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Millimeter wave (mmWave) has the potential to provide vehicles with

high data rate communications that will enable a whole new range of applica-

tions. Its use, however, is not straightforward due to its challenging propaga-

tion characteristics. One approach to overcome the propagation challenge is

the use of directional beams, but it requires a proper alignment and presents a

challenging engineering problem, especially under the high vehicular mobility.

In this dissertation, fast and efficient beam alignment solutions suitable

for vehicular applications are developed. To better quantify the problem, first

the impact of directional beams on the temporal variation of the channels

is investigated theoretically. The proposed model includes both the Doppler

effect and the pointing error due to mobility. The channel coherence time is

derived, and a new concept called the beam coherence time is proposed for

capturing the overhead of mmWave beam alignment.
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Next, an efficient learning-based beam alignment framework is pro-

posed. The core of this framework is the beam pair selection methods that

use side information (position in this case) and past beam measurements to

identify promising beam directions and eliminate unnecessary beam training.

Three offline learning methods for beam pair selection are proposed: two

statistics-based and one machine learning-based methods. The two statistical

learning methods consist of a heuristic and an optimal selection that minimizes

the misalignment probability. The third one uses a learning-to-rank approach

from the recommender system literature. The proposed approach shows an

order of magnitude lower overhead than existing standard (IEEE 802.11ad)

enabling it to support large arrays at high speed.

Finally, an online version of the optimal statistical learning method is

developed. The solution is based on the upper confidence bound algorithm

with a newly introduced risk-aware feature that helps avoid severe misalign-

ment during the learning. Along with the online beam pair selection, an online

beam pair refinement is also proposed for learning to adapt the codebook to

the environment to further maximize the beamforming gain. The combined

solution shows a fast learning behavior that can quickly achieve positive gain

over the exhaustive search on the original (and unrefined) codebook. The re-

sults show that side information can help reduce mmWave link configuration

overhead.
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Chapter 1

Introduction

The automotive industry is at an inflection point between old and new

technologies. More sensors are being incorporated into vehicles in an effort to

realize safer and more efficient traffic. Communication technologies are being

integrated into vehicles for safety applications such as blind spot warnings, do

not pass warnings, and forward collision warnings, as well as non-safety related

applications such as improving traffic efficiency, toll collections, and infotain-

ment [1,3,60,96,100]. Although prior work on autonomous driving at present

envisions their independent operation, there are many benefits to sharing rich

sensor data such as LIDAR or visual camera images with other vehicles and/or

with the infrastructure. Existing solutions such as the Dedicated Short-Range

Communication (DSRC) or fourth generation (4G) cellular standards cannot

support the data rate demands for such rich sensor data sharing. Millimeter

wave (mmWave) communications could be a key solution to enable such appli-

cations that could help push the autonomous driving capability beyond what

is possible with only onboard sensors.

This chapter motivates the research problem addressed in this disser-

tation and gives a summary of our contributions. Section 1.1 motivates the
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needs for high data rate links for future advanced vehicle-to-everything (V2X)

applications. In Section 1.2, we point out mmWave as a candidate solution.

Section 1.3 provides some background on challenges of mmWave propagation,

and Section 1.4 gives a brief summary of mmWave transceiver architectures.

In Section 1.5, we highlight some challenges and opportunities for develop-

ing mmWave V2X solutions. Section 1.6 provides the thesis statement and

summarizes our contributions. The chapter concludes with a summary of the

structure of this dissertation and a list of abbreviations.

1.1 High Data Rate Demand of Future V2X Applica-
tions

Gigabit-per-second vehicular link connections open up a whole new

range of applications from safety to infotainment [28,107]. Fig. 1.1 illustrates

some of these applications. Vehicular automation relies heavily on environmen-

tal sensing, mainly via perception sensors such as camera, radar, and LIDAR

that are limited to line-of-sight (LOS) sensing [52]. Sharing these sensor data

among neighboring vehicles via vehicle-to-vehicle (V2V) links or with the in-

frastructure via vehicle-to-infrastructure (V2I) links can enhance the sensing

range as well as provide redundancy in case of sensor failures, which could

improve safety for driving in challenging environments such as dense urban

traffics with limited sensing range. High data rate link connections can sup-

port high precision map and software updates on the fly. Up-to-date maps

with current traffic conditions could be used to pick travel routes to improve
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traffic efficiency. A wide range of infotainment applications are also possible

such as video streaming, online gaming, and video conferencing that provides

a virtual office environment on the go. These applications not only improve

vehicular automation capability but also enhance passenger experience in both

entertainment and productivity.

We now provides some concrete examples of the data rate demands

of some of these applications. The data rate depends on the transmission

frequency which is assumed to be 10 Hz (a typical value used for DSRC ba-

sic safety messages [60]). We have mentioned sharing rich sensor data such

as those coming from LIDAR or camera. The data size depends on the res-

olution of the image and the level of compression. For example, for low-

resolution LIDAR as used in [62], the data rate is relatively low at around 60

kbps; (180 beams × 32 bits + 32 × 8(overhead)) × 10 Hz = 60.16 kbps. For

high-resolution LIDAR such as Velodyne HDL-64E [110], the required data

rate is 2083 beams× 24 bits× 64 vertical elements× 1.04 overhead× 10 Hz =

33.27 Mbps. For camera images, data rates range from around 10 Mbps for low

resolution compressed images [62] up to around 0.5 Gbps for high-resolution

uncompressed images (e.g., Prosilica GT with 2048 × 2048 resolution [12]).

Sharing a few of these perception sensors likely requires a data rate on the

order of tens to hundreds of Mbps. Now, these numbers are for supporting

a single link. In realistic settings, a vehicle typically will maintain multiple

links to its neighbors. Therefore, combining these on top of infotainment likely

requires Gbps data rate.
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Figure 1.1: Potential applications of high data rate mmWave vehicular links.
With V2I links, the infrastructure can gather sensing data from the vehicles
which can be used for various purposes such as traffic control, city planning,
and crowd-sourced map-building [98]. If equipped with sensors such as camera
or LIDAR, the infrastructure can provide s live bird-eye view of the current
street or view of the crossing street that could be used for intersection au-
tomation. V2I is also crucial for infotainment applications such as broadband
Internet access and cloud-based services. Vehicles can also share raw sens-
ing data among themselves which can be used for improving sensing accuracy
as well as enhancing the sensing range to cover blind spots and hidden ob-
jects [62]. Overall, sharing sensor data either with other vehicles or with the
infrastructure can enhance situational awareness that could benefit advanced
autonomous driving applications. High data rate V2I links provide a gate-
way to the backbone network that can support infotainment and cloud-based
services.
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Table 1.1: A summary of existing V2X standardized solutions. (LTE-V2X
here is based on release 14 [2].)

Features DSRC D2D LTE-V2X Cellular LTE-V2X

Bandwidth 10 MHz Up to 20 MHz Up to 20 MHz
Frequency band 5.9 GHz 5.9 GHz 450 MHz-3.8 GHz

Bit rate 3-27 Mbps Up to 44 Mbps Up to 75 Mbps
Range ∼100s m ∼100s m Up to a few km

Coverage Ubiquitous Ubiquitous Inside LTE coverage
Mobility support High speed High speed High speed

Comm. fee Free unknown unknown

Existing solutions including DSRC and the 4G cellular standards, how-

ever, are unlikely able to support the data rate demands of these applica-

tions [14,56,60]. Table 1.1 summarizes important features of existing solutions.

DSRC’s physical (PHY) layer as defined in IEEE 802.11p [49] can support a

maximum data rate of 27 Mbps, but field tests suggest that practical data rates

are only around 6 Mbps due to interference between neighboring vehicles [56].

The new 4G Long Term Evolution (LTE) V2X standard targets higher data

rates than that of DSRC [2], but it will be challenging if not impossible to

meet the data rate demands with the limited bandwidth available at sub-6

GHz bands.

1.2 MmWave to Support High Data Rate V2X

The huge amount of underutilized spectrum at mmWave bands makes

it an attractive solution to support the high data rate demand for future

V2X applications. MmWave spectrum refers to radio frequencies in the range
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30-300 GHz (corresponding wavelength between 10 and 1 mm), although in

practice the 20 GHz bands are sometimes also referred to as mmWave. No-

table mmWave bands include the 60 GHz bands, potential 5G bands (28 GHz

and 39 GHz), and automotive radar bands. The FCC has allocated a con-

tiguous 7 GHz frequency band between 57-64 GHz since 2001 for short-range

communications in an unlicensed basis [7,119]. One remarkable feature of the

60 GHz band is its availability in most parts of the world [7, 86], although

different regions have different amounts of spectrum. Also, in Europe, the

63-64 GHz has been allocated exclusively for Intelligent Transportation Sys-

tem (ITS) applications [97]. While 28 GHz and 39 GHz seem to be the most

likely choices for 5G deployment in the US, more spectrum could be allocated

for worldwide harmonization of frequency bands. In particular, at the World

Radiocommunication Conference 2015 (WRC-15), 11 bands (see Table 1.2)

have been identified as candidate bands for 5G and the allocation decision will

be made in the WRC-19 [83]. The 77 GHz (76-77 GHz) band for long-range

radars in the US is another candidate for mmWave V2X. These examples here

already include tens of GHz of bandwidth. It is, however, not straightforward

to unlock these bands due to the propagation challenge of mmWave, which is

the topic of the next section.

1.3 Challenges of mmWave Propagation

The main challenges of mmWave include the high path loss under

isotropic communication (or equivalently the shrinking antenna aperture as
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Table 1.2: 11 candidate bands for 5G identified in WRC-15.

Band Bandwidth

24.25 - 27.50 GHz 3,250 MHz
31.80 - 33.40 GHz 1,600 MHz
37.00 - 40.50 GHz 3,500 MHz
40.50 - 42.50 GHz 2,000 MHz
42.50 - 43.50 GHz 1,000 MHz
45.50 - 47.00 GHz 1,500 MHz
47.00 - 47.20 GHz 200 MHz
47.20 - 50.20 GHz 3,000 MHz
50.40 - 52.60 GHz 2,200 MHz
66.00 - 76.00 GHz 10,000 MHz
81.00 - 86.00 GHz 5,000 MHz

the frequency increases) and the susceptibility to blockage [86]. Under the

high mobility of V2X applications, there is also concern regarding the Doppler

effect which increases with the frequency. We first describe the Friis formula

for free space path loss to show the dependence on the carrier frequency and

to clarify the role of antenna gain in mmWave systems. Then, we describe

the blockage at mmWave which becomes more severe than at lower frequen-

cies due to the poor diffraction and high penetration loss. Finally, we review

the Doppler effect and point out that narrower beams can reduce the Doppler

spread, which is a topic we will investigate in detail in Chapter 2.

1.3.1 The Friis Free Space Path Loss Formula

Consider a pair of transmitter and receiver antennas separated by a

distance r. We want to compute the power received at the receive antenna.

Assuming an isotropic transmit antenna transmitting with power Pt (thus the
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power is radiated uniformly in all directions), the power density p observed at

the receive antenna’s location is

p =
Pt

4πr2
. (1.1)

Assuming that the receive antenna is in the far-field and the transmit antenna

has a gain of Gt in the direction of the receiver, then the power density becomes

p =
PtGt

4πr2
. (1.2)

The power absorbed by the receive antenna can be expressed using the effective

aperture concept, from which the received power Pr = pAeff with Aeff denoting

the effective aperture of the receive antenna. The effective aperture is given by

Aeff =
λ2

4π
G, (1.3)

where λ is the carrier wavelength and G is the antenna gain. The derivation

of Aeff is a bit involved, and several approaches exist. See [30] for a detailed

derivation based on thermodynamics and reciprocity principle of electromag-

netic waves. Putting all these together and replacing G by Gr, the receive

antenna gain, we obtain the Friis formula:

Pr =
PtGtGrλ

2

(4πr)2
. (1.4)

Notice in (1.4) that the received power depends on the carrier wavelength

λ. As the operating frequency is shifted to higher mmWave frequencies, λ

becomes smaller and thus path loss will increase provided that Gt and Gr are

fixed. For example, if Pt, Gt, and Gr are fixed and the carrier frequency is
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shifted from 2 GHz to 60 GHz, then the increase in path loss can be computed

using the formula to yield 10 log10 (Pr(2)/Pr(60)) = 29.5 dB.

We will now provide some comments on the role of directional antennas

in mmWave communications. In the previous example, we saw a path loss

increase of almost 30 dB when moving from 2 GHz to 60 GHz if Pt, Gt, and

Gr are fixed. In general, antenna gains can be closely linked with its physical

size normalized in wavelength. A simple example is the uniform linear array

with isotropic elements, where the ideal antenna gain can be approximated by

G ≃ 2(L/λ) for L≫ d with L the array length and d the element spacing [18,

Eq. (6-44a)]. If we keep the array length fixed, then the path loss ratio at 2

GHz and 60 GHz carrier frequency can be computed as

Pr(2)

Pr(60)
=

(2L/λ2)
2λ22

(2L/λ60)2λ260
= 1, (1.5)

where λ2 and λ60 denote the wavelength at 2 GHz and 60 GHz, respectively.

Thus, we can see that if the array length is kept unchanged, then the antenna

gain increases as the frequency increases and the path loss stays unchanged

when moving from 2 GHz to 60 GHz. For large planar arrays, it can be shown

that the gain is G ≃ 4πLxLy/λ
2, where Lx and Ly are the array length in the

x and y direction [18, Eq. (6-103)]. Doing the same calculation as above, one

can show that keeping the same array physical size at both the transmitter and

the receiver, the overall path loss actually decreases when moving to a higher

frequency. The underlying reason for this effect is the fact that with the same

antenna physical size, the antenna can focus energy more when operating at

higher frequencies. This is called array gain.
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There is one caveat to this argument. One should note that with

very directional antennas, the maximum gain as used in this example can

be achieved only when the transmit and receive beams are properly aligned.

Although in principle one can increase the antenna gain to compensate for the

increased path loss, care must be taken to account for the overhead of aligning

the beams, which increases as the directionality increases, to the communica-

tion performance.

1.3.2 Blockage

Two main distinguishing features of mmWave propagation are the poor

diffraction capability and high penetration loss, which make blockage an im-

portant effect. For example, it was observed that there is a received power

difference of more than 40 dB at 28 GHz and 73 GHz when a mobile receiver

goes around a building corner [86]. Severe attenuation of diffracted signals is

also observed in indoor environments [86, 121]. Penetration loss is also more

severe than at lower frequencies. For example, the measurements in [121] at

28 GHz show that penetration loss of tinted glass can be as high as 40 dB

and penetration through brick can cause up to 28 dB losses. Besides these

common materials, human bodies can also cause attenuation. For example,

the indoor measurements at 60 GHz in [77] show that human blockage can

cause fading with a dynamic range of 35 dB; more loss has been reported in

other work [29].

The implication here is that once the LOS path is blocked by an object,
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it is unlikely that the signal can propagate past the object through diffrac-

tion or penetrate through the object (even with the directional antenna gain).

Thus, there could be a sharp decrease in the received power which would re-

quire alternative paths to maintain link connection. Therefore, efficient beam

alignment and tracking are required to deal with blockage situations.

1.3.3 Doppler Spread

The Doppler effect refers to the difference in the perceived frequency

of a traveling wave from its true frequency. When the transmitter is moving

toward the receiver the perceived frequency is higher than the true frequency,

and the perceived frequency becomes lower if the transmitter is moving away

from the receiver. The difference between the perceived frequency and the true

frequency is called the Doppler shift. When there are multiple paths from the

transmitter to the receiver, the Doppler shifts for all the paths make up what

is called the Doppler spread. The Doppler spread provides a measure of the

severity of the time-variation of the channel.

The Doppler effect, which is expected to increase as the carrier fre-

quency increases, causes some concern that the severity could challenge the

PHY layer design, especially in vehicular environments. Classical result assum-

ing the Clarke-Jakes power angular spectrum (signals arriving uniformly in all

directions) leads to a conclusion that the Doppler spread increases propor-

tional to the carrier frequency [40,54], i.e., the Doppler spread would increase

by 30× if the carrier frequency were to change from 2 GHz to 60 GHz. This
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argument, however, is inaccurate due to the use of directional beamforming

in mmWave communications. In fact, it can be shown that directional beam-

forming can reduce the severity of the Doppler effect. To properly capture the

benefit of directionality in the vehicular context, the change in pointing di-

rection has to be considered. The channel coherence time taking into account

the change in pointing direction due to mobility will be derived in Chapter 2.

Another important point to note is that the Doppler spread determines the

time-variation of the channel and thus will dictate the feasible packet length

for communications. The large spectral channels in mmWave bands make it

possible to deploy systems with GHz bandwidth which greatly reduces the

symbol period as well as the packet length. This implies that the systems will

become more robust to time-variation of the channels.

1.4 MmWave Transceiver Architectures

Conventional MIMO systems at lower frequency typically assume a fully

digital architecture, where each antenna is attached to an RF chain [46]. Due

to cost and power consumption, the fully digital architecture does not scale to

the mmWave domain [11,76], where large arrays are required to overcome the

propagation challenges.

Fig. 1.2 shows two practical mmWave transmitter architectures (can

be constructed similarly for the receiver): analog and hybrid. The analog ar-

chitecture has only one RF chain (represented by a digital-to-analog converter

(DAC)) and the beamforming is controlled by configuring the phases of the
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Figure 1.2: Practical mmWave transmitter architectures. The receiver archi-
tectures can be constructed similarly. The Tx block is responsible for baseband
processing and controlling the phase shifter and RF switches to produce the de-
sired beamforming. Equipped with multiple RF chains (represented by DAC),
the hybrid architecture is more flexible and can support spatial multiplexing.
This flexibility comes at the cost of a more complex link configuration than
that of the analog architecture.
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phase-shifters. Note that the phase-shifters can only modify the phases of the

signals and not the amplitude, which is commonly called the constant modulus

constraint. In the analog beamforming case, the link configuration reduces to

finding the beam pointing direction that maximizes the received power, which

is called beam alignment. While the analog beam configuration is simpler, it

can only support one single stream (i.e., cannot support spatial multiplexing)

because there is only one RF chain. A hybrid architecture has several RF

chains, typically much less than the number of antennas, which allow it to

balance the tradeoff between the fully digital and analog architectures. The

multiple RF chains allow it to support spatial multiplexing, up to the number

of RF chains. The beamformer/combiner consists of two parts: the digital

part and the analog part which is subject to the constant modulus constraint.

While more flexible, the link configuration also requires more effort.

In this dissertation, we focus on the analog architecture and develop fast

learning-based beam alignment methods. Since the proposed methods provide

means to identify promising beam directions, the information is also useful in

reducing the overhead for hybrid beamforming. The information forms a prior

belief of the channel, and thus by focusing the probing effort in those promising

directions, the training overhead can be reduced. This is an interesting future

research direction for the solutions proposed in this dissertation.
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1.5 MmWave V2X: Challenges and Opportunities

The use of pencil beams and susceptibility to blockage make beam-

based mmWave communications challenging, especially in a mobile setting

such as the vehicular one. While directional beams are also required for in-

door applications such as WLAN, in an outdoor setting the link distances are

typically larger and it requires much narrower beams, likely at both the trans-

mitter and receiver. This means that the training overhead for the alignment

will increase. On top of the high overhead to perform one beam alignment

procedure, the high vehicular mobility will cause frequent misalignment either

due to blockage by neighboring vehicles or the pointing error due to its own

displacement. Therefore, without a fast and efficient beam alignment, most of

the communication time will be lost just to keep the beams aligned.

While mmWave V2X has a more stringent requirement on the beam

alignment than an indoor use case, it also has several key characteristics that

can be exploited. Buildings along the roadside and vehicles themselves are

good reflectors that can support alternative propagation paths in blockage sit-

uations. Also, while the vehicular environment is dynamic, the road geometry

is fixed and has regular patterns. Thus, if the system can identify the current

state of the environment the vehicle is in, it could be possible to predict the

performance of different pointing directions without any actual beam training.

This is indeed possible using the information from the many sensors equipped

in modern vehicles. All these point to the opportunities to develop learning

algorithms to take full advantage of those sensors to reduce training overhead.
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As a first step in this direction, we focus on using the position as the side

information from onboard sensors in this dissertation.

1.6 Thesis Statement and Summary of Contributions

The thesis statement of this dissertation is

Position-based learning can exploit the propagation characteris-

tics of the environment to reduce mmWave link configuration over-

head.

In this dissertation, we develop new approaches for fast mmWave beam

alignment taking advantages of the side information not traditionally used in

communications. While the main focus is on the V2I settings, some of the

results are also applicable for the V2V and cellular settings. We start by

investigating the relationship between beamwidths and the temporal variation

of the vehicular channel. This lays the foundation for understanding the beam

training overhead in mmWave V2X. We then develop a new beam alignment

method that leverages position information and past beam measurements to

identify promising beam directions and reduce the beam alignment overhead.

This second contribution is an offline learning approach that requires training

data beforehand. In many practical situations, online learning is desirable

because the overhead of the deployment can be eliminated and its performance

can be improved over time. We develop the online version of our proposed

offline approach in the third contribution. In addition to the online beam pair
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selection, we also develop a new online beam pair refinement that allows the

adaptation of the beam codebook to the environment to further maximize the

beamforming gain.

We summarize our contributions as follows:

• Chapter 2: Impact of beamwidth on vehicular channels

1. Derive closed-form expressions for the channel coherence time in-

corporating both the pointing error due to mobility and the Doppler

effect. The obtained results show that there exists a non-zero opti-

mal beamwidth that maximizes the channel coherence time.

2. Introduce a new concept of beam coherence time and show that

beam alignment should be conducted every beam coherence time

and not every channel coherence time.

� This work was published in [102,105].

• Chapter 3: Inverse fingerprinting for mmWave V2I beam alignment

1. Propose a novel and efficient beam alignment method leveraging

multipath fingerprints. Fingerprints here refer to long-term spatial

channels indexed by locations. The result shows how side informa-

tion can be used to reduce overhead in mmWave communications.

2. Define the power loss probability to quantify the beam alignment

accuracy. This provides a mathematical framework to optimize the

beam pair selection in the proposed method.
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3. Propose two statistical learning methods and one machine learn-

ing (ML) based approach for offline beam pair selection. The two

statistical learning methods include one heuristic and one optimal

selection method derived using our developed mathematical frame-

work. The ML-based approach uses a learning-to-rank (LtR) ap-

proach from the recommender system literature.

� This work was published in [103,104].

• Chapter 4: Online learning for beam pair selection and refinement

1. Develop an online learning version of the optimal beam pair selec-

tion proposed in Chapter 3. We use the multi-armed bandit (MAB)

framework with a newly introduced risk-awareness component aim-

ing to reduce the probability of severe beam misalignment events

during the learning.

2. Propose an online beam pair refinement method to adapt the beam

codebook to the environment. The idea is to match the pointing

directions of the beams to those of the peaks of the power angular

spectrum (PAS) that is environment-dependent. We formulate this

problem as a continuum-armed bandit (CAB) problem and solve it

using an optimistic optimization approach.

� This work has been submitted for a possible publication [108].
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1.7 Organization

The rest of the dissertation is organized as follows. We present the

findings on the impact of beamwidth on the temporal channel variation in

vehicular environments in Chapter 2. We develop offline beam pair selection

methods that leverage position and past multipath information to reduce the

beam alignment overhead in Chapter 3. In Chapter 4, we propose an online

learning version of the optimal beam selection method with risk-awareness and

also develop a beam pair refinement to adapt the beam codebook to the envi-

ronment to further maximize the beamforming gain. Finally, we conclude the

dissertation and describe some potential future research venues in Chapter 5.

1.8 Abbreviations

4G Fourth generation

5G Fifth generation

AoA Angle of arrival

AoD Angle of departure

AWGN Additive white Gaussian noise

BO Bayesian optimization

CAB Continuum-armed bandit

CDF Cumulative distribution function

DSRC Dedicated Short-Range Communication

EIRP Equivalent isotropic radiated power

GPS Global positioning system
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HOO Hierarchical optimistic optimization

ITS Intelligent Transportation System

LOS Line-of-sight

LtR Learning-to-rank

MAB Multi-armed bandit

ML Machine Learning

NLOS Non-line-of-sight

PAS Power angular spectrum

PDF Probability density function

RF Radio frequency

RL Reinforcement learning

RSU Road side unit

SNR Signal-to-Noise Ratio

ULA Uniform linear array

UPA Uniform planar array

V2I Vehicle-to-infrastructure

V2V Vehicle-to-vehicle

V2X Vehicle-to-everything

WSSUS Wide sense stationary and uncorrelated scattering
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Chapter 2

Impact of Beamwidth in Vehicular Channels

In this chapter, we characterize the impact of the beamwidth on the

temporal variation in vehicular channels. This is done using two concepts: the

channel coherence time and a newly defined beam coherence time. Closed-form

expressions relating the channel coherence time and beamwidth are derived.

Unlike prior work that assumes perfect beam pointing, the pointing error due

to the receiver motion is incorporated to show that there exists a non-zero

optimal beamwidth that maximizes the channel coherence time. While the

channel coherence time determines how often to re-estimate the channel co-

efficients, we define the beam coherence time as an effective measure of how

often to realign the beams by taking into account the pointing error due to

mobility. It is shown that beam alignment in every beam coherence time per-

forms better than the beam alignment in every channel coherence time when

overheads (including beam alignment and channel estimation) are included.

This work was published in [102,105] ( c⃝ IEEE).
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2.1 Motivation and Prior Work

High data rate millimeter wave (mmWave) communications could en-

able a whole new range of innovative applications [28, 107], but its use in the

vehicular context is often viewed with some skepticism due to concern regard-

ing the Doppler effect. Based on the Clarke-Jakes power angular spectrum

(PAS), it follows that the channel coherence time Tc is inversely proportional

to the maximum Doppler frequency fD, i.e., Tc ≃ 1
fD

[40]. This implies that by

moving from a typical cellular frequency at around 2 GHz to a mmWave fre-

quency at 60 GHz, one would expect a 30× decrease in the channel coherence

time. This is, in fact, inaccurate for mmWave systems that use directional

antennas (or beams) creating angular selectivity in the incoming signal, which

effectively decreases the Doppler spread.

Using directional transmission and reception can reduce the effective

channel variation at the expense of beam alignment overhead. While the

received power is optimal if the beams are aligned in every channel coherence

time (i.e., whenever the channel coefficients change), the overhead could be

too expensive. The physical beam can be associated with a propagation path

(similar to a path of a ray in the ray-tracing model in [99]) whose angle of

arrival could change much slower than the fading channel coefficient. This

leads to the concept of the beam coherence time. One natural question is how

much is lost if the beams are realigned at this slower speed? We show in this

chapter that beam coherence time is the right choice when all the overheads

(for both beam alignment and channel estimation) are included.

22



Relevant prior work includes [25,84,95,120] that characterized the chan-

nel correlation under non-isotropic scattering, which cause signals to concen-

trate in the angular domain. While in this chapter, a directional receive beam

is used to control the angular selectivity, both result in a similar effect. The

difference is whether the selectivity is controlled by the receiver or up to the

environment. Generally, there are two directions in this line of research: one is

to provide a generalized framework that can be used for any scattering distri-

bution [84,95] and the other is to constrain to a given distribution that allows

tractable expressions for further analysis [25,120]. The work in [95] presented

a generalized framework to compute a spatial correlation function for gen-

eral 3D scattering distributions. Their result was based on the decomposition

of the plane wave into an infinite sum of the spherical Bessel functions and

Legendre polynomials. A similar approach was used in [84] to compute cor-

relation functions in 2D while also taking the antenna patterns into account.

For the 2D case, the plane wave is decomposed into an infinite sum of the

Bessel functions. Although the approaches in [95] and [84] are general, the

obtained correlation functions are intractable for further analysis. The work

in [25, 120] instead considered only the von Mises scattering distribution and

derived closed-form correlation functions using two-ring models. Our approach

follows this later path and adopts the von Mises distribution to represent the

effective PAS. Different from [25, 120], we also incorporate the pointing error

due to the receiver motion into the correlation functions, which is an essential

characteristic when using directional beams in vehicular environments.
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Other related work appears in [27,33,81,88]. The relationship between

the channel coherence time and beamwidth was studied in [27, 33]. A general

framework to compute the coherence time was derived in [33] for any PAS. The

correlation was defined using the channel amplitude and the main assumption

was that the channel is Rayleigh faded. We define correlation using the com-

plex channel coefficient which considers both the amplitude and the phase.

The work in [27] relates the coherence time with the number of antennas of a

uniform linear array. A simple expression was derived for a special case when

the pointing angle is 90◦. The work in [81] exploits the decrease in Doppler

spread due to directionality and proposed a beam partitioning method in a

rich scattering environment such that each beam experiences the same amount

of Doppler spread. Note that in [27, 33, 81], no pointing error was considered

and their results suggest that the coherence time goes to infinity when the

beamwidth approaches zero. We incorporate pointing error due to the re-

ceiver mobility and show that there exists a non-zero optimal beamwidth that

maximizes the channel coherence time. To the best of our knowledge, this

is the first time that both the Doppler and pointing error are incorporated

to derive the channel coherence time. Recently, [88] quantified the channel

coherence time considering pointing error due to wind-induced vibration for a

mmWave wireless backhaul application. Note that the source of pointing error

in [88] is different from the one considered in this chapter.
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2.2 Contributions

Our main objective in this chapter is to establish the potential of the

mmWave vehicular communications using directional beams in fast changing

vehicular environments. Our main contributions in this chapter are summa-

rized as follows:

• We derive a channel temporal correlation function taking into consider-

ation both the pointing error due to the receiver motion and Doppler

effect. Based on the obtained correlation function, we derive the channel

coherence time and show how it connects to the receive beamwidth and

the pointing direction. Our results show that there exists a non-zero

optimal beamwidth that maximizes the channel coherence time, unlike

prior work that assumes perfect beam pointing.

