The reference head is illustrated by a black dot on the
x-axis.

6.5 Head data-to-parameter-to-concentration prediction

Example 5: We construct the push-forward probability measure on

qprediction by weighting simulated concentrations of qprediction using the SVM

surrogate at the 5 × 105 samples of Ξ where the weights are from the pull-

back probability measure P 5000
Ξ,5×105 which is now derived based on observable

hydraulic head data. We approximate the probability density function of the

contaminant concentration at the prediction location in Figure 6.12. It shows

useful information that the push-forward probability measure localizes the pre-

dicted concentration to small ranges of values and the reference “true” value

is within the high probability region. However, the predicted push-forward

distribution has a bimodal shape. It suggests samples corresponding to the
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Figure 6.12: Predicted probability density of concentration at the prediction
location using 500000 samples. The reference concentration is illustrated by a
black dot on the x-axis.

other predicted peak at around 50[ML−3] also have high probability due to

the fact that evaluating those samples through the groundwater flow model

generates head outputs close to the observation too.
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Chapter 7

Conclusions1

In this work, given measured data from a limited number of observation

wells, we used a framework based on intensive global sampling in the parame-

ter space to infer the unknown spatially heterogeneous hydraulic conductivity

field and predict the concentration or hydraulic head at other locations. We

constructed SVM surrogate models for improved computationally efficiency

in sampling parameter-to-observable responses of flow and transport models.

The examples demonstrated that the SVM can be constructed on a relatively

low-dimensional truncation of a KLE to replace the full flow and transport

model solves within the measure-theoretic framework. Useful pullback and

push-forward probability measures can be computed to illuminate the un-

known model parameter and predict the model state. This suggests the SVM

surrogate modeling technique based on statistical learning theory is promis-

ing for many UQ problems that involve either global or local propagations of

uncertainties.

In this work, a full error analysis was not addressed in favor of a more

1This chapter is based on the article entitled Data-driven uncertainty quantification for
predictive flow and transport modeling using support vector machines by Jiachuan He, Steven
Mattis, Troy Butler and Clint Dawson [32].
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qualitative analysis of results in terms of inferring correct parameter values

or predicting certain ranges of quantities of interest with high probability. A

future work will investigate more thoroughly the numerical error in model

simulations defining the samples used to construct the SVM and the approx-

imation error of the SVM itself, which impacts the accuracy of all samples.

We will investigate adjoint techniques to both estimate and correct the error

in individual samples and perform local sensitivity analyses. The gradient of

concentration with respect to each input parameter sample can be computed

with adjoint techniques to gain more physics-information from the models.

This can be potentially used to enhance the local approximation properties of

the data-driven surrogate models by incorporating this knowledge into hyper-

parameters used in the SVM.
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[60] Hermann Rügner, Michael Finkel, Arno Kaschl, and Martin Bittens. Ap-

plication of monitored natural attenuation in contaminated land manage-

menta review and recommended approach for europe. Environmental

science & policy, 9(6):568–576, 2006.

92



[61] Yin-Tzer Shih and Howard C Elman. Iterative methods for stabilized dis-

crete convection-diffusion problems. IMA journal of numerical analysis,

20(3):333–358, 2000.

[62] Menner A Tatang, Wenwei Pan, Ronald G Prinn, and Gregory J McRae.

An efficient method for parametric uncertainty analysis of numerical geo-

physical models. Journal of Geophysical Research: Atmospheres, 102(D18):21925–

21932, 1997.

[63] R Therrien, RG McLaren, EA Sudicky, and SM Panday. Hydrogeosphere:

A three-dimensional numerical model describing fully-integrated subsur-

face and surface flow and solute transport. Groundwater Simulations

Group, University of Waterloo, Waterloo, ON, 2010.

[64] Mads Troldborg, Wolfgang Nowak, Nina Tuxen, Poul L Bjerg, Rainer

Helmig, and Philip J Binning. Uncertainty evaluation of mass discharge

estimates from a contaminated site using a fully bayesian framework.

Water Resources Research, 46(12), 2010.

[65] M Th Van Genuchten and RJ Wagenet. Two-site/two-region models

for pesticide transport and degradation: Theoretical development and

analytical solutions. Soil Science Society of America Journal, 53(5):1303–

1310, 1989.

[66] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning

theory, volume 1. Wiley New York, 1998.

93



[67] J Vrugt, C ter Braak, H Gupta, and B Robinson. Equifinality of formal

(dream) and informal (glue) bayesian approaches in hydrologic modeling?

Stochastic Environmental Research and Risk Assessment, 23(7):1011–1026,

2008.

[68] Dongbin Xiu and George Em Karniadakis. The wiener–askey polynomial

chaos for stochastic differential equations. SIAM Journal on Scientific

Computing, 24(2):619–644, 2002.

[69] Pao-Shan Yu, Shien-Tsung Chen, and I-Fan Chang. Support vector

regression for real-time flood stage forecasting. Journal of Hydrology,

328(3):704–716, 2006.

[70] Dongxiao Zhang and Zhiming Lu. An efficient, high-order perturbation

approach for flow in random porous media via karhunen–loeve and poly-

nomial expansions. Journal of Computational Physics, 194(2):773–794,

2004.

[71] Yi Zheng, Weiming Wang, Feng Han, and Jing Ping. Uncertainty assess-

ment for watershed water quality modeling: A probabilistic collocation

method based approach. Advances in Water Resources, 34(7):887–898,

2011.
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