• We propose a new concept called the beam coherence time, which is used

as the basis for studying the long-term beam realignment. This lays the

foundation for the third contribution.

• We investigate the choice of the beam realignment duration taking into

account both the beam alignment overhead and the loss due to the chan-

nel time-variation. We show that long-term beam realignment performs

better and thus the beams should be realigned every beam coherence

time, not every channel coherence time.

Note that although our baseband channel model is general, our focus is on
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mmWave bands and accordingly all of our numerical examples use parameters

from the 60 GHz band.

The rest of this chapter is organized as follows. Section 2.3 describes our

models and assumptions. Using the models, we derive novel channel temporal

correlation functions taking the pointing error into account for both the LOS

and NLOS cases in Section 2.4. In Section 2.5, we derive the channel coherence

time from the obtained correlation functions. In Section 2.6, we define a novel

beam coherence time, which is tailored to the beam alignment concept. Based

on these results, we investigate some implications for the beam alignment

duration in Section 2.7. Finally, Section 2.8 concludes the chapter.

2.3 Models and Assumptions

This section starts with the channel model and then introduces the

pointing error due to the receiver motion. Next, we describe a spatial lobe

model that provides a statistical description of the angular spread of the PAS.

The spatial lobe model will be used in the derivation of the beam coherence

time. Finally, we provide a table summarizing the common parameters we use

in our numerical examples.

2.3.1 Channel Model

This subsection first describes the NLOS channel, which will be later

incorporated into the LOS channel model. For the NLOS channel, we assume

a narrowband wide sense stationary and uncorrelated scattering (WSSUS)
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model given by [40]

hnlos(t) =

∫ π

−π

√
χP′(α)G(α|µr)e

j[ϕ0(α)+ϕ(α)+2πfDt cos(α)]dα. (2.1)

Here, χ is a normalization constant, P′(α) is the PAS, G(α|µr) is the antenna

pattern with the main lobe pointing at µr, ϕ0(α) is the phase due to the dis-

tance traveled up to time 0, ϕ(α) is the random phase associated with the path

with the angle of arrival α, and fD is the maximum Doppler frequency. Note

that all angles are defined in reference to the direction of travel of the receiver

(Fig. 2.1). Under the uncorrelated scattering assumption, ϕ(α) are uncorre-

lated and uniformly distributed in [0, 2π). For the time scale considered, it is

assumed that the scatterers are stationary. This is the wide sense stationary

assumption that is reasonable for a short duration. Note that although the

channel model here assumes a large number of paths, our simulation results

in Fig. 2.3 show that our results also hold for small numbers of paths.

We define the effective PAS P(α|µr) = χP′(α)G(α|µr). To ensure unit

power channel coefficients, i.e. E[|hnlos(t)|2]=1 with E[·] denoting the expecta-

tion operator, χ has to satisfy
∫ π

−π
P(α|µr)dα=1. We assume G(α|µr) takes the

shape of the von Mises probability density function (PDF). We assume that

the PAS P′(α) has angular spread much larger than the beamwidth (more ac-

curate for narrow beams) so that it is flat over the range of α where the beam

pattern has non-negligible values. This assumption means χP′(α) ≃ 1 so that

P(α|µr) ≃ G(α|µr) which is the von Mises PDF given by

P(α|µr) ≃
1

2πI0(kr)
ekr cos(α−µr), (2.2)
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where I0(·) is the zeroth order modified Bessel function of the first kind, µr

is the mean, and kr is the shape parameter. Note that the derivations of the

correlation function and the channel coherence time use only the effective PAS.

The beam coherence time is defined in terms of the spatial lobe and will need

an explicit model of P′(α). Following the model in [101], P′(α) is assumed to

take the shape of a Gaussian PDF with variance β2. Some examples of the use

of Gaussian PDF in this context are its adoption as an antenna pattern in a

5G channel model in [4, Section 5.3.7.2], and as the model for angles of arrival

in another 5G channel model in [101]. The von Mises PDF can be thought

of as a circular version of the Gaussian PDF, and when kr is large, it can be

approximated by a Gaussian PDF with the same mean µr and variance of 1/kr.

We define the beamwidth θ by kr ≃ 1/θ2. The assumption in (2.2) becomes

more accurate when β is large compared to the beamwidth. We choose the

von Mises PDF for two reasons: (i) its good resemblance to a real antenna

pattern and (ii) its tractability for analysis.

Next, we describe our LOS channel model. Introducing the LOS com-

ponent, the channel coefficient now becomes

h(t) =

√
K

K + 1
hlos(t) +

√
1

K + 1
hnlos(t), (2.3)

where K is the Rician K factor, which determines the relative power between

the LOS and NLOS components. The LOS component is modeled as

hlos(t) =

∫ π

−π

√
G(α|µr)e

−j 2π
λ
Dej2πfDt cos(α)δ(αlos − α)dα, (2.4)
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where D is the distance between the transmitter and the receiver at time 0,

αlos is the angle of arrival of the LOS path, and δ(·) denotes the Dirac delta

function [120].

2.3.2 Pointing Error Due to Receiver Motion

The model to be described here is based on the observation that if

the receive beam is fixed, and the receiver moves, then the beam will become

misaligned. Misalignment implies that the receiver sees the channel with a

different lens than when properly aligned and thus the channel temporal cor-

relation will be affected. Note that the receive beam pointing direction is µr,

which can be in the LOS or NLOS direction.

We use the one-ring model for the NLOS, where scatterers are dis-

tributed on a ring of radius Dr as shown in Fig. 2.1. Let the receiver be

at point A at time t and move at a constant speed v along the direction of

travel to reach point B at time t + τ . The total displacement from A to B is

∆d(τ) = vτ . When the receiver moves from A to B by ∆d(τ), the receiver will

see a different set of scatterers and the distances to the scatterers also change.

We assume that ∆d(τ) ≪ Dr, so that ∆d(τ) has negligible effect on the path

loss and captures the receiver motion effect through the pointing error ∆µ(τ)

as shown in Fig. 2.1. Note that this pointing error is the angular difference

needed to correct the initial pointing direction µr at A so that the beam always

sees the same set of scatterers. For notational convenience, ∆µ,∆d are used

instead of ∆µ(τ),∆d(τ). The relationship between ∆d and ∆µ can be obtained
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∆µ

Direction of travel

scatterers seen at A

receive beam

scatterers seen at B

Figure 2.1: Receiver displacement and change in pointing angle for the NLOS
case. When the receiver moves from A to B, if the beam is not adaptive, then
the set of scatterers seen at B will be different from those seen at A. This
effect can be captured by the change in pointing direction ∆µ (we called this
pointing error) from the original pointing direction µr. We ignore the change
in path loss due to the displacement ∆d because for a short time duration τ
typically ∆d(τ)≪ Dr.

using the law of sines on the triangle ABC in Fig. 2.1 to get

∆d

sin∆µ

=
Dr

sin(π − µr)
. (2.5)

For small ∆µ, sin∆µ ≃ ∆µ, and since sin(π − µr) = sinµr, we have

∆µ ≃
∆d

Dr

sinµr. (2.6)

Since fD = v/λ, we have ∆d = vτ = fDλτ , where λ is the carrier wavelength.

Substituting this into (2.6) to get

∆µ ≃
fDτ

Dr,λ

sinµr, (2.7)

where Dr,λ = Dr/λ is the scattering radius normalized by the carrier wave-

length λ.

30



The same reasoning can be applied to the LOS case by replacing the

scattering radius Dr by the transmitter-receiver distance D. Let Dλ = D/λ

and αlos be the direction toward the transmitter (in reference to the direction

of travel), and define the pointing error ∆los
µ as the angular difference needed to

correct the beam direction so that it always points directly at the transmitter,

we have

∆los
µ ≃

fDτ

Dλ

sin(αlos). (2.8)

The approximate relations (2.7) and (2.8) will be used in later derivations in

this chapter.

2.3.3 Channel Spatial Lobe Model

In this subsection, we explain the spatial lobe model that will be the

basis for our definition of the beam coherence time. We consider only the

azimuthal plane. This model provides a statistical description of the angu-

lar spread of the PAS. A signal transmitted from the transmitter propagates

through different paths to arrive at the receiver. These multipaths arrive at

different angles with some concentrations at certain angles which create pat-

terns as illustrated in Fig. 2.2, which are called spatial lobes. Four spatial lobes

are shown in Fig. 2.2. These lobes can be thought of as clusters of scatterers

with distinct angles of arrival. The number of spatial lobes depends on the

environment and ranges from 1-6 in an urban environment measurement at 28

GHz [89]. Beam alignment is the process of finding the direction of the spatial

lobe with the highest power, i.e., the lobe with the highest peak (lobe #1 in
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Figure 2.2: An illustration of spatial lobes. This figure illustrates the pattern of
the incoming power arriving at the receiver. The incoming power has strong
spatial dependence, and it can be observed here that there are four main
directions, which can be thought of as four clusters of scatterers. At each of
these directions, there is spread forming a lobe, which is termed as a spatial
lobe. In this example, lobe #1 has the strongest power.

Fig. 2.2). The lobe width determines the difficulty in aligning the beam. The

narrower the spatial lobe, the more difficult the alignment becomes, and the

easier the beam gets misaligned due to the receiver motion. Thus, this lobe

width plays a fundamental role in defining the beam coherence time.

The lobe width β, which is the standard deviation of the PAS P′(α), is

modeled following the empirical model proposed in [89], which uses a Gaussian

distribution, i.e.,

β ∼ N(mAS, σ
2
AS). (2.9)

The mean mAS and the standard deviation σAS depend on the environment.

The model in [89] was based on measurements in an urban area, where σAS =
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Table 2.1: Common parameters used in numerical examples.
Parameter Value

Carrier frequency fc 60 GHz
Vehicle speed v 30 m/s

Scattering radius Dr,λ 1000 λ
Standard deviation σAS 25.7 deg.

25.7◦ was derived. In our numerical examples, different values ofmAS are used,

but σAS is always fixed to 25.7◦.

2.3.4 Summary of Common Parameters

This subsection summarizes the common parameters that are used in

our numerical examples in this chapter. Note that except for the beamwidth

and the pilot spacing (introduced in Section 2.7) which are system parameters,

all others are channel parameters. These common parameters are shown in

Table 2.1. When values different than Table 2.1 are used, it will be explicitly

indicated. Although our result can be applied to any carrier frequency, we

focus on mmWave bands and set the carrier frequency to fc = 60 GHz. We

assume a highway scenario and set the vehicle speed to v = 30 m/s. The

scattering radius is set to 5 m, which is equivalent to 1000 wavelengths at

60 GHz. The width of the spatial lobe is modeled as Gaussian as described in

the previous subsection, and we set the standard deviation to σAS = 25.7◦.
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2.4 Channel Temporal Correlation Function

There are two possible definitions of the channel temporal correlation

function. The first one is based on the amplitude of the channel coefficients [33]

R|h|(τ) =
E [g(t)g(t+ τ)]− (E[g(t)])2

E[g(t)2]− (E[g(t)])2
, (2.10)

where g(t) = |h(t)|. The second definition is based on the complex channel

coefficients themselves [27] and is defined as

Rh(τ) = E [h(t)h∗(t+ τ)] , (2.11)

where (·)∗ denotes complex conjugate. Most modern communication systems

use coherent detection, where both the amplitude and phase are important.

In that respect, the definition in (2.11) is more natural and is the definition

we adopt. Note that when h(t) is complex Gaussian, the two definitions are in

fact equivalent [54, Pages 47-51], in the sense that there is a simple relationship

between the two. In particular, it can be shown that R|h|(τ) =
π

4(4−π)
|Rh(τ)|2.

The channel model in (2.3) has both LOS and NLOS components. For

the LOS component, hlos(t) depends on the pointing direction, and proper nor-

malization is needed to be consistent with (2.11). We still define the correlation

function for the LOS component Rlos(τ) based on the product hlos(t)h
∗
los(t+τ),

but now we introduce a normalization such that |Rlos(τ = 0)| = 1 and

|Rlos(τ ̸= 0)| < 1 in Section 2.4.2. Along with this definition, the correla-

tion function is defined as

Rh(τ) =
K

K + 1
Rlos(τ) +

1

K + 1
Rnlos(τ). (2.12)
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In the following, we derive the correlation function for the NLOS channel

using (2.11) in Section 2.4.1 and define the correlation function for the LOS

in Section 2.4.2 that is consistent with the definition in (2.11). In both cases,

the pointing error due to the receiver motion is incorporated.

2.4.1 NLOS Channel Correlation Function

Here, we derive the correlation function between hnlos(t) and hnlos(t+τ)

for the NLOS channel. The channel coefficients at time t and t+τ are given by

hnlos(t) =

∫ π

−π

√
P(α|µr)e

j[ϕ0(α)+ϕ(α)+2πfDt cos(α)]dα, (2.13)

hnlos(t+ τ) =

∫ π

−π

√
P(α|µr +∆µ)e

j[ϕ0(α)+ϕ(α)+2πfD(t+τ) cos(α)]dα, (2.14)

where we have incorporated the pointing error due to the receiver motion in

the peak direction of the effective PAS, which is now µr +∆µ instead of µr in

(2.14). Note that in (2.13) and (2.14), although α is taken from −π to π, the

channel is non-isotropic scattering because the incoming signals are weighted

by the effective PAS P(α|µr), which takes the shape of the von Mises PDF.

Plugging (2.13) and (2.14) into (2.11),

Rnlos(τ) = E
[∫ π

−π

∫ π

−π

√
P(α1|µr)P(α2|µr +∆µ)

ej(ϕ0(α1)+ϕ(α1)−ϕ0(α2)−ϕ(α2)−2πfDτ cos(α2))dα1dα2

]
=

∫ π

−π

∫ π

−π

√
P(α1|µr)P(α2|µr +∆µ)E[ej(ϕ(α1)−ϕ(α2))]

ej(ϕ0(α1)−ϕ0(α2))e−j2πfDτ cos(α2)dα1dα2

=

∫ π

−π

√
P(α|µr)P(α|µr +∆µ)e

−j2πfDτ cos(α)dα, (2.15)
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where (2.15) follows from the uncorrelated scattering assumption. According

to this assumption, E[ej(ϕ(α1)−ϕ(α2))] = E[ejϕ(α1)]E[e−jϕ(α2)] = 0 for α1 ̸= α2

and E[ej(ϕ(α1)−ϕ(α2))] = 1 for α1 = α2, where ϕ(α) is uniformly distributed in

[0, 2π). Now, substituting the von Mises PDF to get

Rnlos(τ) =
1

2πI0(kr)

∫ π

−π

√
ekr cos(α−µr)ekr cos(α−(µr+∆µ))e−j2πfDτ cos(α)dα (2.16)

=
1

2πI0(kr)

∫ π

−π

e
kr cos

(
α−µr−

∆µ
2

)
cos

(
∆µ
2

)
e−j2πfDτ cos(α)dα

=
1

2πI0(kr)

∫ π

−π

ek
′
r cos(α−µ′)e−j2πfDτ cos(α)dα

=
1

2πI0(kr)

∫ π

−π

ex
′ cosα+y′ sinαdα

=
I0(
√
x′2 + y′2)

I0(kr)
, (2.17)

where, k′r = kr cos
(

∆µ

2

)
, µ′ = µr +

∆µ

2
, x′ = k′r cosµ

′ − j2πfDτ , y
′ = k′r sinµ

′,

and we have used the formula
∫ π

−π
ea cos c+b sin cdc = 2πI0(

√
a2 + b2) [42, 3.338-

4]. Despite the simple form of (2.17), it is intractable for further analysis

because the argument to the Bessel function involves the cosine of ∆µ, which

is also a function of τ . Fortunately, a more tractable approximated form can

be obtained for large kr, where the von Mises PDF can be approximated by

the Gaussian one with the variance of 1/kr and the same mean. With this

approximation, (2.16) becomes

Rnlos(τ) ≃
1√
2π/kr

∫ π

−π

e−
kr
4 ((α−µr)2+(α−(µr+∆µ))2)e−j2πfDτ cos(α)dα. (2.18)

The exponent of the first term in the integral can be rewritten as 2(α−µ′)2+

∆2
µ/2. Substituting this into (2.18) and approximating µ′ ≃ µ, which is valid
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for small ∆µ, we have

Rnlos(τ) ≃
∫ π

−π

1√
2π/kr

e
kr
2
(α−µr)2e−

kr∆
2
µ

8 e−j2πfDτ cos(α)dα. (2.19)

To obtain a final closed-form expression, the Gaussian PDF is approximated

back to von Mises one to get

Rnlos(τ) ≃
e−

kr∆
2
µ

8

2πI0(kr)

∫ π

−π

ekr cos(α−µr)e−j2πfDτ cos(α)dα

= e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

I0(
√
x2 + y2)

I0(kr)
(2.20)

where,

x = kr cosµr − j2πfDτ, (2.21)

y = kr sinµr. (2.22)

In this chapter, we are interested in narrow receive beamwidths (i.e., kr large),

and this approximation turns out to be decent enough for our purpose as will

be shown in the numerical examples at the end of this section. Note that in

the approximation in (2.20), the effect of the pointing error due to the receiver

motion is decoupled from the effect of the Doppler spread to the channel.

2.4.2 LOS Channel Correlation Function

The correlation function for the LOS channel is defined as

Rlos(τ) =
h∗los(t+ τ)hlos(t)

max{|hlos(t)|2, |hlos(t+ τ)|2}
, (2.23)
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where the normalization is to ensure that |Rlos(τ)| ≤ 1. Substituting the

channel in (2.4),

Rlos(τ) =

√
G(αlos|µr)G(αlos|µr +∆los

µ )

max{G(αlos|µr), G(αlos|µr +∆los
µ )}

× ej2πfDt[cos(αlos)−cos(αlos+∆los
µ )]e−j2πfDτ cos(αlos+∆los

µ ), (2.24)

where we have incorporated the receive beam pointing error due to the re-

ceiver motion over the time period τ through ∆los
µ as given in (2.8). Note

that (2.24) depends on t and thus is not wide sense stationary. In the case

of small ∆los
µ , it can be approximated as wide sense stationary as the term

ej2πfDt[cos(αlos)−cos(αlos+∆los
µ )] ≃ 1. Also, note that |Rlos(τ)| = 1 only when

∆los
µ = 0.

If we assume that at time t the receive beam is pointing at αlos, then

G(αlos|µr = αlos) = ekr/(2πI0(kr)) andG(αlos|µr+∆los
µ ) = ekr cos(∆

los
µ )/(2πI0(kr))

and we have

Rlos(τ) =

√
ekr(cos(∆

los
µ )−1)ej2πfDt[cos(αlos)−cos(αlos+∆los

µ )]e−j2πfDτ cos(αlos+∆los
µ )

(2.25)

≃ e
1
2
kr(cos(∆los

µ )−1)e−j2πfDτ cos(αlos), (2.26)

where the approximation holds for small ∆los
µ , which typically is the case be-

cause the transmitter-receiver distance D is large. Taking the absolute value

of either (2.25) or (2.26) gives

|Rlos(τ)| = e
1
2
kr(cos(∆los

µ )−1). (2.27)

The expression in (2.27) means that the only factor affecting the channel cor-

relation of the LOS channel is the pointing error.
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Figure 2.3: Comparison of the channel temporal correlations computed from
the exact expression (2.17), the approximate expression (2.20), and those com-
puted from simulation. The beamwidth is set to ≃ 8◦ (kr = 50), the number
of paths N = 10 and N = 10000 are used, and other parameters are defined
in Table 2.1.

2.4.3 Numerical Verification of (2.20) and Effect of K Factor

First, we will verify our approximation for the NLOS case in (2.20) by

comparing it with the exact expression given in (2.17) and the correlation com-

puted from simulations. We set the speed v = 30 m/s, the carrier frequency

fc = 60 GHz, the scattering radiusDr,λ = 1000 wavelengths as in Table 2.1. To

simulate the channel realizations, we need the transmitter-receiver distance D,

and D = 50 m is used. We compute the case when µr = 10◦ and when µr = 80◦

to compare the effect of µr. We fix kr = 50 (beamwidth ≃ 8◦) because there

was no assumption on the receive beamwidth in the derivation, and the accu-

racy of this approximation does not depend on it. We simulate the channel

following the sum of sinusoid approach [120] using the model given in (2.1).
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Figure 2.4: The effect of the Rician K factor on the channel correlation func-
tion. The plots show the absolute values of the correlation coefficients for K
from 0 to 2 with a step of 0.2.

Note that the transmitter-receiver distance D is used only in the simulation

and is not used in the exact or the approximate expression given in (2.17)

and (2.20). As can be seen in Fig. 2.3, all the curves match well. Although

the derived expression is based on the assumption of a large number of paths

N , simulations using a small N of only 10 paths yield very close results. We

conclude that our results also hold for small numbers of paths.

Since the derivation of the correlation for the LOS channel is simple,

we skip its verification. Instead, we provide an example showing how the K

factor affects the channel correlation as shown in Fig. 2.4. The parameters are

the same as in the NLOS case. The channel correlation oscillates for µr = 10◦

but not for µr = 80◦. The oscillation is due to the phase difference between

the LOS component Rlos(τ) and the NLOS component Rnlos(τ). When µr is

close to 90◦, Rnlos(τ) decreases fast (note that µr = 90◦ corresponds to the
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fastest fading case) so that before the phase difference between Rlos(τ) and

Rnlos(τ) takes effect, the NLOS component Rnlos(τ) decreases to a negligible

value in relation to Rlos(τ) and the oscillation is not observed. The plots also

show that the channel correlation increases with K regardless of µr. This is

because ∆los
µ increases very slowly with τ (because typically Dλ ≫ Dr,λ, and

specifically in this example Dλ = 10Dr,λ) which leads to very slow decrease

in the LOS correlation component |Rlos(τ)| compared to that of the NLOS

component |Rnlos(τ)|.

In general, for both LOS and NLOS, the temporal correlation decreases

quickly for µr close to 90◦ while it decreases slowly for µr close to zero. The

correlation of the LOS case decreases slower than the NLOS case because the

pointing error caused by the mobility of the receiver is smaller due to the fact

that D > Dr typically holds. That the correlation of the LOS component

decreases slower than that of the NLOS component is the reason why the

overall correlation decreases slower as K increases (see Fig. 2.4).

2.5 Channel Coherence Time

Using the channel correlation functions, we derive the coherence times

in this section. The channel coherence time is defined as the time τ = Tc at

which the channel correlation decreases to |Rh(τ)| = R for some predefined

value R. Typically, R ranges from 0.3 to 0.9 [75]. Note that for a given

channel, requiring a larger R will result in a smaller Tc. A general solution

to |Rh(τ)| = R is intractable because both Rlos(τ) and Rnlos(τ) are complex
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numbers and Rnlos(τ) is a complicated function involving the Bessel function.

Instead of dealing with this directly, we will derive the coherence time for the

NLOS and LOS case separately, which serve as upper and lower bounds on

the channel coherence time.

2.5.1 NLOS Channel

The coherence time expressions for the case when only the NLOS com-

ponent exists are derived using the correlation function given in (2.20). Due

to the Bessel function, the solution for a general main beam direction µr and

arbitrary beamwidth θ is intractable. In the following, we assume small θ and

we will solve for two cases, namely when |µr| is small and when |µr| is not

small. Note that the case where µr = 0 is when the main beam direction is

parallel to the direction of travel resulting in the slowest fading case, while

|µr| = π/2 is when the main beam direction is perpendicular to the direction

of travel and the receiver will experience the fastest fading [33]. For most

cases, our approximation is valid for beamwidth θ up to around 20◦. This is

not a serious limitation because most likely mmWave systems will use narrow

beams. For example, a prototype system developped by Samsung Electronics

uses an array with 10◦ beamwidth [111] and long-range automotive radars use

a beamwidth on the order of a few degrees [116].
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2.5.1.1 When |µr| is small

For small µr, we approximate x ≃ kr − j2πfDτ and y ≃ 0, where x

and y are defined in (2.21) and (2.22). The accuracy of this approximation

depends on both kr and µr. When µr is small, y ≃ krµr ≃ µr/θ
2 and roughly

the approximation works for θ >
√
µr. Assuming θ is in this range, we have

Rh(τ) ≃ e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

I0(kr − j2πfDτ)

I0(kr)
(2.28)

≃ e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

e−j2πfDτ√
1− j2πfDτ/kr

. (2.29)

The last step follows by applying the asymptotic approximation of the Bessel

function [6]

I0(z) ≃
ez√
2πz

, (2.30)

which holds for |z| large. Taking the absolute value

|Rh(τ)| ≃ e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

1

|
√

1− j2πfDτ/kr|
(2.31)

= e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

1

(1 + (2πfDτ/kr)2)1/4
. (2.32)

Following the definition |Rh(Tc)| = R, we solve for Tc as

1 + (2πfDTc/kr)
2 =

1

R4
e
− krf

2
DT2

c sin2 µr

2D2
r,λ (2.33)

≃ 1

R4

(
1− krf

2
DT

2
c sin

2 µr

2D2
r,λ

)
(2.34)

⇒ Tc(kr) =

√√√√ 1/R4 − 1

(2πfD/kr)2 +
krf2

D sin2 µr

2D2
r,λR

4

(2.35)
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where we have used the approximation ez ≃ 1+z to eliminate the exponential

term. For small beamwidth, we have kr ≃ 1/θ2, and thus we can express the

channel coherence time as a function of the beamwidth as

Tc(θ) =
1

fD

√√√√ 1/R4 − 1

(2π)2θ4 + 1
2θ2R4

(
sinµr

Dr,λ

)2 . (2.36)

When Dr,λ → ∞, i.e., ignoring the pointing error due to the receiver move-

ment, the coherence time simplifies to

Tc(θ) =

√
1/R4 − 1

2πfDθ2
. (2.37)

This shows that the coherence time is proportional to 1/θ2.

2.5.1.2 When |µr| is not small

The approach here is different from the previous case. First, we com-

pute the argument of the Bessel function, and then we apply the asymptotic

approximation (2.30). Taking the log of the obtained equation, we get a poly-

nomial equation of τ . The exact solution is not trivial, but considering the

range of values of the parameters, higher order terms are negligible and we

can approximately solve a quadratic equation instead.

Defining c+jd =
√
x2 + y2 where x and y are given in (2.21) and (2.22).

With some algebra, c and d can be derived as

c =

√√
a2 + b2 + a

2
, d =

b

2c
, (2.38)
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where a = k2r − (2πfD)
2τ 2 and b = −4πfDkr cos(µr)τ . Substitute c and d into

(2.20), then apply the asymptotic approximation (2.30), and finally take the

absolute value, we have

R = e
− krf

2
Dτ2 sin2 µr

8D2
r,λ

ec−kr

(1 + (b/2k2r )
2)1/4

. (2.39)

For large kr, the denominator takes values close to one, and we approximate

(1 + (b/2k2r )
2)1/4 ≃ 1. Taking the log on both sides and rearranging to get

kr + logR +
krf

2
Dτ

2 sin2 µr

8D2
r,λ

=

√√
a2 + b2 + a

2
.

Now taking the square of both sides and ignore the τ 4 term,

2(kr + logR)2 + 4(kr+ log(R))
krf

2
Dτ

2 sin2 µr

8D2
r,λ

− a =
√
a2 + b2.

Once again take the square of both sides, and neglect the higher order terms

with respect to τ . Then, substitute a and b we obtain (2.40), from which the

approximate channel coherence time expression (2.41) can be readily derived

by solving a quadratic equation in τ .

4(kr + logR)4 − 4k2r (kr + logR)2+[
16(kr + logR)3 − 8k2r (kr + logR)

]krf 2
D sin2 µr

8D2
r,λ

τ 2

+ 4(kr + logR)2(2πfD)
2τ 2 = (4πfDkr cosµr)

2τ 2 (2.40)

T 2
c (kr) =

(k2r − (kr + logR)2)/f 2
D[

4(kr + logR)− 2k2r
kr+logR

]
kr sin2 µr

8D2
r,λ

+ (2π)2 − (4πkr cosµr)2

(kr+logR)2

. (2.41)

Note that for a fixed µr, the denominator in (2.41) can be negative leading

to an invalid solution. The range of valid solutions increases with µr as will
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be shown in our numerical example. As evident from Fig. 2.6, if µr is not

too small, our result covers most of the beamwidths of interest for mmWave

systems.

When µr = 90◦, which is the fastest fading case, (2.41) can be simplified

using 4(kr+logR)−2 k2r
kr+logR

≃ 2(kr+logR), which is valid for large kr. Finally,

substituting kr =
1
θ2
, the worst case channel coherence time can be expressed as

Tc(θ) =

√√√√√ 1− (1 + θ2 logR)2

1
4
(1 + θ2 logR)

(
fD sinµr

Dr,λ

)2
+ (2πfD)2θ4

. (2.42)

When Dr,λ →∞, this further simplifies to

Tc(θ) =
1

2πfD

√
1

θ2
log

1

R2
− (logR)2. (2.43)

Using the approximation
√
1 + z ≃ 1 + 1

z
for small z, it can be shown that

Tc(θ) increases on the order of 1/θ for small θ at the pointing angle µr = 90◦.

2.5.2 LOS Channel

When the LOS dominates, K/(K+1)→ 1 and Rh(τ) ≃ Rlos(τ). Thus,

we have

|Rh(τ)| = e
1
2
kr(cos(∆los

µ )−1). (2.44)

Using (2.8) and setting |Rh(Tc)| = R, we can solve (2.44) to get

Tc(θ) =
Dλ

fD sin(αlos)
cos−1

(
2

kr
logR + 1

)
(2.45)

=
Dλ

fD sin(αlos)
cos−1

(
2θ2 logR + 1

)
. (2.46)
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Figure 2.5: Channel coherence time for small µr. “Exact” refers to the co-
herence time obtained numerically from the exact correlation function (2.17).
“Approximation” and “No pointing error” refer to (2.36) and (2.37). The
result is quite sensitive to µr, and the approximation does not work well for
small θ but still can capture the effect of the receiver motion.

For this expression to be meaningful, 2
kr
logR+1 ∈ [−1, 1] must hold. Within

the typical range of R ∈ [0.3, 1], 2
kr
logR + 1 ∈ [−1, 1] is true for all kr > 2.

Since we are interested in large kr, this constraint presents no limitation here.

2.5.3 Numerical Results

We will provide numerical results to verify the derivation for the NLOS

case. The derivation for the LOS case does not include approximation and

thus no verification is given here. The receiver speed v, the carrier frequency

fc, and the scattering radius Dr,λ in Table 2.1 are used. The target correlation

is set to R = 0.5. As the approximations depend on µr, we investigate their

behavior for different values of µr in the followings.

For the small |µr| case, to see the sensitivity of the approximation in
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Figure 2.6: Channel coherence time for difference µr. “Exact” refers to the
numerical solution to the exact expression (2.17), and “Approximation” refers
to (2.41). We see that the range of valid approximation increases with µr.

(2.36) we plot the expression and compare it with that of the exact solution

for µr = 1◦ and µr = 5◦. The exact solution is obtained numerically using

the exact correlation function (2.17). The “Approximation” and “No pointing

error” refers to the expressions in (2.36) and (2.37), respectively. As mentioned

in the derivation, for a given µr the approximation does not work well for θ

too small. This error becomes more severe when |µr| gets larger, which can be

seen by comparing the plots in Fig. 2.5(a) and Fig. 2.5(b). Nevertheless, the

result can still capture the effect of the pointing error.

The same study is done for the case when µr is not small. Fig. 2.6 shows

the results for four different values of µr. For a fixed value of µr, there is a point

where the approximation diverges due to the singularity of the denominator

in (2.41). We observe that the range of θ for valid approximation increases
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with µr, and it is valid up to around µr/2, i.e., half the pointing angle. Since

mmWave systems require narrow beams to compensate for the high path loss,

the approximation in (2.41) will be valid for most cases of interest in practice.

Having verified the correctness of our derived expressions, we now sum-

marize the impact of relevant parameters on Tc, which include the speed v,

the beamwidth θ, and the pointing angle µr (or αlos for LOS case). As can be

seen from (2.36), (2.41), and (2.46), the coherence time is inversely propor-

tional to the maximum Doppler shift fD. Since fD is proportional to v, Tc is

proportional to 1/v, i.e., decreases as v increases as expected. The behavior

of Tc for a fixed speed is shown in Fig. 2.5 and Fig. 2.6. It can be shown that

for all µr ̸= 0, the coherence time Tc approaches zero as the beamwidth θ goes

to zero. This is due to the effect of the pointing error. As evident from the

plots, the coherence time Tc attains its maximum at some small but non-zero

θmax. This θmax depends on Dr,λ, and it gets smaller as Dr,λ increases. For a

fixed θ, the coherence time Tc increases as µr approaches zero, and it decreases

as µr approaches 90
◦. This agrees with the result in [33] where it is observed

that fading becomes faster as µr approaches 90
◦. Finally, note that the result

based on the Clarke-Jakes PAS ignores the effect of the beamwidth and the

results in [27,33] suggest that Tc goes to infinity as θ approaches zero because

they do not consider the pointing error.
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2.6 Beam Coherence Time

In this section, we first define the beam coherence time and then derive

the beam coherence time expressions for the LOS and NLOS cases. The NLOS

case uses our spatial lobe model described in Section 2.3.3.

We define the beam coherence time as the average time over which the

beam stays aligned. We focus on only the receive beam here. For a given

receive beamwidth, the beam is said to become misaligned when the received

power falls below a certain ratio ζ ∈ [0, 1] compared to the peak received

power. Let the receive beam be pointing at the peak direction µr at time t,

then we can define the beam coherence time by

TB = inf
τ

{
τ

∣∣∣∣P (t+ τ)

P (t)
< ζ

}
. (2.47)

Note that the power decrease here is due to the pointing error ∆µ(τ) as defined

in Section 2.3.2. Using this definition, we derive the beam coherence times for

the LOS and NLOS cases in the following.

2.6.1 LOS Case

Let the beam pattern be represented by the von Mises distribution as

earlier. The received power is proportional to the receive beam pattern, i.e.,

P (t) ∝ G(µr|µr) and P (t+ τ) ∝ G(µr|µr +∆los
µ ). At τ = TB,

ζ =
G(µr|µr +∆los

µ )

G(µr|µr)
(2.48)

= ekr(cos(∆
los
µ )−1). (2.49)
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Substituting ∆los
µ from (2.8), (2.49) can be solved to get

TB(θ) =
Dλ

fD sinµr

cos−1
(
θ2 log ζ + 1

)
, (2.50)

where we have used kr = 1/θ2 in (2.50). Note the similarity to the channel

coherence time for the LOS case. This is because the main cause for the

temporal variation in the LOS case is the pointing error.

2.6.2 NLOS Case

First, we need to determine the pointing error caused by the receiver

motion to compute the beam coherence time. In the NLOS case, the incoming

power is the result of the reflection from the scatterers. Following our one-ring

scatterer model, the pointing error is given by (2.7).

We now compute the received power to solve for TB. As mentioned in

Section 2.3, following the 5G channel model in [101], we model the spatial lobe

by a Gaussian PDF. Recall that the spatial lobe is the PAS P′(α|µr) before

applying the receive beam pattern. The variance of the Gaussian PDF is β2,

defined in (2.9), and the mean is µr. At time t, we assume perfect alignment so

that the receive beam is pointing at the peak of P′(α|µr), i.e., using the beam

pattern G(α|µr). At time t+τ , the beam pattern now changes to G(α|µr+∆µ)

if no realignment is done. The received power at the pointing angle µr+∆µ is

P (t+ τ) =

∫ 2π

0

P′(α|µr)G(α|µr +∆µ)dα. (2.51)

Note that for large kr, the von Mises PDF in (2.2) approaches the Gaussian

PDF [37, Ch. 45]. Also note that for large kr, i.e., small variance, the dis-
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tribution falls off fast and the tails at both sides beyond 0 and 2π have little

weight. These observations lead to the following approximation:

P (t+ τ) ≃
∫ ∞

−∞

1√
2πβ2

e
− (α−µr)

2

2β2
1√
2πθ2

e−
(α−µr−∆µ)2

2θ2 dα

=

∫ ∞

−∞

1√
2πβ2

e
− u2

2β2
1√
2πθ2

e−
(∆µ−u)2

2θ2 du. (2.52)

Applying a change of variable u = α− µr, µr can be eliminated from the first

expression. The expression (2.52) is just a convolution between two Gaussian

PDFs, which is well-known to result in another Gaussian PDF with mean ∆µ

and variance β2 + θ2 [115]. That is,

P (t+ τ) ≃ 1√
2π(β2 + θ2)

e
−

∆2
µ

2(β2+θ2) , (2.53)

which does not depend on µr. This makes sense because in the current setting

it is assumed that at time t the receive beam points at µr and P (t + τ) is

determined solely from the misalignment that happens at time t + τ . This

misalignment is captured by the pointing error due to the receiver motion ∆µ,

which is a function of τ . We can solve for TB directly from (2.53); however, by

approximating (2.53) by a von Mises PDF, the resulting TB is of the same form

for both the LOS and NLOS cases. Using the approximation, (2.53) becomes

P (t+ τ) ≃ 1

2πI0(1/(β2 + θ2))
e

cos(∆µ)

β2+θ2 . (2.54)

With the same steps used in the derivation in the LOS case, we get the ex-

pression for the NLOS case as

TB(θ|β) =
Dr,λ

fD sinµr

cos−1
(
(β2 + θ2) log ζ + 1

)
. (2.55)
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Note that β is a random variable and is modeled by the Gaussian distribution

in (2.9). Thus, to get the beam coherence time we need to average over β:

TB(θ) = Eβ[TB(θ|β)], (2.56)

where Eβ[·] denotes the statistical expectation over β. The difference to the

LOS case is that now TB depends on the channel through the spatial lobe

angular spread parameter β.

2.6.3 Numerical Results

We first state the simulation parameters. We set the transmitter-

receiver distance D = 50 m, the power ratio threshold ζ = 0.5, and use

the parameters in Table 2.1. σAS and Dr,λ are used only for the NLOS case.

Fig. 2.7 shows the beam coherence time for µr = 10◦ and µr = 80◦. In

the LOS case, it looks like TB is linear with respect to θ. It is almost linear

because the argument to the cos−1(·) is of the form 1+z2, which happens to be

the first order Taylor approximation of cos(·). For the same traveled distance,

the pointing direction changes less for small µr which results in larger TB for

µr = 10◦. For the NLOS case, recall that we model the angular spread of a

spatial lobe as Gaussian distributed with a standard deviation σAS = 25.7◦.

For the mean angle of arrival of 80◦, we see from Fig. 2.7(b) that increasing

the beamwidth does not effectively increase TB as in the case when the mean

angle of arrival is 10◦. Comparing the results in Fig. 2.7(b) and Fig. 2.6 we see

that TB shown here is much larger than Tc. Also note that while TB increases

with the beamwidth, Tc generally decreases as the beamwidth gets larger.
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Figure 2.7: The beam coherence time for both the LOS and NLOS cases.
The transmitter-receiver distance is set to D = 50 m, and the parameters
from Table 2.1 are used. For the LOS case, TB increases linearly with the
beamwidth θ. For the NLOS case, the increase is slower. This is because of
the effect of the spatial lobe width β on TB in the NLOS case. For both LOS
and NLOS cases, TB increases fast with θ for µr → 0◦, and slowly for µr → 90◦.

We now summarize the effect of each parameter on TB. For both LOS

and NLOS cases, TB ∝ 1/fD as evident from (2.50) and (2.55). The impact of

µr is similar to that of Tc; for a fixed θ, TB increases fast for µr close to zero and

slower for µr close to 90◦. For the LOS case, TB increases linearly with θ. For

the NLOS case, not just θ but also the spatial lobe width β matters. Following

the argument for the LOS case by treating z =
√
β2 + θ2, we can say that TB

linearly increases with
√
β2 + θ2. This agrees with the intuition that if the

incoming energy arrives over a wide range of angles (i.e., a large β) then the

received energy will be the same even with some change in the pointing angle.

This translates into a larger TB.

54



2.7 Implications on Beam Realignment Duration

So far we have defined and derived two coherence times: the channel

coherence time Tc and the beam coherence time TB, relevant to scenarios

where mmWave directional beams are used in vehicular environments. Tc

determines how fast the channel coefficient changes in time, and thus can be

used in deciding the packet length and determining the overhead for channel

estimation. We explore some implications on the choice of beamwidth in this

section. We show that to maximize the performance, beam realignment should

be done in every beam coherence time TB and not in every Tc.

2.7.1 Lower Bound on Mutual Information

We use a discrete time channel model to derive a lower bound on the

mutual information. The discrete time channel model is obtained by discretiz-

ing the continuous time channel model from Section 2.3. Consider the following

signal model

y[i] = h[i]s[i] + n[i], i = 1, 2, . . . , k (2.57)

where y[i] is the receive signal, h[i] is the channel, s[i] is the transmitted signal,

n[i] is the additive white Gaussian noise (AWGN), and k is the packet length

measured in the number of samples. The channel h[i] is the discrete-time

version of the channel h(t) from Section 2.3. Note that h(t) is the channel

seen through a receive beam G(α|µr) with some pointing direction µr. To
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discretize h(t), we use an autoregressive model

h[i] = αh[i− 1] + ξ[i− 1]. (2.58)

Here, α is the correlation coefficient and is determined from the temporal

correlation function derived in Section 2.4, i.e.,

α = Rh(νT ) (2.59)

with the symbol duration T , ξ[i] is the innovation term with variance σ2
ξ =

1− |Rh(νT )|2.

For decoding, the channel has to be estimated, and the effects from both

the thermal noise and the channel time-variation need to be considered. If the

estimator does not have knowledge of the statistics of ξ[i] (which typically is

the case), then a natural assumption is that ξ[i] is Gaussian. Because (2.58) is

a Gauss-Markov channel model, following the logic used in [75], the Kalman

filter provides the maximum-likelihood estimate (and also the minimum mean

squared error estimate) [13]. Suppose the channel is estimated with the help

of pilot symbols equally spaced in every ν samples. The received pilot signal

vector can then be written as v⌊k/ν⌋, where ⌊·⌋ denotes the floor function and

ak denotes a vector of length k. Applying the Kalman filter with the pilot

v⌊k/ν⌋ as the measurement vector, the variance of the channel estimation error

at the ℓ-th pilot ψℓ is given by the following recursive relations [75]

1

ψ1

=
1

σ2
h + σ2

ξ

+
σ2
v

σ2
n

(2.60)

1

ψℓ+1

=
1

α2ψℓ + σ2
ξ

+
σ2
v

σ2
n

, (2.61)
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where σ2
h is the channel power, σ2

v is the pilot signal power assumed to be the

same for all pilot symbols, and σ2
n is the noise power.

To explicitly express the channel estimation error, the channel is de-

composed into the known part h̄[i] and the estimation error h̃[i], i.e.,

h[i] = h̄[i] + h̃[i], (2.62)

The variance of the known part h̄[i] can be written as

σ2
h̄[i] = σ2

h − σ2
h̃
[i]. (2.63)

This notation is used in the derivation of the lower bound below. Note that

the estimation error variances given in (2.60) and (2.61) are at the sampling

points corresponding to the pilots. When they are used to decode the data

part, the channel time variation will further degrade the estimation accuracy.

This increase in estimation error is determined from the channel correlation

function and the total estimation error variance at a given sampling point can

be written as

σ2
h̃
[i] = ψ⌊i/ν⌋ + (1− |Rh((i− ⌊i/ν⌋ν)T )|2). (2.64)

For a very long sequence of signals, i.e., when k →∞, the error variance from

the Kalman filter converges to some value ψ (not dependent on the pilot index)

given by [75]

ψ =
|Rh(νT )|2 − 1− SNRvGa(θ)σ

2
ξ

2SNRvGa(θ)|Rh(νT )|2

+

√
(|Rh(νT )|2 −1−SNRvGa(θ)σ2

ξ )
2+4SNR2

vGa(θ)σ2
ξ |Rh(νT )|2

2SNRvGa(θ)|Rh(νT )|2
, (2.65)
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where SNRv = σ2
v/σ

2
n is the SNR of the pilot symbol excluding the antenna

gain. Ga(θ) is the antenna gain compared to omnidirectional antenna and is

given by

Ga(θ) =
G(µr|µr)

1/(2π)
=

e1/θ
2

I0(1/θ2)
(2.66)

where 1/(2π) in the denominator is the gain of an omnidirectional antenna, and

G(µr|µr) is the peak of the antenna pattern with the main beam pointing at

µr. G(α|µr) is assumed to have the shape of the von Mises PDF for consistency

with the rest of the chapter. Note that we use the peak of the antenna pattern

here because the time scale of a packet is small and there will be negligible

variation in the pointing direction within one packet.

Now, consider the mutual information for only the i-th sample with

channel estimate with the error given in (2.65). The worst case that the error

h̃[i] can have is to act as AWGN [75]. In that case, the mutual information

can be lower bounded by

I(s[i]; y[i]|v⌊i/ν⌋) ≥ ln

(
1 +

σ2
h̄
[i]σ2

s

σ2
h̃
σ2
s + σ2

n

)
. (2.67)

Using (2.67), and assuming the estimator does not use the decoded data for

channel estimation and only use the pilot v⌊i/ν⌋ then it can be shown that [75]

I(sk; (yk,v⌊k/ν⌋)) ≥
∑
i≤k

I(s[i]; y[i]|v⌊i/ν⌋). (2.68)

Plugging in the result so far, a lower bound for the mutual information can be
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written as

I(sk; (yk,v⌊k/ν⌋)) ≥
∑
i≤k

ln (1+

(|Rh((i− ⌊i/ν⌋ν)T )|2 − ψ⌊i/ν⌋)SNRsGa(θ)

(ψ⌊i/ν⌋ + (1− |Rh((i− ⌊i/ν⌋ν)T )|2))SNRsGa(θ) + 1

)
, (2.69)

where SNRs = σ2
s /σ

2
n is the SNR of the data part excluding the antenna gain.

Further, assume k →∞, then ψ⌊i/k⌋ → ψ, and we have

lim
k→∞

1

k
I(sk; (yk,v⌊k/ν⌋)) ≥

1

ν

ν∑
i=2

ln

(
1 +

(|Rh(iT )|2 − ψ)SNRsGa(θ)

(ψ + (1− |Rh(iT )|2))SNRsGa(θ) + 1

)
(2.70)

= Ilow(θ, SNRs, ν). (2.71)

At high SNR or when beamwidth θ is small (i.e., the antenna gain Ga(θ) is

large), then

Ilow(θ, SNRs, ν) ≃
1

ν

ν∑
i=2

ln

(
1 +

|Rh(iT )|2 − ψ
ψ + (1− |Rh(iT )|2)

)
, (2.72)

which implies that the loss due to the channel time-variation acts in the same

manner as the interference, and it cannot be mitigated by increasing the trans-

mit power.

Fig. 2.8 provides some insights into the effects of different parameters

on Ilow. In all cases, SNRs = SNRv = 0 dB and Dr,λ = 1000. Except indicated

otherwise in the plots, Bc = 10 MHz, v = 30 m/s, µr = 90◦, and θ = 10◦.

A smaller symbol duration T will result in lower overhead for estimating the

time-varying channel. To ensure frequency flat channels, T is constrained by

T ≥ 1/Bc, with Bc the coherence bandwidth. With the choice of T = 1/Bc,
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Figure 2.8: Effects of different parameters on Ilow. In all cases, SNRs = SNRv =
0 dB and Dr,λ = 1000 are used. Except indicated otherwise in the legends,
Bc = 10 MHz, v = 30 m/s, µr = 90◦, and θ = 10◦ are used. Fig. 2.8(a)
shows Ilow against pilot spacing for different Bc. The optimal ν increases as
Bc gets larger. Fig. 2.8(b) shows Ilow for different µr. The optimal ν decreases
as µr approaches 90◦. This is because the fading changes faster for µr near
90◦ [33]. Fig. 2.8(c) shows Ilow for different speeds. As the speed increases, the
time-variation increases and the pilot spacing should be decreased. Fig. 2.8(d)
shows the optimal ν and the corresponding Ilow against the beamwidth θ. Both
the optimal ν and Ilow decrease for a too small or too large θ. This is because θ
that is too small suffers from the pointing error, and θ that is too large suffers
from the Doppler spread which results in fast time variation (small Tc).
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Fig. 2.8(a) shows the effect of Bc on Ilow. We see that the optimal pilot

spacing increases with Bc. For a small Bc, the symbol duration is large and

the time-variation between two consecutive symbols increases. This means

that the pilot spacing should be set to a smaller value for a smaller Bc to

suppress channel estimation errors due to the time-variation of the channel.

Fig. 2.8(b) shows Ilow against the pilot spacing for different µr. The

optimal pilot spacing increases as µr decreases from 90◦ to 0◦. This is be-

cause the channel changes faster when µr approaches 90
◦ and slower when µr

approaches 0◦ as we have seen in the discussion on the temporal correlation

function in Section 2.4 and the channel coherence time in Section 2.5.

Fig. 2.8(c) shows Ilow against the pilot spacing for different speed v.

The faster the speed, the larger the channel time-variation and thus we expect

the optimal pilot spacing to decrease as the speed increases. This trend can

be confirmed in Fig. 2.8(c). The difference in the optimal Ilow, however, is

rather small. This suggests that for typical highway speeds, there is no need

to adapt the pilot spacing to the speed of the vehicle.

Finally, Fig. 2.8(d) shows the optimal pilot spacing that maximizes

Ilow against the beamwidth θ and the corresponding maximum Ilow. Since

a larger θ leads to a smaller Tc as shown in Section 2.5, the optimal pilot

spacing decreases with θ. When θ becomes too small, due to the effect of

pointing error, the channel coherence time decreases and so the optimal pilot

spacing also decreases. Since a smaller pilot spacing means higher overhead,

the resulting Ilow follows a similar trend. Notice that with the same optimal
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pilot spacing, Ilow for narrower beams has a higher value because of the higher

antenna gains for narrower beams. The results in Fig. 2.8(d) suggest that the

beam should be pointy but it should not be too pointy.

2.7.2 How Often Should the Beams Be Realigned?

In this subsection, we investigate the choice of the time duration be-

tween beam realignments. We consider the beam sweeping as a method to

align the beams. Two possible choices for the time duration between realign-

ments are the channel coherence time Tc (Section 2.5) and the beam coherence

time TB (Section 2.6). Assuming no error in the beam measurement during the

alignment process, realignment in every Tc will ensure that the best beams,

which provide the highest received power, are always chosen. If realignment

is done in every TB instead, suboptimal beams could result due to the effect

of fading. The overhead is, of course, higher when realigning in every Tc than

when realigning in every TB because TB ≥ Tc. We call the realignment in every

Tc the short-term realignment and the realignment in every TB the long-term

realignment. In the following, we will investigate the performance of these two

cases. For the LOS channel, Tc and TB are of comparable values (see (2.46)

and (2.50)), and there is not much difference between the two. Therefore, we

only study the NLOS case here.

For clarity, we consider a two-spatial-lobe channel similar to the one

illustrated in Fig. 2.2 (note that four lobes are shown in the figure). Each

spatial lobe corresponds to a scattering cluster that has a certain path loss
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and angular spread (i.e., the lobe width). We assume that all the spatial lobes

have the same fading statistic, and Rayleigh is assumed. There are two main

effects of fading here. One is the probability of choosing the suboptimal spatial

lobe (in the long-term beam realignment case) and the other is the calculation

of the average Ilow. The former effect is the one that could alter the conclusion

of whether short- or long-term beam realignment performs better. For less

severe fading, the probability of the suboptimal choice of the spatial lobe will

be lower and the long-term beam alignment will perform better. Therefore, if

we can show that the long-term beam alignment performs better for Rayleigh

fading, the conclusion will hold for less severe fading which is expected in

mmWave systems because the use of narrow beams will limit the multipath.

Also, note that extension to other fading distribution is straightforward as

long as the PDF of the SNR of the short-term beam alignment exists. The

assumption of two spatial lobes is to simplify the analysis of the wrong choice

of the spatial lobe (i.e., choosing a lobe with higher path loss) during the beam

training due to fading. The two-spatial-lobe model can capture the power loss

due to this wrong choice. More spatial lobes can provide more granularity of

the power loss, but this can be imitated by varying the path loss ratio of the

two lobes in the two-spatial-lobe model.

Denote Γ ≥ 1 the path loss ratio between the first and second spatial

lobe, PLi for i = {1, 2} the path losses of the two spatial lobes, then

PL1 = PL2 Γ, (2.73)
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where we have assumed without loss of generality that the first spatial lobe

has a higher average received power. Let gi = |hi|2 and Pi where i = {1, 2} be

the fading and the instantaneous received power, respectively, then we have

Pi = giPLi. (2.74)

Note that our channel model in (2.1) corresponds to the fading coefficient and

no path loss was incorporated.

The beam sweeping algorithm will select a beam using the rule i⋆ =

argmaxi Pi, explicitly

i⋆ =

{
1 if g1 ≥ g2/Γ

2 if g1 < g2/Γ
. (2.75)

Let fg(g) be the PDF of gi, then the beam sweeping will output 1 and 2 with

probabilities

P{i⋆ = 1} =
∫ ∞

0

∫ ∞

g2/Γ

fg(g1)dg1fg(g2)dg2, (2.76)

P{i⋆ = 2} =
∫ ∞

0

∫ g2/Γ

0

fg(g1)dg1fg(g2)dg2. (2.77)

For tractability, we assume the fading is Rayleigh so that gi follows

an exponential distribution with unit mean. When realigning in every Tc,

the path yielding the highest power is always chosen, so that the received

power follows the distribution of max{P1, P2}. The SNR is proportional to

the received power, and the PDF of the SNR can be derived as

fshort(γ) =
e−γ/γ̄1

γ̄1
+
e−γ/γ̄2

γ̄2
− γ̄1 + γ̄2

γ̄1γ̄2
e

(γ̄1+γ̄2)γ
γ̄1γ̄2 (2.78)
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where γ̄i =
Pi

Pn
is the average SNR of the i-th spatial lobe and Pn is the noise

power. When realigning in every TB, the beam sweeping is performed at the

beginning and the selected beam will be used until the next realignment. Note

that TB ≫ Tc for the NLOS channels (see numerical examples in Section 2.5

and 2.6). The fading coefficient becomes uncorrelated after Tc, and thus the

beam selected at the beginning could result in a suboptimal instantaneous

received power at some point between beam realignment. Depending on the

result of the beam sweeping, the channel experienced here follows either P1 or

P2. The PDF of the SNR in this case is

flong(γ) =
1

γ̄i
e−1/γ̄i . (2.79)

So far we have derived the PDFs of the SNR for the short- and long-

term realignment. Now, we will discuss the overhead of the two realignment

durations. The time needed for beam sweeping is the same for both the short-

and long-term realignments. Denoting this time duration by Tsw, then the

temporal efficiencies of the short- and long-term realignments are

ηshort(θ) =
Tc(θ)− Tsw(θ)

Tc(θ)
(2.80)

ηlong(θ) =
TB(θ)− Tsw(θ)

TB(θ)
. (2.81)

Note that all these are functions of the beamwidth θ.

Finally, the loss due to the channel time-variation, the temporal effi-

ciency, and the bound on the mutual information are all considered for the
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overall performance metric, i.e.,

Cshort(θ) = ηshort(θ)Eshort [Ilow(θ, γshort, ν)] (2.82)

Clong(θ) = ηlong(θ)Elong [Ilow(θ, γlong, ν)] (2.83)

= ηlong(θ)(P{i⋆ = 1}Eγ1 [Ilow(θ, γ1, ν)]

+ P{i⋆ = 2}Eγ2 [Ilow(θ, γ2, ν)]) (2.84)

where Ilow(θ, γ, ν) is the lower bound derived in (2.71) in the previous subsec-

tion.

Now, we provide a numerical example comparing the spectral efficien-

cies in (2.82) and (2.83) when realignment duration is set to Tc versus TB. To

make the comparison meaningful, the pilot spacing ν should be optimized for

all θ. This is done numerically, and the obtained optimal pilot spacings follow

a similar trend to that of Fig. 2.8(d). For the beam sweeping, we consider

a basic approach adopted in the IEEE 802.15.3c [53] which is based on a hi-

erarchical beam codebook. Let ℓ be the number of levels in the codebook,

and the i-level have Li beams. In this approach, at each level all the beam

combination pairs are tested, so the overhead of beam training is L2
iTTRN for

the search at the i-th level. TTRN is the duration needed for one beam mea-

surement. Thus, the 802.15.3c method has overhead of T3c = TTRN

∑1/ℓ
i=1 L

2
i .

It can be shown that the optimum Li that minimizes the number of beam

training is L1 = · · · = Lℓ = L =
(
θ0
θ

)1/ℓ
, where θ0 is the coverage and θ is the

desired beamwidth. In this case, the overhead becomes

T3c(θ) = ℓ

(
θ0
θ

)2/ℓ

TTRN. (2.85)
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(a) Path loss ratio Γ = 3 dB
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(b) Path loss ratio Γ = 10 dB

Figure 2.9: Comparison of the spectral efficiencies in (2.82) and (2.83) for the
short- and long-term beam realignment when the beam sweeping follows the
802.15.3c method. Fig. (a) and (b) show the case when the path loss ratio
of the two spatial lobes Γ is 3 dB and 10 dB, respectively. In both cases, the
long-term realignment performs better and the gap is more pronounced when
Γ = 10 dB. The gap increases for larger Γ because the sweeping is less likely
to make mistake when Γ is large so that the large overhead of the short-term
realignment penalizes rather than improves the performance.

Note that the overhead here ignores the feedback and acknowledgment phase.

Plugging in TSW(θ) = T3c(θ), we can now compute the spectral efficiencies in

(2.82) and (2.83) as a function of the beamwidth θ. The coherence bandwidth

is set to 10 MHz, pointing angle µr = 90◦ (which corresponds to the worst case),

θ0 = 180◦, the training per beam TTRN = 1µs, and angular spread σAS = 25.7◦.

Other parameters are the same as used in the previous subsection.

The result is shown in Fig. 2.9 for the case when the path loss ratio

Γ is 3 dB and 10 dB. In both cases, the long-term realignment has higher

spectral efficiency and the gap is larger for large Γ. This is because when Γ

is large, the probability that beam sweeping chooses the suboptimal choice
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becomes smaller so that minimal benefit can be expected from the short-term

realignment. Thus, the overhead paid for the short-term realignment does not

provide sufficient return and the long-term realignment performs better due

to the lower required overhead.

2.8 Conclusion

In this chapter, we derived the channel coherence time for a wireless

channel as a function of the beamwidth taking both Doppler effect and pointing

error into consideration. Our results show that there exists a non-zero optimal

beamwidth that maximizes the channel coherence time. If the beamwidth is

too narrow, pointing error will limit the coherence time. If the beamwidth is

too wide, the Doppler spread becomes the limiting factor.

We defined and computed a new quantity called the beam coherence

time, which is tailored to the beam alignment context. We showed that the

beam coherence time is typically an order-of-magnitude longer than the con-

ventional channel coherence time. Incorporating both the channel estimation

and beam alignment overhead, we showed that beams should be realigned

every beam coherence time and not every channel coherence time.
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Chapter 3

Inverse Multipath Fingerprinting for V2I

MmWave Beam Alignment

Beam alignment is a crucial component in millimeter wave (mmWave)

systems, especially in fast-changing vehicular settings. In this chapter, we pro-

pose a novel and efficient beam alignment method using multipath fingerprint-

ing. Fingerprinting is a popular approach for localization, where the measured

multipath signature is compared to the multipath fingerprint database to re-

trieve the most likely position. Opposite to the localization idea, here vehicle

positions (e.g., available via GPS) are used to query the multipath fingerprint

database, which provides prior knowledge of potential pointing directions for

reliable beam alignment. We define the power loss probability to measure the

beam alignment accuracy. We then propose two statistical learning methods

to rank promising beam directions: one is a heuristic and the other is an op-

timal solution derived using the concept of power loss probability. Using the

beam coherence time concept from Chapter 2, we compare the performance

of the proposed method with the existing standard IEEE 802.11ad and show

the superiority of the proposed method, which becomes more pronounced as

the antenna array size and/or the vehicle speed increases. Finally, we present

an extension using a machine learning (ML) approach to rank the beam pairs.
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The ML-based approach provides a more flexible framework that does not

require binning the context as in the statistical learning methods. The ML

approach is more scalable for incorporating multiple types of context informa-

tion. This work was published in [103,104] ( c⃝ IEEE).

3.1 Motivation and Prior Work

Prior knowledge of the propagation environment can be used to reduce

the beam alignment overhead. Here, we focus on the use of multipath finger-

prints, which are the long-term multipath channel characteristics associated

with locations. The term “fingerprint” originates from the localization liter-

ature [17, 65, 67], where the main premise is that channel characteristics are

highly correlated with locations. In fingerprinting-based localization methods,

there is a fingerprint database, which records fingerprints at different loca-

tions in the area of interest. When a terminal wants to localize itself, it first

performs RF channel measurements to obtain the fingerprint at the current

location. The obtained fingerprint is then matched against the fingerprints in

the database and the output location is computed based on the match finger-

prints in the database that are “closest” to the observed fingerprint. Since

position information is readily available in the vehicular context, we propose

to use this idea in inverse. Localization is an important task in driving au-

tomation, where vehicles position themselves via a suite of sensors including

GPS, visual cameras, and LIDAR [114]. This position information can be

used to query the fingerprint database which is indexed by location to deter-
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mine beam directions that are likely to provide satisfactory link quality. Large

beam training overhead reduction can be expected if potential directions are

concentrated, which has been observed in measurements. For example, it was

reported in [26, p. 19] that in an indoor measurement with moving pedestri-

ans the received powers were concentrated in no more than three dominant

directions.

Beam alignment is a subject of intense research because of its impor-

tance for beam-based mmWave communications. Here, we summarize relevant

work in the context of analog beamforming, where both the transmitter and re-

ceiver have only one RF chain. We group existing solutions into four categories,

namely, approaches using beam sweeping [58,88,112], angle of arrival and de-

parture (AoA/AoD) estimation [63,73], blackbox optimization [59,68,69], and

side information [9, 41,61,80,106,109].

Beam sweeping are simple and robust because it makes little assump-

tions on the channel. It only requires that the spatial channel does not change

during the sweeping time. Search efficiency, however, is poor, and often hier-

archical beam codebooks are used to reduce search complexity. This approach

has been adopted in existing mmWave standards such as IEEE 802.15.3c [48]

and IEEE 802.11ad [50] for indoor use cases. While this approach works well

for short ranges, the use of wide beams in the initial stage is the bottleneck for

large link distances. To maintain the signal-to-noise ratio (SNR) of the beam

training, a large spreading factor or narrow beams are required in the initial

stage, which dramatically decreases its efficiency.
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AoA/AoD estimation leverages the sparsity of mmWave channels to

reduce the number of measurements required compared to beam sweeping. For

example, compressive sensing is used in [32,63] and an approximate maximum

likelihood estimator is derived using the channel structure directly in [73].

Compressive measurements have to overcome the lack of antenna gain unlike

the proposed approach that uses narrow beams for the beam training and

thus need much less spreading in the measurements (and thus shorter training

sequences).

Another idea is to use a blackbox optimization framework to efficiently

explore the beam directions. This framework is based on the premise that there

is some structure (e.g., smoothness) of the objective function (i.e., the received

power here) and thus one does not have to blindly search all the beam pair

combinations. This approach requires a good set of initial measurements and a

larger number of feedbacks than other approaches to navigate the exploration.

The final category uses side information available from sensors (includ-

ing communication systems at other frequencies). Radar information is used

in [41], and information from lower frequencies is used in [9,80]. More related

to our work are those that use position information [5, 16, 31, 61, 106]. The

work in [5, 61, 106] uses position to determine beam directions directly and

does not need beam training. It, however, only works when the LOS path

is available. More elaborate channel models with LOS obstruction have been

investigated in [16, 31]. It is proposed in [31] to memorize successful beam

configurations observed in the past but no detail is given on how to rank those
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configurations in terms of their likelihood to provide a good link. Omnidirec-

tional antennas at the users are assumed in [31], which may be impractical

for mmWave communications. In [16], a heuristic is proposed for a hierar-

chical beam search with the help of position and multipath database. Only

the search in the azimuth was considered and horn antennas were assumed.

Our proposed approach is in this category, where we use position information

and multipath fingerprints. Unlike [5,61,106], by leveraging multipath finger-

prints, our approach can work in both LOS and non-LOS (NLOS) channels.

Different from [16,31], the proposed beam training uses narrow beams at both

the roadside unit (RSU) and the vehicle. Also, we provide a mathematical

framework to rank beam pointing directions from past measurements in the

fingerprint database and both azimuth and elevation are considered.

3.2 Contributions

The objective of this chapter is to develop an efficient beam alignment

method suitable for a vehicle-to-infrastructure (V2I) setting. In this chapter,

we focus on an offline learning setting where there is a dedicated period of time

for collecting the training data before they are used for efficient beam align-

ment. We will develop an online version of the proposed method in Chapter

4. The chapter’s contributions are summarized as follows:

• We propose a framework for fast beam alignment using subsets of beam

pairs. The idea is to use context information (multipath fingerprints
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in our case) to select promising beam directions and only train a small

subset of beam pairs.

• We propose two types of fingerprints (Types A and B), which differ in

how measurements are collected and stored. Type A assumes each con-

tributing vehicle performs an exhaustive search over all beam pairs (so

that correlation between beam pairs can be captured), while Type B col-

lects only a fraction of the exhaustive search at a time. Type A stores the

raw received power, while Type B only stores the average received power

of each beam pair. This provides flexibility for actual implementations,

where contributing vehicles might have time constraints.

• We introduce the power loss probability as a metric for evaluating the

beam alignment accuracy. This metric leads to a mathematical frame-

work for optimizing the candidate beam pair selection. We propose two

statistical-learning-based beam pair selection methods (in the sense that

the metrics used have statistical interpretations), where one is a heuristic

and the other is a solution that minimizes the misalignment probability.

• We provide an extensive numerical investigation, which includes the

training sample size to build the fingerprint database, beam training

overhead comparison with IEEE 802.11ad, and the sensitivity to changes

in vehicular traffic density. For the overhead comparison, we leverage the

concept of beam coherence time from Chapter 2 to quantify the beam

training cost in the vehicular context. We use realistic channels gener-
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ated from a commercial ray-tracing simulator, Wireless InSite [87], in all

our results.

• We propose an extension to the beam pair selection using a learning-

to-rank (LtR) approach from the recommender system literature. This

ML-based approach eliminates the needs to bin the context information

making it a more scalable framework for incorporating multiple types of

context information.

We note that while we emphasize the V2I context here, the approach can also

be applied to general cellular settings. An additional challenge is in how to

determine the orientation of the antenna array of the user equipment (which

is needed to translate AoAs/AoDs to beam indices). This is not as important

for vehicles because the array is fixed on the vehicle (e.g., the roof) and the

orientation can be determined from the heading of the vehicle.

The rest of the chapter is organized as follows. We define the system

model in Section 3.3. In Section 3.4, we define the multipath fingerprints

and explain how the proposed beam alignment works. We provide an ana-

lytical framework for quantifying beam alignment accuracy in Section 3.5. In

Section 3.6, we present two statistical learning-based beam subset selection

methods using the fingerprints. We show numerical evaluations of the pro-

posed beam alignment using the statistical selection methods in Section 3.7.

We develop and evaluate a more scalable beam pair selection method based

on ML in Section 3.8. Finally, we conclude the chapter in Section 2.8.
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RSU (7 m)

CV (1.5 m)

d
ℓ

Figure 3.1: Ray-tracing simulation environment. The scenario is an urban
street with two lanes. There are two types of vehicles: cars and trucks. The
CV is a car on the left lane and its LOS path can be blocked by a truck. The
antenna heights are 1.5 m at the CV (roof-mounted) and 7 m at the RSU.

3.3 System Model

We consider an urban street canyon environment with high traffic den-

sity, where LOS is often unavailable and is a challenging scenario for beam

alignment. We start by describing the ray-tracing environment and how the

outputs are used to obtain the channel matrices. Then, we describe the re-

ceived signal model and the beam codebook.

3.3.1 Channel Model

The simulation environment is shown in Fig. 3.1, which is an urban

street with two lanes. All the buildings are made of concrete (relative per-

mittivity ϵr = 5.31 and conductivity σ = 0.8967 S/m [51, Table 3]), and the
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road surfaces are made of asphalt (ϵr = 3.18 and σ = 0.3338 S/m [70]). The

surface root-mean-square roughness is set to 0.2 mm for concrete and 0.34 mm

for asphalt [70, Table 1]. We allow up to two reflections and one diffraction.

We simulate two types of vehicles represented by metal boxes (made of the

perfect electric conductor which is predefined in Wireless InSite [87]): cars

(1.8m × 5m × 1.5m) and trucks (2.5m × 12m × 3.8m). The type of each

vehicle is selected randomly with 0.6 probability for a car and 0.4 probability

for a truck. The average cars-to-trucks ratio is 3:2. The RSU is placed on the

right side, and a car on the left lane is selected as the communicating vehicle

(CV). The antenna heights are 7 m for the RSU and 1.5 m for the CV (on its

roof). Because trucks are taller, they could block the LOS path between the

CV and the RSU. The carrier frequency is set to 60 GHz.

To imitate the dynamic blockage environment, we simulate multiple

snapshots of the scenario where vehicles are independently and randomly

placed in each snapshot. The gap between vehicles (i.e., from the front bumper

to the rear bumper of the heading vehicle) ζ is assumed to be IID and follow

the Erlang distribution [8] with the probability density given by

fζ(ζ) =
(κµζ)

κ

(κ− 1)!
ζκ−1e−κµζζ , (3.1)

where κ is the shape parameter and 1/µζ is the mean gap. Following [74],

κ = 6 and µζ = 0.209 are used in our simulations, which produces an average

gap of 4.78 m. Since multipath fingerprints are associated with locations, we

need to generate multiple channels at a given location. To do this, the CV
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is placed at a longitudinal distance dℓ from the RSU (see Fig. 3.1), where

dℓ is uniformly drawn from [d0 − σd, d0 + σd] for some mean distance d0 and

some grid size 2σd. d0 = 30 m and σd = 2.5 m are used when generating the

channels. When applying our method, all points within this range are treated

as a location bin indexed by d0. By discretizing the location this way, the

system has some resilience to errors in positions estimated by the vehicle. The

edge effect can be mitigated by defining overlapping location bins.

In this chapter and the next, no mobility is considered during the

beam training. The beam training duration for the proposed method is sub-

millisecond (see Section 3.7.6), so the displacement of vehicles during the beam

training is negligible. For example, when 16× 16 arrays are used, the training

duration is about 150 µs, and the displacement is only 3 mm even with a speed

of 20 m/s. Our proposed beam alignment can be considered as an initial link

establishment, and after which a beam tracking method such as [38] could be

used to maintain the link to further reduce the overhead.

We use the wideband geometric channel model parametrized by the

ray-tracing output. A ray-tracing simulation outputs a number of rays, each

corresponding to a propagation path. The information associated with each

ray includes the received power, the delay, the phase, the AoA, and the AoD.

Denoting (·)∗ the conjugate transpose, Nt and Nr the numbers of transmit and

receive antennas, Lp the number of rays, αℓ the complex channel gain, τℓ the

delay, θAℓ and θDℓ the elevation AoA and AoD, ϕA
ℓ and ϕD

ℓ the azimuth AoA

and AoD of the ℓ-th ray, g(·) the combined effect of lowpass filtering and pulse
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shaping, B the system bandwidth, T = 1/B the symbol period, and ar(·) and

at(·) the receive and transmit steering vectors, the channel can be written as

H [n]=
√
NrNt

Lp−1∑
ℓ=0

αℓg(nT − τℓ)ar(θ
A
ℓ , ϕ

A
ℓ )a

∗
t (θ

D
ℓ , ϕ

D
ℓ ). (3.2)

The raised cosine filter with a roll-off factor of 0.1 is assumed for the pulse

shaping filter. The number of rays is Lp = 25. We use the Full3D model with

Shooting and Bouncing Ray (SBR) tracing mode in Wireless InSite. The ray

spacing is 0.25◦, which means the simulator shoots hundreds of rays and deter-

mines which of them form valid propagation paths and records the strongest

25 of them. The power gap among these 25 rays is more than 20 dB, and thus

there is little value in keeping more rays. Note that there is no need to spec-

ify the number of clusters or rays per cluster as typical of stochastic channel

models. The ray-tracing will determine all relevant propagation paths. In fact,

some of the 25 rays can be thought of as belonging to the same cluster since

they have similar delays and AoAs. Note that by using ray-tracing, we ensure

that the channels are spatially consistent, which is a feature not available in

most stochastic channel models.

Uniform planar arrays (UPA) are assumed at both the transmitter and

the receiver. With a UPA, each beam is defined by its azimuth ϕ and elevation

θ main beam direction. Let Gant(·) be the antenna element radiation pattern,

Ωy = kdy sin(θ) sin(ϕ), Ωx = kdx sin(θ) cos(ϕ), k = 2π/λ be the wave number,

⊗ denote the Kronecker product, Nx and Ny be the numbers of elements

along the x- and y-axis, and dx and dy be the element spacing in the x- and
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y-direction, a beam pointing in (θ, ϕ) direction is given by [18]

a(θ, ϕ) =
Gant(θ, ϕ)√

NxNy


1
ejΩy

...
ej(Ny−1)Ωy

⊗


1
ejΩx

...
ej(Nx−1)Ωx

 .
We assume dx = dy = λ/2. We assume no backplane radiation and set

Gant(θ, ϕ) =

{
0 if θ > 90◦

1 otherwise
. (3.3)

We use (3.3) for simplicity, but we can replace it with a more sophisticated

one like that of a patch antenna.

3.3.2 Received Signal Model

We assume an analog beamforming, which uses only one RF chain.

We assume the symbol timing is synchronized to the first path (shortest de-

lay). This means that paths with larger delays are not likely synchronized to

the sampling timing and the energy will leak to adjacent symbols. The leak

amount is determined by the combined filter response g(·). The received signal

of the i-th beam pair can be written as the time-domain convolution between

the transmit signal and the effective channel seen through the i-th beam pair

hi[n], i.e.,

yi[k] =
√
Pt

L−1∑
n=0

s[k − n]
Lp−1∑
ℓ=0

g(nT + τ0 − τℓ)w∗
r(i)Hℓf t(i)︸ ︷︷ ︸

hi[n]

+vi[k], (3.4)

where Hℓ =
√
NrNtαℓar(θ

A
ℓ , ϕ

A
ℓ )a

∗
t (θ

D
ℓ , ϕ

D
ℓ ) the channel matrix correspond-

ing to the ℓ-th path, L is the channel length, Pt is the transmit power,
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s[k] is the known training signal, r(i) and t(i) denote the mapping of the

beam pair index i to the combiner w and beamformer f vector indices, and

vi[k] is the zero mean complex Gaussian noise CN(0, σ2
v). Let K ≥ L be

the training sequence length and yi =
[
yi[0] yi[1] . . . yi[K − 1]

]T
, hi =[

hi[0] hi[1] . . . hi[L− 1]
]T

and vi =
[
vi[0] vi[1] . . . vi[K − 1]

]T
. As-

suming a long enough cyclic prefix, the received signal after discarding the

cyclic prefix can be rewritten in a matrix form as

yi = Shi + vi, (3.5)

where S is the K × L circularly shifted training sequence. The channel can

be estimated using a least-square approach as

ĥi = S†yi (3.6)

= hi + S†vi (3.7)

where S† = (S∗S)−1S∗ is the pseudo-inverse. Using a training sequence with

good correlation properties like Zadoff-Chu or Golay sequences and a proper

power scaling, S∗S = I and the estimation error ṽi = S†vi can be modeled as

CN
(
0, σ

2
v

K
I
)
[46]. We refer to [46, Chapter 5] for more details. Note that the

database collection should use the same Pt (or scaled appropriately if different

Pt’s are used). In our simulations, following IEEE 802.11ad, we set the system

bandwidth B = 1760 MHz and K = 512. The Channel Estimation Field

(CEF) of an IEEE 802.11ad frame consists of two training sequences of length

512 which can be used to perform two independent channel estimations [50].
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Figure 3.2: Beam patterns in our codebook for an 8 × 8 array. The array
is assumed to face upward in the +z direction. The codebook covers the
directions in the +z half-space (i.e., assuming no radiation in the backplane).

In our setting, the delay spread is larger than the indoor scenario, and thus

we assume the whole CEF is used for only one channel estimation. The actual

channel length L varies for different snapshots of the ray-tracing simulation

and can be larger than 512. Since the powers of those paths with large delays

are observed to be negligible compared to paths with short delays, we truncate

the channel to get L = 512.

The vector wr(i) and f t(i) are selected from the receiver codebook W

and transmitter codebook F. We assume UPAs are used at both the CV and

the RSU. The beams in the codebook are generated using progressive phase

shift [82] between antenna elements. Fig. 3.2 shows the beams for an 8 × 8

array. We numerically determine the 3 dB beamwidths of the beams (which

depends on the main beam direction) and select the beams such that they
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are separated by the 3 dB beamwidth starting from the broadside direction.

This ensures that the array gain fluctuates less than 3 dB over the entire field

of view of the antenna array. We note that our proposed approach does not

depend on this specific codebook, and another codebook can replace the one

used here. Codebooks adapted to the environment, however, can be expected

to provide higher beamforming gains. This idea is pursued in Chapter 4 where

we propose an online beam pair refinement algorithm.

3.4 Beam Alignment using Subset of Beam Pairs

The main idea of the proposed approach is to leverage prior knowledge

to identify promising beam directions and only train those directions. The

prior knowledge is obtained from past observations in the database, and there

is no guarantee that all paths seen so far are present in the current channel. For

example, some paths do not appear due to blockage. Therefore, beam train-

ing among the beam directions identified from the database is still required.

The beam training here, however, has a much lower overhead than conven-

tional methods because a large number of unlikely directions have already

been eliminated using the database. In this section, we will define fingerprints

and explain how the database is constructed and the cost involved. Then, we

will describe the proposed approach for beam alignment.
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3.4.1 Multipath Fingerprint Database

In general, a fingerprint refers to some characteristics of the channel at

a given location. These characteristics could be the received signal strengths

from different access points [67] or the multipath signature of the channel from

an access point [65]. In this dissertation, a fingerprint refers to a set of received

powers of different pairs of transmit and receive beams at a given location bin

[d0 − σd, d0 + σd].

We define two types of fingerprints, which differ by how measurement

data are collected and stored. The first type, called Type A, requires that the

contributing vehicle perform full exhaustive beam measurements over all beam

pairs. This ensures that the measurements over the different pairs happen

within a beam coherence time so that the spatial channel does not change.

This way, the fingerprint captures the correlation between the different beam

pairs, i.e., whether they tend to have similar received powers or not. For Type

A fingerprints, the raw measurement samples are stored. One could store all

the measurements of all the beam pairs from each contributing vehicle, but

this is not necessary. Only the measurements of the top-C beam pairs (ranked

by the received power) can be stored. This is because most of the beam pairs

do not point along any propagation paths and have negligible received powers,

and thus there is negligible information gain in keeping all beam pairs. In our

simulation, we use C = 100. The average power ratio between the strongest

beam pair and the 100th strongest over the channel samples used is 22.2 dB.

An example of Type A fingerprints is shown in Table 3.1. In this example,
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Table 3.1: An example of Type A fingerprints. For each contributing vehicles,
the measurements of the top-C beam pairs are stored. In each cell, the top
number is the beam pair index and the bottom one is the received power.

Observation No. Best 2nd best . . . C-th best

1
5 159 . . . 346

-64.5 dBm -69.2 dBm . . . -95.8 dBm
159 263 . . . 354

2
-70.4 dBm -72.6 dBm . . . -97.1 dBm

. . . . . . . . . . . . . . .
5 258 . . . 2

N
-66.4 dBm -68.1 dBm . . . -82.6 dBm

there are N observations collected by N contributing vehicles.

Type B fingerprints do not require that the measurement of all the

beam pair combinations be completed within a beam coherence time. This

less restrictive data collection reduces the burden on individual vehicles con-

tributing to building the database; they do not need to do a full exhaustive

search and could contribute as many beam measurements as their time allows.

A simple method is to collect the data in a round-robin manner. For exam-

ple, assume that each vehicle can do only 1/4 of the full exhaustive search,

the RSU can divide the set of all beam pairs into four disjoint sets and as-

sign these sets sequentially to subsequent contributing vehicles to collect the

measurement data. The disadvantage is that now the correlation between the

beam pairs cannot be easily captured. Thus, there is no benefit to store the

raw samples, and only the average received powers (computed in linear scale)

of the beam pairs are stored. An example of Type B fingerprints is shown

in Table 3.2. We note that the sample averages can be computed recursively,
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Table 3.2: An example of Type B fingerprints at a location bin. The average
received power for each beam pair is recorded.

Beam pair index 1 2 . . .
Average received power -92.3 dBm -73.5 dBm . . .

and thus there is no need to temporally store the raw samples when collecting

Type B fingerprints.

We focus on an offline learning setting to build the database in this

chapter. An online extension is the subject of Chapter 4. In the proposed ap-

proach, the RSU builds and stores the database. By offline learning, we mean

there is a dedicated period of time for collecting the fingerprint database before

it is exploited for efficient beam alignment. During this period, each contribut-

ing vehicle conducts beam training with the RSU. By having the vehicle be the

transmitter during the beam training, there is no feedback needed to report

the measured received powers. If each contributing vehicle can perform a full

exhaustive search over all beam pair combinations in the codebook, we obtain

Type A fingerprints. Otherwise, we get Type B fingerprints.

We now discuss the cost for building and storing the database. The

database can be collected in the initial stage of the system deployment. The

RSU can request vehicles passing by its coverage to conduct beam training.

Most modern vehicles are GPS equipped either for navigation or for safety

message (position, speed, heading etc.) dissemination such as in DSRC. Thus,

it is fair to assume that any vehicles equipped with mmWave communication

also have positioning capability, and all mmWave communication capable ve-

86



hicles can contribute to building the database. As will be shown in Section

3.7.2, around 250 full exhaustive beam measurements are enough to get a fully

functioning database. These measurements can be collected from 250 vehicles

if we assume Type A fingerprints. In a dense urban traffic setting, this could

be done within an hour if not less (e.g., the average number of vehicles pass-

ing through an urban road segment was around 400 per lane per hour in the

NGSIM Lankershim dataset [36]). We note that if the exhaustive search is

used as the beam alignment method when the database is not available [71],

the data collection is essentially free since the vehicles will need to conduct

the exhaustive search to establish the link during this stage.

Once the database is built, the updating cost is low. The main premise

of the proposed method is to learn the long-term multipath information from

the database, which is the propagation directions that depend on the geometry

of the environment such as the road structure and buildings. The change in

the traffic density can affect the relative importance of different paths, but as

shown in Section 3.7.5, if the database is collected in a dense traffic, it will also

work well in light traffic conditions. Thus, we expect the database collected

in high traffic density to be valid for a long period of time such as weeks or

even months if there is no construction in the surrounding buildings and road

structure. Of course, once a functioning database has been established, it can

be reinforced by having idle vehicles passing by conduct beam measurements

and replace the older data with the newly collected ones. This update can be

done at a slow pace since we expect the database to change slowly.
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RSU

CV Tr-RQ

Phase 1 (mmWave or low freq.) Phase 2 (mmWave with narrow beams)

Tr-ACK Feedback

TX t(i )1 TX t(i )2 TX t(i  )|S|

RX r(i )1 RX r(i )2 RX r(i  )|S|

TX beam index

training request w/ position

RX beam index

train each beam pair in S

ACK and list of beam pairs S

DB

Figure 3.3: An illustration of position-aided beam alignment in the uplink.
It consists of two phases. Phase 1 is for the training request where the CV
position is sent to the RSU. The RSU uses the position and its learned database
to determine a list of promising beam pairs S. In Phase 2, the beam pairs in
the list are trained, and a feedback indicated the best beam index is sent at
the end.

Finally, we consider the storage requirement. For Type A fingerprints,

using 4 bytes for one received power and 2 bytes for one beam index, the total

storage of Table 3.1 is 6NC bytes. Assuming N = 250, C = 100 and 200

location bins per RSU coverage (1 m bin size and 200 m RSU coverage), it

requires about 30 MB. Type B requires even less data storage. This amount

of data can be easily stored in any modern devices. Therefore, we conclude

that storage is not at all a problem.

3.4.2 Proposed Beam Alignment

Fig. 3.3 illustrates the position-aided beam alignment, which consists

of two phases. We start with the uplink. In Phase 1, the CV sends a training

request along with its context information to the RSU. In this dissertation, we

use position as the context. The RSU uses the position and the database it
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maintains to determine a subset of promising beam directions, denoted by S.

The size of the set S is a system parameter that is chosen to balance the training

overhead and the alignment accuracy. Beam pair selection methods will be

described in Section 3.6. The RSU then responds with an acknowledgment

and the beam pair subset S to the CV. Since the beams are not aligned in this

phase, a lower frequency control channel or mmWave with a large spreading

factor can be used. In Phase 2, the beam pairs in S are trained and the best

beam index is fed back at the end. MmWave with narrow beams is used during

this phase. In the proposed methods, the learning happens at the RSU.

In the downlink, Phase 1 changes slightly. The process starts with

the RSU sending a training request to the CV, which then responds with

an acknowledgment including its position. The RSU, then, sends the list of

promising beam pairs S. The beam training in Phase 2 is kept the same.

This is possible because of the reciprocity in the AoA/AoDs, where the AoAs

become the AoDs and vice versa when reversing the transmitter and receiver

role. This AoA/AoD reciprocity only depends on the reciprocity property of

electromagnetic waves, which holds when they propagate in passive medium

like wireless channels (excluding the device’s circuits) [18].

Several remarks on the proposed method now follow.

Remark 1: The position information here does not have to be highly

accurate. It only needs to be accurate enough to identify the location bin

index of the fingerprints. In our simulation, this bin size is 5 m. Edge effects

can be mitigated by having overlapping location bins.
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Remark 2: The proposed method allows graceful degradation as the

number of beam pairs trained Nb, which is the size of S, decreases because the

alignment accuracy decreases probabilistically with Nb and there is no hard

threshold on Nb. See Fig. 3.9 for an example of how the average rate changes

with Nb. This is a desirable feature that allows the tradeoff between latency

in link establishment and accuracy of the beam alignment.

Remark 3: Our method performs the beam training using only narrow

beams, which has several advantages. Narrow beams provide high antenna

gain and are more resilient to Doppler spread [102]. Also, methods employing

wide quasi-omni beams can suffer from antenna gain fluctuation because it is

challenging to produce wide beamwidths with low gain fluctuation [58].

Remark 4: By having the CV transmit and the RSU receive during

the beam training, the RSU obtains beam measurements for free, i.e., without

any feedback from the CV. These measurements are useful for updating the

database in an online setting.

3.5 Quantifying Beam Alignment Accuracy

In this section, we define a metric for measuring the beam alignment

accuracy, which allows us to compare different candidate beam pair selection

methods. We will use this metric for optimizing the method to select beam

pairs for training in Section 3.6. The definition assumes the measurement

noise is negligible. In the presence of measurement noise, the metrics computed

using (3.8) and (3.9) will be less accurate and can affect the beam pair selection
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and degrade the beam alignment accuracy. We investigate the effect of noise

numerically in Section 3.7.4 and show that the degradation due to noise is

negligible if the transmit power is not too low.

The power loss is defined as the ratio between the received power of

the optimal beam pair and the pair selected by the beam alignment method

indexed by s. Let B be the set of all beam pair combinations, and γℓ = ∥hℓ∥2

be the received power of the ℓ-th beam pair. The power loss can be written as

ξ =
maxk∈B γk

γs
. (3.8)

If noise is negligible, the strongest beam pair will be selected after the beam

training so that γs = maxi∈S γi, where S ⊂ B is the set of candidate beam

pairs selected for beam training. The power loss probability is defined as the

probability that ξ > c for some c ≥ 1, i.e.,

Ppl(c, S) = P[ξ > c] (3.9)

= P
[
max
k∈B

γk > cmax
i∈S

γi

]
. (3.10)

We note that since S is a subset of B, the definition in (3.10) is always well-

defined.

3.6 Beam Pair Subset Selection using Statistical Learn-
ing

In this section, we propose two methods to select candidate beam pairs

for beam training using the information in the fingerprint database. The
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methods are based on statistical learning in the sense that the metrics used

have clear statistical interpretations. The objective of the selection methods

is to maximize the received power of the finally selected beam pair for a given

beam training budget of Nb. The first approach is a heuristic, while the

second one minimizes the misalignment probability defined in Section 3.5.

The heuristic is intended to be used with Type B fingerprints, and the other

method is to be used with Type A fingerprints.

3.6.1 Selection by Ranking Average Received Powers

This method is based on the simple intuition that we should choose

candidate beam pairs with the highest expected received power. The proposed

approach is to first rank the beam pairs by their average received powers in

descending order and select the highest Nb pairs for beam training. Note that

this metric can balance the selection of opportunistic paths that occasionally

have high received power. An intuitive explanation follows like this. If the

occurrence of the opportunistic path is high enough, its average received power

will be larger than a path that always has moderate received power and the

opportunistic path is selected. If the occurrence is rare, the average received

power of the opportunistic path is low and the path with always moderate

received power is selected by this method. Thus, this metric can balance the

risk and gain to some extent. We call this method AvgPow.
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Algorithm 3.1 Greedy candidate beam pair selection

1: S0 ← ∅
2: for n = 1 : Nb do
3: Sn ← Sn−1 ∪ argmin

i∈B\Sn−1

Ppl(1, Sn−1 ∪ {i})

4: end for

3.6.2 Selection by Minimizing the Misalignment Probability

Since the objective of beam alignment is to maximize the received

power, an indirect way to achieve that is to choose the set of beam pairs

to minimize the misalignment probability, which is the power loss probability

Ppl(c = 1, S). For a given training budget ofNb, the problem can be formulated

as a subset selection problem given by

minimize
S⊂B

Ppl(1, S) (3.11)

subject to |S| = Nb.

Here, |S| denotes the cardinality of the set S. This is a subset selection problem,

which is combinatoric in nature and is difficult to solve in general, especially

when |B| is large. Fortunately, the structure of Ppl(1, S) allows an efficient

solution. Note that the problem (3.11) is equivalent to maximizing Popt(S) ≡

1 − Ppl(1, S), which we call the probability of being optimal. Since Popt(S) is

a modular function, the greedy solution given in Algorithm 3.1 is optimal [34,

Theorem 7]. This is a well-known result that has been reported in different

forms in the literature (see [22] and references therein).
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Proposition 3.1. Popt(S) is modular.

Proof. Using the definition of power loss probability in (3.10) with c = 1,

Ppl(1, S) = P
[
max
k∈B

γk > max
i∈S

γi

]
(3.12)

=
∑
ℓ∈B

P
[
γℓ > max

i∈S
γi

∣∣∣∣γℓ = max
k∈B

γk

]
P
[
γℓ = max

k∈B
γk

]
(3.13)

=
∑
ℓ∈B\S

P
[
γℓ = max

k∈B
γk

]
(3.14)

= 1−
∑
ℓ∈S

P
[
γℓ = max

k∈B
γk

]
, (3.15)

where (3.13) is the application of the law of total probability on the event

{γℓ = maxk∈B γk}, and (3.14) follows because if ℓ ∈ S then P[γℓ > maxi∈S γi|γℓ =

maxk∈B γk] = 0 and if ℓ ∈ B \ S then P [γℓ > maxi∈S γi |γℓ = maxk∈B γk ] = 1.

Using the fact that
∑

ℓ∈B P [γℓ = maxk∈B γk] = 1, we obtain (3.15). By defini-

tion Popt(S) ≡ 1− Ppl(1, S), we have

Popt(S) =
∑
ℓ∈S

P
[
γℓ = max

k∈B
γk

]
. (3.16)

Thus, for any S ⊂ T ⊂ B and ∀n ∈ B \ T, we have Popt(S ∪ {n})− Popt(S) =

Popt(T∪{n})−Popt(T) = P [γn = maxk∈B γk], which is the definition of modular

functions [22,79].

While the solution in Algorithm 3.1 is intuitive, using a brute force

search to solve the minimization problem at each selection step is not efficient.

At each step, we need to evaluate the power loss probability |B \ Sn−1| ≤
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|B| − Nb times. Since |B| typically is much larger than Nb, this means that

the total number of evaluations is O(Nb|B|). Now, if we use the probability of

being optimal,

Popt(i) = P
[
γi = max

k∈B
γk

]
(3.17)

= P [γi ≥ γk,∀k ∈ B \ {i}] , (3.18)

the proof of Proposition 3.1 suggests a more efficient solution. From (3.15),

we see that minimizing Ppl(1, Sn−1 ∪ {i}) over i ∈ B \ Sn−1 is equivalent to

solving

k = argmax
i∈B\Sn−1

Popt(i). (3.19)

This means that Algorithm 3.1 is equivalent to selecting the beam pairs by

ranking their probability of being optimal in descending order. This solution

requires to compute the probability of being optimal O(|B|) times.

We now present how to compute Popt(i) from the database. Note that

Type B cannot be used to compute Popt(i) because it only stores the average

received powers. Denote γnk the received power observed at the k-th beam

pair in the n-th observation, Popt(i) is estimated using Type A fingerprints by

Popt(i) ≃
1

N

N∑
n=1

1 (γni > γnk,∀k ∈ B \ {i}) , (3.20)

where N is the number of observations in the fingerprint database (number of

rows of Table 3.1), and 1(E) is the indicator function which outputs 1 if E is

true and 0 otherwise. Note that if we choose to keep C < |B|measurements per
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contributing vehicle, not all γnk for k = 1, 2, . . . , |B| are recorded. We assume

those γnk that are not recorded to be zero in (3.20). This is a reasonable

approximation because these γnk are much smaller than the received power of

the top ranked beam pairs that are recorded in the database. The expression

in (3.20) is equivalent to counting how often the i-th beam pair is observed

to be the strongest. Therefore, Popt(i) is estimated to be 0 for all beam pairs

that have not yet been seen to be the strongest in the database collected. This

means less important beam pairs that rarely provide the strongest received

power are difficult to rank using (3.20) with a reasonable N . In fact, in our

simulation in Section 3.7.1 with N = 450, there are about 30 distinct beam

pairs that are observed to be the best at least once in the database. This

means that using (3.20), we can produce a ranked list of length up to around

30. If the allowable training budget Nb is larger than 30, we need to produce

a longer list that ranks the less important beam pairs while using the same

database.

To help select those less frequent beam pairs without using a too large

N , we propose to rank these less important beam pairs by the same metric

but computed while ignoring the correlation in the fingerprints. By assuming

the independence between the pairs, we have

Popt(i) = Eγi

 ∏
k∈B\{i}

P [γi > γk|γi]

 (3.21)

≃ 1

N

N∑
n=1

∏
k∈B\{i}

1

N

N∑
m=1

1 (γni > γmk) . (3.22)
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To summarize, this beam pair selection method uses both (3.20) and

(3.22) to produce a ranked list of beam pairs. Let Bnz be the set of all beam

pairs with nonzero Popt(i) according to (3.20), then the top-|Bnz| in the ranked

list are obtained using (3.20), and the rest of the beam pairs B\Bnz are ranked

using (3.22). We call this beam pair selection method MinMisProb.

3.7 Numerical Evaluations of Statistical Beam Pair Sub-
set Selection

This section provides numerical evaluations of the proposed beam align-

ment using the two statistical beam pair subset selection methods. All evalua-

tions here use a dataset of 500 channel samples generated from the ray-tracing

simulator (see Fig. 3.1) and assume 16 × 16 UPAs at both the CV and RSU

unless stated otherwise. The codebook for the 16 × 16 array has 271 beams.

We conduct K-fold cross validation, with K = 10 as recommended in [45].

Specifically, the dataset of 500 channel samples is divided into 10 subsets (or

folds) of size 50 each. Then, nine of them are used as the training set to build

the database, and the remaining one is used as the test set to evaluate the pro-

posed beam alignment. This is repeated 10 times, where each time a different

subset is selected as the test data. When a different evaluation method is used,

it will be stated explicitly. Common simulation parameters are summarized

in Table 3.3.

The two types of database are built in the following manners in the sim-

ulations. For Type A fingerprints, each contributing vehicle conducts a full

97



Table 3.3: Common simulation parameters
Parameters Value

Carrier frequency 60 GHz
Bandwidth 1760 MHz

Antenna array 16×16 UPA
Mean vehicle gap 4.78 m

exhaustive beam measurement and the top-100 beam pairs are recorded as ex-

plained in Section 3.4.1. For a fair comparison, the two types of database

should be built using the same number of measurement data. Thus, the

database for Type B is obtained by summarizing Type A database. Specifi-

cally, instead of keeping all the raw received powers, only the average received

power is recorded for each beam pair. We note that in actual implementations

of Type B data collection, a full exhaustive search can be collected by a num-

ber of vehicles depending on the time budget the vehicles have as explained in

Section 3.4.1.

3.7.1 Performance Comparison: AvgPow Versus MinMisProb

This subsection presents a performance comparison of the two statis-

tical beam pair selection methods when the measurement noise is negligible.

The impact of noise will be shown in Section 3.7.4. Fig. 3.4 shows the power

loss probability of the two selection methods. Two different levels of power

loss severity are shown: the misalignment probability Ppl(0 dB, S) and the

probability that the power loss is less than 3 dB Ppl(3 dB, S) (called the 3

dB power loss probability). MinMisProb dominates AvgPow at both levels
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Figure 3.4: Power loss probability versus the number of beam pairs trained.
The 3 dB power loss probability plot for MinMisProb ends before reaching
Nb = 50 because there is no such instance of power loss computed from the
cross validation. MinMisProb outperforms AvgPow in both the misalignment
and 3 dB power loss probability.

of misalignment. This is expected because MinMisProb is optimal (in terms

of the misalignment probability) by its definition that exploits the correlation

between the different beam pairs available in Type A fingerprints. We note

that when computing the probability of being optimal Popt(·) using (3.20), the

number of beam pairs with nonzero Popt(·) is around 30 (the exact number

depends on the chosen training data). The plots of MinMisProb become flat at

Nb of around 30. This means that the complementary selection using (3.22)

does not perform as well as when using (3.20) that exploits the correlation

information. It, however, can still identify relevant beam pairs without addi-

tional training data. We conclude from Fig. 3.4 that if Type A fingerprints are

available, MinMisProb is the choice; otherwise, the AvgPow should be used.
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3.7.2 Required Training Sample Size

This subsection provides an empirical evaluation to estimate the train-

ing sample size to build the fingerprint database. By sample size, we mean

the number of exhaustive beam measurements conducted to collect the data

(i.e., the number of rows N of Table 3.1). We start with the description of

the evaluation method. We still use the 10-fold cross validation as before, but

now instead of using all the nine folds (450 samples) for training, we only use

a subset of N < 450 of these samples. To average out the dependence on the

sampling of the subset, we repeat the evaluation of the test set 50 times, where

in each time we randomly choose N samples out of the available training set

of 450 samples to build the database. Both AvgPow and MinMisProb show a

similar trend, and we show only the results for AvgPow here.

We evaluate the quality of the fingerprint obtained using the training

set of size N by the average of the power loss probabilities estimated by the 50

cross validations as described earlier. Fig. 3.5 shows the average 3 dB power

loss probabilities for the training sample size N ranging from 50 to 250. We

can see a large improvement when increasing N from 50 to 90. Subsequent

increases in N , however, provide diminishing improvement. To see this effect

more clearly, we plot in Fig. 3.5(b) the 3 dB power loss probability when

the number of beam pairs trained is fixed at Nb = 30. This plot is typically

known as the learning curve [45], which quantifies the improvement as the

training sample size (i.e., the learning effort) increases. The figure shows the

mean and the region of one standard deviation from the mean. We see a sharp
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Figure 3.5: 3 dB power loss probability of AvgPow as a function of the training
sample size N . Fig. 3.5(a) shows the average 3 dB power loss probability for
different N . Fig. 3.5(b) shows the learning curve in terms of the 3 dB power
loss probability when the number of beam pairs measured is set to Nb = 30.
We can see from the plots that the improvement diminishes as the training
sample size N increases beyond about 100.

improvement up to around N = 100, and a slower improvement beyond that.

We conclude that a training sample size of around 250 seems good enough.

3.7.3 Effect of Location Bin Size

We start with the description of the evaluation method. We use 10-

fold cross validations on 300 channel samples where the CV is in the location

bin. Recall from Section 3.3.1 that the channel samples are generated with

the center of the location bin at d0 = 30 m and the CV is randomly placed

in the range [d0 − 2.5, d0 + 2.5]. For example, when evaluating the bin size

of 2 m, we only use the channel samples where the CV’s center position (the

position of its antenna) is within [d0 − 1, d0 + 1]. Since each cross validation
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Figure 3.6: Average 3 dB power loss probability when using different location
bin sizes. All bin sizes performs similarly when using 16 × 16 arrays. When
using the larger 32 arrays, smaller bin sizes improve the performance.

is computed on a different dataset, we need to perform averaging to eliminate

dependency on the dataset. To do this, we repeat the cross validation 50 times,

where each time 300 channel samples are randomly selected from the set of

the channel samples where the CV is within the location bin. To be able to

evaluate small bin sizes, we generated more channel samples to a total of 1000

samples. The choice of the sample size of 300 is to ensure that we have enough

channel samples for building the database while not too large so that each set

of 300 samples selected for each cross validation is random enough. For the

comparison metric, we use the average 3 dB power loss probability, which is

obtained by averaging over the results from the 50 cross validations. AvgPow

is used as the beam selection method.

Fig. 3.6 shows the average 3 dB power loss probability for location bin
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sizes of 2, 3, 4, and 5 m when using UPA 16× 16 and 32× 32. The variation

of the bin size from 2 m to 5 m has little impact when using the 16 × 16

arrays. We note that the plots are in log-scale and the gap at Nb = 100 is

small (it is less than 0.002). When using a larger array of 32 × 32, which

requires higher location precision, we can see that a smaller bin size provides

better performance. The physical reason why the performance is not that

sensitive to the location bin size might be that NLOS paths are less affected

by the position accuracy than a LOS path. This is because NLOS paths have

nonzero angular spread which makes it easier for beam alignment. Instead

of having to align to a single direction as in the LOS path, the beam can

be aligned to within the range of the angular spread. From these results, we

can conclude that location bin size of 5 m is good enough when using UPA

16 × 16. When using a large array such as 32 × 32, smaller bin sizes provide

better performance. Finally, note that while smaller bin sizes are preferred

for beam alignment performance, it has to be large enough to account for the

level of position accuracy available to the vehicles.

3.7.4 Effect of Measurement Noise

In this subsection, we study the effect of measurement noise on the

beam alignment accuracy. The results are shown in terms of the Equivalent

Isotropic Radiated Power (EIRP), which is the transmit power plus the trans-

mit antenna gain (in dB scale). EIRP is used instead of the transmit power

because it is regulated [107]. To provide the context of the operating SNR,
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Figure 3.7: CDF of the link SNR of the generated channels. The link SNR
is defined as the SNR at the receiver when the transmit power is 0 dBm and
both the transmitter and receiver use isotropic antennas. The average link
SNR is -16.0 dB.

we start with a description of the link SNR of the channel samples gener-

ated from the ray-tracing simulation. We assume the noise power is given by

Pn = −174+10 log10B dBm, where B = 1760 MHz is the sampling rate defined

in IEEE 802.11ad for single carrier PHY [50]. Denote P0 the received power

when isotropic antennas (0 dBi antenna gain) are used at both the transmitter

and the receiver with 0 dBm transmit power, the link SNR is defined as

SNR =
P0

Pn

. (3.23)

Fig. 3.7 shows the CDF of the link SNR computed from the received powers

output from the ray-tracing simulation. We note that with an EIRP of 0 dBm,

the SNR at the receiver (before the receive antenna gain) is the link SNR. The

average link SNR is −16.0 dB, and thus the average SNR at the receiver is
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Figure 3.8: Power loss probability as a function of Nb in the presence of noise.
The noise impacts the misalignment probability much more than the 3 dB
power loss probability.

around 0 dB when using an EIRP of 16 dBm.

Fig. 3.8 shows a comparison of the power loss probability with and

without noise for the two beam selection methods. It is assumed that the

same EIRP is used during the database collection and when doing beam mea-

surements for beam alignment. We can see that the misalignment probability

is much more affected than the 3 dB power loss probability. This is because

for a 3 dB power loss event to happen the noise must be large enough to flip

the order of the optimal pair with a beam pair that has the power of at least

3 dB below the optimal beam pair, which occurs much less frequent than the

misalignment event (i.e., any nonzero power loss event). We note that the

plots are in log-scale, and the gaps in the misalignment probability between

the EIRP= 9 dBm case and the noise-free case are 0.03 and 0.02 at Nb = 50

for AvgPow and MinMisProb, respectively. Thus, overall we can conclude that

105



0 5 10 15 20 25 30

Number of Beam Pairs Trained N
b

2

3

4

5

6

7

A
v
e

ra
g

e
 R

a
te

 [
b

it
/s

e
c
/H

z
]

Perfect alignment

AvgPow

MinMisProb

EIRP = 19 dBm

EIRP = 14 dBm

EIRP = 9 dBm

Figure 3.9: Average rate of the proposed beam alignment compared to the
perfect alignment case. MinMisProb consistently achieves a higher average
rate than AvgPow for the same Nb. The rate loss becomes negligible at Nb at
around 20 and 30 for MinMisProb and AvgPow, respectively.

MinMisProb is less affected by noise than AvgPow.

We show the average rates when using the proposed beam alignment

in Fig. 3.9. The instantaneous rate is computed using

Rins = log2

(
1 +

Pt∥hs∥2

Pn

)
, (3.24)

where hs is the effective channel of the beam pair selected after the beam

training. Fig. 3.9 shows the average rate as a function of the number of beam

pairs trained Nb for EIRP of 9, 14, and 19 dBm. Increasing the training

overhead Nb improves the alignment quality leading to higher average rates.

The rate loss compared to the perfect alignment case becomes negligible at

around Nb = 20 for MinMisProb and at around Nb = 30 for AvgPow. The

gaps to the perfect alignment at small Nb do not improve with increasing
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EIRP. This is due to the larger power loss probability when using a small Nb

and so cannot be eliminated by increasing the transmit power.

3.7.5 Effect of Traffic Mismatch during Database Collection and
Exploitation

In this subsection, we provide some simulation results to show the ef-

fect of the mismatch of the traffic density during the database collection and

exploitation. We expect the effect to be more pronounced when the difference

in traffic density is large. We, thus, study the high and low traffic density

cases. To do this, we generate another dataset of 500 channel samples using

the ray-tracing simulation with the same setting as described in Section 3.3.1

but with a lower vehicular traffic using µζ = 0.0536 (average vehicle gap of

18.66 m) and the average cars-to-trucks ratio of 9:1. We use all combinations

of these two datasets as the training and test set to evaluate the performance of

the proposed beam alignment, namely the four combinations of training and

test set of (low,low), (high,low), (low,high), and (high,high). We note that

(high,high) is what is used so far. AvgPow is used as the selection method.

Fig. 3.10 shows the performance in terms of the 3 dB power loss prob-

ability and the average rate normalized by the perfect beam alignment case

when using EIRP of 24 dBm. When exploiting in the low traffic setting, train-

ing (i.e., building the fingerprint database) in either the low or high traffic

condition yields good performance while training in the low traffic density

(i.e., matched traffic condition) is slightly more efficient. On the contrary,
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Figure 3.10: Effect of the mismatch in traffic density during database collection
and exploitation. Database collected in a light traffic does not work well when
used in a dense traffic because the database cannot capture all the paths in the
richer scattering environment of the dense traffic. On the contrary, database
collected in a dense traffic works well regardless of the traffic condition when
it is exploited. It only has a slightly degraded efficiency when used in a low
traffic condition.

when exploiting in the high traffic condition, the performance loss due to the

mismatch in the traffic conditions during database collection and exploitation

is higher. Intuitively, this is because the database collected under a low traffic

density cannot adequately capture paths in the richer scattering environment

of the high traffic condition. The same trend can be confirmed in the rate plot

in Fig. 3.10(b). We note that the largest loss observed is around 5% when

using the database collected in the low traffic condition and used in the high

traffic case. These results show that building the database in the same traf-

fic condition as when the database is used provides the best performance. If

adaptation to the traffic condition is not possible or costly, then the database

should be collected in high traffic conditions.
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3.7.6 Comparison with Existing Techniques

In this subsection, we compare the performance of the proposed method

with two existing solutions. The first one is a hierarchical beam search adopted

in IEEE 802.11ad, and the second one uses only the position to determine the

beam pointing direction.

We start with a comparison with the IEEE 802.11ad method. IEEE

802.11ad beam alignment is a beam sweeping method using a hierarchical

beam codebook structure to reduce the amount of beam training [50,58]. It is

required by the standard that the antenna gain of the quasi-omni pattern (the

widest level in the codebook) be at most 15 dB (≃ 32 in linear scale) lower

than a directional pattern [50, Section 21.10.1]. Because of this constraint, we

consider a two-level beam codebook: the quasi-omni and the sector level. We

further assume for simplicity that the number of codewords at the sector level

is equal to Na, the number of elements of the array (e.g., when using a 2D DFT

codebook). Since the gain in the main beam direction of an array is Na, we

have Nsec = Na and NQO = Nsec/32, where Nsec is the number of sector beams

and NQO is the number of quasi-omni patterns. Since the quasi-omni patterns

are the widest in the codebook, an exhaustive search is needed at the quasi-

omni level to determine the best quasi-omni pair. Once the best quasi-omni

pair has been identified, IEEE 802.11ad uses a low complexity single-sided

search to find the best receive and transmit sectors. A single-sided search is

conducted by having the transmitter use the best transmit quasi-omni pattern

while the receiver sweeps over the sectors whose pointing directions are within
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the best receive quasi-omni pattern. The same procedure is used to find the

best transmit sector. The total beam training time (excluding feedbacks) is

given by

T11ad = N2
QOTQO + 2

Nsec

NQO

Tsec, (3.25)

where TQO and Tsec are the duration of a training frame at the quasi-omni

and the sector level, respectively. The second term in (3.25) is based on the

assumption that each quasi-omni pattern covers the same number of sectors.

The factor two is because the single-sided search has to be conducted for both

the transmitter and the receiver.

We note that quasi-omni patterns have low antenna gain and thus re-

quire a large spreading factor to compensate for the lack of antenna gain. IEEE

802.11ad uses 32× spreading for this. A beam training at the quasi-omni level

is done by sending an SSW (sector sweep) frame of length 26.8 µs, which con-

sists of 4.3 µs for the preamble and 22.5 µs for the header and information in

the SSW frame. Since the preamble might be needed for synchronization, we

assume that it is unchanged and set Tsec = 4.3 + 22.5/32 = 5.0 µs.

We now compute the overhead of the proposed approach. As discussed

in Section 3.4.1, the fingerprint database is expected to be valid for a long

period of time and thus the cost per usage after the database is collected will

be negligible. We, therefore, consider only the beam training overhead here.

We define the overhead as the smallest number of beam pairs trained Nfp

needed to achieve Ppl(3 dB, S) ≤ 1%. Since our approach does not use wide
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Figure 3.11: Required amount of beam training of the proposed method. The
overhead increases roughly linearly with the number of antenna elements of
the array.

beams for the beam training, we assume the training duration to be Tsec, and

the total training time is

Tfp = NfpTsec. (3.26)

Fig. 3.11 shows the required amount of beam training Nfp for UPAs of sizes

8 × 8, 16 × 16, 24 × 24, and 32 × 32 when using AvgPow as the beam pair

selection method. The codebook sizes are 87, 271, 641, and 1047, respectively.

The plot shows Nfp as a function of the number of elements Na, which shows

a roughly linear trend in Na.

To understand this overhead in the mobility context, we leverage the

concept of beam coherence time from Chapter 2, which is the duration before

beam realignment is required. The beam coherence time is the duration that

the pointing error due to mobility causes the received power to drop by some
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Figure 3.12: An illustration of the beam coherence time concept. For the beam
to stay aligned, the reflection point must be within the beam projection. The
beam coherence time is the average time that the reflection point is within the
beam projection.

threshold from the peak. Since the codebook quantizes the angular domain by

the 3 dB beamwidth, the initial pointing error ranges in [−Θ/2,Θ/2], where

Θ is the 3 dB beamwidth. Assuming the initial pointing error to be uniform in

[−Θ/2,Θ/2], then the beam coherence time is the duration that the pointing

error becomes larger than half the 3 dB beamwidth. Using the pointing error

derived in Chapter 2, the beam coherence time TB can be written as

TB =
D

v sinα

Θ

2
, (3.27)

where D is the distance to the reflector/scatter, α is the main beam direction

with respect to the direction of travel, and v is the speed of the CV (see

Fig. 3.12). We note that D refers to the distance from the receiver to the

nearest reflector/scatter, and this concept can be applied to channels with high

orders of reflections. While this result is based on a 2D model in the azimuth

plane, it is applicable here because there is negligible change in the elevation

angle as the vehicle moves. Since we are using a square array with a total
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number of elements of Na, the azimuth beamwidth Θ can be approximated by

the beamwidth of a uniform linear array of size
√
Na given by Θ ≃ 0.886 2√

Na

when the antenna spacing is set to half the wavelength [82, p. 885]. Using this

approximation, we have

TB(Na) =
0.886D

v
√
Na sinα

. (3.28)

From the geometry, we set α = 60◦ and D = 12 m, which represents a typical

reflection path off the buildings in Fig. 3.1. These parameters are chosen as

a representative worst-case example with a reasonably small distance to the

nearest reflector (a building in this case) and a reasonably large α. The worst

case value for α is 90◦, but this path direction is unlikely in the geometry

shown in Fig. 3.1.

Fig. 3.13 compares the overhead of the proposed beam alignment us-

ing AvgPow selection method with that of IEEE 802.11ad. Fig. 3.13(a) shows

beam training durations as a function of the array size Na. We recall that

this beam training duration does not include the initial training request and

feedback, which do not depend on the array size. We also plot the beam

coherence times TB when the vehicle speed is 10, 15, and 20 m/s. The train-

ing duration of the proposed method is at most a few percents of TB, while

that of IEEE 802.11ad can exceed TB when the array becomes large enough.

This means that IEEE 802.11ad cannot finish the training before realignment

is required. Fig. 3.13(b) compares the average rate when taking the beam

training duration and TB into account assuming a transmit power of 0 dBm
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Figure 3.13: Overhead comparison between the proposed method and that
of IEEE 802.11ad. The beam training time of the proposed method only
takes up to a few percent of the beam coherence time TB, while that of IEEE
802.11ad can exceed TB when using a large array leaving no time for data
communications.

(corresponding to 24 dBm EIRP when using a 16 × 16 array). The average

rate here is defined as

Ravg =
TB − Ttrn

TB
Rtrn, (3.29)

where Ttrn is the beam training duration and Rtrn is the average rate after the

alignment. For the proposed method, Rtrn is determined from rate plots when

using the different array sizes (Fig. 3.9 shows rate plots when using 16 × 16

arrays). We assume optimistically that IEEE 802.11ad achieves the perfect

alignment rate. While the average rate of the proposed beam alignment keeps

increasing as the array size increases, that of IEEE 802.11ad increases slowly at

10 m/s or starts to decrease at speed beyond 15 m/s when the array becomes

larger than 16× 16. We also observe that the average rate of IEEE 802.11ad
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Figure 3.14: Average rate comparison with the beam alignment method using
position only. The method using only the position does not need beam training
but works only when the LOS path is available. It performs well in a low
traffic density where the LOS path is often available but performs poorly in
a dense traffic where the LOS path is often blocked. Taking advantage of the
fingerprint database, the proposed method works well in both cases.

becomes zero at Na around 800 and 1000 when the speed is 15 and 20 m/s,

respectively. This is because the training duration becomes larger than TB,

and there is no time left for data communication.

We now compare the performance of the proposed beam alignment

with the method that uses position only. Fig. 3.14(a) and 3.14(b) show the

average rate of the proposed method and the beam alignment using position

only in high and low traffic conditions. The datasets used are the same as

described in Section 3.7.5. UPA 16 × 16 and 24 dBm EIRP are assumed.

AvgPow is used and the number of beam pairs trained is the smallest Nb such

that Ppl(3 dB, S) ≤ 1%. The average rates accounting for the beam training

overhead and the beam coherence time TB are computed using (3.29) assuming
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a speed of 20 m/s. By using only the position, the beam training can be

eliminated, but the method only works when the LOS path is available. This

means that it will perform poorly when the LOS path is frequently blocked.

We can confirm this effect in Fig. 3.14. In the high traffic case, there are many

trucks on the street which often block the LOS directions leading to a large

gap compared to the proposed method. The gap becomes smaller in the low

traffic case because of the less blockage. Leveraging the fingerprints database,

the proposed method works in all traffic conditions. The benefit of fingerprints

increases with the traffic density, or more generally the blockage probability

of the LOS path.

3.8 Learning-to-Rank Beam Pair Subset Selection

In this section, we develop a new beam pair selection method using a

ML approach. Specifically, we use the LtR approach from the recommender

system literature [72]. We start by motivating the potential benefit of an

ML-based approach as compared to the context binning approach used in our

statistical learning methods discussed so far. Then, we will describe the LtR

method for beam pair selection, and conclude this section with a numerical

evaluation comparing it with the MinMisProb beam pair selection method.

Before moving on, we need to make a clarification to the change of the

training data. Our goal is to use the context information directly without the

need to first quantize or bin it. To allow this, each record in the training data

is tagged with the position of the contributing vehicle. An example is shown in
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Table 3.4: An example of the database used for LtR beam pair selection. The
ℓ-th row corresponds to measurement data contributed by a car at position
xℓ. This is the same as Type A fingerprint database in Table 3.1 with the
position tagged to each record.

Position Best 2nd best . . . k-th best

x1
5 159 . . . 346

-64.5 dBm -69.2 dBm . . . -95.8 dBm
159 263 . . . 354

x2 -70.4 dBm -72.6 dBm . . . -97.1 dBm
. . . . . . . . . . . . . . .

5 258 . . . 2
xN -66.4 dBm -68.1 dBm . . . -82.6 dBm

Table 3.4, which is the same as the Type A fingerprints except for the position

information. Here, we assume there is no error in the position information.

This is not a realistic assumption at the moment, but future autonomous

vehicles likely could have access to centimeter-level accuracy with negligible

error (e.g., using LIDAR).

3.8.1 Scalability Issues of Context Binning

While our statistical approach provides a clear interpretation, it does

not scale well when different types of context information, such as time of

the day (to infer traffic density) and antenna position, are included in the

learning. Assuming there are c contexts and each context is quantized into

b bins, then there are bc models to construct and maintain, which is an ex-

ponential function. Also, if precise context information (e.g., centimeter-level

accurate position information) is available, to make full use of that accurate
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information, the context bins must be small, i.e., b has to be large. This is

another source of scalability issue. Also note that by treating each context

bin independently, we ignore the relationship between context bins and thus

effectively throw away some information. A more scalable approach is to use

the context information directly without binning. We propose a LtR approach

as a solution in this direction.

3.8.2 LtR Beam Pair Selection Method

The idea of this approach is to learn a scoring function ẑ(·) that can

predict the scores of beam pairs and provide a means to rank them. For

this purpose, we need to define a feature vector, which is the input to the

scoring function, that distinguishes pointing directions. In particular, the

feature vector corresponding to the i-th beam pair at position xℓ is defined as

qiℓ =
[
(Θrx

i )
T (Θtx

i )
T xT

ℓ

]T
, (3.30)

where Θrx
i = [θrxi , ϕ

rx
i ]

T and Θtx
i = [θtxi , ϕ

tx
i ]

T are the azimuth and elevation

of the main beam direction of the i-th receive and transmit beam pair. Note

that should other context information become available, it can be appended to

the feature vector in (3.30). Assuming that ẑ(·) is already learned, Fig. 3.15

shows how the beam recommendation works. In the rest of the subsection, we

describe how to learn ẑ.

We start with the description of our model for the scoring function ẑ(·).

Because our feature vector is short compared to typical learning settings, we
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Figure 3.15: Top-Nb recommendation process at the car’s position xℓ. First,
the position xℓ is used to produce a set of queries for the pointing directions
of interest. Then, using the learned scoring function ẑ(·), the system predicts
the scores of these queries points qiℓ. The scores are then sorted to produce
the beam pair indices. π(n) denotes the beam index with the n-th highest
predicted score. The top-Nb indices are the output of the beam recommender
system.

use a kernel-based model which can provide higher model expressibility. Specif-

ically, the scoring function is modeled as

ẑ(q) =
N∑
ℓ=1

∑
i∈Iℓ

wiℓκ(qiℓ, q), (3.31)

where Iℓ denotes the set of beam pairs measured at location xℓ in the training

set, κ(·) is the kernel function, and wiℓ are the parameters to be learned.

For notational convenience, we introduce an index mapping function u(·) that

maps (i, ℓ) uniquely to the set {1, 2, ..., Ntot}, where Ntot =
∑N

ℓ=1 |Iℓ| is the

total number of beam measurements in the database. Now let αu(i,ℓ) = wiℓ

and q̃u(i,ℓ) = qiℓ, we can rewrite ẑ(q) as

ẑ(q) =
Ntot∑
n=1

αnκ(q̃n, q). (3.32)
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We denote α = [α1, α2, . . . , αNtot ]
T. Here, we use a modified radial basis

function (RBF) as the kernel defined as

κ(qiℓ, q) = exp

(
−
d2gc(Θ

rx
i ,Θ

rx)

σ2
rx

)
exp

(
−
d2gc(Θ

tx
i ,Θ

tx)

σ2
tx

)
exp

(
−∥xℓ − x∥2

σ2
x

)
,

(3.33)

where σrx, σtx, and σx are the kernel parameters, and dgc(·) denotes the great

circle distance on a unit sphere. We use dgc(·) because it properly handles

the cyclic property of angles. Note that as in any learning methods, the

hyperparameters such as the kernel parameters will need to be tuned. The

intuition for selecting this kernel is that each component of the feature vector is

a different type of physical feature, and thus they should be scaled by different

kernel parameters.

We now describe the objective function that will be used for learning

the scoring function. Inspired by the discounted cumulative gain (DCG) [72],

a popular metric for evaluating ranked lists, we measure the quality of the

predicted ranked list at position xℓ by

Gℓ(α) =
1

|Iℓ|
∑
i∈Iℓ

∑
j∈Iℓ

S(δjℓ)1[Rjℓ(α) ≤ Riℓ(α)], (3.34)

where Riℓ(α) is the predicted rank of the i-th beam pair, δjℓ is some measure

of “goodness” of the j-th beam pair at this location, S(·) is some function to

transform the raw goodness metric. The inner sum in (3.34) can be thought of

as the overall goodness of the beam pairs with predicted rank from 1 to Riℓ(α).

Following the concept of power loss introduced earlier, we define δjℓ as

δjℓ =
γjℓ
γmax,ℓ

, (3.35)
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Algorithm 3.2 SGD on Gtot(α)

1: while not converge or maximum number of iterations not yet reached do
2: for each randomly selected training located at index ℓ do
3: αt+1 ← αt + ηt(∇αGℓ(α

t)− λ∥αt∥)
4: t← t+ 1
5: end for
6: end while

where γmax,ℓ and γjℓ are the channel strength (linear scale) of the optimal beam

pair and the j-th beam pair at position xℓ. With this definition, δjℓ is close

to 1 if the j-th beam pair is “good” and close to 0 if it is “bad.” Note that δjℓ

is not a function of the learning model parameter α and is obtained from the

training data. The goodness of fit evaluating using the metric in (3.34) on the

training data is the sum over all the positions in the training data, i.e.,

Gtot(α) =
N∑
ℓ=1

Gℓ(α). (3.36)

The model parameters α can be learned by maximizing Gtot(α) over α. To

prevent overfitting, we introduce the 2-norm regularization on α and obtain

max
α∈RNtot

Gtot(α)− λ

2
∥α∥2, (3.37)

where λ is the regularization parameter.

The next step is to solve (3.37). Since Gtot(α) is a sum of Gℓ(α), we

can apply a stochastic gradient descent (SGD) method over the location index

ℓ. We choose SGD because it is a computationally tractable algorithm [45].

Denoting ηt the learning rate at update round t, the algorithm is shown in

Algorithm 3.2. To use Algorithm 3.2, we need to compute the gradient of
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Gℓ(α) with respect to α. Unfortunately, the indicator function in (3.34) is not

continuous and some relaxation is required. Following [117], we approximate

the indicator function by

1[Rjℓ(α) ≤ Riℓ(α)] ≃ g(ẑ(qjℓ)− ẑ(qiℓ)), (3.38)

where g(t) = 1
1+e−t is the logistic function. With this relaxation, the gradient

∇αGℓ(α) can be computed as

∇αGℓ(α) ≃ 1

|Iℓ|
∑
i∈Iℓ

∑
j∈Iℓ

S(δjℓ)g
′(ẑ(qjℓ)− ẑ(qiℓ))(κjℓ − κiℓ), (3.39)

where g′(t) = e−t/(1 + e−t)2 and κiℓ = [κ(q̃1, qiℓ) κ(q̃2, qiℓ) . . . κ(q̃Ntot
, qiℓ)]

T.

3.8.3 Numerical Evaluation and Comparison with MinMisProb

We perform a five-fold cross validation on 500 channel samples. Note

that the MinMisProb method uses a location bin of size 5 m, while in the LtR

approach uses the actual position. 16× 16 UPAs are assumed at both the CV

and the RSU.

We now present the performance results. We evaluate the method using

the misalignment probability. The figures show the misalignment probability

as a function of the number of beam pairs trainedNb. All the hyperparameters,

including those of the SGD and kernel parameters, are tuned manually. We

use a constant learning rate η = 0.01 and regularization parameter λ = 0.001,

and SGD is run for 20 epochs. The parameters used for our modified RBF

kernels are σx = 2 and σrx = σtx = 0.1. Fig. 3.16 shows the results when using
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Figure 3.16: Misalignment probability with different transform function S(·).
A common choice used in web-recommender systems is the exponential func-
tion, but it does not work as well as the square and cubic transform. One
possible explanation is the nature of the raw scores. In typical web applica-
tions, the raw scores are integer ratings (e.g., between 1 and 5), while in our
case the scores are real numbers in [0,1].

the modified RBF kernels with different choices of S(·). The choice of S(·)

is critical, and here S(δ) = δ3 provides the best result. The common choice

used in the recommendation context is the exponential function [72]. This

difference might be because our raw scores δjℓ are real numbers in [0, 1] while

typical ratings are integers from 1 to 5. Comparing with the MinMisProb,

the LtR approach is comparable for Nb up to around 34 and outperforms the

MinMisProb for larger Nb. In fact, there is no misalignment after Nb = 36,

while the MinMisProb method struggles. We can see that the LtR method can

reduce the number of beam pairs trained by up to about 20% for low target

misalignment probability such as 0.1%.

Fig. 3.17 shows the results when using different kernel functions. In
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Figure 3.17: Misalignment probability with different kernel functions. We per-
form feature scaling when using the linear and RBF kernels by dividing each
component of the feature vector by the maximum value possible for that fea-
ture. The linear kernel does not work at all. The RBF kernel works relatively
well but is outperformed by the proposed modified RBF kernel for a large Nb.
Overall, the modified RBF kernel provides the best performance.

all cases, S(δ) = δ3 is used. We compare our modified RBF kernel with the

popular choices of linear and RBF kernels. We perform feature scaling by di-

viding each component of the feature vector by the maximum possible values

that the component can take. Note that feature scaling is not necessary for

the modified RBF kernel because it can be absorbed into the kernel parame-

ters. There is no parameter for the linear kernel and there is one length scale

parameter for the RBF kernels. After manual tuning, this parameter is set to

0.01. We can see that the linear kernel does not work at all. This is likely due

to the nonlinearity of the problem. The RBF kernel performs slightly better

than the modified RBF kernel at small Nb but becomes worse at larger Nb.

Overall the proposed modified RBF kernel performs best.
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3.9 Conclusion

We proposed an efficient beam alignment framework for mmWave V2I

communications leveraging position information and multipath fingerprints.

We developed three beam pair subset selection methods: two based on sta-

tistical learning and one based on ML. Numerical evaluations of the two sta-

tistical selection methods show that when Type A fingerprints are available,

MinMisProb should be used. If Type A is not available, then our proposed

heuristic beam selection, AvgPow, should be used with Type B fingerprints,

which only store the average received power. The proposed methods require

training less than 30 beam pairs when 16 × 16 arrays are used and the over-

head increases roughly linearly with the number of antenna elements. This

low overhead allows the use of large arrays such as 32 × 32 at high speed,

while existing solution such as that of IEEE 802.11ad cannot handle. Because

of the context binning, the number of models in a statistical learning method

increases exponentially with the number of contexts while the LtR approach

only needs to increase the length of the feature vector. This provides a promis-

ing framework to incorporate other contexts beyond position information in

future research. The results in this chapter demonstrate that side information

can be exploited to improve the efficiency of mmWave communications, which

is not only desirable but also necessary in vehicular settings.
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Chapter 4

Online Beam Pair Selection and Refinement

Accurate beam alignment is essential for beam-based millimeter wave

(mmWave) communications. Conventional beam sweeping solutions often have

large overhead unacceptable for mobile applications like vehicle-to-everything

(V2X). In Chapter 3, we developed learning-based solutions that leverage posi-

tion and past multipath information to identify good beam directions. While

The results are promising for reducing the overhead, the approaches, how-

ever, are offline and require collecting the training data beforehand. In this

chapter, using the multi-armed bandit (MAB) framework, we develop online

learning algorithms for beam pair selection and refinement. The beam pair

selection learns coarse beam directions in a predefined beam codebook, and

the beam pair refinement fine-tunes the identified coarse directions to adopt

the codebook to the environment. The beam pair selection uses the upper

confidence bound (UCB) with a newly proposed risk-aware feature, and the

beam refinement uses a modified optimistic optimization algorithm. The pro-

posed algorithms show a fast learning behavior. When using 16 × 16 arrays

at both the transmitter and receiver, it can achieve on average 1 dB gain over

the exhaustive search (over 271× 271 beam pairs) on the unrefined codebook

within 100 time steps with a training budget of only 30 beam pairs. This work
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has been submitted to the IEEE for possible publication [108].

4.1 Motivation and Prior Work

Fast and efficient beam alignment is crucial in enabling mmWave com-

munications, which is a promising solution to support high data rate demands

expected in the fifth generation (5G) cellular networks. One promising ap-

proach is to leverage side information from onboard sensors to reduce the align-

ment overhead. In Chapter 3, we proposed the inverse fingerprinting method

that leverages position and past multipath information to identify promising

directions among a predefined finite beam codebook using a database collected

at a location bin. Although efficient, it has some limitations. First, the ap-

proach is offline which requires collecting the database before the deployment.

Second, being offline, the performance depends on the accuracy of the database

and cannot evolve over time. Online approaches keep collecting new observa-

tions during operation, making it possible to improve the database. Third,

without any knowledge of the power angular spectrum (PAS), the codebook

has to be uniformly spread over the antenna array’s field of view (e.g., in

discrete angles separated by the 3 dB beamwidths). At a given location, de-

pending on the scatterers in the environment, the PAS will have peaks at some

specific angles. By adapting the beams such that their main beam directions

match those peaks, we can expect gains beyond the generic good-for-all-cases

codebook. That is, the position-based learning opens up an opportunity to

adapt the beam codebook to the environment. In this chapter, we propose an

127



online beam pair selection and refinement algorithm to address these points.

Beam alignment has been intensively investigated in the literature. Sev-

eral directions have been pursued such as those based on beam sweeping [58,

112], angle of arrival and departure (AoA/AoD) estimation [32,73], black-box

function optimization [59,69], and the use of side-information [16,31,80,103].

The last category is most related to our approach, especially those that use

position information [16,31,103]. We refer to Section 3.1 for a summary of the

differences to these different approaches for beam alignment. In this chapter,

we develop an online version of the method proposed in Chapter 3 for beam

pair selection and proposes a beam pair refinement method to adapt the beam

codebook to the environment to further maximize the beamforming gain.

The recent remarkable progress in machine learning (ML) has revived

interest in applying ML techniques to communications [23,55,118]. By learn-

ing from the data, ML can be used to design a system without the need for an

explicit model (e.g., [35]). It also opens up opportunities to customize commu-

nication systems to the user or environment. Related work that applies ML to

beam alignment includes [10, 104, 113]. While promising, these solutions use

supervised learning techniques, which assume an offline learning setting. The

proposed solutions in this chapter use the MAB framework, which is a special

class of reinforcement learning (RL). Recent applications of RL/MAB for beam

training include [90,91] which uses a partially observable Markov decision pro-

cess (POMDP) framework, and [44] which uses an MAB framework. The work

in [90, 91] addresses tracking problems where the POMDP with known state
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transition models provides a means to predict the state of the channel en-

abling an informed choice of the probing beams for good performance. In [44],

the beam alignment problem is solved using an MAB framework with the as-

sumption that the success probability (the received power is larger than some

threshold) is a unimodal function of the pointing direction. The efficiency of

their solution depends on this unimodal property, which cannot be guaranteed

in our setting with random blockage.

MAB is a useful tool for modeling sequential decision-making problems

with a wide range of applications [19, 21]. The most common form of MAB

is the single-play MAB with a finite number of arms, where only one arm is

selected in each time step. In the proposed method, multiple beam pairs (up

to the training budget) are trained in each beam alignment attempt. Thus,

our beam pair selection problem can be cast as a multiple-play MAB problem

(also known as combinatorial bandit) [24], where multiple arms may be tried

in each round or time step. In sequential decision-making problems, in each

round, the player must decide between using the knowledge obtained so far to

select the best arm or explore lesser-known arms, which is called the explore-

exploit dilemma. The optimism in the face of uncertainty is a core design idea

for balancing the explore-exploit tradeoff, based on which the UCB has been

developed and results in a widely successful family of algorithms. Our solution

employs the UCB in a multiple-play setting. Most related to our solution is

the cascading bandit [66], which performs the same selection procedure as our

Algorithm 4.1 but with a different model to collect the reward measurements.
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Another important difference is that the reduction to the greedy selection

is based on the independent arms assumption in [66], while in our case it is

based on the exclusive nature of the reward signal. Also, we extend beyond the

greedy UCB selection by introducing risk-awareness designed to avoid severe

beam misalignment during the learning.

We cast our beam pair refinement as a stochastic continuum-armed

bandit (CAB) problem, which has infinitely many arms. CAB assumes the

reward function has some smoothness property (e.g., Lipschitz continuous).

There are different approaches to solve CAB such as Bayesian optimization

(BO) [93], the zooming algorithm [64], and optimistic optimization (OO) [78].

BO does not discretize the arm space but has high complexity. It is more

suitable when sampling is expensive or the learning horizon is short. The

zooming algorithm and OO rely on smart discretization of the arm space. The

zooming algorithm uses an adaptive approach that applies finer discretization

in promising region. This is done using an activation rule that is assumed

given to the algorithm, but this is a non-trivial problem itself. OO approaches

discretize the arm space using a tree and exploit the hierarchy for an efficient

search for the best arm. OO approaches designed for stochastic settings in-

clude Stochastic Simultaneous OO (StoSOO) and hierarchical OO (HOO) [78].

StoSOO is an explore-first algorithm where the task is to find the best arm

given an exploration budget. This does not fit our setting where there is

no separate explore and exploit phase. HOO is designed for maximizing the

cumulative reward and suits our setting well. Applying HOO in its original
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form does not work well. We propose three modifications to suit our beam

refinement problem.

4.2 Contributions

Our contributions are summarized as follows:

• We propose an online algorithm to learn to select beam pairs with risk-

awareness to reduce the probability of severe beam misalignment during

the learning. This is done by making the algorithm less likely to se-

lect high risk beam pairs. The proposed solution balances the learning

burden on early-stage users and the learning speed.

• We provide regret analysis of the proposed algorithms, which provides

insights into the cost of the learning due to the introduction of the risk-

awareness.

• We formulate the beam pair refinement problem as a CAB problem. Our

solution is based on the HOO algorithm [20] with modifications to suit

the beam alignment context.

• We integrate the two algorithms into a two-layer online learning solution

that learns to select and refine the beam pairs at the same time. The

beam pair selection part learns coarse beam directions and the refinement

part learns to refine them. This hierarchy is more efficient than learning

the refined beam directions directly since now the refinement learning

focuses only in promising directions selected by the beam selection part.
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Our numerical result shows that the integrated solution learns quickly. Using

16 × 16 arrays at both the transmitter and receiver and a training budget of

30 beam pairs, it achieves an average gain of 1 dB over the exhaustive beam

search over 2712 beam pairs in the original codebook without refinement within

the first 100 time steps. The gain can reach up to about 1.5 dB over time.

Note that unlike prior work [44, 90, 91] that uses simplistic abstract models

that match exactly with the underlying statistical assumptions of the problem

formulation, we use realistic channels generated by ray-tracing to evaluate our

algorithms.

The rest of the chapter is structured as follows. Section 3.3 describes

our system model and how we generate the data. Section 4.3 reviews impor-

tant concepts and notations from Chapter 3, which is the basis for the online

learning problem. Section 4.4 describes the proposed two-layer online learning

algorithm with the beam pair selection in the first layer and beam pair refine-

ment in the second. The details of the two layers along with analysis are given

in Section 4.5 and Section 4.6. Proofs are given in the appendices. Numerical

evaluations are given in Section 4.7 followed by the conclusions in Section 4.8.

4.3 System Model and Some Background

The system model including the channel and received signal model used

here is the exact same as in Chapter 3, and thus we refer the details to that

chapter. We recall that our beam codebook consists of beams generated using

progressive phase-shift with their main beam directions separated by their 3
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dB beamwidths. We note that our learning solutions does not depend on this

choice and can work with other codebooks. For convenience, we will provide

a brief description of important and relevant notations and concepts from

Chapter 3.

We use the power loss probability for quantifying the alignment accu-

racy. We start with the definition of the power loss. Denote γi = ∥hi∥2 the

channel strength with hi the effective channel when the i-th transmit and re-

ceive beam pair is used. Denote B the set of all possible beam pairs in the

codebook, the power loss when selecting the beam pair s is defined by

ξ =
maxi∈B γi

γs
. (4.1)

The beam pair s is selected from the selection set S, and with accurate beam

training s = argmaxi∈S γi. If the codebook is used without any modification,

then S ⊂ B and ξ ≥ 1 always holds. The proposed online learning method

also includes a component to refine the beam pairs to adapt the codebook to

the environment, in which case ξ < 1 is possible.

The power loss probability is then defined by

Ppl(c, S) = P [ξ > c] , (4.2)

for some constant c ≥ 1. We call the case when c = 1 the misalignment prob-

ability. A relevant concept to the misalignment probability is the probability

of being optimal given by

Popt(S) = P[i⋆ ∈ S], (4.3)
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where i⋆ = argmaxi∈B γi denotes the index of the optimal beam pair. We note

that

Popt(S) = P[ξ = 1] (4.4)

= 1− P[ξ > 1] (4.5)

= 1− Ppl(1, S), (4.6)

where (4.5) follows because ξ ≥ 1 (without refinement).

We now review two offline statistical beam pair selection methods (Avg-

Pow and MinMisProb) from Chapter 3 that will be used in this chapter.

AvgPow is a heuristic that selects the beam pairs by their average channel

strengths. Denote γ̄i the sample average of the channel strength of the i-th

beam pair and argmax
i∈B;M

{·} the operator that returns the top-M indices, the

selection set of size |SAP| =M can be written as

SAP = argmax
i∈B;M

{γ̄i} . (4.7)

MinMisProb is an optimal selection method that minimizes the misalignment

probability. Thanks to the modularity of the probability of being optimal

(Proposition 3.1 from Chapter 3), MinMisProb is equivalent to the selection

by the probability of being optimal. Let |SMMP| =M , then

SMMP = argmax
i∈B;M

{
P̂opt(i)

}
, (4.8)

where P̂opt(i) denotes the probability of being optimal of the beam pair i

estimated from the database. In this chapter, we develop an online learning

version of MinMisProb while balancing the risk during the learning.
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4.4 Proposed Two-Layer Online Learning

Our aim in this chapter is to develop an online learning algorithm for

fast and efficient beam alignment. We propose a two-layer online solution to

achieve this goal. The idea here is to learn coarse beam directions (quantized

by the 3 dB beamwidths) that are promising in the first layer and conduct a

refinement of those promising directions in the second layer. This kind of hier-

archy is efficient because the refinement is only done in promising directions.

An overview of the proposed online learning solution is illustrated in

Fig. 4.1. The algorithm runs in an infinite loop, where in each iteration, it rec-

ommends a list of beam pairs and updates the learning parameters recorded

in the database upon receiving the beam measurements of those pairs. As

mentioned earlier, by having the communicating vehicle transmit, there is no

extra feedback overhead to collect the beam measurements. We highlight the

groups of blocks that correspond to the learning agent and the environment

in Fig. 4.1. This shows a typical RL setting where the agent optimizes its

action through direct interaction with the environment [94]. In our problem,

the action is the subset of beam pairs selected for the training, and the en-

vironmental response is the beam measurement results. The algorithm starts

by running a detection loop for a request for beam training from the user.

If a request is detected, the position (other context can also be used, but we

focus on position) is extracted from the training request packet and input to

the beam pair selection procedure. Then, the procedure produces a list of

beam pairs using the learning parameters corresponding to the location bin
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Refinement?

Get user’s position
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Environment
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No

No

read from memory

read/write to memory

Figure 4.1: A flowchart of the proposed online learning algorithm. The al-
gorithms starts with a training request detection loop. When it detects a
request, the algorithm decodes the user’s position and input to the beam se-
lection procedure, which then reads the learning parameters corresponding to
the position and determines a subset of promising beam pairs. If beam refine-
ment is enabled, the refinement parameters of those selected pairs are selected.
The beam subset is then sent to the user and the subset of beam pairs are
trained. The beam measurements are used to updated the learning parameters
and the algorithm returns to the training request detection loop.

stored in the database. If the beam pair refinement is enabled, the refinement

parameters of the selected beam pairs are picked by the beam pair refinement

procedure. The resulting subset of beam pairs is then sent to the user with

an ACK to allow the beam training. After beam training, the measurements

of the selected beam pairs are used to update the learning parameters in the

database. Then, the algorithm goes back to the detection loop to wait for the

next training request.
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4.5 Online Beam Pair Selection

In this section, we describe the first layer of the two-layer solution. We

start with the problem statement. Then, we develop online beam pair selec-

tion algorithms, first without and then with risk-awareness. We conclude the

section with regret analyses of the proposed algorithms and some discussion.

4.5.1 Problem Statement

Our goal here is to develop an online version of the optimal beam pair

selection method, MinMisProb. Specifically, the algorithm needs to solve the

following optimization problem in an online setting:

minimize
S

Ppl(1, S)

subject to S ⊂ B, |S| ≤ Btr,
(4.9)

where Btr is the desired subset size (the training budget). In an online learning

setting, Ppl(1, S) is not known, and it has to be estimated on the fly. To gain

accurate knowledge of the beam pairs, each of them must be sampled multiple

times, which means that the learning can be very slow when B is a large set,

i.e., when large arrays with narrow beams are used. To remedy this problem,

we propose to apply a heuristic to screen the beam pairs using a small offline

database (of size N) to obtain a smaller set B̂ to apply the learning algorithm

on. B̂ is obtained as the set of the unique beam pairs among the NC entries

of the first C columns of Table 3.1. In our simulations, the offline database

size N = 5 and C = 200 seem to be good enough for this purpose.
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4.5.2 Greedy UCB Algorithm

We first propose a solution to (4.9) without risk-awareness. A subset S

can be treated as a super-arm and a single-play MAB algorithm can be used.

Such an approach is not efficient because it treats each super-arm as indepen-

dent and the number of super-arms is large due to the combinatorial nature

of the number of all possible subsets.

A more efficient approach to solve (4.9) is to leverage the structure of

Ppl(1, S) to take advantage of the dependence between the subsets. Specifically,

we make use of the modularity property of the probability of being optimal

(Proposition 3.1 from Chapter 3). We note that by the relationship in (4.6),

the problem (4.9) is equivalent to a maximization of Popt(S) with the same

constraints, i.e.,

maximize
S

Popt(S)

subject to S ⊂ B̂, |S| ≤ Btr,
(4.10)

where we also replace B by B̂ as explained earlier. Since Popt(S) is modular,

it can be decomposed as

Popt(S) =
∑
i∈S

Popt(i). (4.11)

This property is due to the exclusive nature of the events that the i-th beam

pair is optimal (i.e., having the highest channel strength). Recall that the

probability of a union of exclusive events is the sum of the probability of

each individual event [43]. The main implication of (4.11) is that the reward

of S can be computed from the individual rewards of each of the beam pairs
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Algorithm 4.1 Greedy UCB

1: // initialize arms’ parameters using a small offline database

2: Xtot[i]← 0, for ∀i ∈ B̂

3: Xtot[argmaxi∈B̂ γ̄
init
i ]← 1

4: Ti ← 1, for ∀i ∈ B̂

5: for n = 1, 2, . . . do
6: // Compute UCB values

7: UCBi ← Xtot[i]
Ti

+
√

2 log(n)
Ti

, for ∀i ∈ B̂

8: // Greedy selection using UCB values
9: S← ∅
10: for k = 1, 2, . . . , Btr do
11: S← S ∪ argmax

i∈B̂\S
UCBi

12: end for
13: Train the selected Btr beam pairs to get γi,n for ∀i ∈ S

14: // Update the learning parameters
15: Ti ← Ti + 1, for ∀i ∈ S

16: Xtot[argmaxk∈S γk,n]← Xtot[argmaxk∈S γk,n] + 1
17: end for

in S. This means the optimal beam pair subset can be obtained by a greedy

approach, where one beam pair is selected at a time. Observing this property,

we propose to use a greedy UCB algorithm as shown in Algorithm 4.1, that

selects the beam pairs by their UCB indices. The UCB index of an arm is a

high confidence bound of the expected reward, which consists of the expected

reward seen so far and the uncertainty (the confidence margin) [15].

An important part of Algorithm 4.1 is the reward signal. Since the

expected reward is the the probability of being optimal, an ideal choice for the
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reward signal is

xi,t =

{
1 if i was best in B̂

0 otherwise
, (4.12)

which takes the value 1 if the pair i is best and 0 otherwise. In an actual setting,

it is not known if a pair is the best in B̂ since only the beam measurements for

the beam pairs in the subset S ⊂ B̂ are available. The best guess would be the

strongest pair among the beam pairs trained. Considering these limitations,

we propose to use an alternative and practical reward signal,

xi,t =

{
1 if i was best in S

0 all other pairs in S
, (4.13)

which takes the value 1 for the pair with the strongest beam measurements

in S and 0 for all other pairs in S. Denoting Xtot[i] =
∑n

t=1 xi,t, the expected

reward of beam pair i at time n is estimated by P̂opt(i) = Xtot[i]/Ti, where Ti

is the number of times that the pair i was selected up to time n.

An intuitive understanding of this alternative reward definition can be

drawn from an analogy to a sport tournament. In each round, the winners from

each subgroup from the previous round play against each other to decide who

will proceed to the next round, which eventually will reach the championship.

We, thus, expect that over time only strong beam pairs will receive reward of 1.

We believe that under certain assumption on the underlying reward statistics

of the beam pairs, it is possible to provide some guarantee that P̂opt(i) will

converge to the true Popt(i) as Ti → ∞. This is outside the focus of this

chapter and is left for future work.

140



As will be seen in Section 4.7.1, Algorithm 4.1 does not perform well.

The main reason for this is because it only tries to minimize the cumulative

regret and is oblivious to the multiple-play setting in the beam alignment

problem. Since multiple beam pairs are trained, the subset S can be divided

into two parts. One part is for exploitation that uses the knowledge obtained

so far to select the beam pairs and the other part is for exploration that aims

at improving the accuracy of the learning parameters. By balancing these two

parts, it is possible to reduce the risk (high power loss events) at any given

round. In other words, in the multiple-play setting, the risk of large losses

can be traded off with the speed of learning (time to get accurate statistics of

the arms). Another point for improvement for Algorithm 4.1 is that it throws

away the magnitude information because the reward signal is binary. Recall

that the binary reward signal is needed because we make use of the modularity

of Popt(S) that is the basis for the greedy selection using the UCB indices. To

remedy these weaknesses, we propose a risk-aware version of Algorithm 4.1.

4.5.3 Risk-Aware Greedy UCB Algorithm

We first start with the definition of risk. A possible choice for the risk

is the power loss, which measures the misalignment severity. Since only the

beam pairs in S are trained, the channel strength of the optimal beam pair

is not necessarily known (especially, during the early stage of the learning)

and the power loss cannot be computed directly. Another important point is

that this risk needs to be estimated. Therefore, it is crucial to quantify the

141



uncertainty of the risk estimate for it to be useful for the beam pair selection.

For these two reasons, we propose to use a binary risk signal defined in terms

of the ratio of the channel strength of the beam pair and the best beam pair

in S, i.e., the risk signal of the beam pair i at time t is given by

zi,t =

{
1 if maxk∈S γtk

γi,t
> Γrisk

0 otherwise
, (4.14)

where Γrisk is a risk threshold. The choice of Γrisk will be discussed in Section

4.7.2.

A way to capture the uncertainty is to put a prior distribution on the

risk based on the observations seen so far. By the definition (4.14), zi,t is

Bernoulli distributed with some unknown parameter ζ. It is well-known that

the Beta distribution is the conjugate prior to the Bernoulli distribution [57].

This means that the belief on the risk of the beam pair i upon seeing the

measurements up to time n can be updated conveniently by updating the

parameters of the Beta distribution as

Z̃n ∼ Beta (1 + Ztot[i], 1 + Ti − Ztot[i]) , (4.15)

where we denote Ztot[i] =
∑n

t=1 zi,t. Here, we assume that at time 0 without

any observation, Z̃0 ∼ Beta(1, 1), which is the uniform distribution over [0, 1].

This is a reasonable assumption since no information on the beam pair i is

available at time 0.

We next explain how the risk estimate along with the prior are used in

the rejection mechanism to reduce the probability of large power loss events
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during the learning. The new algorithm is shown in Algorithm 4.2, which we

call the risk-aware greedy UCB algorithm. The new addition to Algorithm

4.1 is the risk-aware feature that rejects a beam pair selected by the greedy

UCB with a probability reflecting its risk. The rejection probability is deter-

mined using the risk drawn from the prior distribution given in (4.15) and the

confidence margin in two steps. First, a random variable Z̃n is drawn from

this prior (line 13). Then, it is multiplied by the confidence margin for those

beam pairs with Xtot[ℓ] > 0. The obtained Zn is the rejection probability.

The second step is needed because any beam pair is subject to blockage and

their risks are not zero. This means that if Z̃n is used directly as the rejection

probability, even good beam pairs will be rejected with non-zero probability

even when n → ∞. The second step ensures the algorithm accepts the UCB

selection for “good” beam pairs with increasing probability over time.

The proposed rejection mechanism is a random method that rejects

the beam pair with a probability Zn. First, the algorithm draws a Bernoulli

random variable Rej with parameter Zn. If Rej = 0, the algorithm accepts

the beam pair, otherwise it rejects the pair. In that case, the replacement

beam pair is selected using P̂opt(i) when there are pairs with Xtot[i] > 0, and

using the average channel strength γ̄i when all remaining pairs haveXtot[i] = 0.

Note that unlike Algorithm 4.1, which does not use the amplitudes of the beam

measurements γi,n, here they are used to update the risk parameters and also

used for the replacement selection. This new algorithm makes a fuller use of

the measurement information as compared to Algorithm 4.1.
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Algorithm 4.2 Risk-Aware Greedy UCB

1: // initialize arms’ parameters using a small offline database

2: Xtot[i]← 0, for ∀i ∈ B̂

3: Xtot[argmaxi∈B̂ γ̄
init
i ]← 1

4: Ztot[i]← 0, for ∀i ∈ B̂

5: Ti ← 1, for ∀i ∈ B̂

6: for n = 1, 2, . . . do
7: // Compute UCB values

8: UCBi ← Xtot[i]
Ti

+
√

2 log(n)
Ti

, for ∀i ∈ B̂

9: // Greedy selection using UCB values
10: S← ∅
11: for k = 1, 2, . . . , Btr do
12: ℓ← argmax

i∈B̂\S
UCBi

13: Z̃n ∼ Beta (1 + Ztot[ℓ], 1 + Tℓ − Ztot[ℓ])

14: Zn ← Z̃n ×
√

2 log(n)
Tℓ

if Xtot[ℓ] > 0, else Zn ← Z̃n

15: Rej ∼ Ber(Zn)
16: if Rej = 0 then
17: S← S ∪ {ℓ}
18: else
19: if ∃i ∈ B̂ \ S with Xtot[i] > 0 then
20: S← S ∪ argmax

i∈B̂\S
P̂opt(i)

21: else
22: S← S ∪ argmax

i∈B̂\S
γ̄i

23: end if
24: end if
25: end for
26: Train the selected Btr beam pairs to get γi,n for ∀i ∈ S

27: // Update the learning parameters
28: Ti ← Ti + 1, for ∀i ∈ S

29: Xtot[argmaxk∈S γk,n]← Xtot[argmaxk∈S γk,n] + 1
30: Ztot[i]← Ztot[i] + 1 if (maxk∈S γk,n)/γi,n > Γrisk, ∀i ∈ S

31: end for
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4.5.4 Regret Analysis

In this subsection, we derive regret bounds of the two algorithms that

will provide insights on the effect of the rejection mechanism we introduced

in Algorithm 4.2. We make a few simplifications to the problems to allow

tractable analysis which we will describe in detail when presenting the results.

Proofs are provided in the appendices.

Before stating the results, we first describe the metric used for the

evaluation. For this type of online learning problem, a widely used metric

is the cumulative regret. It is defined as the cumulative performance loss as

compared to the performance of an oracle that always plays the best arm [19].

Translating this to the beam alignment problem, the regret incurred in a time

step is non-zero when the algorithm does not select the best subset of beam pairs

S⋆. Assuming |S⋆| = Btr, the optimal selection in (4.8) tells us that S⋆ contains

the top-Btr beam pairs with the highest probability of being optimal Popt(·).

Now, we call the beam pairs with the Btr-highest Popt(·) as optimal and the rest

of beam pairs as suboptimal. Then, the cumulative regret increases whenever

one or more suboptimal beam pairs are selected in the selection set S.

In the following, we present what is called a problem-dependent bound

on cumulative regret (we drop ‘cumulative’ from now on for convenience),

which quantifies the regret in terms of the optimality gap. The optimality gap

is defined as the difference in the probability of being optimal of an optimal
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pair i⋆ and a suboptimal pair ℓ, i.e.,

∆ℓ,i⋆ = Popt(i
⋆)− Popt(ℓ). (4.16)

By definition, 0 < ∆ℓ,i⋆ < 1 if Popt(i
⋆) > 0. Note that ∆ℓ,i⋆ measures the

difficulty in discriminating the suboptimal pair ℓ from the optimal pair i⋆ for

the particular problem at hand; thus, the name problem-dependent when the

regret bound is expressed using optimality gaps.

For Algorithm 4.1, we assume the reward signal during the learning

is the ideal reward and not the alternative one, i.e., we assume the reward

signal is given by (4.12) instead of (4.13). We make this assumption because

it is intractable to deal directly with the dynamics of the alternative reward

estimate of (4.13). The main step in deriving the regret bound is the appli-

cation of the Chernoff-Hoeffding inequality to bound the probability that the

sample average of the reward is within the UCB value. To apply the Chernoff-

Hoeffding inequality, it is required that the sample rewards are IID, which

cannot be guaranteed when using the alternative reward definition because its

distribution depends on the history of the selection done so far. This, however,

is a reasonable assumption, since we expect that (4.13) will approach (4.12)

for large n, which is the domain where the regret bound is meaningful. The

derived bound is shown in Theorem 4.1. We note that the regret bound is

O(log(n)), which is known to be optimal up to the constant coefficient in front

of log(n) [19]. This confirms that the algorithm is a reasonable solution.
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Theorem 4.1. Assuming that the ideal reward signal (4.12) is accessible, the

expected regret at time n of the greedy UCB algorithm is upper bounded by

R1[n] ≤ 8 log(n)
∑

ℓ∈B\S⋆

∑
i⋆∈S⋆

1

∆ℓ,i⋆
+

(
1 +

π2

3

) ∑
ℓ∈B\S⋆

∑
i⋆∈S⋆

∆ℓ,i⋆ . (4.17)

For Algorithm 4.2, we make two additional assumptions besides the ac-

cessibility of the ideal reward signal. The first assumption is that the rejection

probability of any beam pair ℓ is constant, denoted by 1 − ζℓ. This is used

because the rejection probability of the algorithm is dynamic (depending on

the observations so far) and is not tractable. With a large enough n, we expect

the risk estimate to stabilize, and thus this is not an unreasonable assumption.

The second assumption is that when rejected the replacement selection has an

optimality gap ∆̃ℓ,i⋆ .

Theorem 4.2. Assuming that the ideal reward signal (4.12) is available, the

rejection probability of beam pair ℓ is 1 − ζℓ, and that when rejected the op-

timality gap of the replacement selection is ∆̃ℓ,i⋆, then the expected regret at

time n of the risk-aware greedy UCB algorithm is bounded by

R2[n] ≤
8 log(n)

δ2

∑
ℓ∈B\S⋆

∑
i⋆∈S⋆

1

∆ℓ,i⋆
+

8 log(n)

δ2

∑
ℓ∈B\S⋆

∑
i⋆∈S⋆

(1− ζℓ)∆̃ℓ,i⋆

ζℓ∆2
ℓ,i⋆

+

(
1 +

π2

2

) ∑
ℓ∈B\S⋆

∑
i⋆∈S⋆

(ζℓ∆ℓ,i⋆ + (1− ζℓ)∆̃ℓ,i⋆), (4.18)

where δ = (
√
5− 1)/2.

Theorem 4.2 shows a regret bound for Algorithm 4.2. The algorithm

still has O(log(n)) regret but with a larger constant. This shows that introduc-

ing risk-awareness increases the learning time in the sense that R2[n] > R1[n].
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This is because by rejecting a high-risk beam pair, the algorithm loses the

chance to get information on that beam pair. The idea of Algorithm 4.2 is

to distribute the learning of these high-risk beam pairs (which has high cost)

more evenly among the users by rejecting them with some probability. In

other words, Algorithm 4.2 tradeoffs the learning speed to balance the risk of

severe misalignment endured by each user at different stages of the learning.

4.6 Online Beam Pair Refinement

In this section, we describe our beam pair refinement solution, which

is the second layer of the two-layer online learning algorithm. We start with

the problem formulation and then describe our modified HOO solution.

4.6.1 Problem Statement

We formulate our beam pair refinement as a stochastic CAB problem.

The beams are generated by progressive phase-shift and are defined by their

main beam directions. The goal is to find the pointing direction of a beam

pair to maximize the average channel strength of that beam pair in an online

setting. Specifically, denoting ϕt
i, θ

t
i , ϕ

r
i, and θ

r
i the transmit and receive main

beam directions in the azimuth and elevation of the beam pair i defined in

the codebook, and Φt
i,Θ

t
i,Φ

r
i, and Θr

i the corresponding 3 dB beamwidths, the
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problem of refining the beam pair i can be written as

maximize
ϕt,θt,ϕr,θr

E[γi(ϕt, θt, ϕr, θr)]

subject to ϕt ∈ [ϕt
i − Φt

i/2, ϕ
t
i + Φt

i/2],
ϕr ∈ [ϕr

i − Φr
i/2, ϕ

r
i + Φr

i/2],
θt ∈ [θti −Θt

i/2, θ
t
i +Θt

i/2],
θr ∈ [θri −Θr

i/2, θ
r
i +Θr

i/2].

(4.19)

Any pointing direction (ϕt, θt, ϕr, θr) satisfying the constraints is an arm in this

problem. The space to search for the best arm is the hyperrectangle defined by

the constraints, which is a continuous space. This means that the directions

are fine-tuned within the 3 dB beamwidths of the original beam pair i defined

by the pointing direction (ϕt
i, θ

t
i , ϕ

r
i, θ

r
i). The coarse search to within the 3 dB

beamwidth is supposed to be done by the beam pair selection algorithm.

4.6.2 Modified HOO for Beam Pair Refinement

HOO is a CAB algorithm that runs on a search tree. We start by

describing the search tree. Then, we explain the flow of HOO. Finally, we

provide the details of the modifications made to the original algorithm to fit

the beam refinement task. We describe the algorithm for refining a beam pair

i. Since all the description is in the context of this beam pair i, we drop

explicit references to beam pair i here to avoid notational clutter.

We now define the search tree T which HOO runs on. Each node in

the tree is the pair of transmit and receive pointing directions (ϕt, θt, ϕr, θr)

satisfying the constraints in (4.19). The root of the tree is the original pointing

direction of the beam pair i (ϕt
i, θ

t
i , ϕ

r
i, θ

r
i) as defined in the codebook. Each

node in the tree at depth ℓ < ℓmax has 16 children which correspond to all
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possible combinations of transmit and receive beam directions perturbed by

1/2ℓ of the beamwidths in the four variables. Denote (ϕt
ℓ,k, θ

t
ℓ,k, ϕ

r
ℓ,k, θ

r
ℓ,k) the

parameters of the k-th node at depth ℓ in T, its set of 16 children nodes can

be writting using a Cartesian product as

[ϕt

ℓ,k + Φt
i/2

ℓ, θtℓ,k]
T

[ϕt
ℓ,k − Φt

i/2
ℓ, θtℓ,k]

T

[ϕt
ℓ,k, θ

t
ℓ,k +Θt

i/2
ℓ]T

[ϕt
ℓ,k, θ

t
ℓ,k −Θt

i/2
ℓ]T

×

[ϕr

ℓ,k + Φr
i/2

ℓ, θrℓ,k]
T

[ϕr
ℓ,k − Φr

i/2
ℓ, θrℓ,k]

T

[ϕr
ℓ,k, θ

r
ℓ,k +Θr

i/2
ℓ]T

[ϕr
ℓ,k, θ

r
ℓ,k −Θr

i/2
ℓ]T


 . (4.20)

Using this node expansion rule, a node at depth ℓ+1 deviates from its parent

node in the pointing direction by beamwidth/2ℓ and depends only on ℓ. Note

that each depth in the tree can be thought of as a grid partitioning the search

space defined by the constraints in (4.19). The grid becomes finer deeper in

the tree (i.e., as ℓ increases).

We now describe how the modified HOO works. A pseudo-code is

shown in Algorithm 4.3. It runs on a finite tree with a maximum depth

of ℓmax. The nodes in the tree are activated on the fly, and only the root

node and its children are active at time n = 0. Thus, the initial tree is

T = {(1, 1)} ∪ C1,1, where Cℓ,k denotes the set of the indices of the children of

the node (ℓ, k). In each iteration, there are three main parts. First, a node is

selected by traversing the active tree starting from the root following the path

through nodes that have the largest B-values (line 6-13), which is the best

optimistic estimate of the average rewards of the nodes. The second part is

the beam measurement for the selected node (line 14). Lastly, after obtaining

the measurement, the learning parameters are updated. If the condition is

met, a node in the tree is expanded, i.e., activating its 16 children nodes. Note

150



Algorithm 4.3 Modified HOO for Beam Pair Refinement

1: // Initialization
2: T ← {(0, 1)} ∪ C1,1

3: (B2,j, T2,j, µ̂2,j, Sq2,j)← (∞, 0, 0, 0) for ∀j ∈ C1,1

4: for n = 1, 2, . . . do
5: // Select a node in the tree to sample
6: (ℓ, k)← (1, 1) // Start from the root node
7: P← {(ℓ, k)}
8: for ℓ = 1, . . . ,min{depth(T), ℓmax − 1} do
9: k⋆ ← argmax

j∈Cℓ,k

Bℓ+1,j

10: (ℓ, k)← (ℓ+ 1, k⋆)
11: P← P ∪ {(ℓ, k)}
12: end for
13: (ℓs, ks)← (ℓ, k)
14: Obtain the beam measurement for node (ℓs, ks) denoted by γ
15: // Update the learning parameters
16: for (ℓ, k) ∈ P do // update sample averages
17: Tℓ,k ← Tℓ,k + 1
18: µ̂ℓ,k ← (1− 1

Tℓ,k
)µ̂ℓ,k + γ/Tℓ,k

19: Sqℓ,k ← Sqℓ,k + γ2

20: σ2
ℓ,k ← (Sqℓ,k − µ̂2

ℓ,kTℓ,k)/Tℓ,k
21: end for
22: for all (ℓ, k) ∈ T do // update U-values

23: Uℓ,k ←
(
µ̂ℓ,k +

√
16σ̂2

ℓ,k
log(n)
Tℓ,k

)
ν(ℓ)

24: // forced exploration
25: Uℓ,k ←∞ if Tℓ,k < ⌈αnorm log(n)⌉ or Tℓ,k < Kmin

26: end for
27: // expand a node if conditions are met
28: if ℓs < ℓmax ∧ Tℓs,ks > Kexd ∧ (ℓs, ks) is a leaf then
29: T ← T ∪ Cℓs,ks

30: (Bℓs+1,j, Tℓs+1,j, µ̂ℓs+1,j, Sqℓs+1,j)← (∞, 0, 0, 0) for ∀j ∈ Cℓs,j

31: end if
32: for ℓ = ℓs, ℓs − 1, . . . , 2 do // update B-values
33: Bℓ,k ← min{Uℓ,k,maxj∈Cℓ,k

Bℓ+1,j},∀ nodes at depth ℓ in T

34: end for
35: end for
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that to lower the risk of expanding a suboptimal node, it is enforced that a

node can be expanded only after it is sampled Kexd times. The last part of

the parameter update is the B-values. They are computed by back calculation

from the sampled node back to the root (line 33). The B-value of node (ℓ, k)

is the minimum between its own U-value and the maximum B-value of its

children nodes, i.e.,

Bℓ,k ← min

{
Uℓ,k, max

j∈Cℓ,k

Bℓ+1,j

}
. (4.21)

The U-value is similar to the UCB value but it also accounts for the smooth-

ness property (line 23). The U-value provides an optimistic estimate of its

average reward using the parameter of the node, and the maximum B-value

among its children nodes provides another optimistic estimate of its reward.

By taking the minimum between the two, the obtained B-value provides a

refined optimistic estimate of the average reward of the node.

We introduce three main modifications to the original HOO tailored

to the beam refinement setting. The first one is the use of a finite tree. The

original HOO assumes an infinite tree to represent the arm space. Since small

adjustments (e.g., 1/8 of the beamwidth) have a small impact on the gain, a

finite tree of maximum depth ℓmax is used instead to save computation and

storage for the learning parameters. The second one is the smoothness bound.

The original HOO assumes an additive offset. Due to the multiplicative nature

of the antenna gains, a multiplicative factor ν(ℓ) as shown in line 23 is more

suitable. The factor is computed using Lemma 4.1, which will be detailed in

the last part of this subsection.
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The third modification is the confidence margin. Because the original

margin
√

2 log(n)/Th,i is too loose in our setting, we propose to use that of

the norm-UCB (line 23) [15]. The margin
√

2 log(n)/Th,i is derived from the

Chernoff-Hoeffding inequality, which is applicable to any distribution with the

support in [0, 1]. While normalizing the channel strengths by a large enough

number will approximately guarantee that the support is within [0, 1], the

average typically takes a value much less than 1 and the margin
√

2 log(n)/Th,i

is too loose for reasonable learning horizons. The reason that the average

is much smaller than 1 is that due to the small scale fading nature of the

wireless channel. Fading is the result of the multipath effect and can cause the

maximum instantaneous channel strength to be much larger than the average

[46]. A good property of this new margin is that the sample variance is also

used. Note that to enable regret analysis, the norm-UCB algorithm requires

each arm be sampled at least ⌈αnorm log(n)⌉ at time n with αnorm = 8 [15].

This is enforced by setting the U-values of the nodes that need to be explored

to infinity (see line 25). Note that we also introduce the condition Tℓ,k < Kmin,

which is used to ensure that there are at least Kmin samples of the node for

computing the sample variance. This is needed when using a small αnorm.

We next state a lemma defining the smoothness property of the ob-

jective function in (4.19). The lemma is used for computing the smoothness

coefficient ν(ℓ).

Lemma 4.1. Assume a single-path azimuth PAS with the optimal beam di-

rection ϕ⋆ with isotropic transmit antenna, G(·;ϕ0) the normalized gain of
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the beam pattern pointing at ϕ0 assumed to be decreasing and concave in

[ϕ0, ϕ0+Φ/2] with Φ denoting the 3 dB beamwidth (e.g., true for a uniform lin-

ear array), for a receive pointing direction ϕ0 such that |ϕ⋆−ϕ0| ≤ ∆ϕ ≤ Φ/2,

γ̄(ϕ0)/G(ϕ0 +∆ϕ;ϕ0) ≥ γ̄(ϕ⋆). (4.22)

Moreover, for a general PAS with the support within [ϕ0 − Ψ, ϕ0 + Ψ] with

Ψ ≤ Φ/2,

γ̄(ϕ0)/G(ϕ0 +∆ϕ;ϕ0) ≥ γ̄(ϕ⋆)− Err, (4.23)

where Err ≥ 0 is a residual term that depends on the shape of the PAS and

Err→ 0 as ∆ϕ→ 0.

We now explain how to determine ν(ℓ) using Lemma 4.1. While we

state Lemma 4.1 assuming isotropic transmit antenna to avoid tedious nota-

tions, the same argument applies when we also include the transmit beam

pattern. In particular,

γ̄(ϕr
0, ϕ

t
0)/Gr(ϕ

r
0 +∆ϕr;ϕr

0)Gt(ϕ
t
0 +∆ϕt;ϕt

0) ≥ γ̄(ϕr⋆, ϕt⋆)− Err. (4.24)

When steering the elevation only, we get the same relation as (4.24). If we

assume square UPAs, the beam pattern in the azimuth and elevation will be

the same. Since we only change the azimuth or elevation but not both per

(4.20), the smoothness coefficient is given by

ν(ℓ) = a/(Gr(ϕ
r
ℓ + Φ/2ℓ;ϕr

ℓ)Gt(ϕ
t
ℓ + Φ/2ℓ;ϕt

ℓ)) (4.25)

≃ a/g2(beamwidth/2ℓ), (4.26)
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where a > 1 is a correction coefficient to account for Err if deemed necessary.

For convenience, we approximate the gain by g(·) the beam pattern at broad-

side as a function of the deviation from the broadside direction. Note that we

will need a only for large ∆ϕ. Deeper in the tree, the change in the angle is

small and thus Err will become negligible. Also, for the sake of clear argument,

we restrict Ψ ≤ Φ/2, but with a more elaborate choice of the coefficient of Err

in the proof, we can allow Ψ to be larger. This, however, is not a big concern

in our setting because ∆ϕ will be Φ/4 or less and Err is restricted to a small

value already.

4.7 Numerical Results

We start with the general setting of our numerical evaluations. As

described in Section 3.3, our codebook for 16 × 16 UPA has 271 beams and

thus there are 2712 beam pairs. Using the heuristic screening to get B̂ as

explained in Section 4.5.1 with the initial database size of N = 5 and C = 200,

the size of the set of beam pairs to be learned |B̂| is typically between 400 and

600 depending on the simulation run. Following the ray-tracing described

in Section 3.3, we generated 10,000 channel samples using ray-tracing. To

eliminate the effect of the ordering of the channel samples on the learning

performance, the evaluation metrics are averaged over 100 simulation runs,

where in each run we randomly permute these 10,000 channel samples. We

apply a moving average with a window size of 50 time steps to better show

the trends.
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As an evaluation metric, we use the 3 dB power loss probability and

the gain defined as the inverse of the power loss in (4.1). The 3 dB power

loss probability (i.e., c = 2 in (4.2)) measures how often the selected beam

pair has a loss larger than 3 dB as compared to the best beam pair selected

by exhaustive search, and thus capturing the beam alignment accuracy. This

metric, however, is not suitable for evaluating the beam pair refinement be-

cause it cannot capture the improvement over the exhaustive search in the

original codebook. Allowing the refinement, a beam pair better than the best

in the original codebook can be selected resulting in power loss taking a value

less than one, or equivalently, a positive gain in dB.

The rest of the section is divided into three parts. In Section 4.7.1, we

evaluate the beam pair selection alone without the refinement option. In Sec-

tion 4.7.2, we assess the performance of the beam pair refinement assuming an

offline learning for the beam pair selection. Section 4.7.3 provides evaluations

of the integrated solution including both the online beam pair selection and

refinement components.

4.7.1 Online Beam Pair Selection

In this subsection, we evaluate the performance of the proposed risk-

aware greedy UCB algorithm without the beam refinement option. There

are two parameters to be decided when running Algorithm 4.2: the training

budget Btr and the risk threshold Γrisk in (4.14). We note that our solution

does not require that Btr be fixed, but for simplicity, we assume that the same
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Figure 4.2: Average 3 dB power loss probability using the proposed risk-aware
greedy UCB algorithm with different training budgets Btr and risk thresholds
Γrisk. For both Btr = 10 and 30, the plots show similar learning behavior. A
smaller training budget Btr = 10 provides less accuracy beam alignment. The
plots using different Γrisk show that the performance is not sensitive to Γrisk as
long as it is not too large.

Btr is used during the entire learning horizon. Fig. 4.2 shows the average 3

dB power loss probability versus time for Btr = 10 and 30 with different Γrisk.

We can confirm from the figure that using a larger training budget Btr leads

to lower 3 dB power loss probability, i.e., more accurate beam alignment. The

learning seems to have two phases: the fast improvement phase in the early

time steps and the slower improvement phase after that. For Btr = 30 and

Γrisk = 5 dB, this phase change happens at around time index 500. The slower

learning phase starts when the algorithm has identified high-risk beam pairs

(with some certainty) and learns those beam pairs at a slow pace due to the

rejection mechanism. Regarding the risk threshold, the results show that the

algorithm is not sensitive to the choice of Γrisk. As long as Γrisk is not too large
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Figure 4.3: Performance comparison of greedy UCB with and without risk-
awareness. The performance is an order of magnitude worse without risk-
awareness. This is because the risk-aware greedy UCB uses the risk estimates
to control the number of high-risk beam pairs selected in the subset S reducing
the probability of severe misalignment.

(e.g., less than 40 dB), it performs well. The main reason for this behavior is

due to the effect of the replacement selection method (line 19-23 in Algorithm

4.2) that selects beam pairs to replace those rejected; even if a good beam

pair gets rejected due to risk overestimation (when using a small Γrisk), it will

likely be picked up by the replacement selection.

Fig. 4.3 shows a performance comparison of the greedy UCB algorithm

with and without the risk-awareness. The performance without risk-awareness

is an order of magnitude worse than that with risk-awareness. This might seem

a bit counterintuitive because the regret bound of the risk-aware algorithm is

higher. One way to understand this behavior is this. The goal of the UCB

selection is to reach a state where we can ensure that a suboptimal arm is
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not selected with high probability (call this the optimal state). To reach the

optimal state, each arm has to be sampled enough times (T
(0)
ℓ,i⋆ in the derivation

in Appendix 4.A). Algorithm 4.1 samples the arms to reach this state fast, but

it will expose early stage users to select more high-risk arms. Algorithm 4.2

balances the number of high-risk arms at any round by the rejection mechanism

which results in a slower speed to reach the optimal state, i.e., a slower learning

speed. By not exposing a user to too many high-risk arms, Algorithm 4.2 can

ensure that the regret each user has to endure is not too large. In other words,

although the cumulative regret is smaller (at a large enough time), users in

early stages of Algorithm 4.1 have to sacrifice. Algorithm 4.2 distributes the

regret more evenly among the users at different learning stages. We note that

because of the large number of arms (400 to 600 as noted earlier), the time to

reach the optimal state is large and Algorithm 4.1 is not practical as an online

solution as shown in Fig. 4.3.

Lastly, Fig. 4.4 shows a performance comparison to demonstrate the

effectiveness of our choice of the reward signal in (4.13). Specifically, we com-

pare the accuracy of the beam selection using the average sample rewards

(P̂opt(i)) versus the more intuitive choice of average channel strength γ̄i. We

also compare it with the case where we assume that the ideal reward defined in

(4.12) is available to the algorithm during the learning. To evaluate this, we let

the risk-aware greedy UCB algorithm run for 2000 time steps. We, then, use

P̂opt(i) and γ̄i estimated at time step 2000 to get two sets of beam selections

and evaluate the two sets over 500 channel samples. We use Btr = 30 and
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Figure 4.4: A comparison of the accuracy of the selection set produced by
the average of the proposed reward signal (P̂opt(i)) and the more intuitive

choice of average channel strength. The performance when using P̂opt(i) is
consistently better for all training budgets. The comparison when using the
proposed practical reward signal (4.13) as opposed to the ideal reward signal
(4.12) shows negligible performance loss.

Γrisk = 5 dB for the online learning. Fig. 4.4 shows the 3 dB power loss prob-

ability against the number of beam pairs trained. We can see that the beam

pair selection using P̂opt(i) is more accurate than using the average channel

strengths. Also, the plots show that the degradation due to the use of the

proposed alternative and practical reward signal in (4.13) during the learning

results in negligible loss. These results confirm the effectiveness of our choice

of the reward signal in (4.13).
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4.7.2 Online Beam Pair Refinement

To evaluate the performance of the beam refinement on its own, we

perform an offline beam pair selection using the MinMisProb method from

Chapter 3 before running the beam refinement. In each simulation run, we

use the first 300 channel samples to determine the selection set S, and then

we run the beam pair refinement on each of the beam pairs in S where we set

the training budget to Btr = 30. For a baseline comparison, we implement an

MAB solution using the norm-UCB algorithm from [15]. The MAB solution is

run on the leaves of the search tree, and thus the number of arms is 16ℓmax−1.

Besides Btr, we also need to specify the maximum tree depth ℓmax and the

forced exploration parameter αnorm. We use Kmin = 3 and Kexd = 10.

We start by comparing the performance of MAB and our modified HOO

solution in Fig. 4.5(a). We can see that HOO learns much faster by leveraging

the tree structure. We can see the cost of exploration of MAB in the initial

stage, where each arm has to be tried kmin times, where each arm has to be

tried Kmin times. Using the search tree, starting from the root, HOO will first

explore the nodes at depth 2. At depth 3, it explores only the children nodes

of promising nodes at depth 2, and this goes on until reaching ℓmax. This way,

HOO does not have to sample all the leaves uniformly to explore the whole

arm space leading to more efficient exploration than MAB.

We next show the effect of αnorm and ℓmax on the performance. We

noted earlier that αnorm = 8 is required to derive a regret bound in [15]. Forcing

exploration this way with αnorm turns out to result in bad performance for our
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(a) HOO vs. MAB with ℓmax = 3.
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Figure 4.5: A comparison of HOO and MAB with different αnorm and ℓmax.
Fig. (a) compares the performance when ℓmax = 3. MAB does not use the
hierarchical structure of the search tree as HOO and suffers a larger exploration
penalty. The penalty is even more severe as αnorm increases. The results show
that the forced exploration is not needed and αnorm = 0 should be used. Fig.
(b) compares the performance of HOO when using different ℓmax. There is
negligible gain for setting ℓmax beyond 3. We also see that HOO does not have
extra degradation due to exploration when we increase ℓmax.
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Figure 4.6: A comparison of HOO with and without the smoothness coefficient
ν(ℓ) (for computing the U-values). The smoothness coefficient shows negligible
effect. This is likely because the refinement problem searches locally within
the 3 dB beamwidth. Since this is in the vicinity of the optimal point, the
smoothness bound does not help in eliminating suboptimal nodes resulting in
no performance gain.

applications as shown in Fig. 4.5(a). The dips in the gains are due to this

forced exploration, and the intervals between dips decrease as αnorm increases.

Note that even with αnorm = 0, both MAB and HOO still explore because of

the confidence margin of the norm-UCB
√

16σ̂2
ℓ,k log(n)/Tℓ,k. Fig. 4.5(a) shows

that for both MAB and HOO, αnorm = 0 provides the best performance. Fig.

4.5(b) compares the performance of HOO for ℓmax = 2, 3 and 4 with αnorm = 0.

We can see that a larger ℓmax improves the gains, which is expected since it

allows a more refined search. Remarkably, thanks to the structure of the search

tree, a larger ℓmax does not require more cost in the exploration. Since the

performance improvement is quite small and the number of nodes in the tree

increases quickly, we use ℓmax = 3 from now on.
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Fig. 4.6 compares the HOO beam refinement with and without the

smoothness coefficient ν(ℓ). The performance difference is negligible. This

is likely because the search region in our problem is already confined to a

small local region (within the 3 dB beamwidths of the selected beam pair), so

that the constraint derived from the smoothness property does not have much

value. This has a welcoming implication. The algorithm can be expected to be

robust to small irregularity in the detailed shape of the beam patterns (thus

affecting the exact smoothness property), which can be expected with real

hardware.

4.7.3 Integrated Online Learning Solution

In this subsection, we evaluate the performance when combining the

beam pair selection and refinement together. One thing that needs to be spec-

ified when combining the two is when to start the refinement for a selected

beam pair. We consider the following three variations to start the beam re-

finement:

1. Refine all: The beam pair refinement is started for any beam pair from

the first time it is selected by the online selection algorithm. This is the

most straightforward way to combine the two components.

2. Refine after Xtot[i] > 0: The refinement of the beam pair i starts from

the time step that the beam pair i receives a reward, i.e., when Xtot[i]

becomes positive. The point for this option is that the algorithm only

refines those beam pairs deemed to be most promising.
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Figure 4.7: A comparison of average gain of the integrated solution with the
three options for when to start the beam refinement. The plots show no
negative impact of the beam pair refinement on the online learning for beam
pair selection. It is best to start the refinement simultaneously with the online
beam pair selection.

3. Refine after n0 time steps: The beam refinement of all selected beam

pairs starts after running the online beam pair selection for n0 time steps.

The rationale for this option is to prevent the beam pair refinement al-

gorithm from affecting the learning of the beam pair selection algorithm.

This option allows the beam pair selection to run for a while so that it

stabilizes to some extent before starting the beam pair refinement.

While it seems more efficient to focus the refinement on promising beam pairs

only as in Option 2, refining suboptimal beam pairs as well will maximize their

average received signal and could reduce the risk of large power loss. Thus, it

is not clear which option provides the best performance.
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Fig. 4.7 compares the average gains over the exhaustive search (on

the original codebook) of the three options. Here, Btr = 30, Γrisk = 5 dB,

ℓmax = 3, αnorm = 0, and no smoothness coefficient is used (i.e., ν(ℓ) = 1).

We can see that the first option, which is also the most straightforward one,

provides the best performance. Focusing just on promising beam directions

as in the second option performs quite well but is slightly worse than the first

option. The results show that there is no benefit in waiting for some time

before enabling the beam refinement as in the third option.

4.8 Conclusion

In this chapter, we proposed position-based online learning algorithms

for beam pair selection and refinement. We used the MAB framework to

develop a risk-aware greedy UCB algorithm for beam pair selection and a

modified HOO for the beam pair refinement. Combining the two solutions

together, we can gain up to about 1.5 dB over the received power obtained

by exhaustive search over the original beam codebook before refinement. The

learning is fast and it achieves an average gain of about 1 dB within the first 100

time steps. While we only use position in this chapter, more side information

from sensors on the vehicle or the RSU about the current environment will

help further reduce the beam training overhead. As shown in this chapter,

even efficient learning algorithms can be impractical without risk-awareness

because the focus is on cumulative rather than instantaneous performance.

Therefore, we believe risk-awareness is a key to developing practical online
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learning solutions to take full advantage of these sensors to enable fast and

efficient mmWave communications.

4.9 Appendix

4.A Proof of Theorem 4.1

The regret is non-zero when one or more suboptimal beam pairs are se-

lected. Thus, the total expected regret can be bounded by the average number

of times suboptimal pairs are selected. We note that this derivation follows

the steps of the UCB1 derivation from [15, Theorem 1] with the exception of

the multiple-play setting. We provide the full details for completeness and

readability. Denote ℓ and i⋆ the indices of a suboptimal and optimal pair.

Denote Tℓ,i⋆ [n] the number of times ℓ is selected instead of i⋆ up to time n, the

expected regret is

Rℓ,i⋆ [n] = E [Tℓ,i⋆ [n]] ∆ℓ,i⋆ , (4.27)

where ∆ℓ,i⋆ is the optimality gap defined in (4.16). This is because whether

ℓ is selected or not at time n depends on the rewards up to time n − 1 and

the loss depends only on the rewards at n. Thus, the two are independent by

the assumption of independent reward signals across time (typical in an MAB

setting).

We will now compute a bound for E [Tℓ,i⋆ [n]]. A necessary condition for

the pair ℓ to be selected instead of the pair i⋆ is that UCBℓ > UCBi⋆ . After the

pair ℓ has been selected T
(0)
ℓ,i⋆ times, the number of times ℓ is selected instead
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of i⋆ up to time n can be bounded by

Tℓ,i⋆ [n] ≤ T
(0)
ℓ,i⋆ +

n∑
t=t0

1
{
UCBℓ ≥ UCBi⋆ , Tℓ(t− 1) ≥ T

(0)
ℓ,i⋆

}
(4.28)

= T
(0)
ℓ,i⋆ +

n∑
t=t0

1
{
P̂opt(ℓ) + ct−1,Tℓ(t−1)≥ P̂opt(i

⋆) + ct−1,Ti⋆ (t−1), Tℓ(t− 1)≥T (0)
ℓ,i⋆

}
(4.29)

≤ T
(0)
ℓ,i⋆ +

n∑
t=t0

1

{
max

T
(0)
ℓ,i⋆

<uℓ<t

{
P̂opt(ℓ) + ct−1,uℓ

}
≥ min

0<u<t

{
P̂opt(i

⋆) + ct−1,u

}}
(4.30)

≤ T
(0)
ℓ,i⋆ +

n−1∑
t=1

t−1∑
u=1

t−1∑
uℓ=T

(0)
ℓ,i⋆

1
{
P̂opt(ℓ) + ct,uℓ

≥ P̂opt(i
⋆) + ct,u

}
. (4.31)

where t0 ≥ T
(0)
ℓ,i⋆ and ct,u =

√
2 log(t)/u is the confidence margin. For {P̂opt(ℓ)+

ct,uℓ
≥ P̂opt(i

⋆) + ct,u} to be true, at least one of the followings must hold

P̂opt(i
⋆) ≤ Popt(i

⋆)− ct,u (4.32)

P̂opt(ℓ) ≥ Popt(ℓ) + ct,uℓ
(4.33)

Popt(i
⋆) < Popt(ℓ) + 2ct,uℓ

. (4.34)

Note that (4.32) means the UCB value underestimates the true reward of

pair i⋆, and (4.33) means the UCB value overestimates the true reward of

pair ℓ by larger than the corresponding confidence margins. Setting T
(0)
ℓ,i⋆ =

⌈8 log(n)/∆2
ℓ,i⋆⌉, it can be shown that (4.34) is impossible [15, p. 243], and we
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can bound E[Tℓ,i⋆ [n]] by

E[Tℓ,i⋆ [n]] ≤

⌈
8 log(n)

∆2
ℓ,i⋆

⌉
+

n−1∑
t=1

t−1∑
u=1

t−1∑
uℓ=T

(0)
ℓ,i⋆

P[(4.32) is true] + P[(4.33) is true]

(4.35)

≤

⌈
8 log(n)

∆2
ℓ,i⋆

⌉
+

∞∑
t=1

t−1∑
u=1

t−1∑
uℓ=T

(0)
ℓ,i⋆

(t−4 + t−4) (4.36)

≤

⌈
8 log(n)

∆2
ℓ,i⋆

⌉
+ 2

∞∑
t=1

t∑
u=1

t∑
uℓ=1

t−4 (4.37)

≤

⌈
8 log(n)

∆2
ℓ,i⋆

⌉
+ 2

π2

6
. (4.38)

The second line in (4.36) follows because the probability terms can be shown

to be bounded by t−4 using the Chernoff-Hoeffding inequality [15].

The total regret bound follows by summing all pairs of optimal and

suboptimal beam pairs

R1[n] ≤
∑

ℓ∈B̂\S⋆

∑
i⋆∈S⋆

E[Tℓ,i⋆ [n]]∆ℓ,i⋆ . (4.39)

Substituting (4.38) in and after some algebra, we obtain (4.17).

4.B Proof of Theorem 4.2

The derivation follows similarly to that of Theorem 4.1, but we need

to be careful about the rejection mechanism. Even if a pair is selected by the

greedy UCB selection, it will not be used for the training if it is rejected. Let

T̃ℓ,i⋆ and Tℓ,i⋆ be the number of times the pair ℓ is selected instead of the pair i⋆
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and the number of times it is accepted for beam training, respectively. We

proceed similarly to obtain a bound similar to (4.31) given by

T̃ℓ,i⋆ [n] ≤ T̃
(0)
ℓ,i⋆ +

n−1∑
t=1

t−1∑
u=1

t−1∑
ũℓ=T̃

(0)
ℓ,i⋆

1{P̂opt(ℓ) + ct,uℓ
≥ P̂opt(i

⋆) + ct,u}. (4.40)

To compute the bound on E
[
T̃ℓ,i⋆ [n]

]
, we again use (4.32)-(4.34). The proba-

bility bounds on (4.32) and (4.33) are still applicable. Because of the rejection,

we cannot guarantee that (4.34) is impossible, but we can bound its probabil-

ity. Note that ũℓ is the number of times the pair ℓ is selected, and uℓ is the

number of times it is accepted for beam training. It can be shown that (4.34) is

impossible if uℓ >
8 log(t)

∆2
ℓ,i⋆

[15, p. 243]. Thus, we can bound the probability that

(4.34) holds by P
[
uℓ ≤ 8 log(t)

∆2
ℓ,i⋆

]
. With the acceptance probability ζℓ, we have

E[uℓ] = E[ũℓ]ζℓ. Setting T̃
(0)
ℓ,i⋆ = ⌈8 log(n)/(ζℓδ2∆2

ℓ,i⋆)⌉, we get the following

bound

P

[
uℓ ≤

8 log(t)

∆2
ℓ,i⋆

∣∣∣∣∣ ũℓ = t

]
≤ P

[
uℓ ≤

8 log(t)

∆2
ℓ,i⋆

∣∣∣∣∣ ũℓ = T̃
(0)
ℓ,i⋆

]
(4.41)

≤ P

[
uℓ ≤

8 log(n)

∆2
ℓ,i⋆

∣∣∣∣∣ ũℓ = T̃
(0)
ℓ,i⋆

]
(4.42)

≤ n−4. (4.43)

Here, (4.41) follows because t ≥ t0 ≥ T̃
(0)
ℓ,i⋆ , (4.42) holds because t < n, and

(4.43) is the application of the lower tail of the Chernoff bound with δ = (
√
5−

1)/2 for the Bernoulli distribution [39, Theorem 4]. Taking the expectation of
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(4.40) and substitute the probability bounds for (4.32)-(4.34) to hold, we get

E
[
T̃ℓ,i⋆ [n]

]
≤ T̃

(0)
ℓ,i⋆ +

n−1∑
t=1

t−1∑
u=1

t−1∑
ũℓ=T̃

(0)
ℓ,i⋆

(2t−4 + n−4) (4.44)

≤ T̃
(0)
ℓ,i⋆ + 3

∞∑
t=1

t∑
u=1

t∑
ũℓ=1

t−4 (4.45)

= T̃
(0)
ℓ,i⋆ + π2/2. (4.46)

To obtain the regret, we note that when the pair ℓ is selected the regret incurred

is ζℓ∆ℓ,i⋆ + (1 − ζℓ)∆̃ℓ,i⋆ because when rejected (with probability 1 − ζℓ), the

regret is ∆̃ℓ,i⋆ . The total expected regret is then

R2[n] ≤
∑

ℓ∈B̂\S⋆

∑
i⋆∈S⋆

E[T̃ℓ,i⋆ [n]](ζℓ∆ℓ,i⋆ + (1− ζℓ)∆̃ℓ,i⋆), (4.47)

which after rearranging terms will result in (4.18).

4.C Proof of Lemma 4.1

Assuming a normalized PAS, then the single-path PAS can be repre-

sented by the delta function δ(ϕ − ϕ⋆). The average received power can be

written as

γ̄(ϕ0) =

∫ ϕ0+∆ϕ

ϕ0−∆ϕ

δ(ϕ− ϕ⋆)G(ϕ;ϕ0)dϕ. (4.48)

Since the gain G(ϕ;ϕ0) is decreasing in [ϕ0, ϕ0+Φ/2] and |ϕ⋆−ϕ0| ≤ ∆ϕ ≤ Φ/2

by the assumption of the Lemma,

G(ϕ;ϕ0)

G(ϕ0 +∆ϕ;ϕ0)
≥ 1 ≥ G(ϕ;ϕ⋆), ∀ϕ ∈ [ϕ0 −∆ϕ, ϕ0] ∪ [ϕ0, ϕ0 +∆ϕ]. (4.49)
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Multiply both sides by δ(ϕ− ϕ⋆) and take the integral to get∫ ϕ0+∆ϕ

ϕ0−∆ϕ

δ(ϕ− ϕ⋆)G(ϕ;ϕ0)/G(ϕ0 +∆ϕ;ϕ0)dϕ ≥
∫ ϕ0+∆ϕ

ϕ0−∆ϕ

δ(ϕ− ϕ⋆)G(ϕ;ϕ⋆)dϕ

(4.50)

γ̄(ϕ0)/G(ϕ0 +∆ϕ;ϕ0) ≥ γ̄(ϕ⋆). (4.51)

Now, for a more general PAS P(ϕ) with a bounded support in [ϕ0 −

Ψ, ϕ0 +Ψ], the average received power can be written as

γ̄(ϕ0) =

∫ ϕ+Ψ

ϕ0−Ψ

P(ϕ)G(ϕ;ϕ0)dϕ (4.52)

=

∫ ϕ0−∆ϕ

ϕ0−Ψ

P(ϕ)G(ϕ;ϕ0)dϕ+

∫ ϕ0+∆ϕ

ϕ0−∆ϕ

P(ϕ)G(ϕ;ϕ0)dϕ

+

∫ ϕ0+Ψ

ϕ0+∆ϕ

P(ϕ)G(ϕ;ϕ0)dϕ. (4.53)

By the same argument as in the single-path PAS case, we have

P(ϕ)G(ϕ;ϕ0)
G(ϕ0;ϕ0)

G(ϕ0 +∆ϕ;ϕ0)
≥ P(ϕ)G(ϕ;ϕ⋆), ∀ϕ ∈ [ϕ0 −∆ϕ, ϕ0 +∆ϕ]

(4.54)

P(ϕ)G(ϕ;ϕ0)
G(ϕ0 +Ψ−∆ϕ;ϕ0)

G(ϕ0 +Ψ;ϕ0)
≥ P(ϕ)G(ϕ;ϕ⋆),

∀ϕ ∈ [ϕ0 −Ψ, ϕ0 −∆ϕ] ∪ [ϕ0 +∆ϕ, ϕ0 +Ψ]. (4.55)

Taking the integral of (4.54) and (4.55), we have

γ̄(ϕ0)/G(ϕ0 +∆ϕ) ≥ γ̄(ϕ⋆)− Err (4.56)

where

Err =

(
G(ϕ0 +Ψ−∆ϕ;ϕ0)

G(ϕ0 +Ψ;ϕ0)
− 1

G(ϕ0 +∆ϕ;ϕ0)

)
×(∫ ϕ0−∆ϕ

ϕ0−Ψ

P(ϕ)G(ϕ;ϕ0)dϕ+

∫ ϕ0+Ψ

ϕ0+∆ϕ

P(ϕ)G(ϕ;ϕ0)dϕ

)
. (4.57)
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Because G(ϕ;ϕ0) is decreasing and concave for ϕ ∈ [ϕ0, ϕ0 + Φ/2] by the

assumptions of the Lemma (e.g., true for a uniform linear array), the coefficient

is positive and decreasing as ∆ϕ decreases. Since the integrands are positive by

definition, Err is positive. Further, because the sum of the integrals in (4.57)

is upper bounded by γ̄(ϕ0) (which is finite), we have Err → 0 as ∆ϕ → 0.

Also, for small Ψ the integration intervals decrease and when Ψ ≤ ∆ϕ they

disappear, i.e., Err = 0.
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Chapter 5

Conclusion

The high data rate capability of mmWave can enable a whole new range

of V2X applications including both safety and non-safety related ones. One

difficulty in using mmWave is the need to use directional beams to overcome

its propagation characteristics, which is especially challenging in a mobile set-

ting such as V2X. In this dissertation, focusing on the analog beamforming

architecture, we addressed this challenge by taking advantage of the side infor-

mation available from sensors equipped on vehicles. Specifically, using position

and past beam measurements, we developed both offline and online learning

algorithms that can rank beam directions by their likelihood to support a

strong link connection. Performance evaluation of a standard solution defined

in IEEE 802.11ad shows that it cannot support large arrays under high mobil-

ity, while the lower overhead of our proposed solutions allows the use of such

large arrays, which is necessary to support decent link distances (e.g., tens to

a few hundred meters). This proves our thesis statement that

Position-based learning can exploit the propagation characteris-

tics of the environment to reduce mmWave link configuration over-

head.
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A summary of the main contributions presented in this dissertation now fol-

lows.

5.1 Summary

• Chapter 2: We presented a theoretical investigation of the impact of

the directionality on the temporal variation of vehicular channels. We

derived closed-form expressions for channel coherence time incorporat-

ing for the first time both the Doppler effect and pointing error due to

mobility. Contrary to classical results, due to pointing error, there is

a non-zero optimal beamwidth that maximizes the channel coherence

time. We also proposed a new concept called the beam coherence time

useful for quantifying the beam alignment overhead. It is shown that

accounting for both the channel estimation and beam alignment over-

head, beam realignment should be done every beam coherence time and

not every channel coherence time.

• Chapter 3: We proposed a new framework for fast beam alignment

suitable for V2I settings. The core of this framework is the beam pair

selection method that selects promising beam directions eliminating un-

necessary training overhead. We proposed to leverage position infor-

mation available from onboard sensors and past beam measurements to

learn to select beam pairs. Three beam selection methods are proposed:

two based on statistical learning and one based on ML. Numerical evalu-

ations using realistic channels from ray-tracing simulations show that the
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proposed methods have an order of magnitude lower training overhead

as compared to the IEEE 802.11ad solution.

• Chapter 4: We developed an online version of the optimal beam pair

selection that minimizes the misalignment probability. We use the UCB

idea in the multiple-play MAB setting and combine with a newly intro-

duced risk-aware feature designed to avoid severe misalignment during

the learning. We also developed an online beam pair refinement algo-

rithm that can adapt the beam codebook to the environment to further

maximize the beamforming gain. The refinement algorithm is based

on HOO with modifications to account for the specific characteristics

of mmWave beam alignment. An integrated solution combining the two

learning components shows a fast learning behavior that quickly achieves

positive gains over exhaustive beam search on the unrefined codebook.

5.2 Future Research Directions

This section describes several research directions related to the work

represented in this dissertation.

5.2.1 Experimental Verification of Impact of Beamwidth on Chan-
nel Temporal Variation

In Chapter 2, we theoretically investigated the impact of the beamwidth

on the variation of the instantaneous channel coefficient (captured by the chan-

nel coherence time) and the average received power (captured by the beam
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coherence time). While the results make theoretical sense, verification in real

measurements is lacking in the literature. The main difficulty in measuring

the Doppler effect on the channel coefficient is the need to keep track of the

alignment of the beams as the alignment condition will affect the PAS which

in turn affects the Doppler spread. While one could use position information

to help keep the alignment in the LOS case, it is not clear what is a good

strategy for the NLOS case. For the beam coherence part, the difficulty lies in

the repeatability of the measurement setting to ensure that the PAS (without

the antenna patterns) stays unchanged during the measurements.

5.2.2 Learning for Multi-User Beam Alignment

In this dissertation, we focus on the single-user scenario and show that

position information is helpful in reducing the link configuration overhead. We

expect position information to be beneficial for the multi-user scenario as well,

but there will be different challenges. For example, beam directions that are

good for each individual user could result in suboptimal performance when

those users are served simultaneously due to interference among themselves.

There are also opportunities for improving efficiency. For example, if a group

of users shares multiple beam directions in their respective selection set (not

necessarily in the same ranking), those beam directions can be trained simul-

taneously with one single training packet, which will reduce the overhead as

compared to training each user individually. There are two research questions

here. One is how do we learn to predict the level of interference when serving
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a group of users together and the other is how do we optimize the grouping of

users to minimize the training overhead?

5.2.3 Learning for Beam Tracking

Our proposed beam alignment methods have a low overhead that could

allow it to be used for tracking as well. For example, by inserting one or several

beam measurements to test a few beam pairs in the database in each trans-

mission round (i.e., using the in-packet training as defined in IEEE 802.11ad),

we can keep track of the best beam pair. There is, however, an opportunity

for further improvement by leveraging the temporal correlation between the

beam pairs across time instances as the vehicle moves. The question here is

how to learn this temporal correlation with as little effort as possible? One

idea is to initially run the tracking as outlined earlier after the learning for

the beam alignment and start collecting temporal data. That is, the track-

ing learning is conducted after the beam alignment learning. While the beam

alignment algorithm provides only a fixed ranking of beam pairs, the tracking

algorithm can use the best beam pair sequence seen so far as additional context

to alter the ranking to fit the current situation (i.e., exploiting the temporal

correlation), and thus it can help further reduce the beam training overhead.

Reinforcement learning framework that can take prior belief from the beam

alignment learning could be an interesting starting point. The ultimate goal

would be to integrate the learning into one single learning algorithm without

having a separate beam alignment learning phase.
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5.2.4 Online Contextual Bandit for Beam Alignment

As more sensors are equipped on vehicles, more and more context infor-

mation beyond position will become available. Thus, it is desirable to extend

our risk-aware online learning to a framework that can easily incorporate mul-

tiple types of side information as we did in the LtR approach in an offline

learning setting. Of course, one can define multi-dimensional context bins and

define an MAB instance for each bin and apply our risk-aware learning algo-

rithm. This is, however, not necessarily an efficient way to do this for the

reason discussed in Section 3.8.1. Contextual bandit is a promising framework

for developing such a solution.

5.2.5 Extension to Hybrid Architectures

Equipped with several RF chains, a hybrid architecture can support

multiple data streams and/or provide beam diversity leading to superior per-

formance over that of an analog architecture. It, however, also requires more

effort in link configuration. Our learning approaches so far can identify promis-

ing directions and thus is also useful for a hybrid architecture. For example,

the knowledge of promising beam directions can be used as a prior for select-

ing efficient measurement matrices in a compressive sensing solution [9]. With

a more flexible architecture, we can also expect that more efficient learning

solutions will be possible. The first question would be how to specify the set

of arms. In the analog beamforming case, we use beams generated by pro-

gressive phase-shift. More sophisticated set of arms are likely needed to take
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full advantage of the multiple RF chains available in a hybrid architecture.

It might also depend on the beamforming strategy. For example, we could

use a two-step approach where the transceiver first estimates the channel and

then calculates the beamformer. In this case, if the channel estimation uses

a compressive sensing idea, then one approach would be to learn the prob-

ability of selecting a codeword in a dictionary used in a compressive sensing

solution. Another possible strategy is to learn to directly choose beamformers.

In that case, a different set of arms might be more appropriate. In either case,

it is important to design some metric with simplifying property such as the

modularity of the probability of being optimal in our case. This way, one can

reduce the complexity of the selection of a subset of arms, which in general is

an intractable problem.

5.2.6 Personalized MmWave Link Configuration

Being able to collect performance data for a specific context opens

up opportunities for customizing or adapting the communication systems to

suit that context. In this dissertation, the beam refinement algorithm has its

premise in this idea where the codebook is adapted to the propagation envi-

ronment conditioned by the position. This idea can be applied more generally

such as for mmWave link configuration for handheld devices. For example, in-

formation from the sensors on the device can provide clues on the orientation

of the antenna array. The orientation information can be used to translate

the pointing angle to a standard coordinate, and the learning approaches we
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presented can still be used. Beyond this one can consider learning the user’s

habit of using the device. For example, how the user holds the device when

running a particular application (e.g., voice call versus playing games) can

infer which beam directions are likely blocked by the user’s hand or head.

Thus, this would allow personalizing the communication systems to the users

for optimal performance. As noted in the conclusion in Chapter 4, to do such

learning online, exploring too much could be a potential pitfall. Some form of

risk-awareness is crucial to avoid large performance losses, which is expected

to be severe during the early stage of the learning.
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